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HIGHER ORDER EXPONENTIAL SPLITTINGS FOR THE FAST NON-LINEAR FOURIER
TRANSFORM OF THE KORTEWEG-DE VRIES EQUATION

Peter J. Prins Sander Wahls

Delft Center for Systems and Control, Delft University of Technology, 2628 CD Delft, The Netherlands

ABSTRACT
Non-linear Fourier Transforms (NFTs) enable the analysis of signals
governed by certain non-linear evolution equations in a way that
is analogous to how the conventional Fourier transform is used to
analyse linear wave equations. Recently, fast numerical algorithms
have been derived for the numerical computation of certain NFTs. In
this paper, we are primarily concerned with fast NFTs with respect
to the Korteweg-de Vries equation (KdV), which describes e.g. the
evolution of waves in shallow water. We find that in the KdV case,
the fast NFT can be more sensitive to numerical errors caused by an
exponential splitting. We present higher order splittings that reduce
these errors and are compatible with the fast NFT. Furthermore we
demonstrate for the NSE case that using these splittings can make the
accuracy of the fast NFT match that of the conventional NFT.

Index Terms— Signal processing algorithms, non-linear Fourier
transform, exponential splittings, Korteweg-de Vries equation

1. INTRODUCTION

The Korteweg-de Vries equation (KdV) for a function q = q(x, t),

qt + 6qqx + qxxx = 0 , (1)

where the subscripts x and t denote partial derivatives, is a well
known non-linear differential equation. It describes a large class
of nearly hyperbolic mathematical systems, including water waves,
lattice waves, and hydromagnetic and ion-acoustic waves in a plasma
[11, 24, 25]. The initial value problem for the KdV can be solved
with a Non-linear Fourier Transform (NFT) in a way that is similar
to the way Fourier solved the heat equation with the linear Fourier
transform [9]. Like the linear Fourier transform, NFTs can be used
to analyse data. The KdV NFT has for example been used to ana-
lyse water waves [4, 6, 15]. (NFTs are also known as scattering
transforms in the literature.) Another evolution equation that can be
solved using NFTs is the Non-linear Schrödinger Equation (NSE)
[1, 13, 26]. It has recently attracted attention for applications in
fibre-optic communication [21]. Unfortunately, most naive numerical
implementations of NFTs have a computational complexity of at
least O(D2), making it unattractive for large numbers of samples D.
For the NSE, recently a Fast Non-linear Fourier Transform (FNFT),
an algorithm with a computational complexity of O(D log2D), has
been introduced [22].1 Formally, the approach used for the NSE can
also be used to obtain an FNFT for the KdV. However, we observed
unexpectedly large numerical errors when we tried this. The FNFT al-
gorithm requires an exponential splitting to become fast. (The matrix

This project has received funding from the European Research Council
(ERC) under the European Union’s Horizon 2020 research and innovation
programme (grant agreement No 716669).

1To be precise: This complexity holds for the so-called reflection coeffi-
cient when ζ ∈ R (see Eq. (3)), the case we consider in this paper.

exponential eA ≡ exp(A) :=
∑∞
k=0 A

k/k! in general does not sat-
isfy exp

(
(A + B)ε

)
= exp(Aε) exp(Bε). Exponential splittings

approximate exp
(
(A + B)ε

)
up to an error of O(εn+1), where n

is the order of accuracy.) We found that removing the exponential
splitting made these errors disappear. A splitting with a higher order
of accuracy can reduce the error, but most spittings known in the lit-
erature unfortunately do not have the special structure that is needed
for the FNFT. In this paper, we therefore present higher order split-
tings that have this structure and can thus be used to obtain FNFTs
with reduced errors. More precisely, we are interested in n-th order
accurate exponential splitting schemes of the general form

e(A+B)ε =

kmax∑
k=0

γk

jmax,k∏
j=0

eαj,kAεeβj,kBε +O
(
εn+1

)
. (2)

As will be explained in Section 3, if all αj,k (or all βj,k) are rational
numbers, we obtain a suitable form for the FNFT. Two widely used
splittings that fulfil these conditions are the symmetrically weighted
sequential splitting and the symmetric Strang splitting, which are both
second order accurate [18, 19]. Suzuki [20] presented an algorithm to
find the parameters for splittings with any desired order of accuracy,
of the form of Eq. (2) with kmax = 0 , but this algorithm results in
irrational or even complex coefficients and is not suitable for our
purpose. We remark that the stability of a splitting scheme can be
guaranteed if all the parameters αj,k, βj,k and γk in Eq. (2) are real
and non-negative. Unfortunately, then the order of accuracy is two at
most [10, 17]. Higher order schemes may be stable, but that needs to
be determined on a per application basis.

The paper is structured as follows. In Section 2, we summarise
the part of the theory behind the (F)NFTs that is relevant for the
purpose of this paper. In Section 3, we establish a sufficient condi-
tion for a splitting to be suitable for the FNFT and present several
higher order exponential splitting schemes that fulfil this condition.
We demonstrate the value of these splitting schemes numerically in
Section 4. The paper is concluded in Section 5.

2. PRELIMINARIES

In this section we describe the numerical calculation of the reflection
coefficient of the Schrödinger equation. This is an intermediate step
in the calculation of the NFT of a potential q(x; t0) that evolves
according to a suitable non-linear differential equation, like the KdV
or the NSE. We will omit the dependence on the fixed time t0.

The following differential equation is the basis for the (F)NFT:

vx(x, ζ) = C(x, ζ) · v(x, ζ) =

[
−jζ q(x)
r(x) jζ

]
· v(x, ζ) [1], (3)

where j is the imaginary unit. For the KdV the boundary condition

lim
x→−∞

v(x, ζ) · exp(jζx) =
[
2jζ 1

]> (4)
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is used and r(x) ≡ −1 is chosen in Eq. (3) [1].2 This choice reduces
Eq. (3) to v2xx + (ζ2 + q(x))v2 = 0 : the Schrödinger equation
associated with Eq. (1) [1]. In this standard form of the KdV all
variables have been made unit-less by normalization. Note that Eq. (3)
is a generalised scattering problem [2, Sec. 6]. Similar problems
appear in many other signal processing applications [3].

The NFT consists of multiple parts, of which we only need the
so-called reflection coefficient R(ζ) in this paper. It is defined in
terms of the solution of Eqs. (3) and (4), denoted as

v(x, ζ)→ 1

T (ζ)

[
2jζe−jζx

e−jζx +R(ζ) ejζx

]
as x→∞ [1]. (5)

Hence, R(ζ) = lim
x→∞

(
2jζ · v2(x, ζ)

v1(x, ζ)
− 1

)
e−2jζx . (6)

The quantity T (ζ) is called the transmission coefficient.
As in for example [14], we apply two approximations to calculate

Eq. (6) numerically:
1. The interval x ∈ (−∞,∞) is replaced by x ∈ [L−, L+] ,

with L± ‘close’ to ±∞ . The approximation is exact if
q(x) = 0 for all x /∈ [L−, L+] .

2. The potential q(x) is approximated by a piecewise constant
function, a staircase q̂(x). That is, the interval [L−, L+] is
divided intoD subintervals of width ε = (L+−L−)/D , and
in each of these subintervals q̂(x) = qi := q(xi), where xi is
the midpoint of the i-th subinterval. (In the general case, the
same is done for r(x). For the KdV it is already constant.)

Because of Approximation 2, Eq. (3) becomes a linear differential
equation for each subinterval, which is solved as

v
(
xi + ε/2, ζ

)
= G(xi, ζ) · v

(
xi − ε/2, ζ

)
, (7)

with G(xi, ζ) := eC(xi,ζ)·ε . (8)

Continuity of v(x, ζ) at each of the boundaries of the subintervals
allows us to write

v(L+, ζ) = H(ζ) · v(L−, ζ) , with (9)
H(ζ) := G(xD, ζ) · · ·G(x2, ζ) ·G(x1, ζ) . (10)

We substitute the result of Eq. (9) with the boundary condition
v(L−, ζ) =

[
2jζ 1

]>· exp(−jζL−) in Eq. (6), to approximate the
reflection coefficient as3

R̂(ζ) =

(
2jζ · 2jζH21(ζ) +H22(ζ)

2jζH11(ζ) +H12(ζ)
− 1

)
e−2jζL+ . (11)

The calculation of H(ζ) according to Eq. (10) requires D − 1
matrix multiplications for each value of ζ . To reduce the computa-
tional complexity, Wahls and Poor [22, 23] proposed to approximate
the entries of G(xi, ζ) by rational functions with respect to a trans-
formed variable z(ζ). Then, after evaluation of Eq. (10) with fast
tree-wise polynomial multiplication, the entries of H(ζ) are rational
approximations as well, which can be evaluated using a fast polyno-
mial evaluation method for each desired value of ζ . This is the idea
behind the FNFT. In this paper, we express this third approximation
as follows:

2We remark that the NSE is obtained for the boundary condition
limx→−∞ v(x, ζ ) · exp( jζx ) =

[
1 0

]> and r(x) ≡ ±q∗(x) , where
the star denotes the complex conjugate [1].

3While this paper was being reviewed we noted that we could use
R̄(−ζ) = R(ζ) in [1, p. 299], to obtain an alternative to Eq. (11):
R̂(ζ) = H12 (−ζ) ·

(
2jζH11 (−ζ)−H12 (−ζ)

)−1 ·e−2jζL+ . This equa-
tion appears to be less sensitive to numerical errors in H(ζ) than Eq. (11).

3. Find a rational approximation

Ĝ(xi, ζ) =

m∑
k=−m

Mk+m(qi, ri) ·
(
z(ζ)

)k
=
(
z(ζ)

)−m · 2m∑
k=0

Mk(qi, ri) ·
(
z(ζ)

)k
, (12)

for some set of matrix valued coefficients Mk(qi, ri) , and
substitute it in Eq. (10) to find

Ĥ(ζ) =
(
z(ζ)

)−d · 2d∑
k=0

Nk(qi, ri) ·
(
z(ζ)

)k
. (13)

This result can be used in Eq. (11).

How can a rational approximation like Eq. (12) be obtained? —
Feced, Zervas and Muriel [8] simplified Eq. (8) by applying a symmet-
ric Strang splitting (see Eq. (18)) with C(xi, ζ) = A(ζ) + B(xi) ,
where

A(ζ) :=

[
−jζ 0

0 jζ

]
; B(xi) :=

[
0 q(xi)

r(xi) 0

]
. (14)

The result of their approximation, which expresses G(xi, ζ) as a
product of matrices that depend either only on xi or only on ζ, is
rational in z(ζ) := exp

(
−jζε/2

)
and can be written like Eq. (12).

This can for example be seen from Lemma 1 in Section 3.

3. HIGHER ORDER SPLITTINGS

Modification of the NSE FNFT for the KdV seems straightforward:
Just use r(xi) ≡ −1 instead of r(xi) ≡ ±q∗(xi) in Eq. (14), as
described in Section 2. However, as we will see in the numerical
examples in Section 4, then the error in R̂ caused by Approximation 3
can be much higher than what one would expect from the NSE case.3

To reduce this error (without reducing the step size ε), we want to use
splitting schemes with a higher order of accuracy. Lemma 1 below
states that a splitting scheme of the form of Eq. (2) is suitable for the
FNFT if all parameters αj,k are positive rational numbers. (We will
omit the dependencies on ζ and xi from here.)

Lemma 1 If G is approximated by a splitting scheme of the form
of Eq. (2) with A and B defined in Eq. (14) and

∑
j αj,k = 1 ∀k

and 0 < αj,k ∈ Q ∀j, k , then the approximation can be written as
Eq. (12) with 2m ∈ N.

PROOF Write αj,k for all j and k as an irreducible fraction. Let 2m
be the least common multiple of their denominators and rewrite

eαj,kAε = e−jζεαj,k ·
[
1 0
0 exp

(
jζε/m

)]2mαj,k

. (15)

Define z := exp
(

jζε/m
)
. Equation (2) should hold for any arbitrary

step size ε. For ε = 0 it yields
∑
k γk = 1 , so substitution of Eq. (15)

in Eq. (2) results in

Ĝ = z−m ·
kmax∑
k=0

γk ·
jmax,k∏
j=0

[
1 0
0 z2mαj,k

]
· eβj,kBε . (16)

Since 2mαj,k ∈ N ∀j, k , Eq. (16) can be written as Eq. (12). �
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The following splitting schemes are suitable for the FNFT, be-
cause each of them fulfils the requirements of Lemma 1. The same
holds for the dual schemes that can be obtained by changing every A
to a B and vice versa.

eCε = eAεeBε +O(ε2) ; (17)

eCε = e
1
2
AεeBεe

1
2
Aε +O(ε3) ; (18)

eCε = 9
8

e
1
3
Aεe

2
3
Bεe

2
3
Aεe

1
3
Bε − 1

8
eAεeBε +O(ε4) ; (19)

eCε = 4
3

e
1
4
Aεe

1
2
Bεe

1
2
Aεe

1
2
Bεe

1
4
Aε + . . .

− 1
3

e
1
2
AεeBεe

1
2
Aε +O(ε5) ; (20)

eCε = 625
384

e
1
5
Aε
(

e
2
5
Bεe

2
5
Aε
)2

e
1
5
Bε + . . .

− 81
128

e
1
3
Aεe

2
3
Bεe

2
3
Aεe

1
3
Bε + 1

192
eAεeBε +O(ε6) ; (21)

eCε = 81
40

e
1
6
Aε
(

e
1
3
Bεe

1
3
Aε
)2

e
1
3
Bεe

1
6
Aε + . . .

− 16
15

e
1
4
Aεe

1
2
Bεe

1
2
Aεe

1
2
Bεe

1
4
Aε + . . .

1
24

e
1
2
AεeBεe

1
2
Aε +O(ε7) ; (22)

eCε = 117649
46080

e
1
7
Aε
(

e
2
7
Bεe

2
7
Aε
)3

e
1
7
Bε + . . .

− 15625
9216

e
1
5
Aε
(

e
2
5
Bεe

2
5
Aε
)2

e
1
5
Bε + . . .

729
5120

e
1
3
Aεe

2
3
Bεe

2
3
Aεe

1
3
Bε − 1

9216
eAεeBε +O(ε8) ; (23)

eCε = 1024
315

e
1
8
Aε
(

e
1
4
Bεe

1
4
Aε
)3

e
1
4
Bεe

1
8
Aε + . . .

− 729
280

e
1
6
Aε
(

e
1
3
Bεe

1
3
Aε
)2

e
1
3
Bεe

1
6
Aε + . . .

16
45

e
1
4
Aεe

1
2
Bεe

1
2
Aεe

1
2
Bεe

1
4
Aε + . . .

− 1
360

e
1
2
AεeBεe

1
2
Aε +O(ε9) . (24)

Equations (17) and (18) are well-known, as sequential splitting and
symmetric Strang splitting [19] respectively. Equation (19) is repor-
ted in [5]. Equation (20) is known as the Strang-Richardson scheme
(see e.g. [7]). We remark that only the symmetric Strang splitting has
been used for FNFTs so far. We could not find the other schemes
in literature, so they may be new. We derived these as follows. We
imposed the number of terms kmax and factors jmax,k and the order
of accuracy n in Eq. (2). In case n is even we set βjmax, k,k = 0∀k.
(In words: Every term in an even order accurate splitting has to start
and end with an exponential of A.) Then we replaced every matrix
exponential by its Taylor series expansion and used algebraic compu-
tational software (Wolfram Mathematica) to find the parameter values
αj,k, βj,k and γk by equating the appropriate left and right hand side
terms. That is, terms that contain the same product of matrices A and
B. These values appear to be unique, with respect to the particular
choices for kmax , jmax,k and n corresponding to Eqs. (17) to (24)
respectively. We do not know whether these splittings are part of a
family that extends up to arbitrary order of accuracy; neither do we
have direct formulas for the parameters.

Remark 1 Equations (12) and (16) for 2m ∈ N are rational in
√
z,

because the denominator zm is a positive integer power of
√
z. Yet,

the numerator is a polynomial in z (with matrix-valued coefficients).2

Remark 2 If the conditions for Lemma 1 hold, except for the pos-
itivity of αj,k , we can still obtain a rational approximation that is
suitable for the FNFT. The constructive proof becomes more com-
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Fig. 1: Magnitude of (the error of) the reflection coefficient for
a squared hyperbolic secant potential for the KdV. The numbers
between brackets refer to the corresponding equation: (25): ground
truth, (8): error without splitting (due to staircase approximation),
(17)–(24): error with splitting.

plicated in that case and since Lemma 1 suffices for the purpose of
this paper, we favoured the less general, but clearer result. 2

Remark 3 The constructive proof of Lemma 1 is based on find-
ing a number m such that 2mαj,k ∈ Z ∀j, k . One could hypo-
thesise that such a number m may still exist when the condition
αj,k ∈ Q does not hold. However, if 2mαj,k ∈ Z ∀j, k and∑
j αj,k = 1 it follows that 2m ∈ Z and αj,k ∈ Q ∀j, k :

1 =
∑
j αj,k ⇒ 2m =

∑
j 2mαj,k ∈ Z⇒ αj,k ∈ Q ∀j, k . 2

4. NUMERICAL EXAMPLES

In this section we demonstrate the application of the proposed split-
ting schemes for two potential functions q(x) for the KdV. As a
comparison, we also include an example for the NSE. For these
examples the reflection coefficient is known analytically; the respect-
ive equations provide the ground truth. For the KdV examples, we
divide the interval x ∈ [−16, 16] in D = 256 sections of width
ε = 1/8 and sample q(x) at the midpoints of each section to obtain
a staircase approximation. (The interval is large enough to make
Approximation 1 negligible for the chosen potentials.) We apply
each of the proposed splitting schemes (Eqs. (17) to (24)) as well
as the un-split matrix exponential (Eq. (8)), and calculate the error
of the approximated reflection coefficient (compared to the ground
truth) with Eqs. (10) and (11). Because of the page limit, we omit
the transmission coefficient, the reflection coefficient for imaginary
frequencies ζ and the dual splitting schemes with the roles of A and
B reversed, but the shown results are representative.

4.1. KdV with a squared hyperbolic secant potential

Consider the potential function q(x) = q̊ sech2(x) with q̊ = 9 . The
reflection coefficient for this function is given by

R(ζ) =
cos(πδ)

π

Γ(jζ)
Γ(−jζ)

Γ
(
1
2
− jζ + δ

)
Γ
(
1
2
− jζ − δ

)
, (25)

where δ :=
√
q̊ + 1/4 and Γ is the gamma function [12].

The magnitude of this reflection coefficient is shown in Figure 1,
as well as the magnitude of the error for the various numerical ap-
proximations. We see that the error due to Approximation 2 is below
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Fig. 2: Magnitude of (the error of) the reflection coefficient for a
rectangular potential for the KdV. The numbers between brackets
refer to the corresponding equation: (26): ground truth, (17)–(24):
error due to splitting. The error without splitting (Eq. (8)) is zero here,
because this potential equals its staircase approximation exactly.

approximately 1% for each value of ζ. Above some frequency, Ap-
proximation 3 becomes the dominant error source for the splitting
schemes. One can reduce this error and increase this frequency by
choosing a splitting scheme with a higher order of accuracy.

4.2. KdV with a Rectangular potential

The rectangular potential q(x) = q̊ = 1 for |x| < l/2 = 1/2 and
q(x) = 0 else, is represented exactly by its staircase approximation
for the x grid we chose. Hence, the errors due to Approximations 1
and 2 will be zero in this case. The reflection coefficient for this
function is given by

R(ζ) =
jγ− · sin(ςl) · exp(−jζl)
cos(ςl)− jγ+ · sin(ςl)

, (26)

where ς :=
√
q̊ + ζ2 and γ± := 1

2

(
ς/ζ ± ζ/ς

)
[14].

The magnitude of this reflection coefficient is shown in Figure 2,
as well as the magnitude of the error for the various numerical ap-
proximations. The error due to Approximation 2 is zero, as expected.
The error due to Approximation 3 is reduced by choosing a splitting
scheme with a higher order of accuracy, which increases the frequency
up to which the approximated reflection coefficient is accurate.

4.3. NSE with a hyperbolic secant potential

As a comparison, we have included a numerical example for the
NSE. We take the potential function q(x) = q̊ j sech(x) with q̊ = 5.5
and r(x) = −q∗(x) . For this example we need a larger interval to
prevent significant truncation errors (Approximation 1) and choose
x ∈ [−32, 32] while keeping ε = 1/8 the same, so D = 512 . The
ground truth reflection coefficient for this example is given by

R(ζ) =
j sin(πq̊)

cosh(πζ)
·

Γ
(
1
2
− jζ + q̊

)
Γ
(
1
2
− jζ − q̊

)
Γ2
(
1
2
− jζ

) , (27)

where Γ is the gamma function [16].
The magnitude of this reflection coefficient is shown in Figure 3,

as well as the error for some of the proposed numerical approxim-
ations. Different from the KdV examples, all approximation errors
decay for higher frequencies. Although the absolute error is low at
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Fig. 3: Magnitude of (the error of) the reflection coefficient for
a hyperbolic secant potential for the NSE. The numbers between
brackets refer to the corresponding equation: (27): ground truth, (8):
error without splitting (due to staircase approximation), (17)–(22):
error with splitting.

high frequencies for every splitting scheme, the relative error for the
first and second order scheme is high. We see that the error can be
reduced significantly by using one of the schemes between third and
sixth order accuracy, Eq. (19) to Eq. (22) respectively. The seventh
and eighth order accurate scheme (Eqs. (23) and (24)) are omitted in
Figure 3, because the result is on this scale indistinguishable from
the error without splitting, Eq. (8). That is, the error due to Approx-
imation 3 in this example becomes negligible compared to the error
due to Approximation 2, which means that by choosing a splitting
scheme of sufficient order, the FNFT can reach the same accuracy as
any other NFT that uses a staircase approximation of the potential.

5. CONCLUSION AND DISCUSSION

We have presented several exponential splitting schemes that can
be incorporated into Fast Non-linear Fourier Transforms and inves-
tigated their performance for two examples for the KdV NFT and
one example for the NSE NFT, respectively. The presented higher
order splitting schemes allow to increase the numerical accuracy of
the NFT without having to decrease the step size (which might not
always be feasible in applications).

Since the calculation time of the FNFT depends partly on the
degrees of the rational approximations, one would like to obtain
the maximum accuracy for a certain degree. Our method results in
rational expressions, but their degrees are not monotonically increas-
ing in the order of accuracy of the splitting schemes. For example,
Eq. (21) with an order of accuracy of five results in a higher degree
than Eq. (22) with an order of accuracy of six. This obscures the
trade-off between the calculation time of the FNFT and its accuracy.

Remark 4 (Post-review) The numerical errors in the calculation of
Ĥ(ζ) with the FNFT lead to much larger errors in the reflection
coefficient in the KdV case compared to the NSE case. While this
paper was being reviewed, we noted that an alternative to Eq. (11)
exists, as mentioned in Footnote 3. When we use it, the two cases
show comparable error behaviour: Figure 1 then looks very similar
to Figure 3, with the results from the highest order splitting schemes
overlaying the error without splitting. This shows that also in the
KdV case FNFTs can reach the same accuracies as the conventional
NFT based on a staircase approximation of the potential. 2
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