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Summary 

Background 

Vasovagal syncope (VVS) is the most common form of syncope, accounting for more than half of all 

syncope cases. At least 35% of people between the ages of 35 and 60 have experienced VVS at least 

once in their lives. The Head-Upright Tilt Test (HUTT) is commonly used to elicit VVS while monitoring 

clinical signs and changes in heart rate (HR) and blood pressure (BP). The current protocol is both 

uncomfortable and time-consuming with suboptimal diagnostic yield. This study aims to develop and 

evaluate a machine learning (ML) pipeline capable of providing an early prediction of whether a patient 

with suspected VVS will experience syncope during HUTT, while also identifying features that 

contribute to a better pathophysiological understanding of VVS.  

Methods 

The study included 434 adult patients with suspected VVS who underwent HUTT. A ML pipeline was 

developed for the early prediction of VVS, classifying patients into syncope and no syncope groups. 

Based on the results of the preliminary study, raw continuous BP, HR and Electroencephalogram (EEG) 

data were separated into 3-minute epochs before and after the tilt. Linear interpolation was selected 

as the most effective method to fill in missing data points. The Python package ‘tsfresh’ was used for 

feature extraction and the Boruta algorithm for feature selection. Three classification models were 

tested: Random Forest (RF), Support Vector Machine (SVM) and Extreme Gradient Boosting (XGBoost). 

Model performance was evaluated using 5-fold cross-validation with AUC as the primary metric. In 

addition, a SHapley Additive exPlanations (SHAP) analysis was performed to assess the importance of 

features, which provided insight into the features that contributed most to the model's predictions. 

These features were further analyzed to determine the significant difference between both the syncope 

and no syncope groups. 

Results 

The best performing model was the RF model with 61% AUC, 70% sensitivity, and 45% specificity. All 

selected features contributed to the classification of the syncope and no syncope groups across all 

folds. Five features were selected repeatedly during cross-validation, including three stroke volume 

index (SVI) features and two HR features. The two most frequently selected features were the after SVI 

minimum and the before HR partial autocorrelation features. In particular, the after SVI minimum 

feature was identified as a valuable feature in every fold. Both features showed a significant difference, 

suggesting that higher values for these features were associated with a greater likelihood of not 

experiencing syncope during HUTT. 

Conclusion 

This study introduced a novel approach to the early prediction of VVS during HUTT. By developing an 

automated ML pipeline, we demonstrated that with hemodynamic features from the 3 minutes 

before and after the tilt can provide predictive insight into the occurrence of syncope 20 to 30 

minutes later, although with limited sensitivity and specificity. Future research should focus on 

methods for handling artifacts and outliers and improving model robustness and accuracy. Ultimately, 

early detection of syncope has the potential to make HUTT more efficient, reduce patient discomfort, 

and avoid unnecessary testing. 
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1. Background 

1.1. Vasovagal Syncope 

Vasovagal syncope (VVS) is the most common form of syncope, accounting for more than half of all 

syncope cases. At least 35% of people between the ages of 35 and 60 have experienced VVS at least 

once in their lives.1 Syncope is defined as a sudden loss of consciousness resulting from cerebral 

hypoperfusion due to low systemic blood pressure. It is characterized by rapid onset, short duration, 

and spontaneous full recovery. 2,3 People can also experience pre-syncope, which refers to the sensation 

of almost fainting without progressing to full loss of consciousness.4 VVS can be triggered by factors 

such as fear, pain, or prolonged standing and is often preceded by symptoms like sweating, pallor, and 

nausea.5,6 Although VVS is not considered life-threatening, it can have a negative impact on quality of 

life by increasing anxiety and fear of physical activity.6,7 Additionally, those who experience syncope are 

at a higher risk for injuries, including bruises, lacerations, and fractures, affecting approximately 33% 

of VVS cases.8 This highlights the importance of diagnosing recurrent VVS. The Head-Upright Tilt Test 

(HUTT) is an effective technique for providing diagnostic evidence of VVS. 4,9  

1.1.1. The Head-Upright Tilt Test 

HUTT is a diagnostic test during which a patient is tilted while continuous measurements, including 

blood pressure (BP) and heart rate (HR), are taken. 'The Italian protocol' is a commonly used HUTT 

protocol for the diagnosis of reflex syncope, which includes VVS.10 

The Italian Protocol  

'The Italian Protocol' consists of different phases. It starts with a 5-10 minute stabilization phase in the 

supine position, followed by a passive phase of 20 minutes at a tilt angle of 60 degrees, and a 

provocative phase of 15-20 minutes after sublingual administration of nitroglycerin (NTG). The patient 

is brought back to supine position after the provocative phase, or with (pre-)syncope.9,10 For a 

schematic overview of the HUTT protocol, see Figure 1. 

The full protocol takes approximately 45 minutes to complete, but this can be reduced to 25 minutes 

if the "fast Italian protocol" is used.11 However, this time does not include the time required to apply 

and remove the equipment from the patient. Using the 'The Italian Protocol', sensitivity for reflex 

syncope is approximately 65%, indicating that around one third of VVS patients will be tilted for 30-40 

minutes and have a false negative result.12 When no (pre-)syncope occurs during the test, considerable 

time is lost without gaining diagnostic clarity. However, if (pre-)syncope does occur, it can be an 

unpleasant experience for the patient, as symptom recognition is a part of the diagnosis. Furthermore, 

the test may be stopped prematurely if, for example, the patient feels unwell. Consequently, the current 

protocol is both uncomfortable and time-consuming with suboptimal diagnostic yield. 
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Figure 1. An overview of the full HUTT protocol in accordance with 'The Italian Protocol', consisting of 

the different phases and the administration of nitroglycerin (NTG). 

 

1.1.2. Reflex Response 

Normal Baroreflex 

The baroreflex is continuously active in response to changes in BP. Under normal conditions when 

standing up, blood pools in the lower body, resulting in lower cardiac output (CO) and arterial BP, 

causing hypotension. Baroreceptors in the carotid sinus and aorta detect this decrease and send signals 

to the central nervous system. When triggered by the hypotension, the baroreflex decreases 

parasympathetic activity, thereby increasing HR. This in turn increases CO, which forces more blood 

into the arteries. In addition, the sympathetic response increases the HR and sends impulses to the 

arterioles, causing vasoconstriction and increasing total TPR. These combined effects drive more blood 

into the arteries and restrict outflow, increasing arterial BP. This process is displayed in Figure 2. 13 

 

Figure 2. The normal baroreflex response to standing up. Blood pools in the lower body resulting in a 

decreases cardiac output (CO) caused by a decrease in stroke volume (SV). This hypotension is registered 

by the baroreceptors, which send a signal to the brain. This signal is then converted by the sympathetic 

and parasympathetic nervous systems into an increase in heart rate (HR) and total peripheral resistance 

(TPR) to increase blood pressure (BP) again. 
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VVS Response 

In VVS, if there is a decrease in BP, it is not sufficiently compensated by an increase in HR or TPR (Figure 

3.) It is noteworthy that in VVS, just before the onset of syncope, there is actually a decrease in both 

HR and BP, as can be seen in the HUTT signal (Figure 4.) Hypothetically, there could be several reasons 

for this response. One possibility is that the reverse baroreflex response indicates that the normal 

response to the baroreceptors is lost or overridden by a stronger command. Another reason why a 

decrease in BP may not be met by an increase in HR or TPR is that it may be the result of an 

inappropriate reflex response to a trigger. It could also be an appropriate response to a problem, where 

the body's way of dealing with the problem is to cut off blood flow and brain activity, but it is not yet 

known what that problem might be.13 

 

Figure 3. The VVS response is triggered by an unknown mechanism and causes a decrease in heart rate 

(HR) and total peripheral resistance (TPR), as well as a decrease in blood pressure (BP), which can lead 

to syncope. 

 

HUTT Measurements 

In HUTT data of a patients with VVS, these BP and HR patterns can be seen as early as 9 minutes before 

syncope, see Figure 4. Initially, BP and stroke volume (SV) may start to decrease, while HR can increase 

slightly. Closer to syncope with 5 minutes before the event, a stronger drop in the BP can be seen. The 

HR and SV also follow with a strong drop around 30 seconds before VVS.14,15  

 

1.1.3. Complexity of VVS 

VVS presents a complex pathophysiologic pathway involving multiple interactions between the 

cardiovascular and autonomic nervous systems. For example, BP regulation by changes in HR and TPR. 

These interactions are further complicated by the interplay between the other physiological systems. 

For example, changes in respiratory rate can affect HR variability, which in turn affects BP regulation. In 

addition, individual variability plays a significant role in VVS. Variations in age and health status also 

contribute to different response patterns among individuals. Emotional and psychological factors, 

including stress and anxiety, can also trigger VVS episodes.  

The examination of the HUTT signals are often limited to simple steady-state quantities including mean 

BP and HR, pulse pressure, and the HR variability during HUTT. This approach overlooks crucial details 
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within the dynamic interplay of these signals and significant temporal, structural, and spectral changes. 
16,17  Exploring information within these diverse variables holds promise for early prediction and a 

deeper understanding of the mechanisms behind VVS.  

 

 

Figure 4. The Figure is adapted from Van Dijk et al. (2020b).14 The hemodynamic parameters, such as 

blood pressure (BP), heart rate (HR), stroke volume (SV), and total peripheral resistance (TPR), are 

compared to a baseline taken shortly after the head-up tilt. The lines shown represent the average log-

ratio values from vasovagal syncope (VVS) patients during HUTT.  

 

1.2. Machine learning 

In the era of digitization, the analysis of large amounts of complex data is becoming more common in 

healthcare.18,19 Artificial intelligence (AI) is increasingly being utilized successfully in this process.19–21 AI 

has the potential to offer deeper insights into the underlying mechanism and early prediction of VVS 

during HUTT.  

1.2.1. Supervised Learning 

Machine Learning (ML) is a field in AI that allows machines to learn from previous observations and 

experiences without human intervention. Different learning methods can be used, the four main 

methods are supervised, unsupervised, semi-supervised and reinforcement learning. In this study the 

supervised learning method was used. The main characteristic of supervised learning is that the dataset 

is labeled, meaning that each input comes with a corresponding known outcome. The goal of this 

method is to train an algorithm on labeled training data so that it can accurately predict outcomes for 

new, unseen data. This prediction can either be discrete or continuous. When the prediction is based 

on discrete information it is a classification algorithm, and when the prediction is continuous, it can 

also be referred to as a regression algorithm. 22–24  The ML pipeline consists of several steps that will be 

discussed below. 
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1.2.2. Machine Learning Pipeline 

Pre-processing 

Cleaning the data consists of several parts, including selecting the right data and ensuring that the data 

is of good quality to enhance the performance of the algorithm.24 It is important to ensure that the 

data is properly synchronized, if applicable, to determine if data transformations are needed, and to 

consider the impact of outliers on the model. It is also important to investigate what could have caused 

interference in the signal. In addition, it should be determined how to handle missing data and whether 

it should be filled in. All these factors and more will affect the quality of the data.22–24 

Feature Extraction 

Feature extraction is the process of transforming raw data into numerical features that can be used in 

ML models. The goal of this process is to preserve the information from the original data while 

improving model performance compared to using the raw data alone. Which features should be 

extracted depends on the type of data, for example, images have different features than time series 

data. Feature extraction can be done manually or automatically. Manual feature extraction involves 

identifying and describing relevant features based on background knowledge. An example of a manual 

feature that can be extracted is the mean of a signal window. 25,26 Automatic feature extraction uses 

deep learning networks or algorithms, such as the Time Series Feature Extraction based on Scalable 

Hypothesis tests (tsfresh) python package that was applied in this project, automatically calculating a 

wide variety of features from time-series data.25,27 

Data Splitting 

To ensure that the model is generalizable, it is important to train the model on one part of the dataset 

and test the model's performance on an unseen part of the dataset, also known as test data. This 

approach helps to detect overfitting, a situation where the model learns overly specific or complex 

patterns in the training data, which can lead to poor performance when applied to the test data. A 

commonly used technique to account for overfitting is cross-validation (CV). For example, in k-fold CV, 

the data is divided into k equal parts, and in each fold, a different part of the data is used to train and 

test the model (Figure 5.) In leave-one-out CV, the ML model is trained on all but one data point, and 

each point is iteratively left out to evaluate the model's generalization performance. The distribution 

of the data set between the training and test sets can also be done in different ways, for example, 

randomly or by taking into account the statistical distributions within the data set. Which data splitting 

method is best depends on the data set. 24,28  

 

Figure 5. A schematic illustration of cross-validation, where a different part of the data is used as the 

training set and a different part as the validation set for each fold. 
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Feature Selection 

Feature selection is a useful technique for handling high-dimensional data that would otherwise 

compromise the performance of ML algorithms. This process involves selecting a subset of relevant 

features to reduce dimensionality while conserving the essential information. There are different 

feature selection methods. For example, wrapper methods that evaluate the performance of different 

subsets of features, either by starting with an empty subset and adding features that reduce error 

(forward selection), or by starting with all features and removing those that reduce error (backward 

selection). In this study, the Boruta algorithm was used for feature selection, comparing the importance 

of original features against copies of the original features to determine their relevance. 29 Effective 

feature selection is key to maintaining the quality and accuracy of the learning process.  

Classification Model 

There is a wide range of ML models that can be used to achieve optimal performance. Several 

supervised learning models have already been used in the literature to analyze HUTT data from syncope 

patients including Support Vector Machine (SVM), Decision Tree (DT) and Random Forest (RF) .  
 

Support Vector Machine  

A SVM is a commonly used ML model on HUTT data from syncope patients17,30–33. SVM is a classifier 

that performs classification by creating a hyperplane in a higher dimensional space. SVM can be divided 

into linear and nonlinear models and works by mapping data into a feature space where each point in 

the feature space contains information about a data point. This feature space is created using a kernel 

function. The proper choice of a kernel can make inseparable classes separable by transforming data 

and creating the optimal decision boundary by maximizing the separation margin between classes.34 

The most commonly used kernels are: linear kernel, polynomial kernel, sigmoidal neural network 

kernel, and Gaussian radial basis kernel.33  

Decision Tree and Random Forest 

DT and RF are also used in literature for the analysis of HUTT data. 16,31 A DT is a hierarchical 

classification technique that divides data into subsets, providing information to separate classes. It 

consists of internal nodes representing features, leaf nodes indicating outcomes, and branches 

dictating decision parameters. The computation of the decision parameters, including a feature and its 

split location, is determined by maximizing the information gain.34 A RF uses a combination of DTs. The 

advantage of a RF is that a large number of DTs can be used, with each tree making a prediction and 

the algorithm selecting the best prediction through voting.16 
 

Extreme Gradient Boosting  

Extreme Gradient Boosting (XGBoost) is a powerful gradient boosting framework that has become 

widely used in data analysis due to its efficiency and high performance. It builds on the principles of 

boosting to create a strong predictive model by adding DTs sequentially that correct errors made by 

previous trees. It also uses a regularized learning objective that helps to prevent overfitting and 

improves model generalization. This results in high prediction accuracy, which is specifically important 

in medical applications where decisions often depend on accurate predictions.35 
 

Hyperparameter Optimization 

A hyperparameter is a variable that specifies details in the learning process of the ML model. 

Hyperparameter optimization (HO) is essential for building effective ML models because it refines the 

hyperparameters that shape the model's architecture that significantly affects its performance. 

However, manual hyperparameter tuning requires a deep understanding of the algorithm and can be 

time consuming due to the number and complexity of parameters. In contrast, automated HO 



15 
 

techniques, such as Grid Search and Bayesian optimization (BO), streamline this process. BO, for 

example, uses previous evaluation results to predict optimal hyperparameters, minimizing unnecessary 

trials and improving efficiency. This automation not only saves time, but it also enhances the model 

performance and ensures reproducibility.36 

Performance Evaluation 

Evaluating a ML model involves identifying differences between predicted and actual outcomes to 

ensure accuracy and reliability. Model performance is evaluated using metrics such as accuracy, 

sensitivity, specificity, precision, F1 score, and  Area under the Receiver Operating Characteristic Curve 

(AUC-ROC), which help measure the correctness of predictions by analyzing true positives, true 

negatives, false positives, and false negatives. These matrices are typically used in a simulation-based 

evaluation using the test data. However, to test the clinical relevance of the pipeline the performance 

of the model should also be tested when it is implemented, examine its generalizability to new data, 

user feedback, and whether medical experts trust the model.24 

 

1.3. Early Prediction 

As symptom recognition during tilt-induced VVS is crucial for diagnosis, the use of ML data cannot yet 

fully replace the current HUTT protocols for VVS. However, further exploration of the use of ML for 

early prediction of syncope during HUTT may aid in improving syncope care in four ways. Firstly, in 

about a third of patients with a clinical diagnosis of VVS, HUTT does not lead to syncope, even after the 

administration of NTG. Identifying those subjects during the first minutes of HUTT could save time for 

both patients and healthcare professionals, while also reducing the overall cost of the procedure.32,37 

Secondly, the use of ML for classification of syncope during HUTT may improve the understanding of 

hemodynamic changes prior to the actual syncope and thereby help to further unravel the 

pathophysiology of VVS. Thirdly, prediction of VVS during the early stages of HUTT can increase 

diagnostic accuracy in patients whose test must be stopped prematurely (e.g., due to feeling unwell).  

Fourthly, it could represent a step towards performing HUTT without requiring the patient to 

experience syncope for diagnosis, thus avoiding the discomfort and potential risks associated with a 

syncope episode. 

The use of ML for early prediction of VVS during HUTT has been the subject of several studies in the 

literature.17,32,33,38 However, the current study has the added value of using the largest database to date, 

extending the comparison of different ML models, and working with a wider range of calculated 

features of both common HR and BP variables and electroencephalogram (EEG) variables, which will 

be examined for relevance and possible impact on the underlying pathophysiology of VVS.  

 

1.4. Thesis Objective 

The aim of this study is to develop and evaluate a ML pipeline capable of providing an early prediction 

of whether a patient with suspected VVS will experience syncope during HUTT, while also identifying 

features that contribute to a better pathophysiological understanding of VVS. The dataset identified in 

the preliminary study (Appendix A) will be applied to various classification algorithms, and the selected 

features will be further analyzed. The objectives are: 

1) To develop an automated ML pipeline for the early prediction of VVS during HUTT. 

2) To perform an in-depth analysis of the selected features. 
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2. Methods  

2.1. Data Selection 

2.1.1. Patient Selection 

HUTT data were gathered from the Syncope Unit of the Leiden University Medical Centre between 

January 2019 and November 2023. Inclusion criteria were adult patients, with a clinical history 

suspected of VVS who underwent a HUTT test with a modified Italian protocol.10 Patients were excluded 

when a different protocol had been used, when another form of syncope had been diagnosed, or when 

there were technical problems during HUTT. 

A modification of the Italian protocol was used, with 10 minutes of supine rest, 20 minutes of head-up 

tilt, administration of 0.4 mg nitroglycerin (NTG) sublingually, and 20 minutes of tilt. Patients were tilted 

back before the allotted time when (pre-)syncope, asystole, or EEG slowing occurred. 14  The patient 

was diagnosed with syncope at the time of loss of consciousness or in the presence of (pre-)syncope, 

accompanied by a corresponding VVS BP and HR pattern. Patients who experienced (pre-)syncope 

before or after NTG administration were included in the 'syncope' group, and patients who did not 

experience (pre-)syncope during HUTT were included in the 'no syncope' group. 

2.1.2. Data Acquisition  

Data were obtained by recording continuous finger BP (Finapres Nova or BMEye Nexfin), using one 

electrocardiogram (ECG) channel, two EEG channels c3-o1 and c4-o2 according to the 10-20 system 

(Nihon Kohden Neurofax EEG-1200), and video recording. In addition, age and sex were also registered. 

The continuous BP and ECG signals were recorded at a rate of 1 Hz, and the EEG signals were recorded 

at a rate of 200 Hz. During the test, or afterward using video recordings, the times of upward tilt 

(approximately 12 seconds), backward tilt, and the onset of syncope were documented. The five 

minutes before and after the tilt had to be complete and accessible in the database, without the 

occurrence of syncope during this period of time. Patients were excluded if not all of the measurement 

files were available, if more than 100 consecutive data points had been lost, or if it was not possible to 

synchronize the different measurements. 

Based on the results of the preliminary study (Appendix A), two 3-minute epochs, one before and one 

after the tilt, were used for the analysis. Both basic and extra variables were included, as described in 

Appendix B. A schematic overview of the selected data can be found in Figure 6. 

 

2.2. ML Pipeline 

This ML pipeline was based on a previous study for the classification of normal and abnormal 

electromyography (EMG) data, with the exception of some modifications that include pre-processing, 

the testing of different ML classifiers and the addition of feature analysis. 39 Python version 3.9.19 was 

used for developing this pipeline. An overview of the used packages can be found in Appendix C. The 

details of the pipeline are described in the following section and a schematic overview can be found in 

Appendix D. 

2.2.1. Pre-processing 

The necessary pre-processing steps were examined in the preliminary study (Appendix A). Linear 

interpolation was used to fill in the missing data and the 20 seconds before and after the tilt were 

removed from the data to minimize tilt artifacts. The EEG data were filtered with a 50 Hz notch filter.  
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Figure 6. A schematic overview of the data selection, where two 3-minute epochs are created, one from 

before the tilt and one from after the tilt. Each epoch contains the time of the tilt, blood pressure, heart 

rate and electroencephalogram data. 

 

2.2.2. Feature Extraction 

To streamline the process of automatically extracting features, the tsfresh package was used. 27 The 

calculated features describe the time-series data and include statistical features, time and frequency 

domain features, distribution features, trend features, shape-based features, and more. This pre-

defined package calculates over 750 different features per variable for each time-series.40 In this study, 

tsfresh was used with its default settings. 

2.2.3. Data Splitting 

To prevent overfitting, a 5-fold CV was used. The data were divided into stratified folds, where the 

percentage of samples for each class in each fold was preserved. This was done using Sklearn's 

StratifiedKFold and Numpy's random to randomly select the patients per group in a stratified 

manner.41,42 

2.2.4. Feature Selection 

To select the most relevant features from the thousands of extracted features, the Boruta feature 

selection algorithm was used. 29 Boruta aims to find all relevant features by using a RF model with 

original features and shadow features. Shadow features are copies of the original features, but with 

randomly mixed values. This keeps their distribution the same, but cancels out their importance. The 

goal is to find all features that outperform the best shadow features, while rejecting those that 

underperform. The randomness helps to determine which features are really important and which are 

not. Boruta's default settings were combined with Sklearn's RandomForestClassifier with the number 

of trees set to 1000.41 

2.2.5. Classification Model 

Three different classifiers were used in this study: RF, SVM, and XGBoost. For RF and SVM, the 

RandomForestClassifier and SVC from the sklearn library were used, respectively.41 For XGBoost, the 

XGBClassifier from the xgboost library was used.35 Default parameters were applied for each classifier 

unless otherwise specified during HO. 
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2.2.6. Hyperparameter Optimization 

In this study, the Mixed-Integer Parallel Efficient Global Optimization (MIP-EGO) algorithm was selected 

for HO.43 MIP-EGO is an optimization framework that integrates mixed-integer programming with BO 

techniques to efficiently find the optimal solution. MIP-EGO is effective for both continuous and 

discrete variable problems. It builds a surrogate model that was tested in a 10-fold CV to approximate 

the objective function. It uses this model to select the most promising hyperparameters to try next. 

This approach saves time and computational resources by reducing the number of evaluations 

required. BO is used to optimize these expensive black-box functions. In each iteration, MIP-EGO 

proposes a new set of hyperparameters. These hyperparameters are then tested and evaluated based 

on the performance of the model on a validation dataset. The AUC was used as the optimization 

parameter over a maximum of 100 iterations. Appendix E shows the search space and the 

hyperparameters used for all three models. 

2.2.7. Performance Evaluation 

Each fold included training the model for 100 iterations. The highest AUC was used to determine overall 

model performance. Accuracy, precision, sensitivity, specificity, F1 and the ROC curve were also used 

as performance measurements. Formulas for these measurements can be found in Appendix F. The 

mean and standard deviation (std) of these values were calculated over the 5-folds. 

 

2.3. Feature Analysis 

SHapley Additive exPlanations (SHAP) was used to identify which features had the biggest impact on 

the model and to better understand why a model made a particular prediction.44 We used the default 

settings of SHAP, and applied the trained model in combination with the test data. For each fold, a 

summary bar plot and a beeswarm plot based on the no syncope group were created. 

In addition, the frequency of feature occurrence was calculated for the best performing model. This 

was done to determine if certain features were selected more often than others. The features that 

were selected more than once in the model were further examined. Welch's t-test was used to test 

feature significance across the entire dataset, with a p-value < 0.05 considered statistically significant. 

Furthermore, the two most frequently used features were plotted on the entire dataset to show their 

distribution.   
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3. Results 

3.1 Data Selection 

From a total of 577 patients meeting the inclusion criteria, 434 patients were included in accordance 

with the data criteria (Figure 7). Out of these patients, there were 175 patients who did not experience 

syncope during HUTT and 259 patients who experienced (pre-)syncope during HUTT. The number of 

patients who experienced syncope before NTG administration was the smallest group among those of 

the syncope group. Proportionally, men were more likely than women to experience syncope before 

NTG administration (Table 1). 

 

 

Figure 7. Flow diagram of the patient inclusion and exclusion. 

 

Table 1. Baseline Characteristics.  

Diagnosis Mean BMI (std) Mean age (std) Group size (men) 

Syncope before NTG 23.4 (4.1) 39,7 (22,5) 51 (19) 

After NTG 24.9 (4.3) 47,7(21,9) 208(72) 

No syncope 25.3 (4.7) 44,4 (18,7) 175 (76) 

BMI: Body mass index, NTG: Nitroglycerin, std: standard deviation 

 

 

3.2. Model Performance 

As shown in Table 2, the RF was the best performing model with a sensitivity of 70%, a specificity of 

45%, and an average AUC of 61% with a std of 5% as depicted in Figure 8. The ROC curves for the 

XGBoost and SVM models are presented in Appendix G. The XGBoost model had an AUC of 54% and 
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the SVM model had an AUC of 45%. The hyperparameters for each classification model and fold can be 

found in Appendix H. 

 

 

Figure 8. The ROC-curve of the final RF model with an AUC of 61% with a standard deviation of 5%. 

 

Table 2. The performance measurements of the Random Forest, Extreme Gradient Boosting(XGBoost), 

and Support Vector Machine model. 

 Random Forest XGBoost Support Vector Machine 

AUC 61 54 45 

Accuracy 60 57 49 

Precision 58 54 49 

Sensitivity  70 67 45 

Specificity  45 41 53 

F1 57 54 48 

 

3.3. Feature Analysis 

The RF model was used for further analysis of the features. SHAP summary bar plots and beeswarm 

plots for each fold are shown in Appendix I and Figure 10, respectively. The summary plots show that 

all features contribute to the classification of both the syncope and no syncope groups across each fold. 
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Figure 9. An overview of the features that were selected more than once in the 5-fold cross-validation. 

 

An overview of all the selected features and their names can be found in Appendix J. Examining the 

number of features selected more than once across the five folds, we identified five features (Figure 

9): 

- After SVI minimum,  

- Before HR partial autocorrelation, 

- Before SVI CWT coefficient 5, 

- Before SVI CWT coefficient 9 

- Before HR FFT abs 

The after SVI minimum and before HR partial autocorrelation features were the two most frequently 

selected features, with the after SVI minimum feature appearing in all five folds. In addition, after SVI 

minimum was the only feature that was consistently selected from the data after tilt. It is also 

noteworthy that the most frequently selected features were three SVI and two HR features. None of 

the EEG features or the age or sex were selected, with the majority of selected features coming from 

the HR and BP data, highlighting their importance in classification. 

3.3.1 Explanation of Features 

After SVI minimum 

The minimum value of the stroke volume index (SVI) in the 3 minutes after the tilt 
  

Before HR partial autocorrelation 

Partial autocorrelation quantifies how much one value in the time series is related to a value at a 
previous time, leaving out the influence from the values in between. A lag of 4, shows how much the 
current HR depends on the HR from 4 time points ago, where a certain time in the timeseries t 
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corresponds to t-4 that can be summarized in a correlation. This correlation of the HR with a lag of 4 
of the 3 minutes before the tilt was given in this feature. 
   

Before SVI CWT coefficients 

A Continuous wavelet transform (CWT) for the Ricker wavelet was used for the calculation of this 

feature.45 The CWT allows for time-localized frequency analysis at different scales, where low 

frequencies are calculated over a longer period of time and the higher frequencies capture short-term 

variations. The CWT was used to calculate features from the SVI 3 minutes before the tilt with different 

coefficients. 

  

Before HR FFT abs  

Fast Fourier Transform (FFT), is used to transform a time series into its frequency components. In this 

specific feature the absolute value (abs) was used to measure the magnitude of the frequency 

component, disregarding its phase or direction. This  feature showed the strength or intensity of a 

certain frequency component in the HR signal 3 minutes before the tilt. 
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Figure 10. Beeswarm plots of the selected features for each of the five folds. These plots illustrate the 

feature importance, with the highest-ranked feature having the greatest influence on the model. The 

SHAP value indicates the probability of syncope or no syncope, with higher SHAP values corresponding 

to a higher probability of no syncope. The effect of a low or high feature value can be visualized with 

the probability of syncope or no syncope to determine the effect on the model. For example, in Fold 1, 

after SVI minimum is the most important feature, and higher values of this feature increase the 

likelihood of no syncope. Full feature names can be found in Appendix J. 
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3.3.2 Feature Interpretation 

Looking at the SHAP values in Figure 10 several things can be seen. In four out of five folds, a higher 

after SVI minimum resulted in a better chance of someone being placed in the no syncope group. 

Looking at the mean of both groups in Table 3, it can be seen that the mean of the no syncope group 

was also higher. However, in the second fold, where it was the second most important feature, it was 

the other way around. 

For the feature before HR partial autocorrelation, three out of three folds showed that the higher the 

value, the more likely it was to be classified in the no syncope group. This corresponded to the mean 

in both groups. 

The feature before SVI CWT coefficient 5 was used twice, one time a lower value resulted in a greater 

chance of being placed in the no syncope group and the other time a lower value resulted in a greater 

chance of being placed in the syncope group. The mean of the no syncope group was higher than that 

of the syncope group. 

The feature before SVI CWT coefficient 9 was also used in two folds. Both showed that the higher the 

value, the greater the chance of no syncope. However, the mean was higher for the syncope group. 

For the before HR FFT abs feature, a distinction in the effect of SHAP value was not clearly identifiable. 

However, some higher values seem to be more inclined towards the no syncope group. The mean value 

of the syncope group appeared to be higher than that of the no syncope group, but the differences 

were not significant. 

3.3.3 Statistical Test 

A Welch’s t-test was performed to compare the means of the syncope and no syncope groups across 

all features. There was a significant difference between the means of these groups for all features (p < 

0.005), except for the before HR FFT abs, which did not show a statistically significant difference (p = 

0.16). 

 

Table 3. The mean and standard deviation (std) of the frequently selected features from both classes 

and the p-value from the t-test. 

Feature 
No Syncope 

mean (std) 

Syncope mean 

(std) 
p-value 

After SVI minimum 26.67 (10.02) 21.26 (9.78) <0.0001 

Before HR partial autocorrelation -0.053 (0.17) -0.005 (0.14) 0.0031 

Before SVI CWT coefficient 5 6.85 (3.91) 5.30 (3.35) <0.0001 

Before SVI CWT coefficient 9 -0.92 (3.72) 0.17 (2.63) 0.001 

Before HR FFT abs 25.58 (41.27) 31.50 (44.76) 0.16 

 

3.3.4 Feature Distribution 

The two most frequently used features are shown in the violin plots of Figure 11. We performed a 

Welch’s t-test to compare the means of the syncope and no syncope groups on the after SVI minimum 

and before HR partial autocorrelation features. There was a significant difference between the means 

of these groups on after SVI minimum (p < 0.0001) and before HR partial autocorrelation (p = 0.0031). 
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Figure 12 showed that when the two features were plotted together in a scatterplot, it was possible to 

distinguish between the two groups to some extent. However, there was still considerable overlap 

between the two groups. 

 

 

 

Figure 11. a) A violin plot of the after SVI minimum feature for the syncope and no syncope class. b) A 

violin plot of the before HR partial autocorrelation feature for the syncope and no syncope class. 
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Figure 12. A 2D-scatter plot of the after SVI minimum and before HR partial autocorrelation features 

for the syncope and no syncope class. 
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4. Discussion 

This study introduced a novel approach to the early prediction of VVS during HUTT. By developing an 

automated ML pipeline, we demonstrated that the 3 minutes before and after the tilt can provide 

predictive insight into the occurrence of syncope 20 to 30 minutes later, although with limited 

sensitivity and specificity. The best performing model in our analysis was the RF model, which obtained 

an AUC of 61%, sensitivity of 70%, and specificity of 45%. All selected features contributed to the 

classification of both the syncope and no syncope groups across all folds. Five features were selected 

repeatedly during CV, with the after SVI minimum and the before HR partial autocorrelation features 

being the most frequently used features. In particular, the after SVI minimum feature was identified as 

a valuable feature in each fold. Both features showed significant differences, indicating that higher 

values for these features were associated with a greater likelihood of not experiencing syncope during 

HUTT. However, there are several considerations that should be taken into account when interpreting 

these results. 

4.1. Model Performance 

The use of ML for early prediction and classification of syncope has been examined in several studies, 

with SVM often used as the classification algorithm. 17,30–33 However, this study found that RF 

outperformed SVM, achieving an AUC of 61% compared to 45% for SVM. This difference could be 

explained by the nature of the features that were selected, which seem to be less separable for SVM. 

This is evident in the distribution of the two most common features, which show significant overlap 

between the syncope and no syncope groups, making it more difficult to maximize the classification 

margin, even with a kernel. SVM training took longer than RF training, likely due to the complexity of 

optimizing decision boundaries with overlapping data. XGBoost also outperformed SVM but had an 

AUC of only 54%, which was lower than that of the RF. This result was unexpected, considering that 

both models were based on similar principles, with XGBoost using an additional boosting mechanism. 

This boosting process works by sequentially adjusting the model to minimize errors made on the 

training data. However, if the data set contains a significant amount of noise, this adjustment can have 

adverse effects. Overfitting can occur as the model becomes overly tuned to the training data, resulting 

in poorer generalization to unseen data. However, both models demonstrated comparable AUC on the 

training set, indicating that the more complex classifier is not necessarily the best option for this 

classification task. In addition, within the syncope group, no distinction was made between those who 

had syncope before and those who had syncope after receiving NTG. Although the subgroup who 

experienced syncope before NTG administration was relatively small, the underlying pathophysiology 

could be different from those who experienced syncope after NTG administration. This may complicate 

the classification of individuals into the syncope or no syncope group, especially given the differences 

in the distribution of patients within the syncope group. Further research could also explore alternative 

classification approaches, such as multi-class models, which may provide additional insight into the 

different physiological responses of syncope subgroups. The variation between patients and the 

influence of noise may have contributed to the limited overall AUC of 61%. This highlights the 

importance of addressing data quality and feature separability in future studies to improve predictive 

performance. 

When the performance of the ML pipeline in this study is compared to the existing literature, this 

difference in performance can be seen. However, the better performance in other studies may have 

been influenced by variations in data selection, feature choices, or patient groups. For instance, the 

study by He et al. (2021) achieved a sensitivity of 86% and a specificity of 82%.38 This article used SVM 
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in combination with both HR and BP features. An important difference here is in the selection of the 

data, they used 3-minute epochs from 3 minutes before the tilt to 15 minutes after the tilt. Similarly, 

the studies by Khodor et al. (2014, 2016) reported sensitivities of 88.5% and 87.5%, with specificities 

of 80.6% and 93.8%, respectively.17,32 Again, these were based on SVM with HR and BP features and 15 

minutes of data after the tilt. All three studies used data closer to the syncope event, which is less 

suitable for true early prediction. The most likely reason for this choice of data was also shown by 

Khodor et al. (2016), who compared the performance of the model using 5 minutes after the tilt versus 

15 minutes after the tilt. The sensitivity increased from 69.6% to 87.5% and specificity increased from 

66.9% to 93.8% when using 15 minutes versus 5 minutes. 17 Another factor contributing to the 

differences in performance between this study and the studies by Khodor et al. (2014, 2016) is the 

selection of subjects. They focused on healthy subjects, while this study focused on those already 

suspected of having VVS.17,32 However, there may be physiological differences in baroreceptor 

responses between these two groups of subjects. For example, healthy people may be less likely to 

faint during HUTT, or they may respond differently from those suspected of having VVS. Given the 

current understanding of these underlying mechanisms, it is unclear whether such comparisons can be 

made, highlighting the need for further research into these physiological differences. 

Couceiro et al. (2016) obtained an even better performance, reporting a sensitivity of 95.2% and a 

specificity of 95.4%. 46 However, they used a variable data epoch per patient, which was compared to 

a reference window at the beginning of the tilt. This means that the data epoch could have been drawn 

from the entire after tilt period, raising the question of whether true early prediction was consistently 

achieved. In addition, the study included only 43 subjects, which limits the reliability of the results. 

There have also been studies that have used neural networks as a ML method. They have also reported 

higher performance results, albeit with smaller subject groups or different feature sets.37,47,48 However, 

the data that were used came only from the supine position or within 5 minutes of tilting. While the 

current study focused on well-performing classical ML models, future research could further explore 

the application of neural networks to assess their potential advantages in this context. 

4.2. Feature Analysis 

Although the maximum AUC observed was only 61%, it is important to note that certain features were 

consistently selected across all folds. This suggests that the selected features do indeed contain 

relevant information that allows early distinction between patients who experience syncope during 

HUTT and those who do not. This indicates that pathophysiological changes between the two groups 

can be detected within the first few minutes of the test. For example, a lower minimum SVI after tilt 

appeared to be associated with a higher likelihood of syncope, while a lower or even negative partial 

autocorrelation of the HR with a lag of 4 may also indicate an increased risk of syncope. However, it is 

important to consider that for two of the five most common features, including the after SVI minimum 

feature, it was not always clear whether higher or lower values would predict a greater likelihood of 

syncope. In some cases, such as in one of the folds, a lower after SVI minimum value unexpectedly 

indicated a lower chance of syncope during HUTT. This could be due to the influence of another feature 

in that particular fold which may have altered the predictive value of the SVI minimum. This 

inconsistency could also be seen in the before SVI CWT coefficient 5 and before HR FFT abs features. In 

order to better understand this interaction, follow-up research should be performed to explore the 

effect of removing specific features, retraining the model and observing any changes in the results. This 

could provide more clarity on how different feature interactions affect predictions. 

The finding that a higher minimum SVI indicates a lower likelihood of syncope is consistent with the 

existing literature, which shows a decrease in SV relative to BP approximately 9 minutes before the 
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onset of syncope. 13 While it is known that SV usually decreases within the first few minutes after tilt, 

the current study demonstrates that the extent of this early decrease in SVI may actually provide an 

early indication of whether an individual is likely to experience syncope during HUTT.6,49 Additionally, 

three of the five most frequently selected features were related to SVI, emphasizing its potential 

predictive value. This study adds to prior knowledge and highlights the importance of SVI features, both 

before and after the tilt, in the early prediction of syncope. 

The partial autocorrelation between the current HR and the HR from 4 seconds prior in the data before 

the tilt was also selected as useful feature. This correlation could potentially provide insight into the 

course and responsiveness of the HR, with a lower or even negative correlation during the stabilization 

phase indicating that a person is less likely to experience syncope during HUTT. This suggests that HR 

dynamics before the tilt could also provide valuable information about the likelihood of syncope later 

in the test. 

The recurrence of HR and BP features in the current study was consistent with findings in the literature 

where HR and BP variables were commonly used for analysis. Specifically, time-frequency and 

frequency domain features are often used.17,30–32,38,48,50,51 In this study, features based on similar 

principles were also selected several times, such as the before SVI cwt coefficients and the before HR 

FFT abs, further emphasizing the importance of these domains in syncope prediction during HUTT. 

We found that EEG-based features did not add significant value to the classification. However, other 

types of measurements may still provide useful features. For example, Schang et al. (2006, 2007) looked 

at features derived from transthoracic impedance measurements, which assess impedance across the 

thorax.33,47 In their study, principal component analysis was used to separate the two groups.47 

Nonetheless, considerable overlap between the groups was observed, suggesting that further research 

is needed to determine whether transthoracic impedance features could provide additional value in 

improving classification accuracy. 

4.3. Limitations 

Despite the new insights, several limitations in this study should be acknowledged.  For instance, in the 

current study, raw data were used without any further outlier or artifact removal, except for excluding 

data 20 seconds before and after the tilting point. This decision was based on the preliminary results 

showing that the tested outlier and artifact removal method, as well as exponential smoothing, did not 

improve or even worsened model performance compared to using raw data. However, when evaluating 

the overall performance of the models, it appears that noise in the data may still have affected the 

results. Future research should focus on investigating the potential impact of outliers and artifacts on 

the accuracy of the model and explore alternative methods, such as ML based approaches or clustering 

techniques, for better noise reduction in the data.52,53 

It became clear that there were several points in the data collection process where artifacts could be 

introduced. For example, the patient squeezing their hand can reduce blood flow, causing the finger BP 

measurement to no longer accurately reflect the overall BP. Another potential source of noise was that 

there would sometimes be a rise in BP when the doctor entered the room to start the tilt. These are 

just a few examples of external factors that can influence the measurements and potentially affect the 

accuracy of correctly classifying the patient. However, it is also important to recognize that some of 

these artifacts may contain valuable information. For example, an increase in BP when the physician 

arrives could indicate increased sensitivity to changes in HR, possibly indicating a lower likelihood of 

syncope during HUTT, or vice versa. Therefore, the decision to remove artifacts and outliers must be 

carefully considered as valuable predictive information may be lost. 
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Another point to consider is that the data selection and pre-processing methods were optimized based 

on the entire dataset, which may have introduced bias into the final model. This could result in 

overfitting to the current dataset and decreased robustness when applied to new data. Although CV 

was used to minimize this risk, it is important to further validate the model on new, unseen data, ideally 

from another institution, to more accurately assess its robustness and generalizability. 

Finally, there was a slight percentage variation in the average performance of the model over the 

multiple runs of the 5-fold CV. This variation can be attributed to the randomization of the groups in 

each run and the separation into different sets, which complicates the comparison between models. 

Nevertheless, this highlights the need for further improvements in the robustness of the model, as 

consistent performance across multiple runs is critical for reliability. 

4.4. Future Research 

This study has provided further insight into the pathophysiology of VVS, highlighting early differences 

that may exist between individuals during HUTT. It also served as a first step in exploring the potential 

for early detection of syncope. However, the clinical relevance needs to be considered. 

In the future, it may be possible to avoid inducing (pre)syncope in patients in order to make a diagnosis, 

but we would need to keep in mind that a part of the diagnostic process involves recognizing the 

syncope symptoms, which would be lost with early detection. For now, the focus should be on 

improving the accuracy of the ML model to stop the test earlier for those who are unlikely to experience 

syncope during HUTT. However, it is still important to test this on larger datasets from multiple 

institutions. There is also a need to investigate how this can be implemented in practice and what 

adaptations would be required for use in clinical settings. 
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5. Conclusion 

This study developed an automated ML pipeline using a novel approach for the early prediction of VVS 

during HUTT, which can provide predictive insight into the occurrence of syncope 20 to 30 minutes 

later. The RF model was the best performing model with an AUC of 61%, sensitivity of 70%, and 

specificity of 45%. Important features such as the after SVI minimum and the before HR partial 

autocorrelation features were frequently selected across the CV folds, suggesting their relevance in 

predicting syncope.  

Despite the relatively low overall model performance, the results indicate that early pathophysiological 

changes, particularly in the SVI and HR dynamics, could provide valuable information for predicting 

syncope during HUTT. However, challenges remain, including the presence of noise in the data and 

potential feature interactions, which require further investigation. Follow-up studies are needed to 

validate the model on larger, more diverse data sets. In addition, future research should focus on 

improving the accuracy and robustness of the model by exploring alternative ML approaches while 

considering practical implementation in clinical settings. Ultimately, early detection of syncope has the 

potential to make HUTT more efficient, reduce patient discomfort, and avoid unnecessary testing. 
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7. Appendix 

A. Preliminary Study 

1. Objective  

This study was intended as a preliminary study to test which dataset is most suitable to extract features 

and to test different ways of selecting features. This includes evaluating different techniques for 

handling missing data, determining which segments of the data are optimal for analysis, assessing 

whether there are any artifacts and outliers that need to be removed, and the feature selection. The 

aim is therefore to: 

1) Determine which portion of the data, along with any necessary pre-processing, can best be 

used for HR and BP data in patients with suspected VVS during HUTT. 

 

2. Methods  

The same dataset and ML pipeline was used as described in the primary study unless otherwise 

specified in the methods.  

2.1. Data Selection 

The age, sex, heart rate (HR) and blood pressure (BP) data of all included patients were used. The three 

patients excluded on the basis of body mass index (BMI) were still included in this part of the study. 

2.2. ML Pipeline 

In this preliminary study, only a RF classifier was utilized. In order to conserve time, only one classifier 

was used. RF was chosen due to its simplicity, robustness against overfitting, and capability to capture 

complex interactions between variables.1  

In addition, the pipeline parameters are the same as described in the main study, except that the 

maximum iterations are set to 2 rather than 100. 

2.3. Filling of Missing Data 

Three different interpolation methods were compared for their effectiveness in filling the non-numeric 

cells in the data: linear, quadratic, and cubic. To evaluate their performance, five consecutive data 

points were randomly removed from a copy of the original data and then filled using one of the 

interpolation methods. The interpolated values were then compared to the original data, and the mean 

error percentage and standard deviation (std) were calculated. This process was repeated for 30 

random iterations and the results were averaged to determine the most effective method. (Figure 1) 
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Figure 1. Schematic illustration of the interpolation testing, which involves taking a random sample of 

data, interpolating it, and comparing it to the original data. 

 

2.4. Selecting Data 

Two different options were considered to select the appropriate variables; the basic BP and HR 

variables, and the addition of extra variables provided by the device software. A summary of the basic 

and extra HR and BP variables used can be found in Appendix B. 

To assess the impact of data length on model performance, a comparison was made using different 

durations and data epochs. The dataset was tested with data intervals of 1, 3, and 5 minutes, and 

different approaches were evaluated. These approaches included analyzing data from the entire period 

around the tilt, separating data into before and after the tilt, subtracting features extracted from before 

and after tilt data, and considering only the data collected after the tilt. Figure 2 illustrates the different 

options. 

 

Figure 2. The different ways in which data can be selected. This can be done by taking different lengths 

of data or by specifying the part of the data to be selected. 
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2.5. Artifacts and Outliers 

To reduce the artifacts produced by tilting, we also looked at removing the data points around the 

tilting point. This involved two approaches: one where the data around the tilt point was retained when 

using a single epoch, and another where 20 seconds of data on either side of the marked tilt point were 

excluded. This second approach was applied when the data were divided into multiple epochs. 

The influence of artifacts and outliers was tested by processing the data in three different ways. We 

examined the use of raw data compared to two different artifact removal methods. One of these 

methods was the simple exponential smoothing algorithm with an alpha of 0.05.2 This method was 

used to filter out artifacts and outliers, using the shape of the signal as the main information 

component. The other method was an outlier detection function that uses a threshold, mean and std 

of the previous 10 point window to detect outliers. Once an outlier was detected, that point and the 

three surrounding points were removed from that variable and the other variables, since a single 

variable was often used to calculate other variables in which the outliers are also present. An overview 

of the exact settings and an example can be found in the Appendix K. The removed data points were 

filled using the best tested interpolation method. 

2.6. Feature Selection Using Boruta 

In order to examine the effect of feature selection, different methods of Boruta usage were tested. A 

comparison was made between the original method, where Boruta was run through each fold to select 

the best features, different Boruta thresholds ('perc'), including 85, 95 and 98 percent, and Boruta in a 

loop (5 and 10 iterations), where all features of the iterations were combined. Finally, we also 

investigated whether manually selecting the best performing features of a fold works well, where a 10-

fold CV was performed, selecting the features of the best and worst performing fold (based on 60, 70, 

or 80 percent of the data). These features were then tested on the remaining part of the data (40, 30, 

or 20 percent of the data) in the rest of the pipeline. In this way, the feature selection was tested 

separately from the automated model using Boruta. 

2.7. Performance Evaluation 

The mean AUC of the 5-fold CV was used as performance value for the comparison of the effectiveness 

of the different models. 

 

3. Results 

3.1. Filling of Missing Data 

Table 1. The average mean and standard deviation (std) percentage of 30 interpolation comparisons. It 

was tested per variable for linear, quadratic and cubic interpolation. The meaning of the variables is 

further explained in Appendix B. 

SYS DIA MAP 

Method Mean Std Method Mean Std Method Mean Std 

Linear  -0,14% 4,51% Linear  -0,27% 3,98% Linear  -0,07% 3,47% 

Quadratic -0,3% 5,96% Quadratic 0,25% 5,94% Quadratic -0,1% 5,03% 

Cubic -0,38% 6,5% Cubic -0,29% 5,49% Cubic 0,03% 5,2% 
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IBI LVET SVI 

Method Mean Std Method Mean Std Method Mean Std 

Linear  -0,29% 8,87% Linear  0,003% 2,45% Linear  -0,29% 10,85% 

Quadratic -0,45% 14,46% Quadratic -0,07% 4,24% Quadratic -1,32% 17,82% 

Cubic -0,88% 13,64% Cubic -0,07% 4,26% Cubic -0,68% 19,49% 
 

CI HR SVRI 

Method Mean Std Method Mean Std Method Mean Std 

Linear  -0,33% 13,56% Linear  0,15% 7,56% Linear  -0,09% 5,51% 

Quadratic -0,87% 28,29% Quadratic 0,59% 11,29% Quadratic -0,21% 6,38% 

Cubic -0,91% 22,32% Cubic -1,05% 13,72% Cubic -0,11% 6,34% 

 

It can be seen in Table 1 that for the all variables, the linearly interpolated data deviates, on average, 

less than 0.5% from the original data and has a smaller error than the quadratic and cubic interpolation 

methods. 

3.2. Selecting Data 

In the two datasets where the only distinction was between using basic HR and BP variables versus 

using both basic and extra HR and BP variables, the results showed the same mean AUC of 61%. A 

similar approach was applied to a 3-minute dataset after the tilt, which yielded an AUC of 57% when 

only the basic variables were used and an AUC of 59% when the extra variables were added. 

In Table 2 it can be seen that the overall performance of the model works just as good and sometimes 

even better with using 3 minutes of data compared to 5 minutes. 

Table 2.  AUC percentage comparing three different feature sets when using data from one, three and 

five minutes of data around the tilt. 

Features used % AUC 1 
minute 

% AUC 3 
minutes 

% AUC 5 
minutes 

After the tilt with raw data  51 59 56 

After the tilt with smoothed data 46 53 57 

Before and after the tilt separated with 
smoothed data 

51 57 56 

 

Different epochs and corresponding results can be found in Table 3 with the best results coming from 

the features of data split from 3 minutes before the tilt and 3 minutes after the tilt. An additional epoch 

of 3-5 minutes did not improve the results. 

Table 3.  AUC percentage of five different feature sets each of which uses a different epoch of data. It is 

tested on two different variable sets.  

Features used % AUC when using 
Basic variables 

% AUC when using 
Extra variables 

0-3 and 3-5 minute epochs before and after the tilt   59 

3 minutes after the tilt  57 59 

3 minutes before and after the tilt separated  61 61 

3 minutes around the tilt in one epoch 57  

3 minutes before and after the tilt subtracted after 
feature extraction 

49  
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3.3. Artifacts and Outliers 

When looking at the different methods for detecting outliers and artifacts, the raw data performs better 

for all three different feature sets compared to the outlier detection algorithm and exponential 

smoothing (Table 4.) 

 

Table 4.  AUC percentage from three different feature sets testing 3 different outlier and artifact 

detection methods including the use of raw data, an outlier detection algorithm and an exponential 

smoothing algorithm 

Features used % AUC when using 
raw data 

% AUC when using 
outlier detection 

% AUC when using 
exponential 
smoothing 

3 minutes around the 
tilt in one epoch 

57 52 52 

3 minutes after the 
tilt  

59 57 53 

3 minutes before and 
after the tilt 
separated 

61 53 57 

 

3.4. Feature Selection Using Boruta 

When applying different Boruta thresholds, the performance variation was minimal. With an 85% 

threshold, an AUC of 62% was achieved. However, the number of features used in the model was 

significantly higher, with an average of 479 features, compared to only 6 features selected with a 100% 

threshold. (Table 5) 

 

Table 5. AUC percentage of the feature set based on the separated data before and after the tilt with a 

varying Boruta selection threshold. Together with the average number of features selected by Boruta. 

Features % AUC when 
using perc=85 in 
Boruta 

% AUC when 
using perc=95 in 
Boruta 

% AUC when 
using perc=98 in 
Boruta 

% AUC when 
using perc=100 
in Boruta 

3 minutes before 
and after the tilt 
separated 

62 60 60 61 

Mean amount of 
selected features 

479 152 54 6 

 

Using Boruta in a loop also resulted in more feature selections, but on average, no more than 17 

features were selected. Despite this, no improvement in performance was observed. (Table 6) 

Each of the methods used above had a std ranging from 4% and 8%. 
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Table 6. AUC percentage of the feature set based on the separated data before and after the tilt with a 

loop around the Boruta feature selector. Together with the average number of total features selected 

by Boruta. 

Features % AUC when using 
1 iteration 

% AUC when using 
5 iterations 

% AUC when using 
10 iterations 

3 minutes before 
and after the tilt 
separated 

61 60 61 

Mean amount of 
selected features 

6 12 17 
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Figure 3. An example of feature selection based on the best and worst performing folds. a) 10-fold cross-

validation on 60% of the data, where the features of the best and worst performing fold were selected. 

b) 5-fold cross-validation of 40% of the data with the features from the best performing fold. c) 5-fold 

cross-validation of 40% of the data with the features from the worst performing fold. 

 

Figure 3 shows an example of a 10-fold CV on the split data, with feature selection based on the best 

and worst performing folds. This method was chosen to test whether predefined features are better 

for classification. Previous results on the whole dataset using pre-defined features based on the best 

performing fold gave better classification results. In order to test this in a reliable way, it was decided 

to validate part of the data separately during this test. Table 7 shows that on average the validation 

group outperforms the training data in all cases. However, the std was between 10% and 15%, which 

was higher than the std observed with the previously mentioned methods. 

 

Table 7. AUC percentage of feature selection based on best and worst performing folds. The results are 

based on the features extracted from the separated data of 3 minutes before and after the tilt. The 

method was tested on different data splits where 80, 70 or 60% of the data were used to select the best 

and worst features. The remaining 20, 30 or 40% of the data were used to test the validity of this 

method with the selected best and worst features. 

Features: 3 
minutes before 
and after the tilt 
separated 

% AUC on training  
of data for 
features 

% AUC of 
validation data 
with the best 
features 

% AUC of 
validation data 
with the worst 
features 

80/20 split 57 79 - 

70/30 split 53 68 69 

60/40 split 57 69 63 
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4. Discussion 

In this preliminary study, various datasets were evaluated for feature extraction and selection, focusing 

on the filling of missing data, data selection, artifacts and outliers, and feature selection. Linear 

interpolation was found to be the most effective method for the filling of missing data. Although the 

performance differences between the different datasets were small, feature sets that included the 

extra variables, separated 3 minutes of data before and after tilt, and used raw data generally produced 

the best results, with an average AUC of 61%. For feature selection the original Boruta method proved 

to be the most suitable in this context, offering a balance between automation, feature reduction, and 

model stability. 

4.1. Filling of Missing Data 

The study by Hussain et al. (2021) investigated the prediction of syncope using ML on HUTT data and 

addressed missing data through imputation by averaging indicators across patients.3 However, this 

approach may not account for variability between patients. Therefore, interpolation was selected for 

the current study due to its effectiveness with relatively continuous data and predictable trends. 4 This 

method is particularly effective when only a few data points are missing, which was generally the case 

with the missing data points in this dataset. It was validated by testing on sequences with up to five 

consecutive missing data points. However, instances of more than 50 consecutive missing data points, 

although rare, could have affected the results, as the accuracy of interpolation tends to decrease with 

an increase of the number of missing data points. 

4.2. Selecting Data 

The integration of ML with signal analysis of HUTT data opens new possibilities for early prediction and 

accurate classification of syncope by combining traditional medical assessment with ML classification 

techniques. However, to date, research using classical ML models for early prediction shows that it 

would be better to use 15 minutes of data after the tilt compared to 5 minutes. This comparison was 

made by Khodor et al. (2016) between classification at 5 minutes after the tilt and classification at 15 

minutes after the tilt. Sensitivity increased from 69.6% to 87.5% and specificity increased from 66.9% 

to 93.8% when using 15 minutes versus 5 minutes after the tilt. 5 While several studies have favored a 

15-minute after the tilt period for early syncope prediction, this approach may counteract the goal of 

reducing the duration of HUTT, particularly when employing protocols like the 'Fast Italian Protocol.' 5,6 

Although several studies have used data from 15 minutes after tilt to predict syncope, it remains 

unclear whether subjects who had already experienced syncope during this period were excluded. If 

not, these models are diagnostic rather than predictive. While several studies refer to 15 minutes as 

early prediction, true early prediction would occur in the first few minutes before or just after the tilt, 

well before the onset of syncope. In contrast, our study focused on earlier time points. We compared 

3-minute and 5-minute epochs to investigate whether syncope could be predicted more accurately in 

a shorter time frame. Our results indicate that the difference in performance between these epochs 

was minimal. In addition, we found that using data segmented into before and after tilt phases 

produced better classification results than using after tilt data alone. 

4.3. Artifacts and Outliers 

In the context of pre-processing HUTT syncope data for ML applications, there is limited information 

available in the literature. Pre-processing typically involves normalizing and resampling the data, 

occasionally applying filters, or transforming the data into the frequency domain for feature 

extraction.6–11 Most studies do not address the extraction of artifacts or outliers from the data. This 

indicates that using raw data for HR and BP variables generally yields the best results. These findings 
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are consistent with the results of the current study. However, this does not eliminate the potential 

impact of outliers or artifacts on classification performance.  

4.4. Feature Selection Using Boruta 

The original Boruta method was selected as the optimal feature selection technique within this 

pipeline. However, splitting the data gave better results, but only a smaller set could be used for training 

and validating the model. The use of a smaller set and the variation within that set may have been a 

reason for the better performance. This could have led to less stability and reliability, as indicated by a 

larger std in the results. A future study with a larger cohort of patients could further investigate these 

findings and test whether the increase in performance is consistent and whether manual feature 

selection could further improve the results. 

Although Boruta has not yet been applied to syncope data from HUTT, it has produced good results in 

research with electroencephalogram (EEG) and electromyography (EMG) data. 12,13 However, there are 

other feature selection methods that could be explored. For example, a study by Khodor et al. (2016) 

compared three methods and found that sequential forward selection (SFS) performed best. SFS works 

by adding features to a candidate set one at a time until further additions no longer improve 

performance based on a given criterion. 5 Future studies could test whether alternative methods such 

as SFS provide better results with HUTT data. 

4.5. Limitations 

There are several limitations to this study. First, the results are based exclusively on a RF model. While 

RF performed well, there are other models that may be better suited for this type of analysis. This will 

be more of a focus in the primary study. The choice of dataset and pre-processing was based on the 

best performing RF model, which may have influenced the overall pipeline, potentially biasing the 

model development towards RF specific features, when other classifiers might provide better results. 

In addition, only the tsfresh package was used for feature extraction. This method was chosen because 

of its wide range of calculated feature types. However, it lacks features derived from medical expertise 

that have been used in previous studies.5,9 Although most relevant or similar features are included, 

important features that could better distinguish between the two groups may still be missing. 

Another limitation is that only two different iterations were used for HO, due to the broad purpose of 

the preliminary study and to save time. Although each iteration considered ten different outcomes 

along with a 10-fold CV, this remains a limitation and should be addressed in further research. 

In testing various options to improve the model, the primary focus was on optimizing the data for 

feature extraction and selection. Despite the robust performance of the pipeline in previous research, 

it is possible that other settings could have been optimized. Future research should explore these 

possibilities more thoroughly. 

Finally, it should be taken into account that not every possible combination of features was tested. 

Some combinations were chosen for comparison purposes, but features based on different datasets 

may yield different results that were not explored. Additionally, there was variation in the outcomes of 

the same models because, with the 5-fold split, different groups were created each time the model was 

run. 
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5. Conclusion 

In this preliminary study, we compared several datasets for feature extraction and selection. The results 

suggest that the most effective approach for further research is to use a feature set derived from raw 

data, focusing on the 3 minutes before and after the tilt in separated epochs, and to use linear 

interpolation to fill in the missing data. In addition, using the original Boruta algorithm proves to be an 

effective method for feature selection. 
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B. Variables 
Table 1. Basic BP and HR Variables. 

Variable Meaning 

reSYS systolic brachial pressure 

reDIA diastolic brachial pressure 

reMAP mean arterial pressure 

HR Pulse rate derived from atrial pressure signal 

IBI Inter Beat interval (heart rate variability) 

LVET 

Left Ventrical Ejection Time, the time of ejection 
of blood from the left ventricle beginning with 
aortic valve opening and ending with aortic valve 
closure. 

SVI 
Stroke Volume Indexed (Stroke volume/body 
mass area) 

CI 
Cardiac output Indexed (Cardiac output /body 
mass area) 

SVRI  

Total Peripheral Resistance (TPR) Indexed, 
Parameter of Windkessel model used to 
reconstruct flow from pressure. (TPR /body mass 
area) 

 

Table 2. Extra BP and HR Variables. 

Variable Meaning 

mFlow Model computation of the aortic flow waveform 

dP_dt Maximal steepness of the current upstroke 

SPTI 
Systolic Pressure Time Index computed as the 
area under the systolic portion of the arterial 
pulse 

RPP 

Rate Pressure Product computed as the product 
of systolic pressure and pulse rate and is 
indexed for cardiac oxygen demand per min 
(=SYS*HR) 

DPTI 
Diastolic Pressure Time Index computed as the 
area under the diastolic portion of the arterial 
pulse 

DPTI_SPTI 
Ratio is an index of cardiac oxygen supply / 
demand 

ZAo 

Parameter of Windkessel model used to 
reconstruct flow from pressure: ascending aorta 
characteristic impedance (Z) at diastolic 
pressure, impedance of arterial system 

Cwk 

Parameter of Windkessel model used to 
reconstruct flow from pressure: Windkessel 
compliance (C), total arterial compliance at 
diastolic pressure 
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C. Python packages and versions 
Table 1. Python packages for the Machine learning Pipeline. 

Package Version 

boruta 0.3 

matplotlib 3.5.1 

mipego 2.0.0 

numpy 1.22.4 

pandas 1.3.5 

scikit-learn 1.0.2 

scipy 1.7.3 

shap 0.38.1 

tabulate 0.8.9 

xgboost 2.0 

 

Table 2. Python packages for the Pre-processing. 

Package Version 

matplotlib 3.9.0 

numpy 1.26.4 

pandas 2.2.2 

scikit-learn 1.4.2 

scipy 1.7.3 

statsmodel 0.14.1 

tsfresh 0.20.2 
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D. Machine learning Pipeline overview 

 

Figure 1. An overview of the Machine learning pipeline that was used.  



51 
 

E. Hyperparameter Search Space 
Table 1. Random Forest Hyperparameter search space 

max_depth NominalSpace([None] + np.arange(2, 102, 2).tolist(), 
var_name="max_depth" 

n_estimators OrdinalSpace([1, 1000], var_name="n_estimators") 

min_samples_leaf OrdinalSpace([1, 10], var_name="min_samples_leaf") 

min_samples_split OrdinalSpace([2, 20], var_name="min_samples_split") 

bootstrap NominalSpace([True, False], var_name="bootstrap") 

max_features NominalSpace(["auto", "sqrt", "log2"], var_name="max_features") 

  

Table 2. Support Vector Machine Hyperparameter search space 

C OrdinalSpace([1, 50], var_name="C") 

kernel NominalSpace(["poly", "rbf", "sigmoid"], var_name="kernel") 

gamma NominalSpace(["scale"] + ["auto"], var_name="gamma") 

coef0 ContinuousSpace([0, 5], var_name="coef0") 

probability True 

class_weight "balanced" 

 

Table 3. XGBoost Hyperparameter search space 

max_depth OrdinalSpace([1, 10], var_name="max_depth") 

gamma ContinuousSpace([0, 10], var_name="gamma") 

min_child_weight OrdinalSpace([1, 10], var_name="min_child_weight") 

learning_rate ContinuousSpace([0, 1], var_name="learning_rate") 

colsample_bytree ContinuousSpace([0, 1], var_name="colsample_bytree") 

reg_alpha ContinuousSpace([0, 1], var_name="reg_alpha") 

reg_lambda ContinuousSpace([0, 1], var_name="reg_lambda") 

subsample 0.7 

eval_metric "auc" 
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F. Performance formula’s 
Accuracy = 

𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 

Precision = 
𝑇𝑃

𝑇𝑃+𝐹𝑃
 

Sensitivity = 
𝑇𝑃

𝑇𝑃+𝐹𝑁
 

Specificity = 
𝑇𝑁

𝑇𝑁+𝐹𝑃
 

F1 = 
2∗𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦
 

Abbreviations: TP: True Positives, TN: True Negatives, FP: False Positives, FN: False Negatives. 
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G. ROC-Curves 

 

Figure 1. The ROC-curve of the final SVM model with an AUC of 45% with a standard deviation of 7%. 

 

 

Figure 2. The ROC-curve of the final XGBoost model with an AUC of 54% with a standard deviation of 

6%. 
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H. Selected Hyperparameters 
Table 1. Random Forest Hyperparameters. 

Hyperparameter 1-fold 2-fold 3-fold 4-fold 5-fold 

max_depth 70 42 100 82 72 

n_estimators 292 185 253 22 893 

bootstrap False False False False False 

max_features ‘auto’ ‘sqrt’ ‘auto’ ‘auto’ ‘auto’ 

min_samples_leaf 4 4 9 1 2 

min_samples_split 3 8 10 7 11 

 

Table 2. XGBoost Hyperparameters. 

Hyperparameter 1-fold 2-fold 3-fold 4-fold 5-fold 

max_depth 6 5 9 6 9 

gamma 1.7 8.5 7.9 3.7 5.1 

min_child_weight 1 8 1 2 4 

learning_rage 0.12 0.55 0.56 0.99 0.83 

colsample_bytree 0.91 0.55 0.91 0.64 0.44 

reg_alpha 0.10 0.85 0.83 0.25 0.65 

reg_lambda 0.73 0.85 0.06 0.14 0.25 

 

Table 3. Support Vector Machine Hyperparameters. 

Hyperparameter 1-fold 2-fold 3-fold 4-fold 5-fold 

C 50 36 33 44 48 

kernel ‘sigmoid’ ‘sigmoid’ ‘sigmoid’ ‘sigmoid’ ‘sigmoid’ 

gamma ‘scale’ ‘scale’ ‘scale’ ‘scale’ ‘scale’ 

coef0 1.11 0.03 1.06 0.22 0.89 
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I. SHAP Summary Bar plots  
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Figure 1. The SHAP summary bar plots for each of the 5 folds. For each fold, the selected features are 

ordered, with the features that have the greatest influence on the random forest model being at the 

top. In addition, the two colors represent the influence of that feature on the classification in a certain 

class. 
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J. Selected Features in Random Forest 
Table 1. A list of the full feature names based on the variables as mentioned in Appendix K and the 

feature names according to the tsfresh python package. 

Full Feature name Name in Text and Figures 

after_SVI__minimum After SVI minimum 

before_HR__partial_autocorrelation__lag_4 
Before HR partial 
autocorrelation 

before_SVI__cwt_coefficients__coeff_5__w_2__widths_(2, 5, 10, 
20) 

Before SVI CWT coefficient 5 

before_SVI__cwt_coefficients__coeff_9__w_2__widths_(2, 5, 10, 
20) 

Before SVI CWT coefficient 9 

before_HR__fft_coefficient__attr_”abs”__coeff_79 Before HR FFT abs 

after_SVI__cwt_coefficients__coeff_13__w_5__widths_(2, 5, 10, 
20) 

After SVI CWT coefficient 13 

before_SVI__cwt_coefficients__coeff_3__w_20__widths_(2, 5, 
10, 20) 

Before SVI CWT coefficient 3 

before_mFlow__cwt_coefficients__coeff_14__w_5__widths_(2, 
5, 10, 20) 

Before mFlow CWT coefficient 
14 

after_SVI__cwt_coefficients__coeff_10__w_5__widths_(2, 5, 10, 
20) 

After SVI CWT coefficient 10 

before_DPTI_SPTI__fft_coefficient__attr_"imag"__coeff_8 Before DPTI/SPTI FFT imaginary 

after_CI__cwt_coefficients__coeff_3__w_10__widths_(2, 5, 10, 
20) 

After CI CWT coefficient 3 

after_mFlow__fft_coefficient__attr_"abs"__coeff_18 After mFlow FFT abs 

after_SVI__cwt_coefficients__coeff_11__w_5__widths_(2, 5, 10, 
20)' 

After SVI CWT coefficient 11 

before_DPTI__fft_coefficient__attr_"angle"__coeff_1 Before DPTI FFT angle 

 

 

Figure 1. An full overview of the feature occurrence in all 5 folds of the random forest (RF) model. 
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K. Outlier and Artifact detection 
Table 1.  Outlier detection algorithm settings 

Variable Threshold Average Standard deviation 
(std) 

reSYS 300   

reDIA 160   

reMAP 250   

HR 40 1 0.5 

IBI 300 1 0.1 

LVET 70 1  

SVI 10 1 1.5 

CI 1 1 1 

SVRI 0.5 1 2 

 

High threshold = threshold + number * average + number * std 

Low threshold = -threshold - number * average - number * std 

If the number is not mentioned in the table it is not used in order the calculate the threshold. 

 

Example: 

 

Figure 1. An example patient 16 for the Stroke volume index, where a threshold, the average and std is 

used to create the high and low threshold for outliers. 
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