FLOATING HOUSE, THE PHILIPPINES

Recommendation for Improvements of the Building Design by Evaluating the Indoor Environmental Quality of the Pilot Project in Macabebe, the Philippines

Content

Why did I choose this project?

Introduction

Problem Statement

Objectives & Research Questions

Work Flow

Answering the Research Questions

Further Studies & Limitations

Why This Project?

Personal Experience: Chennai Flood, 2015

Personal Experience: Chennai Flood, 2015

Kerala Flood, 2018 (source: teambhp.com)

Personal Experience

Why This Project?

A scenario [Source: Pieter Ham]

The Project: compassion + technology

to improve the well-being of people.

An Opportunity to Learn!

Introduction

Location

In addition: housing backlog

Introduction

Pilot Floating House

Pilot Floating House [Source: Pieter Ham]

Problem Statement

Now it is important to see how the house performs in real life

to **recommend improvements**, for the well being of the occupants

Objectives

Main Objective

To **recommend improvement strategies** for the design of the low-income houses, in the Philippines, by **evaluating the indoor environmental quality** of the pilot floating house project.

Sub Objective:

To develop a cost-effective measuring and remotely accessible monitoring device for the indoor comfort parameters in the pilot floating house.

Research Questions

Main Research Question

What **vernacular design strategies** can be advised for the design of the low-income houses, in the Philippines, by **evaluating the indoor environmental quality** of the pilot floating house project?

Research Questions

- 1. How is the pilot floating house in the Philippines designed and constructed in terms of passive design?
- 2. What are the **comfort parameters that need to be measured**, which influence the indoor environment quality of the housing type?
- 3. How to **develop a measurement plan and monitoring system** for indoor environmental quality of the pilot project?
- 4. How does the **pilot floating house perform** in terms of the measured results?
- 5. What are the **improvement strategies** needed to provide better indoor environment for the housing type with respect to the analyzed data?
- 6. How do the improved strategies perform when compared to the existing design?

Work Flow

1. How is the pilot floating house in the Philippines designed and constructed in terms of passive design?

Climate

Average Monthly Temperature (Pampanga)

Philippines in General

Tropical and maritime climate:

High Temperature & High Humdity

TUDelft

Site

Site Plan

∕√ TUDelft

Floor Plans

Spaces

Entrance

Spaces: GF

Dining & TV Area

Spaces: Attic

Attic Floor

Vernacular Strategies

Bahay Kubo [source: https://balay.ph]

Natural Light

Stilt

Construction

Construction Photos [source: Ham, 2019]

Natural Ventilation (left), Typhoon resilient (right) [source: Ham, 2019]

2. What are **the comfort parameters that need to be measured**, which influence the indoor environment quality of the housing type?

IEQ (Comfort Parameters)

Cleanliness

IEQ (Comfort Parameters)

Thermal Comfort

Each person percieves and responds differently

Regulatory Mechanisms

- Heat Gain
 - i. Metabolism
 - ii. Conduction
 - iii. Convection
 - iv. Radiation
- **Heat Loss**
 - i. Conduction
 - ii. Convection
 - iii. Radiation
 - iv. Evaporation

Thermal Balance: (+) Heat Gain = (-) Heat Loss

IEQ (Comfort Parameters)

Thermal Comfort

Measurements

Interviews

IEQ (Thermal Comfort)

Comfort Model Selection

Air Velocity & Comfort Temperature

ASHRAE adaptive comfort graph [source:ASHRAE 55-2010]

Adaptive Comfort Model for Manila, the Philippines

Increase in comfort performance with air velocity [Nicol, 2004]

.	P5	Р	re	92	ni	la:	ti	a	n
	·		ıc	ЭC		LCL		v	ш

3. How to **develop a measurement plan and monitoring system** for indoor environmental quality of the pilot project?

Devices

	Hobo Data logger + External Sensor +	Thermochron I-Buttons	Extech Hotwire Anemometer	
	Black Globe			
Measures	*************************************		<u>C</u>	
	D.B.T & O.T R. H	Inner Surface Temperature	Air Velocity	
Туре	Continuous measurement	Continuous measurement	Spot measurement	
Interval	5 minutes	10 minutes	Multiple	
Location	TV Area, Dining, Kitchen @ 1.5 m ht Attic @ sleeping ht	TV Area, Dining, Kitchen @ 1.5 m ht Roof @ almost center	Center of openings, centre of room, Outdoor & multiple directions	

TUDelft

Field Visit

Measurement Period

- 1. February 08:
- 2. February 09:
- 3. February 10:
- 4. February 11:
- 5. February 12:
- 6. February 13:
- 7. February 14:
- 8. February 15:
- 9. February 16:
- 10. February 17:

For 9 days

IoT Monitoring Device

Raspberry Pi

DHT22 Sensor

Python3

Ubidots IoT

Continuous measurement @ 3 mins interval

Living & Kitchen @ 1.5 m ht Attic @ sleeping ht

IoT Interface

https://industrial.ubidots.com/app/devices/

Ubidots website interface: live monitoring

IoT Interface

Date	Value
2020-04-19 at 20:30:18	31.20
2020-04-19 at 20:28:47	31.20
2020-04-19 at 20:27:17	31.20
2020-04-19 at 20:25:47	31.20
2020-04-19 at 20:24:17	31.20
2020-04-19 at 20:22:47	31.20
2020-04-19 at 20:21:17	31.30

Ubidots cellphone application: live monitoring

Hypotheses

- 1. "the building interior is expected to be **responsive to the outdoor temperature**"
- 2. "the building interior is expected to have lower temperature than outdoor during the day and the other way during the night".
- 3. "the attic is expected to be the hottest space in the building during most of the day".
- 4. "the indoor spaces are expected to have good air movement".

4. How does the **pilot floating house perform** in terms of measured results and observations?

Comfort Performance

Temperature against Time

Comfort Performance

Indoor Temp against Outdoor Temp: Day

Indoor Temp: Whole Period

Low: < 0.3 m/s

Moderate: 0.3 m/s to <0.65 m/s

High: 0.65 m/s and higher [7]

[Toe & Kubota, 2013]

Location		W 1 (West facing)	W 2 (North Facing)	W 3 (East Facing)	TV Area	Dining Area	Kitchen	Roof Opening East	Roof Opening West	Attic
Avg Air Velocity		0.47	0.87	1.01	0.63	0.62	0.40	0.94	0.64	0.31
Max Avg/measurement	m/s	0.63	2.55	1.54	1.01	0.87	0.60	1.34	0.96	0.50
Min Avg/measurement		0.31	0.34	0.58	0.30	0.39	0.21	0.54	0.46	0.14

Hypotheses to Results

- 1. "the building interior is responsive to the outdoor temperature"
- 2. "the building interior has lower dry-bulb temperature than outdoor during the day, except attic and the other way during the night".
- 3. "the attic is the hottest space in the building during most of the day".
- 4. "The indoor spaces are having good air movement except attic". Air velocity at the openings are similar to that of outdoor air velocity.

Results IoT Monitoring Device

Comparison

	Hobo TV Area	Raspberry Pi	Difference
	°C	∘C	°C
02/17/20 12:00:00 AM	27.70	29.50	1.80
02/17/20 01:00:00 AM	27.43	29.40	1.97
02/17/20 02:00:00 AM	27.19	29.10	1.91
02/17/20 03:00:00 AM	26.89	28.80	1.91
02/17/20 04:00:00 AM	26.65	28.50	1.85
02/17/20 05:00:00 AM	26.35	28.20	1.85
02/17/20 06:00:00 AM	26.11	27.90	1.79
		Average	1.87

	Hobo Attic	Raspberry Pi	Difference
	°C	°C	∘C
02/17/20 12:00:00 AM	27.481	29.40	1.92
02/17/20 01:00:00 AM	27.063	29.00	1.94
02/17/20 02:00:00 AM	26.818	28.70	1.88
02/17/20 03:00:00 AM	26.402	28.30	1.90
02/17/20 04:00:00 AM	26.085	28.00	1.92
02/17/20 05:00:00 AM	25.768	27.70	1.93
02/17/20 06:00:00 AM	25.501	27.40	1.90
02/17/20 07:00:00 AM	25.355	27.30	1.94
		Average	1.92

IoT Monitoring Device

Indoor Temp: Whole Period

TUDelft _

Other Observations

Existing door shutters

Summary

- 1. During the hottest days the attic floor gets hotter than the upper comfort level by around 11°C
- 2. Air velocity is relatively low in the attic compared to that of the other spaces in the house
- 3. Less options in terms of **controlling air velocity, privacy and user-friendliness**
- 4. IoT device is relaiable but needs calibration and improvement

Inference

In addition

- 1. User-friendliness
 - i. controlling the air velocity
 - ii. controlling the privacy
- 2. Smarter and easier way to open and close the shutters

5. What are the **improvement strategies needed** to provide better indoor environment for the housing type with respect to the analyzed data?

Improvement Strategies

Literature Study

Effect of roof opening [source: Roslan et al, 2015]

Effect of attic ventilation [source: Roslan et al, 2015]

Improvement Strategies

Options

Existing scenario

Option 1

Option 2

∕∕ TUDelft _

6. How do the **improved strategies perform** when compared to the existing design?

Performance of Improved Strategies

DesignBuilder Models

TUDelft

Performance of Improved Strategies

Result: Attic Zone

- Attic lowered option performs better with the daily maximum temperatures around 4°C to 6°C lower than existing design
- 2. **Existing design goes below the lower comfort level** by around 2°C during certain days, lower than that of the outdoor temperature **due to radiative cooling.**

TUDelft _

DA	Drock	entatic	'n

What **vernacular design strategies** can be advised for the design of the low-income houses with attic floor, in the Philippines, by **evaluating the indoor environmental quality** of the pilot floating house project?

Features from Vernacular Architecture

Thatched Bahay Kubo with roof opening, Hagonoy

Warehouse + house, Palawan

A building under construction, Palawan

A house, Palawan

Drawings

Section

Controlling Air Velocity and Privacy

Plantation shutter in a local house, Palawan

Plantation shutter details [source: diyplantationshutters.com]

Controlling Air Velocity and Privacy

Louvered windows in a school building, Macabebe

Louvered windows in a school building, Macabebe

Drawings

Drawings

Detail A

Roof Openings

Ground Floor Openings

Dutch door [source: EEHE]

Door detail

Exterior View

View From Kitchen

View from the Dining

View from the Attic

Comfort Performance: Attic Zone

1 Month Period (February)Simulation - Attic Zone

Recommendations

- 1. **Lowering the attic floor**: The attic floor is lowered by 286 mm to the top of the door openings.
- 2. **Openings at sleeping level:** 178 mm high at the sleeping area and 246 mm high other openings.
- 3. **Roof openings:** Roof openings are provided by creating a double hip roof.
- 4. Collapsible louvered doors: Help in controlling air velocity and privacy.

Further Studies & Limitations

Further Studies

- 1. Calibration & Improvement: of the IoT monitoring device
- 2. **Optimization**: the opening size, roof structure, indoor wind flow
- 3. Effect of radiative cooling
- 4. Materials

Limitations

- 1. Building was **unoccupied** during the field visit. Interviews could not be carried out
- 2. Calibration of DesignBuilder model with in situ measurement is not done

P5 Presentation

Thank You!!!

Questions!

