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A B S T R A C T   

Long short-term memory (LSTM) has been widely applied to real-time automated natural gas leak detection and 
localization. However, LSTM approach could not provide the interpretation that this leak position is localized 
instead of other positions. This study proposes a leakage detection and localization approach by integrating the 
attention mechanism (AM) with the LSTM network. In this hybrid network, a fully-connected neural network 
behaving as AM is first applied to assign initial weights to time-series data. LSTM is then used to discover the 
complex correlation between the weighted data and leakage positions. A labor-scale pipeline leakage experiment 
of an urban natural gas distribution network is conducted to construct the benchmark dataset. A comparison 
between the proposed approach and the state-of-the-arts is also performed. The results demonstrate our proposed 
approach exhibits higher accuracy with AUC = 0.99. Our proposed approach assigns a higher attention weight to 
the sensor close to the leakage position, indicating the variation of data from the sensor has a significant in
fluence on leakage localization. It corresponds that the closer to the leakage position, the larger variation of 
monitoring pressure after leakage, which enhances the detection results’ trustiness. This study provides a 
transparent and robust alternative for real-time automatic pipeline leak detection and localization, which con
tributes to constructing a digital twin of emergency management of urban pipeline leakage.   

1. Introduction 

The past decade has witnessed significant growth of urban natural 
gas demand in China (Vairo et al., 2021). Complex natural gas trans
mission and distribution networks in urban areas have been accordingly 
constructed, bringing several safety issues. Natural gas leakage from 
such complex urban pipeline networks is one of the most dangerous 
events since the released natural gas could accumulate into flammable 
vapor clouds of large size in urban areas (Zhang et al., 2022). Once being 
ignited, such vapor clouds would cause fire and explosion accidents 
resulting in a large number of casualties and significant environmental 

damage (Shi et al., 2020a, 2022). Real-time pipeline leakage detection 
and localization are essential to support a quick mitigation decision such 
as emergency repair strategy to prevent the escalation to fire and ex
plosion disaster (Hassan et al., 2022; Syed et al., 2020). 

Research progress has been achieved in developing various kinds of 
pipeline leakage detection and localization approaches. Model-based 
approach such as hydraulic gradient approach (Carrera et al., 2015; 
Lopezlena and Sadovnychiy, 2019; Rojas and Verde, 2020; Torres et al., 
2021), Kalman filter approach (Delgado-Aguiñaga et al., 2016, 2021), 
Fisher Discriminant Analysis approach (Romero-Tapia et al., 2018) etc., 
has been developed by discovering hidden fluid mechanics with math
ematical complexity. Its accuracy of leakage detection and localization 
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for different pipeline networks has been widely accepted as well. In 
addition, data-driven approach becomes a promising alternative since 
this approach could directly learn the complex relationship among 
monitored fluid flow signals in pipelines without knowing the hidden 
physics and mechanism (Bermúdez et al., 2020; Ye et al., 2021; Korla
pati et al., 2022). Quiñones-Grueiro et al. (2018a, 2018b) compared 
different data-driven approaches for pipeline leakage localization and 
demonstrated Support Vector Machine (SVM) approach exhibited 
higher accuracy. Further, Quiñones-Grueiro et al., (2018b) combined a 

periodic transformation with principal component analysis (PCA) for 
leak detection and location in water distribution networks (WDNs). 
Pérez-Pérez et al. (2021) deployed Artificial Neural Networks (ANN) to 
estimate the friction factor first and then applied the 2nd ANN for 
pipeline leakage localization. Irofti et al., (2020, 2022) combined 
graph-based interpolation and dictionary classification for leak locali
zation in WDNs. Delgado-Aguiñaga et al. (2022) developed an inte
grated approach based on Nearest Neighbor (KNN) classifier and 
Extended Kalman Filters (EKFs) for multi-leak detection task in a 

Nomenclature 

X Time-series data 
l Sequence length 
N Number of time series data 
k Number of sensors 
t Monitoring time 
c Weight coefficient 
a Attention weight 
X′ Weighted Time-series data 
σ, tanh Activation function in neural network 
f Output of the forget gate in LSTM 
H Output of LSTM 
W Neural weight in LSTM 

b bias vectors in LSTM 
e Updated probability in LSTM 
g Updated value in LSTM 
U Cell state in LSTM 
O Output information in LSTM 
L Loss during network training 
M Number of leak positions 
Y Labels of time-series data 
TPR True positive rate 
FPR False positive rate 
TP True positive sample 
FP False positive sample 
TN True negative sample 
FN False negative sample  

Fig. 1. Architecture of the proposed AM-LSTM approach.  
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branched pipeline. 
The above research works applied machine learning for data-driven 

approach development. Relatively, deep learning exhibits several ad
vantages in terms of accuracy and efficiency since deep learning could 
automatedly extract critical features from high-dimension data (Shi 
et al., 2021, 2023a,b). Romero et al. (2020) applied a deep neural 
network to classify leakage location by using the image as training data. 
Kim et al. (2019) applied Long short-term memory (LSTM) to analyze 
the time-series atmospheric concentration and demonstrated a high 
accuracy of leakage localization. Spandonidis et al. (2022) applied 
LSTM-Autoencoder (LSTM-AE) for real-time pipeline leakage detection 
by automated analyzing monitored time-series signals. However, the 
above deep learning models behave like a ‘black box’ and could not 
provide a reference for automated leakage detection and localization. In 
this case, attention mechanism (AM) has been applied to improve deep 
learning’s transparency and accuracy for various engineering applica
tions. AM is a feature extraction technique that could enhance features’ 
importance on deep learning performance by assigning larger weights to 
corresponding features (Jing et al., 2022; Pang et al., 2022; Tian et al., 
2022). Yuan et al. (2021) proposed an AM-based approach, Target 
Transformer, to capture the importance of temporal and spatial features 
to improve fault diagnoses accuracy in chemical process. Wei et al. 
(2022) introduced AM into Convolutional Neural Networks (CNNs) and 
bi-directional long short-term memory (BiLSTM) to explain the contri
bution proportion of input features for the furnace tube temperature 
prediction. Gao et al. (2022) cascaded AM to LSTM to give temporal 
features’ contribution while improving prediction accuracy of solar ra
diation. However, to the best of the authors knowledge, the application 
of AM to real-time automated pipeline leakage detection and localiza
tion has not been explored yet. 

This study aims to propose a real-time automated pipeline leakage 
detection approach by integrating AM with LSTM, namely AM-LSTM, to 
enhance the trustiness of automated leakage detection and localization. 
Labor-scale leakage experiment in the pipeline with branches is con
ducted to construct the benchmark dataset. Using such a dataset, a 
comparison between the proposed and state-of-the-art approaches is 
also performed. The major contributions and novelty of this study are 
listed as follows:  

(1) A hybrid AM-LSTM approach is developed, in which AM is 
applied to discover the contribution proportion of each sensor, 
and LSTM is used to discover the complex correlation between 
the weighted time-series data and pipeline leakage positions.  

(2) An experimental study demonstrates unlike the LSTM-based 
approach, our proposed approach outputs a higher weight 
value to the sensor close to the leakage position corresponding to 
the physical variation of monitoring pressure at the same posi
tion, which improves the trustiness and robustness of intelligent 
detection.  

(3) The experimental study also demonstrates that our proposed 
approach exhibits a higher AUC= 0.99 indicating its accuracy in 
real-time automated pipeline leakage localization compared to 
the state-of-the-art approaches. 

2. The proposed AM-LSTM approach 

Fig. 1 demonstrates the architecture of proposed AM-LSTM approach 
for real-time automated pipeline leakage detection and localization. As 
can be seen, the AM-LSTM approach consists of two networks, namely a 
fully-connected neural network and an LSTM network. 

The first step of this approach is to feed the time-series dataset X of all 
sensors into an attention neural network to discover the correlation 
among each sensor by assigning a weight, which indicates the impor
tance of time-series data from each sensor. The second step is to feed the 
weighted timing data of different sensors into the LSTM network, which 
extracts the weighted temporal features and correlates such features to 

pipeline leakage positions. By using such integration, the sensor con
taining the temporal features significantly influencing the location result 
could be determined by an iteratively adaptive weighting process. 
Finally, the proposed AM-LSTM will output the weight of each sensor 
and localize the corresponding leakage position closed to the sensor with 
higher weight.  

1. The first step to developing the proposed AM-LSTM-based real-time 
automated pipeline leakage detection is to construct a multi-time- 
series dataset from sensors at various positions. The multivariate 
time-series data X can be expressed as: 

X =

⎛

⎝
x1,1 ⋯ x1,l
⋮ ⋱ ⋮

xk,1 ⋯ xk,l

⎞

⎠

N

(1)  

where N is the number of multivariate time series, l is the sequence 
length, and k is the number of sensors. 

The sequence (x1,…, xl) from the k-th sensor is first inputted into 
the fully-connected neural network and calculates a sequence of 
weight coefficients wi, which can be expressed as: 

(c1,…, ci) = Softmax(Dense(x1,…, xl) =
eDense(x1 ,…,xl)

Σl
i=1exp(Dense(x1,…, xl))

(2)  

where Softmax denotes the activation function, and Dense represents 
full connected neural network. Furthermore, an attention weight ak 
is then calculated by multiplying the weight coefficient of Eq.(2) by 
sequence (x1,…, xl) from the k-th sensor as expressed: 

ak = Σl
i=1cixi (3)  

Then, the sequence (x1,…, xl) from the k-th sensor is multiplied by 
the attention weight ak to determine the weighted sequence (x1,…,

xl)
′of the k-th sensor as expressed: 

(x1,…, xl)
′
= (x1,…, xl)ak (4)  

All the sequences from additional sensors are weighted by using 
Eqs.(2), (3), (4), (5) to determine all the weighted sequences X′ as 
expressed: 

X ′

=

⎛

⎝
a1x1,1 ⋯ a1x1,l

⋮ ⋱ ⋮
akxk,1 ⋯ akxk,l

⎞

⎠

N

(5)    

2. The second step is to utilize the LSTM network to learn the temporal 
information and classify the sequential data. The recurrent Neural 
Network (RNN) is a commonly used neural network approach for 
sequence learning problems. As a modified structure of RNN, LSTM 
adds memory cells into hidden layers to solve the problem of van
ishing gradients and exploding gradients in long-sequence learning 
(Arunthavanathan et al., 2021). The structure of LSTM networks 
mainly consists of three primary multiplication gates (the forget, 
input, and output gates) and an update status. Through the switch of 
gates, memory cells can retain long-term dependencies while 
excluding invalid information (Li and Wang, 2022; Zhang et al., 
2022). 

The data fed into the LSTM network is first disposed of by the forget 
gate, indicating which information of the last moment’s cell needs to be 
discarded. The output of the forget gate ft at time step t can be expressed 
as 

ft = σ(Wf xt +Wf ht− 1 + bf ) (6)  

where σ is the sigmoid function and ft lies between 0 and 1, xt is the input 
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of the current time step, ht− 1 is the output of the previous time step, Wf is 
the weight, and bf is the bias vectors. 

The input gate determines the information of the current moment 
which needs to be stored. First, the values need to be updated through 
the sigmoid function, and the updated probability et can be obtained as 

et = σ(Wext +Weht− 1 + be) (7) 

Then, a new value gt is generated to the cell states by the tanh 
function. 

gt = tanh(Wgxt +Wght− 1 + bg) (8)  

wheretanh is the sigmoid function, Wi and Wg are input weights, bg, and bf 
are bias weights. 

Hence, the updated value of the current cell state Ut can be repre
sented as 

Ut = etgt + ft ⊗ Ut− 1 (9)  

where Ut− 1 is the previous cell state. 
The output gate controls the output information Ot of the current 

state and the output of the current time ht. 

Ot = σ(Woxt +Woht− 1 + bo) (10)  

ht = Ot ⊗ tanh(Ut) (11) 

By integrating the AM feature extraction network with the LSTM 
network, the AM-LSTM network is eventually developed. The sparse 
categorical cross entropy calculated as Eq. (12) is selected as the loss 
function in the training stage to measure the gap between prediction and 
actual probability distribution. The loss function will be minimized with 
the network parameters updated. During training, network parameters 
can be updated to minimize the loss function by using stochastic 
gradient descent. 

L = − 1

/

N
∑N

i=1

∑M

j=1
yi,jlog(ŷi,j) (12)  

where L is the loss for M output categories in N input training samples, 
yi,jand ŷi,j are the labels of the target and the network’s prediction. 

After training, the accuracy of classification is then measured by 
counting the number of correct predictions and dividing by the total 
number of cases (Kopbayev et al., 2022; Shi et al., 2020b). Given the 
confusion matrix of the predicted results and the true classification, the 

true positive rate (TPR) and the false positive rate (FPR) can be calcu
lated as Eqs. (13) and (14). 

TPR =
Tp

TP + FN
(13)  

FPR =
Fp

FP + TN
(14)  

where TP, FP, TN, and FN are true positive, false positive, true negative, 
and false negative, respectively. Taking FPR as the abscissa and TPR as 
the ordinate, respectively, the Receiver Operating Characteristic (ROC) 
curve can be obtained. Then, the network performance is evaluated by 
the respective Area Under Curve (AUC), as illustrated below: 

AUC =
1
2
∑N− 1

i
(FPRi+1 − FPRi)⋅(TPRi +TPRi+1) (15) 

Once the network’s accuracy is determined, the outputs H of the 
LSTM units are then sent to the output layer, and the leakage detection 
result Ym can be obtained as follows: 

Ym = Softmax(Hm) =
eHm

ΣM
m=1exp(Hm)

(16) 

Subsequently, all the sensors are assigned to be the attention weight 
values by using Eq.(2) and Eq.(3). And the leakage detection result Ym 
could be interpreted by using such weight vectors. 

3. Benchmark dataset 

In this section, a lab-scale gas leakage experiment system of urban 
gas transmission and distribution pipeline network was applied to 
simulate various pipeline leakage scenarios. Then, the experimental 
benchmark matrix containing the time-series data from 4 pressure sen
sors and 5 labeled leakage positions was constructed for our proposed 
AM-LSTM approach development. 

3.1. Experimental configuration 

Fig. 2 demonstrates the lab-scale experiment system of urban gas 
transmission and distribution pipeline leakage simulation, which was 
constructed based on a real-world urban gas pipeline network in China. 
The main component of this experimental system is the central gas 
pipeline with pipeline branches. The diameter of central gas pipelines is 
DN80, while the pipeline branches’ diameter is DN50. The pipelines 

Fig. 2. Labor-scale experimental system of urban gas transmission and distribution pipeline leakage simulation.  
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meet national safety standards, and the operating pressure is less than 
0.8 MPa. A gas regulator and various kinds of valves are installed in the 
pipeline. The gas regulator is used to adapt the inner pressure of the 
pipeline ranging from 0.01 to 0.2 MPa, which is set according to the low- 
pressure transmission and distribution pressure of urban gas. 5 ball 
valves mounted on the pipeline at 5 positions are applied to generate 5 
kinds of gas leakages, namely leak 1, leak 2, leak 3, leak 4, and leak 5. 
The leakage scenarios and distance between each leakage position and 
the installed sensor are summarized in Table 1. In addition, pressure 
signals which are convenient and stable indicators in pipeline leakage 
diagnosis (Zheng et al., 2020), are used as the time-series signals for 
pipeline leakage detection. Four pressure sensors denoted as P1, P2, P3, 
and P4 are mounted along the main pipeline and branches to collect the 
time-series pressure signals ranging from 0 to 2.5 kPa. Noting that the 
sensor configurations such as sampling frequency are set according to 
the Supervisory control and data acquisition system (SCADA) system in 
real-world urban gas transmission and distribution pipeline networks. 
Finally, an online data process system (DPS) is applied to collect the 
online monitoring time-series pressure signals. Using such an experi
ment system, a total of 500 = 100 * 5 pipeline leakage scenarios are 
simulated by considering 100 inner pressures adapted by the gas regu
lator and 5 leakage positions. For each time series pressure signal, the 
duration is the 60 s with sampling interval= 1 s. Then, we construct the 
experimental benchmark matrix containing the input matrix X∈R(60, 
4500) and the labeled matrix L∈R(5, 100). 

3.2. Benchmark dataset processing 

Since the experimental pipeline network is composed of pipelines 

with different pressure grades, i.e., DN50 and DN80, the variation of the 
monitoring time-series pressure signal among different sensors greatly 
differs. In this case, data processing is required to ensure all the moni
toring data with the same magnitude to accelerate the AM-LSTM net
work’s convergence rate and generalization capability. The min-max 
normalization is adopted to normalize all the time-series data X between 
0 and 1 as expressed (Zheng et al., 2020): 

xn =
xl − xmin

xmax − xmin
(17)  

where xn is the normalized value, xl is the original value, xmax and xmin 

are the maximum and minimum of the original values. After normali
zation, we further divide the experimental benchmark dataset into two 
sets, namely the training set (80%) and test set (20%), respectively. 

Fig. 3 shows an example of time-series pressure data monitored by 4 
sensors under the 1st leakage position, namely leak1. As can be seen, 
before the leakage occurrence, the monitored pressure fluctuates 
steadily. However, once leakage is initiated, the pressure drops rapidly. 
Among all the sensors, the pressure of P3 decreases the most, and the 
lowest pressure is equal to 0 MPa. This is because P3 is more closed to 
the leakage position. Once the leakage occurs, the fluid loss at the 
leakage point will change fluid density near the leakage, resulting in a 
rapid drop of pressure at the leakage point. The pressure upstream and 
downstream in the pipeline is greater than the pressure at the leakage 
point. Driven by the pressure difference, the fluid continues to squeeze 
to the leakage point, forming a new pressure difference near the leakage 
point. Subsequently, both the upstream and downstream pressure 
decrease, resulting in continuous pressure fluctuations. Due to the un
avoidable noise in the pipeline network, the pressure fluctuation at
tenuates with distance and pipeline equipment (Gupta et al., 2018). This 
results in the smallest drop rate of pressure at P4 due to the fact of P4 is 
far away from the leakage position. According to such physical phe
nomena, we may apply our proposed AM-LSTM approach to capture the 
larger variation of monitoring pressure by the sensor close to the leakage 
position and thereby assign a higher attention weight to a such sensor, 
which accordingly enhances the trustiness of real-time automated 
leakage position identification. 

4. Approach development and comparison 

4.1. leakage detection and localization 

Our proposed AM-LSTM network is constructed using Python version 

Table 1 
Distance from the leakage point to the monitoring sensor.  

Leak Distance to 
sensor P1/mm 

Distance to 
sensor P2/mm 

Distance to 
sensor P3/mm 

Distance to 
sensor P4/mm 

Leak 
1 

5410 3167 130 3388 

Leak 
2 

3448 2266 2992 5474 

Leak 
3 

2707 3098 3454 6306 

Leak 
4 

4087 3356 1370 4628 

Leak 
5 

1505 4545 4901 7753  

Fig. 3. Time-series pressure data from 4 sensors under inner pressure 0.15 MPa and leak1 (1st leakage position).  
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3.10 and the specialized libraries TensorFlow 1.14.0 and Keras 2.3.1. 
TensorFlow is an open-source platform for machine learning, and Keras 
is a high-level neural networks application programming interface 

(API), which can run on top of TensorFlow and enable fast experimen
tation. Adaptive moment estimation (Adam) is selected as the optimi
zation algorithm to train the network, whose parameters are kept as the 
default value determined in Keras documentation (Selvaggio et al., 
2022). The architecture is composed of AM layer and the LSTM layer. 
The AM layer adopts 20 dense layers with the activation function of 
Softmax to calculate the weights, which are then permuted to be 
multiplied by the input data. The LSTM layer consists of LSTM with 100 
hidden units and 5 dense layers with the activation function of Softmax. 
To prevent overfitting, dropout regularization techniques with a prob
ability of 0.2 and weight decay with a probability of 0.2 are used (Sabiri 
et al., 2022; Ziv et al., 2021). Fig. 4 demonstrates loss curves for 1000 
epochs generated by proposed AM-LSTM training and testing. As can be 
seen, both training and testing loss curves first decrease rapidly and then 
become converged after 900 epochs. We thereby select the developed 
AM-LSTM at 900 epochs for the following analysis. 

The monitoring time-series pressure data under operation pressure 
0.15 MPa and various leakage positions from the test set is applied to 
demonstrate the leakage localization ability of the proposed AM-LSTM 
in terms of real-time automated leakage localization.  

a) Predicted probability values of various leakage positions, namely 
leak1, leak2, leak3, leak4, leak5 

Fig. 4. Loss curves for 1000 epochs generated by AM-LSTM training 
and testing. 

Fig. 5. Real-time automated leakage detection results under operation pressure 0.15 MPa and leak 1.  
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b) b) Pressure variation by sensors at various positions, i.e., P1, P2, P3, 
and P4, and the predicted weight value of each sensor 

Fig. 5 demonstrates our approach’s real-time automated detection 
results under operation pressure 0.15 MPa and leak 1. Fig. 5a) shows our 
approach’s detection accuracy. As can be seen, the detection probability 
is 0.99754 under leak 1, which is significantly higher than that under 
leak 2, leak 3, leak 4, and leak 5. This indicates our approach accurately 
identifies the actual leakage position. Fig. 5b) demonstrates the time- 
series pressure data monitored by sensors at various positions, i.e., P1, 
P2, P3, and P4, and the weight value of each sensor inferred by our 
approach. From Fig. 5b), one can see once leakage occurs, the pressures 
monitored by all the sensors have a sudden drop. The pressure by P3 has 
a larger drop rate than that by P1, P2, and P4. In addition, the pressure 
by P3 is eventually reduced to 0 MPa. This is because P3 is closer to 
leak1, which collects a more significant pressure variation. From 
Fig. 5b), one can also see our approach assigns a larger value of 0.33272 
to P3, which indicates our approach can accurately capture the larger 
physical variation of monitoring pressure by P3. Such higher attention 
weight enables us to trust the detection result, i.e., detection probability 
0.99754 under leak 1.  

a) Predicted probability values of various leakage positions, namely 
leak1, leak2, leak3, leak4, leak5  

b) b) Pressure variation by various sensors, i.e., P1, P2, P3, and P4, and 
predicted weight value of each sensor 

Fig. 6 demonstrates our approach’s real-time automated detection 
results under operation pressure 0.15 MPa and leak 2. Fig. 6a) demon
strates our approach predicts a higher probability, i.e., 0.82683 under 
leak2 compared to leak 1, leak 3, leak 4, and leak 5. Fig. 6b) shows the 
time-series pressure data monitored by sensors at various positions, i.e., 
P1, P2, P3, and P4, and the weight value of each sensor inferred by our 
approach. From it, one can see P2 has the higher weight value corre
sponding to the larger variation of monitoring pressure by P2, which is 
closer to leakage position 2. Although not predicting a very high prob
ability value, i.e., 0.82683 under leak 2, our approach can convince us to 
trust the detection result by giving such a higher attention weight to P2. 

a) Predicted probability values of various leakage positions, namely 
leak 1, leak 2, leak 3, leak 4, leak 5. 

b) Pressure variation by sensors at various positions, i.e., P1, P2, P3, 
and P4, and the predicted weight value of each sensor. 

Fig. 7 demonstrates our approach’s real-time automated detection 
results under operation pressure 0.15 MPa and leak3. Fig. 7a) demon
strates our approach predicts the higher probability, i.e., 0.98928 under 
leak 3, corresponding to the benchmark leakage position 3. From 
Fig. 7b), one can see that P1 has the higher weight value, i.e., 0.27288, 
corresponding to the larger variation of monitoring pressure by P1, 

Fig. 6. Real-time automated leakage detection results under operation pressure 0.15 MPa and leak 2.  
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which is closer to the benchmark leakage position 3. Combining the 
predicted higher probability, this higher attention weight enables us to 
trust the identification of leak 3 as the real leakage position. 

a) Predicted probability values of various leakage positions, namely 
leak 1, leak 2, leak 3, leak 4, leak 5. 

b) Pressure variation by sensors at various positions, i.e., P1, P2, P3, 
and P4, and the predicted weight value of each sensor. 

Fig. 8 demonstrates our approach’s real-time automated detection 
results under operation pressure 0.15 MPa and leak 4. Fig. 8a) shows our 
approach predicts the higher probability, i.e., 0.98271 under leak 4 
corresponding to the benchmark leakage position 4. From Fig. 8b), one 
can see P3 has the higher weight value, i.e., 0.36935, corresponding to 
the larger variation of monitoring pressure by P3, which is closer to the 
benchmark leakage position 3. Combining the predicted higher proba
bility, this higher attention weight enables us to trust the identification 
of leak 4 as the real leakage position. 

a) Predicted probability values of various leakage positions, namely 
leak 1, leak 2, leak 3, leak 4, leak 5. 

b) Pressure variation by sensors at various positions, i.e., P1, P2, P3, 
and P4, and the predicted weight value of each sensor. 

Fig. 9 demonstrates our approach’s real-time automated detection 
results under operation pressure 0.15 MPa and leak 5. Fig. 9a) shows our 
approach predicts the higher probability, i.e., 0.99116 under leak 5, 
corresponding to the benchmark leakage position 5. From Fig. 9b), one 

can see that P1 has the higher weight value, i.e., 0.30408, corresponding 
to the larger variation of monitoring pressure by P1, which is closer to 
the leakage position 1. This indicates our approach can accurately give 
the interpretation to identify leak 1 as the real leakage position. Overall, 
the above detection results verify our proposed AM-LSTM approach not 
only localizes the accurate leakage position but also gives the interpre
tation of leakage localization by using the attention weight of each 
sensor to convince us to trust the detection results. 

4.2. Comparison 

In this section, a comparison among AM-LSTM, LSTM, and SVM 
approaches is conducted by using the benchmark test dataset. Fig. 10 
demonstrates the ROC curves and AUC values by AM-LSTM, LSTM, and 
SVM approaches. As can be seen, our proposed AM-LSTM approach 
exhibits the highest AUC value under each leak position compared to 
LSTM and SVM approaches. This indicates our proposed approach has 
superior accuracy for leakage localization, which may be attributed to 
the additional AM-based network to capture the time-series pressure 
variation significantly influencing the leakage localization. 

a) ROC curves and AUC values of AM-LSTM. 
b) ROC curves and AUC values of LSTM. 
c) ROC curves and AUC values of SVM. 
Although exhibiting a high AUC value under the whole test dataset, 

Fig. 7. Real-time automated leakage detection results under operation pressure 0.15 MPa and leak 3.  
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our proposed approach could still give the misclassification results 
under some specific leakage position conditions. Examples of operation 
pressure 0.12 MPa and leakage position 2 (leak 2), operation pressure 
0.20 MPa and leakage position 3 (leak 3), and operation pressure 
0.17 MPa and leakage position 5 (leak 5) are demonstrated. Table 2 
shows the misclassified results under the example leakage conditions.  
Fig. 11 illustrates the assigned attention weight to 4 sensors, P1 to P4, 
under the same leakage condition as the example. As can be seen under 
leak 2 scenario, our approach incorrectly localizes the leakage position 
as leak 5. And our approach assigns the highest weight value to P4, 
which is far from the localized leakage position 5 compared to other 
sensors. This means inconsistency exists between the leakage position 
identification and its interpretation, which suggests our approach pre
dicts unreliable detection results under the leak 2 scenario. In addition, 
for leak 3 and leak 5 scenarios, inconsistencies exist between the leakage 
localization and its interpretation. For example, under leak 3 scenario, 
our approach incorrectly localizes the leakage position as leak 2. How
ever, our approach assigns the highest weight value to P3 rather than P2, 
which is the closest sensor from position of leak 2. This inconsistency 
could be used as the reference to avoid leakage position misclassification 
induced by LSTM approach without considering AM. Overall, our pro
posed AM-LSTM approach has been verified more accurate and reliable 

for pipeline leakage detection and localization compared to traditional 
data-driven approaches. 

a) Benchmark leakage position 2, namely leak 2. 
b) Benchmark leakage position 3, namely leak 3. 
c) Benchmark leakage position 5, namely leak 5. 

5. Discussions 

Although exhibiting higher performance compared to traditional 
data-driven approach, our proposed AM-LSTM approach still has some 
limitations as follows: 

(1) Our proposed AM-LSTM approach is suitable for leakage condi
tion with medium or high leak rate. Under this condition, the variation 
of monitored pressure signals is larger compared to that under the 
condition with low-rate leak. In addition, our AM-LSTM approach is 
developed by using the monitored signals from labor-scale experimental 
system and thereby could not be directly applied for real-world full-scale 
urban pipeline network. The scale ranging from labor to real-world 
pipeline network is a significant factor to affect our proposed 
approach’s performance. For potential real-world applications, it is 
suggested to arrange sensors in the main pipeline and each pipeline 
branch. Also, further works are expected to investigate the scale effect 

Fig. 8. Real-time automated leakage detection results under operation pressure 0.15 MPa and leak 4.  
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on this approach’s performance for leakage detection and localization. 
(2) Our proposed AM-LSTM is a supervised machine learning 

approach, which requires a large number of labeled leakage data for 
model training. For real-world applications, such labeled anomaly data 
is difficult to be collected and the proposed approach’s performance 
would be certainly harmed. This is a tough but interesting topic. Ex
pected solutions may include [1] scaling such supervised model to real- 
world applications with few labeled leak data or without any labeled 
leak data by using a domain adaptive transfer learning approach, [2] 
probabilistic unsupervised machine learning, and [3] physics-informed 
machine learning approaches, etc. For model training, for example, so
lution [1], one may train a machine learning model by using labor-scale 
experimental leakage data at the 1st step and then scale such model with 
desirable accuracy to real-world pipeline network by using normal 
monitored time-series data and domain adaptive transfer learning 
approach. 

(3) Our proposed AM-LSTM is one of data-driven approaches for 
pipeline leakage detection and localization. Compared to model-based 
approaches, our approach’s advantage is that one may not necessarily 
know the hidden physics regarding pipeline geometry, fluid, pressure, 
etc., while directly using the monitored data for model training for 
pipeline leakage detection. Please noting such monitored data is from 

the pipeline network itself and somehow includes the hidden physics 
regarding the pipeline network. However, if the network configuration 
is changed, the developed model’s performance would be harmed. One 
may collect new data from the changed pipeline network and re-train 
this developed model. This is another limitation of our proposed 
approach. Further work is expected to improve the generalization of our 
proposed approach for real-world applications. 

6. Conclusions 

This study proposed an attention mechanism-long short-term mem
ory (AM-LSTM)-based approach for a single leak location in a branched 
pipeline network. The experimental study is constructed to demonstrate 
the accuracy and interpretation of the proposed approach. The conclu
sions are as follows:  

(1) The proposed approach accurately captures the larger physical 
pressure variation detected by the sensors closer to the leakage 
position. Accordingly, it assigns a higher attention weight to 
these sensors to enhance the trustiness and robustness of intelli
gent localization. 

Fig. 9. Real-time automated leakage detection results under operation pressure 0.15 MPa and leak 5.  
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(2) The proposed approach exhibits a higher AUC= 0.99 indicating 
its accuracy in real-time automated pipeline leakage localization 
compared to the LSTM-based approach.  

(3) For misclassification cases, the proposed approach shows the 
contradiction between assigned attention weight and detection 

Fig. 10. Accuracy comparison between our proposed AM-LSTM and 
LSTM approaches. 

Table 2 
Misclassified results under various leakage conditions.  

Operation 
pressure 

Benchmark 
label 

Predicted 
label 

Sensor closest 
to leak point 

Sensor with the 
highest weight 

0.12 MPa Leak2 Leak5 P1 P4 

0.20 MPa Leak3 Leak2 P2 P3 
0.17 MPa Leak5 Leak4 P3 P2  

Fig. 11. Attention weights to 4 sensors, namely P1 to P4, under the same 
benchmark leakage conditions as in Table2. 
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probability and thereby convinces not to trust these detection 
results, indicating its higher reliability compared to the state-of- 
the-art approaches. 
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