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Incremental nonlinear dynamic inversion (INDI) is a sensor-based control law design strategy that is based on the

principles of feedback linearization. Contrary to its nonincremental counterpart (nonlinear dynamic inversion), this

design method does not require a complete onboard model of the airframe dynamics and is therefore more robust

against regular perturbations arising from aerodynamic variations. Therefore, INDI brings a natural design

approach to desirable flying qualities. However, robustness against singular perturbations, which may arise due to

transport delays, elastic airframe effects, or other types of badlymodeled or unknowndynamics, is a known challenge

for INDI-based control laws. Therefore, this paper addresses the question of robust stability and performance for

INDI and its linear form (incremental dynamic inversion [IDI]) in the context of mixed regular and singular

perturbations. This is done through analytical insights and by performing quantitative robustness assessments

based on the structured singular value framework. Additionally, inversion loop augmentation solutions are

investigated using robust synthesis techniques to improve the robustness characteristics of basic IDI designs.

I. Introduction

T HE development of aircraft flight control laws is a comprehen-
sive and multidisciplinary activity, one that is generally associ-

ated with significant effort and costs [1]. A primary reason is that

flight control laws are subject to many, often conflicting design
objectives and requirements associated with the intended mission
and vehicle safety, which follow from overall program requirements
and standards issued by airworthiness certification authorities [2,3].
This relates to several areas, including stability, flying qualities,
structural mode interaction (SMI) [4], and structural loads, and need
to be complied with across the range of possible aircraft flight
envelopes and configurations, including failure conditions [2,3].
Consequently, the size and complexity of the development task is
strongly dependent on the characteristics of the airframe and its
desired capabilities.
In both the civil and military domains, industry has been able to

successfully design and certify flight control laws for a wide range of
vehicles and applications. Many of these designs are based on the
divide-and-conquer philosophy, which relies on strictly linear design
and analysis techniques applied to a range of linearized models of the
airframe dynamics obtained over a grid of trim conditions throughout
the flight envelope. Among these techniques are classical design
methods such as one-loop-at-a-time frequency response shaping
and root locus techniques, but also multivariable control law synthe-
sis and analysis techniques that are able to capture the multivariable
nature of the aircraft control problem, such as Linear-Quadratic-
Regulation/Linear-Quadratic-Gaussian (LQR/LQG) and eigenstruc-
ture assignment design techniques [5–8]. However, the combination

of more demanding operating capabilities and a general need for
shorter and more efficient design cycles has put this proven design
strategy under strain. The need for desirable flying qualities in (very)
broad regions of the flight envelope results in extensive gain sched-
uling schemes that significantly increase the complexity of the result-

ing control law [9,10]. Moreover, design and tuning of these flight
control laws is strongly tied to the dynamics of the bare airframe,
which prohibits reuse over multiple airframes.
Nonlinear dynamic inversion (NDI) is a control law design tech-

nique that can address these challenges to a considerable extent.
NDI-based control laws incorporate an onboard model (OBM)
representation of the airframe dynamics, which allows the flying
qualities design task to be performed in a largely isolated fashion.
This natural advantage has been recognized by industry as well and
represents a key feature that makes NDI attractive as a production
control law design technique [10,11]. However, NDI-based control
laws come with several challenges of their own, with robustness and
(again) control law complexity being main areas of concern. For
example, the aerodynamic database can grow very large in size, in
particular when the aircraft can operate in many different flight con-
ditions and configurations. At the same time, the control law needs to
be robust against modeling and scheduling errors, which may take
serious forms especially in those conditions where the airframe aero-
dynamics are nonlinear and known to only a limited extent.
Incremental nonlinear dynamic inversion (INDI) seeks to address

these limitations by reducing the need for detailed and accurate
onboard models of the airframe aerodynamics by using direct sensor
measurements of the control variable derivatives instead. It is there-
fore also referred to as a sensor-based approach [12]. The only model
information required by such control laws relates to the control
effectiveness information for control allocation purposes. Since the
early work on this simplified form of NDI [13,14], which only later
became more commonly known as INDI [15], the ease of implemen-
tation of this technique and its ability to guarantee flying quality
robustness in face of linear and nonlinear variations and uncertainties
in the airframe aerodynamics have been demonstrated repeatedly
both in-simulation (e.g., [16–24]) and during flight tests (e.g.,
[25–36]). In addition, analytical proofs of nominal and robust stabil-
ity properties under external disturbances and regular perturbations
have been established [12]. These achievements show that INDI has
real benefits for use in future production aircraft.
However, research has also shown that INDI has relatively small

stability robustness margins against singular perturbations [12] and
([37], Chap. 11) compared to traditional NDI. This includes time
delays and other forms of known and unknown dynamics that
increase the total system order and affect the sensor feedback paths
[27,38,39]. In the context of the flight control development cycle, this
implies that stability and SMI requirements may be difficult to meet
in practice. Therefore, singular perturbations require special attention
when examining the stability and performance robustness properties
of INDI-based flight control laws. This is recognized by a growing
volume of research [38,40–42]. For example, the authors of [40,41]
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describe how the time delaymargin of INDI-based control systems is
affected in the presence of control effectiveness mismatch and actua-
tor or filter dynamics, respectively.
Despite this growing interest in the INDI robustness question,

many studies stay limited to the use of fixed-structure state-space
model representations to perform robustness analysis. In otherwords,
existing literature on this topic generally accepts that all model
uncertainties and singular perturbation effects can be parameterized.
However, it is well-known that this is fundamentally not the case for
physical systems [43]. For example, the bare airframe dynamics of an
aircraft are often difficult to model at high frequencies due to the
presence of badly known or even unknown structural dynamics or
unsteady aerodynamic effects [7,44,45]. Likewise, actuator systems
generally show complex dynamics in the high-frequency range as
well [7,44]. These are essentially nonparametric (or unstructured)
effects, which can be modeled effectively by norm-bounded uncer-
tainty descriptions [43]. To assess robust stability and performance
levels adequately, such unstructured uncertainties need to be taken
into account in the analysis model.
There are some studies on INDI that do consider the issue of

robustness against unstructured uncertainties to a certain extent.
One category relies on classical insights such as gain and phase
margins (e.g., [27,46,47]). However, this yields little insight in case
the system is affected by multiple uncertainties. This can be resolved
by using norm-based arguments instead, as proposed in [42]. In this
work it is assumed that the measurement error always remains
bounded, which is a valid assumption to make in case the closed-
loop control system remains stable. However, it does not provide any
information about the conditions under which this assumption holds.
Therefore, existing work in this direction does not give a complete
picture about this aspect of INDI control design. This is in contrast to
NDI-based controllers, for which more elaborate assessments have
been reported based on, e.g.,H∞-based analysis techniques [48–52].
Accordingly, the contributions of this work are as follows:
1) Stability and performance robustness properties of INDI-based

flight control laws subject to regular and possibly unstructured
singular perturbations are described in analytical form.
2) Robustness characteristics of basic linear incremental dynamic

inversion (IDI) are quantified using the structured singular value (μ)
framework.
3) Robust inversion loop design solutions that improve these

properties are established using μ-synthesis.
The paper is structured as follows. Section II describes the basic

robustness characteristics of INDI based on analytical insights from
nonlinear and linear system formulations. This sets the stage for a
numerical case study in Sec. III, where the robust stability and
performance properties of IDI in its basic form are analyzed using
the μ-framework in the context of a pitch rate control law for an open-
accessGeneral Dynamics F-16 simulationmodel. This is followed by
a discussion in Sec. IV, which is focused on augmentation techniques
that enhance the robustness of basic IDI in a μ-optimal sense. The
paper is concluded in Sec. V.

II. Fundamental Properties of Incremental
Nonlinear Dynamic Inversion

In this section, the fundamental robustness characteristics of INDI
are investigated and compared to its nonincremental counterpart
based on analytical derivations and insights. First, the derivations
of the control laws are reviewed in Sec. II.A. The subject of robust-
ness to parametric and dynamic uncertainties in the nonlinear case is
treated in Sec. II.B. Section II.C concentrates on the linear case to
gain additional insights.

A. Control Law Design

INDI-based control laws follow the general principles of feedback
linearization, which enables the construction of controllers in the
sense of both input–output and full-state linearization for either
regulation or tracking purposes for arbitrary relative degree [12,37].
Accordingly, consider a multi-input, multi-output, input-affine, non-
linear system Σ of the form

Σ∶
_x � f�x� � G�x�u
y � h�x�

(1)

described by the state vector x ∈ Rn, the input vector u ∈ Rm, the
observation vector y ∈ Rm, and smooth mappings f , G, and h.
Writing the system relative degree as ρ � �ρ1; : : : ; ρm�T , the output
dynamics can be described as [12]

y�ρ� �

Lρ1
f h1�x�

..

.

Lρm
f hm�x�

�
Lg1L

ρ1−1
f h1�x�h1�x� : : : LgmL

ρ1−1
f h1�x�

..

. . .
. ..

.

Lg1L
ρm−1
f hm�x� : : : LgmL

ρm−1
f hm�x�

u

� α�x� �B�x�u (2)

where Lk
fhi�x� and LgiL

k
fhi�x� represent repeated Lie derivatives of

the function hi along the vectors fields f and gi, with gi being a
column vector of the matrix G [37]. For traditional feedback lineari-
zation, this expression can be used directly to construct a control law

that linearizes the input–output dynamics to a set of i�1
m ρi parallel

integrators. Assuming that the control effectiveness matrix B�x� is
invertible, the following control law is obtained:

u � B̂−1�x��ν − α̂�x�� (3)

where α̂�x� and B̂�x� represent onboardmodel estimates ofα�x� and
B�x�, respectively, and ν ∈ Rm is the pseudo-control vector gener-
ated by an auxiliary control law that is designed to meet the control
objectives. To obtain an analogous control law in incremental form
instead, one common approach is to perform a Taylor expansion of
the output dynamics around the system state at time t − Δt [12,53],
where Δt represents the sampling interval. Denoting this condition
by the subscript 0 for ease of notation yields the expression

y�ρ� � y�ρ�0 � ∂�α�x� � B�x�u�
∂x 0

�x − x0�
Δx

� B�x0��u − u0�
Δu

� R1

(4)

where R1 represents the expansion remainder. Consequently,
the time-scale separation assumption can be leveraged to design
the incremental control input Δu, which assumes that all state-
dependent and residual terms can be neglected [12,15,27,38]. This
is typically justified in case high sampling rates and high-bandwidth
actuators are available. The control law is completed by adding the
control vector u0 to the resulting incremental term:

u � u0 � B̂−1�x0� ν − y�ρ�0 (5)

Note that compared to its nonincremental counterpart from
Eq. (3), the resulting control law does not require any model
information on α�x� but uses sensor feedback of the previous
control vector and the derivative of the control variable instead. It
has been demonstrated by other authors that the incremental form
can also be leveraged for the more general class of nonlinear
systems that are not affine in the input [53].

B. Robustness Properties

Let the true output dynamics associated with the system described
by Eq. (1) be formulated as

y�ρ� � �α̂�x� � ξ�x�� � B̂�x� � Ξ�x� u (6)
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where the mappings ξ and Ξ represent additive regular perturbation
terms that, by definition, do not change the order n of the system [12].
These terms represent known or unknown variations with respect to
the model representations that are embedded in the dynamic inver-
sion control law and are assumed to be bounded. The system input is
modeled as the control law output perturbed by a possibly uncertain
causal linear mapping Δ, which relates bounded input signals
z ∈ Rm to bounded outputs w � Δz ∈ Rm [37]. This perturbation
represents a class of unmodeled or neglected dynamics that exist in
cascade with the system described by Eq. (1) and may be associated
with actuation devices or neglected high-order structural modes
(e.g., [7,9]). In the case of traditional NDI, the input then takes the
form of

u � �I� Δ�B̂−1�x��ν − α̂�x�� (7)

Substituting this expression in Eq. (6) results in the following
description of the closed-loop dynamics [9]:

y�ρ� � ν� �ξ�x� �D�x;Δ��ν − α̂�x��� ≜ ν� ϵNDI�x; ν;Δ� (8)

where the termD�x;Δ� is given by

D�x;Δ� � Ξ�x�B̂−1�x� � B̂�x�ΔB̂−1�x� � Ξ�x�ΔB̂−1�x� (9)

The residual term ϵNDI is in analogy with the terminology intro-
duced in [12] and represents the closed-loop residual dynamics that
emerge due to nonideal dynamic inversion in the presence of regular
and dynamic perturbations. In consequence of the assumptions made
earlier on the boundedness of the individual terms, ϵNDI has an upper
bound �ϵNDI at a given state x under bounded virtual control ν.
However, its magnitude can be relatively large, which indicates poor
robustness properties. This is a widespread concern for control laws
based on model-based NDI [10,12,37].
Considering the incremental form, a more general situation is

considered to be able to analyze the effect of multiple dynamic
perturbations in different locations of the feedback system. Writing

u0 � �I� Δ1�u and y�ρ�0 � �I� Δ2�y�ρ�, with Δi representing

causal, linear mappings as before and assuming that x0 � x, the
system input associated with the INDI-based control law given by
Eq. (5) can be expressed as

u � �I� Δ1�u� B̂−1�x��ν − �I� Δ2�y�ρ�� (10)

It must be remarked that the standard relations u0 � z−1u and

y�ρ�0 � z−1y�ρ� are recovered in the special case when Δ1 �
Δ2 � �z−1 − 1�I. An important advantage of this form is that it
can be used to analyze the impact of perturbations that belong to
the class of linear systems on the stability and robustness properties of
INDI-based control systems. In particular, it enables direct analysis of
the synchronization effect, which is notorious for incremental control
laws and has been reported repeatedly in the literature [25,27,38]. This
phenomenon typically has a profound impact on the closed-loop
dynamics andoriginates fromadiscrepancybetween the timeof arrival
of the output derivative and input feedback signals in the incremental
inversion loop. The importance of this timing lies in the fact that the
Taylor expansion in the control law derivation is performed around a
single instant in time. Subsequently, by using Eq. (10) in combination
with the relationship between u and _y from Eq. (6), an explicit
description of the closed-loop output dynamics can be found:

y�ρ� � ν� S�x;Δ1;Δ2�−1�D1�x;Δ1��ν − �α̂�x� � ξ�x��� − Δ2ν�
≜ ν� ϵINDI�x; ν;Δ1;Δ2� (11)

where S�x;Δ1;Δ2� andD1�x;Δ1� are given by

S�x;Δ1;Δ2� ≜ I −D1�x;Δ1� � Δ2 (12)

D1�x;Δ1� ≜ B̂�x�Δ1�B̂�x� � Ξ�x��−1 (13)

This result sheds light on several robustness properties. In particular,

if u and y�ρ� can be measured accurately, the closed-loop system will
be highly robust against regular perturbations in the output dynamics.
If theL2-gain of the perturbationsΔi is expressed as γi, then it follows
from Eqs. (11) and (13) that

kϵINDIk2 � S�x;Δ1;Δ2�−1�D1�x;Δ1��ν− �α̂�x� � ξ�x���−Δ2ν� 2

≤ γSi
⋅ γ1 B̂�x� B̂�x��Ξ�x� −1�ν− �α̂�x�� ξ�x���

2

� γ2kνk2 (14)

where γSi
represents an upper bound on the L2-gain of

S�x;Δ1;Δ2�−1. One can deduce from this expression that the upper
bound on kϵINDIk goes towards zero‡ as γi → 0, independently of ξ�x�
and Ξ�x�. This shows that the nature of the robustness of INDI lies in
the quality of sensor measurements and to a lesser extent on the
onboard model. However, it is also found that the inverse mapping

S−1 needs to be bounded for ϵINDI to remain bounded at a given statex,
which limits the permissible perturbation dynamics for which a stable
control loop can be obtained. This is a direct manifestation of the
synchronization effect and requires careful consideration by the
designer. Considering the case where Δ1 approaches zero, e.g., ϵINDI
will grow unbounded if Δ2 → −I. This is in contrast with traditional
NDI, forwhich an upper bound on the inversion residual can always be
found under the assumptions stated earlier. Therefore, boundedness of

S−1 represents an important aspect of the stability of an INDI-based
control system. Accordingly, an appropriate design solution is to
ensure thatD1�x;Δ1� � Δ2, in which case it holds that S � I and

ϵINDI�x;Δ2� � −Δ2�α̂�x� � ξ�x�� (15)

This idea will be referred to as the matching strategy and is in line
with the main design philosophy that has been adopted in the past
[25,27,38]. It should be noted that this approach is feasible only when
the control effectiveness and singular perturbation dynamics are com-
pletely known. With this procedure, the inversion residual will be
nonzero for nonzeroΔ2. Nevertheless, the norm of ϵINDI will be small
if Δ2 is small in magnitude in the operating time-scale of Σ, which is
in line with the time-scale separation assumption that underlies the
derivation of the control law.

C. Linear State Space Insights

The basic robust stability and performance properties of INDI can
be further understood by analyzing the state space representation of
the closed-loop dynamics in case the plant Σ and the control law are
linear. For simplicity, it will be assumed in this subsection that the
system features a common relative degree equal to one. Such a system
is closely representative of the equations of motion of the rotational
rates of an aircraft. Accordingly, the plant dynamics can bewritten in
normal form [54] as follows:

Σ∶

_ζ � Rζ � Tη� Bu

_η � Pζ �Qη

y � ζ

(16)

Writing the perturbed feedback signals as u0 � u�w1 and
_ζ0 � _ζ �w2, it follows immediately from the control law formu-
lation that

u � u0 � B̂−1�ν − _ζ0� � u�w1

� B̂−1�ν − _ζ −w2� → _ζ � ν� B̂w1 −w2 (17)

‡It should be remarked that the control effectiveness matrix shall not
become singular.Moreover, the presence of, e.g., actuator dynamics and finite
sampling times generally implies that γi ≥ 1 in practical situations.
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where wi are given as

w1 � Δ1z1 � Δ1u � Δ1B
−1�_ζ −Rζ − Tη�

w2 � Δ2z2 � Δ2
_ζ � Δ2 ν� B̂w1 −w2 (18)

Here, the last equalities follow directly from the output dynamics

descriptions given byEqs. (16) and (17). Using the above expressions

for _ζ, _η, z1, and z2 and using the fact that ϵIDI ≜ _ζ − ν, the closed-
loop dynamics of the inversion residual are described by

This formulation enables direct verification of the stability of the

closed-loop system and the performance properties of the mapping

from ν to ϵIDI for all perturbations. Likewise, ifΔi represents a series

interconnection of two dynamic systemsΓi and
�Δi, where it is known

that k �Δik∞ ≤ 1 and

Γi∶
_qi � Aiqi � Bizi

�zi � Ciqi �Dizi
(20)

then, Eq. (19) extends to

In this context, Γi represents an uncertainty weight that places an upper bound on the L2-gain (or H∞-norm) of Δi. This expression is an

example of the interconnection framework that enables evaluation of the linear robustness properties of IDI-based control systems, which is key to

the norm-based analyses presented in Secs. III and IV.
As a special case, consider the situation where �Δi is described by a deterministic (unity) input–output mapping. This implies that the

perturbation dynamics can be described by a known form. Then, the closed-loop dynamics can be expressed as

where

S ≜ I− ~D1 �D2; ~S ≜ B̂−1SB; ~D1 ≜ B̂D1B
−1; E1 ≜ ~D1 �S

(23)

Regarding the synchronization effect, the dynamics associated

with the inverse map S−1 appear directly in the lower-right part

of the obtained system formulation. Alternatively, an equivalent

description of these dynamics can be arrived at by performing a

different derivation using Eqs. (11) and (12) as starting point. If S
is considered as a mapping between ϵIDI and some signal d, then its
dynamics can be described as follows for the selected realizations of

Γi and Δi:

Consequently, the dynamics of the inverse map S−1 are found as

Substituting and expanding terms yields
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Consequently, by substituting d � D1�ν − Rζ − Tη� − Δ2ν as

per Eq. (11) and reordering terms, another realization of the

closed-loop dynamics represented by Eq. (22) will be obtained.

Consequently, boundedness ofS−1 can be verified directly by check-

ing ifASi
is Hurwitz. This will be further discussed by means of two

special cases.

1. Strictly Proper Dynamics in the Feedback Path

Consider that Γ2 arises because of strictly proper dynamics in the

feedback path, which is often the case in practice. In order for
_ζ0 � �I� Γ2�_ζ to represent a strictly proper transfer function,

it must hold that D2 � −I as per Eq. (20). A direct result is that

S � 0 if D1 is zero, which leads to the conclusion that ϵIDI will be
infinitely large in the limit in the absence of any compensating

perturbation dynamics Γ1. Likewise, consider the case where both

Γ1 and Γ2 arise due to proper dynamics in the feedback path, leading

to D1 � D2 � −I. Then, Eq. (22) reduces to

where KB ≜ BB̂−1
. This result enables direct verification of the

stability and performance properties of ϵIDI when subjected to para-

metric uncertainties in Γ1, Γ2, and the control effectiveness. If the

eigenmodes associated with S−1 are sufficiently distant from the

eigenmodes of Σ, which can be argued to hold if the time-scale

separation assumption holds, stability of the synchronization dynam-

ics can be assessed by verifying if ASi
is Hurwitz:

ASi
� A1 � B1C1 −B1B

−1KBC2

B2BC1 A2 −B2KBC2

(28)

Furthermore, if Σ and the control law do not feature any coupling

between input–output channels, which holds for diagonal control

systems, using the change of variables

q �
I 0

0 BI
�q ≜ Λ �q (29)

for each isolated control channel enables direct assessment of the

synchronization dynamics without any information ofΣ. In this case,
the eigenvalues of ASi

can be found for each channel based on

�ASi
≜ Λ−1ASi

Λ �
A1 � B1C1 −kBB1C2

B2C1 A2 − kBB2C2

(30)

where the scalar nature of each channel is reflected by the scalar
scaling factor kB. This simple result can be used to directly assess the
impact of proper high-order dynamics on ϵIDI. Since the scaling
factor cannot be factored out from the expression, the synchroniza-
tion dynamics will be affected if the control effectiveness undergoes
unmodeled variations. This is independent from how Γ1 and Γ2 are
selected.

2. Digital Sampling and Time Delays

The impact of the digital nature of the control system can also be
assessed. It is assumed that high-order perturbing dynamics are

absent. In this case, it holds that Γi � z−1 − 1 � e−sTs − 1. If the
unit time delay is modeled as a first-order Padé approximation, then it

holds that e−sTs ≈ �Ts∕2s − 1∕Ts∕2s� 1�. As a result, one realiza-
tion of the state-space formulation of Γi is given as Ai � −2∕Ts,
Bi � 2,Ci � 2∕Ts, andDi � −2. Substituting terms then leaves the

following description of �ASi
:

�ASi
� 1

Ts�1 − kB∕2�
kB −2kB
2 −�kB � 2�

(31)

which has eigenvalues with negative real part if and only if
0 < kB < 2. Therefore, stability cannot be achieved in this scenario
if the modeled control effectiveness is either of opposite sign or too
small compared to the true value. It should be noted that this is in
agreement with the findings by [55] that ϵINDI remains bounded
independently of ζ�x� if kI −KBk2 < 1 in case only the digital nature
of the control system is considered. However, these limits do not
apply in the case of general perturbing dynamics, as reflected by
Eq. (26). Moreover, the size of the sampling time affects overall
closed-loop stability of the INDI control system as well. These
findings are confirmed by the work reported in [40].

III. Basic Incremental Dynamic Inversion
Robustness Assessment

This section focuses on H∞-based robustness assessments to
perform quantitative comparisons of the robust stability and perfor-
mance characteristics of linear INDI (IDI)-based flight control laws.
The kind of interconnection machinery described in Sec. II.C is used
to describe the generalized control system. Given the structured and
mixed nature of the uncertainty formulation, the structured singular
value (μ) is used in mixed form usingDG-scales [43]. TheMATLAB
Robust Control Toolbox™ (version 6.9) is used as the primary
software tool to this end [56]. The findings from this section are used
to establish a benchmark to which the augmentation solutions dis-
cussed in Sec. IV can be compared. The design case study is
described in Sec. III.A,which gives an overviewof the control system
elements and the design requirements. The robustness outcomes of
standard dynamic inversion are discussed first in Sec. III.B, which is
followed by an analogous evaluation of a basic IDI design in
Sec. III.C.

A. Problem Formulation

The numerical evaluation is based on a linear dynamic-inversion-
based pitch rate control law design for an open-access simulation
model (low-fidelity version) of the General Dynamics F-16 [45,57]
and is closely in linewith the analysis presented in [7]. The nonlinear
aircraft model has been trimmed and linearized around a flight
condition of Mach 0.5 at 10,000 feet altitude, with the center of
gravity located at 38% relative to the mean aerodynamic chord
(MAC), resulting in a trim angle of attack of 2.6 deg. Therefore,
the scope is limited to a single flight condition that is well within the
interior of the service flight envelope. To simplify the analysis, the
linear model is reduced to the short-period mode only. It is assumed
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that the horizontal tailplane is moved symmetrically by an actuation
system that can be represented by a first-order lagwith a time constant
of 1∕60 s. Atmospheric disturbances enter the system through angle-

of-attack gusts. In addition, it is assumed that measurements of pitch
rate, pitch acceleration, angle of attack, and horizontal tail position
are all available to the control law. Therefore, the system is described
by the following state-space formulation:

_α

_q
�

zα zq

mα mq

α

q
�

zδh −zα
mδh −mα

δh

αg
;

αs

qs

_qs

�
1 0

0 1

mα mq

α

q
�

0 −1

0 0

mδh −mα

δh

αg
(32)

The bare airframe and flight control system hardware are subject
to both regular and dynamic uncertainties. The pitch rate equations
of motion are affected by variations in the angle of attack stability
derivative mα and control effectiveness mδh , which may deviate up

to �75% and �25% from their nominal values, respectively.

These parametric variations are denoted in combined form by δ.
Multiplicative dynamic uncertainties are present at the actuator (act)
and bare airframe (ba) input channels and serve as lumped repre-
sentations of any high-order, additional dynamics that may be
present in the control system. These may be caused by processing
delays or elastic deformation of the actuation mechanism or air-

frame, for example. In line with [7], the following uncertainty
weights are selected:

Wact�s� � Wba�s� � K0

τlag
τlead

s� τlead
s� τlag

(33)

with K0 � 0.1, τlag � 5, and τlead � 100 s, respectively. With these

weights, each uncertainty imposes an upper bound of 10% model
error in steady-state conditions and grows beyond 100% error at
frequencies above 50 rad/s.
The control system is subject to a range of performance require-

ments in terms of tracking error and disturbance rejection, which
shall be robustly met given the uncertainties present in the system. A
primary design goal is to ensure that the closed-loop short-period
response follows the desired dynamics, which is based on existing
flying quality requirements that can be found in airworthiness stan-

dards and guidelines such as MIL-STD-1797 [2]. Here, the desired
dynamics are limited to the small-amplitude pitch rate response to
stick input only:

Wref�s� �
qref�s�
δlon�s�

� Kq�Tθ2s� 1�
s2 � 2ζspωsps� ω2

sp

(34)

The desired values are set to Tθ2 � 1.0 s, ωsp � 4.0 rad∕s, and
ζsp � 1.0, which is in line with Level-1 flying quality specifications

for CategoryA flight phases for this class of aircraft [2]. The tracking

error between the desired and actual pitch rate response is penalized
by a weighting filter W te, which takes the form of

W te�s� �
ωx

s� K0ωx

� K−1
∞ (35)

where ωx � 1 rad∕s represents the gain crossover frequency, and
K0 � 0.2 and K∞ � 30 determine the steady-state and high-
frequency tracking error bounds, respectively. Exogenous atmos-
pheric disturbances are appropriately shaped using the following
weighting filter, which represents a first-order approximation of the
Dryden gust model [7]:

Wdist�s� �
180

π

1

Vt0

4

s� 0.2
(36)

In addition to the dynamic inversion loop, the control law con-
sists of a two-degree-of-freedom linear control structure to achieve
accurate tracking of pilot stick commands. It includes a
proportional-integral feedback regulator for stabilization and dis-
turbance rejection, a command reference model that describes the
desired dynamics, and a feedforward path that enables more accu-
rate tracking of the reference signal. The regulator gains assume
constant values of KP � 7.0 and KI � 2.0 and have been config-
ured manually, with the all-loops-broken crossover frequency and
the phase lag induced by the integrator as main objectives. These
values are used for all dynamic inversion strategies in order to
isolate the effect on robustness properties of different inner loop
architectures. Figure 1 shows the block diagram representation of
the control system interconnection structure§ with the inversion
loop in general form. A more detailed illustration of the basic
inversion designs considered in this section is provided in Fig. 2.
These are effectively special cases of the general form. Note that
control allocation is furnished simply by inversion of the nominal
control effectiveness term m̂δh .

B. Dynamic Inversion

The dynamic inversion variant of the control law makes use of a
model-based estimate of the angular acceleration:

_̂q � m̂αα� m̂qq� m̂δhδh (37)

where the onboard representations of the short-period stability and
control derivatives correspond to the unperturbed airframe dynamics.
With this setup, the synchronization compensation loop will cancel
out the contribution of the horizontal tail position in the control law. It
is assumed that the angle-of-attack measurement does not contain
any additional uncertainty associated with imperfect air data mea-
surements. Figures 3a and 3b visualize the nominal step response and
all-loops broken (path A as indicated in Fig. 1) frequency response of
the resulting control architecture. The upper and lower bounds of μ as
returned by the DG-scaling procedure are shown in Figs. 3c and 3d.
The results show that whereas robust stability is met for the entire

Fig. 1 Control system interconnection structure with the inversion loop in general form.

§It should be noted that the dynamic perturbations are located in the forward
path here, as opposed to Secs. II.B and II.C.
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uncertainty set, the performance requirements are not. In the low-to-
medium frequency region, the robust performance deficit is domi-
nated by parametric uncertainty in the stability and control deriva-
tives; by contrast, robust stability and performance levels at medium-
to-high frequencies are constrained by the dynamic actuator and
airframe uncertainties. It must be noted that increasing the outer loop
gain improves robustness to aerodynamic uncertainty at the cost of
robust stability at high frequencies.

C. Incremental Dynamic Inversion

The same analysis is performed to examine the robustness proper-
ties of a basic variant of the incremental dynamic inversion architec-
ture. This implementation does not include any additional processing

of the horizontal tail position and angular accelerationmeasurements,

which implies that the synchronization compensation and accelera-
tion estimation blocks in Fig. 1 are unity in this case. Figures 4a and

4b show the step response and broken-loop frequency responses

(path locations indicated in Fig. 1) of the basic IDI-based control
law. These are equivalent to the model-based dynamic inversion

control system, except for the broken-loop response after closing

the actuator feedback loop(s). The latter reveals that applying IDI
effectively results in a high-gain control system at the level of the bare

airframe, which explains its robustness to aerodynamic uncertainties.
This observation is confirmed by the μ-analysis, as shown in Figs. 4c
and 4d. Attainable robust performance levels are significantly

improved in the low-to-medium frequency range compared to

a) Dynamic inversion (DI) b) Incremental dynamic inversion (IDI)
Fig. 2 Basic inversion architecture block diagrams.

a) Step response b) Broken-loop frequency response (path A in Fig. 1)

c) Stability and performance margins d) Robust performance breakdown
Fig. 3 Overview of basic DI-based control system properties.
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dynamic inversion, which can be directly attributed to the increased
robustness to aerodynamic variations. However, this comes at the
cost of robust stability, which cannot bemet as a result of the dynamic
actuator and airframe uncertainties and represents a direct manifes-
tation of the synchronization effect described in Secs. II.B and II.C.
Note that this result also confirms that outer loop regulator gains can
be reduced when INDI is adopted. This is in line with the notion that
incremental control action mitigates steady-state error and has been
reported earlier in the literature [27].

IV. Robust Incremental Dynamic Inversion
Augmentation Techniques

In this section, inversion loop augmentation techniques that
improve the basic robustness properties of IDI-based control system
designs are investigated within the context of the F-16 short-period
design problem. Consistent with the basic inversion architectures
discussed previously, direct pitch acceleration measurements are
again used in the control design. However, thanks to the presented
problem formulation, the outcomes are also applicable to solutions
that adopt differentiated pitch rate instead. Three principal design
degrees of freedom form the basis of the discussion. The angular
acceleration and synchronization filter design elements are con-
sidered first in Sec. IV.A, where full-order (unstructured) mixed
μ-synthesis based on DGK-iteration [43] is used to leverage full
design flexibility. The MATLAB Robust Control Toolbox™ [56] is
again used to this end. This is followed by an investigation of
structured filter designs in Sec. IV.B, where the scope is limited to

configurations that exploit the matching strategy. Section IV.C
focuses on hybrid implementations, where supplemental model
information is used as an additional form of augmentation of the
basic incremental inversion loop. Section IV.D concludes the
discussion.

A. The μ-Optimal Full-Order Inversion Feedback Filter Design

The preceding sections have highlighted that adequate compensa-
tion of the synchronization effect forms a key factor in the design of
incremental control laws. Section II.B explained the relevance of the
mapping S and introduced the matching procedure as a simple, but
effective method to improve stability. In case of uncertainty, accu-
rately matching perturbing dynamics is not possible. Therefore, it is
of interest to assess how the synchronization effect shall be accounted
for in a μ-optimal fashion in light of the regular and dynamic
uncertainties and performance requirements that define the control
system design problem. This comes down to the question how this
translates to the design of the acceleration estimation and synchro-
nization estimation filters as shown in the general inversion archi-
tecture of Fig. 1. The following asynchronous and synchronous filter
design architectures are considered in this respect:

υ�async�f � K� _q0; δh;0�; υ�sync�f � K�υ0� (38)

where K represents the feedback filter augmentation system and
υ forms the combined IDI feedback signal including control
allocation. Accordingly, the input to the synchronous filter is
given by

a) Step response b) Broken-loop frequency response (paths A/B in Fig. 1)

c) Stability and performance margins d) Robust performance breakdown
Fig. 4 Overview of basic IDI-based control system properties.
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υ0 �
1

m̂δh

_q0 − δh;0 (39)

In the asynchronous variant, the inversion augmentation is

configured such that the angular acceleration and horizontal tail

position feedback filter design elements can be designed independ-

ently. The synchronous variant represents a more constrained archi-

tecture in the sense that the matching strategy is enforced on the

filter elements.
The control system properties corresponding to both design

options after mixed μ-synthesis are presented in Fig. 5. A brief

summary of the most relevant information can also be found in

Table 1. The asynchronous and synchronous high-order control

systems returned by the optimizer are obtained after 10 and 8

iterations and feature denominator orders of 66 and 62, respectively.

Figures 5c and 5d show that both design variants yield solutions that

satisfy the performance requirements in a robust sense, with peak �μ
not exceeding the unity threshold value. Examining the diagrams

more closely reveals that the optimized robust performance levels

obtained for either implementation are in fact very close, which

implies that the optimizer did not manage to extract more perfor-

mance from the additional design degree of freedom in the asynchro-

nous case. Consequently, imposing synchronous filter dynamics

does not impose big limitations on the robust performance potential

of the IDI-based control law, which confirms that the application of

the matching strategy to filter design forms a reasonable design

philosophy for managing the synchronization effect.
It is of additional interest to examine the SISO broken-loop

response of the synchronous variant in Fig. 5b. Compared to the

basic design as shown in Fig. 4b, it is evident that the all-loops broken

responses are nearly equivalent and that the loop shape with the

actuator loop closed (point B in Fig. 1) reflects the principal tradeoffs

associated with the design problem. In particular, the gain crossover

frequencyωc has moved to a lower region, while the low-to-medium

frequency high gain characteristics that govern the robustness of the

IDI control law against real perturbations have been largely main-

tained. Adequate phase margin in the crossover region has also been

preserved.

B. The μ-Optimal Low-Order Synchronous Designs

The control laws returned by the full-order (unstructured) synthe-

sis procedure are of very high order, which is a known characteristic

of the DGK-iteration procedure. In this light, low-order, fixed-

structure filter designs that can be implemented in practice need to

be considered instead. The MATLAB Robust Control Toolbox™

[56] brings the possibility to optimize fixed-order controller struc-

tures based on nonsmoothH∞-synthesis [58], which is the procedure

followed here. In view of the preceding discussion, the synchronous

architecture will be adopted. The following fixed structures are

selected, which correspond to second-order lag-lead and low-pass

filters:

K�s� � υf�s�
υ0�s�

� K1�s� �
uf�s�
u0�s�

� K2�s� �
_qf�s�
_q0�s�

� a2s
2 � a1s� a0

s2 � b1s� b0
(40)

a) Broken-loop frequency response (asynchronous) b) Broken-loop frequency response (synchronous)

c) Stability and performance margins (asynchronous) d) Stability and performance margins (synchronous)
Fig. 5 Full-order μ-optimal augmented IDI-based control system properties.
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K�s� � υf�s�
υ0�s�

� K1�s� �
uf�s�
u0�s�

� K2�s� �
_qf�s�
_q0�s�

� ω2
n

s2 � �1∕2�2 ωns� ω2
n

(41)

The reason for selecting these forms is that they are closely in line

with previous successful designs [25,27,38]. The lag-lead architecture

offersmore flexibility compared to the low-pass design, forwhich only

break frequency ωn forms the available tuning parameter. The mixed
μ-synthesis results are presented in Fig. 6 and Table 1.
With both designs, the performance requirements are met for the

entire uncertainty set. However, the peak �μ of the low-pass architec-
ture is higher compared to the lag-lead form, which shows very
similar performance levels when compared to the full-order designs
presented earlier. This forms a direct consequence of the additional
design flexibility and is also reflected by the broken-loop response
diagrams in Figs. 6c and 6d, which show that both the gain crossover
frequency and phase margins are lower for the low-pass filter design

a) Step responses b) Optimized filter designs

c) Broken-loop frequency response (lag-lead) d) Broken-loop frequency response (low-pass)

e) Stability and performance margins (lag-lead) f) Stability and performance margins (low-pass)
Fig. 6 Overview of low-order μ-optimal augmented IDI-based control system properties.
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option. Comparing both optimized filter designs in Fig. 6b leads to
the conclusion that the smaller phase “reach back” associatedwith the
lag-lead variant represents a key attribute. This demonstrates that
mitigating phase distortions in the rigid-body frequency range should
be considered as a design guideline, which is in line with the time-
scale separation assumption that underlies the derivation of the
control law. Still, these results also confirm that using synchronous
low-pass filters should be viewed as a reasonable strategy when
designing incremental dynamic-inversion-based control laws.

C. Reinstating Model Information

Although the matching strategy to filter design is shown to be
successful in improving the overall robustness properties of IDI-based
control laws, this comes at the cost of an enlarged inversion residual
even in the nominal situation. This raises the question if and to what
extent this disadvantage can be mitigated. Equation (15) suggests that
the inversion residual can be further decreased by reintroducingmodel
information of the bare airframe dynamics in the form of a comple-
mentary augmentation element. Based on the concept proposed in
[59], this approach is used in [21] and is formulated in [60] as a hybrid
INDI approach. It is of interest to investigate how this design method
can improve upon the preceding sensor-based inversion strategies.
Additionally, there may be circumstances where direct actuator

measurements may not be available. Although it can be expected that
these are available in modern aircraft, this may not be the case for
some unmanned aerial vehicles [25], for example. This implies that
the control system architecture from Fig. 1 does not apply. In this
case, another form of input signal feedback needs to be found. An
internal model representation of the nominal actuator dynamics
Ha�s� would provide a solution here, which has been introduced in
the past [25]. This strategy is illustrated in Fig. 7, together with a
closely related design option that adopts direct control command
feedback instead. Both variants will be compared in performance to
the designs presented earlier.

1. Hybrid Incremental Dynamic Inversion

The basic principle of the hybrid inversion strategy is that any
information that is distorted or lost as a result of the filter feedback
augmentation system K is compensated for by adding complemen-

tary model information of the plant dynamics [60]. Using this design
method, it can be shown that, in the nominal case where the control
effectiveness is known and the only sources of singular perturbations
are the augmentation filters themselves, the inversion residual
expressed by Eq. (15) reduces to

ϵINDI�x;Δ2� � −Δ2ξ�x� (42)

where Δ2 � Δ1 � K − I in this case. It is noted that the resulting
inversion residual depends solely on the onboard model error term
ξ�x�. This shows that although high-quality models will lead to the
smallest inversion residuals, low-fidelity complementary model
information also positively contributes to the reduction of inversion
error. The impact of other uncertainties is again considered by
performing μ-analysis. For the F-16 design problem, the following
design is used:

_qfb�s� � K�s� _q�s� � �1 − K�s�� _̂q�s� ≜ K�s� _q�s� � K 0�s� _̂q�s�
(43)

whereK�s� is selected as the low-pass filter design from Eq. (41) and

_̂q�s� follows from Eq. (37). Note that the same form is applied to the
horizontal tail position feedback signal, which leads to an all-pass
synchronization strategy. Figure 8 shows the results from a batch μ-
analysis where the break frequency ωn has been selected as the
running variable. This diagram confirms that as the break frequency
reduces, which corresponds to closer operating time-scales between
the plant and filter feedback augmentation system, the hybrid
approach results in enhanced levels of nominal and robust perfor-
mance for similar stability margins. This is despite the fact that the
onboard model error is significant for some plants in the uncertainty
set. However, the general conclusion remains that, for maximum
robust performance, filters shall be tuned sufficiently fast to meet
the time-scale separation assumption. When high-frequency filters
are used, adding model information does not yield significant
tracking performance benefits other than an improved nominal
response. Also, performance degradation can be expected for the
hybrid approach in case of imperfect air data measurements, which is
likely in practice [9].

Table 1 Summary of control system peak robust performance levels and nominal broken-loop response characteristics
[actuator feedback closed (B)]

Inversion design method Sync. compensation �μ	RP ωc, rad/s PM, deg

Dynamic inversion n/a 2.10 5.98 83.5
Incremental dynamic inversion Actuator sensor 1.59 60.3 84.0

Actuator model 1.71 60.3 84.0

IDI augmentation: full-order synthesized designs

Asynchronous Actuator sensor 0.858 12.5 53.6
Synchronous Actuator sensor 0.869 15.3 48.7

IDI augmentation: low-order synthesized designs

Lag-lead, synchronous Actuator sensor 0.879 17.4 59.6
Actuator model 0.793 14.7 79.2
Control command 0.789 14.6 81.1

Low-pass, synchronous Actuator sensor 0.958 13.0 49.3
Actuator model 0.973 11.0 50.8
Control command 0.981 10.2 49.5

Note that ωc is gain crossover frequency; PM, phase margin; n/a, not applicable.

a) Internal model feedback (AM) b) Control command feedback (CC)
Fig. 7 Alternative synchronization compensation strategies.
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2. Alternative Synchronization Compensation

Figure 9 illustrates the relative peak performance levels found
for the alternative synchronization strategies from Fig. 7. Both basic
(no filter augmentation) and optimized low-order designs are con-
sidered. Comparing these to the results presented earlier, it can be
seen that both strategies deliver satisfactory robust performance
levels if adequate filtering is in place. Therefore, viable designs
may be found even in case no actuator sensor instrumentation is
available. In case of sufficient bandwidth separation between the
nominal actuator dynamics and augmentation filters, even the use of
an internal model may not be required.

D. Overview

An overview of the numerical results presented in the preceding
sections is shown in Table 1. Thematching strategy has been found to
be an adequate strategy for handling the synchronization effect in the
presence of dynamic uncertainty. Robustness against aerodynamic
variations is largely maintained and is not heavily affected by adopt-
ing low-order designs. This also holds in case internal actuator
models are used, if adequate feedback filters are in place.

V. Conclusions

The stability and performance robustness characteristics of INDI
against regular and possibly unknown singular perturbations have
been investigated in this paper. For traditional NDI, the inversion
residual that arises under these perturbations may grow large in
magnitude, but can always be described at a given state by an

upper bound under modest assumptions. By contrast, INDI shows
improved robustness to regular perturbations, but its inversion
residual may grow unbounded under similar conditions for particular
combinations of singular perturbations. This corresponds to a loss of
robust stability as a result of the synchronization effect. By introduc-
ing additional augmentation to sensor feedback signals, the robust-
ness properties of INDI can be further improved.
A linear control law design study based on the structured singular

value (μ) framework confirms that IDI features increased levels of
robustness to aerodynamic uncertainties, at the expense of robust
stability due to unknown singular perturbations. The matching strat-
egy, which has been applied successfully in the past, is shown to be a
reasonable design method to compensate for the synchronization
effect and compares closely in terms of optimized robustness levels
to less-constrained asynchronous design options. The use of addi-
tional model information as a form of complementary augmentation
can further improve the design in case the time-scale separation
assumption is violated due to low-bandwidth feedback filter designs.
In case actuator sensor measurements are not available, alternative
synchronization strategies can still lead to adequately performing
designs.
Finally, the applicability and limitations of the presented robust-

ness insights should be emphasized. First, only input-affine systems
and singular perturbations that can be described by linear mappings
have been considered in this work. Second, closed-loop effects of
nonlinear or time-varying dynamics have not been addressed. There-
fore, the results lead to an elementary understanding of the robustness
properties of INDI-based control lawsonly. This implies that, in order
to handle the full complexity of nonlinear control laws and bare
airframe dynamics as well as other uncertainty classes, more power-
ful analysis strategies must be considered.
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