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Summary

The field of remote sensing and information gathering is being revolutionized by the re-
cent developments in Micro Air Vehicles, MAVs. The need for maneuverability and flight
in confined spaces has directed the focus of research towards flapping flight.

Biological flapping flyers exhibit all the characteristics that are desired by MAVs. Biolog-
ical flyers are able to hover, make rapid changes in their attitude, and navigate through
very narrow spaces. For the purpose of this Master thesis the hawkmoth was used as
a starting point and source of inspiration. First and foremost the hawkmoth is a fairly
large insect, with a wingspan of roughly 10 cm. The larger scale of the insect will translate
to an easier design in terms of the scalability of structural and electronic components.
Furthermore, the hawkmoth displays consistent and simple kinematics.

The complex aerodynamics are not fully understood, it is still unclear how we can design
flapping kinematics that will lead to an optimum performance with respect to maneu-
verability, speed, and energy efficiency and are feasible to manufacture. The problem is
tackled through an experimental campaign in a water channel. The kinematics investi-
gated are two pitch-plunge motions based on the hawkmoth and a third purely sinusoidal
motion. The Reynolds number is 4, 800 and the reduced frequency is 0.38, similar to the
hawkmoth. The kinematics are subjected to force data acquisition, flow visualization,
and particle image velocimetry. The results are compared to flapping experiments and
calculations using computational fluid dynamics and an unsteady vortex model.

The results show that the effect of the elevation angle is very important when looking
at the details of the force development. A strong correlation between the strength of
the leading and trailing edge vortex and the forces was found. The force data acquired
during the experiments compares well to the to the CFD calculations. The calculated
force coefficients are between 82 and 87 % of the magnitude measured during the experi-
ments. The bias towards a lower value can be explained partially by the assumptions of
the CFD model and the presence of blockage effects during the experiments. Comparison
with the unsteady aerodynamic vortex model suggests that the dominant force generating
mechanisms are the leading and trailing edge vortices. The impact of spanwise flow and
tip vortices on the overall magnitude of the forces is not as significant. The comparison
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vi Summary

of pitch-plunge experiments with flapping experiments showed a good agreement as well.
The force coefficients measured during flapping are about 50 % smaller compared to the
pitch-plunging case. The difference is attributed due to the fundamental difference in
kinematics and the definition of the reference velocity. The agreement of the shape of
the time history of the forces suggests that the underlying flow topology is analogues in
both cases. It remains to be evaluated if the spanwise flow component is also present and
whether the evolution of the tip vortices is comparable.

The application of advanced and delayed rotation proved to have dramatic effects on the
force generation. Delayed rotation is detrimental to the force production, thrust produced
was 60 % less compared to the baseline cases. Advanced rotation yields an increase in
thrust of 34 to 47 % with a reduction of up to 20 % in efficiency. The flow topology was
remarkably similar to the baseline kinematics with a slight shift in phase. Both the appli-
cation of advanced and delayed rotation provides a large potential in maneuverability. An
increase in reduced frequency to a value of 0.7 lead to an increase in the thrust produced.
A qualitative study of the flow topology showed that the vortical structures were similar to
the baseline cases. A small decrease in efficiency was measured for the bio-inspired cases
and a small increase for the harmonic motion. It might thus be favorable for roboflyers
to flap at higher reduced frequencies.
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Chapter 1

Introduction

Recent developments in micro air vehicles (MAVs) are revolutionizing remote sensing and
information gathering. For very small vehicles, flapping wings have unique characteristics
that could provide exceptional capabilities in maneuverability, hover performance, as well
as in their ability to operate in confined spaces. These performance characteristics are
observed in insects and small birds motivating studies of the aerodynamics of flapping
wings of biological flyers [39].

Understanding the aerodynamics of biological flyers can provide insights useful for the
design of flapping wing MAVs. A very well studied example of a biological flapping flyer
is the hawkmoth [56]. Hawkmoths are large moths with wing span that can exceed 10 cm,
and they operate in a higher Reynolds number regime more akin to small birds than to
most insects. Hawkmoths show consistent wing beat parameters, for an individual moth
as well as for comparing different moths. Also the main features, dominant in general flap-
ping insect flight, are present in the stroke of the hawkmoth, without the complications
of extra mechanisms present in a number of other insects, e.g. exaggerated ventral flexion.

The wings of insects produce more lift than predicted with conventional aerodynamic
theory, i.e. compared to the steady motion at the same velocity and angle of attack.
Aerodynamic studies of hawkmoths and other small insects have shown relevant flow phe-
nomena in the generation of force, e.g. leading edge vortex formation [10]. The leading
edge vortex (LEV) can account, in part, for the quantitative disagreement with the forces
predicted by conventional aerodynamic theories [13]. The LEV generates a lower pressure
area at the leading edge resulting in a large force production. Other mechanisms have
been identified to further enhance performance, including clap & fling and wake capture.

Recently the aerodynamics of pitching and plunging airfoils has received considerable at-
tention (e.g. Yeon et al [8], Granlund et al [19] and Rausch et al [33]). Granlund et al [19]
considered the aerodynamics of a flat plate that is free to pivot about the leading edge
between ±45◦ incidence limiters and the translation is a prescribed sinusoidal function.

1
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For an aspect ratio of 3.4 they found that the stroke to chord ratio is the main factor af-
fecting the thrust production, with small stroke to chord ratios evincing the lowest thrust.
The results are insensitive to changes in Reynolds number, within the 5, 000 to 20, 000
range. Furthermore no evidence of wake capture was found in these experiments.

In this context a new experimental study on the unsteady aerodynamics for pitch-plunge
kinematics in hover is explored, with the intent of application to flapping flight in a later
stage. The goal of the research described in this thesis can be summarized as follows:

To gain a better understanding of the unsteady aerodynamics in flapping, hover-
ing flight by generating a bio-inspired pitch-plunge kinematic and investigating it
in great detail.

The present work extends the pitch-plunge studies by considering the aerodynamics of
an elliptical flap plate wing with bio-inspired hover motions. The kinematics are derived
from the hover kinematics of the hawkmoth. It is not possible to capture all features from
a three degree of freedom flapping motion into a two degree of freedom pitch-plunge mo-
tion. Therefore two main kinematics and a third purely sinusoidal motion are investigated.

Figure 1.1: Hummingbird hawkmoth in hover

The experimental campaign is initially conducted at the Reynolds number and reduced
frequency of the hawkmoth in hover, 4, 800 and 0.38 respectively. The campaign includes
force data acquisition to obtain the time history of the forces and the cycle average force.
From the force measurement the power input can be deduced and hence a figure merit
for the propulsive efficiency of the stroke. Furthermore particle image velocimetry (PIV)
is used to get a detailed qualitative and quantitative understanding of the flow topology.
The results complement current related studies on the effects of flapping reported by
Morrison et al [30] and Yeo et al [57].

The thesis includes several chapters, the journey starts with an overview of biological
flapping flight in Chapter 2. Here the historical overview, mechanics of flapping flight,
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scaling and aerodynamic principles are presented. The experiments are scaled to match
the flight regime of a hawkmoth in hover, the dynamic scaling method is discussed in
Chapter 3. Chapter 4 presents the kinematics used in the experiments. All experiments
were conducted at the Aerospace Engineering department of the University of Michigan.
A full description of the facilities, instrumentation and applied methods is presented in
Chapter 5. Subsequently a detailed discussion of the results is presented in Chapter 6.
The thesis is concluded in Chapter 7 by summarizing the most pertinent findings and
stating recommendations for future research.
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Chapter 2

Biological Flapping Flight

To gain a better understanding of the unsteady aerodynamics in flapping flight of insects,
a general overview is provided in Section 2.1. First, a brief historic overview of the evo-
lution of flight and the different mechanisms to achieve flapping flight is given. Next, we
will look at flapping flight from a design perspective and discuss the relevant scaling laws
and the aerodynamics that enable flapping flight.

The hawkmoth is an example of a fairly high Reynolds number flapping flyer, with length
scales similar to a hummingbird. The hawkmoth is a large moth, which is very agile and
has the ability to hover. It is an excellent starting point for scaling down electronics and
use a large-to-small approach. Section 2.2 will discuss the general characteristics of the
hawkmoth.

2.1 General Insect Flight

2.1.1 Brief historic overview

Insects are one of the oldest groups of living species in the world, the oldest insect fossils
found are roughly 396 − 407 million years old [14]. The number of insects is vast, the
number of named insect species alone is approximately 925, 000, a typical garden contains
at least 1, 500 species. The estimation of the total number of insect species remains very
controversial and varies widely from roughly 2 million to 30 million species.

It is still unclear when insects first started to conquer the sky. Fossils found from the
earliest insects suggest that wings may have evolved already at that time, approximately
396−407 million years ago. This new morphological evolution provided a boom for insect
development. From now on insects were able to relocate to a different environment, this
meant that they could go and look for a more suitable habitat and escape predators by
simply flying away. Due to the higher geographical spread of different insects, flying has

5



6 Biological Flapping Flight

increased the genetic diversity considerably, leading to a faster development.

The refinement of flight ensured that insects have made significant derived advancements.
Due to the development of the neural capacity needed for the control of their bodies in the
highly three dimensional environment of flight, insects evolved advanced, sophisticated
sensory and integrated neural systems. That is, they have acquired acute and efficient
sense of smell (olfaction) and vision. Furthermore, some insect species have progressed to
the extent that they could be called intelligent, i.e. they have the capability to learn [20].

Genetic and fossil evidence suggests that it is likely that insect flight evolved only once.
It is however still unclear exactly how insects developed the ability to fly. There are a
number of different theories on how insect flight came about. The two mainstream theo-
ries are the paranotal lobe theory and the exite theory.

Paranotal lobes are fixed extensions of the thoracic terga, the paranotal lobe theory postu-
lates that wings developed from these fixed extensions. Originally these lateral extensions
of the thorax were not articulated and seemingly used for parachuting and gliding. At
first this would have been passively stabilized gliding and it is plausible that evolving
muscles and joints for active control have led to the development of actual insect flight.
Scientists are still looking for supportive evidence, e.g. paranotal lobes with vein patterns
found on the prothoracic segments of some paleozoic insects, and the fossils displaying
the evolution of joints and muscle structures needed to advance from parachuting to flying.

The second main stream theory, the exite theory, proposes that wings evolved as an adap-
tation of endites and exites. Exites and endites are primitively annulated outpouchings in
the dorsal area, which are moved from their bases by extrinsic leg muscles of the neighbor-
ing segments and do not carry intrinsic musculature. Exite lobes articulate dorsolaterally,
whereas endite lobes articulate medioventrally [49]. Accordingly, suggesting that insect
wings are serially homologous with the movable abdominal gills on mayflies. The gill is a
modified exite of a hypothetical basal leg podite, the articulating exite of this leg segment
over time evolved into gills and legs. Figure 2.1 shows the gills of immature mayflies,
resembling tiny wings, and according to the exite theory these are serially homologous
with insect wings.

Regardless of the evolutionary background of flying insects, their anatomy is especially
adapted to allow flapping flight.

2.1.2 Mechanisms for flapping flight

Compared to fixed wings, flapping flight is more complex due to structural movement
and resulting unsteady aerodynamics. Flapping wings typically have 3 angular degrees of
freedom, as defined in Chapter 4. For insects all actuation of the wing is carried out at
the wing root [5], some insects do not move their wings in a direct manner, instead they
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(a) Mayfly with gills on the abdominal seg-
ments

(b) Close up of the gills of a mayfly nymph,
note the ”feathery” fibers behind each gill,
called fibrilliform

Figure 2.1: Gills on the abdominal segments 1 through 7 of a mayfly, Heptagenia, nymph [1]

have indirect flight muscles. The indirect flight muscles take in almost all the space in
the pterygote thorax, and change the overall shape of the entire thorax. When the flight
muscles contract they deform the thorax pointing the wing downwards (downstroke), and
the elastic energy stored because of the thorax deformation causes the upstroke [20].
Some insects, including the hawkmoth, will use a combination of indirect and direct flight
muscles to exert control over the kinematics [52].

Insects control these muscles, and therefore the wing beat, through neural stimulation.
The neural stimulation of the muscles providing the wing beat can differ depending on the
flapping frequency. For insects with a low flapping frequency the muscles are controlled
with one signal per contraction, also known as synchronous flight muscles. The modula-
tion of the flapping and feathering angle occurs by regulating the timing of the muscle
contraction. Conversely asynchronous flight muscles are muscles controlled with an on/off
signal, these are used when the flapping frequency is high and exceeds the ”sampling”
frequency of their brain.

Flapping frequencies in insect flight range from 5 to 200Hz, decreasing with increasing
insect size and weight, cf. Section 2.1.3. In this frequency range there is a need for high
speed photography to determine the kinematics. Consequently only recently have detailed
accounts of kinematics been published [52, 56].

For the purpose of this study we will restrict ourselves to insects with one pair of wings, or
wings that can be considered to act as one, i.e. they move in near unison. In one flapping
cycle four kinematic portions can be identified, there are two translational phases, up-
stroke and downstroke, and two rotational phases, pronation and supination. Pronation
and supination is the rotation that occurs at stroke reversal preceding downstroke and
upstroke respectively. The path described by the wing tips during a stroke is similar to a
figure eight on a spherical surface. The flapping amplitude of insects ranges from about
1.5 to 2.5 radians, and the tip travels between 3 and 7 chord lengths.
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Figure 2.2: Hawkmoth in hover during feeding, an example of an insect using the hovering stroke

The hovering capabilities of insects are limited by size, moments of inertia of the wing,
degrees of freedom in the movement of the wings, and the shape of the wing [39]. In
hover the duration of the downstroke and the upstroke tend to be roughly the same. Two
distinctly different kinematics are observed for hovering insects, the symmetric hovering
stroke and the asymmetric hovering stroke [53].

In the asymmetric hovering stroke, also known as the ”avian” stroke, the wings are flexed
back in one part of the stroke to reduce the amount of drag produced, and the other part
of the stroke produces the majority of the thrust. Generally this hovering method is used
in larger species and is sustained for only short periods of time [7].

In symmetric hovering flight, using the ”hovering” stroke, the wing beat is relatively
symmetric and both up and downstroke produce a significant portion of the lift. This
hovering stroke is used in all small insects as well as in some larger species, e.g. the
hawkmoth (Figure 2.2).

2.1.3 Scaling

Insects can be categorized in many ways, and for the purpose of a general understanding
of small flapping vehicles we borrow from aircraft design. Traditionally the conceptual
design of airplanes uses dimensional analysis and scaling laws based on a limited num-
ber of variables including geometry, weight and velocity range [47, 34, 45]. Bejan (2006)
showed that for biological locomotion similar scaling rules can be applied [9], and these
can be extended to the subsection of insect flight.
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General animal locomotion

When comparing the gait of a human with the wing stroke of a hawkmoth it seems as
if both motions are completely uncorrelated. In general running, flying and swimming
animals are very contrasting. There is a distinct difference in the physical mechanisms
used, and the media in which they occur are very different.

Looking from an energy perspective however it can be shown that in theory all these mo-
tions are correlated by the fact that all flow systems evolve to optimize the use of energy,
also known as the unifying constructal theory [9]. This minimal energy perspective on
biological systems reveals scaling relations between body mass, speed, force output and
frequency of the flap, stride, or stroke. The theory predicts that swimming, and flapping
will only occur at Reynolds numbers higher than 30 and that all animal locomotion will
have a Strouhal number which is more or less constant. Furthermore it is shown that
both animal movement (running, flying, and swimming) and fluid eddy movement is a
form of optimized intermittent movement, i.e. both eddies and animals are the ’construct’
that travels through the medium with the least amount of useful energy expenditure per
distance traveled.

The scaling relations of general animal locomotion for velocity, frequency, and force output
with respect to the animal mass are visualized in Figure 2.3. They show clear and distinct
proportionality laws with respect to the body mass. Hence a rough sizing estimate for
insect flight and MAV development can be done purely on a dimensional and scaling basis.

Flapping flight

When analyzing and designing a flapping wing vehicle, biological or artificial, there are a
vast number of parameters and variables to take into account. These can be divided into
two categories. First, there are parameters and variables related to the medium in which
the vehicle or organism moves and second the ones related to the vehicle or organism itself.

The fluid parameters are the density of the fluid, ρ, and the viscosity of the fluid, ν.
These two parameters will drive the fluid behavior. The fluid motion is governed by the
Navier-Stokes equations, shown in equations 2.1 through 2.4 for a Cartesian reference
frame [22].

∂ρ

∂t
+∇· (ρV) = 0 (2.1)

∂ρu

∂t
+∇· (ρuV) = −∂p

∂x
+ ρfx + (Fx)viscous (2.2)

∂ρv

∂t
+∇· (ρvV) = −∂p

∂y
+ ρfy + (Fy)viscous (2.3)

∂ρw

∂t
+∇· (ρwV) = −∂p

∂z
+ ρfz + (Fz)viscous (2.4)
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Fig.·2. Comparison of theoretical predictions with the speeds, stroke frequencies, and force outputs of a wide variety of animals (Iriarte-Diaz,
2002; Drucker and Jensen, 1996; Pennycuik, 1975; Heglund et al., 1974; Marden and Allen, 2002; Taylor et al., 2003; Rohr and Fish, 2004;
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and Tu, 1991). The theoretical predictions are based on scale analysis, which neglects factors of order 1 and therefore should be accurate in an
order of magnitude sense.
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Figure 2.3: Comparison of the relation between body mass and speed (A), stroke frequencies (B),
and force outputs (C) with theoretical predictions for a wide variety of animals [9]
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Where ∇ is the del operator, V is the three component velocity vector consisting of the
velocity in x, y and z direction, u, v and w respectively. The symbol p denotes the pres-
sure, fi denotes the body forces acting on the fluid in i-direction and similarly (Fi)viscous
denotes the i-component of the viscous shear. Equation 2.1 is commonly referred to as
the continuity equation and ensures conservation of mass. Equations 2.2 through 2.4 are
the momentum equations and ensure conservation of momentum, equivalent to Newtons
2nd law. On the left hand side the momentum of the fluid is represented and on the right
hand side the forces acting on the fluid are shown.

The Navier-Stokes equations are inherently complex and they are not easily solvable.
Analytical solutions only exist when simplifying the equations, simplifications include
the assumption of an incompressible fluid, an inviscid fluid etc. For most practical ap-
plications the equations are solved numerically, direct numerical simulations (DNS) are
possible, but computationally expensive. For most cases in Computational Fluid Dy-
namics (CFD) simplified forms of the Navier-Stokes equations are solved, e.g. Reynolds
Averaged Navier-Stokes (RANS). This also reveals one of the benefit of using experiments
as a validation tool, since they inherently ’solve’ the complete set of equations the validity
of the assumptions can be assessed.

The parameters related to the vehicle are more numerous. The first group are the mor-
phological parameters. There is the total mass of the system, typically denoted by m.
The total mass can be segmented into the structural mass of the system, the mass related
to the propulsion (energy storage and motor or muscles), the mass of avionics, control
systems, and the payload.

The geometry of the wing is driven by the wing span, typically denoted by the symbol
b or R, the projected wing area, S, chord length, c, and the wing thickness, t. The def-
inition of the span can vary, typically b denotes the tip-to-tip length, however in some
cases it is also used to denote the semi-span, i.e. the distance from the root to the tip
of a single wing. Similarly for the chord length two different reference lengths are used,
the root chord cr and the mean chord length, cm. Derived from the geometry and the
density distribution of the wing structure the wing mass and its moments of inertia can
be determined.

Using these parameters and equations, scaling laws can be derived similar to the law’s
presented in Figure 2.3. The wing loading, L/S, will be used as an example. It can be
shown that an expression for lift, L, can be obtained using the Buckingham π theorem
[22].

L = 1
2ρU

2CLS (2.5)

Where ρ is the density of the fluid, U denotes the freestream velocity and CL is a the
lift coefficient. For flight in a steady state the lift is equal to the weight of the vehicle
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W = L, hence equation 2.5 can be rewritten.

W

S
= ρU2

2 CL (2.6)

Equation 2.6 clearly shows that the wing loading is directly related to freestream velocity,
i.e. the flight speed [45]. Similarly proportionality, analogous to the unifying constructal
theory [9], can be found between the mass of the vehicle and its cruise speed. These
relations for a range of both biological and man-made flyers are shown in Figure 2.4.

The flapping flyer interacts with the fluid through the wing kinematics. The kinematics
of the wing are governed by the flapping frequency (f), the flight speed and the variation
in time of angular motion of the wing. The angular motion of the wing is represented
by three time-dependent angles as described in Chapter 4, the flapping angle φ, elevation
angle θ, feathering angle α.

We can now combine parameters to clearly identify properties of the entire system. As we
shall see, certain combinations of parameters become more dominant under given flight
conditions.

The Strouhal number, St, is the ratio between the flapping and the forward velocities, it
gives an indication of how fast vorticity is transported downstream. The Strouhal number
thus characterizes the vortex dynamics of the wake and shedding behavior of vortices in
forward flapping flight, and is defined as follows [37].

St = fLref
Uref

= fRΦ
U∞

= fAR cmΦ
2U∞

(2.7)

The reference velocity is commonly chosen to be the freestream velocity. The reference
length in this case is the arc described by the tip of the wing, RΦ. Where Φ is the flapping
amplitude and R can be expressed in function of the aspect ratio and the mean chord,
i.e. R = ARcm.

The Strouhal number is typically used for characterization of unsteady aerodynamic flow
phenomena. A variation of the Strouhal number for swimming and flying animals is shown
in Figure 2.5. On the far right of Figure 2.5 we see that dolphins swim at a Strouhal
number of approximately 0.3. Most larger birds fly at a Strouhal number of about 0.2,
in contrast insects and moths generally fly at a Strouhal number that is around 0.3. The
general trend is a Strouhal number between 0.2 and 0.4 for both aquatic and flying ani-
mals. For forward flight it seems that this range of Strouhal number provides the animals
with the highest propulsive efficiency [44].

Derived from the Navier-Stokes equations an important dimensionless parameter can be
defined, the Reynolds number. The Reynolds number is the ratio of viscous forces and
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Figure 1.15. The Great Flight Diagram gives a relation among wing loading, weight,
and cruising speed. Adopted from Tennekes (1996).

Wing loading (W/S): From Eq. (1.3), it is clear that the cruising speed depends
on the wing loading:

W
S

= �U2

2
CL. (1.4)

Equation (1.4) shows that, the greater a flyer’s wing loading, the faster it has to
fly. Some of the relations among body mass and parameters connected to birds are
shown in Table 1.1. Figure 1.15 offers a correlation between sizes and speeds, and

Figure 2.4: The Great Flight Diagram, a relation between weight cruise speed and cruise speed [45]
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Figure 2.5: The range of Strouhal numbers for flying and swimming animals [44]

inertial forces exerted by the fluid, shown in equation 2.8.

Re = ρfLrefUref
µ

= LrefUref
νf

(2.8)

Where ρf is the density of the fluid, Lref is a reference length scale, Uref is the reference
velocity, and νf is the viscosity of the fluid. The reference length scale can be chosen
arbitrary, but must be a consistent choice if one wants to compare the Reynolds numbers
of two different flows. Typically the chord of the airfoil is used, Lref = cm. The reference
velocity has two different definitions depending on the flight condition. For forward flight
the freestream velocity, U∞, is used and hence the Reynolds number becomes.

Re = U∞cm
νf

(2.9)

In hover the freestream velocity is zero and hence a different velocity is used to characterize
the inertial forces. The average tip velocity is chosen as a reference, Uref = Utip, and can
the Reynolds number be expressed as a function of the aspect ratio, the flapping amplitude
(Φ), the flapping frequency, and the chord length.

Re = ARΦfc2
m

νf
(2.10)

The reduced frequency, k, compares the period of the wing motion with a relevant flow
time scale. Similar to the Strouhal number the reduced frequency provides a good measure
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of the unsteadiness of the flow. The reduced frequency is defined as follows.

k = πfcm
Uref

(2.11)

In forward flight the reference velocity for flapping flight is simply the forward flight speed.

k = πfcm
U∞

(2.12)

For flapping hover flight the reference velocity is generally chosen to be the average tip
speed.

k = π

ΦAR (2.13)

Thus the reduced frequency is an adequate parameter to be used for comparison of the
unsteadiness in both hover and forward flight. Therefore the reduced frequency is more
meaningful than the Strouhal number, which is a purely kinematic parameter for flapping
flight.

Assuming an isotropic flat plate for the wing it is also convenient to define a non-
dimensional density, the ratio of the structural density and the fluid.

ρ̄ = ρs
ρf

(2.14)

The effective stiffness can then be defined as follows [37].

Π1 = Eh3
s

12(1− ν2)ρfU2
refc

3
m

(2.15)

Where E is the Young’s modulus of the structure, hs is the thickness, and ν is the Poisson
ratio of the material. The effective stiffness denotes ratio between elastic bending forces
and aerodynamic forces. Similarly the effective rotational inertia, for an isotropic shear
deformable plate is defined by [37].

Π2 = IB
ρfc5

m

(2.16)

Where IB is the mass moment of inertia. The effective rotational inertia denotes the ratio
between rotational inertial forces and aerodynamic forces.

Consider the mean wing tip velocity of the flapping wing as the velocity scale and an
isotropic flat plate as the wing structure, than the Navier-Stokes Equations for a constant-
density fluid can be non-dimensionalized, shown in equation 2.17, and the out of plane
motion of wing is governed by equation 2.18 [37].
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k

π

∂ūi
∂t

+ ∂ūj ūi
∂x̄j

= − ∂p̄

∂x̄i
+ 1
Re

∂2ūi
∂x̄i2

(2.17)

Π1

(
∂4w̄0

∂x̄s4 + 2∂4w̄0

∂x̄2∂ȳ2 + ∂4w̄0

∂y4
s

)
− ρ̄h̄s

(
k

π

)
∂2w̄0

∂t̄2
= f̄p (2.18)

Looking at equation 2.17, it becomes clear that for a higher value of the reduced fre-
quency, the unsteady term ( kπ

∂V̄
∂t̄

) will have a higher influence. Similarly if we focus at
the viscous term ( 1

Re∇̄
2V̄) we see that viscous effects will become more dominant as the

Reynolds number decreases.

To summarize Table 2.1 gives an overview of the dimensionless numbers and their depen-
dence on size and flapping frequency for both hovering and forward flapping flight [38].
In this table the frequency ratio Π3 is equal to the ratio of the natural frequency of the
structure and the flapping frequency fn

f . Π3 is influential for wing deformations when
wing excitation frequency comes close to its resonance frequency.

Table 2.1: Dimensionless parameters and scaling dependency for flapping wings, hover and forward
flight comparison [38]

Dimensionless Parameter Hover, based on wing
tip velocity

Forward flight, based
on cruising speed

length frequency length frequency
Reynold number c2

m f cm independent
Strouhal number independent independent cm f
Reduced frequency independent independent cm f
Π1 c−2

m f−2 independent independent
Π2 c−1

m independent c−1
m independent

Frequency ratios Π3 c−1
m f−1 c−1

m f−1

2.1.4 Aerodynamics of flapping flight

The aerodynamics of flapping flight are governed by the equations for fluid motion named
after Claude-Louis Navier and George Gabriel Stokes, equation 2.17. Examining the
Navier-Stokes equations a little closer a number of assumptions can be made. First, it
can be said that the flow can be considered to be incompressible. Second, the flow is
expected to be laminar in most cases and thus turbulent effects will be negligible in these
cases. Third, the flow will be highly unsteady, and hence forces will significantly differ
from steady state predictions.

Insect flight occurs mostly at low Reynold numbers, O(101) to O(104). The Strouhal
number of forward insect flight varies roughly between 0.2 and 0.4. The highly unsteady
flow can be characterized by the reduced frequency, for insects typically in the 0.17 to 0.4
range. For a number of selected biological flyers in hover their parameters are summarized
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in Table 2.2.

Dynamic scaling, achieved by matching the aforementioned parameters, allows scientists
to compare flapping flight of various insects. Furthermore it permits researchers to in-
vestigate resulting flow patterns around robotic flappers and relate the results to insects
on the basis of similarity. This has led to the identification and classification of several
unsteady mechanisms in insect flight.

Understanding is always achieved through simplification, to develop mental constructs
facilitating comprehension. Hence some of the aerodynamic mechanisms discussed below
may not (yet) be the full theory providing complete or sufficient understanding of flap-
ping flight at low Reynolds numbers, they will however provide useful insight, a way of
thought, and communication regarding flapping flight.

Table 2.2: Morphological, flight, scaling, and non-dimensional parameters of selected biological flyers
in hover (U∞ = 0) [37]

Parameter Chalcid
Wasp Fruit Fly Honeybee Hawkmoth

Rufous
Humming-
bird

Mean chord length [mm] 0.33 0.78 3.0 18.3 12
Semi-span [mm] 0.70 2.39 10.0 48.3 54.5
Aspect ratio [−] 4.24 6.12 6.65 5.3 9
Total mass [g] 2.6e−7 0.96e−3 0.1 1.6 3.4
Flapping frequency [Hz] 370 218 232.1 26.1 41
Flapping amplitude [rad] 2.09 2.44 1.59 2.0 2.02
Mean wing tip velocity [m/s] 1.08 2.54 7.38 5.04 8.66
Reynold number [−] 23 126 1412 5885 6628
Reduced frequency [−] 0.355 0.212 0.297 0.296 0.172

The Wagner effect

Consider a wing at an angle of attack or with a certain camber impulsively started from
rest, there will be a finite length of time before the airfoil reaches its steady state condi-
tion. In particular the value of the lift coefficient will gradually grow until it reaches its
steady state value [21, 36].

The delay in reaching its steady state value is due to two physical processes. First, there
is a latency in the corresponding viscous effects that take place on the airfoil. The initial
stagnation point will not correspond to the stagnation point in steady state conditions,
and a finite time is needed to fulfill the Kutta condition. The second reason is related to
the velocity field induced by the shed vorticity at the trailing edge. The shed vorticity
will reduce the lift force of the airfoil. The effect will attenuate as the distance between
the shed vortex and the airfoil grows.
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The lift for impulsively started airfoils can be approximated by Wagner’s indicial lift
function. The Wagner effect will introduce an overprediction of the forces acting on the
airfoil when the force of impulsively started wings is predicted using quasi-steady models.
There is an ongoing discussion in the community to what extent the Wagner effect impacts
the flow around flapping wings at low Reynolds number, the effect however will be present.

Leading edge vortex

Flapping wings are relatively thin and generally translate at very high angles of attack,
this causes the flow to separate at the leading edge. When the flow reattaches before the
trailing edge, a leading edge vortex (LEV) forms. The LEV is generated from the balance
between the pressure gradient, the centrifugal force and the Coriolis force in the momen-
tum equation [40]. The LEV induces an area of low pressure resulting in large suction on
the upper surface of the wing [13], and hence the LEV serves as a high lift mechanism.
The combination of the lower pressure region acting mostly normal to the wing surface
and the airfoil being at a high angle of attack also leads to an increase in drag. It has been
shown extensively that the LEV is common to flapping wing aerodynamics at Reynolds
numbers O(104) or lower, i.e. the flight regime of insects.

In the presence of the leading edge vortex the Kutta condition is maintained and a sub-
stantial enhancement of lift is achieved. Considering an LEV in a two dimensional flow,
the LEV tends to grow in size until the Kutta condition breaks down, at this point the
flow is no longer able to reattach and the airfoil will stall. This phenomenon is called
delayed stall since the development of the stalled condition takes a finite amount of time
to develop. During the delayed stall high lift coefficients can be reached. At low Reynolds
numbers, relevant for most insects, the breakdown of the Kutta condition is preceded by
the growth of a trailing edge vortex. As the trailing edge vortex detaches it is shed into
the wake and a new LEV is formed, this process is periodic and the wake can be identified
as a ’von Karman vortex street’.

The first direct evidence that insects are able to leverage the LEV mechanism was ob-
tained by Ellington 1996 [13]. Using smoke visualization around a real hawkmoth Elling-
ton showed that a leading edge vortex existed and in the studied cases the LEV was not
shed but remained attached during the stroke. Subsequent experiments were performed
around a mechanical model similar to the hawkmoth, producing similar findings. A recent
study, using particle image velocimetry on tethered hawkmoths, revealed that the leading
edge vortex is not necessarily limited to one wing and can extend across the thorax [11].

High axial flow was also observed and this transport of momentum in the spanwise direc-
tion prevents the LEV growth beyond a threshold size such that the fluid remains able to
reattach before the trailing edge. The axial flow plays a dominant role in the stabilization
of the leading edge vortex. Analogously, stability of leading edge vortices on a delta wing
with a high angle of attack is ensured by an axial flow generated by the sweep of such
wings [36]. For this stable form of the leading edge vortex, the creation of vorticity at the
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leading edge is matched perfectly by the convection and diffusion of the vorticity into the
wake.

Recent findings through computational fluid dynamics across an intermediate range of
Reynolds numbers, from O(101) to O(104), suggests that although LEV’s may occur
across this flight regime the physical mechanisms may differ [40].

At higher Reynolds numbers, the vorticity is concentrated into an intense, conically
shaped vortex and breaks down at roughly 70 - 80% of the span in the mid-late down-
stroke, cf. Figure 2.6a. This leads to a complicated region at the tip where the vorticity
is very three dimensional [26, 51]. In this Reynolds number regime, O(103) and higher,
the LEV contains a high axial flow that stabilizes the vortex, however the LEV tends to
break down in the spanwise region between three quarter chord and the tip. Furthermore
the LEV of a hawkmoth starts to break down after the first half of the downstroke [40].
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Figure 2.6: Numerical results of leading-edge vortex structures at different Reynolds numbers [40]

For low Reynolds numbers, e.g. fruit fly and thrips, the leading edge and trailing edge
vortex become weaker but more stable. As a result the vortex structure becomes more
two dimensional, i.e. we see more planar vortex rings at the down and upstroke [26]. At
a Reynolds number of 120, the spanwise flow is considerably less, 2− 5 % of the averaged
tip velocity [40]. In contrast to flapping flight at higher Reynolds number the LEV does
not break down near the tip, and is instead connected with the tip vortex, Figure 2.6b.
A further reduction of the Reynolds number to a value of 10, shown in Figure 2.6c, leads
to a vortex ring connecting the LEV, the tip vortex, and the trailing edge vortex.

There is significant variation in spanwise lift distribution in three dimensional cases. Some
cases will have suppressed tip vortices, and some will have prominent tip vortices affecting
the lift distribution, hence correlating weakly to the two dimensional cases [48].

The leading edge vortex and the associated delayed stall (formation and evolution) are
strongly impacted by the angle of attack, angular velocity, translational velocity, and
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translational acceleration of the wing [48]. The LEV is very likely responsible for the
majority of the force generation independent of Reynolds number. The Reynolds number
will however influence the formation and evolution in terms of stability and three dimen-
sional effects.

The tip vortex

Tip vortices in fixed finite wings are associated with a decrease in lift and induced drag.

Conversely in unsteady flows they create a low-pressure area near the wing tip and interact
with the leading edge vortex. Tip vortices can stabilize the flow and exhibit nonlinear
interactions with the shed vorticity. A stronger influence of the downwash from the tip
vortex will result in reduced lift for lower aspect ratios plates [41].

For flapping wings the tip edge vortex could either promote or have little impact on the
lift of low aspect ratio flapping flat plates.

Clap and fling

The clap and fling mechanism, first proposed by Weis-Fogh 1973 [54], is found in a num-
ber of small insects, e.g. the chalcid wasp. The leading edges of the wings touch dorsally
before they pronate at the end of the upstroke, after which the trailing edges will close
in at each other until they meet (clap). During the pronation at the beginning of the
downstroke the leading edges will separate first and later the trailing edges (fling).

During the clap the vorticity around both airfoils will counter act each other and no
’stopping’ vortex will occur, the trailing edge vorticity will therefore not be present in the
downstroke and thus the Wagner effect will be absent or extremely weak. A secondary
effect is the jet expelled from the clapping motion of the airfoil providing an extra boost
in the momentum of the wake. The fling generates an extra low-pressure region between
the airfoils accelerating the buildup of circulation around both wings.

The entire clap and fling method is believed to increase the performance in flapping fly-
ers. Since the effectiveness of the clap and fling mechanism depends on the extent the
Wagner effect impacts the motion, there remains some controversy on how pronounced
the benefits of incorporation of clap and fling are.

Rapid pitch rotations, the Kramer effect

In insect wing kinematics, the wings will be rotating and translating simultaneously; due
to this added angular velocity the flow around the wing deviates from the Kutta condi-
tion and the stagnation region moves away from the trailing edge. The unsatisfied Kutta
condition will cause sharp dynamic gradients at the trailing edge, generating shear flows.
The flow will react to the rotation by generating a rotational circulation until the Kutta
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condition is restored [36, 5, 39]. In other words, the wings own rotation serves as a source
of circulation.

The extra circulation is proportional to the angular velocity of rotation. The net effect
can either be detrimental or beneficial to the lift production depending on the orientation
of the rotation with respect to the stroke. The shape and size of these force peaks can be
controlled by the timing of the pronation and supination. Many insects have evolved to
leverage these effects rendering them extremely maneuverable.

Wing-wake interaction

When a flapping motion is established the fluid around the wing will no longer be quies-
cent. During the translation the wing will leave a wake behind, at stroke reversal the wing
will move into its own wake. The effect is especially pronounced at low flying speeds or
when hovering, due to the lack of a freestream velocity carrying the wake further down-
stream.

The wake from the previous stroke contains energy in the form of momentum; the wing
will move through this region in the next stroke, passage through this wake could poten-
tially be a way of recovering some of this energy. It has also been postulated that the
initial force peak is due to the acceleration of the wing rather than through a reuse or
capturing of the energy from the previous stroke.

It is very likely that wing-wake interaction will be reflected in the time history of the
force coefficients, especially right after stroke reversal, although it might be challenging
to quantify the effects of the interaction.

Gusts and time scales

Wing beat frequencies are higher than environmental perturbations, thus can be modeled
as a constant freestream for most practical applications. The gust response depends on
its strength, orientation, and the kinematics of the insect [48].

Furthermore because the characteristic time scales of insects are much shorter than that
of typical gusts, they are much more stable in a gusting environment [38].

Flexibility

Insects actuate their wings from the root of the wing, all wing deformations are therefore
passively achieved through fluid-structure interaction. The passive pitching and bend-
ing due to inertial and fluid forces can potentially enhance lift production. Flexibility
effects will become more pronounced at flapping frequencies near the natural structural
frequencies of the wing.
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2.2 Hawkmoth

One family of insects, Lepidoptera, comprises mainly very large insects. The Lepidoptera
family contains roughly 174, 000 species and can be roughly divided into three categories:
butterflies, skipper butterflies, and moths. The latter contains the subspecies Sphingidae,
also known as hawkmoths, and contains about 1,450 varieties [31].

The hawkmoth is a very large moth, with a wingspan in the range of 35 - 150mm. In
Figure 2.7 a picture of a group of Privit hawkmoths (Sphinx ligustri) on the hands of
people is shown, which gives a good indication of its size.

Figure 2.7: A group of Privit hawkmoths (Sphinx ligustri) sitting on the hands of a person

Adult hawkmoths have evolved to feed on the nectar of flowers, and the ingested sugars
are rapidly converted into fat [23]. To accommodate this diet hawkmoths have evolved
the capability to hover in front of flowers. Whilst hovering in front of a flower they use a
proboscis, an elongated tubular appendage from their head, to feed.

Hawkmoths are some of the fastest insects, they are able to fly in all directions: for-
ward, backward, up, down, and side to side. The latter has been observed in hover as
a defense mechanism against predators. They can lift up to 1.4 times their body mass [52].

The nominal forward flight speed of a hawkmoth is about 5m/s with a wing loading
of 9. The Reynolds number typically ranges around 4200 - 5300 [39], this is within the
transition range from laminar to turbulent, and measurements of the wake have shown a
transition of the wake from laminar to turbulent after a certain distance in hover [50].

The body position and its stroke plane angle vary throughout the flight regime, as the
moth transitions to forward flight and its forward speed increases the stroke plane angle
increases and there is a decrease in the body angle with respect to the motion [56]. The
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wing beat kinematics contain the main kinematic elements that have been consistently
observed in other insect species. The wing beat, although variant from individual to
individual, is remarkably consistent and there is little variation between successive wing
beats or between different insects of the same species [56].

The flight of hawkmoths in forward flight and hover has been studied meticulously. Al-
though they feed upon floral nectars, and thus adults consume a diet that consists pri-
marily of water and sugars, the principal fuel for flight is fat. During pre-flight warm-up
fat is supplemented with carbohydrate fuels [23].

The three primary flight muscles are the dorsal longitudinal muscle (DLM), the dorsal
ventral muscle (DVM) , and a third steering muscle (3AXM). The DLM and DVM are
both indirect flight muscles. The third muscle (3AXM) is a direct muscle used for the
active control in free flight maneuvers [23].

The dominant mechanism for lift production in hawkmoths has been found to be the lead-
ing edge vortex. Experiments with real moths, tethered, in forward flight have revealed
the presence of a significant LEV towards the end of the downstroke. Figure 2.8 shows
the flow visualization of a female hawkmoth and the presence the LEV in the downstroke
at different flight speeds. Peak forces correspond with the presence and strength of the
LEV, and the LEV continues over the thorax and the centerline of the insect [11].

Further experiments observed large axial flow velocity component, with a maximum axial
velocity of the same order of magnitude as the mean tip speed [51]. It is believed that the
spanwise flow redistributes energy by the convection and diffusion of the vorticity into
the wake, preventing the LEV from growing too large and detaching. The leading edge
vortex is found to separate at approximately 75 % of the wing length, connecting to a
large, tangled tip vortex.

The hawkmoth is an excellent starting point for research into the development of bio-
inspired micro air vehicles. The length scales are small enough to leverage the benefits
of flapping flight at insect scale, allowing high maneuverability, hover, and stable forward
flight. At the same time the length scales are large enough to be able to develop an
initial, complete design of the structure and electronics needed. The kinematics of the
hawkmoth include the general features akin to insect flapping flight, and at the same time
the kinematics are relatively simple.
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Figure 2.8: Flow visualization around a female hawkmoth in the late downstroke. a, Stereo pair at
3.7m/s; b, stereo drawing superimposed on ’a’ to trace the main vortex structures; the
top and bottom images correspond to the right and left-hand views. c, Changes in the
size of the leading edge vortex at other flight speeds, 0.4, 1.8, and 5.7m/s respectively
[13]



Chapter 3

Experiment Dimensionless
Parameters and Scaling

The hover kinematics used in the present research are mainly inspired by the hawk-
moth wing kinematics. As a starting point for determining the relevant scaling and
non-dimensional parameters, the values of the Agrius Convolvuli are used.

3.1 Hawkmoth, Agrius Convolvuli

The Agrius Convolvuli is a subspecies of the hawkmoth, Sphingidae, common in Europe,
Africa, and Australia. It is a large species with a wingspan of about 80 - 105mm. Sim-
ilarly to hummingbirds, they have evolved to feed on nectar while hovering in front of
a flower. This capability makes them an excellent study object for flapping hovering flight.

The kinematics of this moth in hovering flight are well known, cf. Chapter 4.1. The
motion is relatively simple and does not include a clap and fling mechanism. The Agrius
Convolvuli is four-winged, but the motion of the wings on both sides in hover is in near
unison and can be assumed to act as one wing. The wing planform of both wings together
is similar to the Zimmerman planform and will be modeled as such.

The parameters determining the dynamics are presented in Table 3.1. In all equations the
subscript m denotes that the parameter is a value of the moth. The flapping frequency
and amplitude shown, are those of the moth in hover.

In order to calculate the relevant dimensionless parameters for hover, a reference point on
the wing needs to be chosen. In general the wing tip is used for this purpose [37], however
since the objective is to capture the most relevant phenomena and try to represent these in
a pitch-plunge motion, the tip velocity is an upper bound of the wing speed and will make

25
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Table 3.1: Agrius Convolvuli parameters in hover and experiment parameters

Parameter Value
Agrius
convolvuli

Value
Experiment

Mean chord length c 18.3mm 62.4mm
Semi-Span R 50.5mm 241.3mm
Aspect ratio AR 2.76 3.87
Flapping frequency 26.1Hz 0.15Hz
Flapping amplitude Φ / h 2 rad 129.1mm

the scaling parameters too large. A reasonable approximation is to use three quarters of
the span (Lref = 0.75Rm) as the reference radius.

Uref = 2ΦfmLref (3.1)

Now the Reynolds number can be determined, a dimensionless number that indicates the
ratio of the timescale for viscous transport and convective transport in the flow. The
Reynolds number will be based on the mean chord length and the reference velocity, and
can thus be rewritten as follows.

Re = Urefcm
νa

= 2ΦfmLrefcm
νa

(3.2)

In turn the reduced frequency, equation 3.3, is based on the same reference velocity.

k = πfmcm
Uref

= πcm
2ΦLref

(3.3)

With the reference velocity based on three quarters of the span, the Reynolds number
and reduced frequency are 4, 800 and 0.38 respectively.

3.2 Relevant Parameters Experiment

The experimental campaign consist of pure pitch-plunge motions of a Zimmerman wing
with the parameters given in Table 3.1 The physical dimensions of the Zimmerman wing
were determined from consideration of the force sensor and PIV instrumentation require-
ments. The reference velocity, equal to the average tip velocity, depends only on the
plunge amplitude, h0, and frequency of the motion, f . The result is shown below.

Uref = 4fh0 (3.4)
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Substitution of the reference velocity, equation 3.4, leads to the following expression for
the reduced frequency of the experiment. Note that in the pitch-plunge case, for a certain
wing, the reduced frequency is solely dependent on the amplitude of the motion.

k = πc

4
1
h0

(3.5)

Treating the reduced frequency as a constant, i.e. using the value of the Agrius Convolvuli,
and using the model mean chord yields an expression for the amplitude of the motion.

h0 = πc

4k = 129.1mm (3.6)

Similarly, using the same reference velocity, the Reynolds number can be written as.

Re = 4c
νw
fh0 (3.7)

Using the Reynolds number of the moth, an expression for the frequency of the experiment
can be obtained.

f = Re νw
4ch0

(3.8)

This equation can be used directly to determine the frequency. However it is convenient
to further develop the equation in a slightly different form. First, substitution of equation
3.6 yields.

f = Re
νwk

πc2 (3.9)

Secondly, using equation 3.3, we obtain.

f = Re
νw
πc2

πcm
2ΦRm

(3.10)

Third, substitution of equation 3.2 leads to the following expression,

f = 2ΦfmRmcm
νac2

νwcm
2ΦRm

(3.11)

which simplifies to.

f = fm

(
cm
c

)2 νw
νa

(3.12)

Hence, from equation 3.12 it can be seen that the frequency of the experiment depends
solely on the flapping frequency of the moth, the ratio of the mean chords squared and
the ratio of the kinematic viscosities. The frequency of the experiment in water using the
Zimmerman wing is 0.15Hz.

f = 0.57%fm = 0.15Hz (3.13)



28 Experiment Dimensionless Parameters and Scaling



Chapter 4

Kinematics

The goal of this thesis is to gain a better understanding of the unsteady aerodynam-
ics of flapping, hovering flight by generating a bio-inspired pitch-plunge kinematics and
to investigate them in great detail. In this chapter the bio-inspired kinematics for the
experiment will be developed.

4.1 Hover Motions based on the Agrius Convolvuli

The goal is to perform a pitch-plunging motion in a water channel. The kinematics of
the experiment are inspired on the kinematics of the hawkmoth.

4.1.1 Coordinate system Agrius Convolvuli

The coordinate system used to describe the motion is shown in Figure 4.1a. Three angles
are used to describe the position of the wing [56]: the flapping angle φ, the feathering
angle α and the elevation angle θ.

The flapping angle is defined as the angle between the normal projection of the leading
edge of the wing on the flapping plane and a reference line. The elevation angle is the
angle between the leading edge and the stroke plane and can be interpreted as a measure
of the out of (stroke) plane movement of the wing. The feathering angle is the angle the
chord makes with a line perpendicular to the stroke plane. The elevation and flapping
angle are defined positive as shown in Figure 4.1a and the feathering angle, α, is negative
in Figure 4.1a.

4.1.2 Hover kinematics Agrius Convolvuli

The kinematics of the Agrius Convolvuli are described by the three kinematic angles. For
the hover-case, the time history of these angles is shown in Figure 4.1b [6].
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0 0.2 0.4 0.6 0.8 1
−60

−40

−20

0

20

40

60

80

t/T [-]

A
n
g
le

[d
eg

]

Flapping angle φ Elevation angle θ Feathering angle α

(b) Representation of the kinematic angles

Figure 4.1: Representation of the Agrius Convoluli kinematics

It can be seen that the motions are not perfectly symmetric in shape and that the duration
of up and downstroke is different.

4.1.3 Making the motion symmetric

For the present research the three dimensional hover motion of the Agrius Convolvuli is
made symmetric in order to convert it to a pure pitch-plunge motion at a later stage.
This is done while capturing the most important features during hover, e.g. phase shift
of feathering and flapping motions.

Flapping angle

The flapping angle has an average angle of about 4.0◦. First the data is shifted to yield a
mean angle of 0◦. This is justified since this is just a matter of shifting the reference point.

Second, the downstroke duration is 2.3% longer than the upstroke duration, this small
difference will be neglected, i.e. the upstroke will be slightly stretched in time to match
the downstroke. The resulting angles are shown in Figure 4.2a, observe the small dif-
ference between downstroke angle and the upstroke here shown inverted to highlight the
differences.

In a last step both half periods are averaged to make the motion completely symmetric,
resulting in the averaged flapping angle in Figure 4.2a.

Feathering angle

A similar procedure is applied to the feathering angle. In this case there is no difference
in duration of the up and downstroke. The values are shifted by 4.8◦ to obtain a 0◦ mean
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(a) Adjustments of the flapping angle φ
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(b) Adjustments of the feathering angle α
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(c) Adjustments of the elevation angle θ
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(d) Agrius Convoluli hover kinematics made sym-
metric

Figure 4.2: Making the motion symmetric

value. After this procedure the feathering angles during upstroke are nearly the same to
the angles during downstroke. Both up and downstroke are averaged, the result is shown
in Figure 4.2b.

Elevation angle

The elevation angle is also made symmetric, using the same procedure as for the feathering
angle. The mean is shifted from about−1.0◦ to 0◦ and both half periods are then averaged,
shown in Figure 4.2c. Note that in Figure 4.2c the y-scale is exactly half of the scale
corresponding to Figure 4.2a.

Adjusted kinematic angles

A summary of the resulting, symmetric angles after adjustment is shown in Figure 4.2d.
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4.1.4 Hover kinematics experiment

There are a number of different ways to convert the hawkmoth kinematics to the pitch-
plunge kinematics for the experiment. The main goal is to preserve the most important
features in the conversion from flapping motion to a pure pitch-plunge motion. For
instance the phase lag between feathering angle and flapping angle is assumed to be
important and has been retained. To examine the effect of other parameters two different
motions are investigated.

Ignoring the elevation angle

The first way of determining the kinematics would be to simply ignore the elevation angle
and using the feathering angle and the flapping angle.

The flapping angle translates to a plunging motion, h(t), as follows.

h(t) = φ̄(t)
Φ h0 (4.1)

The pitch angle, δ(t), is equal to the feathering angle. The rotation axis for this case
coincides with the leading edge at the root of the airfoil.

δ(t) = ᾱ(t) (4.2)

Compensating feathering and flapping angle for the loss of elevation angle

Instead of ignoring the elevation angle, it can also be incorporated in the pitch-plunge
motion by changing the reference frame, i.e. computing the effective pitch angle relative
to the direction of motion. This process is illustrated in Figure 4.3.

∆α

Ф R

.

.
θ R

Ф’ R
.

Figure 4.3: Converting a flapping motion to a pitch-plunge motion
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The term effective angle in this context is used in a geometric context and is not strictly
equal to the incidence angle of the flow. From this geometric perspective the change in
pitching angle, ∆α, due to the elevation angle can be quantified as follows.

∆α = − arctan
( ˙̄θ

˙̄φ

)
(4.3)

Yielding equation 4.4 as the expression for the corrected feathering or pitch angle. The
variation in time of the pitch angle is plotted in Figure 4.4a. The rotation point coincides
with the leading edge.

δ(t) = ᾱ(t)− arctan
( ˙̄θ(t)

˙̄φ(t)

)
(4.4)
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Figure 4.4: Compensation for the loss of elevation angle

Ueff = ±
√

( ˙̄θR)2 + ( ˙̄φR)2 (4.5)

The sign is determined by the sign of the angular flapping speed, φ̇. The effective velocity
can be written as Ueff = φ̇′R, yielding.

φ̇′ = ±
√

˙̄θ2 + ˙̄φ2 (4.6)

Through integration and the correct determination of the integration constant the com-
pensated flapping angle is found, and it is plotted in Figure 4.4b. Converting the elevation
angle to an equivalent plunge position h(t).

h(t) = φ′(t)
Φ h0 (4.7)
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4.2 Resulting Kinematics

Three motions result, the first hover motion ignores the loss of elevation angle and simply
converts the flapping and feathering angle. Shown in Figure 4.5a. This motion will be
referred to as hover motion 1 or HM1.

The second hover motion, Figure 4.5b, incorporates a correction in the flapping and feath-
ering angle for the elevation angle. This motion will be referred to as hover motion 2 or
HM2. The correction has an effect on both the pitch and plunging motion. In comparison
to the pitch motions, the plunging motions is hardly altered. The difference between HM1
and HM2 is thus dominated by the pitch angle.

As a third reference, a pure sinusoidal motion has been created with the same pitch and
plunge amplitude as the basic Agrius Convolvuli kinematics. The sinusoidal kinematics
are plotted in Figure 4.5c.



4.2 Resulting Kinematics 35

0 0.2 0.4 0.6 0.8 1
−150

−100

−50

0

50

100

150

t/T [-]
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Chapter 5

Description of the Facilities and
Instrumentation

The experiments are performed in The University of Michigan free surface water channel.
In this chapter the Facilities, the instrumentation and the methodology will be explained.
Particle Image Velocimetry is used to characterize the flow field in two dimensional planes
around the airfoil, a load cell is used to measure the force coefficients and the power con-
sumption, and dye flow visualization is used to obtain a qualitative characterization of
the three dimensional flow structures around the wing.

5.1 Description of the Flow Facility

The experiments are performed in The University of Michigan free surface water channel.
The circulating channel has total volume of about 8, 000 gallons, and can be seen in Fig-
ure 5.1. The test section is made out of transparent float glass, measures 610 by 610mm,
and is 2.44m long. The transparent test section walls facilitate flow visualization and
particle image velocimetry experiments. The channel is capable of producing very low
turbulence flow, the free turbulence intensity for the possible flow speeds is always less
than 1% of the freestream velocity, measured at various flow speeds with Particle Image
Velocimetry (PIV). Flow speeds can be varied from 5 to 40 cm/s. For this experimental
campaign there is no flow in the channel, as we are investigating hover cases.

5.2 Description of the Wing

A Zimmerman wing is used in all experiments; the wing has a chord of 79.4mm and a
span of 241.3mm. The planform shape consists of two ellipses joined at the quarter chord
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Figure 5.1: Overview of the University of Michigan water channel

of the wing along. The major axes are equal to the span. The minor axes are equal to
one quarter and three quarters of the wing chord respectively, cf. Figure 5.2a. The wing
planform is laser-cut (PLS6.75, Universal Laser Systems) out of a transparent acrylic
plate with a thickness of 2.75mm. No post-processing is applied and thus the edges of
the wing are sharp right angles. The thickness of the wing, 2.75mm, is substantial and
the wing is henceforth assumed to be rigid; during the experiments no deformation of the
wing was observed.

The wing is clamped and mounted on a rig with two motors, hanging vertically in the wa-
ter channel, as shown in Figure 5.2b. The motors are capable of performing pitch-plunge
motions with a high degree of accuracy as discussed in the next section.

5.3 Motors and Slides

The kinematics are performed with two stepper motors, sliding systems and gears man-
ufactured by Velmex, inc. For the translation, i.e. the plunge motion, a linear traverse
is connected to a PK296-03 two phase stepping motor. The linear traverse consists of two
BiSlide positioning slides connected by a belt and pulley system covered by a gray casing
shown in Figure 5.3. The translational system is placed perpendicular to the channel walls.

For the pitch motion a rotary table, 4800TS series, is connected to a two phase stepping
motor (Vexta PK 266-03B-P2) with a resolution of 1.8 ◦/step. The rotary table is located
between the two BiSlide positioning slides, shown in Figure 5.3b. Gears in the rotary
table convert the 1.8 ◦/step to a resolution of 40 steps/deg.

5.4 Dye Flow Visualization

To get a qualitative perspective on the flow topology the flow is made visible by adding
dye. The dyes used for the experiments are generic red and blue food coloring dyes in-
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(a) Wing planform (b) Wing vertically mounted in the
water channel

Figure 5.2: Experimental Setup

(a) Motor and slide front view (b) Motor and slide side view

Figure 5.3: Motors and slide configuration

jected by two syringe pumps. The colored dye is injected in the water through a tubing
system embedded in the airfoil, Figure 5.4b. Four dye ports are located at the half span
and three quarter span position of the leading and trailing edge of the airfoil. A fifth dye
port is located at the wing tip. The tubing, embedded in the wing, has an offset closer
to one surface of the wing, i.e. the tubing is not located in the middle of the wing with
respect to the thickness.

The tip and leading edge is supplied with red dye and the two ports at the trailing edge
is fed blue dye. The syringe pumps, model NE-1002X [2], shown in Figure 5.4a, supply
the dye at a flow rate of 15ml/hr for the two blue ports and a rate of 25ml/hr for the
three red ports.
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(a) Syringe pump, NE-1002X (b) Wing with embedded dye injection
tubing

Figure 5.4: Flow visualization equipment

Dye injection from ports on the wing is chosen as opposed to a rake system upstream
because there is no freestream velocity and since the dye ports are located on the leading
and trailing edge vortices are more easily visualized.

The wing clamped in the same bracket as described in Section 5.2 and a white end plate
was added. The end plate masked the mounting bracket and provides good contrast with
the dye. Two rectangular plates were mounted above for the same reason. These three
plates were laser cut (with the PLS6.75, Universal Laser Systems) out of white acrylic.

The wing was lit with high intensity flood lights from below at different angles to mini-
mize reflection and shadows. The dye flow is filmed at a rate of 30 frames per second, in
other words there are 202 images per period. An LED, triggered by the motor controller,
is used for the synchronization. The signals are set up to light up the LED in the middle
of the stroke and shut off at stroke reversal. The LED is positioned such that it is visible
in the field of view of the video camera, shown in Figure 5.5a and Figure 5.5b.

The dye injected during the experiments diffuses rapidly, clearly visible in Figure 5.5,
therefore the still images of the dye flow visualization are not a useful tool to capture the
observations. Still images will be omitted and instead sketches of the most prominent
flow features deemed relevant by the observer are provided, an example sketch of the flow
field for hover motions at 0.45 t∗ is provided in Figure 5.5d. For the enthusiastic reader
all still images with the corresponding sketches are provided in Appendix A. The dye flow
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(a) Side view at t∗ = 0.17 (b) Side view at t∗ = 0.4

(c) Bottom view at t∗ = 0.45 (d) Sketch of the bottom view at t∗ = 0.45

Figure 5.5: Still images of the flow visualization, hover motion 1

visualization provides a myriad of qualitative information, especially from the moving
images in which it is much easier to assess and describe the flow topology.

A few quantitative statements can be made as well, e.g. at stroke reversal there is a
spanwise flow from the tip towards the root, since there was no dye present before stroke
reversal, the time at which the dye reaches the 75% span position can be determined and
a rough estimate for the average speed in that region can be made.

5.5 Force Measurement

5.5.1 Load cell

The force data is acquired using the ATI Mini 40 six-axis force/torque sensor, shown in
Figure 5.6. This is a very compact load cell with a diameter of 40mm and a height of
12mm. The total weight of the sensor is 49.9 g. Data is taken in the form of output
voltages, the output range of the sensor is ±10V . Data is sampled at 2000Hz; the high
sampling rate ensures the noise can be very well characterized. The sensor is mounted
on top of the wing clamp, underneath the rod connected to the rotary stage, cf. Figure
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5.2b. The raw sensor data is then calibrated, i.e. converted from Voltages to Newtons
and transformed into the correct frame of reference. Using Butterworth low-pass filter
the noise can be significantly reduced.

Figure 5.6: ATI Mini 40 force/torque sensor

5.5.2 Data acquisition process

For each kinematic, force data is acquired in 6 separate sets of 25 cycles. The first five
cycles are cropped from each measurement eliminating effects of any start up phenomena
that might occur. The data is then calibrated and converted to thrust and lateral force
components. The thrust is defined as the force perpendicular to the plunge motion, sim-
ilarly the lateral force is the force component in the plane of the plunge motion.

The thrust and lateral force components are filtered with a low pass Butterworth filter
with a cut off frequency of 3Hz. The attenuation properties of the filter are shown in
Figure 5.7. To eliminate the phase shift introduced by the filter, it is run over the data
back and forth using the Matlab ’filtfilt’-function. This process ensures zero phase dis-
tortion and squares the magnitude of the original filter.
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Figure 5.7: Butterworth low pass filter attenuation

Next, the remaining 120 cycles are phase averaged and the sample mean, with the cor-
responding standard deviation, is calculated. The same procedure is applied to force
measurements without the presence of water. This data is used as a tare and subtracted
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from the measurements in water.

5.5.3 Non-dimensionalization of the force data

The resulting force data can be non-dimensionalized by the dynamic pressure (based on
the reference velocity Uref equal to 4fh0, Section 3.2), and the projected wing surface
area. The thrust coefficient is then defined as shown in equation 5.1.

CT = T

qS
(5.1)

Similarly the lateral force coefficient is normalized by the same dynamic pressure and the
projected wing surface area.

To obtain a sense of efficiency of the thrust production, the ideal power is calculated using
momentum theory [29].

Pideal =
√

T 3

2ρA (5.2)

Where T is the average thrust produced, ρ is the density of the fluid, and A represents
the area swept by the wing. The power input can be calculated by multiplying the
angular speed with the corresponding moment and the translational velocity with the
corresponding force, as shown in equation 5.3.

P = Flateral ḣ+Mz δ̇ (5.3)

A convenient figure of merit, M , is then defined as follows.

M ≡ Pideal
P

(5.4)

The figure of Merit is used as an indication for the efficiency of the motion.

5.6 Particle Image Velocimetry

In this section the principles and instrumentation of the Particle Image Velocimetry (PIV)
setup are explained. In a broad sense PIV is simply the acquisition of two images of par-
ticles in a flow with a small time delay. These two images are then cross-correlated to
obtain the velocities and its derived quantities. The measurements are indirect, i.e. the
velocities are derived from the displacement of the tracer particles and the velocity field of
the flow is derived from this. The technique is non-intrusive because the seeding particles
have a negligibly small effect on the flow. PIV is also a whole field technique, rather than
a point technique, an entire plane in the flow is measured at once.
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5.6.1 Basic principles

During the processing of PIV images, the image is evaluated at smaller interrogation
windows, technically the windows are two dimensional representations of a volume since
the laser sheet has a finite thickness. The displacement of each window is calculated and
from this the velocity field is derived.

For the purpose of this research it was chosen to work with two singularly exposure record-
ings. A constant magnification factor is assumed, i.e. no effects of perspective projection
are taken into account. In this way the position of the particle in the image is assumed
to be directly correlated to the position in the interrogation volume as sensed by the
camera, thus a simple linear conversion can be made to convert the distances in pixels
to equivalent distances in meters. Furthermore gravitational forces are assumed to be
negligible, and a dispersant was added to the seeding particles to maximize the settling
time of the particles.

The theoretical intensity of infinitely small particles captured on a CCD through a perfect
lens can be expressed by the square of the first order Bessel function, Bessel functions
are canonical (unique) solutions of Bessel’s differential equation. The square of the first
order Bessel function is also called the Airy function. As a practical approximation for
the point spread of particles for non-perfect lenses it is appropriate to assume that the
image intensity is Gaussian, τ(x), as shown in equation 5.5 [32].

I = I(x,Γ) = τ(x)
N∑
i=1

V0(Xi)δ(x− xi) (5.5)

Where xi is the position vector of the location of the particles with respect to the in-
terrogation window, i.e. a two dimensional position vector. The position vector of the
ensemble of all particles is given by Γ and is a function of the position of each particle in
three dimensions, Xi, for a given time t. Assuming a constant magnification factor, M ,
the conversion from x to X can be achieved by simply dividing by M and dropping the
third dimension. The vector τ(x) is the Gaussian image intensity for the point spread of
a particle for a non perfect lens, assumed to be constant for all particles. Furthermore,
V0(Xi) denotes the transfer function given the light energy of the image of an individual
particle i inside the interrogation volume and its conversion into an electronic signal. In
many practical cases the light intensity is assumed to be Gaussian across the thickness of
the light sheet. Often a weighting factor is added to the transfer function.

Equation 5.5 is often represented in a more compact manner as follows.

I(x,Γ) =
N∑
i=1

V0(Xi)τ(x− xi) (5.6)
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Figure 5.8: The autocorrelation peaks of a 33 by 33 pixel window. The large peak in the center
shows that there is no displacement, the correlation with itself (i = j), the lower peaks
show the correlation with the noise and other particles (i 6= j).

Now that we have developed a mathematical way of describing the intensity field of a
single exposed image; we can use this notation to describe autocorrelation.

RI(s,Γ) = 〈I(x,Γ)I(x + s,Γ)〉 (5.7)

= 1
aI

∫
aI

N∑
i=1

V0(Xi)τ(x− xi)
N∑
j=1

V0(Xi)τ(x− xi + s)dx (5.8)

The correlation of an image with itself is described by equation 5.8, where aI is the inter-
rogation area and s is the separation vector in the correlation plane [32]. The equation
shows a calculation for the correlation of a particle with itself, i = j, and with the noise
and other particles, i 6= j. An example of autocorrelation of a typical image is given in
Figure 5.8. Here a random sample of a PIV image is used and a random interrogation
window was placed near the middle of the image. The image was correlated with itself
using a fast Fourier transform.

The autocorrelation shows the principle for calculating displacements in a statistical and
mathematical fashion. Now we will leverage the same principle to cross-correlate a pair of
two singly exposed images, obtained in a flow at a slightly later time. Assuming a constant
displacement the particle ensemble, the particle displacement field can be represented as
X′i = Xi + D. The intensity of the second image, I ′, is then defined as follows.

I ′(x,Γ) =
N∑
j=1

V ′0(Xj)τ(x− xj − d) (5.9)
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Calculating the cross-correlation of these two images we obtain equation 5.10. The full
derivation of this equation can be found in reference [32].

RII(s,Γ,D) =
∑
i,j

V0(Xi)V0(Xj + D)Rτ (xi − xj + s− d) (5.10)

The cross-correlation plane will look very similar to the autocorrelation plane, only now
the peak will have shifted from zero to the place where the image has moved to. This can
easily be shown mathematically. Considering only the correlation with itself, i.e. when
i = j, the displacement correlation peak will have a maximum value at s = d, cf. equation
5.10. This displacement correlation peak yields the in-plane velocity components for this
interrogation window.

Equation 5.10 and equation 5.5 provide us with the tools to describe mathematically
what the images look like and what the cross-correlation is. In a next step we obtain
these functions using statistical mathematical tools. Initially a form of particle tracking
was performed manually by linking each particle to its equivalent on the second image.
This technique is very time consuming and only suited for sparse seeding. In a later
stage computers took over particle tracking. Due to the need for more and more data
points the seeding needed to be increased, to deal with this higher seeding density the
aforementioned statistical tools were developed.

Instead of direct calculation the cross-correlation theorem is leveraged. The theorem
states that the cross-correlation of two functions is equivalent to a complex conjugate
multiplication of their Fourier transforms. In the last decades Fourier transforms are eas-
ily and rapidly calculated using Fast Fourier Transform (FFT) algorithms, and similarly
for its inverse. Hence FFT algorithms are used to find the cross correlation of two PIV
images.

This is the mathematical basis on which modern PIV techniques are based. In the next
section the instrumentation of the PIV setup will be described.

5.6.2 Instrumentation

The Particle Image Velocimetry (PIV) setup consists of a pulsed Nd:YAG laser (Spectra-
Physics PIV-300), an optical setup to form the laser sheet, an external timing system (a
BNC 555 pulse delay generator and the Stanford Research Systems’ DG535) a high reso-
lution 14bit cooled CCD camera system (Cooke, PCO4000) with a Nikon Micro-NIKKOR
105mm lens. The camera has a sensor of 4008 by 2672 pixels. The flow is seeded with
Titanium(IV) oxide, rutile powder.
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Nd:YAG laser

Lasers (Light Amplification by Stimulated Emission of Radiation) leverage the fact that
atoms can be exited to a higher level of energy by absorbing energy, e.g. kinetic energy,
light. Conversely they can also loose energy through these phenomena. In a laser, the ex-
ited atoms are stimulated to decay by interaction with photons with a certain frequency;
in this process light will be emitted in the same direction, phase, and frequency as the
incident light.

The Particle Image Velocimetry (PIV) setup contains a pulsed Nd:YAG laser (Spectra-
Physics PIV-300). The laser has two oscillator cavities. These independent oscillator
cavities ensure almost infinitely variable pulse separation times, while maintaining con-
stant output energy. Both output beams have the same phase, direction, and amplitude.
The light is intense and monochromatic with a wavelength of 1064nm. The system uses
a Type II potassium dideuterium phosphate (KD*P) crystal in the harmonic generator
to change the wavelength to the visible green spectrum, i.e. 532nm.

Nd:YAG is an acronym for neodymium-doped yttrium aluminum garnet, the excitation
medium for the laser. Nd:YAG has more than three energy states, thus a population
inversion is possible, i.e. a state is possible in which the number of atoms in a higher,
excited state is higher than the number of atoms in a lower, ground state.

The excitation medium is optically pumped by a krypton flash lamp. Leaving the Q-
switch out of consideration for the moment, each time the flash lamp fires, the laser is
fired, the power output is moderate and relatively long, the same order of magnitude as
the firing time of the flash lamp. This is equivalent to operate the laser in ”long pulse”
mode.

To increase the power output peak (and shortening the pulse length) a Q-switch is im-
plemented. As first implemented by McClung et. al. [28], the Q-switch introduces a
high cavity loss to prevent oscillation. When the oscillation is prevented the population
inversion can grow to a high steady state value. As soon as this state is reached the
Q-switch can be switched to a low loss and the laser will send out a 2- 7ns, high intensity
pulse (> 100mJ) [42, 43].

The laser light is guided through an optical setup to form the laser sheet. The optical
setup consists of a series of mirrors, followed by a spherical lens to refocus the laser light.
Subsequently the light goes through a cylindrical lens that transforms the laser beam into
a sheet of light.

External timing system

An external timing system is used to synchronize the wing motion, the camera and the
laser. All trigger signals are generated by a BNC 555 pulse-delay generator, the delay
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between the motion trigger and the laser pulse is governed by the Stanford Research
Systems’ DG535. All signals come together at a data box that was manufactured in
house. To ensure that the synchronization is running smoothly all signals are read out
on a computer and a Matlab script is used to verify all timing conditions are met.

Camera and optics

The images are obtained with a high resolution 14bit cooled CCD camera system (Cooke,
PCO4000) with a Nikon Micro-NIKKOR 105mm lens. The camera has a sensor of 4008
by 2672 pixels.

The aperture of the camera, opening size of the diaphragm, determines to a large extent
how much light the CCD will be exposed to. The larger the size of the aperture the more
light the CCD will be exposed to. In general f-stops are used to denote the aperture, f-
stops are a series of standard opening sizes, in this series the area of the aperture doubles
every step [12]. For the PIV experiments, a setting of f/8 was found to be adequate.

The aperture also controls the depth of field; this is the region in which the image is
acceptably sharp or, in other words, in focus. The smaller the aperture the larger the
depth of field, a more extreme example of this is the pinhole camera. In a pinhole camera
the size of the aperture is very small and the entire image is reasonably sharp. To obtain
an image with aperture sizes this small, long exposure times are needed.

Therefore the shutter speed also influences diaphragm f/number, longer exposure times
will be needed to get the same exposure for a smaller diaphragm opening. Exposure time
and aperture opening can be assumed to scale linearly. In case of the PIV experiments
the exposure is dictated by the laser pulse energy and duration which are 100mJ and 2
- 7ns respectively, and the aperture needs to be adjusted accordingly.

Seeding

The seeding particles have to fulfill a number of criteria. First, the particles should trace
the flow as close as possible to get an accurate velocity field. Second, the particles should
scatter a sufficient amount of light to get clear images, i.e. they need to be distinguishable
from the flow medium.

The water is seeded with Titanium(IV) oxide, rutile powder with a diameter of approxi-
mately 5 micrometer. The titanium particles are added to a beaker of water containing a
small amount of the dispersant. The dispersant, ammonium polymethacrylate (DARVAN
C-N), is added to facilitate the suspension of the particles for longer periods of time. The
mixture is stirred with a magnetic stirrer. To avoid clotting the particle mixture is treated
with a sonicator, ultrasonic processor Q700 (Qsonica, LLC). The mixture is then added
to the water channel at a high flow rate to ensure good mixing of the particles with the
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flow medium.

Setup

PIV images are taken in two different planes parallel to the water surface. For the PIV
data acquisition at both planes, a similar setup is used.

Camera
on

Slide

Laser Sheet

Laser

Figure 5.9: Representation of the PIV setup parallel to the water surface

In setup the laser sheet is horizontal, parallel to the water surface, and the camera is
underneath looking up, cf. Figure 5.9.

The plunge amplitude is about 130mm, to get a good resolution three camera positions
are used and the data is stitched together during post-processing. The camera is mounted
on a slide and shifted to 3 positions that have an overlap region. The stitching procedure,
illustrated in Figure 5.10, is completely discrete in order to make sure that discrepan-
cies between images would be spotted visually. The camera lens is focused to produce
a magnification of approximately 14 pixels per mm. Using this technique a field of view
of 6225 by 3525 pixels (or 437 by 247mm) is obtained, capturing the entire plunge motion.

The laser sheet is moved to two positions, 50 % span and 75 % span position respectively.
The images at 75 % span are expected to be influenced by the tip vortex to a large extend.
Conversely, the images at half span are expected to be closer to the two-dimensional so-
lution.
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Figure 5.10: Stitching procedure for the horizontal PIV setup. Left, three independently obtained
vorticity data plots, middle, the three vorticity plots stitched discretely, right, the cor-
responding velocity vectors for the discretely stitched data

5.6.3 Post-processing

The post-processing is performed in Matlab and can be roughly divided into five steps.
The first step consists of a preliminary verification of the data and choosing the processing
parameters accordingly. In this case the grid size was determined to be 150 by 100 grid
points with 25 px spacing between grid points. The second step serves as a validation step
of the data, in this step outliers are detected and removed. Third, incorrect data points
are replaced by using the mean of the surrounding points to decrease the error when
calculating derived quantities such as vorticity. Phase averaging of the data is done in
the fourth step. An image of the same phase is taken a hundred times; these one hundred
images are all used to obtain a result that is statistically sounder. The flow is highly
unsteady and no two cycles will be exactly the same, and averaged over one hundred
images the flow does exhibit consistent flow features. The last step of the post-processing
consists of the analysis of the information, computation, normalization, and plotting of
the vorticity, drawing the appropriate streamlines.

For all vorticity plots the vorticity is normalized with the reference velocity, the average
tip speed, and the mean chord, shown in equation 5.11.

ω̄ = ω c

Uref
(5.11)

In the middle of the vorticity plots the thrust and lateral force coefficients are plotted,
vertical lines in this plot depict the phases, labeled a through f , at which the PIV images
are taken (e.g. Figure 6.9).
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In the velocity plots, the magnitude of the vectors is only to scale with the other vectors
in the same plot. To give an estimate of the magnitude the maximum velocity for each
vertical line of vectors is given at the bottom of each plot. The maximum measured
velocity is normalized by the reference velocity, as depicted in equation 5.12.

v̄ = v

Uref
(5.12)

The axes in all plots show the distance in mean chords, with zero being the position of
the leading edge at half span and the mid position of the plunge motion. Note that the
chord length at half span is larger than the mean chord length. The plots are ordered
chronologically from left to right, top to bottom. In all figures the airfoil is plunging
downwards or the plunge velocity is zero and the leading edge points to the left side of
the figure.

5.6.4 Accuracy and error characterization

The measurement error can be characterized in two ways. One approach is to split the
error into systematic errors, i.e. errors due to the statistical methods used, and residual
errors, i.e. due to the measurement uncertainty. A second approach is to characterize the
error as the sum of the bias error and the random error. The bias error is an over- or
underestimation of the actual velocity and the random error is added to that to obtain
the actual measurement error [32].

To obtain an estimate of the random error we can measure a known flow, since we are
investigating a hover case a good baseline is to measure the velocity of the static fluid,
i.e. a quiescent flow. The measurements were made on a modest dataset of 5 images,
compared to 100 for the experiments. The resulting velocity on the two middle axes of
the grid are shown in Figure 5.11. It can be seen that the velocity remains very small in
all positions and all directions with mean velocity (for the entire field, not just the axes)
of 0.0120 px/∆t, the standard deviation is 0.0391 px/∆t. In other words the velocity is
nearly zero as expected, and the standard deviation in this case is roughly 4 times the
velocity measured. In these experiments there was no spatial shift, i.e. only system noise.

For minimization of the RMS fluctuation the seeding density needs to be at least 10 - 20
particles per interrogation window. Increased seeding decreases the uncertainty because
more particle pairs are taken into account. The RMS is also a function of the displacement
of the particles. For increasing spatial shift the RMS value increases, but not linearly.
Conversely the relative error decreases with increasing displacements [55].

The spatial resolution is limited by the particle seeding density. In the experiments, in-
cluding the quiescent flow, the seeding density is about 30-40 pixels per interrogation
window.
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(a) Horizontal velocity in x-direction

0 500 1000 1500 2000 2500 3000 3500 4000
−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

Position [px]

D
is
p
la
cm

en
t
[p
x
]

(b) Horizontal velocity in y-direction
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(c) Vertical velocity in x-direction
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(d) Vertical velocity in y-direction

Figure 5.11: Typical velocity (blue) and standard deviation (red) for a vertical and a horizontal line
in a quiescent flow, averaged over 5 images

The interrogation window takes the ensemble average of the displacements measured for
that region and acts as a low-pass spatial filter. In this way wavelengths smaller than one
window size are suppressed, the cut off frequency of this ’filter’ is twice the size of the
window (Nyquist).

A smaller window increases the cut-off frequency of the filtering due to the interrogation
window and will also increase uncertainty of the measurement. The increase of uncer-
tainty is a result of the greater probability of particles entering or leaving the interrogation
window between exposures and the decrease in particle pairs for same seeding density.

The correlation peak always covers more than one pixel; the PIV software leverages this
by fitting a curve to estimate the displacement. However most of the fitting schemes are
biased towards an integer value for the displacement, this effect is called ’peak locking’.
To avoid this effect one can take multiple measures. The most efficient measure is to
ensure that the particle size is larger than 2 pixels. If the particle size is smaller, pre-
processing procedures can be applied to mitigate the effects. A pre-processing routine
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can be applied to increase particle size using filters, e.g. increasing the contrast of the
image and applying a blurring filter. Assuming the small particle size is noticed during
the experiments, one can defocus the camera to optically enlarge the particle size on the
image. This method will reduce the contrast of the image and hence introduce some ran-
dom noise in the system. The choice of peak estimator also has an effect on peak locking;
if the particle size is smaller it is better to choose a peak estimator that is better suited
for smaller particles. Furthermore an equalization scheme of the displacement histogram
can be used to reduce the error of peak locking [35].

A histogram of the displacement for a typical PIV image pair taken during the experiments
is shown in Figure 5.12, no peak locking was observed.
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(b) Pixel displacement in y-direction

Figure 5.12: Typical histograms of the PIV displacement data in pixels.

The interrogation window has a finite size, and in order to perform a Fourier transform
we need to integrate from −∞ to +∞. To fulfill this requirement the signal is assumed to
be periodic. This assumption means that the correlation will also be periodic, therefore
aliasing can occur. Consider an interrogation window with dimensions N by N and a
displacement of more than N/2. In this case the displacement peak will be folded back
into the correlation plane on the opposite side of the original displacement, this effect is
called aliasing. It is crucial that the combination of the interrogation window size and
the time between exposures is chosen such that no aliasing will occur.

The more the image is displaced the smaller the correlation peak will be, because of the
proportional decrease in possible particle matches. This effect is called the displacement
range limitation. A practical and conservative measure is to make sure the displacement
is less than N/4.
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Chapter 6

Results

In Chapter 3 and 4 dynamic scaling was discussed and the kinematics of the hawkmoth
were converted to pitch-plunge motions. In this chapter the aerodynamic effect of the
kinematics will be analyzed at length. The basic motions are discussed using particle
image velocimetry, aerodynamic force measurements, and flow visualization. And they
serve as a basis for comparison when expanding the parameter space by changing the
reduced frequency and adding phase lag.

6.1 Test Matrix

The experiments can be performed at various Reynolds numbers and reduced frequencies.
As an initial base condition the values of the hawkmoth are used, i.e. a reduced frequency
of 0.38 and a Reynolds number of 4800. Both parameter values are based on the average
velocity at the three quarter span location.

Next it is also investigated how an increase in reduced frequency affects aerodynamic
force generation. There are some practical limitations to what can be achieved in a water
channel. The maximum and minimum values for the reduced frequency are predetermined
by the limits in acceleration and speed of the motor, and by the channel width. The
channel width limits the maximum amplitude of the motion and hence the minimum
achievable reduced frequency, as shown in equation 6.1.

k = πcf

Uref
= πcf

4fh0
= πc

4h0
(6.1)

Since the chord is kept constant in these experiments we can rewrite equation 6.1 as
follows.

k ∝ 1
h0

(6.2)
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Table 6.1: Independent variations of the parameters

k 0.38 0.7
Phase lag −10% 0% −10%

Equation 6.2 shows that the reduced frequency of the experiment is only proportional to
the inverse of the amplitude.

At the same time to keep similarity between the experiments the Reynolds number needs
to be kept constant as well. The Reynolds number in this case is defined as follows.

Re = Urefc

ν
= 4fh0c

ν
(6.3)

Since the chord is kept constant, the Reynolds number is only proportional to the product
of the frequency and the amplitude.

Re ∝ fh0 (6.4)

In other words, when increasing the reduced frequency the decrease in amplitude must
be compensated by an increase in the motion frequency. This maximum frequency is
limited by the maximum acceleration and maximum speed of the motors. In this case
the reduced frequency of the hawkmoth, k = 0.38, is relatively close to the lower limit,
and the upper limit corresponds with a reduced frequency of 0.7. These two points will
be two measurement points for all three kinematics.

A second variation will be the effect of phase lag between the pitch and the plunge motion.
The difference in phase between the pitch and the plunge will be expressed as percentages
of the period. The lag introduced is ±10% of the period.

The parameter space is explored through the variation of one parameter independently of
the others, i.e. starting from the base point the reduced frequency is changed and starting
from the base point the phase lag is introduced. In this study coupling effects between
parameters will not be assessed. A summary of the test matrix is provided in Table 6.1,
note that the Reynolds number has been kept constant throughout.

6.2 Baseline Bio-Inspired Kinematics

The baseline kinematics are studied extensively and a detailed account will be provided
in this section. The data provided in this section will also serve as a basis for comparison
when expanding the parameter space.
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6.2.1 Force coefficients

In this section the resulting force coefficients of the base motions, described in Section
4.1.4, are presented. Figure 6.1 illustrates the force magnitude and direction for the three
cases considered in this study. Also shown in this figure are the wing location and the
orientation for each force value shown in the figure.

For hover motion one, the thrust coefficient, as shown in Figure 6.2a, peaks at 4.7. The
peak occurs at t∗ = 0.2 just after the pitch angle and the plunge speed reach their max-
imum value. The average thrust coefficient is 2.79. The non-dimensionalized standard
deviation of the mean varies between 0.60 and 0.17 or between 4% and 13% of the maxi-
mum thrust. The average of the absolute value of the lateral force coefficient is 3.00, as
shown in Figure 6.2d. The lateral force coefficient increases fairly rapid and varies around
a value larger than the average. Three local maxima exist 3.2, 3.3 and 4.8 respectively.
The figure of merit for this motion is 0.47.

(a) Hover motion 1 (b) Hover motion 2 (c) Sinusoidal motion

Figure 6.1: Visualization of the three kinematics (blue lines) and the generated forces (red vectors)

Two peaks exist in the thrust coefficient for hover motion two, 4.4 and 4.8 respectively.
The location of the first maximum occurs at t∗ = 0.15 and the second maximum occurs
at 41 percent of the period. The local minima occur at the end of the stroke and right in
the middle, at t∗ = 0.25, their values are −0.06 and 2.12. The average thrust coefficient
is 2.64. The non-dimensionalized standard deviation of the mean varies between 0.43 and
0.19 or less then 10% of the maximum thrust coefficient. The absolute value of the lateral
force coefficient averages at 2.98, the shape consist of two peaks with a local minimum in
between. The peaks are located at 0.1 and t∗ = 0.43 with values of 4.22 and 4.45. The
figure of merit equals 0.48.

The sine motion thrust coefficient also has two peaks, the first peak is relatively small
(about 1.2) and the second peak is substantially larger, 6.11 at t∗ = 0.32. The average
thrust coefficient is 2.39. The standard deviation of the mean varies between 0.67 and
0.21 or between 3 and 11% of the maximum thrust coefficient. The absolute lateral force
coefficient averages at 2.39. Resulting in a figure of merit of 0.49.

The force on the wing is primarily perpendicular to the airfoil, this is also implied in
Figure 6.2, where the pitch angle is zero the thrust force is also zero. By means of com-
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(a) Thrust coefficient hover mo-
tion 1
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(b) Thrust coefficient hover mo-
tion 2
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(c) Thrust coefficient pure sinu-
soidal motion
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(d) Lateral force coefficient
hover motion 1
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(e) Lateral force coefficient hover
motion 2
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(f) Lateral force coefficient pure
sinusoidal motion

Figure 6.2: Hover motions force coefficients

parison all force coefficients of the different motions are plotted in Figure 6.3. The average
coefficients are tabulated in Table 6.2. It can be concluded that the figures of merit are
all in the same order of magnitude. HM1 produces the most thrust, about 6% more than
HM2 and 17% more than the pure sinusoidal motion. As expected, for all motions the
average lateral force coefficient (in absolute values) is of the same order of magnitude as
the average thrust coefficient.

Assuming a number of hawkmoths variable in weight and size [27, 37, 54] the average
thrust coefficient needed for hover would be around 0.88 to 1.01 (using the average ve-
locity at 75% span position). The thrust coefficients for the motions in the experiment
calculated using equation 5.1 are 2.79, 2.64 and 2.39 respectively, which is of the same
order of magnitude. There are several factors increasing the thrust coefficient of the pitch-
plunge motion compared to the flapping motion. The speed of the wing at the root is not
zero, leading to a large contribution to the force since at the root the chord is the largest.
The average speed over the airfoil is larger since it moves in its entirety, rather than just
flapping. And last the swept area is larger for the pitch-plunging motion compared to the
flapping motion.

6.2.2 Dye flow visualization

The dye injection is performed as described in Section 5.4. Since the dye diffuses rapidly,
still images will not be used to illustrate the observations. Instead sketches will be shown
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Figure 6.3: Base motion force coefficients

Table 6.2: Base motion average force coefficients

HM1 HM2 Sine
CT 2.79 2.64 2.39

|CLateral| 3.00 2.98 2.39
M 0.47 0.48 0.49

to illustrate the most prominent flow features observed. In all figures the airfoil is plung-
ing downwards or the plunge velocity is zero and the leading edge points to the left side
of the figure.

The hover motion starts by moving through the dye from the previous stroke, t∗ =
0.0 − 0.1. The dye cloud from the previous stroke, during this time period, is nearly
stationary compared to the airfoil and no rotating flow or distinct movement of the flow
is observed. At t∗ = 0.17, shown in Figure 5.5a and sketched in Figure 6.4a, a small
vortex is observed a little aft from the leading edge. A distinct starting vortex has also
been shed from the trailing edge due to the onset of the translation. The side view of this
phase reveals no significant spanwise flow at the half and three quarter span positions.
Conversely at the tip two dye streams were observed. The first is flowing aft and upward;
it is unclear whether this is vortical flow or a merely dye diffusion, i.e. no conclusions
can be made regarding the existence of a tip vortex at this point. The second flow is
moving straight up and seems to be spinning in the same direction as the leading edge
vortex. Since there is no dye on that side of the airfoil in the first few frames of this
stroke, a qualitative measurement can be made regarding the average spanwise velocity
component of the dye between the tip and the three quarter span position. The average
speed is estimated to be 60mm/s or 0.78Uref . Note that this is an average velocity
and evidence suggests that the dye is accelerating during this period, resulting in higher
spanwise velocity components.

As the stroke continues and the flow develops further, the dye at the trailing edges starts
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(a) t∗ = 0.17 (b) t∗ = 0.3 (c) t∗ = 0.45

Figure 6.4: Sketch of the most prominent features observed in the flow visualization, hover motion
1

pointing aft and upwards. Spanwise flow is observed across the leading edge (excluding
the position from the root to quarter span, since no dye is present in this region). No
quantitative statements about the spanwise flow can be made at this point since the dye
is diffused across the entire region. The size of the leading edge vortex is growing and the
core moves further away from the airfoil.

A distinct difference between the trailing edge flow at half span and three quarter span is
observed. The sketch in Figure 6.4b clearly shows that the dye coming from the trailing
edge dye port at the half span position is further downstream than the dye originating
from the three quarter span position. This indicates there is more momentum in the aft
direction originating from the half span position, which is expected since the chord is
larger at that location and there are less three dimensional effects that would diminish
the thrust compared to the three quarter span position.

Close to the wing surface, at t∗ = 0.4, there is a portion of the dye originating from the
trailing edge moving toward the leading edge visible in Figure 5.5b. At stroke reversal
there is a trailing edge vortex forming due to the rapid rotation (supination) of the airfoil,
the vortex formation starts approximately at t∗ = 0.35. The vortex is sketched in Figure
6.4c and visible in the still image of the flow visualization, Figure 5.5c. At this point
there is a large, diffuse and rotating flow present from the leading edge to roughly the
three quarter chord position.

The wake of the airfoil is clearly contracting in the spanwise direction, the contraction is
estimated to be 1 to 2 chord lengths over a distance of 2 chord lengths downstream. In
the plunging direction no distinct contraction is observed. The speed of the wake moving
downstream is estimated to be between 1 and 2 chord lengths per stroke.

The flow development for hover motion 2 is significantly different from hover motion 1.
Early in the stroke, at t∗ = 0.08, the first indication of a starting vortex is observed in
the trailing edge region. The trailing edge vortex is stationary in the next few frames and
a leading edge vortex starts developing at t∗ = 0.11. Simultaneously the flow at the tip
splits into two directions, one upward and aft, and the other upwards, conjoined with the
LEV. The average speed of the spanwise flow originating from the tip is about 56mm/s
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or 0.73Uref . The flow at three quarters of the span remains stationary until t∗ = 0.2. At
this point the features are very similar to the features observed in hover motion 1 depicted
in Figure 6.4a.

(a) t∗ = 0.20 (b) t∗ = 0.34 (c) t∗ = 0.42

Figure 6.5: Sketch of the most prominent features observed in the flow visualization, hover motion
2

The leading edge vortex seems to grow slightly and start moving aft, i.e. it seems to
be separating. The LEV has moved significantly aft by t∗ = 0.26 and at this point the
measured normal force is at its lowest. After this point in time there is some flow from
the trailing edge towards the leading edge. The inward flow toward the leading edge has
a significant spanwise component towards the leading edge at the three quarter span po-
sition. At t∗ = 0.34 the LEV has separated from the airfoil and the resulting flow pattern
is sketched in Figure 6.5b.

The supination starts and a trailing edge vortex is formed due to the rotation. At t∗ = 0.42
the first evidence of the formation of a second LEV is seen, Figure 6.5c. In between the
dashed lines of the sketch the dye is very diffused and with no distinguishable flow pat-
terns.

From the side perspective a large upward and aft flow is observed originating from the
trailing edge at the half span position around stroke reversal from t∗ = 0.43 to 0.56. The
average vertical velocity component is estimated to be about 130mm/s or 1.7Uref . The
wake in the span direction contracts by the same order of magnitude as the wake from
HM1, about 1 to 2 chord lengths over a distance of 2 chord lengths downstream.

The flow around the sine motion is a much simpler compared to the bio-inspired motions.
The leading edge vortex remains attached throughout the stroke and there is only the for-
mation of one trailing edge vortex (a starting vortex). The earliest onset of the formation
of the LEV was observed at t∗ = 0.14 and is sketched in Figure 6.6a. This is right after
the depression in the normal force at t∗ = 0.13. The trailing edge vortex is very faint in
comparison to the bio-inspired motions.

The leading edge vortex keeps developing into a larger flow structure and seems to grow
in strength. The dye from the ports at three quarter and half span position on the leading
edge remains stationary till t∗ = 0.2. The average spanwise velocity component from the
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(a) t∗ = 0.14 (b) t∗ = 0.3

Figure 6.6: Sketch of the most prominent features observed in the flow visualization, pure sinusoidal
motion

tip to three quarter span position (from t∗ = 0.05 to 0.25) is estimated to be between 0.6
and 0.83Uref . The flow originating from the trailing edge at half span convects down-
stream more rapidly than the flow at three quarter span position, illustrated in Figure
6.6b, suggesting more force is produced near the root of the airfoil. From the trailing edge
there is some flow observed toward the leading edge, originating from the three quarter
span position at t∗ = 0.27 and from the half span position at t∗ = 0.37. There is no
formation of a trailing edge vortex due to the onset of the rotation at supination and no
formation of a second leading edge vortex.

At a distance of 2 chord lengths downstream the wake had contracted by roughly 2 chord
lengths, which is similar to the bio-inspired motions.

Comparing the three motions a number of conclusions can be drawn. The dye flow vi-
sualized the formation of one leading edge vortex per half cycle for hover motion 1 and
the pure sinusoidal motion. The evolution in time of the leading edge vortex is different
for all motions. The largest difference is that the LEV completely detaches during the
stroke in hover motion 2 and a second LEV is formed at stroke reversal. For the purely
sinusoidal motion there is one trailing edge vortex formed at the start of the motion and
it was observed to be faint compared to the starting vortex of hover motion 1 and 2. The
bio-inspired motions both exhibit the formation of a second TEV at the supination right
before stroke reversal.

Although the time history flow development is unique to every motion, some generaliza-
tions hold. For all motions the wake seems to be moving downstream with a velocity that
is of the same order of magnitude, approximately 0.1 to 0.25Uref . Thus the momentum
in the wake is comparable and hence the thrust is expected to be of the same order of
magnitude.

The dye originating from the trailing edge moves faster downstream at the half span po-
sition than at the three quarter span position and consequently it is expected that the
half span region accounts for more thrust force than the region closer to the tip.

A spanwise flow was observed for all motions. A qualitative measurement of its average
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spanwise velocity, between the tip and the three quarter chord position in the beginning
of the stroke, revealed that the spanwise velocity component is in order of 0.7Uref . It
is very plausible that the spanwise component is even larger, since the flow seemed to
be accelerating within this region. Furthermore spanwise flow was observed later in the
stroke; its magnitude proved to be difficult to quantify using the flow visualization method.

6.2.3 Particle image velocimetry

Complementary to the force data acquisition and the dye flow visualization, two dimen-
sional particle image velocimetry is performed. Two measurement positions were chosen
in the plane perpendicular to the airfoil, one at half and one at the quarter span position.
The flow topology at half span is expected to be representative for the flow topology on
the majority of the airfoil. The images at the quarter chord position were taken to obtain
more information about the three dimensional effects due to the wing tip.

The axes in all plots show the distance in mean chords, with zero being the position of
the leading edge at half span and the mid position of the plunge motion. Note that the
chord length at half span is larger than the mean chord length. The plots are ordered
chronologically from left to right, top to bottom. In all figures the airfoil is plunging
downwards or the plunge velocity is zero and the leading edge is on the left side of the
figure.

Using flow visualization we observed a significant axial flow and a large contraction of the
wake. Therefore the measurements are taken with a 2ms time delay between the images
and the resolution as described in Section 5.6. These settings give us a good estimate of
the flow topology, while keeping the measurements reliable both in the vortices close to
the airfoil as further away from the airfoil where the flow speeds are much smaller, in the
order of 0.7 to 0.1Uref , cf. Appendix B.

Images at half span position

Figure 6.7 shows the vorticity and streamlines of the phase-averaged flow field for hover
motion 1 at half span and phases as indicated. At the beginning of the stroke we see
that the LEV from the previous half stroke breaks into two pieces, a small part flowing
over the leading edge dissipating almost immediately and a larger part moves along the
airfoil surface to the trailing edge where it interacts with the TEV or starting vortex.
There is evidence of one LEV forming from approximately t∗ = 0.2 until the end of the
stroke. The largest thrust coefficient occurs at t∗ = 0.2. After the change in pitch rate at
t∗ = 0.4, where the largest force coefficient occurs, another starting vortex appears at the
trailing edge. This vortex and the starting vortex at stroke reversal, which has opposite
circulation, combine to form a persistent vortex structure.
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The phase-averaged vorticity and streamlines for hover motion 2 are plotted in Figure
6.8. Similarly to HM1, the LEV breaks into two parts at stroke reversal. The larger part
joins the starting vortex at the trailing edge. The other part remains around the leading
edge and is entrained and annihilated by the new LEV having opposite circulation. In
this case the LEV detaches between t∗ = 0.2 and 0.4, stimulated by the increase of the
pitch angle at t∗ = 0.25. A new LEV forms around t∗ = 0.4. These flow features correlate
closely with the two peaks in force coefficients.

In Figure 6.9, the phase-averaged vorticity and streamlines for the sine motion are plotted.
At the start of the stroke during stroke reversal, the vorticity contours show significantly
weaker LE and TE vortices compared to the other two kinematics, which is consistent
with the relative low force coefficient measured at these phases. For this kinematics the
LEV is observed first on the image corresponding to t∗ = 0.2. The force coefficients at
the beginning of the stroke are small but as the LEV grows larger the force coefficients
surmount the maximum coefficients of both HM1 and 2. There is no formation of a TEV
at stroke reversal, in contrast to HM1 and 2.

Analogous to the qualitative observations made with the dye flow visualization method,
the PIV data shows the time history of the vortical flow evolution differs distinctly com-
paring the three motions. This was also reflected in the time history of the forces, although
the average force coefficients are of the same order of magnitude, i.e. within a 20 % range
with respect to each other.

The maximum and minimum values of the vorticity were also measured. The minimum
vorticity was generally found in the vicinity of the LEV vortex core or the leading edge,
e.g. during the formation of an LEV. Similarly, the maximum vorticity value was gener-
ally found in the vicinity of the TEV vortex core or the TE, although this did not always
lead to the formation of a vortex, e.g. Figure 6.7 at t∗ = 0.2.

The correlation between the absolute strength of the vorticity and the force normal to
the airfoil was investigated. The correlation coefficients are tabulated in Table 6.3. When
taking into account only the maximum vorticity in the vicinity of the LE or the maximum
strength of the LEV the correlation coefficients range between 0.62 and 0.83. When the
maximum vorticity at the TE is taken into account, i.e. a summation of the absolute val-
ues, the correlation coefficients are higher than 0.9, excluding the HM2 case. Looking at
the PIV images for HM2, it is hypothesized that the effect of the vortex at the TE might
be small at t∗ = 0.5 due to the larger distance. The correlation between the vorticity and
force coefficient increased to 0.94 when the maximum vorticity in the TEV at t∗ = 0.5
was discarded from the data set.

The close correlation between the forces and the leading and trailing edge vortex indicate
that these are very important in force generation of the present experiments (pitch-plunge
kinematics at a Reynolds number of 4, 800 and a reduced frequency of 0.38). Note that

aCorrelation coefficient if the strength of the TEV at t∗ = 0.5 is not accounted for, i.e. set to zero
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Table 6.3: Correlation coefficients between maximum vorticity in the PIV images and the correspond-
ing force coefficients

HM1 HM2 Sine
LE(V) 0.73 0.62 0.83

|LE(V)| + |TE(V)| 0.91 0.68 (0.94a) 0.99

the correlation coefficients are based on five discrete measurement points for three differ-
ent cases and do not include the proximity of the maximum strength with respect to the
airfoil as a scaling variable.
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Figure 6.7: Vorticity and streamline plots for HM1 base at half span, CT = 2.79 and |CLat| = 3.00
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Figure 6.8: Vorticity and streamline plots for HM2 base at half span, CT = 2.64 and |CLat| = 2.98
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Figure 6.9: Vorticity and streamline plots for Sine base at half span, CT = 2.39 and |CLat| = 2.39
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Images at three quarter span position

The measurements performed at the quarter span position are influenced by the presence
of the wing tip and include a number of three dimensional effects.

The vorticity and phase-averaged streamlines of hover motion one are shown in Figure
6.11. In the first image, at t∗ = 0.0, the LEV and TEV are clearly visible, similar to the
images taken at half span. The wake of the wing however shows some distinct differences.
There is a clear region with a path of positive and negative vorticity. Over this region
there is clear flow opposite to the thrust direction. This reverse flow is believed to be
direct evidence of the presence of a tip vortex. In the following images the tell tale signs
of the tip vortex disappear and the vorticity field becomes comparable to the half span
position. The tip vortex effects reappear in the images taken at t∗ = 0.4 and are very
prominent at t∗ = 0.5.

The effects of the tip vortex are not as clearly observed for hover motion two, Figure 6.12.
However at t∗ = 0.2 two patches of opposite vorticity appear near the trailing edge of
the wing, likely to be caused by the tip vortex from the previous stroke. The evolution
of LEV’s and TEV’s is similar to the half span position with a detachment of the LEV
around t∗ = 0.2 and formation of a new LEV and TEV at the end of the stroke.

For the simple harmonic case, the pure sinusoidal motion, the phase-averaged vorticity
and streamlines at three quarter span are shown in Figure 6.13. Similar to HM1 indi-
cations of the presence of a tip vortex are found at t∗ = 0.0, 0.1 and 0.5. The general
evolution of the LEV and TEV is similar to the half span position.

Table 6.4: Correlation coefficients between sum of the maximum and minimum vorticity in abso-
lute values obtained from the PIV measurements and the corresponding normal force
coefficients

HM1 HM2 Sine
Half span 0.91 0.68 (0.94b) 0.99
Three quarter span 0.87 0.85 0.98
Sum of half and
three quarter span 0.93 0.91 0.99

As described in the previous section the sum of the maximum and minimum vorticity in
absolute values can be correlated to the normal force coefficient. The results for the three
quarter span position and the sum with the half span position are tabulated in Table
6.4. The correlation with the normal force is higher then 0.85 for all cases and always
smaller than the correlation at half span. When the maxima of the half and three quarter
span position are added the correlation is almost equal to the correlation at half span,
although the values at three quarter span are of the same order of magnitude compared
to half span. A visual representation of the normal force coefficient and scaled vorticity

bCorrelation coefficient if the strength of the TEV at t∗ = 0.5 is not accounted for, i.e. set to zero.
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strength is shown in Figure 6.10. The vorticity strength follows the same trends as the
force coefficients and hence the correlation coefficients are close to 1.
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(b) Hover motion two
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(c) Sinusoidal motion

Figure 6.10: Plots of the normal force coefficient and the sum of the maximum and minimum vorticity
in absolute values at half span and three quarter span and their sums (the vorticity is
scaled with the maximum value of the force coefficient to fit the figure)

In general the maximum flow speeds at the three quarter span position are always less
then half of the speed measured at half span. The out of plane velocity in this region
was estimated through dye flow visualization to be of the same order of magnitude as the
reference velocity. As expected, the in-plane streamlines indicate the presence of out of
plane velocity.



6.2 Baseline Bio-Inspired Kinematics 71

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

−30 −20 −10 0 10 20 30

−0.5 0 0.5 1 1.5 2 2.5 3

−3

−2

−1

0

1

2

3

(a) t∗ = 0.0, CT = 0.47,
CLat = −1.39

−0.5 0 0.5 1 1.5 2 2.5 3

−3

−2

−1

0

1

2

3

(b) t∗ = 0.1, CT = 2.68,
CLat = −2.11

−0.5 0 0.5 1 1.5 2 2.5 3

−3

−2

−1

0

1

2

3

(c) t∗ = 0.2, CT = 4.90,
CLat = −3.30

0 0.2 0.4 0.6 0.8 1
−10

−8

−6

−4

−2

0

2

4

6

8

10

t/T

F
o
rc
e
co

effi
ci
en
t
[−

]

a b c d e f

0 0.2 0.4 0.6 0.8 1

−1

0

1

N
o
rm

a
li
ze
d
P
it
ch

a
n
g
le

a
n
d
P
lu
n
g
e
p
o
si
ti
o
n

Thrust coefficient STD h/h0 δ/δmax

0 0.2 0.4 0.6 0.8 1
−10

−8

−6

−4

−2

0

2

4

6

8

10

t/T

F
o
rc
e
co

effi
ci
en
t[
−]

a b c d e f

0 0.2 0.4 0.6 0.8 1

−1

0

1

N
o
rm

a
li
ze
d
P
it
ch

a
n
g
le

a
n
d
P
lu
n
g
e
p
o
si
ti
o
n

Lateral force coefficient STD h/h0 δ/δmax

−0.5 0 0.5 1 1.5 2 2.5 3

−3

−2

−1

0

1

2

3

(d) t∗ = 0.3, CT = 3.82,
CLat = −3.16

−0.5 0 0.5 1 1.5 2 2.5 3

−3

−2

−1

0

1

2

3

(e) t∗ = 0.4, CT = 3.11,
CLat = −4.82

−0.5 0 0.5 1 1.5 2 2.5 3

−3

−2

−1

0

1

2

3

(f) t∗ = 0.5, CT = 0.27,
CLat = −1.47

Figure 6.11: Vorticity and streamline plots for HM1 base at three quarter span, CT = 2.79 and
|CLat| = 3.00
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(d) t∗ = 0.3, CT = 2.61,
CLat = −1.46

−0.5 0 0.5 1 1.5 2 2.5 3

−3

−2

−1

0

1

2

3

(e) t∗ = 0.4, CT = 4.76,
CLat = −3.57

−0.5 0 0.5 1 1.5 2 2.5 3

−3

−2

−1

0

1

2

3

(f) t∗ = 0.5, CT = −0.06,
CLat = 1.43

Figure 6.12: Vorticity and streamline plots for HM2 base at three quarter span, CT = 2.64 and
|CLat| = 2.98
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CLat = 1.51

Figure 6.13: Vorticity and streamline plots for Sine base at three quarter span, CT = 2.39 and
|CLat| = 2.39
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6.2.4 Comparison with the unsteady aerodynamic vortex model

The unsteady aerodynamic model is based on two-dimensional potential flow and uses a
vorticity/circulation approach to compute the aerodynamic loads. The formulation was
originally derived for rigid wings in hover [3, 4]. The model has been subsequently modi-
fied to account for spanwise and chordwise wing flexibility [16, 17] and freestream due to
forward flight speed [15]. The effect of the Reynolds number is also incorporated into the
calculation of shed vorticity [15].

Transient and time-averaged forces, computed using the approximate model, were com-
pared with those obtained from CFD-based computations for rigid airfoils as well as wings
in hover and forward flight [16, 17, 15]. For all cases considered, the approximate un-
steady aerodynamic loads show reasonable agreement with CFD-based results.

The overall approach is as follows. First, the wing is divided into several spanwise stations,
where each section is represented as an airfoil. For each airfoil, an airfoil-wake surface
that captures the airfoil degrees of freedom (DOF), and approximates the geometry of
the shed wake, is identified. Next, the airfoil and the airfoil-wake surface are transformed
to a circle in the complex plane using conformal mapping. Thus, the airfoil-bound and
shed wake vorticity are computed on the complex plane. The quasi-steady component
of vorticity is obtained by neglecting the effect of the shed wake. The strength of shed
vorticity is computed by enforcing a stagnation condition at the leading edge (LE) and
a Kutta condition at the trailing edge (TE). The airfoil bound vorticity is obtained as a
sum of the quasi-steady and wake-induced vorticity on the airfoil. Next, the vorticity in
the complex plane is transformed back to the airfoil-wake surface (physical plane) using
the inverse transform. The unsteady loads acting on the airfoil are obtained from the
total vorticity using the unsteady Bernoulli equation. Finally, the shed vorticity is con-
vected using the Rott-Birkhoff equation, which is derived from Biot-Savart law for two
dimensional flow.

The calculations were performed by Dr. Abhijit Gogulapati, a Post Doctoral Research
Fellow at the University of Michigan Aerospace department [18]. The comparison of the
forces with the unsteady aerodynamic model for HM1, HM2 and the sinusoidal motion
are shown in Figure 6.15, 6.16, and 6.17 respectively. The calculations show a reasonable
agreement with the experiments.

For the case of hover, the vortices that are shed during previous cycles remain in the
vicinity of the wing and therefore influence the forces generated by the wing even af-
ter several subsequent cycles. Consequently, the mean forces were computed once the
forces reached an approximate steady state. For all the cases considered, an approximate
steady state was reached after the second cycle as shown in the Figures. Simulations also
showed that decreasing the vortex core improved correlation with experimental results.
Decreasing the vortex core size promotes vortex roll up. Thus it appears that a core
size of 0.025 c captures the vortex dynamics most accurately. Furthermore, decreasing
the size of the vortex core also decreased the noise generated due to interaction of the
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vortices with the airfoil thereby improving quality of the solution. It appears that decreas-
ing the core size further had a comparatively minor impact on the forces (cf. Figure 6.14).

Figure 6.14: Comparison of the force coefficients for different core radii

The flow visualization data revealed the presence of tip vortices and a spanwise compo-
nent of the flow from the tip towards the root of the wing. However, the good overall
agreement between the calculated and measured forces suggests that the dominant force
generating mechanisms are the leading and trailing edge vortices. The impact of spanwise
flow and tip vortices on the overall magnitude of the forces is not as significant.
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Figure 6.15: Comparison of the force coefficients for hover motion 1 as measured in the experiment
and the ones calculated with the approximate model
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Figure 6.16: Comparison of the force coefficients for hover motion 2 as measured in the experiment
and the ones calculated with the approximate model

0 0.5 1 1.5 2 2.5 3 3.5 4
−2.5

0

2.5

5

7.5

10

C
T

(a) Thrust force coefficient, CT

0 0.5 1 1.5 2 2.5 3 3.5 4
−10

−5

0

5

10

C
L

t/T

Experiment
Approximate model

(b) Lateral force coefficient, CL

Figure 6.17: Comparison of the force coefficients for the purely sinusoidal motion as measured in
the experiment and the ones calculated with the approximate model
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6.2.5 Comparison with the high-fidelity CFD model

The results are compared to CFD calculations performed in house by Dr. Chang-kwon
Kang, a Post Doctoral Research Fellow at the University of Michigan Aerospace depart-
ment [25].

The governing equations for the fluid are the incompressible Navier-Stokes equations and
the CFD solution is obtained using Loci-STREAM. Loci-STREAM is an all-speed, pres-
sure based, finite volume CFD solver for arbitrary unstructured polygonal meshes [24, 46].

The computational grid to solve the Navier-Stokes equations consists of mixed brick and
tetrahedral cells around the Zimmerman wing, see Figure 6.18. To assess the grid size
sensitivity three grids with different spatial resolutions are utilized with 0.34×106, 0.51×
106, and 0.73 × 106 nodes for each mesh. For the time step sensitivity analysis 250,
500, and 1000 time steps per motion cycle were chosen. The fluid flow is assumed to be
laminar. The first grid spacing from the wing surface is set to 2.5 × 10−3 and the outer
boundary of the computational grid is located at 30 chords away from the wing. At the
outer computational boundary zero velocity and reference density are assigned. On the
wing surface the no-slip condition is applied.

(a) Computational domain (b) Mesh distribution around the Zimmerman
wing

Figure 6.18: Computational grids for the Zimmerman wing

The time history of the force coefficients for the CFD model and the experiment are shown
in Figure 6.19, 6.20, and 6.21. In these figures the force coefficients of the experiment
represented by a repetition of the averaged time history, the CFD results were calculated
over 5.5 cycles. It takes roughly two cycles for the forces to converge into a quasi-steady
state value, and due to the complex wake it is not expected that a true steady state would
ever be reached.

The shape of the time history of the force coefficients is remarkably similar to the mea-
surements for all motions. As with the experiments there is a slight asymmetry in the
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force coefficients for the up and downstrokes. For HM1 the CFD results can almost be
linearly scaled to fit the experimental results. There is a small disagreement for HM2 in
each stroke, that is the ratio between the first and second maximum in the thrust force
coefficient is slightly larger in the CFD calculations. And the differences between the
up and downstroke are a lot less pronounced for the purely sinusoidal motion. For all
motions however the shape is very similar.

Table 6.5: Base motion average force coefficients, experiment versus CFD (averaged over the last 4
cycles)

HM1 HM2 Sine
Experiment CFD Experiment CFD Experiment CFD

CT 2.79 2.37 2.64 2.29 2.39 1.96
|CLateral| 3.00 2.64 2.98 2.50 2.39 2.08

The average force coefficients for both CFD calculations and force measurements are
summarized in Table 6.5. On average the forces computed with CFD are between 82 and
87 % of the coefficients measured in the experiment. This discrepancy might originate
from both differences in the experiment and measurement errors. First, the experimental
and CFD cases are not exacly equal. It is expected that there will be wall and blockage
effects in the water channel that might increase the forces measured, these effects are
unquantifyable at this point and it is not sure to what extend they impact the results.
There is also an offset between the center of the motions and the center of the water
channel and this can cause an exaggerated asymmetry in the up and downstroke. Sec-
ond, the CFD results do not perfectly capture the exact physics of the flow. The flow is
also assumed to be laminar and hence turbulent effects are another source of disagreement.
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Figure 6.19: Comparison of the force coefficients for hover motion 1 as measured in the experiment
and the ones calculated with the CFD model
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Figure 6.20: Comparison of the force coefficients for hover motion 2 as measured in the experiment
and the ones calculated with the CFD model



80 Results

0 1 2 3 4 5 6
−2.5

0

2.5

5

7.5

C
T

(a) Thrust force coefficient, CT

0 1 2 3 4 5 6
−7.5

−5

−2.5

0

2.5

5

7.5

t/T

C
L

Experiment
CFD results

(b) Lateral force coefficient, CL

Figure 6.21: Comparison of the force coefficients for the purely sinusoidal motion as measured in
the experiment and the ones calculated with the CFD model
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6.2.6 Comparison with three dimensional flapping experiment with two
degrees of freedom

The results of the pitch-plunge motion are compared to the results of Morrison et al [30].
In their experiments the kinematics (HM1, HM2, and the Sinusoidal motion) were tested
in the water channel on a two degrees of freedom flapping rig.

The two angular degrees of freedom are the flapping angle, φ, and the pitch angle, α.
The axis of rotation for the flapping angle is located above the root of the wing and is
parallel to the wing when the pitch angle is zero. For the pitch angle the axis of rotation
corresponds with a line tangent to the leading edge at the root of the wing and parallel
to the wing. The zero position of the pitch angle coincides with the airfoil being perpen-
dicular to the flapping plane. Figure 6.22a shows a visual representation of the flapping
angle, pitch angle, and flapping plane. The motion is actuated by two Velmex B4800TS
series rotary stages through a custom gear train, shown in Figure 6.22b. The free surface
of the water channel is located 40mm above the flapping axis of rotation.

(a) Coordinate system (b) Assembly of the flapping
rig

Figure 6.22: Two degree of freedom flapping rig for experiments in the water channel

The force data is acquired using a six-component ATI Nano 25 IP68 submersible force/torque
transducer. The force/torque sensor is mounted at the root of the wing and moves with
the wing. Force data is taken at a sampling frequency of 2 kHz and the data is filtered
using a 5th order Butterworth low-pass filter with a 2.5Hz cut-off frequency. Data is
sampled over 100 cycles and subsequently phase-averaged.

To isolate the hydrodynamic force from other contributions to the force and torque acting
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on the sensor a tare procedure was used. First, a static tare procedure is performed in
both water and air. The static tare consists of static measurements at 50 discrete loca-
tions, interpolated using a 6-term Fourrier series representation of the averaged data at
the 50 locations. Second, a dynamic tare is performed in air to be able to subtract the
inertial loads due to the wing mass and the kinematics.

For the comparison with the pitch-plunge experiments the lateral force coefficient for the
flapping motion is defined as the force coefficient perpendicular to the rotation axis and
parallel to the flapping plane. Similarly the thrust coefficient is defined as the force co-
efficient perpendicular to the flapping plane with the positive direction towards leading
edge. The force coefficients for flapping are normalized by the projected wing area and
the dynamic pressure based on the reference velocity, Uref = 122e − 3m/s, as reported
by Morrison et al [30].

The time history of the force coefficients compares well with the pitch-plunge results when
looking at the force perpendicular to the rotation axis and parallel to the flapping plane,
shown in Figure 6.23. Note that the lateral force coefficients in the original paper are
reported as the force parallel to the flapping plane perpendicular to the line where the
flapping angle is zero, in other words stationary with respect to the airfoil.

The shape of the phase averaged force coefficients of the lateral force for HM1 is nearly
analogous when comparing flapping and pitch-plunging kinematics. The thrust force co-
efficient has a subtle difference, the middle peak in the thrust coefficient is slightly more
pronounced in the flapping results.

The largest discrepancy of the shape of the time history of the force coefficients is found
in HM2. The thrust for both motions consists of two peaks. For the flapping motion
the first peak in thrust is higher than the second one and vice versa for the pitch-plunge
kinematics. The lateral force also seems to have a discrepancy in this region, t∗ = 0 to 0.2.
The first peak in the lateral force has changed into two distinct peaks, and in the process
the local maximum has shifted slightly aft of the maximum of the pitch-plunge kinematics.

The shape of the sinusoidal motion is nearly analogous for both the lateral and thrust
force coefficient. A small difference is spotted in the thrust coefficient where the plunging
motion has a small local maximum at the beginning of the stroke, this local maximum
seems to be smeared out for the flapping kinematics.

For all motions the shape of the time history of the force coefficients is similar. This leads
us to speculate that the underlying lift mechanisms are similar and the flow should have
a similar flow topology on most of the airfoil. Furthermore if the flow topology differs
significantly this might mean that the kinematics are more important for force generation.

The average force coefficients are summarized in Table 6.6. The trends found in the
plunging motion are still present; HM1 produces the most thrust followed by HM2 and
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Figure 6.23: Comparison of pitch-plunge force data with the two degree of freedom flapping force
data
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the sinusoidal motion. Interestingly the flapping coefficients are roughly half of the coef-
ficients measured with the pitch-plunging rig. It seems as if there might be a scaling rule
present, in this case dividing the plunging coefficients by a factor of two will provide a
fair estimate for the flapping coefficients.

Table 6.6: Comparison of the flapping and the pitch-plunge motion

CT |CLateral|
Thrust Ratio

(Flapping/Plunging)
Lateral Force Ratio
(Flapping/Plunging)

HM1 1.49 1.62 0.53 0.53
HM2 1.39 1.44 0.53 0.48
sin 1.21 1.47 0.51 0.61

Careful consideration needs to be taken when comparing flapping motions with pitch-
plunging motions. First, there is the difference between flapping and pitch-plunging, i.e.
the movement of the root of the airfoil will contribute significantly to the force production
in pitch-plunging. Second, the definition of the reference velocity is not the same. The
reference velocity in this case is based on the average velocity at 75 % of the span. This
not only affects the normalization of the forces but also the Reynolds number, which in the
flapping experiments was 7, 100. The reference velocity also affects the reduced frequency
(k = 0.21 in the flapping experiments). The reduced frequency is analogously defined but
not necessarily one to one comparable with the reduced frequency of the pitch-plunging
experiments (k = 0.38).
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6.3 Effects of Changes in Phase

The parameter space can be further expanded by introducing phase lag. The phase lag of
the pitch angle is expressed in percentages of the period. Two different cases have been
added to the base motions, ±10%T .

6.3.1 Force coefficients

The results for HM1 are shown in Figure 6.24 and Table 6.7. The delayed rotation case,
i.e. having a phase lag of −10%T , produces a lot less thrust than the base case. Fur-
thermore the figure of merit drops to a value of only 0.23. The opposite is true for the
advanced rotation case, the thrust is 34% higher than the base case with a decrease in the
figure of merit from 0.47 to 0.41. In both cases there is a shift in the location of the min-
imum thrust corresponding approximately to the amount of phase lag for the advanced
rotation case and less then half of the amount of phase lag for the delayed rotation case.
For all three motions the minima are close to zero compared to the maxima of the motions.
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Figure 6.24: Force coefficient for HM1 with with phase lag

A visual representation of the force vectors on the airfoil is shown in Figure 6.25. The max-
imum force builds up rapidly for the advanced rotation case and remains high throughout
the stroke until the airfoil rotates and the orientation of the force vector becomes unfa-
vorable. The pattern for the base case is similar but less aggressive. For the advanced
rotation case the forces are smaller than the two other cases and the orientation at max-
imum force is less favorable.

Similarly, for the Sine motion (Table 6.8), the delayed rotation case produces less than
half of the thrust and has a figure of merit of only 0.17. The advanced rotation case
however produces more thrust compared to the base case, about 47% more thrust. The
thrust and lateral force coefficients are plotted in Figure 6.26. For the delayed rotation
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(a) HM1 −10%T (b) HM1 base motion (c) HM1 +10%T

Figure 6.25: Visualization of HM1 with phase lag and the generated forces

Table 6.7: HM1 force coefficients for different phase lag

HM1 −10%T HM1 HM1 +10%T
CT 1.11 2.79 3.74

|CLateral| 2.17 3.08 4.81
M 0.23 0.47 0.41

case the minimum has shifted by less than half the amount of phase lag, i.e. less than
5%T and for the advanced rotation the shift is roughly equal to the phase lag.
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Figure 6.26: Force coefficients for the purely sinusoidal motion with phase lag of ±10%

For both HM1 and Sine the thrust production is greatly enhanced by the advanced rota-
tion. The efficiency however decreases from 0.47 to 0.41 and from 0.49 to 0.39 respectively.
The location of the maximum force shifts by approximately the amount of phase lag for
the advanced rotation cases. Delayed rotation is detrimental for both thrust and efficiency
in both motions.
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(a) sine −10%T (b) sine base motion (c) sine +10%T

Figure 6.27: Visualization of sine with phase lag and the generated forces

Table 6.8: Sine force coefficients for different cases of phase lag

Sine −10% Sine Sine +10%
CT 0.96 2.39 3.51

|CLateral| 2.53 2.39 4.21
M 0.17 0.49 0.39

6.3.2 Dye flow visualization

At t∗ = 0.0 the HM1 delayed rotation case starts out with a cloud of dye on top of the
airfoil. A small vortex forms at both the LE and the TE as the airfoil translates. The
vortices are shed immediately, the topology is sketched in Figure 6.28a. At this point
the normal force has dropped to a relatively constant value and as the airfoil translates
it seems to be fully stalled and no formation of vortices was observed in the flow visual-
ization data, except at the tip. A tip vortex is present during the stroke, the direction of
rotation is counter clockwise for an observer looking parallel with the plunge motion and
the downstream direction on the left. The distance between the shed tip vortices in the
wake varies between one and two chord lengths in the downstream direction depending
on the stroke. The average spanwise flow component from the tip to the three quarter
chord position was 0.65Uref .

(a) 0.14 t∗ (b) 0.42 t∗

Figure 6.28: Sketches of the flow visualization features HM1 with a 10 %T delayed rotation

The motion is not efficient because it is never able to form a proper LEV during the
stroke, furthermore the force peak occurs when the airfoil is perpendicular to the plunge
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direction and hence in the buildup this force causes some negative thrust.

For the HM1 advanced rotation case a TE starting vortex is created at the very start of
the stroke. There is evidence of an LEV forming as sketched in Figure 6.29b and a tip
vortex seems to be present early in the stroke. With the advent of a new TEV due to
the rotation at t∗ = 0.27 the tip vortex seems to disappear. The LEV grows very large in
size, cf. Figure 6.29c. The normal force changes sign after the change in sign of the pitch
motion and hence the thrust is negative from t∗ = 0.38 to 0.42. The average spanwise
flow velocity measured is 1.16Uref . Furthermore a large spanwise contraction of the wake
was observed. The contraction was difficult to quantify due to the diffusion of the dye,
and it is estimated that the wake had contracted by roughly 2 chord lengths at 2 chord
lengths downstream.

(a) 0.07 t∗ (b) 0.2 t∗ (c) 0.38 t∗

Figure 6.29: Sketches of the flow visualization features HM1 with a 10 %T advanced rotation

The motion seems to be able to create large forces, with the orientation of these forces in
a favorable direction. A gain of 34 % thrust compared to the base motion with a decrease
in efficiency of 13 %.

A vortex is created at the leading edge and the trailing edge early in the stroke of the
purely sinusoidal delayed rotation case, Figure 6.30a. Both vortices are shed immedi-
ately and a tip vortex is formed simultaneously. As the stroke progresses the tip vortex
becomes more pronounced and no LEV was visible. At stroke reversal a small TEV
is formed due to the rotation of the wing and rapidly broken up before the stroke actu-
ally reverses direction. Average spanwise flow speeds were measured to be up to 0.56Uref .

No evidence of high lift mechanisms was observed in this stroke. The airfoils seems to be
stalled throughout the entire stroke.

The sinusoidal advanced rotation case generates a faint TE starting vortex as it begins to
translate. The first evidence of the LEV is seen at t∗ = 0.24, and the LEV keeps growing
until the end of the stroke. A peak in normal force was found just before t∗ = 0.3 and
the flow topology at this point is sketched in Figure 6.31b. In this Figure a distinct LEV
and tip vortex are depicted.
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Path of the tip- 
vortex

(a) 0.11 t∗

Path of the tip- 
vortex

(b) 0.43 t∗

Figure 6.30: Sketches of the flow visualization features sinusoidal motion with a 10 %T delayed
rotation

(a) 0.1 t∗

Path of the tip- 
vortex

(b) 0.3 t∗

Figure 6.31: Sketches of the flow visualization features sinusoidal motion with a 10 %T delayed
rotation

The motion is 47 % more effective in the production of thrust compared to the base mo-
tion. The increase in thrust comes at the price of a reduction of 20 % in efficiency.

For both motions the flow topology is comparable to the base motions for the advanced
rotation case. The time history of the force coefficients has roughly the same shape, only
more pronounced. Conversely the delayed rotation cases do not seem to generate high
lift mechanisms in the flow and the peaks in the generated force occur at unfavorable
orientations of the airfoil. Incorporation of advanced and delayed rotation can increase
and decrease thrust significantly, up to 60 % difference in the thrust force with a delay
in the rotation of only 10 %T . Hence these mechanisms might be used to generate large
forces used for quick maneuvres in exchange for efficiency.

6.4 Effects of Changes in Reduced Frequency

The reduced frequency provides a measure of the unsteadiness associated with a flapping
wing [37]. As an expansion of the parameter space the reduced frequency is increased
from 0.38 to 0.7.
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6.4.1 Force coefficients

In Figure 6.32, the resulting force coefficients are plotted. Here all motions are plotted
in the same plot, a plot of each individual motion at a reduced frequency of 0.38 and
0.7 can be found in Appendix C. It can be seen that the thrust coefficient for a reduced
frequency of 0.7 is slightly lower in the first half stroke as compared to the values with a
reduced frequency of 0.38. However in the second half stroke the thrust is considerably
larger, making up entirely for the loss in the first half stroke. That is for all motions
the average thrust coefficient (Table 6.9) is larger for the largest reduced frequency. The
increase in reduced frequency amounts to an increase in thrust coefficient of 12 to 18%.
All the while the figure of merit does not vary significantly. Note that the Sine motion is
the only motion for which the figure of merit increases.

The general trends of the base motions do not change, HM1 still produces the largest
amount of thrust, followed by HM2 and the sine motion. The sine motions produces
the highest measured thrust force coefficient for the highest efficiency at the reduced fre-
quency of k = 0.7.
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Figure 6.32: Force coefficient for motions with a reduced frequency of 0.7

(a) HM1 (b) HM2 (c) Sine

Figure 6.33: Visualization of HM1 at a reduced frequency of 0.7 and the generated forces
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Table 6.9: Motion force coefficients

HM1 HM2 Sine
k = 0.38 k = 0.7 k = 0.38 k = 0.7 k = 0.38 k = 0.7

CT 2.79 3.22 2.64 2.95 2.39 2.81
|CLateral| 3.00 4.61 2.98 3.73 2.39 3.05

M 0.47 0.42 0.48 0.46 0.49 0.51

6.4.2 Dye flow visualization

At the higher reduced frequencies the flow topology is rather similar compared to the
base motions.

The stroke for HM1 starts out with the presence of the LEV from the previous stroke,
Figure 6.34a. A starting vortex appears at the trailing edge and a small tip vortex is
visible at t∗ = 0.09. The formation of an LEV is estimated to start at t∗ = 0.2, at this
point the tip vortex is clearly visible. From the side view it is deduced that the average
spanwise flow from the tip to the three quarter span position is of the order of Uref from
t∗ = 0.09 to 0.3. Spanwise flow was observed at the three quarter span position and the
half span position as well.

Figure 6.34c depicts a sketch of the flow at t∗ = 0.46. The leading edge vortex has grown
somewhat larger at this point and the trailing edge dye at half span is further downstream
than at the three quarter span position. The tip vortex seems to remain strong up to
the very end of the stroke. The TEV formed was formed at approximately t∗ = 0.38. At
stroke reversal, the tip vortex fades out.

(a) 0.05 t∗

Path of the tip- 
vortex

(b) 0.2 t∗

Path of the tip- 
vortex

(c) 0.46 t∗

Figure 6.34: Sketches of the flow visualization features HM1 with a reduced frequency of 0.7

HM2 starts with a similar flow picture as its base motion, Figure 6.35c; the presence of
a LEV from the previous stroke during the supination is clearly visible. The same holds
for the trailing edge vortex originating from the early supination phase, approximately
t∗ = −0.12. The trailing edge vortex is located further downstream at the half span
position. A diffusive cloud of red dye is seen between the LEV and TEV, this cloud is
the burst LEV formed earlier during the stroke. The wing starts translating faster and a
starting vortex forms at the trailing edge. As the stroke progresses a small LEV is formed
roughly at t∗ = 0.16, sketched in Figure 6.35a, and seems to detach at t∗ = 0.3. At the
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start of the supination a trailing edge vortex is formed as the LEV breaks down further.
A new LEV is formed at t∗ = 0.45 due to the rotation of the airfoil.

Path of the tip- 
vortex

(a) 0.16 t∗

Path of the tip- 
vortex

(b) 0.26 t∗ (c) 0.5 t∗

Figure 6.35: Sketches of the flow visualization features HM2 with a reduced frequency of 0.7

The sinusoidal motion has the simplest flow topology with its main features sketched in
Figure 6.36. The LEV from the previous stroke is still present at the beginning of the
stroke and gets convected downstream as the stroke progresses. A streak line from the tip
is visible at t∗ = 0.15, this could potentially be a tip vortex. Spanwise flow was observed
originating at the tip of the airfoil and spreading to a region over half of the span by the
end of the stroke. The average spanwise flow from the tip to the quarter span position
between t∗ = 0.12 and 0.38 was measured to be 0.82Uref . The first indications of a LEV
in the flow become visible at t∗ = 0.3. The LEV develops further till end of the stroke,
at which point it gets convected downstream.

(a) 0.0 t∗

Path of the tip- 
vortex

(b) 0.15 t∗

Path of the tip- 
vortex

(c) 0.3 t∗

Figure 6.36: Sketches of the flow visualization features sine with a reduced frequency of 0.7

The structure of the wake is fairly simple compared to HM1 and HM2, and can be de-
scribed as a vortex street with one shed vortex per stroke. As seen from the side view,
there seems to be a large contraction of the wake in spanwise direction, it is estimated
that the wake is about one chord length high at about four chord lengths downstream
from the trailing edge of the airfoil.

Generally at the higher reduced frequency the LEV seems to be closer to the the airfoil
compared to the base motion and the vortices seem stronger in strength. In the base mo-
tion no distinct tip vortex is observed using the flow visualization technique. Conversely
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for the higher reduced frequency cases there are some streak lines originating from the tip
that are strong indications of a tip vortex. At stroke reversal the flow moves into its own
wake, in these cases, k = 0.7, the leading edge vortex seems to keep rotating longer and
perhaps until it joins the TEV, as opposed to the LEV stopping rotation almost instantly
at stroke reversal. In the base motions the dye cloud originating from the LEV of the
previous stroke seems to be stationary.

The spanwise flow is higher, and remains in the same order of magnitude compared to
the base motions. The contraction of the wake in spanwise direction is larger compared
to the base motions, an indication that higher thrust forces are produced.

The flow field is comparable to that of the base motion. The differences are mainly that
the motions are more aggressive and vortices in the flow field interact more with one
another since they are around for a longer portion of the period.
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Chapter 7

Conclusions and Recommendations

There are a number of ways to convert a flapping motion to a pitch and plunge motion.
In this thesis two ways of converting the flapping motion of the Agrius Convolvuli to a
pitch-plunge motion are presented and tested. The first motion, HM1, ignores the loss of
elevation angle and simply translates the flapping angle into a plunge motion by using a
reference speed at 75% of the span and the feathering angle as the pitch angle. The sec-
ond motion is similar but incorporates a correction for the elevation angle by adding the
elevation angle to the feathering angle as an of effective angle of attack. A third motion
is a pure sinusoidal motion with the same Reynolds number and reduced frequency, i.e.
4, 800 and 0.38 respectively (cf. Agrius Convolvuli).

7.1 Baseline Bio-Inspired Kinematics

The thrust production and the efficiency of the motion have been measured. For HM1,
HM2 and Sine the average thrust coefficients are 2.79, 2.64 and 2.39 respectively. For
all motions the force coefficients needed for hover on average are larger than the thrust
coefficient of a real moth, but they are of the same order of magnitude. There are sev-
eral factors increasing the thrust coefficient of the pitch-plunge motion compared to the
flapping motion. The speed of the root is non-zero, which leads to a big contribution
since here the chord is at its largest. The average speed over the airfoil is larger since it
moves in its entirety, rather than just flapping. And last the swept area is larger for the
pitch-plunging motion compared to the flapping motion.
7 Hover motion one produces more thrust than hover motion two and the pure sinusoidal
motion. The difference between HM1 and HM2 is small, the pure sinusoidal motion pro-
duces roughly 14 % less thrust. The force history plots differ strongly from one another,
indicating a unique vortical flow evolution for the three cases. Hover motion one produces
a more constant thrust coefficient, i.e. compared to the other motions it has a less steep
gradient overall. The force history of hover motion two shows two peaks where the force

95
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coefficient is approximately 4. The distinct difference between motion uncorrected for el-
evation angle, HM1, and the corrected motion, HM2, shows that relatively small changes
in the kinematics have a significant influence on the time history of the forces. For the
purely sinusoidal motion the force coefficient has a very small peak in the beginning of
the stroke and a large peak near 0.3 t∗ where the force coefficient is approximately 6. The
propulsion efficiencies are all of the same order of magnitude, approximately 0.48, and
hence the thrust production of the tested kinematics scales with the energy input.

Using dye flow visualization a general overview of the three dimensional flow topology
was recorded. The findings are generally consistent with the detailed account of the PIV
data. The dye flow visualization did reveal inboard spanwise flow of the same order of
magnitude as the reference velocity.

The PIV data reveals detailed information about the flow evolution. For HM1 there is
one leading edge vortex formed during the entire stroke. Per half cycle two TEV’s are
created, one at the beginning and one right before stroke reversal. The second hover
motion, HM2, has a slightly different flow topology. Two LEV’s are formed, one at the
beginning of the stroke that detaches as the pitching angle increases further, the second
one is formed when the pitch angles starts to increase again. Similarly as for HM1 there
are two TEV’s per half cycle. The sine motion starts out stalled and then forms one large
LEV. There is only one TEV, starting vortex, at the beginning of the stroke. Clearly, the
vortical flow evolution is unique to all three cases, as is the case for the force history.

The strength of the LEV and TEV correlates strongly with the forces indicating their im-
portance to the force production. The highest correlation factor was found for the purely
sinusoidal motion. This is likely related to the lower acceleration terms in the kinematic
and thus non circulatory terms become less dominant.

At the three quarter span position, tip effects are more prominent. However at this po-
sition there is still a reasonable correlation between vortex strength and the generated
forces.

Evidence from comparison with the unsteady aerodynamic vortex model suggests that
the wake does not play a dominant role in the force generation for the present kinematics,
supported by the fact that the results are insensitive to the vortex core size below a cer-
tain threshold value. The relatively good agreement of the forces indicates that spanwise
flow, although present, does not affect the magnitude and shape of the force history.

The forces calculated with the high fidelity computation fluid dynamics code are between
82 and 87 % of the force coefficients measured experimentally for the base line kinemat-
ics. The shape of the time history of the forces is consistent with the experiment and the
differences are small. The origin of the discrepancy can be related to a number of factors.
First, the presence of wall and blockage effects in the water channel might increase the
forces measured. Second, the resolution of the grid near the LE, TE, and the tip might
be insufficient to capture all small scale flow phenomena. Finally, the code treats the flow
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as being fully laminar, therefore turbulence effects are not included but may be present
in the experiments.

Experiments of the same kinematics for a flapping wing compare well with the pitch-
plunge kinematics. The shape of the time history of the forces is in near unison when
comparing pitch-plunging and flapping. Conversely the magnitude of the force coefficients
for flapping are a factor of two smaller. Since the shape of the time history is similar it
is likely that the flow topology will be similar. However, at the moment, it remains to
be determined how the flow topology of the flapping experiment compares to the flow
topology of the pitch-plunging kinematics.

7.2 Expansion of the Parameter Space

As an expansion of the parameter space, phase lag of plus and minus 10 % of the period
is introduced. In the delayed rotation cases there were no high lift vortex mechanisms
observed in the flow and the peaks in the force did not occur at a favorable direction
for thrust generation. The thrust produced was 60 % less compared to the base line
kinematics. Therefore the efficiency of the delayed rotation cases dropped dramatically.
The introduction of advanced rotation yields an increase in thrust of 34 to 47 % with a
reduction of up to 20 % in efficiency. The flow topology was remarkably similar to the
base line kinematics with a slight shift in phase. The application of both advanced and
delayed rotation can potentially provide a mechanism to create large differences in forces
for maneuverability of flapping wing flyers.

Further expansion of the parameter space was done by increasing the reduced frequency
from 0.38 to 0.70. Increasing the reduced frequency yields an increase in thrust of 12
to 18 % with a change in efficiency of −11, −4, and +4 % for HM1, HM2 and the sine
motion respectively. Note that for the purely harmonic case the efficiency increases with
increasing reduced frequency. It might be favorable for roboflyers to design kinematics at
higher reduced frequencies for certain kinematics to attain a higher thrust and effciency
in hover. Overall similar flow structures to the base line cases were observed in the higher
reduced frequency cases.

7.3 Recommendations

The current research serves as an initial attempt to gain a better understanding of the
unsteady aerodynamics in flapping hovering flight for bio-inspired motions. The research
can be further extended; a number of directions is proposed:

• The difference in time history of the force coefficients between HM1 and HM2 re-
veals that the elevation angle is a non-negligible variable in the kinematics. The
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data gathered in this experimental campaign is not sufficient to make conclusive re-
marks regarding the extent of the influence of the elevation angle. Further research
should thus introduce an extra degree of freedom in the kinematics, incorporating
the elevation angle in both flapping and pitch-plunge motions, to gain a better
understanding of the implications of the elevation angle.

• The agreement of the shape of the time history of the force coefficients for all motions
during the flapping and pitch-plunging experiments leads us to speculate that the
underlying lift mechanisms might be similar and the flow might have a similar flow
topology on a significant part of the airfoil. Furthermore it is expected that the
flapping kinematics will have spanwise flow in the outboard direction. It is highly
recommended that the differences and similarities in the flow field are characterized
and linked to the force generation.

• The report discusses the expansion of the parameter space in terms of reduced fre-
quency and phase lag. It was found that both affect the forces and the efficiency
of the motion. For the expansion of the parameter space vortex strength was not
characterized and it remains an open question whether an increase in force genera-
tion is linked to the vortex strength or if it is due to an increase in non-circulatory
effects, especially in the high reduced frequency case. When clarity is found on this
issue it would also be beneficial to investigate the variation of multiple parameters
together and characterize the inter-parameter dependency.

• The location of the rotation axis was a constant throughout this experimental cam-
paign. Variations in location of the rotation axis, e.g. from the LE to the quarter
chord, can have a high impact on the force generation and the time history of the
forces and hence may be interesting for future research.

• Last, for the design of kinematics a thorough understanding of the parameter space
is required. In the long term the techniques used in the experiments might be used
for rapid testing of a vast number of motions, by reducing the number of cycles
for phase averaging and using the similarity between flapping and pitch-plunging.
In this way it could be possible to design kinematics that achieve an optimum
between generating a large normal force coefficient and orienting the force vector in
a favorable orientation to achieve maximum thrust over lateral force.
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Appendix A

Flow Visualization

The dye flow visualization produces diffused images that can be hard to interpret there-
fore sketches of the most prominent flow features have been used in this report. Below a
comparison of the original still images and the sketches is provided.

(a) Still image at t∗ = 0.17 (b) Still image at t∗ = 0.3 (c) Still image at t∗ = 0.45

(d) Sketch of the most promi-
nent flow features at t∗ =
0.17

(e) Sketch of the most promi-
nent flow features at t∗ =
0.3

(f) Sketch of the most promi-
nent flow features at t∗ =
0.45

Figure A.1: Comparison of the still images and the sketches of the most prominent features observed
in the flow visualization, hover motion 1
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106 Flow Visualization

(a) Still image at t∗ = 0.20 (b) Still image at t∗ = 0.34 (c) Still image at t∗ = 0.42

(d) Sketch of the most promi-
nent flow features at t∗ =
0.20

(e) Sketch of the most promi-
nent flow features at t∗ =
0.34

(f) Sketch of the most promi-
nent flow features at t∗ =
0.42

Figure A.2: Comparison of the still images and the sketches of the most prominent features observed
in the flow visualization, hover motion 2

(a) Still image at t∗ = 0.14 (b) Still image at t∗ = 0.3

(c) Sketch of the most promi-
nent flow features at t∗ =
0.14

(d) Sketch of the most promi-
nent flow features at t∗ =
0.3

Figure A.3: Comparison of the still images and the sketches of the most prominent features observed
in the flow visualization, pure sinusoidal motion
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(a) Still image at 0.14 t∗ (b) Still image at 0.42 t∗

(c) Sketch of the most promi-
nent flow features at 0.14 t∗

(d) Sketch of the most promi-
nent flow features at 0.42 t∗

Figure A.4: Comparison of the still images and the sketches of the flow visualization features HM1
with a 10 %T delayed rotation

(a) Still image at 0.07 t∗ (b) Still image at 0.2 t∗ (c) Still image at 0.38 t∗

(d) Sketch of the most promi-
nent flow features at 0.07 t∗

(e) Sketch of the most promi-
nent flow features at 0.2 t∗

(f) Sketch of the most promi-
nent flow features at 0.38 t∗

Figure A.5: Comparison of the still images and the sketches of the flow visualization features HM1
with a 10 %T advanced rotation
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(a) Still image at 0.11 t∗ (b) Still image at 0.43 t∗

Path of the tip- 
vortex

(c) Sketch of the most promi-
nent flow features at 0.11 t∗

Path of the tip- 
vortex

(d) Sketch of the most promi-
nent flow features at 0.43 t∗

Figure A.6: Comparison of the still images and the sketches of the flow visualization features sinu-
soidal motion with a 10 %T delayed rotation

(a) Still image at 0.1 t∗ (b) Still image at 0.3 t∗

(c) Sketch of the most promi-
nent flow features at 0.1 t∗

Path of the tip- 
vortex

(d) Sketch of the most promi-
nent flow features at 0.3 t∗

Figure A.7: Comparison of the still images and the sketches of the flow visualization features sinu-
soidal motion with a 10 %T delayed rotation
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(a) Still image at 0.05 t∗ (b) Still image at 0.2 t∗ (c) Still image at 0.46 t∗

(d) Sketch of the most promi-
nent flow features at 0.05 t∗

Path of the tip- 
vortex

(e) Sketch of the most promi-
nent flow features at 0.2 t∗

Path of the tip- 
vortex

(f) Sketch of the most promi-
nent flow features at 0.46 t∗

Figure A.8: Comparison of the still images and the sketches of the flow visualization features HM1
with a reduced frequency of 0.7

(a) Still image at 0.16 t∗ (b) Still image at 0.26 t∗ (c) Still image at 0.5 t∗

Path of the tip- 
vortex

(d) Sketch of the most promi-
nent flow features at 0.16 t∗

Path of the tip- 
vortex

(e) Sketch of the most promi-
nent flow features at 0.26 t∗

(f) Sketch of the most promi-
nent flow features at 0.5 t∗

Figure A.9: Comparison of the still images and the sketches of the flow visualization features HM2
with a reduced frequency of 0.7
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(a) Still image at 0.0 t∗ (b) Still image at 0.15 t∗ (c) Still image at 0.3 t∗

(d) Sketch of the most promi-
nent flow features at 0.0 t∗

Path of the tip- 
vortex

(e) Sketch of the most promi-
nent flow features at 0.15 t∗

Path of the tip- 
vortex

(f) Sketch of the most promi-
nent flow features at 0.3 t∗

Figure A.10: Comparison of the still images and the sketches of the flow visualization features sine
with a reduced frequency of 0.7



Appendix B

Particle Image Velocimetry

Streamlines provide a good representation of the flow structure, but are lacking by not
visualizing the magnitude of the flow velocity. In this appendix the flow velocities are
depicted on lines parallel to the airfoil motion at multiple locations.

Note that the magnitude of the vectors is only to scale with the other vectors in the
same plot. To give an estimate of the magnitude the maximum velocity for each vertical
line of vectors is given at the bottom of each plot. The maximum measured velocity is
normalized by the reference velocity, as depicted in equation B.1.

v̄ = v

Uref
(B.1)

The axes in all plots show the distance in mean chords, with zero being the position of
the leading edge at half span and the mid position of the plunge motion. Note that the
chord length at half span is larger than the mean chord length. The plots are ordered
chronologically from left to right, top to bottom. In all figures the airfoil is plunging
downwards or the plunge velocity is zero and the leading edge points to the left side of
the figure.

In the plots we observe that the velocity can reach magnitudes up to 2.5Uref . There is
clearly a flow created by the airfoil in downstream direction, i.e. thrust is produced.
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B.1 Velocity Plots Hover Motion One
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(f) t∗ = 0.5, CT = 0.27,
CLat = −1.47

Figure B.1: Velocity plots HM1 base at half span for various phases, CT = 2.79 and |CLat| = 3.00
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B.2 Velocity Plots Hover Motion Two
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(c) t∗ = 0.2, CT = 3.29,
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(e) t∗ = 0.4, CT = 4.76,
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(f) t∗ = 0.5, CT = −0.06,
CLat = 1.43

Figure B.2: Velocity HM2 base at half span for various phases, CT = 2.64 and |CLat| = 2.98
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B.3 Velocity Plots Purely Sinusoidal Motion

−0.5 0 0.5 1 1.5 2 2.5 3

−3

−2

−1

0

1

2

3

Maximum velocities per vertical line, v/U
ref

 

2         1.7         1.4         1.3         0.7         0.8

(a) t∗ = 0.0, CT = 0.18,
CLat = −1.19

−0.5 0 0.5 1 1.5 2 2.5 3

−3

−2

−1

0

1

2

3

Maximum velocities per vertical line, v/U
ref

 

0.9         1.1         1.5         1.4         1.1         0.7
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CLat = −1.50
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CLat = 1.51

Figure B.3: Velocity plots Sine base at half span for various phases, CT = 2.39 and |CLat| = 2.39



Appendix C

Hover motions with increased
reduced frequency
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Figure C.1: Hover motion with varying reduced frequency force coefficients
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