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ABSTRACT
Over the last few years, Large Language Models have become re-
markably popular in research and in daily use with GPT-4o being
the most advanced model from OpenAI as of the publishing of this
paper. We assessed its performance in unit test generation using
mutation testing. 20 Java classes were selected from the SF110 Cor-
pus of classes, and for each 10 different test classes were generated.
After we resolved build errors and removed failing assertions, the
evaluation using Pitest produced around 71% of mutation coverage
on average on the sample dataset. Manually fixing the failing asser-
tions increased the overall mutation score to 75%. Nonetheless, one
of the main drawbacks was the need to manually resolve problems
that the GPT-4o responses produced, such as code hallucination
and incorrect assumptions about the classes under test.

KEYWORDS
mutation testing, GPT-4o, JUnit, OpenAI, EvoSuite, artificial intelli-
gence, generative AI

1 INTRODUCTION
Software testing is a crucial part of software development that
requires significant time and effort [5, 9]. It is one of the main
options for developers to find mistakes in the code before shipping
it to production. There are many different ways to test code each
having different purposes, such as unit, integration, and system
testing, out of which unit testing is one of the cheapest and most
prevalent.

For a test case to be meaningful it must have at least a single
assertion. After a test method code generates some output, they
fail if there is a mismatch between expected and actual output,
thus, indicating that something is not working as expected. The
assertions are supposed to be written in a way that they detect if a
developer has made a mistake in the implementation. Furthermore,
effective assertions are a key factor in the quality of a test suite
[26].

Although testing can provide valuable information, it is a com-
plicated task. Writing good tests is not straightforward. There are
numerous methods to evaluate the quality of a test suite, with line
and branch coverage being some of the most popular. Nonetheless,
research has shown that mutation testing is more indicative of test
quality than the previously mentioned metrics [25], albeit less wide-
spread [19]. All of these factors may contribute to lower-quality
test cases.

There have been attempts to automate testing, for example,
search-based unit test generation can produce test cases with strong
mutation but is quite expensive [14]. Another problem is that they
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struggle with readability [20] which is important for maintain-
ability of test suites. On the other hand, Large Language Models
(LLMs) have demonstrated promising results working with natural
language in related domains [6]. Therefore, they might overcome
some of the limitations of search-based testing.

Currently, OpenAI is marketing GPT-4o as the most powerful
state-of-the-art model they can offer. It will be used with a static
approach, which entails a query with a single prompt rather than
a dynamic approach, which aims to dynamically improve the re-
sults. As for the measurement of the results, mutation score will be
utilized.

GPT-4o was used to generate test suites for 20 classes selected
from the SF110 Corpus of Classes1 [12]. One of the key reasons
being that LLMs perform incredibly well on data they were trained
on. Thus, for a proper evaluation, the code must be extracted from
sources that have not been used to train the model. Each of the
selected classes has 10 generated test classes to account for the
non-determinism of LLMs. The results were compared with the
performance of EvoSuite, a search-based software testing tool.

Even though the experiment results had plenty of trivial build
errors and even more failing assertions, it produced notable results.
The assertions successfully killed 71% of the mutants in the sample
dataset. Furthermore, the tests exposed problems in the behavior
of some of the classes under test. Manually fixing the assertions in-
creased the score to 75%. However, more often than not it performed
worse than EvoSuite.

The paper is structured as follows. Section 2 elaborates on the
background along with related work. In Section 3, the study ap-
proach is described. The design of the experiment is detailed in
Section 4. The results are presented and analysed in Section 5. In
Section 6, potential threats to the validity of this research are dis-
cussed. Section 7 discusses the importance of responsible research
in this domain. Lastly, the conclusions are presented in Section 8
together with future work.

2 BACKGROUND & RELATEDWORK
2.1 Search-Based Software Testing
Search-Based Software Testing (SBST) is a research area that focus
on automating automate test creation. Although there have been
other attempts, SBST stands out among these as one of the most
successful as shown by Software Based and Fuzz-Testing competi-
tions [15]. Despite this, it cannot act as a test oracle, i.e. distinguish
the correct behavior of a program from incorrect [4]. This necessi-
tates human verification of the generated assertions. However, this
process is complicated by the low readability of the tests generated
using SBST [20]. One such SBST tool is EvoSuite which generates
Java unit tests using a genetic algorithm [11].

2.2 Mutation testing
Mutation testing is a strategy for evaluating a unit test suite. The
main idea behind it is to modify code under test and check whether
the unit tests will fail. If any of the assertions in a test now fail, that
means themutant was killed. Hence, the resultingmetric –mutation
1https://www.evosuite.org/experimental-data/sf110/
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score – is calculated by dividing the number of mutants killed by
the total number of mutants. Additionally, research suggests that
this metric is more insightful than line or branch coverages that
are used more commonly [25].

There exist numerous tools that can determine the mutation
score, for example, Pitest (PIT) is one of the most popular such
frameworks [22] that is designed to evaluate Java unit tests.

2.3 Large Language Models
Over the past few years, Large Language Models (LLMs) have ex-
ploded in popularity, with OpenAI being one of the leaders in this
field. These models have a plethora of real-world applications such
as code generation. Currently, they play a vital role both in research
and in daily use [7, 21]. On the other hand, one of their most notable
flaws is hallucination. It happens when a model generates content
that may appear plausible, but is factually incorrect.

The use of LLMs for testing is already discussed in the literature.
It has been applied to generate test assertions [16] with readability
being one of the main advantages compared to other test suite
generation tools [13]. LLMs have performed reasonably well in
generating test suites that aim for high code coverage [23]. Further-
more, some research has explored whether this applies to mutation
testing, but only with older models [10]. Meanwhile, OpenAI has re-
cently released GPT-4o which they claim to be their most powerful
model as of yet.

3 APPROACH
The goal is to discover how well GPT-4o generates test assertions.
We hand-picked a dataset of 20 Java classes. To account for the
non-stochastic nature of LLMs, we generated 10 test classes for
each of the dataset entries and evaluated them using Pitest. To
judge the performance, we are comparing these results with 6 runs
of EvoSuite. Figure 1 contains a schematic of this approach.

As LLMs are prone to code hallucinations, a portion of the gener-
ated assertions ends up failing. Therefore, we opted for two rounds
of comparison, one with removing the failing assertions and the
other with these assertions fixed manually.

For the test case generation, we came up with two possible ap-
proaches: static and dynamic. The static approach entails requesting
the model for the response, whereas the dynamic approach means
additional responses that aim to further iterate upon the results. For
example, if some of the tests do not compile or are failing, another
request can be sent to the LLM asking to fix the problem. Addition-
ally, subsequent requests can be used to improve the test metric,
which in this case is the mutation score. That being said, this paper
focuses only on the static approach.

Regarding the test evaluation, mutation score will be used as it
is proven to be a better metric for measuring the robustness of a
test suite than line or branch coverage [25].

The model chosen for this experiment is OpenAI’s flagship GPT-
4o. As mentioned before, OpenAI claims that it is their most ad-
vanced model as of the writing of this paper. This claim is backed
up by Large Model Systems Organization, which currently ranks it
as the top LLM [8].

4 STUDY DESIGN
The question this paper aims to answer is how effective is GPT-4o at
generating test assertions with regards to mutation score? Regarding
the technologies used to implement the solution, we made the
following choices. The programming language is Java due to its
popularity, backward compatibility, and prevalence of mutation
testing frameworks. To perform the evaluation we incorporated
Pitest into a Gradle project that supported both JUnit 4 and JUnit 5.

4.1 Evaluation dataset
To evaluate the performance, 20 classes from the SF110 Corpus
of Classes [12] were selected. The Corpus is a collection of 110
mostly stale open-source Java projects hosted on SourceForge. It
was chosen because these projects are hosted on SourceForge rather
than GitHub, thus, decreasing the likelihood that the code was in
the training set of GPT-4o. That being said the Corpus contains a
plethora of projects which all contain numerous classes, thus, there
was a need to pick a smaller sample to base the experiment on. The
classes were chosen using the following criteria:

(1) The classes should not depend on more than one other class
from the same project not including the default Java classes.
This is largely due to the fact that isolated classes are sim-
pler and more suitable to test with unit tests. Furthermore,
this criterion significantly simplifies the process of cherry-
picking the classes.

(2) The classes should not be trivial to test. For example, testing a
class with a single method having the cyclomatic complexity
of 1 is unlikely to produce interesting results. Hence, we
chose 5 as the cutoff point.

(3) The code should contain logic other than basic getters and
setters. For instance, classes that perform string or number
manipulation or parsers were welcome additions.

The selected classes are listed in Table 1. For each, the count
of lines of code, McCabe’s cyclomatic complexity, and the highest
cyclomatic complexity were calculated using CK code metrics tool
[1]. Meanwhile, the number of mutants was reported by Pitest.

Two of the classes in the dataset have other small classes as their
dependencies, namely, OpMatcher, which relies on NamedStyle, and
Contract, which uses UnderComp. There was a conscious decision
not to provide the code on which the classes depended to glimpse
if there was a drop in test quality and the mutation score.

4.2 Experiment
Regarding the experiment, for each of the 20 classes, 10 testing
classes were generated using the OpenAI Python library [18] to
account for randomness. The classes were grouped in 10 runs with
each having a test class for the source code. The requests were
sent as separate chats to the completions API endpoint with the
sytem prompt: You are a helpful assistant that can create robust test
suites for Java classes. You will output code only. Then the code was
extracted from the responses and saved in the Gradle project. After
all the classes were generated, every build error was manually re-
solved. Afterwards, all failing assertions were removed. If removing
an assertion caused the test to have no remaining assertions, it
was removed as well. Lastly, the mutation score of each class was
measured using Pitest 1.15.0.



Figure 1: Illustration of the static approach

Table 1: Some code metrics of the classes under test. ’Dependency’ column is ’Yes’ when the class depends on another class
within its project. CC stands for cyclomatic complexity.

Class under test Lines of code CC Largest CC of a method Method count Dependency Total mutants
saxpath.Axis 89 28 14 2 No 40
sfmis.Base64 103 22 9 9 No 95
javaviewcontrol.Base64Coder 81 35 17 7 No 94
jiprof.ByteVector 158 33 14 11 No 138
openjms.CommandLine 80 24 8 10 No 32
tulibee.Contract 90 26 23 4 Yes 36
javaviewcontrol.HtmlEncoder 40 14 14 1 No 18
imsmart.HTMLFilter 27 8 8 1 No 7
corina.NaturalSort 87 47 18 8 No 68
templateit.OpMatcher 90 27 8 5 Yes 29
biblestudy.Queue 113 28 7 13 No 34
corina.Sort 79 29 11 8 No 29
corina.StringComparator 20 7 6 2 No 16
fim1.StringEncoder64 139 38 10 9 No 177
corina.StringUtils 83 26 11 7 No 37
tulibee.Util 45 22 11 7 No 28
lagoon.Utils 69 25 11 5 No 24
schemaspy.Version 40 14 5 4 No 19
beanbin.WildcardSearch 42 11 10 2 No 24
battlecry.bcWord 76 27 10 9 No 39

For this part of the experiment, Java 17 was used for this experi-
ment along with Gradle 8.0. Other dependencies along with their
versions can be found in the replication package of this project [3].

4.3 Baseline
The results of this experiment are measured against mutation scores
obtained by running EvoSuite. The different methods will be com-
pared by calculating a Wilcoxon rank-sum test along with the
Vargha-Delaney effect size for each of the classes separately [2, 24].
EvoSuite was run 6 times with a time budget of 120 seconds with
the following setup: 2x AMD EPYC 7H12 64-Core Processor with
128 cores and 512 threads with hyperthreading. The CPU frequen-
cies range between 1.5 GHz – 2.6 GHz. The main memory contains
256GB of RAM and the OS is Ubuntu 22.04.

5 RESULTS
5.1 Initial results
Even though the prompt asked for code only, 19 responses (less
than 1%) contained other explanation text despite the explicit in-
structions to output code only. In the 200 classes generated by the
experiment, there were a total of 38 build errors. The majority of
errors were recurring: 13 were caused by missing imports from
Java utility classes, and 10 were caused by the omission of the pack-
age name. Since the model was not explicitly informed about the
APIs of the classes that were used as dependencies (NamedStyle
and UnderComp), 7 of the build errors were caused by hallucinated
calls to non-existent methods in the other classes used by the class
under test. After the failing assertions were removed, 1580 tests
were remaining, which on average is 7.9 tests per class. Collectively,
they killed 71% of all the mutants. In terms of readability, the test
suites seemed as though they were written by an actual person.



Table 2: Experiment results rounded to the nearest two decimal places. Classes with dependencies are highlighted in yellow.

GPT-4o EvoSuite Wilcoxon rank-sum test
Class under test Mean score, % 𝜎 Mean score, % 𝜎 W-statistic p-value Vargha-Delaney A
saxpath.Axis 100 0 100 0 0 1 0.5
sfmis.Base64 75.6 13.59 76.33 4.27 -0.22 0.83 0.47
javaviewcontrol.Base64Coder 90.3 1.68 94.33 1.7 -2.82 0 0.07
jiprof.ByteVector 29.4 4.18 32.17 1.57 -1.41 0.16 0.28
openjms.CommandLine 83.1 3.73 87.17 2.48 -1.9 0.06 0.21
tulibee.Contract 67.4 8.62 99 1.41 -3.25 0 0
javaviewcontrol.HtmlEncoder 76.2 2.75 72.5 5.5 1.14 0.25 0.68
imsmart.HTMLFilter 100 0 100 0 0 1 0.5
corina.NaturalSort 71.8 8.63 70.33 6.34 -0.11 0.91 0.48
templateit.OpMatcher 84.2 3.66 72 0 3.25 0 1
biblestudy.Queue 86.3 5.33 80 3.32 2.22 0.03 0.84
corina.Sort 54.7 12.46 29 0 3.25 0 1
corina.StringComparator 92.7 6.63 100 0 -1.95 0.05 0.2
fim1.StringEncoder64 72.4 7.58 77.5 6.32 -1.19 0.23 0.32
corina.StringUtils 81.3 0.9 87.17 1.95 -3.2 0 0.01
tulibee.Util 89 10.18 100 0 -2.28 0.02 0.15
lagoon.Utils 74.5 9.63 91.67 6.13 -2.82 0 0.07
schemaspy.Version 80 3 84 0 -2.28 0.02 0.15
beanbin.WildcardSearch 88 7.24 96 0 -1.95 0.05 0.2
battlecry.bcWord 48.4 27.61 78.5 1.8 -1.95 0.05 0.2
Averages 77.27 6.89 81.38 2.14 -0.87 0.23 0.37

Table 3: Results after fixing the failing GPT-4o test cases manually to the nearest two decimal places. Classes with dependencies
are highlighted in yellow.

GPT-4o EvoSuite Wilcoxon rank-sum test
Class under test Mean score, % 𝜎 Mean score, % 𝜎 W-statistic p-value Vargha-Delaney A
saxpath.Axis 100 0 100 0 0 1 0.5
sfmis.Base64 83.1 7.67 76.33 4.27 1.03 0.3 0.66
javaviewcontrol.Base64Coder 90.5 1.63 94.33 1.7 -2.77 0.01 0.07
jiprof.ByteVector 30.4 3.38 32.17 1.57 -0.98 0.33 0.35
openjms.CommandLine 84.4 3.41 87.17 2.48 -1.41 0.16 0.28
tulibee.Contract 68.5 8.43 99 1.41 -3.25 0 0
javaviewcontrol.HtmlEncoder 76.2 2.75 72.5 5.5 1.14 0.25 0.68
imsmart.HTMLFilter 100 0 100 0 0 1 0.5
corina.NaturalSort 73.20 7.69 70.33 6.34 0.33 0.74 0.55
templateit.OpMatcher 98.2 1.47 72 0 3.25 0 1
biblestudy.Queue 87.4 3.5 80 3.32 2.82 0 0.93
corina.Sort 59.5 11.36 29 0 3.25 0 1
corina.StringComparator 95.1 6.11 100 0 -1.63 0.1 0.25
fim1.StringEncoder64 73.7 6.36 77.5 6.32 -0.87 0.39 0.37
corina.StringUtils 89 4.65 87.17 1.95 1.36 0.18 0.71
tulibee.Util 89 10.18 100 0 -2.28 0.02 0.15
lagoon.Utils 77.8 4.75 91.67 6.13 -2.82 0 0.07
schemaspy.Version 80 3 84 0 -2.28 0.02 0.15
beanbin.WildcardSearch 90.6 6.56 96 0 -1.63 0.1 0.25
battlecry.bcWord 79.5 15.09 78.5 1.8 0 1 0.5
Averages 81.3 5.4 81.38 2.14 -0.33 0.28 0.45



Table 4: Run durations

Run Duration
1 4m 17s
2 4m 37s
3 4m 17s
4 4m 44s
5 5m 12s
6 5m 17s
7 5m 2s
8 4m 44s
9 4m 39s
10 4m 25s

The methods were named appropriately to the test cases, the vari-
able names were meaningful, and sometimes there were comments
explaining what was being done or other useful information. Ad-
ditionally, there were even cases when the LLM made comments
that proposed to adjust the assertion based on the actual expected
value, recognising that it might fail.

Moving on to the analysis, Table 2 provides an overview of the
results. A negative W-statistic implies that GPT-4o produced worse
results than EvoSuite and a positive means the opposite is true. For 9
of the 20 classes Wilcoxon rank-sum test with p-value = 0.05 results
in a statistically significant difference in favor of the EvoSuite. In 3
of the cases, the same test concludes that GPT-4o performed better.
As for the Vargha-Delaney A measure, values below 0.5 show that
EvoSuite showcased better results, 0.5 means both methods were
equally good, and values above 0.5 indicate that GPT-4o was more
effective.

Based on the findings obtained by analysing the data, GPT-4o
with failing assertions removed performs slightly worse than Evo-
Suite. Although it did so with a smaller time budget: each run
(which consists of generating a single test class for each entry in
the dataset) took around 4 minutes and 44 seconds on average as
depicted in Table 4. This is also considering an exponential back-
off in case there was a rate limit error (too many tokens used per
minute) [17]. However, it is worth noting that a timewise com-
parison might not be fair as GPT-4o requires large servers to run
whereas EvoSuite can be run on personal computers. That said, the
generated code was processed manually, which entailed finding and
removing failing assertions and took way longer than generating
all the replies. One of the possible reasons for that was our initial
lack of familiarity with the classes under test.

5.2 Results after fixing failing assertions
The results improved after the tests with failing assertions and build
errors were manually fixed. Except for the few assertions that were
correct and detected unexpected behavior of the class under test –
they were left out. Thus, a total of 225 unit tests were rewritten. As
a consequence, the overall coverage increased to 75%.

More detailed results can be found in Table 3. Fixing the asser-
tions improved the mutation scores, thus, changing the results of
the statistical tests. This time GPT-4o outperforms EvoSuite with

significant confidence in 3 cases. However, EvoSuite showcases
better performance for 5 of the classes.

Even though for some classes there was a strong increase in
mutation coverage, there were also examples of minimal or no
improvement. The values can be found in Figure 2. We observed
that for the classes that saw the greatest rise in mutation score,
GPT-4o consistently failed to understand or correctly predict their
usage based on the source file contents. Notable examples were
bcWord, NaturalSort, Utils and alternate base64 encoding schemes
in Base64:

• In the case of bcWord, the logic deals with language, phonemes,
and rhyming schemes. It requires strings in a precise format
to work properly. There were no examples of how the class
was used, and the intended use is not intuitive to understand
if only the source code is given. Thus, different runs resulted
in mutation coverage as low as 21% when the model made a
lot of wrong assumptions that resulted in failing assertions.
Despite this, it scored 95% during the most successful run.
Hence, the standard deviation for the model’s results for
this class was the highest and fixing the failing assertions
substantially increased its mutation score.

• OpMatcher test in total had 24 assertions that failed because
of unknown dependency API. The main problem was that
GPT-4o based most of the assertions on the assertEquals
assertions, but the class NamedStyle did not have an equals
method implemented. Therefore, under the hood, the tests
were just comparing different memory locations rather than
the features of the objects.

• Utils had 58 failing assertions because of incorrectly pre-
dicted output. The class works with string manipulation.
It often had custom rules for converting each character of
a given string to some substring of the output string. The
model seemingly had a lot of trouble with that as it could
not adapt well to this exact rule set.

• Base64, a class that works with base64 encoding and de-
coding, offered an alternative encoding scheme that used
different symbols. Moreover, nearly every internal field and
function name had obscure names, which could have played
a part in confusing GPT-4o. In 9 out of 10 runs, the LLM
failed to assert the output of decoding or encoding strings.
It would either assume the standard character set or make
a poor attempt to use the alternative set, leading to the ma-
jority of alt scheme tests failing. In the one case where the
class suceeded to work with the alt scheme, there was only a
single test method that simply encoded and decoded a string
and compared with the value it started with.

Therefore, some of the analysed examples indicate that GPT-4o
tends to sometimes make incorrect assumptions about the code that
lead to failing assertions. Removing them significantly reduced the
percentage of mutants killed in some of the classes. This would also
explain the greater standard deviation compared with EvoSuite.

5.3 Examples of possible bugs or corner cases
found by GPT-4o

It is also worth noting that a failing assertion is not necessarily a
bad assertion. It could also mean that the test suite detected a bug



Figure 2: Increase in mean mutation scores after fixing the
failing assertions

or a corner case that the developer missed. A small fraction of the
failing assertions were caused by this exact reason.

All of the following bugs were caught by failing tests. When
fixing the failing tests, these were purposefully kept out of the test
suite as that would imply accepting the unintentionally incorrect
behavior of the program. There have been cases when the intended
output was not clear but after a deeper dive into the purpose and
usages of the code, those instances were deemed correct or given
the benefit of the doubt. As for the remaining few, some of the
noteworthy examples will be discussed in the following paragraphs.

One of the simpler bugs found by the failing assertions is in
OpMatcher. Even though at first glance matchTemplateEnd can
handle null input, calling it with null causes an exception to be
thrown. The reason for that is missing parentheses in the three-part
boolean statement. Even if the first part is false, the third part is
still evaluated because the logical OR expression can still return
true. Thus, the program calls the indexOf method on a value that is
null, leading to an exception. This bug was caught in 4 out of 10
OpMatcherTest classes.

1 public static boolean matchTemplateEnd(String
text)

2 {
3 return text != null && (text.indexOf("

@template_end") != -1)
4 || (text.indexOf("@tend") != -1);
5 }

WildcardSearch is also demonstrating erroneous behavior on
some of the inputs. The class functions as a Regex checker for text
with wildcards. Although the class appears to be functioning cor-
rectly with wildcard symbols, unexpected results could be achieved
by using it without them. The test below manages to point out
two bugs with two assertions. The first one fails because doesMatch
returns true for all strings that start with the search string ("hello" in
this case). Even though a correct regex checker would return false.
As for the second one, an input string shorter than a search string

produces an exception. In all fairness, these can also be considered
corner cases because the project from which this class was taken
has only uses this class with a wildcard symbol.

1 @Test
2 void testDoesMatch_noMatchDifferentLengths () {
3 WildcardSearch search = new WildcardSearch

("hello");
4 assertFalse(search.doesMatch("helloo"));
5 assertFalse(search.doesMatch("hell"));
6 }

Yet another example can be found in Queue. Calling the dequeue
method on an empty queue causes the variable numItems to be
negative. Line 15, where the count of elements is decreased, gets
executed even if the queue is empty.

1 public synchronized Object dequeue () {
2 Object obj = null;
3

4 if(isEmpty ()) {
5 System.out.println("Cannot remove when queue

is empty");
6

7 } else if(first == last) { // first see if we
only have one item in the queue

8 obj = first.value;
9 first = null;
10 last = null;
11 } else {
12 obj = first.value;
13 first = first.next;
14 }
15 numItems --;
16 return obj;
17 }

6 THREATS TO VALIDITY
6.1 External validity
The dataset size is relatively small. The sampled classes are strongly
biased towards stale projects written using older versions of Java.
As a result, we do not know if using other programming languages
or using different datasets would alter the findings. To account for
that we gathered classes whose total cyclomatic complexity ranges
between 7 and 47 and the number of mutants varies from 7 to 177. In
addition, we sampled classes with different purposes, such as base64
encoding, sorting, string manipulation, data structures, etc. Overall,
the samples are from 15 different projects. This way the results
included more diversity which should help with generalisability.

6.2 Internal validity
Manual work was used to first remove and then fix the failing asser-
tions. Therefore, if others replicate the same experiment, they might
obtain different results as they could have a different interpretation
of what the LLM was trying to do. Even though for the majority of
failing test cases fixing the expected value was sufficient, the efforts
to curb this problem also included inferring what the model aimed
to achieve using the test method names, comments, the actions it
took, and the source code. Some of the more complex cases required



analyzing the context and usages of the class within its respective
project. On the other hand, if it appeared that the program had a
bug, the test case would be left out as testing for incorrect behavior
defeats the purpose of testing.

6.3 Construct validity
Another threat is that the LLMs have enormous training sets. Since
the projects used for this paper are open-source, there is a consid-
erable likelihood that at least some were used in the training set of
GPT-4o. Especially given the possibility that OpenAI trained the
model even on private GitHub repositories. To mitigate this, we
chose the SF110 Corpus of Classes which is not hosted on GitHub
(even though some of its projects are).

6.4 Conclusion validity
One of the main problems that research with LLMs might face is
non-determinism. The same prompt is highly unlikely to produce
the same results. There has also been research claiming that OpenAI
continuously adjusts their models which might affect performance
[21], which they acknowledge in their documentation [17]. To
account for this, we prompted the LLM 10 times for each of the
classes within the dataset before performing statistical analysis and
provide the metadata of the queries in the following section.

7 RESPONSIBLE RESEARCH
The generated test code may contain elements from private code-
bases. Thus, blindly following the described approach might lead to
the model reciting copyrighted code. Therefore, developers using
LLMs to generate code should verify the code before using it in
other projects. In addition, datasets often tend to have biases. Artifi-
cial intelligence models trained on such data tend to display biased
behavior. Despite OpenAI’s efforts to curb it as much as possible, it
is impossible to fully remove them.

To ensure reproducibility, the project used to run the experiment
is published online along with the results, including the raw re-
sponse messages, extracted code, and code coverage reports [3].
Nevertheless, this does not guarantee replicability as LLMs are not
deterministic. Thus, repeating the same experiment with the same
setup might yield different results. The experiment described in the
paper is run on version gpt-4o-2024-05-13, the first public version
of GPT-4o. Since the models are constantly fine-tuned, it is recom-
mended to mention the date of the queries as well [21], which in
this case was the 28th of May, 2024.

8 CONCLUSION & FUTUREWORK
In this paper, we took a static approach to generate JUnit tests using
GPT-4o. The results were evaluated with regards to mutation score
using Pitest and compared against EvoSuite. Our approach per-
formed slightly worse than EvoSuite in terms of mutation score but
improved upon some of the limitations of SBST, such as poor read-
ability, the time it takes to generate a test class, and the assumption
that the class under test is behaving correctly.

GPT-4o appears to be a viable option for creating unit tests.
However, the generated code has to be verified and often contains
hallucinations or other mistakes. The quality of the results is influ-
enced by how well the model understands the class under test.

Despite the shortcomings, we demonstrated a viable strategy
that could aid a developer in building a robust test suite. Further-
more, the results have shown that the model might find a different
perspective and discover corner cases not yet considered by the
developer.

As for future work, multiple directions could be insightful. For
example, analyzing different programming languages that have
mutation testing frameworks such as Python, JavaScript, and PHP.
In addition, there are numerous other LLMs whose performance
might rival GPT-4o. It might beworthwhile to compare them against
each other or test out different prompts. Moreover, the current
approach can be applied to different datasets to obtain a more
diverse set of results. Alternatively, the dynamic approach can be
used to automatically further improve tests after their generation.
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