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Abstract

The amount of personal imagery kept on (mobile) de-
vices is increasing by the day. Analysis and organization
of these large collections of data are becoming increasingly
important in the field of digital forensics, as they can aid in
the search for legal evidence. The grouping of faces based
on their identity is an important aspect as it provides an
overview of the person in question and their connection with
scenes, objects and other people. In this work, we propose
a fuzzy approach to the hard partitioning problem of face
clustering for the specific field of forensic investigations. We
constructed a pipeline consisting of deep models for face
detection and feature extraction, a method for transforming
the resulting feature vectors to a graph representation and a
graph-based clustering algorithm for the final partitioning.
Focusing on the clustering step, we propose to assign face
images to identity clusters using confidence values (rather
than a hard cutoff) based on the average similarity with im-
ages present in the cluster relative to other clusters. Com-
pared to existing methods, the approach is not only fuzzy
but also embraces naı̈ve linking, and instead of transitively
merging the links it uses a graph-based algorithm to pro-
duce the clusters. Furthermore, we propose an adapted ver-
sion of the MaxMax algorithm because the original method
only returned fuzzy results if weights were exactly equal.
However, similarities between images are continuous, mak-
ing it unsuitable for the case of face clustering. Evaluation
of the performance on the Labeled Face in the Wild (LFW)
dataset and the challenging IARPA JANUS Benchmark B
(IJB-B) shows promising results comparable with state-of-
the-art face clustering algorithms.

1. Introduction
Forensic investigations have increasingly larger amounts

of data at their disposal originating from sources such as
surveillance footage and seized devices. Organizing the
visual information contained in this data is crucial for the
swiftness of investigations (take for example the Boston

(a) Linking problem and conventional approach.

(b) Our method.

Figure 1: The linking problem current methods try to solve
(top) and our method using a simple metric for linking and
a graph based algorithm (bottom).

Marathon bombing [20, 36]). One desirable aspect is the
grouping of faces based on their similarities to produce
identity clusters. This information helps investigators to
gain insight into the individuals present in the data and to
form an overview of networks around suspects, be it crim-
inal or social. Subsequently, this overview can provide
evidence for the participation of the suspect or their ac-
complices in the investigated activities. Therefore, the cor-
rectness of the clustering is of utmost importance and it is
preferable to append confidence values to the assignments
of face images to identity clusters. These probability values
lead to the possibility of a face belonging to multiple clus-
ters. This results in a balance between clusters consisting
of images of only one identity but this identity has possibly
images in other clusters as well and clusters that are more
diverse but get more images of the same identity together in
one cluster. The latter is preferred as investigators prefer not
to miss photos of a subject in a cluster with the sacrifice of
also including photos of other subjects. However, the idea
of multiple assignments of face images is counter-intuitive
since a face can only belong to one person. To the best of
our knowledge this has not been done before. So far, con-
ventional methods use hard partition algorithms resulting in



non-overlapping clusters.
Advances in deep learning techniques have boosted the

performance of face clustering methods considerably. By
switching from handcrafted features to features extracted
by a convolutional neural network [23], face representa-
tions are more discriminative than ever before. Commonly
employed clustering algorithms such as K-means [26] and
Agglomerative Hierarchical Clustering (AHC) [12] already
show the superiority of these features. This evolution also
shows the two fronts of development in the field of face
clustering: the feature extraction network and the clustering
algorithm.

While on the one hand developments are made on the
side of neural network architectures [14, 33, 8] , on the other
hand specifically designed algorithms are being proposed
trying to solve the clustering problem [28, 25, 35, 24, 44,
41]. This problem is often seen as a linking problem where
the question is which images should be linked together and
therefore belong to the same identity. Linking two images
is based on the similarity between them which can be de-
fined in different ways. Basic notions include Euclidean
and cosine similarities where more complex measures re-
quire nearest neighbor sets or another deep learning model.

In this work, instead of solving the linking problem di-
rectly by defining our own similarity measure, a simple
metric (cosine similarity) with a cut-off threshold is used
to construct a graph. Thereafter, a graph-based cluster-
ing algorithm, which is either Fuzzy Chinese Whispers [5]
or an adapted version of the MaxMax algorithm dubbed
α-MaxMax, is used to produce the partitioning (see Fig-
ure 1). The proposed method achieves results compara-
ble with state-of-the-art crisp methods while outperforming
other fuzzy approaches.

To summarize, the following contributions are made:

• A new approach for clustering face images using naı̈ve
linking with a cut-off threshold for constructing a
graph representation of the data and a graph-based
clustering algorithm providing the partitioning.

• The approach is also fuzzy, which is suitable for the
field of digital forensics.

• A variant of the graph-based MaxMax algorithm called
α-MaxMax, which can handle continuous weight val-
ues by setting a margin to cover a range of weight val-
ues instead of a single value.

• Fuzzy evaluation methods adapting homogeneity and
completeness, which are appropriate for evaluating
fuzzy solutions for both crisp and fuzzy problems.

The remainder of this paper is organized as follows. Sec-
tion 2 covers the related work in the fields of face cluster-
ing and fuzzy clustering. Section 3 introduces the proposed

method including the rest of the pipeline. Section 4 de-
scribes the datasets and metrics used for the evaluation of
the method. Section 5 presents the experimental results and
in Section 6 different elements of this work and the field of
face clustering are discussed.

2. Related Work
Since this work combines two disciplines of clustering

approaches, this section will cover the existing works in
both fields.

2.1. Face Clustering

The rich variety in pose, illumination, occlusion of face
images, the often unknown amount of identities and the
varierty of cluster sizes render classical clustering algo-
rithms like K-means [26] and Spectral Clustering [34] un-
suitable for the situation. Not only do these algorithms re-
quire a pre-defined number of clusters, but they also have
rigid assumptions on data distribution. Although AHC [12]
also needs the number of clusters, it is capable of handling
complex data distributions. For this reason, Lin et al. ex-
tended the algorithm to Proximity-Aware Hierarchical Clus-
tering (PAHC) [25] by exploiting neighborhood similarities
based on linear SVMs that classify positive and negative lo-
cal instances. Improving the handling of large variations in
cluster sizes, Lin et al. switched to density-based similar-
ity with their Deep Density Clustering method [24]. They
apply SVDD [38] to encapsulate local neighborhoods and
iteratively merge them based on density similarities.

Also focusing on local neighborhoods, Otto et al. pro-
posed Approximate Rank-Order clustering (ARO) [28].
First, for every sample an approximate nearest neighbor
list is constructed. Next, pairwise distances between each
face image are computed based on the presence/absence
of shared nearest neighbors. Finally, pairs with a distance
below a certain threshold are transitively merged. Shi et
al. [35] took a different approach by treating the cluster-
ing problem as a Conditional Random Field (CRF) model.
Their Conditional Pairwise Clustering (ConPaC) method
tries to directly estimate the adjacency matrix by maximiz-
ing its posterior probability. Additionally, side information
about whether pairs of images should be linked or not can
be incorporated as pairwise constraints which allows for a
semi-supervised approach. Finally, Wang et al. [41] used a
graph convolutional network [18] to reason about instance
pivot sub-graphs which are based on k-hop nearest neigh-
bors and infer the likelihood of linkage between pairs in the
sub-graphs.

2.2. Fuzzy Clustering

The notion of class membership was first introduced by
Zadeh in his work about fuzzy sets [46]. A fuzzy set, being
a class of objects with a grade of membership per object for



the class, is characterized by a membership function defin-
ing this grade. Adopting the idea of fuzzy sets, Ruspini [32]
proposed fuzzy c-partitions creating a fundamental basis for
fuzzy clustering algorithms, such as Fuzzy C-means [9, 4].

2.2.1 FCM-type clustering

The Fuzzy C-means algorithm (FCM) was first developed
by Dunn [9] and later improved by Bezdek [4]. FCM is
a fuzzy variant of the well-known K-means algorithm [26]
but instead of iteratively updating the cluster centers and
the assignments of data points based on distance alone, the
FCM algorithm involves the grade of membership as well.
In this method, a parameterm ≥ 1 determines the fuzziness
of the results. The higher the value of m the fuzzier the
membership assignments will become. On the other hand,
if m = 1, a hard partitioning matrix will be produced with
membership values of either 0 or 1.

The main issues of FCM and its variants [17, 22, 29, 30,
19] are the requirement to set the fuzziness index and to de-
termine the number of clusters beforehand. For the former
issue, Winkler et al. [43] propose a fuzziness index that is
dependent on the dimensionality of the data setting it to be
m = 2+d

d , where d is the number of dimensions. They also
concluded that without well initialized cluster centers FCM
only works effectively in spaces of 5 or less dimensions.

Going one step further, Yang and Nataliani removed the
need for all parameters of FCM in their Robust-Learning
Fuzzy C-means (RL-FCM) algorithm [45]. The idea is
to consider all data points as initial clusters with cluster
weight: αj = 1

n . Then, iteratively update cluster member-
ships and weights and discard clusters that satisfy αj ≤ 1

n .

2.2.2 Graph-based clustering

Beside FCM-type algorithms which iteratively update the
cluster centers and recalculate membership values, another
category of fuzzy methods are graph-based algorithms.
These algorithms take an undirected weighted graph G =
(V,E) and cluster the nodes based on their adjacent edges.

Inspired by the eponymous children’s game, Biemann
proposed the graph-based clustering algorithm Chinese
Whispers [5]. This algorithm starts by assigning all nodes
their own cluster such that the initial number of clusters
matches the number of nodes. Secondly, it iterates over the
nodes in a random order and assigns them the cluster label
that has the highest rank in its neighbourhood. The neigh-
bourhood of a node vi consists of all its adjacent nodes ex-
cluding itself (vi 6= vj) and is formally defined as:

Ki = {vj |(vi, vj , wij) ∈ E ∨ (vj , vi, wij) ∈ E}. (1)

The rank of a cluster c in the neighbourhood of vi is cal-
culated as the total weight of neighbors carrying the cluster

label:

ric =
∑

C(vj)==c,vj∈Ki

wij , (2)

where C(vj) is the cluster label of vj . The algorithm stops
after a certain number of iterations or if there are no changes
in cluster labels between iterations. Note that, the random
order makes the algorithm non-deterministic.

Algorithm 1 Chinese Whispers
# Initialize clusters:
for vi ∈ V do
vc ← i

end for
# Loop:
while label changes do

for vi ∈ V , randomized order do
vc ← maxc ric

end for
end while

So far, the described method leads to a crisp partitioning.
To change it to a fuzzy one, Biemann proposed to normalize
the rankings per node in the final step and let the results be
the cluster memberships. This second version will be used
in this work and further be called Fuzzy Chinese Whispers
(FCW).

Another graph-based clustering algorithm is Max-
Max [15]. This inherently fuzzy algorithm starts by trans-
forming the undirected weighted graph G to a directed un-
weighted graph G′ by treating the adjacent edge(s) with the
highest weight as an incoming edge for every node and fi-
nally removing the remaining undirected edges. Also, all
nodes are initially marked as root. Next, the algorithm loops
over the nodes marked as root and mark its descendants as
¬root. Node vj is said to be a descendant of vi if there ex-
ists a directed path from vi to vj . In the end, clusters are
identified by the remaining root nodes and its descendants.
The order in which the nodes are looped determines the root
nodes but does not change the produced clusters.

Algorithm 2 MaxMax
# Construct directed graph G′ = (V,E′):
for vi ∈ V do
E′ ← E′ ∪ {(vj , vi)} iff (vj , vi, wij) ∈ E and
wij = maxj wij

vrooti ← true
end for
# Determine root nodes:
for vi ∈ V , vrooti = true do
vrootj ← false if vj ∈ descendants(vi)

end for



Figure 2: Visualization of our pipeline. Images contained in the illustration are from the IJB-B dataset [42].

3. Methodology
Given a set of images O = [o1, ..., om], the goal is to de-

tect and partition the present faces in such a way that every
group contains images of only one person. This way each
group represents an identity. This process consists of three
consecutive steps. In the first step, a deep learning model
is used to detect the faces present in the images which are
cropped and aligned for better comparison. This results in
face image set I = [i1, ..., in] where n is the number of
detected faces. Thereafter, features are extracted from the
aligned face images by a second deep learning model. The
returned feature vectors X = [x1, ..., xn] ∈ Rn×d where d
is the dimension of the feature vectors, are then transformed
to a graph G = (V,E). Finally, a graph-based algorithm is
used to deliver a fuzzy partition matrix U where uij ∈ U is
the probability of xi belonging to cluster cj .

3.1. Face Detection and Alignment

The deep learning model responsible for the simultane-
ous detection and alignment of faces is the Multi-task Cas-
caded Convolutional Network (MTCNN) [47]. The model
is a cascade of three deep convolutional neural networks
(CNNs) forming a three-stage process. Before the first
stage, an image pyramid is created of the input and fed to the
Proposal Network. This network generates candidate win-
dows for the detection of faces and is calibrated by bound-
ing box regression vectors. Thereafter, non-maximum sup-
pression is employed to merge highly overlapping windows.
In the second stage, another CNN, called the Refine Net-
work, rejects more windows as false candidates and re-
fines the coordinates of the remaining ones. Again, non-
maximum suppression is used afterwards. The third stage

is similar to the second stage, but is focused on describ-
ing the face with facial landmarks, which is the output of
this Output Network together with the bounding box and the
probability of classifying it as a face. The resulting bound-
ing boxes and facial landmarks are used to crop the original
images and return the aligned dataset I .

3.2. Feature Extraction

Now that the images consist of aligned faces, a second
deep learning model is used for the feature extraction. For
that we take a pre-trained face recognition network and re-
move the ultimate layer to use the rest of the network as
a feature extractor. Two different models are used in this
work. One is the Inception-ResNet-v1 [37] which is trained
on the VGGFace2 dataset [6] consisting of 3.31 million im-
ages of 9131 subjects using softmax loss. The other is the
ArcFace network [8] which is trained on the union set of
MS-Celeb-1M [13] which consists of 10 million images of
100k subjects, and VGGFace2 using additive angular mar-
gin loss. Taking image set I as input, either network returns
feature vectors xi ∈ X , which are 512 dimensional vectors.

3.3. Clustering

In the final phase of our pipeline the clustering takes
place using a graph-based algorithm. Since the data is pre-
sented in a 512 dimensional geometric space, the first step is
to transform it to an undirected weighted graph. Given this
graph either Fuzzy Chinese Whispers (FCW) or α-MaxMax
is used. The former is used as explained in section 2.2.2 and
the latter will be explained in section 3.3.2.



3.3.1 Graph Construction

Prior to the graph construction, a n × n weight matrix W
is formed representing the similarities between each feature
vector xi. Since the feature extraction network is trained
with softmax loss, the similarities between vectors are based
on their angular difference. Therefore, the cosine similarity
measure is used which is defined as:

w(xi, xj) =
xi · xj
||xi||||xj ||

. (3)

Due to normalization, the magnitudes of the face represen-
tation vectors are equal to 1, so only calculating the dot
product is sufficient:

w(xi, xj) = wij = xi · xj . (4)

Now, graph G = (V,E) is constructed by treating each fea-
ture vector xi of face image i as a node while edges between
nodes are only added if their weight wij is higher than z:

V = {x1, x2, ..., xn}, (5)

E = {(xi, xj , wij)|i 6= j and wij > z}. (6)

The threshold z determines the density of the network and
has impact on the performance of the clustering algorithm
which will be analysed in section 5.1.

3.3.2 α-MaxMax

We propose to adapt the original MaxMax algorithm as
it currently does not include cluster membership values.
Nodes that are assigned to multiple clusters are considered
to be a part of the clusters equally. Moreover, it only focuses
on the maximum weight per node (see Figure 3). However,
in the case where weights are based on similarities between
feature vectors, weights are rarely exactly equal, making the
original MaxMax in the face clustering setting a hard parti-
tioning algorithm.

Figure 3: Example of the original MaxMax algorithm. The
letter ”R” marks possible root nodes of the solution.

Our modified version includes membership values by
keeping the weights in graph G′. The assignment of root
nodes is the same as in the original algorithm (see Algo-
rithm 2) but in α-MaxMax an extra step is taken to update
the cluster memberships (see Algorithm 3). The value of
uji is the probability of xj belonging to cluster ci which is

the cluster with root node xi. In the end, the fuzzy partition
matrix U is normalized to satisfy

∑
ci
uij = 1 for every xj .

Algorithm 3 α-MaxMax
# Construct directed weighted graph G′ = (V,E′):
for xi ∈ V do
E′ ← E′ ∪ {(xj , xi, wij)} iff (xj , xi, wij) ∈ E

and wij ≥ α ·maxj wij

xrooti ← true
end for
# Determine root nodes:
for xi ∈ V , xrooti = true do

for xj ∈ descendants(xi) do
xrootj ← false
uji ← uji + wkj where xk ∈ predecessors(xj)

and xk ∈ descendants(xi)
end for

end for
normalize(U)

Additionally, it introduces an α parameter to handle con-
tinuous weights as this is the case with cosine similarities.
Multiple edges per node are transformed to incoming ones
by first taking the maximum weight value maxj wij per
node xi. Next, the edges where wij ≥ α · maxj wij , are
added as incoming edges, while the remaining ones are re-
moved as in the original MaxMax algorithm. This modified
version of MaxMax is called α-MaxMax, in which α deter-
mines the density of the directed graph.

Note that the addition of the variable α did not change
the deterministic property of the algorithm. The transforma-
tion to a directed graph is always the same and even though
the determination of the root node of a cluster can differ
due to the order in which nodes are visited, the cluster itself
stays the same. Also, the weights do not change resulting in
equal fuzzy partition matrices when ran multiple times.

4. Evaluation data and metrics
For evaluating the performance of the proposed approach

the following datasets and evaluation metrics are used.

4.1. Datasets

The Labeled Faces in the Wild dataset (LFW) [16] is a
well-known and commonly used dataset for unconstrained
face recognition and clustering. It consists of 13233 images
in total capturing 5749 subjects and contains a large vari-
ety in images per subject, ranging from 1 to 530. Due to
this characteristic and its size, it forms a ideal dataset for
fine-tuning parameters of the algorithms. The model of sec-
tion 3.1 is used for the detection and, more importantly, the
alignment of the images.

Following its predecessor (IJB-A), the IARPA JANUS



Benchmark B (IJB-B) [42] defines eight challenges includ-
ing protocols for detection and clustering and only cluster-
ing. Since this work is focused on clustering, the former
protocol is not used. In contrast to the LFW dataset, the
clustering protocol provides bounding boxes for the faces,
removing the need for the detection and alignment module.
This protocol consists of seven subtasks differing in both the
number of images per subject and the total number of sub-
jects. The benchmark is accompanied with a set of 67000
face images, 7000 face videos, and 10000 non-face images,
where only the face images are used in these experiments.
The face images are sampled as individual images and as
frames from the face videos. Most of these face images dis-
play extreme poses and vary in image quality, making it a
more challenging dataset than LFW.

(a) LFW

(b) IJB-B

Figure 4: Example images of Labeled Faces in the Wild
(LFW) [16] and IARPA JANUS Benchmark B (IJB-B) [42].

4.2. Evaluation Metrics

There is no universally agreed upon performance metric
for cluster analysis resulting in numerous methods testing
different aspects of the clustering solution. To evaluate the
clustering algorithms two measures are adopted: BCubed
F-measure [2] and V-measure [31].

4.2.1 BCubed F-measure

Pairwise precision, recall and F-measure look at whether
the prediction of placing pairs together in the same cluster
was correct with respect to their true clusters. Precision in
this case is the fraction of correctly placed pairs in the same
cluster over the total number of pairs of that cluster, recall is
the fraction of correctly placed pairs in the same cluster over

the total number of pairs of that identity, and F-measure is
the harmonic mean between precision and recall. Since the
number of pairs grow quadratically with the cluster size,
more emphasis is given to larger clusters in the pairwise F-
measure calculation. To address this issue, Bagga and Bald-
win came up with the BCubed F-measure [2], which defines
precision and recall as pointwise measures. Precision be-
comes the fraction of points in a cluster that belong to the
same identity and recall becomes the fraction of points of
an identity that are in the same cluster. Intuitively, precision
gives preference to clusters of the same identity while re-
call focuses on getting all images of an identity in the same
cluster.

As defined by Aimgó et al. [1], for a feature vector xi,
C(xi) and yi denote its predicted cluster and true cluster
respectively. The correctness of a pair of feature vectors xi
and xj is given by:

Corr(xi, xj) =

{
1 if C(xi) = C(xj) and yi = yj

0 otherwise
. (7)

Using equation (7), BCubed precision, recall and F-measure
are defined as:

Precision = Avgxi

(
Avgxj :C(xi)=C(xj)

(
Corr(xi, xj)

))
,

(8)

Recall = Avgxi

(
Avgxj :yi=yj

(
Corr(xi, xj)

))
, (9)

F-measure =
2 · Precision · Recall
Precision + Recall

. (10)

4.2.2 V-measure

Rosenberg and Hirschberg came up with a conditional
entropy-based evaluation measure: the V-Measure [31].
This measure consists of two complementary parts: homo-
geneity and completeness, just as the F-measure has preci-
sion and recall. The idea is that homogeneity is satisfied if
all clusters only contain data points of the same class and
completeness is satisfied when all data points of a class are
in the same clusters. The two measures are roughly in oppo-
sition. For example, a solution where all data points are in
the same clusters, such that there is only one cluster, com-
pleteness would be completely satisfied while homogeneity
is totally neglected. The other way around would be a solu-
tion where every data points is its own cluster. Homogene-
ity and completeness use the same intuitions as precision
and recall but differ as they use entropy and calculate di-
rectly over the whole solution instead of averaging over the



pointwise scores. Formally, homogeneity and completeness
are defined as:

Hom =

1 if H
(
C(X), Y

)
= 0

1− H
(
Y |C(X)

)
H(Y ) otherwise

, (11)

Com =


1 if H

(
C(X), Y

)
= 0

1− H
(
C(X)|Y

)
H
(
C(X)

) otherwise
, (12)

whereH(·) is the marginal entropy,H(·|·) is the conditional
entropy andH(·, ·) is the joint entropy. Furthermore, C(X)
and Y are the predicted partitioning and the ground truth
respectively, defined as:

C(X) = {C1, C2, ..., Cn}, (13)

where Ci = {ci1, ci2, ...cik} is the set of labels assigned to
xi, which is only one label (Ci = {ci}) in the crisp case,
and

Y = {Y1, Y2, ..., Yn}, (14)

where Yi = {yi} is the set containing the true label of xi.
Again, V-Measure is the harmonic mean of the two:

V-measure =
2 · Hom · Com
Hom + Com

. (15)

Another commonly used metric for (face) clustering is
the Normalized Mutual Information score (NMI) which is
equivalent to the V-measure as shown by Becker [3]. This
allows for comparison between previously reported NMI
scores with the V-measure scores produced in this work.

4.2.3 Fuzzy V-measure

The BCubed F-measure and the V-measure evaluate crisp
partitionings which is satisfactory for most clustering prob-
lems. Even when looking at fuzzy algorithms these evalua-
tion measures often suffice due to the fact that fuzzy algo-
rithms are commonly used for crisp partitioning problems,
where the cluster assignment per object is chosen by its
highest membership value. However, for evaluating fuzzy
partitionings another measurement is required. Adapting
the original V-Measure Utt et al. proposed the Fuzzy V-
Measure [39]. This evaluation works particularly for fuzzy
problems, where the true membership is divided over its
true classes, so point x can have labels y1 and y2 both with
a membership value of 0.5. The idea of fuzzy face clus-
tering is unfortunately a different kind of problem because
the true partitioning is crisp but the methodology returns a
fuzzy one. Therefore, to adjust for the current situation the

evaluation input is adapted to compute new scores of homo-
geneity and completeness.

Due to the fuzziness of the solution there are more la-
bel assignments than data points resulting in a difference in
size with the set of ground truth labels, so |C(X)| > |Y |
due to the possibility that C(xi) can contain multiple labels
(|C(xi)| ≥ 1). To compensate for the gap, homogeneity
and completeness modify the input of the predicted and true
labels, both in their own way (see Figure 5). Homogeneity
fills the set of truth labels with duplicates of data points that
have multiple assignments in the predicted labels set:

Y hom = {Y hom
1 , Y hom

2 , ..., Y hom
n }, (16)

where

Y hom
i = {(yi)×|Ci|}. (17)

The set of predicted labels stays the same, Chom(X) =
C(X). Completeness on the other hand reduces the size
of the set of predicted labels by removing the multi-
assignments to only match the ground truth or a random
one if the truth label is not among the predicted ones.

Ccom(X) = {Ccom
1 , Ccom

2 , ..., Ccom
n }, (18)

where

Ccom
i =

{
Yi if yi ∈ Ci

{Cij |j ∼ U(1, |Ci|)} otherwise
. (19)

The set of true labels stays the same, Y com = Y . This mod-
ification is consistent with the desire of not missing an im-
age in an identity cluster regardless of its presence in other
clusters. These metrics are further to be called fuzzy homo-
geneity and fuzzy completeness together with their harmonic
mean: fuzzy V-measure.

Figure 5: Conversion of the true and predicted labels for
fuzzy homogeneity and fuzzy completeness.

Optionally, a membership threshold can be set to deter-
mine the minimum membership value for an image to be
part of a cluster. Especially for the Fuzzy C-means algo-
rithm, which gives every data point membership with al-
most every cluster, this threshold prevents evaluating all as-
signments.



5. Experiments

In this section, experiments are reported evaluating the
proposed approach. First, different similarity threshold
values used for forming the graph are analysed and re-
sults on the LFW dataset are used to choose a threshold
value z for both Fuzzy Chinese Whispers (FCW) and α-
MaxMax. Thereafter, the algorithms are evaluated on the
IJB-B dataset and compared with baseline methods. The
algorithms are also evaluated using another face represen-
tation to even out the input of the clustering algorithms and
compared with state-of-the-art methods. In the end, the re-
sulting clusters are explored to perform error analysis. It
should be noted that if not explicitly stated, crisp evaluation
methods are used. Only Table 2 contains fuzzy evaluation
results. Also, results for non-deterministic algorithms such
as Fuzzy C-means (FCM) are averaged over 10 runs.

5.1. Threshold analysis

In order to compare the clustering algorithms, param-
eters should be tuned first. One of the parameters is the
threshold determining the minimum similarity value be-
tween images to be added as edges to the graph used by
both FCW and α-MaxMax. Therefore, different values for
the threshold z are compared using the V-measure.

An important aspect of the LFW dataset is the varying
number of images per subject of which a large portion con-
sists of singleton classes. Out of the 5749 people present
in the dataset, only 1680 have two or more distinct pho-
tos. Such a distribution in the data is a realistic occurrence
in forensic investigations due to detection of background
faces. People detected in the background often appear only
once and are insignificant for the investigation. Therefore,
the performance on the LFW dataset with and without sin-
gleton clusters is analysed. Moreover, since the method-
ology of FCW and α-MaxMax differs, the threshold is set
individually.

The graphs presented in Figure 6 show the V-measure
scores of the FCW algorithm with threshold values between
0.5 and 0.9. Focusing on the singleton clusters, z should be
set to a higher value compared to the situation when single-
ton clusters are removed. A higher threshold value means
less edges in the graph resulting in more smaller clusters ex-
plaining the shift to the right on LFW with singleton clus-
ters. However, in the case of forensic investigations the
evaluation of singleton clusters is assumed to be insignif-
icant. Therefore, the choice for z is based on the scores
on LFW without singleton clusters and is set to 0.7 for the
remainder of this paper.

Figure 6: Performance of the FCW algorithm on the LFW
dataset with and without singleton clusters.

In the case of α-MaxMax, two parameters need to be set
for the optimal performance. One is the same threshold z
for constructing the required similarity-based graph. The
other is the α value determining the fuzziness of the algo-
rithm. As can be seen from Figure 7, there is an optimum
around z = 0.7 regardless of the α value. Also, the highest
V-measure scores are returned by setting α to 0.95 leading
to the choice of setting z to 0.7 and α to 0.95 for the re-
mainder of this paper. Again, this choice was made on the
set without singleton clusters as this will also be the set used
in further experiments as the LFW dataset.

Figure 7: Performance of the α-MaxMax algorithm on the
LFW dataset without singleton clusters.

5.2. Comparison with baseline methods

The BCubed F-measure and V-measure scores of both
graph-based algorithms and different baseline clustering



IJB-B-512 IJB-B-1024 IJB-B-1845
F V(NMI) F V(NMI) F V(NMI)

AHC [12] 0.617 0.826 0.596 0.835 0.586 0.840
AP [11] 0.419 0.814 - - - -
Spectral [34] 0.459 0.697 - - - -
DBSCAN [10] 0.593 0.810 0.587 0.815 0.592 0.800
FCM [9, 4] 0.554 0.818 0.547 0.831 0.523 0.833
RL-FCM [45] 0.015 0.000 - - - -
FCW [5] 0.647 0.846 0.643 0.845 0.643 0.840
α-MaxMax 0.575 0.831 0.556 0.833 0.565 0.835

Table 1: BCubed F-measure scores and V-measure scores of baseline methods and fuzzy graph-based methods evaluated on
three subtasks of the IJB-B. The missing scores of AP and Spectral clustering could not be produced due to computational
restrictions and the ones for RL-FCM were not computed due to its ineffectiveness.

Crisp hom Crisp com Crisp V Fuzzy hom Fuzzy com Fuzzy V
FCM [9, 4] 0.844 0.794 0.818 0.794 0.805 0.800
FCW [5] 0.863 0.830 0.846 0.821 0.844 0.832
α-MaxMax 0.878 0.788 0.831 0.881 0.793 0.835

Table 2: Crisp and fuzzy evaluation on the IJB-B dataset with 512 subjects. FCM is evaluated with a membership threshold
of 0.1 and for FCW and α-MaxMax the threshold is set to 0.

methods are presented in the top part of Table 1. The gen-
erally used baseline methods are Agglomerative Hierarchi-
cal Clustering (AHC) [12] with average linkage, Affinity
Propagation (AP) [11] with a damping factor of 0.5, Spec-
tral Clustering [34] and Density-Based Spatial Clustering of
Applications with Noise (DBSCAN) [10] where the maxi-
mum distance between two samples to be considered as in
the same neighborhood (ε) is set to 0.2. K-means is not
evaluated due to the similarity to its fuzzy variant Fuzzy
C-Means (FCM). AHC, Spectral Clustering and FCM all
require a number of clusters parameter which is set to the
true number of clusters per dataset. Every baseline method
is evaluated using the same feature vectors as described in
section 3.2 and calculate similarities based on cosine dis-
tance. AHC preforms relatively well and makes no assump-
tions about the data distribution, suggesting a rich variety
in the distribution. On the other hand, FCW outperforms
AHC while the used threshold assumes there is an optimal
connectivity to use which is based on density. Also explain-
ing the good performance of DBSCAN since this method
requires the data to have similar density. Spectral clustering
needs balanced data and a predefined number of clusters
making the algorithm unfit for the presented face clustering
problem. Furthermore, FCW consistently outperforms α-
MaxMax and is therefore considered the better graph-based
algorithm for crisp face clustering.

5.3. Comparison with fuzzy methods

Fuzzy C-means (FCM) [9, 4] and its Robust-Learning
variant (RL-FCM) [45] are compared with the graph-based

methods in the middle part of Table 1. Again, the same fea-
ture vectors as used by the graph-based methods are taken.
However, both algorithms require dimensionality reduction
to be done beforehand since they can not handle data with a
high number of dimensions [43]. Therefore, the data is first
reduced to 5 dimensions using the Uniform Manifold Ap-
proximation and Projection (UMAP) technique [27]. Al-
though RL-FCM does not need any parameters to be set,
the algorithm is incapable of handling unbalanced data and
returns only one cluster. The introduced cluster weight
αj with its constraint

∑c
j=1 αj = 1 forces clusters to be

roughly of the same size, making the algorithm unsuitable
for face clustering in an unconstrained environment. Con-
trarily to RL-FCM, the original FCM algorithm shows de-
cent results with V-measure scores close to those of FCW
and α-MaxMax.

Beside the crisp evaluation, FCM is also compared based
on the fuzzy homogeneity, completeness and V-measure as
described in section 4.2.3. Table 2 presents the results on
the IJB-B dataset with 512 true clusters. The idea of eval-
uation with fuzzy measures is to gain insight in the differ-
ence between fuzzy and crisp clusters produced by the algo-
rithms. The expectation is that completeness would increase
while sacrificing homogeneity. There are two scenarios af-
fecting the scores. One is when data that was assigned to
the wrong cluster in the crisp solution is assigned to multi-
ple clusters, including its correct one, in the fuzzy solution.
This increases completeness and even homogeneity if the
extra assignment only includes the correct cluster. The sec-
ond scenario is when data that is already correctly clustered



IJB-B-512 IJB-B-1024 IJB-B-1845
F V(NMI) F V(NMI) F V(NMI)

ARO [28] 0.763 0.898 0.758 0.908 0.755 0.913
PAHC* [25] - - 0.639 0.890 0.610 0.890
ConPaC* [35] 0.656 - 0.641 - 0.634 -
DDC [24] 0.802 0.921 0.805 0.926 0.800 0.929
GCN [41] 0.833 0.936 0.833 0.942 0.814 0.938
FCW0.45 [5] 0.811 0.910 0.810 0.915 0.810 0.916
α-MaxMax0.45,0.85 0.759 0.892 0.757 0.889 0.765 0.901

Table 3: BCubed F-measure scores and V-measure scores of (crisp) state-of-the-art methods and fuzzy graph-based methods
evaluated on three subtasks of the IJB-B using the ArcFace features1. Methods marked with an asterisk (*) denote results
from the original papers and the other top part results are from [41]. The subscript numbers of the graph-based algorithm
represent the used values for z and α.

is assigned to other clusters. This decreases homogeneity
without gaining completeness. Since the algorithms show
good performance on the IJB-B dataset, it is assumed that
the second scenario occurs more often than the first one,
which results in a greater loss in homogeneity compared to
the gain in completeness.

The initial expectation is confirmed by the results of
Table 2 for FCM and FCW since both algorithms suffer
a relatively high loss in homogeneity while gaining small
amounts of completeness, resulting in a decrease in the V-
measure score. Surprisingly, α-MaxMax gains in both ho-
mogeneity and completeness, leading to a higher V-measure
score adn even surpassing that of FCW. This suggests a
higher occurrence of the first scenario, making the fuzzy
results of α-MaxMax better than its crisp ones. Both graph-
based algorithms outperform Fuzzy C-means and do not re-
quire a number of clusters parameter, making them ideal
candidates for the current use case. However, FCM pro-
duces membership values for all images with all clusters
while FCW and α-MaxMax only return membership values
for the edge cases.

5.4. Comparison with state-of-the-art

As mentioned in the introduction, the deep learning
model used for feature extraction is partly responsible for
the performance of the complete face clustering process.
For this reason, another face representation produced by the
ArcFace network [8] is used to compare the state-of-the-
art algorithms with FCW and α-MaxMax. The results are
showcased in Table 3 and are significantly higher than the
ones in Table 1, showing the superiority of the ArcFace net-
work. The scores of Proximity Aware Hierarchical Clus-
tering (PAHC) [25] and Conditional Pairwise Clustering
(ConPaC) [35] are taken from their original work and make
use of another feature extraction network which explains
their inferiority to the other algorithms. The scores of α-
MaxMax are close to the rest of the state-of-the-art methods
but is again outperformed by FCW. Deep Density Cluster-

ing (DDC) [24] produces better V-measure scores but worse
BCubed F-scores compared to FCW and the Graph Convo-
lutional Network (GCN) [41] outperforms every method.

5.5. Error analysis

Exploring the results of the graph-based algorithms (see
Figure 8), some interesting comments can be made. First of
all, the method is greatly capable of handling invariance in
illumination, pose and resolution of the image. Grayscale
and color images are often correctly clustered together and
difference in gender, race and age is correctly recognised
as well. The method mainly focuses on distinctive features
such as hair color, hair style, skin color and, the presence or
absence of glasses, hats and facial hair. This is, for example,
the reason for the incorrect cluster of Figure 8b. All people
in this cluster have gray/white hair and most of them wear
glasses. Furthermore, a large part of the incorrect clusters
consists of people of Asian or African ethnicity. This can
be explained by the low racial diversity in the training data
of the feature extraction network. Although, the VGGFace2
dataset [6] on which the feature network is trained, contains
a rich variety in pose, age and illumination, it still presents a
gap in ethnicity. As presented by Wang et al. [40], the num-
ber of people of Caucasian ethnicity dominate this set with
74.2% of the amount of images. Additionally, Krishnapriya
et al. [21] conclude that images of African-American peo-
ple are often poorly lit, making the subjects harder to recog-
nize. Both characteristics support the lack of performance
on subject of Asian and African ethnicity.

6. Discussion and Conclusion
In this section three points of discussion are raised. The

first one argues if the presented method is effective for the
case of forensic investigations. The second one considers
the theoretical need for the threshold used in the graph con-
struction. The third point focuses on the influence of the

1https://github.com/Zhongdao/gcn_clustering

https://github.com/Zhongdao/gcn_clustering


(a) Correctly clustered images.

(b) Incorrectly clustered images.

Figure 8: Example clusters produced by FCW after running
on IJB-B-512.

feature extraction network on the total performance. There-
after, future work is proposed and the final conclusions are
made.

6.1. Forensic investigations

This work was constructed for the purpose of aiding
in forensic investigations as automatically organizing large
amounts of media can be beneficial in time-sensitive cases.
Additionally, probability values are added to the assign-
ments of images to clusters to provide insight in the con-
fidence of the allocation. Therefore, a fuzzy clustering ap-
proach was proposed to satisfy the desired properties. Fur-
thermore, the approach was designed to boost the complete-
ness of the solution by increasing the possibility of assign-
ing an image to its correct cluster while possibly sacrificing
homogeneity. Lastly, the proposed method does not require
the number of clusters to be known beforehand. This would
be an obstacle as it is unknown how many people are con-
tained in the images on someones device.

6.2. Threshold effect

One disadvantage of the presented methodology is the
setting of threshold z which determines the density of the
graph. Using this cut-off threshold compared to retaining
a fully connected graph has computational benefits as both
FCW and α-MaxMax have a run time linear in the num-
ber of edges. Therefore, the question arises if the threshold
is necessary beside its computational time reduction. FCW
and α-MaxMax use edge weights to determine node labels
and therefore one could expect little change in the results
when lowering the threshold, since the nodes’ closest neigh-

bors will keep dominating the choice for its label. However,
both algorithms are affected by the choice for the threshold
as can be seen in Figure 6 and 7. Since they are affected in
different ways, the algorithms will be discussed separately.

6.2.1 Fuzzy Chinese Whispers

In FCW, the label of a node is determined by the strongest
present label in its local neighborhood. This presence is
measured by the total weight of adjacent nodes carrying this
label. A denser graph means more neighbors per node and
since the dominance of a label is counted as the total weight,
a large and relatively far away cluster could become the
strongest present label. This results in smaller clusters be-
ing swallowed by the larger ones, which has a domino effect
because the large clusters become even larger and swallow
more and more smaller clusters. In the end, there will be
an equilibrium when the remaining clusters are so far away
from each other that they do not have enough influence to
flip the label of a node in one of the other clusters. For
example, on the LFW dataset, the number of clusters that
remained is 5. Regarding the computational time, it is in-
creased in both the number of neighbors per node that need
evaluation as well as the number of iterations until no label
changes.

6.2.2 α-MaxMax

Lowering the threshold influences α-MaxMax less as the
algorithm depends on the maximum weight per node which
only changes for the singleton clusters since they did not
have adjacent edges before this point. This is also the reason
why lowering z is capped after a certain value as can be
seen from Figure 7. The α value has no lower bound and
has more influence on the amount of edges in the graph than
z. Also, computational-wise, it has a greater effect due to it
being related to the number of edges.

6.3. Influence of deep model

The deep learning model responsible for feature extrac-
tion has a great impact on the performance of the complete
method as is shown by comparing the results displayed in
Table 1 with those in Table 3. Furthermore, the results of
the state-of-the-art methods on the same feature set are rel-
atively close to each other, providing more evidence for its
large share in improving performance. This makes sense
since better (trained) networks project data in a more sepa-
rable way, which makes it easier for all clustering methods
to correctly cluster. Unfortunately, the performance differs
per ethnicity which can be a sensitive point, especially in
law enforcement. This can be solved by training the feature
extraction network on more balanced datasets such as the
one proposed by Wang et al. [40].



6.4. Future work

We identify three points for future work: applying end-
to-end training, improving scalability and extending to
multi-view.

6.4.1 End-to-end training

The impact of the feature network and its combined strength
with the clustering algorithm give rise to the idea of an end-
to-end training pipeline. So far, every developed method
either tries to improve the performance of the feature ex-
traction network or the clustering algorithm in which case
the network is always trained in the supervised face recog-
nition setting. Incorporating clustering in the training pro-
cess in an end-to-end matter by using the final results as
feedback for the network could prove useful. The work of
Wang et al. [41] already shows the effectiveness of end-to-
end learning with attention aggregation in which they train
their Graph Convolutional Network with the clustering re-
sults. It is therefore expected that training the feature ex-
traction network specifically with the output of the cluster-
ing algorithm would increase the global performance of the
method.

6.4.2 Scalability

The implemented method leaves room for scalability im-
provements. Similarity matrixW used with graph construc-
tion grows quadratically with the number of images possi-
bly requiring large amounts of memory. The matrix could
be created as a combination of submatrices as shown by
equation (20) reducing the intermediate memory required
and using them subsequently for forming the graph.

W =


W00 W01 . . . W0s

W10 W11 . . . W1s

...
...

. . .
...

Wt0 Wt1 . . . Wts

 (20)

However, the size of the graph increases as well, especially
with a low threshold z. Fortunately, the graph is a set of
subgraphs which are not necessarily connected and could
therefore be clustered separately without changing the re-
sults. The way to correctly construct the subgraphs using
the submatrices is left for future work.

6.5. Multi-view clustering

Besides images, data from seized devices could also con-
tain audiovisual material adding extra information for iden-
tification. The combination of visual and auditory data is an
example of multi-view data. Wang et al. [41] used the Vox-
Celeb2 [7] to evaluate their method in the multi-view set-
ting. A same approach could be taken to evaluate the clus-
tering of the concatenated features by the proposed method.

We expect that the rigidness of the threshold is going to
be problematic here as different networks are needed for
the two sources of data (audio and video), which proba-
bly require different threshold values just as the Inception-
ResNet-v1 and ArcFace models required different values.
In this case a network trained simultaneously on the visual
and auditory data would be the ideal feature extractor since
this network again has an optimal value for z.

6.6. Conclusion

In this paper, a fuzzy face clustering method is proposed
for the purpose of assisting in forensic investigations. The
approach deviates from the linking problem conventional
methods try to solve and instead uses the cosine similarity
as a rough estimate for link prediction and a fuzzy graph-
based clustering algorithm to return the final partitioning.
Additionally, an adaption of clustering algorithm MaxMax
is proposed, called α-MaxMax and new evaluation mea-
sures are introduced fitting for the fuzzy face clustering
case. Experiments show the effectiveness of the approach
which is superior to other fuzzy algorithms and comparable
with state-of-the-art crisp face clustering methods. The pro-
posed α-MaxMax achieves 87.8% homogeneity and 78.8%
completeness on the IJB-B-512 dataset for the crisp results.
The scores even increase to 88.1% and 79.3% for homo-
geneity and completeness respectively when evaluating the
fuzzy results. Meaning that the fuzzy clusters will contain
more photos of the same person without including too much
photos of other people compared to the crisp ones.
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Supplementary Materials: Fuzzy Face Clustering For Forensic Investigations

A. Dimensionality Reduction

The returning vectors of the deep learning model responsible for feature extraction are fairly high (512 dimensions) making
clustering in this high dimensional space computational costly and certain algorithm such as Fuzzy C-means (FCM) [9, 4]
can not handle more than 10 dimensions [43].

In the field of clustering analysis subspace clustering is a commonly used tactic for clustering in high dimensional spaces.
Subspace clustering is a way to project data to lower dimensional subspaces and cluster in the according spaces. Thereafter
the cluster results are combined to return the found clusters in the original space. The idea comes from the assumption that
some features contain little information and are less discriminative than others. Moreover, it is argued that some features are
more relevant for certain features than others. However, since the embeddings are the result of a neural network trained for
discriminated people based on facial appearance, it is assumed that every feature carries equal weight.

A.1. Principal Component Analysis

Beside subspace clustering there are also more general approaches, such as basic feature selection and feature extraction
methods like Principal Component Analysis (PCA) [9]. Feature selection uses the same assumption as subspace clustering
by choosing a subset of features seen as relevant and use only these features to cluster. On the other hand, PCA which aims
to find the projection with the highest variance in the data, also has a philosophy of unequal importance of features.

The behaviour of PCA is analysed on a subset of the Labeled Faces in the Wild dataset (LFW) [16] consisting of all subjects
(143) with at least 10 photos in Figure 1. In the figure two distinct clusters can be identified but the rest is too overlapping
to logically partition. Adding extra principal components results in more separable clusters but reduces the desired effect of
dimensionality reduction.

Figure 1: Visualization of the first two principal components of PCA analysis on the extracted features of a subset of LFW.



A.2. t-SNE and UMAP

Instead of PCA two other dimensionality reduction techniques were used to examine the clustering effect. A popular ap-
proach is the t-Distributed Stochastic Neighbor Embedding (t-SNE) technique [11]. t-SNE focuses on local relationships
between data points and is able to capture non-linear structures. It creates a probability distribution (Gaussian) defining the
relationships in the high dimensional space and recreates it in a low (2 or 3) dimensional one following the probability distri-
bution. In the second step the algorithm uses a Student t-distribution, explaining the name of the approach. The embeddings
are optimized using gradient descent based on the KL-divergence between the probability distributions of the original high
dimensional space and the newly formed low dimensional space. A note to make is that the loss function is non-convex
making the technique non-deterministic.

The other approach for dimensionality reduction is to use the Uniform Manifold Approximation and Projection (UMAP)
technique [27]. With a strong mathematical foundation the algorithm is competitive with t-SNE and has superior run time
performance. Also, UMAP scales better with the amount of data allowing the embedding of larger data sets than are feasible
for t-SNE. Finally, UMAP can embed to spaces larger than 3 dimensions which t-SNE can not. Without going into the details
of the algorithm, UMAP starts by creating a local fuzzy simplicial set per data point. Such a set is constructed by taking the k
approximate nearest neighbours, calculate their normalized distance and translate the metric space to a simplicial set through
the exponential of the negative distance. The union of the sets forms a topological representation of the high dimensional
data. A similar process can be used to construct an equivalent topological representation of the target lower dimensional
data. UMAP optimizes in a same way as t-SNE does, only in this case the goal is to minimize the cross-entropy between the
topological representations by adjusting the layout of the lower dimensional data representation.

As can be seen from Figure 2 both mappings of t-SNE and UMAP present well-separated clusters, where they mainly differ
in density. If dimensionality is applied in the pipeline it should be mentioned and passed to the clustering algorithm that
similarity in the new lower dimensional space is measured as Euclidean distance instead of cosine.

Figure 2: Visualization of t-SNE (left) and UMAP (right) results on the same set as used in Figure 1.

A.3. Results

To choose the most effective dimensionality reduction technique required for the FCM algorithm results using either t-SNE
or UMAP with different amounts of dimensions are compared using the BCubed F-measure [2] and the V-measure [31]. The
scores of FCM algorithm are shown in Table 1 with c = ctrue = 5749 and m = 2+d

d where d is the number of dimensions
after reduction.



FCM FCW α-MaxMax
F V(NMI) F V(NMI) F V(NMI)

Original data 512d - - 0.904 0.974 0.887 0.973

t-SNE 2d 0.706 0.914 0.770 0.938 0.792 0.949
3d 0.699 0.917 0.702 0.912 0.768 0.929

UMAP

2d 0.627 0.891 0.632 0.908 0.672 0.915
3d 0.640 0.908 0.649 0.917 0.675 0.922
5d 0.682 0.919 0.776 0.938 0.789 0.934

10d 0.690 0.915 0.787 0.940 0.802 0.937

Table 1: BCubed F-measure and V-measure scores of the fuzzy algorithms evaluated on the complete LFW dataset.

The scores are relatively close to each other and although the reduction with t-SNE to 2 dimensions results in the highest
BCubed F-score the choice is made for the reduction with UMAP to 5 dimensions. This choice is also based on the compu-
tational time since reduction with UMAP is around 6 times faster for the complete LFW dataset and scales better as well in
both amount of data and number of dimensions.

The effect of dimensionality reduction on the performance of graph-based algorithm is evaluated as well. Scores for Fuzzy
Chinese Whispers (FCW) [5] and the adapted MaxMax [15] algorithm called α-MaxMax are reported in Table 1 alongside
the scores for FCM. For both algorithms the optimal values for z and α are taken which differ per reduction. However, the
scores are significantly worse compared to the ones in the original space. For this reason and that dimensionality reduction
takes time the graph-based algorithms do not make use of this technique.



B. MaxMax vs α-MaxMax

The proposed α-MaxMax is an adapted version of its original MaxMax [15] algorithm. During the transformation of undi-
rected input graph G to directed graph G′ the α value is used as a margin to increase the number of incoming edges per
node. In the original version of the algorithm, only the edge with the maximum weight is transformed to a directed edge
which make sense in the field of Natural Language Processing since the weights often represent co-occurrences of words.
However, in the case of face clustering weights represent the similarities between images which are continuous often in the
range between 0 and 1. Therefore, applying MaxMax would result in every node having a single incoming edge as there is
one maximum weight per node. Subsequently, every node only belongs to one cluster, namely the same as its predecessor
resulting in a hard partitioning output.

Figure 3: Toy example of a graph and the results produced by MaxMax and α-MaxMax with α = 0.95.

The α parameter addresses this issue by adding a margin to increase the range in which weights are transformed to directed
edges. Instead of being the maximum weight (maxj wij) an edge is added if its weight is greater than α ·maxj wij . Figure 3
shows an example graph with continuous weights and the solution produced by MaxMax and α-MaxMax. As can be seen in
the top right part of the figure, MaxMax transforms the graph in such a way that every node has one incoming edge which
eventually leads to a crisp partitioning. The lower right part demonstrates the effect of the α parameter resulting in the
possibility of multiple incoming edges per node, leading to a fuzzy partitioning.

The α parameter controls the density of the graph which impacts both the performance as well as the computational time of
the algorithm. When α is decreased the computational time increase since MaxMax’ complexity is linear in the number of
edges [15] and a lower α means more incoming edges per node raising the total number of edges. The performance behaves
differently as can be seen from Table 2 and suggests there is an optimum around 0.95 which is also presented by Figure 7
from the paper.

α F V(NMI)
MaxMax 1 0.770 0.944

α-MaxMax
0.95 0.887 0.973
0.9 0.878 0.967
0.8 0.796 0.915

Table 2: BCubed F-measure and V-measure scores of MaxMax and α-MaxMax with different α values on the complete LFW
dataset. The threshold z is set to 0.7 for both algorithms.

MaxMax is developed as a fuzzy algorithm and the fact that the scores of α = 0.95 are higher than those of α = 1 shows



its intended use. Instead of equal weights, as is the case in the field of word sense induction for example, weights in the
case of face clustering are rarely exactly equal. Therefore, α-MaxMax treats weights that are remotely close to each other as
”equal”. With the right α value a graph can be constructed for which the algorithm is intended. However, setting α too low
results in a denser graph and consequently results in less clusters. For example, setting α to 0.5 would result in one cluster
when taking the toy example graph of Figure 3.

Concluding, MaxMax was developed for a different field requiring the introduction of the α parameter to transfer it to the
field of face clustering and mimic its intended use.



C. IARPA JANUS Benchmark C

For this research the IARPA JANUS Benchmark B is used for evaluating the proposed approach. The choice for this dataset
beside its challenging nature was made for the ease of comparing it with state-of-the-art methods since these methods use the
same dataset. However, Maze et al. [7] improved upon their previous version and released the IARPA JANUS Benchmark C
advancing the goal of robust unconstrained facial analysis. The new set not only contains more data and variability but also
introduces end-to-end protocols, combining face detection and 1:N identification. The clustering protocol is redistributed
into 4 subtasks with 32, 1021, 1839 and 3531 subjects.

For the purpose of comparability with future work the graph-based algorithms used in this work are evaluated on the clustering
protocol of this new dataset. The BCubed F-measure [2] and V-measure [31] are used again and the scores are reported in
Table 3.

IJB-C-32 IJB-C-1021 IJB-C-1839 IJB-C-3531
F V(NMI) F V(NMI) F V(NMI) F V(NMI)

FCW 0.802 0.896 0.697 0.864 0.682 0.852 0.664 0.836
α-MaxMax 0.802 0.897 0.621 0.860 0.609 0.814 0.587 0.795

Table 3: BCubed F-measure and V-measure scores of Fuzzy Chinese Whispers (FCW) and α-MaxMax on the different IJB-C
clustering subtasks.

Based on the results displayed in Table 3 FCW is preferred over α-MaxMax as it outperforms α-MaxMax in both evaluation
measures. However, looking at the fuzzy scores of Table 4 on the IJB-C-1021 dataset, α-MaxMax returns a better fuzzy
partitioning even outperforming the crisp scores of FCW.

Crisp hom Crisp com Crisp V Fuzzy hom Fuzzy com Fuzzy V
FCW 0.857 0.872 0.864 0.368 0.876 0.518
α-MaxMax 0.889 0.833 0.860 0.892 0.839 0.865

Table 4: Fuzzy homogeneity, completeness and V-measure scores of Fuzzy Chinese Whispers (FCW) and α-MaxMax on the
IJB-C-1021 clustering subtask.
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