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Abstract—We propose an analytical approach to approximate
the average two-terminal reliability (ATTR) for graphs where
a fraction of the nodes is removed. The approximation is based
on the generating function of the network’s degree distribution
under random node removals and stochastic degree-based node
removals. Through validation on synthetic graphs, including
Erdős Rényi random graphs and Barabási-Albert graphs, as well
as four real-world networks from the Internet Topology Zoo, we
observe that the analytical method effectively approximates the
average two-terminal reliability under random node removals for
synthetic graphs. In the case of real-world graphs under random
and stochastic degree-based node removals or synthetic graphs
under stochastic degree-based node removals, the analytical ap-
proximation yields reasonably accurate results when the fraction
of removed nodes is small, specifically less than 10%, provided
that the initial analytical approximation closely aligns with the
real ATTR values.

I. INTRODUCTION

Designing robust and reliable systems is crucial in the real
world, as high reliability ensures optimal functionality even
in challenging situations such as failures or natural disasters.
Various systems can be modeled as networked systems, includ-
ing transportation systems [1], telecommunication systems [2],
electrical systems [3], and more. Understanding the robustness
of networks plays an important role in the design of reliable
and resilient systems.

Network robustness assesses a system’s capacity to with-
stand perturbations, such as link or node removals, within a
specified time interval [4]. Connectivity metrics are commonly
used to measure network performance in terms of robustness,
as they reflect whether nodes can reach each other—a fun-
damental aspect of network functionality. The degradation of
connectivity signifies the deterioration of functionality [5], [6].
The size of the largest connected component serves as a widely
adopted connectivity metric [7], [8]. Additionally, average
two-terminal reliability (ATTR) is a popular metric beyond
those related to the largest connected component [9]–[11].
Specifically, in a graph, ATTR is the probability that a random
pair of nodes reside in the same connected component [10].

ATTR can also be interpreted as the fraction of node pairs
with a path between them [11]. If the graph is fully connected,
ATTR is one; otherwise, it can be calculated by dividing the
total number of node pairs in each connected component by
the total possible number of node pairs in the graph. A higher
ATTR value indicates a greater level of system robustness.

Currently, considerable effort is dedicated to exploring
methods for predicting network robustness metrics under var-
ious attacks. Two primary directions in this research involve
machine learning-based methods and analytical approaches. A
substantial body of research employs machine learning-based
approaches in the realm of robustness prediction. Noteworthy
contributions include the work of Chen et al. [12]–[14]. They
conducted experiments utilizing machine learning methods
such as Learning Feature Representation-based Convolutional
Neural Network (LFR-CNN) [12] and Spatial Pyramid Pooling
Convolutional Neural Network (SPP-CNN) [13] to predict
the connectivity robustness based on the largest connected
component of different networks. Their research includes a
comparative analysis of the performance of different methods
and an in-depth investigation into the influence of the training
data distribution [14]. On the analytical front, Newman et al.
[15] have developed a method using the generating function
of the degree distribution to calculate the size of the largest
connected component.

While ATTR stands as a popular connectivity metric for
graphs, analytical approximation methods for ATTR remain
elusive. In this study, we first outline a method for ap-
proximating ATTR when the size of the largest connected
component of the network is known. Building on this, we
present analytical approaches to approximate ATTR, lever-
aging results obtained from approximating the size of the
largest connected component using the generating function
of the degree distribution. Subsequently, we delve into the
changes in the generating function of the degree distribution
under two types of node removals: random node removals and
stochastic degree-based node removals [16], [17]. Utilizing
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these insights, we demonstrate analytical approximation results
for ATTR under both types of node removals.

The paper is structured as follows: Section 2 presents the
analytical approximation for ATTR; Section 3 introduces the
graphs used in the study; Section 4 provides the simulation and
analytical results; and the final section presents the conclusion
and discussion.

II. ANALYTICAL APPROXIMATION OF ATTR

Consider a network G(N,L) consisting of a node set N
with N nodes and a link set L with L links. If we denote Pij ,
where i ̸= j, as indicating whether there is a path between
node i ∈ N and node j ∈ N , Pij = 1 represents the existence
of a path between node i and node j, and Pij = 0 represents
the absence of a path between node i and node j. Based on
the definition [11], ATTR of a network G can be calculated
by

ATTR =

∑
i̸=j Pij(
N
2

) , (1)

or,

ATTR =

∑
Si

(|Si|
2

)(
N
2

) , (2)

where Si is the ith connected component in a network G
and the number of nodes in the connected component Si is
denoted by |Si|.

A. Approximation for ATTR for a given network

To analytically approximate the ATTR for a given network,
we will first discuss a lower and upper bound for the ATTR.
Consider a network G(N ,L), where the size of the largest
connected component is denoted as M . The lower bound
ATTRmin of the ATTR is derived under the assumption that
the connected components, apart from the largest connected
component, consist of isolated nodes. Hence, we obtain:

ATTRmin =

(
M
2

)(
N
2

) . (3)

To establish the upper bound ATTRmax of ATTR, we
assume that the size H of the second largest connected
component is as large as possible. Therefore, we define H
as min{M,N −M}. Next, we determine the integer division
Q of N −M over H and the remainder R. Q and R satisfy:

N −M = Q×H +R. (4)

Then, the upper bound ATTRmax can be calculated by

ATTRmax =

(
M
2

)
+Q

(
H
2

)
+ R(R−1)

2(
N
2

) . (5)

We will proceed by focusing on calculating the average
size of connected components outside the largest connected
component, denoted by A. If we denote the minimum average

size as µmin, we have µmin = 1 under the assumption that
all other connected components are isolated nodes. For the
maximum average size µmax for the connected components
outside the largest connected component, we have:

µmax =

{
N−M

Q , R = 0;
N−M
Q+1 , R ̸= 0.

(6)

According to [18], the average size of connected compo-
nents outside the largest connected component A satisfies:

A =
2

2− davu2/(1− S)
, (7)

where dav is the average degree of a network, S is the
fraction of nodes in the largest connected component, which
can be calculated by

S = 1−G0(u), (8)

where u satisfies u = G1(u). Furthermore, G0(x) is the
generating function of the degree distribution, and G1(x) is
the generating function of the excess degree distribution in
the network. Here G0(x) and G1(x) satisfy

G0(x) =

∞∑
k=0

pkx
k, (9)

G1(x) =
G′

0(x)

G′
0(1)

, (10)

where pk denotes the probability that a node has degree k,
G′

0(x) is the derivative of G0(x) and G′
0(1) = dav .

To calculate the expected size of the largest connected
component M , we can use the fraction of nodes in the
largest connected component S. This allows us to obtain the
expected size of the largest connected component, denoted as
M = N ×S. Note that the value of M may not be an integer.

With the average sizes of the connected components outside
the largest connected component of the lower bound case
and the upper bound case being derived and the average
size of connected components outside the largest connected
component being known, a parameter α can be derived such
that the weighted average of µmin and µmax is equal to A:

A = αµmin + (1− α)µmax. (11)

Hence the parameter α satisfies:

α =
µmax −A

µmax − µmin
. (12)

The final estimate ATTR∗ for the ATTR is derived by
taking the weighted average of ATTRmin and ATTRmax:

ATTR∗ = αATTRmin + (1− α)ATTRmax, (13)
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B. Approximating ATTR under random node removals

We have discussed how to approximate ATTR using the
generating function of the degree distribution of a network
above. Similarly, if we want to approximate ATTR under
random node removals, we can use the same aforementioned
framework. However, we need to know how to derive the
generation function of the degree distribution after a fraction
p of nodes is removed using the original degree distribution.

In the random node removal process, each node has the
same probability of being removed. According to [19], after a
fraction p of nodes is randomly removed from the network, the
updated generating function of the degree G0(x) and excess
degree distribution G1(x) in the network become:

G0(x) = G0(p+ (1− p)x), (14)

G1(x) = G1(p+ (1− p)x). (15)

The average degree dav after removing a fraction p of nodes
is G0(1) = (1− p)dav .

To obtain the size of the largest connected component
M after removing a fraction p of nodes, we can employ
Eq. (8) with the updated degree and excess degree distribution
generating functions G0(x) and G1(x), to approximate the
expected fraction of nodes in the largest connected component
S as:

S = 1−G0(u), (16)

where u satisfies u = G1(u). Therefore, the size of
the largest connected component M = NS. It should be
mentioned that even though we remove nodes from a network,
we still discuss ATTR, including all removed nodes, which
means we take the removed nodes into account as isolated
nodes in the original network. So, the lower bound ATTRmin
after removing a fraction p of nodes becomes:

ATTRmin =

(
M
2

)(
N
2

) . (17)

The upper bound ATTRmax can be calculated by employ-
ing Eq. (5)

ATTRmax =

(
M
2

)
+Q

(
H
2

)
+ R(R−1)

2(
N
2

) , (18)

where M , Q, H = min{M,N −M} and R satisfy Eq. (4)
as N −M = Q×H +R.

Similarly, for the maximum average size µmax for the con-
nected components outside the largest connected component
after removing a fraction p of nodes, we have:

µmax =

{
N−M

Q
, R = 0;

N−M
Q+1

, R ̸= 0.
(19)

For the average size of connected components outside the
largest connected component A after removing a fraction p of

nodes, we have:

A =
2

2− davu
2/(1− S)

. (20)

Then Eqs. (12) and (13) become the following:

α =
µmax −A

µmax − µmin
, (21)

ATTR
∗
= αATTRmin + (1− α)ATTRmax. (22)

The value of ATTR
∗

is an approximation of ATTR after
removing a fraction p of nodes.

C. Approximating ATTR under stochastic degree-based node
removals

In addition to random node removals, we also consider
stochastic degree-based node removals in this study. For each
node in the network, the probability qi that node i will be
removed is proportional to the power β of its degree ki:

qi =
kβi∑
j k

β
j

, (23)

where β is a predefined parameter. When β = 0, stochastic
degree-based node removals are equivalent to random node
removals; when β > 0, nodes with higher degrees have a
higher priority for removal. This study explores two cases:
β = 1 and β = 10.

To approximate ATTR under stochastic degree-based node
removals, we adopt the approach presented in the paper [17] to
map the fraction p of removed nodes under stochastic degree-
based node removals to the fraction p of nodes under random
node removals. Then, we can use the framework for approx-
imating ATTR under random node removals to approximate
ATTR under stochastic degree-based node removals.

When β = 1, according to [16], after removing a fraction
p of nodes, the fraction p can be calculated by:

p = 1−
fG′

β(f)

dav
, (24)

where f ≡ G−1
β (1 − p), Gβ(x) ≡

∑
k pkx

kβ

, dav is the
average degree of the initial network, and pk is the probability
that the degree of a node is k. If β = 1, Gβ(x) ≡

∑
k pkx

k,
which represents the generating function for the degree distri-
bution. When β > 1, it is numerically challenging to determine
the value of f .

To calculate the ATTR approximation when β = 10, we
assume that if a fraction p of nodes is removed, the nodes
are removed starting from the one with the largest degree in
descending order. While randomly removing a fraction p of
nodes, a fraction p of links is also removed. Based on the
total number of links removed under stochastic node removals
with β = 10, we can acquire the corresponding mapping
fraction p of removed nodes under random node removals
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as p =
∑k=k

k=kmax
pkNk

Ndav
=

∑k=k
k=kmax

pkk

dav
, where the largest

degree value is denoted as kmax, the probability of removed
nodes with degree k is denoted as pk, and degree k satisfies∑k=k

k=kmax
pk = p.

After obtaining the mapping fraction p, we replace the
fraction p with the mapping fraction p to perform the ap-
proximation under stochastic degree-based node removals. For
Eqs. (14) and (15), we have:

G̃0(x) = G0(p+ (1− p)x), (25)

G̃1(x) = G1(p+ (1− p)x). (26)

Next, by employing Eqs. (16), (17), (18), (19), (20), (21),
and (22), we can obtain the ATTR approximation ˜ATTR

∗

under stochastic degree-based node removals.

III. DATA

To validate the analytical approaches, we use Erdős Rényi
(ER) random graphs, Barabási-Albert (BA) graphs, and real-
world networks. ER random graphs are generated with the
following parameters: the number of nodes N = 1000 and
link connection probability pER = 0.008. The average degree
of ER random graphs is around eight.

Barabási-Albert (BA) graphs are created using the prefer-
ential attachment process. The initial graph is a star graph
with four nodes. At each step, a new node with three links is
added to the graph, and the new node has a higher probability
of connecting with higher-degree nodes. The BA graph used
in this study has a total of 500 nodes. The average degree of
the BA graph is 5.96.

The real-world networks utilized are sourced from the
Internet Topology Zoo [20], a collection of real-world com-
munication networks. Table I displays the properties of these
networks, including the number of nodes (N ), the number of
links (L), and the average degree (dav).

Name N L dav
HinerniaGlobal 55 81 2.95

Interoute 110 146 2.65
Deltacom 113 161 2.85
Cogentco 197 243 2.47

TABLE I: Properties of four real-world communication net-
works. N represents the number of nodes, L exhibits the
number of links in the network, and dav is the average degree
in the network.

IV. RESULTS

We conducted simulations on ER random graphs, BA
graphs, and real-world graphs with 10,000 realizations to val-
idate the analytical approaches. The average value of Average
Two-Terminal Reliability (ATTR) was calculated over these
realizations under random node removals. For ER random
graphs, each realization involved generating a new graph

with the same parameters, and we did not check whether
the generated network was connected or not, followed by
random node removals until all nodes were removed. For
BA graphs, a single BA graph was generated in the case of
BA graphs, and node removals were performed over 10,000
realizations. Similarly, random node removal processes were
applied to real-world graphs over 10,000 realizations, with the
average value obtained at each step. To calculate the analytical
results under random removals, we obtained the generating
function of the degree distribution for the BA graph and real-
world graphs using their degree sequences. For ER random
graphs, the degree distribution follows a Poisson distribution,
expressed as p(k) = (dav)

k

k! e−dav , with the generating function
as G0(x) = edav(x−1). Here, the average degree dav of ER
random graphs is approximately 8.

We present the analytical results of different graphs under
random node removals along with the simulation results in
Fig.1. Notably, we observe a close fit between the analytical
and simulation results for synthetic graphs. However, for real-
world graphs, a discernible gap exists between the analyti-
cal and simulation outcomes under random node removals.
This discrepancy is expected, considering that the analytical
results, based on generating functions, represent averages
across all random graphs with the same degree sequence,
whereas a real-world graph is just one instance within this
set. Interestingly, we find that the analytical curves align well
with the simulation curves under random node removals for
synthetic graphs. Furthermore, for real-world graphs, when
the analytical approximation closely matches the actual value
of the ATTR before nodes are removed, the approximation
results are reasonably accurate, particularly when the fraction
of removed nodes is small, such as below 10%.

We also conducted simulations and obtained analytical
results for stochastic degree-based node removals with β = 1
and β = 10 for synthetic and real-world graphs. The average
simulation values and corresponding approximation values of
ATTR during node removals based on the stochastic degree
are illustrated as green solid curves and red dashed curves in
Figs.2-3. Notably, we observed an increase in the differences
between analytical and simulation results with a higher value
of β for synthetic graphs. However, for synthetic graphs, the
approximation results remain acceptable when the fraction of
removed nodes is relatively small. In contrast, for real-world
graphs, the approximation results improve with a higher value
of β, and the overall performance is comparable to the results
under random node removals for real-world graphs.

The interesting part is that for random node removals
and stochastic degree-based node removals with β = 1,
the analytical approximations of ATTR values are equal to
or larger compared to the ATTR values obtained from the
simulation results. However, for node removals with β = 10,
the analytical approximation of ATTR values is equal to or
smaller than the ATTR values obtained from the simulation
results for most networks. This is because we assume that
nodes are removed starting from the node with largest degree
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(a) ER(1000, 0.008) (b) BA(500, 3)

(c) HinerniaGlobal (d) Interoute

(e) Deltacom (f) Cogentco

Fig. 1: The results for the ATTR by simulations and the analytical approximation under random node removals for synthetic
and real-world graphs. The x-axis denotes the fraction of nodes removed, and the y-axis denotes the ATTR value. The green
solid curves represent the simulated results, and the dashed red curves represent the corresponding analytical approximations.

in descending order while performing the approximation.
However, when removing nodes based on degree with β = 10,
it is not always the case that the node with the largest degree
is removed first.

V. CONCLUSION AND DISCUSSION

As Average Two-Terminal Reliability (ATTR) can be used
to measure the connectivity of a network, developing analyt-
ical approximation approaches under different types of node
removals can assist decision-makers in efficiently comparing
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(a) ER(1000, 0.008) (b) BA(500, 3)

(c) HinerniaGlobal (d) Interoute

(e) Deltacom (f) Cogentco

Fig. 2: The results for the ATTR by simulations and the analytical approximation under stochastic degree-based node removals
with β = 1 for synthetic and real-world graphs. The x-axis denotes the fraction of nodes removed, and the y-axis denotes the
ATTR value. The green solid curves represent the simulated results, and the dashed red curves represent the corresponding
analytical approximations.

network performance among various network topologies under
node attacks. This approach can save time and costs compared
to running simulations. For example, we can utilize the ATTR
approximation approaches under node attacks to design a
robust communication network.

Specifically, we have introduced analytical approximations
for ATTR utilizing the generating function of degree dis-
tributions. Additionally, we presented analytical approaches
to approximate ATTR under both random node removals
and stochastic degree-based node removals. Validation of the
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(a) ER(1000, 0.008) (b) BA(500, 3)

(c) HinerniaGlobal (d) Interoute

(e) Deltacom (f) Cogentco

Fig. 3: The results for the ATTR by simulations and the analytical approximation under stochastic degree-based node removals
with β = 10 for synthetic and real-world graphs. The x-axis denotes the fraction of nodes removed, and the y-axis denotes the
ATTR value. The green solid curves represent the simulated results, and the dashed red curves represent the corresponding
analytical approximations.

analytical approximations was conducted using two types
of synthetic graphs and four real-world graphs. Upon com-
paring simulation and analytical results, we observed that
the approximations of ATTR for random node removals
and stochastic degree-based node removals align well with

simulation outcomes for ER random graphs, particularly in the
case of random node removals. However, the analytical results
for BA graphs exhibit strong performance only under random
node removals and reasonable accuracy only when the fraction
of removed nodes is small, around up to around 10%. For real-
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world graphs, even in the random node removal scenario, the
performance of analytical approximations is less satisfactory.
This discrepancy is ATTR contributed to the fact that the
results from generating functions represent averages across
all graphs with the same degree sequence. Nevertheless, if
the approximation results for real-world graphs closely match
the initial real ATTR values, the approximations perform
reasonably well, particularly when the fraction of removed
nodes is small.

As the approximation method is based on the generating
function of the degree distribution, networks with the same
degree distribution will yield the same approximation results.
Additionally, the method does not always perform well for
sparsely connected networks. If the network is connected and
very sparse, the ATTR approximation using the generating
function of the degree distribution may incorrectly infer that
the network is disconnected, implying an approximated value
for ATTR smaller than one, before the network is attacked.

For synthetic networks, the analytical approximations per-
form better under random node removals and stochastic
degree-based node removals with β = 1 than the approx-
imation under stochastic degree-based node removals with
β = 10. However, for real-world networks, it seems that
the analytical approximations perform worse under random
node removals and stochastic degree-based node removals with
β = 1 than the approximation under stochastic degree-based
node removals with β = 10. The reason may be a result of the
network density, as the average degree in real-world networks
is smaller than the average degree in synthetic networks. This
aspect should be investigated in the future.

The approximations under stochastic degree-based node
removals are not always accurate. Therefore, further inves-
tigation is warranted to refine the analytical approximation
approaches, particularly focusing on the limitations observed
in stochastic degree-based node removals for both synthetic
and real-world networks.
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