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ABSTRACT
Connected and Autonomous Vehicles (CAVs) may exhibit different
driving and route choice behaviours compared to Human-Driven
Vehicles (HDVs), which can result in a mixed traffic flow with mul-
tiple classes of route choice behaviour. Therefore, it is necessary
to solve the Multiclass Traffic Assignment Problem (TAP) for mixed
traffic flow. However, most existing studies have relied on analyti-
cal solutions. Furthermore, simulation-basedmethods have not fully
considered all of CAVs’ potential capabilities. This study presents
an open-source solution framework for the multiclass simulation-
based TAP in mixed traffic of CAVs and HDVs. The proposed model
assumes that CAVs follow systemoptimal with rerouting capabilities,
while HDVs follow user equilibrium. It also considers the impact of
CAVs on road capacity at both micro andmeso scales. The proposed
model is demonstrated through three case studies. This study pro-
vides a valuable tool that can consider several assumptions for better
understanding the impact of CAVs on mixed traffic flow.
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1. Introduction and background

The advent of Connected and Autonomous Vehicles (CAVs) has brought about a signifi-
cant transformation in the transportation industry. The technology powering CAVs consists
of two key components: automation and connectivity. Automation involves integrating
decision-making and control systems between humans andmachines to operate the vehi-
cle, ranging from level 0 (fully manual) to level 5 (complete autonomy). This hierarchy
represents the degree of collaboration between humans and machines in vehicle con-
trol. The second feature, connectivity, enables the vehicle to communicate with various
elements such as infrastructure (V2I), other vehicles (V2V), and pedestrians (V2P). While
CAVs have yet to bewidely adopted in transportation systems, extensive research has been
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conducted on their impact on transportation network performance. Although there are dif-
fering opinions on the effects of CAVs on road networks, they are expected to bring several
benefits. From a traffic assignment perspective, CAVs may have the following impacts on
mixed traffic: 1 – Improved Road capacity: CAVs’ automation enhances driving behaviour,
leading to improved road capacity. This, in turn, affects link travel times and influences
the route choice of both CAVs and Human-Driven Vehicles (HDVs). 2 – Different route
choice principles: As traffic management centres can control CAVs, they have comprehen-
sive information about the road network status. Consequently, CAVs can follow different
route choice principles compared to HDVs. For example, they can adhere to System Opti-
mal (SO) principles instead of User Equilibrium (UE). 3 – Rerouting capability: Thanks to the
connectivity feature, CAVs can promptly respond to traffic congestion or disruptions by
adjusting their routes through rerouting capabilities, unlike other vehicle types.

While some studies, such as (Melson et al. 2018), have attempted to address the Traffic
Assignment Problem (TAP) in the presence of CAVs, it is important to note that achieving
a 100% Penetration Rate (PR) of CAVs may take a considerable amount of time. Therefore,
it is crucial to investigate the impacts at various PR levels of CAVs in mixed traffic scenar-
ios. In the literature, multiclass traffic assignment models have been developed to solve
the TAP in mixed traffic, focusing on examining the route choices of diverse users. This
heterogeneity can manifest in different aspects, such as value of time, travel mode, travel
disutility function, information quality, network topology, and various routing behavioural
principles (Xie and Liu 2022). The last category of heterogeneity, related to different rout-
ing behavioural principles, can be formulated as a multiclass traffic equilibrium, which
was initially addressed by Harker (Harker 1988). However, the multiclass traffic equilibrium
considering CAVs and HDVs, each following distinct routing behavioural principles, is a
relatively new problem that requires further investigation.

To facilitate this investigation, Table 1 presents a compilation of previous studies that
have implemented or proposed frameworks for solving the multiclass TAP in mixed traffic
of CAVs and HDVs. These studies tackle themulticlass TAP inmixed traffic conditions either
by considering the impacts of mixed traffic flow on road capacity or by accounting for the
divergent routing behaviour between CAVs and HDVs. They can be analyzed from three
perspectives: (1) the solution algorithm employed, (2) the extent of CAVs’ impact, and (3)
the assumptions made regarding CAVs.

Regarding the algorithm used to solve the multiclass TAP in mixed traffic, there are
two primary categories of solutions: simulation-based models and analytical-based mod-
els. Upon examining Table 1, it becomes evident that the number of studies employing
analytical-based methods is higher compared to those utilising simulation-based tech-
niques. Analytical models rely on mathematical equations to estimate traffic flow and
commonly employ the Bureau of Public Roads (BPR) function to calculate link travel costs.
However, due to their macro-scale nature, these models struggle to accurately capture
individual vehicle interactions, and their implementation in large-scale networks can be
computationally intensive and complex (Gawron 1999). On the other hand, simulation-
based models utilise traffic simulators to replicate traffic flow dynamics and interactions
at the micro and meso-levels, enabling a more detailed representation of the impacts of
CAVs on road capacity (Saw, Katti, and Joshi 2015). Thesemodels often incorporate distinct
driving behaviours for CAVs, such as faster reaction times (Mansourianfar et al. 2021) or
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Table 1. Review of previous studies on multiclass traffic assignment.

Author Goal of the Study TA Method TA Approach Software
CAVs impacts
on capacity

Olia et al. (2016) Assessing the impacts of CAVs Simulation-Based
(Micro)

DTA with rerouting capability
(frequently rerouting for CAVs and
infrequently rerouting for non-CAVs)

Paramics No

Samimi Abianeh et al.
(2020)

Evaluation of the impacts of CAVs on incidents DUE for CAVs and HDVs (considering
rerouting capability for CAVs)

SUMO Yes

Liu et al. (2019) Evaluate the effect of route guidance under the
CAV environment

Paramics

Hu et al. (2018) Presenting DTA for Mixed Traffic Simulation-Based
(Meso)

Multiclass equilibrium (DSO and DUE)
with rerouting capability

DynaTAIWAN No

Fakhrmoosavi et al. (2020) Observing the impacts of CAVs by adaptive
fundamental diagrams

DTA with rerouting capability for CAVs DYNASMART-P Yes

Mansourianfar et al. (2021) Proposing a joint routing and pricing control
scheme

Multiclass equilibrium: DSO for CAVs
(without rerouting) and DUE for
HDVs

Aimsun

Bamdad Mehrabani et al.
(2023) (Current study)

Proposing an open-source solution framework
for multiclass TAP in mixed traffic flow

Simulation-Based
(Micro and Meso)

Multiclass equilibrium: DSO for CAVs
(with rerouting) and DUE for HDVs

SUMO Yes

J. Wang, Peeta, and He
(2019)

Providing a solution algorithm for multiclass
traffic assignment

Variational Inequality-
Based

Mixed static traffic assignment:
cross-nested logit for HDVs and UE
for CAVs

N.A. No

Li, Liu, and Nie (2018) Providing a control Day-To-Day dynamical
system to guide AVs

Multiclass equilibrium: UE for HDVs
and SO for CAVs

Matlab

K. Zhang and Nie (2018) Proposing a route control scheme Multiclass equilibrium with multiclass
users: UE for HDVs and SO for CAVs

Matlab

Xie and Liu (2022) Quantify the impacts of CAV on the vehicle
market and route choices

SUE with different perceived travel
times for CAVs and HDVs

N.A. No

G. Wang et al. (2020) Providing a combined mode-route choice
model for CAVs-HDVs

Multiclass equilibrium: SUE for HDVs
and SO for CAVs

Yes

Jiang et al. (2016) Capturemultiple vehicle classes in a DTAmodel Variational Inequality-
Based

Dynamic User Optimal for cars and
trucks

N.A Yes

F. Zhang, Lu, and Hu (2020) Examining equilibrium for mixed traffic flows SUE with different cost functions for
CAVs and Non-CAVs

J. Wang et al. (2021) Control the HDV using the CAV/toll lanes Cross nested logit with elastic demand
for HDVs; UE with elastic demand for
CAVs

(continued)
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Table 1. Continued.

Author Goal of the Study TA Method TA Approach Software
CAVs impacts
on capacity

J. Wang et al. (2022) proposing a worst-case mixed traffic
assignment model

SUE for HDVs and UE for CAVs

Bagloee et al. (2017) To highlight the benefit of the cooperative
routing

Mathematical
Programming

Multiclass equilibrium: UE for HDVs
and SO for CAVs

GAMS No

Sorani and Bekhor (2018) Evaluation in the presence of autonomous
vehicles

Multiclass equilibrium: UE for HDVs
and SO for CAVs

N.A.

Medina-Tapia and Robusté
(2019)

Evaluating the effects of CAVs on a city road
network

Static assignment with a modified cost
function for CAVs and HDVs

Chen et al. (2020) Develop a path-control scheme Multiclass equilibrium: SO for CAVs and
UE for HDVs

CPLEX No

Aziz (2019) Develop a mathematical SO-DTA model for
mixed traffic flow

SO for both CAVs and HDVs N.A. Yes

Bahrami and Roorda (2020) Providing management policies for CAVs UE for CAVs and HDVs
Guo, Ban, and Aziz (2021) Explore a system-level control mechanism of

CAVs consisting of CAV and HDV
Multiclass equilibrium: DSO for CAVs
and DUE for HDVs

Ngoduy et al. (2021) Proposes a DSO formulation for the multiclass
DTA problem

DSO for both HDVs and CAVs

DSO: Dynamic System Optimal; DTA: Dynamic Traffic Assignment; DUE: Dynamic User Equilibrium; SUE: Stochastic User Equilibrium.
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deterministic accelerationmodels (Fakhrmoosavi et al. 2020). Compared to analytical mod-
els, simulation-based models are considered more accurate as they can depict traffic flow
propagation with greater detail, particularly in relation to CAVs.

In terms of the scope of their impacts, it can be argued that since CAVs have not yet fully
entered the transportation network, each study has made its own assumptions regarding
the effects of CAVs on transportation. A literature review reveals that the majority of exist-
ing studies on multiclass TAP of mixed traffic flow and CAVs have focused on either the
impact of CAVs on road capacity, specifically their driving behaviour (Aziz 2019; Bahrami
and Roorda 2020; Ngoduy et al. 2021; F. Zhang, Lu, and Hu 2020), or on the difference
in routing principles between CAVs and HDVs, either SO or UE (Bagloee et al. 2017; Chen
et al. 2020; Hu et al. 2018; Li, Liu, and Nie 2018; Medina-Tapia and Robusté 2019; Olia et al.
2016; Samimi Abianeh et al. 2020; Sorani and Bekhor 2018; J. Wang, Peeta, and He 2019;
Xie and Liu 2022; K. Zhang and Nie 2018). While a few studies, such as Fakhrmoosavi et al.
(Fakhrmoosavi et al. 2020), Liu et al. (Liu et al. 2019), and J. Wang et al. (J. Wang et al. 2021,
2022), have considered both the distinct route choice behaviour of CAVs and their impact
on road capacity, they do not solve themulticlass equilibrium problem. They assumed that
CAVs and HDVs follow the same routing behavioural principle (e.g. both classes follow UE
principles). Few studies solve the multiclass equilibrium TAP (mixture of SO users and UE
users) considering CAVs’ impacts on road capacity (Guo, Ban, and Aziz 2021; Mansouri-
anfar et al. 2021; G. Wang et al. 2020). Also, less attention is paid to the effects of CAVs’
rerouting capability in the multiclass equilibrium problem (Hu et al. 2018). For instance,
Mansourianfar et al. 2021 (Mansourianfar et al. 2021) solved themulticlass equilibrium TAP
by the simulation-based method. CAVs’ impact on road capacity is modelled by applying
modified parameters of a simplified car-following model in meso simulation. However, in
Mansourianfar et al.’s work, CAVs’ rerouting capability is not considered.

In terms of previous studies’ assumptions about CAVs’ route choice behaviour, some
researchers assume CAVs will follow the SO routines (Aziz 2019; Bagloee et al. 2017; Chen
et al. 2020; Guo, Ban, and Aziz 2021; Li, Liu, andNie 2018; Mansourianfar et al. 2021; Ngoduy
et al. 2021; Sorani andBekhor 2018;G.Wanget al. 2020; K. ZhangandNie 2018),while others
think CAVs will follow UE principles (Bahrami and Roorda 2020; Samimi Abianeh et al. 2020;
J. Wang, Peeta, and He 2019; Wang et al. 2021; Xie and Liu 2022; F. Zhang, Lu, and Hu 2020).
Also, some studies model the deterministic route choice behaviour of CAVs (Wang, Peeta,
and He 2019; G. Wang et al. 2020; J. Wang et al. 2021, 2022), and some others assume the
stochastic route choice behaviour for CAVs (Xie and Liu 2022; F. Zhang, Lu, and Hu 2020).

To summarise, by reviewing previous articles on the solution framework of multiclass
equilibrium TAP in mixed traffic flow, the following gaps can be expressed: 1 – Most of
the studies have used analytical solutions, which can be challenging in large dynamic real
cases. 2 – The solution frameworks capable of considering the impacts of CAVs on road
capacity and the impacts of CAVs on route choice (multiclass equilibriumwith the rerouting
capability) are very rare. 3 – There are no commonly accepted assumptions about the future
route choice and driving behaviour of CAVs.

Thus, this study fills these gaps by proposing a new open-source solution framework
of the Multiclass Simulation-based Traffic Assignment Problem for the Mixed traffic flow
of CAVs and HDVs (MS-TAP-M). This simulation-based solution framework considers the
impact of CAVs on road capacity and the different route choice behaviour of CAVs com-
pared to HDVs (in micro and meso simulation scales). To address CAVs’ impact on road
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capacity, modified parameters of car-following/lane-changing models (in microscale) and
queuing model (in mesoscale) are utilised. Also, to distinguish between CAVs and HDVs in
termsof route choice, it is assumed thatHDVs followUEwhileCAVs followSOwith rerouting
capability. Given the open-source nature of the solution framework, it presents an oppor-
tunity to incorporate diverse assumptions pertaining to the driving behaviour and route
selection behaviour of CAVs into this framework.

The structure of this paper is organised as follows: In Section 2, the notations and abbre-
viations used in this paper are presented. Section 3 outlines the methodology used, while
Section 4 presents the numerical results obtained. Section 5, present the results of applying
the proposedmethodology on a large-scale road network. Finally, Section 6 concludes the
paper.

2. Notations and abbreviations

The used notations are listed in Table 2.

3. Methodology

In this section, the solution algorithm of MS-TAP-M is presented. The MS-TAP-M is defined
as a dynamic TAP in which two vehicle classes exist. The vehicle classification consists of
two distinct categories: CAVs, adhering to the SO principle, and HDVs, adhering to the
UE principle. This framework can consider the rerouting behaviour of CAVs while solving
the MS-TAP-M. Also, it considers CAVs’ impact on road capacity by setting the modified
parameters of driving behaviour on micro and meso scales.

The simulation-based approach for TAP was first proposed by Mahmassani and Peeta
in 1993 (Mahmassani and Peeta 1993), followed by Peeta and Mahmassani in 1995 (Peeta
and Mahmassani 1995). Unlike analytical models that rely on mathematical closed-form
solutions, this method employs an iterative procedure to find the equilibrium solution. In
a single-class setting, such as when all users seek UE or SO, the path flow distribution is
updated at each iteration based on a path-swapping algorithm. This reassignment process
helps determine if the algorithm is progressing in the correct direction and leads to amore
efficient path selection. After each iteration, a convergence criterion is calculated to deter-
mine if the algorithm has reached termination (Mehrabani et al. 2022). In this study, the
framework provided by (Mahmassani and Peeta 1993; Peeta and Mahmassani 1995) has
been developed to consider two classes of vehicles (CAVs and HDVs). Figure 1 depicts the
solution framework for the MS-TAP-M, referred to as ‘duaIterateMix’. The framework com-
prises two components, namely the Path Selection Procedure (PSP) and Dynamic Network
Loading (DNL). The PSP employs Dijkstra’s algorithm, while the DNL utilises the Simulation
of Urban Mobility (SUMO) (Lopez et al. 2018). SUMO is a robust, open-source microscopic
traffic simulation package capable of handling large networks and can also simulate traffic
at the mesoscopic level (DLR 2023).

Let G(V ,A) be the directed traffic network, consisting of a set of links A (with elements
a ∈ A) and a set of nodes V (with elements v ∈ V). The set of all HDVs and CAVs between all
origin and destination pairs (travel demand) is represented by DH(R, S) andDC(R, S) respec-
tively. The set of all origin nodes is denoted by R (with elements r ∈ R) and the set of all
destination nodes is denoted by S (with elements s ∈ S). JH(r, s) (with JH ∈ DH) is the set of
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Table 2. Notations.

Indices

f index for traffic flow
i index for iteration steps
k index for path
j index for vehicle

Sets

G(V , A) traffic network
DH(R, S) set of all HDVs (.JH∈ DH)
DC(R, S) set of all CAVs (JC∈ DH)
JH(r, s) set of HDVs, travel from r to s(jr−s

h ∈ JH)
JC(r, s) set of CAVs, travel from r to s(jr−s

c ∈ JC)
A set of links (a ∈ A)
V set of nodes (v ∈ V)
R set of origin nodes (r ∈ R)
S set of all destination nodes (s ∈ S)
I set of simulation iterations (i ∈ I)
δH cardinality of set DH(R, S): number of HDVs O-D pairs
δC cardinality of set DC(R, S): number of CAVs O-D pairs
πH cardinality of set JH(r, s): number of HDVs travel from r to s
πC cardinality of set JC(r, s): number of CAVs travel from r to s
Pr−s
jh ,i

set of alternative paths for HDV jr−s
h in iteration i,travel from r to s

Pr−s
jc ,i

set of alternative paths for CAV jr−s
c in iteration i,travel from r to s

Variables, parameters, and elements

cia travel time of link a in iteration i
c0a free flow travel time of link a
c̄ia marginal travel time of link a in iteration i
Cik travel time of path k in iteration i
ttr−s
jh ,i

experienced travel time of HDV jh in iteration i,travel from r to s

ttr−s
jc ,i experienced marginal travel time of CAV jc in iteration i,travel from r to s

tt∗,r−s
H,i least experienced travel time by HDVs in iteration i,travel from r to s

tt∗,r−s
C,i least experienced marginal travel time by CAVs in iteration i,travel from r to s

pr−s
jh ,i

selected path for HDV jr−s
h in iteration i, travel from r to s

pr−s
jc ,i

selected path for CAV jr−s
c in iteration i, travel from r to s

p∗, r−s
jh ,i

final selected path for HDV jr−s
h in iteration i,travel from r to s

p∗, r−s
jc ,i

final selected path for CAV jr−s
c in iteration i,travel from r to s

prik,jh probability of selecting path k by HDV jh in iteration i

prik,jc probability of selecting path k by CAV jc in iteration i

rijc probability of rerouting by CAV jc during simulation in iteration i
ζ updating travel times of each link interval

HDVs travelling from origin r to destination s. Similarly, JC(r, s) (with JC ∈ DH) is the set of
CAVs travelling from origin r to destination s. Thus, jhr−s represents an HDV travelling from
origin r to destination s, and jcr−s represents a CAV travelling from origin r to destination s.
The assignment of DH(R, S) andDC(R, S) toG(V ,A) is the definedproblem. The computation
of the multiclass equilibrium condition involves calculating the shortest routes and travel
times through iterative simulations.

In each iteration i (i ∈ I), a routing algorithm (Dijkstra) is first applied to the road net-
work to determine alternative paths, Pr−s

jc ,i
and Pr−s

jh ,i
, for each vehicle, jcr−s and jhr−s. For

each CAV (jcr−s), the k-shortest paths are computed based on the previous iteration’s
Marginal Travel Time (MTT), c̄ i−1

a . For each HDV (jhr−s), the k-shortest paths are calculated
based on the previous iteration’s travel time, ci−1

a . Then, a network loadingmodel (Logit) is
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Figure 1. Framework of the MS-TAP-M.
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applied to the sets of alternative paths, Pr−s
jc ,i

and Pr−s
jh ,i

, to select a path for each vehicle type

pr−s
jc ,i

(pr−s
jc ,i

∈ Pr−s
jc ,i

); pr−s
jh ,i

(pr−s
jh ,i

∈ Pr−s
jh ,i

). Finally, a swapping algorithm is used to reassign a
portion of vehicles in each class from their current paths to alternative paths to improve the
selected path over iterations. The adjusted selected path (final path) of each vehicle type,
p∗, r−s
jc ,i

and p∗, r−s
jh ,i

, is thendetermined and sent to SUMO for traffic simulation. The traffic sim-
ulation can be performed either onmicroscopic or mesoscopic scales. On amicroscale, the
modified parameters of car-following and lane-changing models are implemented to con-
sider the distinctions between CAVs’ and HDVs’ driving behaviour. While on themesoscale,
the modified parameters of queuing model are used to distinguish between CAVs and
HDVs. Besides, a predefined percentage of CAVs (rijc)reroute during simulation based on
the current state of the traffic (this percentage remain constant during simulation). At the
end of the simulation, SUMO calculates the current travel time of each link, cia. This is done
by aggregating and averaging the travel times of all vehicles on each link during a defined
interval (ζ : 900 s). The resulting travel times, cia, are used as input for the next iteration. The
process is repeated iteratively with the aim of minimising total travel time (TTT).

3.1. Path selection procedure

The subsequent sectionswill provide a detailed discussion of the steps involved in the path
selection procedure.

3.1.1. Calculation ofmarginal travel times
In this framework, HDVs determine their path selections by utilising the link travel times
from the previous iteration, adhering to the UE principle. Conversely, CAVsmake their deci-
sions based on the link MTT, following the SO principle. The MTT is defined as ‘marginal
contribution of an additional traveller on the ath link to the TTT on this link.’ (Sheffi 1985).
There are two options available for calculating the path MTT: (1) global approximation,
and (2) local approximation. The local approximation computes the path MTT by summing
up the corresponding link MTTs. For this study, the researchers implemented a surrogate
model of the linkMTT to calculate the local approximation of the pathMTT (Mehrabani et al.
2022):

c̄ ia = ci−1
a + f i−1

a
ci−1
a − ci−2

a

f i−1
a − f i−2

a
(1)

The variable c̄ ia represents the surrogate MTT of link a at simulation step i. The variables
ci−1
a and ci−2

a represent the travel time, or cost, of link a at simulation steps i − 1 and i − 2,
respectively. The variables f i−1

a and f i−2
a represent the traffic flow of link a at simulation

steps i − 1 and i − 2, respectively. The first component can be explained by the average
travel time on link a. The second component address the effect of one additional user on all
the other travelers. Therefore, these two components represent a surrogate model of MTT.

3.1.2. Route choicemodel
The route choice can be represented through two different models, either deterministic
or stochastic. In the deterministic approach, an ‘all-or-nothing’ process is used, where all
the traffic between each O-D pair is assigned to the path with the shortest travel time. On
the other hand, in the stochastic approach, the routes are selected based on probabilities
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using discrete choice models. The researchers in this study chose the stochastic approach
for practical reasons. Firstly, the deterministic approach is highly sensitive to even small
changes in flow. For example, in a simple network consisting of two parallel routes of equal
length, the all-or-nothing procedure results in oscillating route choices because drivers
always choose the shortest route, which is the routewith fewer cars. As a result, the solution
is unstable, even in a clear equilibrium scenariowhere each route is usedby 50%of the vehi-
cles (Gawron 1999; Sheffi 1985). Secondly, when there are multiple alternative routes with
slightly different travel times, it may be reasonable to select a route other than the strictly
shortest route to avoid congestion on that route. The stochastic route choicemodels apply
a scale parameter and converge to the optimum solution sooner than the deterministic
approach.

The logit model is utilised to analyze the various route options available to individual
vehicles, specifically Pr−s

c,i and Pr−s
h,i . For each vehicle, the k-shortest paths are considered as

potential alternatives. The formulation of the logit model is presented as follows.

prik,jc ; pr
i
k,jh

= exp(−θCik)∑K
1 exp(−θCiK)

(2)

Cik =
∑
a ∈ A

δia, kc
i
a (3)

δia, p =
{
1 if link a is on path k
0 otherwise

(4)

The variables prik, jc and prik, jh represent the probabilities of CAV jc and HDV jh select-

ing path k in iteration i. Cik is the travel time, or cost, of path k in iteration i. A logit model
scale parameter, θ , is used in the route choice procedure to prevent solution oscillations
and instabilities. Although this study mainly focuses on a stochastic solution for the traffic
assignment problem, it is possible to obtain a deterministic solution using the proposed
algorithm by setting the scale parameter to approach infinity.

3.1.3. Swapping algorithm
For the reassignment of a fraction of vehicles at each iteration, the Probabilistic Swapping
(PSwap) algorithm is used instead of the traditional Method of Successive Average (MSA).
The decision to use PSwapwasmade due to the limitations ofMSA,whichwere highlighted
in a previous studyby Sbayti et al. in 2007 (Sbayti, Lu, andMahmassani 2007). In the authors’
previous work, the PSwap algorithm was tested against MSA and demonstrated improved
performance (Mehrabani et al. 2022).

p∗, r−s
j,i =

{
pr−s
j,i if x ≥ ρi

p∗, r−s
j,i−1 if x < ρi

(5)

The equation for p∗, r−s
j,i includes several variables: pr−s

j,i represents the selected path by vehi-

cle j in iteration i based on the current logit model, while p∗, r−s
j,i−1 refers to the final selected

path by vehicle j in iteration i − 1. Additionally, x is a random variable ranging from 0 to 1,
and ρi is the sequence of step size in each iteration, which determines the probability of
keeping the previous final selected path. The value of ρi is predetermined and calculated
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Table 3. Parameters of the car-following model in SUMO.

Mingap (m) Accel (m/s2) Decel (m/s2) Emergency Decel (m/s2) Sigma Tau (s)

HDV 2.5 2.6 4.5 8 0.5 1.0
CAV 1.5 3.5 4.5 8 0 0.9

Mingap: the offset to the leading vehicle when standing in a jam (m).
Accel: the acceleration ability of vehicles (m/s2).
Decel: the deceleration ability of vehicles (m/s2).
Emergency Decel: the maximum deceleration ability of vehicles in case of emergency (m/s2).
Sigma: the driver imperfection (between 0 and 1).
Tau: the driver’s desired (minimum) time headway (s).

using the equation ρi = i
γ
, where i denotes the iteration number and γ is a scale parameter

that controls the speed of convergence. Choosing a low value for γ results in faster conver-
gence, but only a limited number of alternative paths will be explored by each vehicle. In
contrast, a high value of γ slows down the convergence speed, but more alternative paths
will be examined. For stochastic assignments, it is typically better to use higher values of γ .
However, when dealing with large or medium-scale networks, waiting for a high number
of iterations can be computationally expensive. In this study, the value of γ has been set to
10 for microscale networks and 50 for mesoscale networks.

3.2. Dynamic network loading

Dynamic network loading is theprocess of assigning travel demand, orO-Dentries, to a net-
workwhile considering thevarying travel timeson specific links. The loading is performed in
a dynamicmanner, considering real-time changes in traffic conditions. The SUMO software
is utilised for this purpose, which is capable of handling both microscale and mesoscale
networks.

3.2.1. Modelling CAVs and HDVs
In this section, it is specified how the traffic flow propagation for HDVs and CAVs has been
modelled in the SUMO simulation. Additionally, it is explained how the distinction between
the driving behaviour of HDVs and CAVs has been considered in the simulation.

3.2.1.1. Microsimulation. In SUMO, the movement of vehicles is modelled using car-
following and lane-changingmodels on themicroscale. Themethod for modelling CAVs in
this study is in linewith thework of Lu et al. (Lu et al. 2020) and Karbasi et al. (2023). The fun-
damental idea behind modelling the longitudinal movement of CAVs is that they have the
same car-following model as HDVs, with some modifications to simulate the full automa-
tion feature of CAVs. Thanks to automation technologies, CAVs have a shorter reaction time,
allowing them to follow the leading vehicle with a smaller headway distance compared to
HDVs. It is assumed that CAVs have a shorter time headway, a smaller minimum gap, and
a faster acceleration than CAVs, and they can avoid collisions if the leading vehicle begins
brakingwithin their acceleration bounds (Karbasi et al. 2023; Lu et al. 2020). The parameters
modified for CAVs in the Krauss car-followingmodel (Krauss,Wagner, andGawron1997) are
listed in Table 3.

The LC2013 lane-changing model, as applied in the SUMO traffic simulation, governs
the lateral movement of vehicles (Lopez et al. 2018). To reflect the different lane-changing
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behaviours of CAVs and HDVs, the model’s parameters are adjusted. The most crucial
parameter is lcAssertive, which indicates a vehicle’s willingness to accept smaller gaps on
the target lane (DLR 2023). A higher value of lcAssertive indicates a more aggressive atti-
tude towards shorter gaps, meaning that the vehicle is more willing to change lanes with
smaller gaps. The value of lcAssertive is set to 0.7 for CAVs and 1.3 for HDVs. This reflects the
differences in the lane-changing behaviour between the two vehicle types. For more infor-
mation on the selection of car-following and lane-changing parameters for CAVs, please
refer to (Karbasi et al. 2023).

3.2.1.2. Mesosimulation. The mesoscopic model in SUMO is based on the research con-
ducted by Eissfeldt (Eissfeldt 2004). This model involves organising vehicles in traffic
queues, which is like the cell transmission model (Daganzo 1995). The vehicles are gener-
ally released from the queues in the same order they entered, following the first-in-first-out
principle (Amini, Tilg, andBusch 2019). Themodel calculates the time it takes for a vehicle to
travel from thequeueby considering the traffic state in the current and subsequent queues,
the minimum travel time, and the stage of the intersection (e.g. red, green, yellow). There
are four possible combinations of traffic states between consecutive segments: (1) when a
vehicle travels from a free segment to another free segment, (2) when a vehicle travels from
a free segment to a congested segment, (3) when a vehicle travels from a congested seg-
ment to a free segment, and (4)whenavehicle travels fromacongested segment to another
congested segment (DLR 2023). For each of these combinations, the minimum headway
between vehicles is calculated. The parameter τ is used to set the minimum headways
between vehicles as a multiplier for each of the four possible combinations.

Although some research has explored using cell transmission models or simplified car-
followingmodels tomodel CAVs inmesoscale networks (Mansourianfar et al. 2021; Melson
et al. 2018), to the best of the authors’ knowledge, there has been no previous investiga-
tion of modelling CAVs using an Eissfeldt queuing model in the SUMO software. Thus, in
this study, the authors adopt the same approach used to model CAVs on the microscale to
model CAVs in mesoscale networks. Specifically, CAVs and HDVs are distinguished based
on their queuingmodel parameters, with differentminimumheadway (τ ) values applied to
each vehicle class. The assumption is that CAVs can followmore efficiently between consec-
utive segments compared to HDVs, leading to a lower τ parameter value for CAVs (Yu et al.
2021). To ensure consistency between the mesoscopic and microsimulation results, the τ

parameter is calibrated for both CAVs andHDVs to obtain a Fundamental Diagram (FD) that
is consistent between the two scales. To begin the calibration process, themicrosimulation
parameters are set according to Table 3, and the mesosimulation parameters are based on
Presinger’s work (Presinger 2021).

The comparison between the meso and micro scales was performed by conducting a
micro simulation for each class of vehicles on a typical highway and extracting its FD. Then,
for each class of vehicles, the τ parameter was adjusted in themeso scale in such away that
it had the closest FD to themicro scale. This type of calibration ofmesoscopic parameters is
recommendedbyprevious studies (Tympakianaki et al. 2022). After calibrationandcompar-
isonof FDsbetween themicro andmesoscales, the authors find that the valueof τ is 1.06 for
HDVs and 0.79 for CAVs. The FDs generated at themeso andmicro scales for CAVs andHDVs
are shown in Figure 2 using the calibrated parameters. For further details on the parameters
used in themesoscopic simulation in SUMO andmodelling CAVs inmesoscale, please refer
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Figure 2. HDVs and CAVs fundamental diagrams in micro and meso simulations.

to Amini et al. (Amini, Tilg, and Busch 2019) and Mansourianfar et al. (Mansourianfar et al.
2021), respectively.

3.2.2. Rerouting
One of the CAVs’ potentials is that they are connected to each other and to a traffic man-
agement centre (V2V and V2I); thus, they can send and receive real-time information about
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traffic conditions and each link’s travel time. It is assumed that CAVs have the rerouting
capability to address this feature in MS-TAP-M. The mechanism of rerouting in this study
is that in the dynamic network loading step, a predefined percentage of CAVs (rijc ) receive
updated travel times both before insertion and periodically during movement in the net-
work. According to this updated travel time, if they find a path shorter than the pre-selected
path’s travel time, they will change their path to the newly found shortest path.

3.3. Convergence criterion

Due to the absence of a closed-form solution for simulation-basedmethods, it is not possi-
ble tomathematically prove the convergenceof the algorithm.All convergence criteria only
act as a stopping point for the algorithm. In previous studies onUE solutions, a gap function
is calculated to check for convergence. However, inmulticlass traffic conditionswhere there
are two types of vehicles, SO seeking CAVs and UE seeking HDVs, a different convergence
criterion is necessary. In linewithMansourianfar et al.’s (Mansourianfar et al. 2021) research,
this study proposes a hybrid gap function for algorithm convergence. Themulticlass traffic
assignment condition is deemed to be satisfied when the travel time experienced by HDVs
(UE-seeking) and the marginal travel time experienced by CAVs (SO-seeking) for the same
origin-destination (O-D) pair are both minimal and equal. A relative gap is calculated for
each vehicle class, and the algorithm is considered converged if the average of these two
gaps becomes constant and falls below ε.

Gap1(i) =
∑

H∈DH

(∑
h∈H ttr−s

jh ,i

πH
− tt∗,r−s

H,i

)
δH

(6)

Gap2(i) =
∑

C∈DC

(∑
c∈C tt

r−s
jc ,i

πC
− tt∗,r−s

C,i

)
δC

(7)

Hybrid Gap(i) = Gap1(i) + Gap2(i)

2
(8)

The notation used is as follows: ttr−s
h,i represents the travel time experienced by HDV jh in

iteration i, while travelling from origin r to destination s. ttr−s
c,i represents the experienced

marginal travel time of CAV jc in iteration i, while travelling from origin r to destination s.
Similarly, tt∗, r−s

H,i and tt∗, r−s
C,i represent the least experienced travel time by HDVs and least

experienced marginal travel time by CAVs, respectively, in iteration i, while travel from ori-
gin r to destination s. These travel times are determined through simulation, encompassing
the cumulative travel times of the individual links traversed by the vehicles to reach their
respective destinations. Since CAVs adhere to systemoptimal, their experienced travel time
(utilised for route selection) is equivalent to the average travel time associatedwith the link,
augmented by the additional travel time contributed by an extra user (the marginal travel
time). In addition, πH and πC denote the number of HDVs and CAVs, respectively, travelling
from origin r to destination s. Similarly, δHand δC denote the number of HDVs and CAVs O-D
pairs.
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Figure 3. Test networks.

4. Numerical results

The algorithm under consideration was tested on two distinct networks, which are illus-
trated in Figure 3: (a) Random network and (b) Sioux Falls network. The simulations are
executed by an Intel(R) Core (TM) i5-9400H CPU processor with 16 GB RAM. The ensuing
sections present the outcomes of the traffic simulations performed on the test networks.
The scenarios that were modelled for each network are specified in Table 4.

4.1. Randomnetwork

A random network was created in SUMO, as illustrated in Figure 3(a). The network consists
of 278 edges and 100 intersections, with the length of each edge ranging from 200 to 1000
metres and featuring either one or two lanes. To simulate traffic for an hour, 7200 vehicles
were randomly generated and dispersed throughout the network. Six different scenarios
were simulated for this network, as shown in Table 4, to investigate the potential capa-
bilities of CAVs. In this case study, it is assumed that CAVs have different route choices
and driving behaviours. The distinct route choice behaviour is considered by assuming
that CAVs follow SO and can reroute. On the other hand, the specific driving behaviour
is addressed by modifying the relevant car-following and lane changing model’s parame-
ters, as explained in previous sections. Amicrosimulationwas carried out, which converged
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Table 4. Simulated scenarios.

Network Scenario

CAVs
Penetration

Rate

HDVs
Penetration

Rate

CAVs
Rerouting
Probability

Modelling
CAVs driving
behaviour

CAVs routing
principle

HDVs
routing
principle

Random Network 1 0 100 0.5 yes SO UE
2 20 80
3 40 60
4 60 40
5 80 20
6 100 0

Sioux Falls Network 1 0 100
2 20 80
3 40 60
4 60 40
5 80 20
6 100 0

Figure 4. Convergence patterns for Random network.

after 10 iterations. The TTT for all vehicles in each iteration for each scenario is displayed in
Figure 4.

Table 5 displays the results of the simulations carried out on the Random network. A
quick look at the table reveals that as the PRof CAVs increases, the TTTof vehicles decreases.
Thepercentageof TTT reduction compared to scenario 1 (0%PRofCAVs) ranges from12.9%
(for 10%PR of CAVs) to 48.9% (for 100%PR of CAVs). This finding indicates that if all vehicles
have the full automation drivingmode (100% PR of CAVs) and follow SO routines with 50%
probability of rerouting, the TTT can be reduced by 48.9% compared to the scenario where
no CAVs are present. Moreover, the simulations show an increasing trend of the average
speed and a decreasing trend of the average distance travelled by vehicles as the PR of
CAVs increases.

Figure 5 illustrates the traffic volume (vehicles per hour) in the Random network at dif-
ferent PRs of CAVs where thicker links represents more PR of CAVs. The figure shows that
as the PRs of CAVs increase, the number of medium-volume and high-volume links also
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Table 5. Simulation results for Random network.

Scenario
Hybrid
Gap

Total Travel
Time (hr.)

Average
Speed (km/h)

Average Distance
Travelled (km)

TTT improvement
(%)

Computation
Time (min)

1 12.49 2509.88 29.2 6.6 – 12
2 10.53 2185.54 31 6.6 12.9 09
3 9.86 2092.5 32 6.6 16.6 08
4 8.12 1834.36 34 6.4 26.9 08
5 7.44 1696.94 35.4 6.5 32.3 07
6 5.91 1496.72 37.5 6.4 48.9 06

Figure 5. Traffic volume of Random network in different penetration rate of CAVs.

increases. This observation can be attributed to two reasons. Firstly, as the number of CAVs
increases, the capacity of links also increases, enabling them to accommodate more vehi-
cles. Consequently, the links that formpart of the vehicles’ shortest paths experience higher
traffic volumes. The second reason is that asCAVs follow theSO, theyaredispersed through-
out the entire network and make use of any spare capacity available. As the PR of CAVs
increases, the volume of alternative routes for each O-D pair also increases. This results in a
greater number of blue links in 100% PR of CAVs as compared to 0% PR of CAVs.

The scenarios that have been studied so far for the random network are the scenarios in
which wewitness a reduction in TTT due to the combined impact of CAVs’ different driving
and route choicebehaviour. Tohave an in-depth viewof the impacts of CAVsonTTT, several
other scenarios have been investigated. Twelve new scenarios are simulated which either
consider CAVs’ different route choice behaviour or CAVs different driving behaviour (2∗6
scenario). These new simulations have been comparedwith the results of the scenarios that
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Figure 6. Impact of CAVs on TTT for different setting of route choice and driving behaviour (Random
network).

havebeendone so far. The results of this comparison are illustrated in Figure 6. In this figure,
the TTT for three different categories of scenarios is shown. These categories include: 1-
scenarios in which only CAVs’ different route choice behaviour is modelled (Route choice
impact), 2-scenarios in which only CAVs’ different driving behaviour is modelled (Capacity
impact), and 3-scenarios in which both CAVs’ different route choice and driving behaviour
is considered (Combined impact). This figure also displays the amount of improvement in
TTT for each of the scenarios mentioned above. By having a glance at Figure 6, it can be
recognised that when CAVs have solely different route choice behaviour in comparison to
HDVs, they have the least improvement in TTT. However, when they have both different
route choices and driving behaviour, we observe the best improvement in TTT.

One of the factors that is important in examining the travel time difference between
CAVs and HDVs for decision makers and policymakers is the concept of travel time hetero-
geneity. Investigating the extent to which CAVs experience a better travel time compared
to when only HDVs are present is crucial in understanding the overall impact of CAVs on
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the transportation system. This study assumes that CAVs follow system optimal and have
safer and faster driving behaviour. Therefore, it is expected that a percentage of vehicles
will experience longer travel times compared to when CAVs are not present. To examine
this issue, data related to travel time heterogeneity is presented in two figures: Figure 7
illustrates the percentage decrease in experienced travel time by vehicles compared to
the percentage of vehicles experiencing this reduced travel time, considering different PRs
of CAVs. Additionally, Figure 8 shows the percentage of added travel time for the entire
fleet of vehicles relative to the percentage of vehicles experiencing this additional travel
time. Analyzing these figures reveals that when we have 20% CAV penetration, between
16% and 17.7% of vehicles experience a travel time that is 10% longer than when CAVs are
not present. However, as the CAVs PR increases, this percentage decreases. By examining
Figure 8 and Table 5, it can be concluded that when all vehicles in the network are CAVs,
certain percentages experience travel times that are longer, such as 6.2% experiencing a
10% longer travel time, 3.1% experiencing a 20% longer travel time, 1.5% experiencing a
30% longer travel time, 1.1% experiencing a 40% longer travel time, 0.9% experiencing a
50% longer travel time, 0.6% experiencing a 60% longer travel time, 0.4% experiencing a
70% longer travel time, 0.3% experiencing an 80% longer travel time, and 0.3% experienc-
ing a 90% longer travel time compared to when only HDVs are present. As a result, the
overall travel time of the entire network improves by 48.9%. This figure can provide valu-
able insights for policymakers in implementing CAVs in road networks, which can be easily
extracted through simulation methods.

4.2. Sioux Falls network

The second case study in the article employed the Sioux Falls network, which is displayed
in Figure 3(b). In this case, a total of 36,000 vehicles were simulated, with their origins and
destinations determined according to the demand pattern described in LeBlanc’s study
(LeBlanc, Morlok, and Pierskalla 1975). Mesoscopic simulation was used for this case study,
utilising the mesoscopic feature of SUMO. The study analyzed six different scenarios, and
the convergencepattern for all scenarios (scenarios 1 to6) is depicted in Figure 9. For the ini-
tial analysis, it was assumed that CAVs exhibit different driving and route choice behaviour.
CAVs follow SO with rerouting capability, while HDVs follow UE. Additionally, CAVs have a
lower headway in the queuing model of meso simulation.

The simulation results (Table 6) indicate that in the full automation scenario (scenario 6),
the TTT has the minimum value in comparison with other PRs of CAVs. The percentage of
TTT reduction varies between8.2% to 27.2%. Also, the average speed anddistance travelled
rise as the PR of CAVs increases.

Figure 10 depicts the volume on the Sioux Falls network for different PRs of CAVs, cat-
egorised based on both colours and width, where thicker links indicate higher PR of CAVs.
Analyzing the differences in traffic volumes, this figure reveals that vehicles are distributed
throughout the entire network in scenarios with high PRs of CAVs, avoiding selfish routing.
CAVs select unused links, minimising the travel time for the entire network. Additionally,
in scenarios with high PRs of CAVs, the links’ capacity increases, which can lead to a higher
number of links with high volume. The same links can service more vehicles in less time
compared to scenarios with lower PRs of CAVs.
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Figure 7. Travel time heterogeneity (reduced travel time) (Random network).

Table 6. Simulation results for Sioux Falls network.

Scenario
Hybrid
Gap

Total Travel
Time (hr.)

Average Speed
(km/h)

Average Distance
Travelled (km)

TTT improvement
(%)

Computation
Time (min)

1 4.44 31111.94 43.56 8.2 – 14
2 3.41 28566.56 45.57 8.3 8.2 14
3 3.11 26670.89 46.87 8.3 14.3 15
4 2.83 25475.60 47.95 8.3 18.1 15
5 2.51 23862.69 49.17 8.4 23.3 16
6 2.12 22636.86 49.93 8.4 27.2 16

Just like in the previous case study, various scenarios were performed to examine the
isolated impact of various CAV-related driving and route choice behaviours. The results are
presented in Figure 11. The improvement in TTT was observed in different settings of CAV
impact, ranging from 10.1% for the isolated impact of CAV-specific route choice behaviour,
20.2% for the isolated impact of CAV-specific driving behaviour, and reaching a maximum
of27.2% for the combined impactofbothCAV-specific route choice anddrivingbehaviours.

In Figure 12, the amount of reduced travel time experienced by the vehicles when there
are CAVs in the road network is shown. Additionally, Figure 13 illustrates the amount of
added travel timeexperiencedbyvehicleswhenCAVs arepresent in thenetwork. Analyzing
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Figure 8. Travel Time Heterogeneity (additional travel time) (Random network).

Figure 9. Convergence patterns for Sioux Falls network.
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Figure 10. Traffic volume of Sioux Falls network in different penetration rate of CAVs.

Figure 12 reveals that when CAVs exhibit different route choice and driving behaviour
compared to HDVs, 17.1% of them experience a 10% improvement in their travel time. Fur-
thermore, 12.8% experience a 20% improvement, 10.1% experience a 30% improvement,
7.4% experience a 40% improvement, 6.2% experience a 50% improvement, 5.1% experi-
ence a 60% improvement, 3.6% experience a 70% improvement, 2.6% experience an 80%
improvement, 1.6% experience a 90% improvement, and finally, 0.4% experience a 100%
improvement in their travel time compared to when all vehicles are HDVs. Additionally,
examining Figure 13 indicates that when all vehicles are CAVs, only 0.2% of vehicles experi-
ence a travel time that is 90% longer thanwhenCAVsarenotpresent. Furthermore, 12.6%of
vehicles only experience a travel time that is 10% longer than under 100%HDV conditions.
These results can be highly valuable for analyzing the policy sensitivity in CAV PRs which is
easily measured using the simulation-based method.

5. Application for large-scale networks

Given the proposed algorithm’s key advantage and the general effectiveness of simulation-
basedalgorithms in solving theMS-TAP-Mproblem for large-scale transportationnetworks,



TRANSPORTMETRICA A: TRANSPORT SCIENCE 23

Figure 11. Impact of CAVs on TTT for different setting of route choice and driving behaviour (Sioux Falls
network).

the proposed algorithm is also applied to address the MS-TAP-M problem for the Belgian
road network. To create the Belgium road network in SUMO, network data is extracted
from OpenStreetMap, including highways, provincial roads, and regional roads. To deter-
mine the travel demand in Belgium, a probabilistic travel demandmodel is employed. The
authors have previously developed, calibrated, and validated this travel demand model in
a prior article (Mehrabani et al. 2023), which is also utilised in this study. Seven scenarios
are considered for this network, outlined in Table 7. The (meso) simulation duration spans
three hours, during rush hours.

Figure 14 illustrates the convergence pattern under different PRs. Notably, the graph
highlights that the scenario with 100% HDVs displays the largest hybrid gap, whereas the
100% CAV scenario exhibits the smallest hybrid gap. This observation suggests that having
a network entirely composed of CAVs results in a reduced difference between the optimal
and attained solutions.
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Figure 12. Travel time heterogeneity (reduced travel time) (Sioux Falls network).

Table 7. Simulated scenarios for Belgium road network.

Network Scenario

CAVs
Penetration

Rate

HDVs
Penetration

Rate

CAVs
Rerouting
Probability

Modelling
CAVs driving
behaviour

CAVs routing
principle

HDVs
routing
principle

Belgium Road
Network

1 0 100 0.5 yes SO UE

2 10 90
3 20 80
4 40 60
5 60 40
6 80 20
7 100 0

To explore the influence of CAVs on travel time and network performance, Figure 15
and Table 8 have been presented. Upon reviewing the figure, it becomes evident that as
the percentage of CAVs PR increases, the overall travel time of the network reduces. The
degreeof enhancement in the total travel timeof thenetworkwhenCAVs arepresent varies
between 2.7% (at a PR of 10%) and 10.9% (at a PR of 100%). As seen in Table 8, to achieve
convergence on the Belgium road network (which is a large-scale network) during the peak
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Figure 13. Travel time heterogeneity (additional travel time) (Sioux Falls network).

Table 8. Simulation results for Belgium network.

Scenario
Hybrid
Gap

Total Travel
Time (hr.)

Average Speed
(km/h)

Average
Distance

Travelled (km)
TTT

improvement (%)
Computation
Time (min)

1 380 216401.63 72.8 61.58 – 391
2 279 210400.53 72 60.22 2.7 421
3 244 205615.14 72.4 59.94 7.9 448
4 229 203318.06 73.1 59.27 6.04 453
5 228 196748.17 74.2 59.27 9.08 467
6 227 195526.90 74.8 58.91 9.64 474
7 215 192646.34 75.2 58.41 10.97 484

hours (with over 243,000 vehicles), between 6.5 to 8 h is required, which is an acceptable
computational time considering the size of the network and the number of vehicles.

Figure 16 provides a more precise evaluation of the network’s performance under
varying levels of CAVs penetration. As depicted in the figure, the path selection pattern
undergoes a change with an increase in CAVs penetration, leading to fluctuations in the
number of vehicles on each highway. This suggests that the network volume varies at dif-
ferent levels of CAVs penetration, as traffic tends to opt for routes that minimise the overall
travel time of the network.
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Figure 14. Convergence patterns for Belgium network.

6. Conclusion

The advent of CAVs may transform the transportation sector soon. One key advantage
of CAVs is their ability to have their route choices controlled by a traffic management
centre, setting them apart from HDVs. This could result in a scenario where different types
of road users with varying road preferences coexist simultaneously. As a result, it is cru-
cial to solve the traffic assignment problem for a mixture of CAVs and HDVs. This paper
addresses this challenge by presenting a solution framework for the Multiclass Simulation-
based Traffic Assignment Problem for theMixed traffic flow of CAVs and HDVs (MS-TAP-M).
The MS-TAP-M problem involves assigning two classes of vehicles, each with unique route
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Figure 15. Total travel time in different penetration rate of CAVs (Belgium network) (min).

Figure 16. Traffic volume of belgium network in different penetration rate of CAVs.

preferences and driving behaviours. It is assumed that CAVs adhere to the SO principle and
have the capability to reroute, while HDVs follow UE routine. To account for the impact of
CAVs on road capacity, the study incorporatesmodified car-following/lane-changingmod-
els (microscale) and a queuing model (meso scale). The solution framework is an iterative
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process that involves path selection and dynamic network loading. Starting from an initial
solution, the framework updates the path flow distribution in each iteration using a path-
swapping algorithm. At the end of each iteration, a convergence criterion is calculated to
determine when the algorithm should terminate.

To the best of the authors’ knowledge, the proposed solution framework for MS-TAP-
M is the first open-source algorithm that can be executed in both micro and meso scale
simulation. In summary, the contributions of this study are as follows:

1. Algorithmic Innovation: This paper introduces a dynamic simulation-based algorithm
for solving the multiclass traffic assignment problem of mixed traffic flow. This
algorithm is open-source and allows for simulating various assumptions related to
CAVs. The advantage of the simulation-based algorithm over analytical-based algo-
rithms is its ability to solve the traffic assignment problem in large-scale networks
within an acceptable computational time.

2. Comprehensive Assumptions: The proposed algorithm integrates a diverse set of
probabilistic assumptions for CAVs. These assumptions encompass various driving
behaviours, route choice behaviours, and real-time information-based rerouting,
which have not been thoroughly investigated in previous studies. By incorporating
these assumptions, the algorithm significantly improves the accuracy of solving the
traffic assignment problem in the presence of CAVs.

3. Methodological Advancements (PSP): This study introduces novel elements in different
aspects of solving the multiclass traffic assignment problem. Firstly, a new surrogate
model for estimating the Marginal Travel Time (MTT) in the multiclass traffic assign-
ment problem is employed within the PSP step. Secondly, a new swapping algorithm
designed for multiclass traffic assignment is proposed. Lastly, a new hybrid gap for
the termination criterion of the algorithm is presented, enhancing its efficiency and
convergence.

4. Methodological Advancements (DNL): The algorithm is applicable at both the meso-
scopic and microscopic levels. The micro-level DNL section considers distinct parame-
ters for CAVs in car-following and lane changing models compared to HDVs. Further-
more, in themeso-level,mesoscopicmodel parameters for CAVs are calibrated, consid-
ering the microscopic model. As far as the authors are aware, this represents the first
instancewheremesoscopic simulationparameters havebeen calibrated specifically for
CAVs in SUMO.

The solution framework is called ‘duaIterateMix’ and is freely available under the EPLv2
license on GitHub at https://github.com/eclipse/sumo/blob/main/tools/assign/duaIterate
Mix.py. This tool can be used by researchers anddecision-makers to investigate the impacts
of CAVs on the road network under various scenarios. ‘duaIterateMix’ supports different
assumptions on CAVs’ route choice and driving behaviour, providing flexibility in analyzing
the potential effects of CAVs on traffic flow.

This study assessed the effectiveness of the ‘duaIterateMix’ algorithm in two case stud-
ies, one at the micro scale and two at the meso scale. The simulation results revealed that
as the PR of CAVs in the network increased, the travel time of vehicles decreased. Themost
significant improvement in TTT was observed in scenarios where CAVs had both unique
route choices and driving behaviours, with a 48.9% improvement in the Random network

https://github.com/eclipse/sumo/blob/main/tools/assign/duaIterateMix.py
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and a 27.2% improvement in the Sioux Falls network. The second most significant impact
on TTT was seen in scenarios where CAVs had only different driving behaviours, resulting
in a 32.6% improvement in the Random network and a 20.2% improvement in the Sioux
Falls network. In contrast, the smallest effect on TTT was observed in scenarios where CAVs
had only unique route choice behaviours, resulting in a 15.8% improvement in the Ran-
dom network and a 10.1% improvement in the Sioux Falls network. This study investigated
travel time heterogeneity, yielding valuable insights into the extra and reduced travel time
imposed by CAVs on all vehicles. Furthermore, the proposed algorithm was employed to
solve MS-TAP-M in a large-scale network (Belgium). The results demonstrated acceptable
computational time for such large-scale network.

These findings provide crucial knowledge regarding the potential impact of CAVs, and
they can prove beneficial for researchers and decision-makers seeking to comprehend the
implications of CAVs on transportation systems.
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