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Weight classification during actively assisted elbow flexion and
extension

Abstract—Severe muscle weakness is a symptom appearing in certain neuromuscular diseases (NMDs), such as Duchenne
Muscular Dystrophy (DMD), affecting people’s daily lives by reducing functionality, decreasing independence, and reducing the
ability to perform essential daily activities. This patient group might benefit from using active-assistive devices by having the
potential to provide precise support torque counterbalancing the passive forces acting on the arm, the movement intention of
the user, and external forces exerted by lifted objects. However, the determination of support to counteract the weight of lifted
objects is an ongoing challenge. This research aims to improve the understanding of external forces by using data classification
algorithms to distinguish between different lifted weights in a human experiment. Fourteen healthy individuals participated in this
experiment, lifting weights ranging from 0 - 1000 grams while an active-assistive device compensated for the passive torques
acting on the arm. Data was collected using various sensors: a force sensor, an Inertial Measurement Unit (IMU), a joint encoder,
and surface Electromyography (sEMG) electrodes. Subsequently, this data was processed and fed into a K Nearest Neighbour
(KNN) classifier and a Support Vector Machine (SVM) classifier to determine the lifted weights during human elbow flexion
and extension. The classifier showing the highest performance achieved an accuracy of 39.70% on the test dataset, indicating
several misclassifications. However, a recall percentage of 76.95% for the 1000-gram class within the multi-class classification
demonstrates the capability to distinguish larger weights. While demonstrating potential in weight discrimination, especially for
larger weights, improvements in the compensation strategy, arm support alignment, and experimental design are crucial. Future
research on the impact of picking and placing objects, the influence of muscle weakness, and the application of alternative data
classification algorithms are essential to further enhance understanding of the interaction with objects and result in more accurate
predictions.

Index Terms—KNN classifier, SVM classifier, arm support, sensor measurements, weight compensation, human experiment,
human-machine interfaces

✦

1 INTRODUCTION

Neuromuscular diseases (NMDs) significantly impact
individuals by limiting their physical functionality,
subsequently affecting their quality of life [1], [2].
Particularly, a group of NMDs, such as Duchenne
Muscular Dystrophy (DMD), characterised by severe
and progressive muscle weakness, can lead to a
reduced ability to perform essential daily activities,
such as drinking or picking up objects [3]. These
diseases considerably impact an individual’s upper
limb functionality, restricting autonomy, and ability to
fully participate in society [4], [5]. Consequently, this
patient group depends on upper limb assistive devices
[6].

Various upper limb supports have been developed to
assist people experiencing muscle weakness attributed
to NMDs in regaining arm functionality [7], [8]. Among
all upper limb supports, active-assistive arm devices
stand out as particularly promising for individuals
with a severely limited upper limb function [8]–[10].
Actively actuated devices have the potential to provide
the user with the desired amount of support by
counterbalancing arm weight and additional external
forces, such as lifted weights [11], [12]. Unlike passively
actuated devices, active-assistive devices do not rely on
pre-stored mechanical energy, allowing them to exert
greater torques on the user or control movements more
precisely [6], [7]. Therefore, for patients in advanced
stages of muscle weakness, characterised by a severely
decreased arm function and increased passive joint
stiffness, passive actuation proves insufficient, empha-
sizing the need for active-assistive devices [13], [14].

Even though active-assistive devices have great po-
tential in restoring the ability to perform daily life
activities, they still encounter different obstacles and
require improvements before use in real-life settings [6],
[12], [15]. One of these challenges is determining the
precise amount of support the active-assistive device
needs to exert on the user to perform various daily
activities, ensuring seamless cooperation between the
device and the user [16].

To derive the desired support, all forces acting on the
human arm should be identified. These forces include
the effect of gravity and passive joint impedance of the
human arm, as well as voluntary forces representing
the human movement intention and interaction forces
with the environment [13]. Currently, several compen-
sation methods have been developed to counteract the
passive forces acting on the arm (gravity of the arm
and passive joint impedance) [13], [17], and the human
movement intention [18]–[21]. Some of these studies
show promising outcomes in the compensation of
these forces and have a positive influence on regaining
functionality and an increased range of motion (ROM)
to perform daily tasks [13], [21].

However, understanding the user’s intention and
differentiating this from interaction with their envi-
ronment, such as picking up objects, is a complex
task, yet crucial for providing the desired support on
the user [22]–[24]. Several studies show promising
results in compensating external forces using force
sensors [25], [26]. However, the force sensor is mounted
between the user and the lifted object, measuring
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direct gravitational forces by the object. Thus, it
hinders the users’ ability to perform daily activities.
Additionally, several studies use electromyography
(EMG) to support the user in load-lifting tasks [27]–[30].
These devices do not provide precise support, therefore
only reducing the user’s effort to a limited extent,
which is insufficient for people suffering from severe
muscle weakness. To achieve precise compensation for
external forces exerted on the human arm, such as
lifted weights, in active-assistive devices, additional
research is necessary.

This research aims to improve the understanding
of external forces, exerted by lifted objects, on the
human arm during elbow flexion and extension. This
research focuses on the initial step in solving this
problem by looking into four different sensors to
capture information about object interaction during
elbow flexion and extension tasks. This sensor output is
interpreted using simple data classification algorithms
to identify and distinguish interaction with objects
ranging in weight. Hence, the following research
question is answered: Can we use data classification
algorithms to detect and differentiate weights, ranging from
10 to 1000 gram, lifted by an individual during elbow
flexion and extension when using an assistive arm support
to compensate for arm weight?

Outlook
The thesis is structured as follows. Chapter 2 discusses
the study design of the human experiment, including
a description of the sensing techniques, the active-
assistive device and the algorithms for data classifica-
tion. Chapter 3 contains the results of the experiment
and data classification. The discussion and conclusions
can be found in chapters 4 and 5.

2 METHODS

A. Participants
A human experiment was conducted to gather sensor
measurements to gain insight into the impact of lifting
weights during elbow flexion and extension. The
obtained data is used as input for the data classifi-
cation algorithms. The experiment involved fourteen
participants, eight of whom were women and six men.
The Human Research Ethics Committee (HREC) from
Delft University of Technology approved the study
(ID2972). All the participants provided their explicit
written consent to participate in the experiment.

B. Experimental setup
The experimental setup consisted of extrusion profiles
to which the arm support was fixed, as illustrated
in Figure 1. The extrusion profiles can be adjusted
in height to align the joints with the device and en-
able shoulder abduction/adduction angle modification.

Fig. 1. Experimental setup human experiment, showing a partici-
pant placed within the active-assistive arm support

Throughout the experiment, the shoulder abduction
angle remained fixed at 15 degrees and the shoulder
flexion angle at 0 degrees, while the elbow joint angle
varied within the participant’s ROM.

The one-degree-of-freedom (1DOF) active-assistive
device consists of two rigid arms parallel to the
human upper- and forearm, connected by a series
elastic actuator (SEA) aligned with the elbow joint.
The participants were connected to the device by an
arm sleeve fixed to the forearm and an elastic band
attached to the upper arm. Figure 2 shows all axes
and variables of interest within the experimental setup.
In Appendix B, a photo of the complete setup and a
schematic diagram of the electronics can be found.

Fig. 2. Schematic of the experimental setup showing the variables
and axes (X,Y,Z - global axes, x,y,z - local IMU axes)
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C. Sensors

The sensors used within the experimental setup in-
clude a force sensor, an Inertial Measurement Unit
(IMU), a joint encoder, and sEMG electrodes. It is
essential to capture information on the kinematics and
dynamics of the human arm during these tasks to
improve understanding of lifting objects during elbow
flexion and extension movements [31]. All sensors,
except for the sEMG electrodes, capture direct infor-
mation on the human arm kinematics and dynamics
[32], [33]. While sEMG electrodes do not directly
measure the kinematics and dynamics, they can still
offer insights into the different forces acting on the
arm by capturing muscular activation [34]. In addition,
prior research has shown that the included sensors can
provide valuable information regarding the interaction
with objects [16], [26], [30]. Integrating a diverse group
of sensors aims to enhance understanding of their
importance in human arm movements, particularly in
relation to the interaction with lifted weights.

All signals were acquired with a sampling frequency
of 1000 Hz, using two different systems synchronised
by a 1 voltage trigger signal. The sEMG signal was
collected with a 12-bit resolution (± 10 V) using a
National Instruments (NI) USB-6008 Data Acquisition
(DAQ) device (system noise < 5 µV (rms)), which was
connected to a laptop via a USB connection [35]. The
raw signal was collected and stored using MATLAB.
The other signals were acquired using a Beckhoff
EtherCAT system, interfacing with the different sensors
via Ethernet cables. The signals were collected with a
16-bit resolution (± 10 V) and stored using TwinCAT,
MATLAB, and Simulink [36]. Besides data acquisition
of all sensor measurements, TwinCAT was used to
synchronise both data acquisition systems by sending
a trigger signal and implementing the required control
and compensation strategies by sending information
to the SEA via Ethernet cables.

Force sensor
A Miniature S-Beam Jr. Load Cell (Model: LSB200,
FUTEK) is used as a force sensor and mounted between
the rigid arm of the assistive device and the arm
sleeve in which the user was strapped [37]. This sensor
was chosen for its capability to measure interaction
forces between the active-assistive device and the
participants. The sensor was calibrated following a
procedure described in Appendix C, providing a
measurement range of up to 111.21 N (25 lbs) [37].
The interaction force (Fz) is measured over the local
z-axis, as shown in Figure 2.

IMU
Movement data of the arm was obtained using a
9DOF MTi-1 IMU (Xsens), measuring angles (θx, θy,
θz), angular velocities (vx, vy, vz) within a range of

2000 deg/s, and accelerations (ax, ay, az) within a
range of 16 g [38]. The IMU was mounted on the rigid
bar aligned with the human forearm, as shown in
Figure 2, including the local IMU axes. This experiment
focuses on three variables: the elbow joint angle (θx),
angular velocity about the x-axis (vx), and the linear
acceleration of the z-axis (az).

Joint encoder

The SEA integrated into the elbow joint of the active-
assistive device directly measures the elbow joint
torque (T ) by measuring the deflection of the spring
within the SEA [39]. In addition, several encoders were
integrated into the elbow joint of the device: a rotor
encoder, a gearbox encoder, and a spring encoder,
measuring the elbow joint angle (θ), and elbow joint
velocity (v), which is the derivative of the elbow joint
angle (θ).

sEMG

The muscular activity was measured using sEMG of
the biceps brachii (short and long head) and triceps
brachii (long head) via a Delsys Bagnoli EMG system
with DE-2.1 Single Differential Wired sEMG sensors.
The system comprises a 16-channel amplifier with an
output voltage range of ± 5 V (system noise (R.T.I)
< 1.2 µV (rms)) [40]–[42]. The amplifier gain was set
to 1000 for all participants, maximising the signal am-
plitude and avoiding amplifier saturation. Electrodes
were positioned on the upper arm, according to the
SENIAM standards [43].

D. Study design

Biometric data

Table 1 provides an overview of the collected biometric
data of the participant’s group. The mass and center
of mass calculation were based on the study of Winter
et al. [44].

User calibration

To align the elbow joint with the SEA, the setup was
adjusted in height. Additionally, a ROM measurement
was performed to determine the user’s maximal
elbow joint ROM, and subsequently, the participant
was permitted to move within 90% of this ROM
during the experiment. Furthermore, the isometric
maximum voluntary contraction (MVC) of both the
biceps and triceps was measured to normalise the
data afterwards. Measurements were performed while
bending or stretching the elbow against a tabletop,
with the shoulder joint in a neutral position and the
elbow at 90 degrees of flexion [45].
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TABLE 1. Overview of the collected biometric data of the participant group (n = 14)

Variable Mean (range)
Age [years] 24.64 (22 - 28)
Height [cm] 177.85 (167 - 190)
Weight [kg] 69.14 (61 - 85)
BMI [kg/m2] 21.88 (17.54 - 25.14)
Mass (hand + forearm) [kg] 1.52 (1.34 - 1.87)
Center of mass (hand + forearm - distal) [cm] 14.43 (13.10 - 15.33)
Dominant hand Right (n = 10), Left (n = 4)
Frequency of sport activity per week (>30 minutes) 3.43 (1 - 6)
Intensity of sport activity (1 - low, 2 - medium, 3 - high) 2.79 (2-3)

Arm weight compensation
During the experiment, an arm weight compensation
strategy was used to counteract the passive torque
exerted on the human forearm and hand, including the
effect of gravity and internal passive joint impedance
[46], [47]. The impedance-based compensation strategy
uses position-controlled calibration measurements to
identify the passive torques acting on the human
forearm and hand. During the position-controlled
measurements, the muscular activity of the biceps and
triceps was measured using sEMG, ensuring that these
muscles were not activated and no other forces than the
passive joint torques acting on the forearm and hand
were measured. In Appendix D, further explanation
is given regarding the arm weight compensation.

Tasks
The participants were asked to perform repetitive flex-
ion/extension exercises, lifting different weights or no
weights, to collect data for classification. The weights
were selected based on standard weights encountered
in daily tasks, as indicated in the Performance of the
Upper Limb (PUL) [48]. The weights included 10, 50,
100, 200, 500, and 1000 grams. Participants performed
five different tasks:

• Dynamic task - The participant flexed and ex-
tended their elbow joint over the full ROM while
lifting weights, completing ten repetitions for each
weight. This task was performed maintaining
two different elbow joint velocities, representing
common ADL elbow flexion/extension velocities,
indicated by a metronome [49], [50]:

– Elbow joint velocity of ca. 45 deg/s
– Elbow joint velocity of ca. 90 deg/s

• Pick/place task - Participants had to pick up or
put down weights from a tripod while flexing and
extending their elbow joint over the full ROM,
completing ten repetitions for each weight. The
tripod’s height was adjustable to accommodate
two different pickup angles:

– Elbow joint angle of ca. 45 degrees
– Elbow joint angle of ca. 90 degrees

• Quasi-static - The participant maintained for three
seconds in four different joint angles: maximum
elbow extension, ca. 45 degrees and ca. 90 degrees,

and maximum elbow flexion joint angle while
lifting weights. The user had to maintain the
indicated elbow joint angles themselves after a
brief instruction. Hence, there exists a degree of
variation in the 45 degrees, 90 degrees, minimum
and maximum elbow joint angle.

In Table 2, a complete overview is shown of the
different tasks, compensation strategies, and lifted
weights used in the experiment, resulting in ten
different datasets per subject.

TABLE 2. Overview of ten datasets collected during the human
experiment by performing the different tasks

Compensation strategy Tasks Weights

No compensation Dynamic task - 45 deg/s 0, 10, 50, 100, 200,
500, and 1000 gram

Dynamic task - 90 deg/s 0, 10, 50, 100, 200,
500, and 1000 gram

Pick/place task - 45 degrees 10, 50, 100, 200,
500, and 1000 gram

Pick/place task - 90 degrees 10, 50, 100, 200,
500, and 1000 gram

Quasi-static task 0, 10, 50, 100, 200,
500, and 1000 gram

Compensation of
forearm and hand
weight

Dynamic task - 45 deg/s 0, 10, 50, 100, 200,
500, and 1000 gram

Dynamic task - 90 deg/s 0, 10, 50, 100, 200,
500, and 1000 gram

Pick/place task - 45 degrees 10, 50, 100, 200,
500, and 1000 gram

Pick/place task - 90 degrees 10, 50, 100, 200,
500, and 1000 gram

Quasi-static task 0, 10, 50, 100, 200,
500, and 1000 gram

Questionnaire
Participants provided their Rating of Perceived Exer-
tion (RPE) directly after completing each task. The
RPE serves as a tool to quantify the effort experienced
by the participant during the various tasks in the
experiment [51]. The RPE scale ranges from six, which
indicates ’No exertion at all’, to twenty, which indicates
equal to ’Maximal exertion’.

Directly after the experiment, participants filled out
two questionnaires: System Usability Scale (SUS) and
NASA-TLX. The SUS was used to evaluate the entire
arm support’s complexity, usability, and comfort [52].
A score above 68 indicates that the arm support is
ranked above average compared to other studies using
the SUS score. Subsequently, the mean SUS score
can be ranked by acceptability and in an adjective
scale (’good’, ’OK’, ’excellent’ usability) based on the
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study conducted by Bangor et al. [53]. The NASA-
TLX compares both mental and physical workload in
exercises with and without arm weight compensation
during the experiment [54].

E. Data processing

This section describes how the collected raw sensor
signals are processed to be used for analysis and
data classification purposes. Figure 3 provides an
overview of all the steps taken within this process.
Additional information regarding the data processing
steps, including visualisations, can be obtained from
Appendix E.

Data filtering
The initial step in processing the data collected during
the experiment involved filtering the raw sensor out-
puts, as illustrated in Figure 3, to improve their Signal-
to-Noise Ratio (SNR). The kinematic and dynamic data,
including angular velocities, linear acceleration, force,
and joint torque, underwent low-pass filtering due to
the presence of high-frequency noise in these measure-
ments [49], [55], [56]. The process of filtering the sEMG
data is more complex, involving multiple filtering
methods, as this is a biological signal influenced by
nearby muscles, movement of the skin, and even heart
activity [57], [58]. In addition, a trial and error process
was used to determine the cut-off frequencies of the
filters. Therefore, the following filters were applied to
the different raw sensor signals:

• The elbow joint velocity data, as a derivative of
the joint angle, provided by the joint encoder,
underwent a 2nd order low-pass filter with a cut-
off frequency of 2 Hz.

• The elbow joint torque data, based on the deflec-
tion of a spring in the SEA, underwent a 1st order
low-pass filter with a cut-off frequency of 1.5 Hz.

• The force data provided by the force sensor
underwent a 2nd order low-pass filter with a cut-
off frequency of 10 Hz.

• The muscular activity of the biceps and triceps,
provided by the sEMG sensors, got through
several filtering steps: (i) a notch filter of 50 Hz
for powerline interference cancellation, (ii) a 3rd

order high-pass filter with a cut-off frequency of
10 Hz, (iii) taking the absolute values of the sEMG
signal, (iv) a 4 Hz 3rd order low-pass filter, and
finally (v) normalisation by the measured MVC
values of both biceps and triceps [57], [59].

• The gyroscope velocity and linear acceleration
of the accelerometer, all outputted by the IMU,
were 2nd order low-pass filtered, with a cut-off
frequency of 1 Hz.

Data preparation
Figure 3 shows four steps in the data processing to
prepare the filtered data for analysis, visualisation, and
classification of the collected data:

• Delay removal - In the experimental setup, mea-
surements were recorded in two different environ-
ments. One system captured sEMG measurements,
while the other collected real-time data from
various sensors. Despite using a synchronization
trigger signal, a minor delay was noted between
the systems. This delay is attributed to how
MATLAB stores data and to the absence of trigger
signal information within the sEMG data. The
dataset containing more samples was cut from
both ends to synchronise the data. The distribution
of the synchronisation delay will be shown in the
results.

• End stop removal - In the active-assistive device,
hardware, and software end stops were imple-
mented as a safety measure. To prevent the device
from exceeding the software end-stop limits and
shutting down, angle guards apply damping with
a high value on the user to counteract exceeding
the software limits. The damping is applied 2.9
degrees before exceeding the software limit. How-
ever, this damping resulted in interaction forces
within the joint limits. Therefore, data samples
with joint angles being part of the angle guards
were removed from the dataset.

• Data labelling - Data labelling is essential, assigning
each data sample a unique label, representing the
lifted weight, for the supervised data classification
algorithm. Data labelling was performed manually
by selecting the corresponding flexion- and exten-
sion cycles for every weight. Therefore, all sensor

Fig. 3. Workflow including all data processing steps from raw sensor measurements to input for data analysis and data classification
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measurements collected simultaneously share the
same label.

• Manual data removal - Manual removal of data
samples was necessary due to artefacts in the
data caused by unexpected events during the
experiment, such as dropping weights or sensor
interaction. Additionally, any time periods dur-
ing which the weights were altered have been
excluded from the data.

F. Data analysis
Data was analysed by visualising the force sensor-
based joint torque (Tz), sEMG biceps activity, sEMG
triceps activity, elbow joint torque (T ), and elbow joint
velocity (v) measured by the joint encoder, all plotted
against the elbow joint angle (θ) measured by the
joint encoder. This was done for all data samples per
task (dynamic & pick/place) for every participant.
Furthermore, the mean and standard deviation for all
repetitions per weight were derived per participant.
Lastly, the mean and standard deviation for all rep-
etitions per weight were derived for all participants
together, combined for both the dynamic tasks and
the pick/place tasks. The analysis focused on the data
gathered using the arm weight compensation strategy.

G. Data classification
Data classification was used to distinguish the weights
lifted by the user during elbow flexion and extension
due to the categorical nature of both the data and
the research objective, aiming to precisely identify the
different lifted weights. First, the two used supervised
classification algorithms will be introduced in this
section. Afterwards, all steps within the classification
process will be discussed.

Classifier
K Nearest Neighbour (KNN) and Support Vector
Machine (SVM) classification algorithms were used to
classify the sensor output. The two distinct classifiers
were optimised, trained, and tested to evaluate and
compare the impact of the classification algorithms
on the dataset. KNN classification is a classification

algorithm based on the idea that surrounding data
points contain useful information on the corresponding
label when assigning a new data sample to a class
[60]. In addition, KNN classifiers have the ability to
classify large non-parametric datasets accurately [61].
SVM is a classification algorithm that is based on
the idea of finding a hyperplane that best divides
a dataset into classes. The aim is to maximise the
margin between the classes’ closest data points, called
support vectors. SVM is known to be a robust and
powerful classification algorithm, even for high dimen-
sional data and non-linear datasets [62], [63]. Besides
that, both classification algorithms show to be robust
biosignal classifiers [64]–[66]. Data classification was
only performed on the dataset collected during the
dynamic tasks, as this is a first step to gaining insights
into the effect of lifting objects.

Classification strategy

The classification strategy for both classifiers was to
look into the effects of feature selection and optimi-
sation of the hyperparameters. Before training the
different classifiers, the dataset was downsampled and
split into train and test data. In Figure 4, an overview
shows all steps taken in the data classification. The
following classifiers, for both the KNN and SVM
classification algorithms, have been trained, tested and
evaluated:

• Classifier with default settings, including all fea-
tures

• Classifier with default settings, including the
features selected via feature selection

• Classifier with optimised hyperparameters, includ-
ing the features selected via feature selection

In addition, one-to-one classifications will be per-
formed between the class of 0 gram and all other
classes (0 gr vs. 10 gr, 0 gr vs. 50 gr, etc.) to check
the ability of both classifiers to differentiate between
two weights. In both classification algorithms, default
hyperparameter settings were used, and all features
were included. No feature selection or hyperparameter
selection has been performed on these classifiers due

Fig. 4. Workflow data classification for both SVM and KNN classifier (blue = training dataset, orange = test dataset)
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to the time-consuming process of performing this for
every one-to-one classification algorithm.

Data visualisation
The first step in data classification is data visualisation,
a necessary step to gain more insight into the dataset
[67]. To make it easier to understand the distribution
of the data, identify patterns and outliers, and make
classification decisions accordingly, the following visu-
alisation methods were used:

• Class distribution - Essential visualisation step to
check for no bias towards one or several classes
[68].

• Descriptive statistics - Using Python’s describe()
function to receive every feature’s mean, standard
deviation and percentile values. This will give
more insight into the data distribution per feature,
especially outliers.

• Box plots - Box plots show the distribution and
variability of the data. For every feature, a box
plot was made to show the variability of the data
over the different classes.

• Correlation - The Pearson’s correlation coefficient
was used to measure the linear correlation be-
tween all features (one-to-one). In addition, the
correlation between every feature and the classes
is derived. Both were checked with a graphical
heatmap containing these Pearson correlation coef-
ficients. The strength of the correlation coefficient
will be rated based on values in the book of
Swinscow et al. [69].

Down sampling data set
The sensor measurements were performed with a
frequency of 1000 Hz. To reduce the computational
load, the dataset is down-sampled to a frequency of
100 Hz. Downsampling is performed by taking the
mean of every ten samples per label.

Split train/test set
To provide a reasonable estimate of the model per-
formance and prevent overfitting, the distribution
between the training and test set was chosen as 80%
versus 20% [67].

k-fold cross-validation
k-fold cross-validation was used in both training the
classifiers, performing feature selection, and optimising
the hyperparameters. In all instances, a value for k
of 5 was used to split the training set into 5 folds,
using k-1 folds as the train set and the remaining
fold to evaluate the model [70]. Each fold contains a
proportional representation of each class. In general,
cross-validation is used to gain insight into the model
performance across the training dataset, ensuring the
classifier models are robust and not overfitted to
specific data subsets [67], [70].

Standardisation
Standardisation is necessary for both KNN and SVM
classification to achieve more accurate results [71]. The
standardisation method used was the standardisation
by the z-score, resulting in features with a mean of
zero and a standard deviation of one, fitted on the
training set [72], [73]. The dataset was standardised
after splitting the dataset into the train and test sets to
prevent data leakage to the test set [67], [72]. Within
the k-fold cross-validation, the train, and evaluation
set were standardised in every computation.

Feature selection
Feature selection is essential to reduce overfitting,
make models easier to interpret and make models
less computationally intensive [74]. In this research, a
wrapper method was chosen as feature selector. Wrap-
per methods use the specified classification algorithms
to select the optimal subset of features, aiming to
optimise the model performance [75]. In this study,
a wrapper method known as backward elimination
was employed. It was initiated by using the complete
feature set and iteratively selecting subsets of features
that cause the highest cross-validated accuracy until
a single feature was left [76]. The combination of
features, executed with the highest cross-validation
accuracy, will be used as input for the classifiers [77].
This feature selection process included standardisation
and k-fold cross-validation to guarantee the reliability
of the feature selection [67]. The feature selection is
performed on the training dataset to prevent data
leakage to the test set [67].

Hyperparameter optimisation
To identify the optimal hyperparameters within a
specific selection, GridsearchCV was used [78]. Grid
search explored all combinations of hyperparameters,
to determine the hyperparameters resulting in the
highest cross-validated accuracy on this dataset [79].
To prevent data leakage and overfitting on the test
set, hyperparameter optimisation was performed on
the training set, including features selected via back-
ward elimination [72], [79]. During the grid search,
both standardisation and k-fold cross-validation were
included in the process to ensure the robustness of the
hyperparameter optimisation [67].

KNN classifier

For KNN, the following hyperparameter variables
were evaluated in the grid search:

• n neighbors - {1, 5, 10} and {20− 1000} in steps
of 20

• weights - ’uniform’, ’distance’
• metric - ’Euclidean’, ’Manhattan’
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SVM classifier

For SVM, the following hyperparameter options were
evaluated in the grid search:

• C - 0.01, 0.1, 1, 10, 100
• gamma - 0.01, (1/(n features*variance)), 0.1, 1, 10
• kernel - ’linear’, ’rbf’

Evaluation of the linear kernel combining the different
gamma hyperparameter values will not be performed,
as it has no impact on the accuracy of the linear kernel
[80].

Evaluation
To evaluate the data classification, the following met-
rics were used:

• Confusion matrix for the multi-class classifications
• Accuracy and macro-averaged precision, recall,

and f1 score for the multi-class classifications
• Accuracy, precision, recall, and f1 score for the

one-to-one classifications

H. Outcome measurements
The primary outcomes of this research will be the
accuracy and macro-averaged f1-score, precision, and
recall for all classification algorithms, including the
features selected by feature selection. Moreover, the
confusion matrix will be shown for the KNN and SVM
classifiers with optimised hyperparameters and feature
set after performing feature selection. Furthermore, the
one-to-one classifications’ accuracy, precision, recall,
and f1-score will be shown.

As a secondary outcome, a graph showing the mean
and standard deviation of the dynamic task over
different weights will be discussed.

Lastly, the results of the questionnaires and maximum
synchronisation delay will be discussed.

3 RESULTS

A. Participants
After the performance of the human experiment,
three participants were excluded. One participant

was excluded because of significant misalignment
due to the absence of the upper arm elastic band
connecting the human upper arm to the arm support.
Two participants have been excluded based on the
calculated arm weight compensation. However, the
force sensor values during extension exceeded those
during flexion, contrary to the principle of hysteresis
in the spring of the SEA. Appendix F provides more
insight into the exclusion of these participants.

B. Data classification outcomes
In this section, outcomes concerning the data clas-
sification will be shown. However, only a selection
of the results from the data classification will be
presented in this section. A complete overview of the
results, including data visualisations, can be found in
Appendix G.

Data visualisation
Several data visualisation methods have been used
to gain insight into the dataset. Within the dataset,
the mean number of samples per class is 546221.43
(standard deviation of 15640.48), with a minimum
of 521380 samples in the 0-gram class (13.6% of the
complete dataset) and a maximum of 572279 samples
in the 1000-gram class (14.9% of the complete dataset).

Looking into the correlation heatmap between the
features, five feature combinations show a very strong
linear correlation, having a Pearson value above 0.8.
Only, the sEMG biceps activity and sEMG triceps ac-
tivity are very strongly correlated to any other features.
Focussing on the linear correlation between features
and the classes, the strongest relation compared to
the others can be seen in the sEMG biceps activity,
having a Pearson correlation coefficient of 0.46. This
linear correlation between the classes, representing the
weight of the lifted object, and the sEMG activity is
confirmed by the data distribution in the box plots,
shown in Appendix G.

Feature selection
As a feature selection method, backward elimination
was performed. This shows that a combination of the

TABLE 3. Evaluation of KNN classifiers (accuracy = fraction of total predictions that are correct, precision = fraction of a predicted label that
was identified correctly, recall = sensitivity, fraction of the true label that was identified correctly, F1-score = a combination metric of precision
and recall, emphasizing the balance between the two)

Classifier Accuracy Precision Recall F1-score Time fit Time predict
Default KNN Classifier (all features) 34.77% 34.63% 34.85% 34.51% 1.37 s 14.73 s
Default KNN Classifier (after feature selection) 36.57% 36.48% 36.80% 36.33% 0.50 s 4.96 s
KNN Classifier with the optimised hyperparameters (after feature selection) 39.70% 39.09% 39.06% 39.42% 0.37 s 77.97 s

TABLE 4. Evaluation of SVM classifiers (accuracy = fraction of total predictions that are correct, precision = fraction of a predicted label that
was identified correctly, recall = sensitivity, fraction of the true label that was identified correctly, F1-score = a combination metric of precision
and recall, emphasizing the balance between the two)

Classifier Accuracy Precision Recall F1-score Time fit Time predict
Default SVM Classifier (all features) 34.27% 32.83% 32.98% 33.94% 4927.41 s 2042.22 s
Default SVM Classifier (after feature selection) 24.72% 20.46% 19.96% 24.22% 5697.67 s 2138.82 s
SVM Classifier with the optimised hyperparameters (after feature selection) 24.63% 19.93% 20.97% 24.14% 10794.78 s 2481.30 s
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elbow joint angle (θ), elbow joint velocity (v), elbow
joint torque (T ), load cell force (Fz), sEMG biceps
activity and sEMG triceps activity results in the highest
cross-validation accuracy for the KNN classifier. Within
SVM classification, a combination of sEMG biceps
activity, IMU acceleration (az), and elbow joint angle
(θ) results in the highest cross-validation accuracy. In
Appendix G.2, a complete overview of the backward
elimination results can be found.

Evaluation KNN classifier

First, a default KNN Classifier (hyperparameters:
n neighbors - 5, weights - ’uniform’, metric -
’minkowski’) was used to classify the dataset into the
different classes, presenting the lifted weight, to get
more insight into the response of the classifier on the
dataset. Table 3 shows all values for the performance
metrics evaluating the KNN classifiers.

After feature selection, KNN classification has been
performed on the feature set containing the six selected
features. This results in an increase of ca. 2% for
accuracy, precision, recall, and F1-score compared
to the default classification performed on the entire
feature set. Furthermore, the computation time for
fitting the classifier decreased by 0.87 seconds, and the
time for predicting all new data samples decreased by
9.77 seconds.

Lastly, a KNN classification was conducted after per-
forming a Grid search to optimise the hyperparameters.
Grid search found that the KNN classifier with the
following hyperparameters results in the highest cross-
validation accuracy:

• n neighbors - 280

• weights - ’distance’
• metric - ’Euclidean’

Furthermore, the values for the performance metrics
to evaluate the KNN classifier with the optimised
hyperparameters are listed in Table 3. Optimisation
of the hyperparameters results in an increase in the
performance metrics, ranging from 2.26% to 3.13%
compared to the default classification on the same
feature set. The confusion matrix of this classification in
Figure 5a shows the amount of data samples predicted
as a specific label compared to their true label. Among
the classes, the 1000-gram class shows the highest recall
percentage. This is the percentage of data samples from
this class that is correctly identified as this class. For
the 1000-gram class is this a percentage of 76.95%.
On the other hand, the class with the lowest recall
percentage is the 100-gram class, having a percentage
of 23.78%.

Evaluation SVM classifier

First, a default SVM Classifier (hyperparameters: C -
1.0, kernel - ’rbf’, gamma - 1 / (n features*variance))
classified the test dataset into the different classes.
In Table 4, the values of all performance metrics are
shown for this classifier.

Feature selection shows a decrease of 9.55% in accuracy,
12.37% in precision, 13.03% in recall, and 9.72% in
the F1-score, compared to the classifier with default
hyperparameters on the entire feature set.

Finally, SVM classification was done after a grid search
to find the best hyperparameters. Grid search found
that the following combination of hyperparameters
results in the highest accuracy:

(a) Confusion matrix of KNN classifier after feature selection and
optimisation of the hyperparameters

(b) Confusion matrix of SVM classifier after feature selection and
optimisation of the hyperparameters

Fig. 5. Confusion matrices KNN and SVM classifier with optimised hyperparameters (The diagonal values represent the number of correct
classifications for each class. All other values indicate the number of misclassifications.)
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• C - 100
• gamma - 1/(n features*variance)
• kernel - ’rbf’

All values for the performance metrics evaluating the
SVM classifier with optimised hyperparameters can
be found in Table 4. The values for the performance
metrics are almost equal to the SVM classifier using
the default hyperparameters tested on the same feature
set. The values show a maximum decrease in precision
of 0.53% and a maximum increase in recall of 1.01%
compared to the default SVM classifier. In Figure 5b,
the confusion matrix of this classifier is shown. The
ability of this SVM classifier to predict the label of a
specific class correctly, being the recall, differs a lot
between the classes. The lowest recall percentages were
shown in the 0-gram, 100-gram and 200-gram classes,
having percentages of 0.05%, 0.08% and 0.0008%,
meaning there were almost no correct predictions for
these classes. On the other hand, the 10-gram and
1000-gram classes show recall percentages of 43.58%
and 66.66%. Therefore, the difference in the ability to
perform correct predictions differs a lot between the
classes, having a bias towards the 10-gram, and 1000-
gram classes, and almost no correct predictions in the
0-gram, 100-gram, and 200-gram classes, as shown in
the confusion matrix.

C. One-to-one classification
KNN classifier
In Table 5, the performance metrics for evaluating the
one-to-one KNN classification, comparing all classes
with the class lifting no weight (0 gram), is shown.
The table shows that all performance metrics increase
when weight increases compared to 0 gram. The only
exception to this is the class of 100 gram. Focussing
on the accuracy values, they range from 59.48% for 10
gram to 91.49% for 1000 gram. Among these accuracy
values, the class of 100 gram, decreased in the accuracy
value by 2.01% compared to the accuracy of the one-
to-one classification between 0 and 50 gram.

TABLE 5. Evaluation of KNN one-to-one classifiers (accuracy =
fraction of total predictions that are correct, precision = fraction of a
predicted label that was identified correctly, recall = sensitivity, fraction
of the true label that was identified correctly, F1-score = a combination
metric of precision and recall, emphasizing the balance between the
two) [gr = gram]

One-to-one classifier Accuracy Precision Recall F1-score
0 gr vs. 10 gr 59.48% 61.07% 57.31% 59.13%
0 gr vs. 50 gr 63.12% 65.21% 61.82% 63.47%
0 gr vs. 100 gr 61.11% 62.69% 58.66% 60.61%
0 gr vs. 200 gr 69.79% 71.42% 67.01% 69.15%
0 gr vs. 500 gr 81.60% 81.25% 83.31% 82.27%
0 gr vs. 1000 gr 91.49% 91.69% 93.03% 92.36%

SVM classifier
Table 6 shows the performance metrics for evaluat-
ing the one-to-one SVM classification, comparing all
classes with the class lifting no weight (0 gram). It can

be seen that all performance metrics increase when
the lifted weight increases compared to 0 gram. The
accuracy values range from 57.27% for 10 gram to
90.88% for 1000 gram.

TABLE 6. Evaluation of SVM one-to-one classifiers (accuracy =
fraction of total predictions that are correct, precision = fraction of a
predicted label that was identified correctly, recall = sensitivity, fraction
of the true label that was identified correctly, F1-score = a combination
metric of precision and recall, emphasizing the balance between the
two) [gr = gram]

One-to-one classifier Accuracy Precision Recall F1-score
0 gr vs. 10 gr 57.27% 59.07% 53.56% 56.18%
0 gr vs. 50 gr 60.65% 62.48% 60.22% 61.33%
0 gr vs. 100 gr 62.82% 64.61% 59.94% 62.19%
0 gr vs. 200 gr 68.23% 70.50% 63.84% 67.00%
0 gr vs. 500 gr 80.58% 81.62% 80.15% 80.88%
0 gr vs. 1000 gr 90.88% 91.95% 90.50% 91.22%

D. Visualisation dynamic task

Figure 6 shows the mean and standard deviation for
the sEMG biceps activity (% of MVC), sEMG triceps
activity (% of MVC), and the force sensor joint torque
(Nm), against the joint angle in degrees, distinguished
for the flexion and extension, during a dynamic task for
both elbow joint velocities (ca. 45 deg/s, ca. 90 deg/s).
Each graph showcased a specific weight selection,
comprising zero, 200, 500, and 1000 grams, to facilitate
a clear visualisation. Except for the triceps activity
during extension, the graphs for biceps activity, triceps
activity during flexion, and force sensor joint torque
visually show a clear difference in the mean value
while lifting the different weights. For sEMG biceps
activity and force sensor joint torque, the following
values apply in a flexion and extension cycle during
the 90-degree elbow joint angle, supporting this clear
difference. The sEMG biceps activity during the flexion
cycle equals the mean values of 3.41 % (no weight),
4.59 % (200 gr), 6.87 % (500 gr), and 10.60 % (1000 gr).
Comparing this to the extension cycle, having mean
values of 1.41 % (no weight), 1.97 % (200 gr), 2.63 %
(500 gr), and 5.00 % (1000 gr). The mean values for
the force sensor joint torque at a joint flexion angle of
90 degrees are 1.51 Nm (no weight), 1.53 Nm (200 gr),
1.62 Nm (500 gr), and 1.65 Nm (1000 gr). Comparing
this to the extension cycle, the mean values at a joint
extension angle of 90 degrees are 2.08 Nm (no weight),
2.08 Nm (200 gr), 2.16 Nm (500 gr), and 2.18 Nm (1000
gr).

Only a selection of the gathered data from the human
experiment was shown in this section. The remaining
data visualisations, including repetitions per person,
can be found in Appendix H.

E. Questionnaires

SUS
For the SUS questionnaire, a mean SUS score of 71.73
was found over the participant group, with a standard
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Fig. 6. Features plotted against the joint angle during dynamic task (mean - dark line showing the mean of all repetitions for all participants
in dynamic tasks per weight, std = transparent area surrounding the mean showing the standard deviation of all repetitions for all participants
in dynamic tasks per weight (1*σ)) [shared ROM over all participants (n = 11)]

deviation of 13.67. Therefore, the mean SUS score is
above 68 and rated above average compared to other
devices. This is equal to being an ’acceptable’ score
and can be classified as ’OK’ usability following the
study of Bangor et al. [53]. The individual SUS scores
range from 45 to 87.5.

NASA-TLX

The NASA-TLX questionnaire compares the user sit-
uation with and without arm weight compensation.
The weighted rating of performing the tasks with no
arm weight compensation is 44.12, compared to a
rating of 37.36 for task performance with arm weight
compensation. Therefore, the mental and physical
workload for exercises with arm weight compensation
was rated lower than a situation with no arm weight
compensation.

RPE

In Table 7, the mean and standard deviation of the
RPE for every task are shown. The task with the
lowest RPE is the quasi-static task, with compensation
for the weight of the forearm and hand. On the
other hand, the dynamic task at a velocity of 90
deg/s, having no compensation, has the highest RPE
of 11.64. When comparing identical tasks with and
without compensation, it can be observed that all
tasks executed with the arm weight compensated,
resulted in a lower RPE than those performed without
compensation.

TABLE 7. Overview of the RPE per task over all subjects
Compensation strategy Tasks Mean RPE (standard deviation)
Compensation of
forearm and hand
weight

Dynamic task - 45 deg/s 9.91 (1.64)

Dynamic task - 90 deg/s 9.82 (2.04)
Pick/place task - 45 degrees 9.64 (1.63)
Pick/place task - 90 degrees 10.00 (1.26)
Quasi-static task 8.73 (1.10)

No compensation Dynamic task - 45 deg/s 10.91 (2.12)
Dynamic task - 90 deg/s 11.64 (2.29)
Pick/place task - 45 degrees 10.18 (2.27)
Pick/place task - 90 degrees 10.18 (1.94)
Quasi-static task 9.36 (1.29)

F. Maximum synchronization delay
The number of removed data samples ranges from 0
to 181 data samples due to the delay. Resulting in a
minimum delay of 0 seconds to a maximum delay of
0.181 seconds. The mean value for the removed data
samples is 88.09, with a standard deviation of 46.08,
equal to a mean delay of 0.088 s.

4 DISCUSSION

This research conducted an exploratory study to gain
insights into the capability to detect and distinguish
lifted objects while flexing and extending the elbow
joint by using various sensor measurements coupled
with straightforward data classification algorithms. In
this discussion, the main findings of this research will
be discussed along with the limitations, followed by
recommendations for further research.

4.1 Data classification accuracy
A KNN classifier demonstrated the highest accuracy
value of 39.70% after feature selection and hyperpa-
rameter optimisation. SVM classification only reaches
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a maximum accuracy value of 34.27%. The accuracy
values are higher than random guessing, equal to a
value of 14.90% based on the proportion of samples
in the most frequent class (1000-gram). However,
the performance indicates a considerable number of
misclassifications [81].

Possible reasons for the difference in performance
between the KNN and SVM classifiers could be that
this dataset benefits from a local rather than a global
classification method [82]. KNN classification is a local
classification method, that looks into data samples near
newly presented data to determine the class. On the
other hand, global methods, such as SVM classification,
attempt to make a single classification rule that is
suitable for the whole dataset [82]. Furthermore, SVM
classification is more sensitive to outliers, making it
challenging to distinguish weights based on biological
signals as sEMG due to their low SNR [83].

The confusion matrix, belonging to the best KNN
classifier, shows that misclassifications even occur
between the 0 and 1000-gram classes. Considering the
future application, this indicates an overestimation,
resulting in an extensive support torque. On the other
hand, when underestimating, assuming the user has
severe muscle weakness, the user will no longer
be able to lift an object or even drop it. For this
vulnerable patient group, it is essential that no major
misclassifications, and thus over- or underestimations,
are made.

The KNN classifier exhibits the highest recall for the
1000-gram class. This recall value indicates greater
accuracy in identifying this weight [84]. Additionally,
one-to-one classifications were performed to see what
amount of weight the classifiers would be able to
identify compared to lifting no weight. One-to-one
classifications reaffirmed the highest accuracy values
for the 1000-gram class, with 91.49% for KNN classifi-
cation and 90.88% for SVM classification. The lower the
weight, the closer the accuracy values are to random
guessing.

In conclusion, the results indicate that data classifica-
tion can, to an extent, differentiate weights of lifted
objects, especially 500- and 1000-gram. The ability to
distinguish weights increases when the difference with
no weight, or the closest weight, is larger.

4.2 Interpretation of the dynamic task analysis for
data classification insights

The dataset, consisting of sensor measurements col-
lected during the dynamic task, was used as input
for the data classification algorithms. During this
task, participants had to flex and extend their elbow
joint while lifting different weights at a constant joint
velocity, guided by a metronome. Having almost no
changes in velocity and acceleration due to the constant

velocity, results in the outcome that these features do
not contain much useful information on the amount
of weight lifted within this experiment. However, the
elbow joint velocity does indicate flexion or extension
of the elbow joint.

The combined mean and standard deviation for all
participants shows that the sEMG biceps activity is the
clearest indicator of the lifted weights while showing
the most noticeable differences between the classes.
Slight differences can be seen in the joint torque based
on the force sensor, and the sEMG triceps activity
during flexion. Furthermore, the Pearson correlation
coefficient between the features and classes, shows the
highest value for the sEMG biceps activity, followed
by the force sensor force (Fz) and the sEMG triceps
activity.

Having healthy people as participants explains these
observations. While healthy people can fully compen-
sate for lifting weights using muscle strength, the
sEMG biceps activity is expected to be the clearest
indicator. The correlation of the sEMG triceps activity
with the classes is less strong than the sEMG biceps
activity because its main function is to extend the
arm. Therefore, the lifted weight did not lead to major
differences in the force sensor measurements or joint
torque measurements of the SEA. By way of contrast,
people suffering from severe muscle weakness do not
have the muscle strength to lift those objects. Therefore,
including this patient group might result in different
findings.

Even though there is a constant velocity and healthy
participants were included, features providing informa-
tion on the force, torque, velocity, or acceleration were
part of the selected features after performing backward
elimination on the feature set. However, looking at
the cross-validated accuracies in Appendix G.2, it is
shown that including these features does not have a
lot of influence on the accuracy values. For the KNN
classifier, an increase of 3.04% in accuracy value was
shown when including the selected features compared
to only sEMG biceps activity. In the SVM classifier,
the difference is only 0.02%. In conclusion, due to the
constant velocity and including healthy participants,
sEMG biceps activity is, in theory, the only feature
providing information on the lifted weight. However,
sEMG is known for its low SNR and sensitivity to
the placements of the electrodes [85]. This low SNR
is reflected in this study, as the sEMG signal has a
large standard deviation. Eventually, this leads to low
accuracy values, necessitating the incorporation of
other sensors or the utilization of alternative object
detection techniques to improve the effectiveness of
weight determination through data classification.
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4.3 Arm weight compensation
Throughout the experiment, the passive forces of the
arm were compensated. Providing precise arm weight
compensation is essential to compensate for the passive
forces and purely measure the movement intention
forces and interaction forces with objects within the
experiment. However, only 80% of the passive forces
were compensated due to deviating values from the
gravity model. The possible reasons for the observed
deviations from the gravity model could be due to
inaccurately collected biometric data, or interaction
forces interfering with the passive force measurements.
These disturbances could be caused by the participant
not being at rest during the position-controlled calibra-
tion measurement, or joint misalignment that caused
interaction forces in the joint limits. An inaccurate
support torque calculation could lead to overestimating
the support torque. Consequently, influencing the re-
sults due to interaction forces with the active-assistive
device. Therefore, it was chosen to only compensate
for 80% of the measured passive forces with the chance
of having non-compensated passive forces influencing
the results. In future experiments, a more consistent
way of determining this compensation should be used
to have the full support of the passive torques acting
on the arm.

4.4 Experimental setup
Several refinements could be made to the experimental
setup. First, the sensors influenced the outcomes of
the human experiment. The IMU was mounted such
that it restricted the ROM of the forearm. This led
to a maximum flexion angle of around 100 degrees
in all experiments. In addition, the IMU sometimes
influenced the sEMG measurements in a maximum
flexion angle by having contact with the sEMG elec-
trodes, resulting in artefacts in the data. Additionally,
in the experiment, wired sEMG electrodes were used,
causing power line interference. Using a notch filter of
50 Hz reduced the effects of power line interference in
the data. However, wired electrodes might be affected
by other environmental influences, such as contact
with the setup, resulting in noise or other artefacts
[86]. Further, the force sensor was mounted between
the arm support and arm sleeve with just one screw on
both sides. Although this assembly was robust initially,
this diminished over time.

Secondly, by using extrusion profiles in the experiment
setup, it was possible to adjust the height of the arm
support and the length of the rigid bar parallel to
the upper arm. However, the length of the rigid bar
parallel to the forearm could not be adjusted, and
the arm sleeve used was one size. The setup and
assistive device could not be perfectly adapted to the
user, leading to possible misalignment. In addition,
participants indicated that they sometimes felt discom-
fort during maximum extension and maximum flexion.

However, this misalignment only influences the data
in maximum flexion and extension.

4.5 Recommendations
Based on the findings and limitations of this study,
several recommendations can be made.

First, a follow-up study should examine the data of
the pick/place task. While performing this task, it
was decided to standardize the angle at which an
object is picked up, but there are no other restrictions.
Because no constant velocity is maintained, velocities
and accelerations can vary, which may provide useful
information on the picked-up weight.

The logical follow-up to the limitation of including
healthy participants is to allow people with muscle
weakness to participate. Another method would be to
find a way in which muscle weakness can be mimicked
in the experiment, e.g. by using larger weights or
creating muscle fatigue. Muscle weakness may affect
the sensor measurements and, thus, the accuracy of
the data classification. Research indicates that sEMG
characteristics vary in people suffering from muscle
weakness, compared to healthy patients [87]–[89].
Specifically, in patients suffering from DMD, the over-
all level of muscular activity decreases. However, more
high-frequency activity is observed [87]. In addition,
the progress of the disease affects sEMG measurements,
which means that the accuracy of data classification
may vary over time based on the progression [90].
Nonetheless, these findings emphasize the urge to
acquire sEMG measurements from people suffering
from several NMDs at different progress stages to
validate the data classification method. In addition,
people suffering from severe muscle weakness, cannot
always lift objects occurring in daily life tasks [18],
[91]. Contrary to healthy participants, this group
does not have the muscle strength to lift all objects.
Therefore, an additional weight might be indicated
by the force or torque sensors when muscle strength
cannot compensate for these weights. Further research
is necessary to understand how muscle weakness
affects sensor measurements to be able to determine
the precise support in active-assistive devices.

Another suggestion is to investigate other data classi-
fication algorithms. In this exploratory study, simple
classifiers were used to check whether these algorithms
would be sufficient to recognise a weight. For now, the
accuracy values do not represent reliable classification,
and modifications in the data classification algorithms
could increase the accuracy. Currently, a single time
point is used as input to the data classifier. Using this
method means that no additional information can be
extracted from adjacent time points. Combining time
points as input for the classifier could be beneficial
to recognise patterns and see longer trends in the
data [79], [92]. Therefore, enhances the ability of a
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classifier to observe dependencies and underlying
relations among features to improve the accuracy of
the classifier [92], [93]. In addition, using multiple
time points as input of the classifier decreases the
sensitivity for outliers, which is especially important
when using noisy signals, such as sEMG [94]. Lastly, in
future applications, the classification algorithm should
perform as an object detector, directly recognising an
object, determining its weight and acting on it by
applying the appropriate support torque to the user.
Therefore, further research should be conducted using
regression models, which can identify and predict
continuous variables, such as various weights, instead
of being limited to certain classes. However, the dataset
must be expanded to include a wider range of lifted
weights.

The current dataset, derived from 11 healthy partici-
pants performing flexion and extension cycles while
lifting several weights, is still limited. During the
experiment, the user was limited in ROM by safety
regulations and geometric constraints due to the IMU
and arm support. Additionally, the study focused
on a 1DOF situation of elbow flexion and extension.
However, a comprehensive active-assistive device
should include all shoulder degrees of freedom, and
elbow pronation and supination. Prior research has
shown the importance of freedom of movement in
daily activities [95]. The performance of simple flexion
and extension tasks in a controlled setting is a good
starting point to gain insights into the influence of
lifting weights on the different sensors. However, with
the prospect of using the device in a real-life setting,
the capabilities of the active-assistive device should be
extended so that the device can respond appropriately
to interaction with the environment in any situation.

5 CONCLUSION

In this research, an exploratory study has been per-
formed to obtain insights into the effect of holding
objects during elbow flexion and extension, as well as
the effectiveness of data classification algorithms to
distinguish the amount of weight lifted. The method-
ology involved conducting a human experiment to
gather data from fourteen healthy participants. During
the experiment, four different sensors were used to
gather information about the interaction with the
objects. Sensor measurements were used as input
to a KNN and SVM classifier to classify the data
into seven distinct labels, each representing a lifted
weight. The best-performing classifier demonstrated
an accuracy of 39.70%, indicating that there were
many misclassifications. Within the KNN multi-class
classifier, the highest recall percentage was shown in
the 1000-gram class. Furthermore, accurate values were
observed in the one-to-one classifications of 500- and
1000-gram. In conclusion, it can be argued that the
used data classification algorithms can, to an extent,

identify the weights of lifted objects, particularly those
weighing 500 and 1000 grams.

To effectively implement data classification, it is crucial
that the accuracy is improved and that there are no
misclassifications to protect this vulnerable patient
group. Further investigation is required to examine the
impact of picking up or placing an object, the impact
of muscle weakness, the application of alternative data
classification algorithms, and the expansion of the
current degrees of freedom and movements in the
dataset.
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APPENDIX A
NOMENCLATURE

Symbol Definition Unit

1DOF 1-Degree-Of-Freedom
ADL Activities of Daily Living
DMD Duchenne Muscular Dystrophy
HREC Human Research Ethics Committee
IMU Inertial Measurement Unit
KNN K Nearest Neighbour
MVC Maximum Voluntary Contraction
NMDs Neuromuscular Diseases
PUL Performance of the Upper Limb
RF Random Forest Classifier
ROM Range of Motion
RPE Rating of Perceived Exertion
SEA Series Elastic Actuator
sEMG surface Electromyography
SNR Signal-to-Noise Ratio
SUS System Usability Scale
SVM Support Vector Machine

α shoulder abduction & adduction angle deg
β shoulder joint flexion & extension angle deg
θ elbow joint flexion & extension angle deg
v elbow joint velocity rad/s
θx, θy , θz IMU angles about the three principal axes deg
vx, vy , vz IMU angular velocity about the three principal axes rad/s
ax, ay , az IMU linear acceleration in three dimensions m/s2

Fz interaction force N
Tz force sensor joint torque N*m
T elbow joint torque N*m
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APPENDIX B
SET-UP EXPERIMENT

B.1 Overview setup experiment

Fig. 7. Overview setup experiment

B.2 Technical diagram setup experiment

Fig. 8. Schematic diagram of the electronics
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APPENDIX C
SENSORS

Within this appendix, only the FUTEK Load Cell will be discussed due to its specific calibration method.

C.1 FUTEK Load Cell
This section focuses on the calibration process of the FUTEK Load Cell, measuring the interaction force (Fz)
between the human arm and the active-assistive device.

Calibration is necessary to convert the raw output of the force sensor, given in bits (216 − 1 bits, ± 10 V), into
accurate force values (Newton). The calibration employs two position-controlled measurements, moving in four
cycles from -68 degrees elbow extension to 165 degrees elbow flexion, and back again at a constant angular
velocity of 0.10 rad/s. The difference between the position-controlled measurements is the known weight
attached to the force sensor. During one measurement, only the arm sleeve is connected to the force sensor.
During the other measurement, a deadweight of 1.078 kg is placed within the arm sleeve. While performing
the position-controlled measurements, the elbow joint flexion/extension angle (θ) is captured by the joint
encoder, and the interaction force (Fz) by the force sensor.

Due to the linear characteristic of the force sensor, a linear function (y = a ∗ x+ b) can be determined for the
conversion of bits to Newton, based on the calibration measurements. These variables will be included in the
linear function:

• x is equal to the raw output of the force sensor
• a is the slope, equal to the calibration factor. The calibration factor is based on the ratio between the

model-based gravity acting on the deadweight (mdw · gacc · cosα), and the raw force measurements of the
measurement with deadweight, and without deadweight. The measurements used for this force ratio are
measured at the position shown in Figure 9b. In this position, pure gravitational forces (Fgrav dw sleeve &
Fgrav sleeve) are measured while the interaction forces (Fz) are aligned with the global gravity axes (Y ).

• b is the offset, equal to the measured absolute offset multiplied by the calibration factor to convert it
into Newton. The offset measurement uses the force information in a 0-degree elbow joint angle without
deadweight, as shown in Figure 9c. Now, the measured interaction force (Fz) is orthogonal to the global
gravity axe (Y ), having no influence of the gravity, and therefore only the absolute offset is measured.

Combining all this information results in the following linear calibration function:

y = a · x+ b

FN = a · FBITS + b

FN = cal factor · FBITS − (offset · cal factor)

= (
mdw · gacc · cosα

Fgrav dw sleeve)− Fgrav sleeve
· FBITS − (offset · mdw sleeve · gacc · cosα

Fgrav dw sleeve − Fgrav sleeve
)

(1)

Daily calibration was performed due to changing environmental conditions and changes in the experimental
setup. All measurements are performed in a 15-degrees shoulder abduction angle.

C.1.1 Exception calibration measurements (subject S26 & S63)
A different calibration setup was used during the first two experiments (S26 & S63). During this calibration
measurement, the force sensor was not integrated in the exoskeleton but was taken out of the setup and placed
on a table. During the calibration, an offset was measured when the force sensor was placed on a flat table,
having no other interactions with the environment. Afterwards, several weights were put on top of the force
sensor to fit a linear function through these data points. The linear fit applied for both calibration methods can
be seen in Figure 10, showing almost no differences. Therefore, subjects S26 & S63 have been included in the
experiment.
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(a) Full ROM calibration measurement (θ = flexion angle)
(b) Position (90 degrees flexion angle) to measure

gravitational forces

(c) Position (0 degrees flexion angle)
to derive the force sensor offset

Fig. 9. Force sensor calibration measurements
(green arrow = Fz , X,Y,Z - global axes, x,y,z - local IMU axes)
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Fig. 10. Linear fit for two different force sensor calibration methods. One calibration method is based on the force sensor incorporated
within the experimental setup (red dashed line), and another method is based on the force sensor calibration out of the experimental setup
(red dotted line)

C.1.2 Results calibration
The accuracy of the force sensor calibration is tested by comparing the results to a gravity model. The model-
based torque was calculated by using the mass of both the deadweight (mdeadweight) and the sleeve (msleeve),
and multiplying this with the gravity acceleration (gacc), the distance between the elbow joint and the force
sensor (lFS), the shoulder abduction angle (cosα), and the elbow flexion angle (sin θ). This equation was used
to derive the model-based torque of the arm sleeve (τsleeve), and the deadweight (τdeadweight):

τdeadweight + τsleeve = (mdeadweight +msleeve) · gacc · cos(α) · sin(θ) · lFS (2)

The only variable that changes over time is θ, the elbow flexion angle. In Figure 11, the orange line represents
the combined torque of the sleeve and deadweight based on force sensor measurements, on which a polynomial
fit is performed (yellow). The blue line represents the gravity-model-based values. Comparing these lines, only
small differences between the measured-based and model-based torque occur. The maximum difference in
torque between the measured- and model-based values is 0.044 N ∗m. The difference in values of the force
sensor measurements is striking, but this can be attributed to known hysteresis in the force sensor, having a
maximum value of 0.1, meaning a maximum difference of 0.1% between an increasing and decreasing load
[37].
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Fig. 11. Measured- and model-based torque measurements, based on the force sensor
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APPENDIX D
ARM WEIGHT COMPENSATION

In this research, a measured-based arm weight compensation strategy was used based on precise force
measurements, which are recorded by the FUTEK load cell, of the passive forces acting on the forearm and
hand, including the effect of gravity and internal passive joint impedance. The following steps were taken
within this compensation strategy:

• Position-controlled dynamic calibration measurement - To identify the passive forces acting on the human
forearm and hand, a position-controlled dynamic measurement is used over 95% of the participant’s
maximum ROM in elbow flexion and extension.

• sEMG inclusion - The force sensor measurements will be included or excluded for torque calculation
based on the sEMG activity of the biceps and triceps.

• Elbow joint torque calculation - Based on the included force measurements, the support torque will be
calculated.

• Torque control - 80% of the support torque is exerted on the user via torque control

D.1 Position controlled measurement
To identify the passive forces acting on the human forearm and the hand, position-controlled measurements are
done. To perform these measurements, the actuator is moving within 95% of the participant’s maximum ROM,
with an elbow joint velocity of 0.10 rad/s. This is repeated for 8 cycles. During the identification, measurements
of the joint encoder (joint angle [rad], joint torque [N ∗m]), force sensor (force [N ]), and sEMG (sEMG activity
of the biceps and triceps [V ]) were taken.

D.2 sEMG inclusion
Based on the sEMG activity of the biceps, and triceps, the force measurements within a flexion or extension cycle
were included or excluded. This step is essential to ensure that the user was at rest during the measurement
and that no other forces will be measured than the passive forces. This process consists of the following steps:

• The collected data was split into sixteen subparts, to divide every cycle into flexion and extension, based
on the joint angle. In Figure 12, the separated flexion and extension cycles are shown as the green part
(flexion) and the yellow part (extension) of the graphs.

• The average sEMG activity, combined for every flexion and extension cycle, is derived, shown as red solid
lines in the sEMG biceps activity and sEMG triceps activity graphs in Figure 12.

• An average sEMG activity is derived, based on the three flexion/extension cycles showing the lowest
sEMG activity. This was performed separately for the biceps and triceps activity. In addition, the standard
deviation for these cycles was derived, multiplied by three and added to the mean value, representing the
noise threshold of the sEMG signal [?]. This value represents the upper threshold, shown in the graph as
the horizontal black dashed line in the sEMG activity graphs, which preferably will not be exceeded to
make sure the participants is at rest during the measurements. In Figure 12, the cycles with the lowest
activity on which the average is based are indicated on the left, within the dashed red coloured block.

• When more than 3.5% of the data samples in a flexion or extension cycle exceed the upper threshold, the
force sensor measurements will be excluded. In a flexion cycle, this concerns the sEMG biceps activity,
and in the extension cycle, this concerns the sEMG triceps activity. The first and last (eight) flexion and
extension cycles were always excluded.

• The force measurements, collected by the force sensor, from the included cycles will be used for the elbow
joint torque support calculation.

D.3 Elbow joint support torque calculation
Some processing steps should be taken to go from force measurements to elbow joint support torque. First,
the force sensor data will be filtered. Subsequently, to obtain a torque value, the force sensor measurements
must be multiplied by the distance of the elbow joint to the force sensor (lFS). Moreover, the SEA exerts the
support torque (τsupport). Consequently, it is essential to incorporate the additional torques (τadd) created by
the active-assistive device itself. These additional torques (τadd) consist of the torque exerted by the IMU,
the rigid bar aligned with the forearm, and the force sensor itself. The additional torque (τadd) is based on
the combined mass of these parts (madd), and the combined center of mass (COMadd). To derive the support
torque (τsupport), the following equation must be incorporated:
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Fig. 12. Example of sEMG inclusion, showing raw sEMG measurements for the biceps and triceps during the position-controlled
measurements. A flexion or extension cycle will be excluded when 3.5% of the data samples exceed the upper threshold, meaning that the
user is not relaxing the arm

τsupport(θ) = F (θ) · lFS · τadd(θ) (3)

τadd(θ) = madd · COMadd · gacc · sin(θ) · cos(α) (4)

In Figure 13a, the torque-angle profile is shown for every flexion/extension cycle, after filtering and applying
the equations to go from force measurements to torque. These torque measurements are interpolated, and
the average of all flexion and all extension cycles over the joint angles is derived. Afterwards, a 7th-order
polynomial fit is applied to this profile to smoothen the data, resulting in a combined torque-angle profile for
the flexion and extension cycle separately, as shown in Figure 13b. Lastly, an average torque-angle profile is
calculated for both flexion- and extension cycle, as shown in Figure 13c. The coefficients of this polynomial fit
will be saved within a look-up table and used as support torque within the active-assistive device.

D.4 Torque control
Throughout the experiment, only 80% of the derived support torque was exerted on the user. Due to the
sensitivity of the force sensor was chosen to decrease the amount of support. On the one hand, this increased
the impact of passive forces on the measurements, while on the other hand, it ensured that there were no
interaction forces between the user and the device in a situation where the support is overestimated.

Within the active-assistive device, the look-up table containing the coefficients of the torque-angle profile is
used to determine the support torque based on the elbow joint angle (θ). This torque is exerted on the user,
considering the current support torque and the torque safety limits.
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(a) Filtered torque-angle profile for all separate flexion and
extension cycles

(b) Force-torque profile for flexion- and extension cycle
separately (flexion cycle 7 is excluded)

(c) Combined force-torque profile including both flexion- and
extension cycle

Fig. 13. Calculation of the support torque-angle profile based on force measurements of a FUTEK load cell
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APPENDIX E
DATA PREPARATION

After filtering the data, several data preparation steps were performed before analysing and classifying the
data. These steps will be elaborated on in this appendix.

E.1 Trigger signal

As described in the Methods section, a trigger signal synchronises the Simulink/TwinCAT environment and
the sEMG system. Nonetheless, certain deficiencies persist in the sEMG system’s data acquisition script on
how MATLAB stores NiDAQ data. Additionally, the trigger signal was absent in the collected sEMG data.
Therefore, this resulted in a difference in the amount of samples of the sEMG data and data captured in the
TwinCAT environment.

Additional measurements revealed that extra samples were recorded at the beginning and end of the
measurement. This happened even though the trigger signal stopped, and the trigger signal value was
set back to 0 Volt. In Figure 14, an example of this discrepancy in gathered data samples is shown. Before
initiating the trigger signal, 71 samples were already recorded. Furthermore, at the end of the trigger signal, 43
additional measurements were recorded. Therefore, the following strategy has been adopted to manage the
issue of the trigger sample inconsistency. Due to the storage of the supplementary sEMG samples, the total
sample number is always equivalent to or exceeds the number of TwinCAT samples. To address this problem,
the sample counts from both systems are compared, resulting in the identification of redundant samples. As
shown in Figure 14, both at the beginning and end of a measurement, redundant samples are taken. Therefore,
the number of redundant samples will be halved. At the start and end of an sEMG measurement, this quantity
of samples is removed.

Fig. 14. Sample difference in trigger signal

E.2 Delay removal

One of the safety regulations is the implementation of a software end-stop, based on the ROM of every
participant, to ensure that this is not exceeded. While the actuator is powered, the participant can move freely
within 90% of the range of motion. When the participant exceeds 90% of the ROM, the actuator will give an
error and switch off. Angle guards have been implemented 2.9 degrees (0.05 radians) before exceeding this 90%
ROM, to ensure that the actuator will not be switched off during active device use. However, when entering
these angle guards, damping is applied to the user, influencing the gathered data in the experiments. Therefore,
data samples collected within these angle guards will be removed. In conclusion, a ROM measurement per
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subject is performed to find and use the maximum ROM values. During the position-controlled calibration
measurements, the user moved within 95% of this ROM. During the performance of the tasks, the user was
able to move within 90% of this ROM. Subsequently, angle guards applied damping with large values at 2.9
degrees before reaching maximum and minimum joint angles. In Figure 15, the effect of the end-stop removal
is shown for the joint angle (θ), the joint torque based on the force sensor measurements, sEMG biceps activity,
and sEMG triceps activity. The red marked lines show the removed samples of the dataset due to the angle
guards.

Fig. 15. Effect of end-stop removal on the dynamic task dataset of participant S98, during a velocity of ca. 45 deg/s

E.3 Data labelling
Data labelling is an essential step towards data classification. Every data sample in time, measured with a
frequency of 1000 Hz, is assigned a label. This label represents the lifted weight at that moment. Data labelling
was performed manually by selecting the corresponding flexion- and extension cycles for every weight. The
result of data labelling for one of the participants during a dynamic task at a velocity of 45 deg/s can be seen
in Figure 16.

Fig. 16. Data labelling the dynamic task dataset of participant S98, during a velocity of ca. 45 deg/s

E.4 Manual removal of data
Although all previous data filtering and data preparation steps were performed, not all redundant information
was removed from the dataset. Two types of data were removed from the dataset:

• Artefacts in data due to unexpected events during the experiment, such as dropping weights or sensor
interaction. Figure 17 shows an example in which the sEMG electrodes were not properly connected to
the skin any more due to interaction with the environment and therefore show values of around 1000% of
MVC. To prevent manipulation of the results, these peaks have been removed manually.

• After performing all repetitions while a weight was lifted, there was some ’waiting’ time when the weight
was switched. This data has also been removed from the dataset. In Figure 18, an example of the removal
of this ’waiting’ time is shown.
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Fig. 17. Manual removal of an artefact by disconnecting the electrode from the skin through interaction with the environment.

Fig. 18. Manual removal of the changing time between different weights in the task
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APPENDIX F
PARTICIPANT EXCLUSION

Three participants have been excluded from the data analysis and data classification. Two participants were
excluded based on the torque-angle profile, containing the support torque used to compensate for the passive
forces acting on the human arm. One participant has been excluded based on joint misalignment.

F.1 Position-controlled arm weight compensation measurement
Due to hysteresis in the force sensor, the measurements show a difference in the flexion and extension cycle
when measuring the passive forces during the position-controlled measurement [37]. Therefore, hysteresis
would result in exceeding values for flexion above extension. However, participants S46 and S77 both show
torque-angle profiles with higher torque values for the extension, than the flexion cycle. Hence, it is possible
that factors other than passive forces may have had an impact on the force measurements, and the participants
were excluded.

(a) Torque-angle profile of subjects S77 of position-controlled
calibration measurement

(b) Torque-angle profile of subjects S46 of position-controlled
calibration measurement

Fig. 19. Exclusion based on torque-angle profile during position-controlled measurements (torque in extension cycle exceeds torque in
flexion cycle)

F.2 Joint misalignment

To align the participant with the active-assistive device, the
height of the extrusion profiles and the length of the upper arm
could be adjusted. Furthermore, the participant was placed
within an arm sleeve that was subsequently attached to the
device, and an elastic band was placed around the upper
arm connecting the participant to the device. The elastic band
was forgotten during the experiments with one participant,
and significant misalignments were shown in the experiment
videos. One shot of the experiment is shown in Figure 20 in
which the misalignment is shown. It is evident that the elbow
joint is not aligned with the SEA and that the upper arm is
positioned further back than the device.

Fig. 20. Significant joint misalignment in participant
S17 due to the absence of the elastic upper band, which
ensures stabilization and better alignment of the upper
arm and elbow joint with the device
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APPENDIX G
DATA CLASSIFICATION

This appendix provides all background information and extensive results of the data classification. Only the
data of the dynamic tasks is considered in the data classification.

G.1 Data Visualization
G.1.1 Class Distribution
In Figure 21 the distribution of the classes, the used weights in the human experiment, is shown. With a
minimum of 521380 samples in the 0-gram class (13.6% of complete dataset), and a maximum of 572279
samples in the 1000-gram class (14.9% of complete dataset).

Fig. 21. Class distribution in dynamic movements’ dataset, with the classes representing the lifted weights

G.1.2 Descriptive statistics

TABLE 9. Descriptive statistics of the dynamic movement data set (total samples = 3823550)
Feature Mean Standard Deviation Minimum value Percentile (25%) Percentile (50%) Percentile (75%) Maximum value
Encoder Joint Angle [rad] 1.09 0.48 0.14 0.66 1.11 1.54 1.91
Encoder Joint Velocity [rad/s] -0.004 1.26 -3.49 -0.99 -0.09 1.03 3.59
SEA Joint Torque [N*m] 1.34 0.58 -0.26 0.95 1.38 1.78 2.67
Load Cell Force [N] 9.81 5.80 -7.52 5.92 9.48 13.13 29.01
sEMG activity biceps [% of MVC] 3.25 3.19 -0.26 1.24 2.14 4.07 65.11
sEMG activity triceps [% of MVC] 2.49 1.29 0.56 1.37 2.09 3.58 17.61
IMU Joint Angle [rad] 61.93 28.25 3.42 36.70 63.19 87.78 112.46
IMU Joint Velocity [rad/s] -0.0012 1.16 -3.24 -0.96 -0.06 0.99 3.06
IMU Joint Acceleration [m/sˆ2] 7.25 1.93 -2.14 5.84 7.85 8.91 11.81
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G.1.3 Box plot per feature

(a) Box plot of sEMG Biceps Activity (b) Box plot of sEMG Triceps Activity

(c) Box plot of Actuator Joint Angle (d) Box plot of Actuator Joint Velocity

(e) Box plot of Actuator Joint Torque (f) Box plot of Load Cell Force
Fig. 22. Box plots of set of features (n = 6) showing distribution over classes - part 1
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(a) Box plot of IMU Joint Angle (b) Box plot of IMU Joint Velocity

(c) Box plot of IMU Joint Acceleration
Fig. 23. Box plots of set of features (n = 3) showing distribution over classes - part 2
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G.1.4 Correlation heatmap
G.1.4.1 Correlation between features
In Figure 24 the correlation between all features is shown in the dynamic movements’ dataset. In the book of
Swinscow et al. [69] the following strengths of the correlation coefficient have been described:

• 0 - 0.19: very weak
• 0.2 - 0.39: weak
• 0.4 - 0.59: moderate
• 0.6 - 0.79: strong
• 0.8 - 1.0: very strong

Therefore, the following features have a very strong correlation:

• Actuator Joint Velocity & IMU Joint Velocity - very strong (0.95)
• Actuator Joint Angle & IMU Joint Angle - very strong (0.92)
• IMU Joint Angle & IMU Joint Acceleration - very strong (0.9)
• Actuator Joint Angle & IMU Joint Acceleration - very strong (0.88)
• Actuator Joint Torque & Load Cell Force - very strong (0.81)

Fig. 24. Heatmap of the correlation coefficients between features in the dynamic movement dataset. The numbers within the heatmap
represent the Pearson correlation coefficients between the corresponding features.
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G.1.4.2 Correlation between features and classes

Fig. 25. Heatmap of the correlation coefficient between features and the classes in the dynamic movement dataset. The numbers within
the heatmap represent the Pearson correlation coefficients between the features and the classes.
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G.2 Feature selection - backward elimination
Backward elimination was used as a feature selection method. Within the backward elimination, one feature is
constantly removed from the dataset until one feature is left. This is done using cross-validation accuracies for
every subset of features, checking for the highest value. The mean of the cross-validated accuracies for the
best-performing feature subset is shown in Table 10 and Table 11. In addition, the feature excluded based on
backward elimination in every step is shown.

G.2.1 KNN Classification

TABLE 10. Backward elimination feature selection for the KNN classification algorithm. The mean cross-validation accuracy score, including
standard deviation, is shown for the best-performing feature subset. The excluded feature based on the highest performance is displayed.

Amount of features Mean cross-validation accuracy (standard deviation) Excluded feature in feature subset
9 features 21.46% (2.96%) -
8 features 21.74% (2.51%) IMU Joint Angle
7 features 21.94% (2.68%) IMU Acceleration
6 features 21.97% (2.65%) IMU Joint Velocity
5 features 21.60% (2.51%) Elbow Joint Torque
4 features 20.76% (1.14%) Elbow Joint Angle (encoder)
3 features 19.81% (0.98%) Load Cell Force
2 features 19.68% (1.49%) sEMG Triceps Activity
1 feature 18.94% (1.29%) Elbow Joint Velocity (encoder)

The backward elimination resulted in a subset of six features having the highest mean cross-validation accuracy.
This feature subset consists of the sEMG biceps activity, the elbow joint velocity by the joint encoder (v), the
sEMG triceps activity, the load cell force (Fz), the elbow joint angle by the encoder (θ), and the elbow joint
torque by the encoder (T ).

G.2.2 SVM Classification

TABLE 11. Backward elimination feature selection for the SVM classification algorithm. The mean cross-validation accuracy score, including
standard deviation, is shown for the best-performing feature subset. The excluded feature based on the highest performance is displayed

Amount of features Mean cross-validation accuracy (standard deviation) Excluded feature in feature subset
9 features 22.11% (2.70%) -
8 features 22.47% (2.49%) sEMG Triceps Activity
7 features 22.59% (1.06%) Elbow Joint Torque
6 features 22.60% (1.22%) IMU Joint Velocity
5 features 22.76% (1.47%) Load Cell Force
4 features 23.39% (1.44%) Elbow Joint Velocity (encoder)
3 features 23.52% (1.39%) IMU joint angle
2 features 23.36% (1.24%) IMU Acceleration
1 feature 23.50% (1.15%) Elbow Joint Angle (encoder)

The backward elimination resulted in a subset of three features having the highest mean cross-validation
accuracy. This feature subset consists of the sEMG biceps activity, the elbow joint angle by the encoder (θ),
and the IMU acceleration in the z-axis (az).
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G.3 Grid Search
Grid Search is a method to tune the hyperparameters by checking the mean cross-validation accuracy of all
combinations of hyperparameters. This is for both KNN and SVM classification performed on a specific subset
of hyperparameters.

G.3.1 KNN Classification
The following hyperparameters were evaluated in the grid search:

• n neighbors - {1, 5, 10} and 20− 1000 in steps of 20
• weights - ’uniform’, ’distance’
• metric - ’Euclidean’, ’Manhattan’

Figure 27 shows the output of the grid search resulting in the highest mean cross-validation accuracy for the
following combination of hyperparameters:

• n neighbors - 280
• weights - ’distance’
• metric - ’Euclidean’

Fig. 26. Performed grid search in the knn classification for the hyperparameters neighbours, weights, and metric. The different graphs
represent how a combination of weights and metrics changes over increasing neighbors.

G.3.2 SVM Classification
The following hyperparameters were evaluated in the grid search:

• C - 0.01, 0.1, 1, 10, 100
• gamma - 0.01, (1/(n features*variance)), 0.1, 1, 10
• kernel - ’linear’, ’rbf’

Gamma does not affect the linear kernel because this hyperparameter represents the curvature of a decision
boundary. Therefore, it only has influence on the ’rbf’ kernel. Figure 27 shows the output of the grid search
resulting in the highest mean cross-validation accuracy for the following combination of hyperparameters:

• C - 100
• gamma - ’scale’
• kernel - ’rbf’
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Fig. 27. Performed grid search in the SVM classification for the hyperparameters C, gamma, and the kernel. The different graphs represent
how a combination of the kernel and gamma changes over an increasing value for C.



DELFT UNIVERSITY OF TECHNOLOGY, COGNITIVE ROBOTICS, OCTOBER 2023 39

G.4 Evaluation
Most of the performance metrics, evaluating both classifiers, are shown in the Results section. However,
additional results are shown in this section. The additional results in this section are the mean and standard
deviation of the cross-validation accuracies and the confusion matrices for all classifiers.

G.4.1 KNN classifier
G.4.1.1 k-fold cross-validation (k=5)

TABLE 12. Evaluation of KNN classifiers (accuracy = fraction of total predictions that are correct, precision = fraction of a predicted
label that was identified correctly, recall = sensitivity, fraction of the true label that was identified correctly, F1-score = a combination metric
of precision and recall, emphasizing the balance between the two, µ = mean cross-validation accuracy, SD = standard deviation of the
cross-validation accuracies)

Classifier Accuracy Precision Recall F1-score Time fit Time predict µ (SD)
Default KNN Classifier (all features) 34.77% 34.63% 34.85% 34.51% 1.37 s 14.73 s 21.46% (2.41%)
Default KNN Classifier (after feature selection) 36.57% 36.48% 36.80% 36.33% 0.50 s 4.96 s 21.94% (2.40%)
KNN Classifier with the optimised hyperparameters 39.70% 39.09% 39.06% 39.42% 0.37 s 77.97 s 23.06% (1.88%)

G.4.1.2 Confusion Matrix

(a) Confusion matrix KNN classifier with default settings,
including all features

(b) Confusion matrix KNN classifier with default settings,
including the features selected by feature selection in the
feature set

(c) Confusion matrix KNN classifier with optimised
hyperparameter setting, including the features selected
by feature selection in the feature set

Fig. 28. Confusion matrices KNN classifier (The diagonal values represent the number of correct classifications for each class. All other
values indicate the number of misclassifications.)
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G.4.2 SVM classifier
G.4.2.1 k-fold cross-validation (k=5)

TABLE 13. Evaluation of SVM classifiers (accuracy = fraction of total predictions that are correct, precision = fraction of a predicted
label that was identified correctly, recall = sensitivity, fraction of the true label that was identified correctly, F1-score = a combination metric
of precision and recall, emphasizing the balance between the two, µ = mean cross-validation accuracy, SD = standard deviation of the
cross-validation accuracies)

Classifier Accuracy Precision Recall F1-score Time fit Time predict µ (SD)
Default SVM Classifier (all features) 34.27% 32.83% 32.98% 33.94% 4927.41 s 2042.22 s 22.11% (2.7%)
Default SVM Classifier (after feature selection) 24.72% 20.46% 19.96% 24.22% 5697.67 s 2138.82 s 24.55% (1.39%)
SVM Classifier with the optimised hyperparameters (after feature selection) 24.63% 19.93% 20.97% 24.14% 10794.78 s 2481.30 s 23.84% (1.41%)

G.4.2.2 Confusion Matrix

(a) Confusion matrix SVM classifier with default settings,
including all features

(b) Confusion matrix SVM classifier with default settings,
including the features selected by feature selection in the
feature set

(c) Confusion matrix SVM classifier with optimised
hyperparameter setting, including the features selected
by feature selection in the feature set

Fig. 29. Confusion matrices SVM classifier (The diagonal values represent the number of correct classifications for each class. All other
values indicate the number of misclassifications.)
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APPENDIX H
DATA ANALYSIS

H.1 Dynamic task, combining the joint velocity of 45 deg/s and 90 deg/s for all subjects (n = 11)

Fig. 30. Features during dynamic task [joint velocity - 45 deg/s and 90 deg/s]

(a) Actuator Joint Velocity (b) Actuator Joint Torque
Fig. 31. Actuator joint velocity, and joint torque during dynamic task [joint velocity - 45 deg/s and 90 deg/s]
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H.2 Pick/place task, combining the pickup angle of 45 degrees and 90 degrees for all subjects (n = 11)

Fig. 32. Features during pick/place task [joint angle - 45 degrees and 90 degrees]

(a) Actuator Joint Velocity (b) Actuator Joint Torque
Fig. 33. Actuator joint velocity, and joint torque during pick/place task [joint angle - 45 degrees and 90 degrees]
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H.3 Dynamic task, at the joint velocity of 45 deg/s for all subjects (n = 11)

Fig. 34. Features during dynamic task [joint velocity - 45 deg/s]

(a) Actuator Joint Velocity (b) Actuator Joint Torque
Fig. 35. Actuator joint velocity, and joint torque during dynamic task [joint velocity - 45 deg/s]
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H.4 Dynamic task, at the joint velocity of 90 deg/s for all subjects (n = 11)

Fig. 36. Features during dynamic task [joint velocity - 90 deg/s]

(a) Actuator Joint Velocity (b) Actuator Joint Torque
Fig. 37. Actuator joint velocity, and joint torque during dynamic task [joint velocity - 90 deg/s]
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H.5 Pick/place task, with a pickup angle of 45 degrees for all subjects (n = 11)

Fig. 38. Features during pick/place task [joint angle - 45 degrees]

(a) Actuator Joint Velocity (b) Actuator Joint Torque
Fig. 39. Actuator joint velocity, and joint torque during pick/place task [joint angle - 45 degrees]
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H.6 Pick/place task, with a pickup angle of 90 degrees for all subjects (n = 11)

Fig. 40. Features during pick/place task [joint angle - 90 degrees]

(a) Actuator Joint Velocity (b) Actuator Joint Torque
Fig. 41. Actuator joint velocity, and joint torque during pick/place task [joint angle - 90 degrees]
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H.7 Overview measurements - subject S04

Fig. 42. Features during dynamic task [joint velocity - 45 deg/s]

Fig. 43. Features during dynamic task [joint velocity - 90 deg/s]
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Fig. 44. Features during pick/place task [joint angle - 45 degrees]

Fig. 45. Features during pick/place task [joint angle - 90 degrees]
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H.8 Overview measurements - subject S06

Fig. 46. Features during dynamic task [joint velocity - 45 deg/s]

Fig. 47. Features during dynamic task [joint velocity - 90 deg/s]
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Fig. 48. Features during pick/place task [joint angle - 45 degrees]

Fig. 49. Features during pick/place task [joint angle - 90 degrees]
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H.9 Overview measurements - subject S26

Fig. 50. Features during dynamic task [joint velocity - 45 deg/s]

Fig. 51. Features during dynamic task [joint velocity - 90 deg/s]
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Fig. 52. Features during pick/place task [joint angle - 45 degrees]

Fig. 53. Features during pick/place task [joint angle - 90 degrees]
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H.10 Overview measurements - subject S31

Fig. 54. Features during dynamic task [joint velocity - 45 deg/s]

Fig. 55. Features during dynamic task [joint velocity - 90 deg/s]
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Fig. 56. Features during pick/place task [joint angle - 45 degrees]

Fig. 57. Features during pick/place task [joint angle - 90 degrees]
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H.11 Overview measurements - subject S42

Fig. 58. Features during dynamic task [joint velocity - 45 deg/s]

Fig. 59. Features during dynamic task [joint velocity - 90 deg/s]
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Fig. 60. Features during pick/place task [joint angle - 45 degrees]

Fig. 61. Features during pick/place task [joint angle - 90 degrees]
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H.12 Overview measurements - subject S59

Fig. 62. Features during dynamic task [joint velocity - 45 deg/s]

Fig. 63. Features during dynamic task [joint velocity - 90 deg/s]
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Fig. 64. Features during pick/place task [joint angle - 45 degrees]

Fig. 65. Features during pick/place task [joint angle - 90 degrees]
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H.13 Overview measurements - subject S63

Fig. 66. Features during dynamic task [joint velocity - 45 deg/s]

Fig. 67. Features during dynamic task [joint velocity - 90 deg/s]
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Fig. 68. Features during pick/place task [joint angle - 45 degrees]

Fig. 69. Features during pick/place task [joint angle - 90 degrees]
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H.14 Overview measurements - subject S68

Fig. 70. Features during dynamic task [joint velocity - 45 deg/s]

Fig. 71. Features during dynamic task [joint velocity - 90 deg/s]
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Fig. 72. Features during pick/place task [joint angle - 45 degrees]

Fig. 73. Features during pick/place task [joint angle - 90 degrees]
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H.15 Overview measurements - subject S80

Fig. 74. Features during dynamic task [joint velocity - 45 deg/s]

Fig. 75. Features during dynamic task [joint velocity - 90 deg/s]
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Fig. 76. Features during pick/place task [joint angle - 45 degrees]

Fig. 77. Features during pick/place task [joint angle - 90 degrees]
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H.16 Overview measurements - subject S95

Fig. 78. Features during dynamic task [joint velocity - 45 deg/s]

Fig. 79. Features during dynamic task [joint velocity - 90 deg/s]
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Fig. 80. Features during pick/place task [joint angle - 45 degrees]

Fig. 81. Features during pick/place task [joint angle - 90 degrees]
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H.17 Overview measurements - subject S98

Fig. 82. Features during dynamic task [joint velocity - 45 deg/s]

Fig. 83. Features during dynamic task [joint velocity - 90 deg/s]
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Fig. 84. Features during pick/place task [joint angle - 45 degrees]

Fig. 85. Features during pick/place task [joint angle - 90 degrees]


