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ABSTRACT

The construction industry around the world is growing exponentially. In building design, the
structural design is usually incorporated in the latter stages of the design, and the
computational tools currently available focus more on converging and optimizing a single
solution rather than providing an opportunity for the designer to explore design ideas.
Incorporating structural design in the initial design phases can lead to more efficient and cost-
effective structures, but in order to do so practical tools should be available to the designer to
deepen the design space and allow them to efficiently explore it. Generative Al models could
provide a solution to the problem and expand the design space by learning from the data
provided.

This thesis explores such a solution by means of training an Al model (variational Autoencoder])
on an artificial dataset of 2D lattice patterns. To do that, a dataset of 6 unique 2D lattice patterns
is created and used to train a simple VAE model. The methodology used in this thesis is to
validate if an Al can aid in the exploration of design ideas by providing a larger design space with
newly generated data that contain learned features from the dataset rather than through
constraints set by the designers.

The results show that the VAE model can learn features and provide a greater diversity of
design than the original dataset through newly generated designs. The output of the VAE model
in this thesis is then explored for possible integrations into the design process for the early
stages of design. For this, the generated patterns that are distinct and unique are identified and
applied to a shell structure to explore topology design ideas.

This thesis explores the possibilities of an Al-design integration, but for the methodology to be
practically incorporated into the design process, further development of the Al model is
required as well as exploring other advanced generative Al models would be beneficial.

Keywords: Generative Al, Variational Autoencoder, Natural Patterns, Topology Exploration, Al
Integration in Design, Deep Learning, Python programming
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ABBREVIATIONS

Al: Artificial Intelligence

BCE loss: Binary Cross-Entropy Loss

CNN: Convolutional Neural Network

FEM: Finite Element Method

GAN: Generative Adversarial Network

KLD: Kullback-Leibler divergence

MNIST: Modified National Institute of Standards and Technology database
MSE Loss: Mean Squared Error Loss

NN: Neural Network

VAE: Variational Auto Encoder
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| INTRODUCTION

“The loftiest and most difficult problems arise in architecture from the need to realize a
synthesis between opposing sets of factors: harmony of form and the requirements technology,
heat of inspiration and the coolness of scientific reason, freedom of imagination and the iron
laws of economy.”

— Pier Luigi Nervi in Structures, 1956



1.1 Background

In building design, including the disciplines of architecture and structural engineering, the
design process is conventionally divided into four phases: Conceptual Design, Schematic
Design, Design Development, and Construction Documents (Architects. 2007). The major
decisions regarding the building geometry, structure, massing is made during the Conceptual
Design. These design decisions account for 75% of the final product costs. (Hsu 2000).
Integrating the structure into the Conceptual Design phase can lead to several advantages,
including reduced construction cost, architectural elegance, and is inherently safe. Within the
domain of Structural design, topology exploration is convenient for exploring and validating
ideas in the initial stages of design as it only requires an initial domain - massing studies- to act
upon (M.P. Bendsge 2004). Precedents have shown how inspirations from nature can suggest
valid design directions — beyond the mere formal similarity toward functional principles
(Mizobuti, C.M and Junior 2020). In the vast examples from nature, this thesis focuses on forms
of cellular solids. The properties of cellular solids depend directly on the shape and structure of
the cells, exploring the shape and topology of the cell walls might prove to be interesting for
application in topological design explorations.

1.1.1 Computational tools for Conceptual Structural Design

Today’s design practices make widespread use of computational tools throughout the design
process. The designers must have the correct tools to aid in their design process. Until
recently, the computational tools have mainly been used for analytical purposes in structural
design. Now, their role is becoming more versatile and is being used in the generation of design
concepts too (Kicinger 2005). To aid the designers in the conceptual design phase, the
computational tools must allow the exploration of a variety of solutions.

In the current scenario, most of the computational tools focus on optimization rather than
exploration. Optimization aims to minimize or maximize an objective value by the variation of
design variables, while at the same time satisfying certain constraints. (Boonstra 2018])

To facilitate exploration, it is imperative that the designer has access to a larger design space of
the design idea not constrained by parameters set by the designers. Design space is an
expression of the design idea (Mirra and Pugnale 2021). It is a closed system that can generate
all possible solutions to a design problem. It is bounded by selecting a set of design variables
that limit the search for suitable solutions.



In the field of structural optimization, the solutions depend on the representation of the design
space. Expanding the design space can lead to more freedom in the range of possible solutions.
Designers are invaluable in the process of design since their experience can reduce the
problem. But to aid an individual designer in overseeing the complete design problem - i.e., the
complex relationships between disciplines - multi-objective building optimization methods can
be useful to handle larger design spaces. (Boonstra 2018). There has been extensive research
carried out in that aspect, focused mainly on two approaches: ' Super-structure’ and ‘Super-
structure free.’

A) Superstructure Approach (Boonstra 2018]:
In the super-structure approach, all the design variables are fixed by the designer who makes
the representation. In the case where the topology of the design is specified in detail and
predefined in advance; the representation was defined as parameterization in (Kicinger_2005).
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Figure 1 Example of a Superstructure-based spatial representation. Supercube representation of a building spatial
design, spaces 2 and 4 are described by two cells each, the two right cells are not used to describe a room. (Boonstra
2018)

B) Superstructure free Approach (Boonstra 2018]:
In the Super-structure free approach, new design variables may originate or disappear -
utilizing rules or geometric operators. In this scenario the topology of the design is changeable;
this representation was called generative in (Kicinger_2005).
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Figure 2 Example of a Superstructure Free representation. A movable and sizeable (MS] representation for spaces is

introduced for the super-structure-free design space representation. For this, a building is described with a vector
that lists all the spaces. (Boonstra 2018)
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1.1.2 Natural Forms as inspiration for Structural Design

Man has been drawn to nature for its diversity of systems. The vast number of substances
formed are from the permutation and combination of a relatively small number of chemical
elements (Pearce 1978). The formative process in nature is characteristically governed by the
least energy responses. That means that the form of a natural object is created as the best
response to the acting forces (intrinsic and extrinsic) while using the minimum energy. If
building systems can be considered analogous to natural objects, which is highly efficient in
responses to forces, it may offer a real possibility of generating new design ideas. (Pearce 1978)

Many materials have a cellular structure: an assembly of prismatic or polyhedral cells with
solid edges and faces packed together to fill space (Gibsob and F.Ashby 1997). Their cellular
structure gives them unique properties that are exploited in a variety of applications. In
compression, cellular solids can withstand large strains at nearly constant stress. This aspect
of cellular solids can be explored for the design of compression structures (e.g., Shells).
Learning from the topology of the cells can help improve the topology of the structures.

This thesis explores the opportunity of utilizing precedents from nature in the conceptual design
phase. As such complex systems are difficult to be integrated into later phases of design,
extracting basic principles and investigating their incorporation and evolution through the initial
phases of design can lead to interesting solutions.

Figure 3 Examples of Cellular solids: a) a two-dimensional honeycomb. b) a three-dimensional foam with open cells.
c) a three-dimensional foam with closed cells (Gibsob and F.Ashby 1997)

(N



1.1.3 Al

“Artificial intelligence is that activity devoted to making machines intelligent, and intelligence is
that quality that enables an entity to function appropriately and with foresight in its
environment.” (Nilsson 2010)

In the recent years, Al has become embedded in people’s lives. From smartphones, Siri and
Alexa to detecting and differentiating neurological conditions of patients in MRI (Vogelsanger
and Federau 2021). Out of the different Al models, the generative models are promising for use
in the design field; as they can create new content by detecting underlying patterns related to
the input and produce similar content. In design, rudimental tasks that involve repetition can be
automated and even enhanced with the help of Al, letting the designers focus more on the ideas
and creativity. It can become a tool to aid designers in enhancing their creativity (Ahmed 2019)
(Basu 2019).

Al is the broad umbrella term that includes Machine learning and Deep learning. It is explained
further in the Literature Research section of this report.

1.2 Problem Statement

Computational design has shown high potential in numeric performance-driven approaches.
However, designers do not exclusively use numeric performance to develop design ideas. The
development of a design idea depends also on the designer’s knowledge and experience,
including reasoning from inspirations. Such an approach tends to limit the search for optimal
solutions and converge on a design solution rather quickly.

In both the cases of Superstructure and superstructure free approach, the bounds of the design
space are dependent on the designer. In the superstructure approach, the drawback is that a
better solution, outside the design space representation, will never be found as the variables
are pre-defined. In the newer superstructure-free approach, the rules limit the number of
solutions explored in the design space which can lead to some optimal solutions being left out.

The Computational tools must allow the freedom of exploration within the design environment.
There is usually no correct answer in architectural design, and such tools must allow for a
variety of design options while encouraging the user towards the ones with better performance.

Nature has evolved complex and apt topologies to solve all sorts of problems. The investigation
of such a framework can help provide important physical insight as well as valid design
directions. There is potential in exploring such complex structures in nature.
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This thesis aims to explore design ideas through application of Al-generated patterns in shell
structures. Natural patterns of cellular solids will be used to train the Al model. The current
research available on these fields have examples of using Al for identifying and segmenting
white blood cells (Xin Zheng 2018}, Using Al to generate shells structures after being trained on
a dataset of human-defined cell structures (Mirra and Pugnale 2021). But there is a gap in
combining structural topology exploration with natural forms and this thesis explores the
possibility of using Al for the same. Al can help open up ideas and expand the palette of
architecture.

1.3 Research Questions

To explore possibilities for the analyzed problem and sub-problems, the main question of the
project is:

Main Question: How can Al extract useful information from a dataset of cellular solid
structure patterns and reuse it to generate new patterns for structural design?

To answer the main question, the following sub-questions are formulated:

Sub Question 1: What are the selection criteria of the cellular solid patterns for creating the
dataset?

Sub Question 2: How to artificially create a dataset?

Sub Question 3: How to train a generative Al model on the custom dataset?

Sub Question 4: How can the Al-generated patterns be used to explore topology optimization
design ideas? (Application)

1.4 Aims and Limitations

1.4.1 Aims:

1. The general aim of the thesis is to investigate the application of Al as a tool for
generating design ideas. The workflow of the thesis can be used to explore different
domains for training an Al.

2. To select patterns from nature that show perforations and can be modeled in 3D using a
grasshopper script.
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3. To train an Al with natural cellular solid perforation patterns and generate new patterns
from the trained model.

4. The thesis aims to compare the Al-generated patterns (visually and also through
structural performance using FEM] and verify that the Al-generated designs spaces
result in a greater variety of examples while ensuring a still good structural
performance.

1.4.2 Limitations:

1. For the scope of this thesis only cellular solids are considered for the dataset. The
format of the data that has been used for the dataset are 2D images, hence focus was
mainly on 2D cellular solid structures whose topologies are distinct and influence their
structural performance.

2. Since the data available on the natural cellular solids is not vast in terms of recreating
them artificially, only certain categories of them will be selected. To ensure that there is
enough data, data-augmentation will be carried out.

3. The generative Al model used in this thesis is a Variational Auto Encoder (VAE).
Convolutional neural networks (CNNs) are used in creating the hidden layers for the VAE
since the data is in the form of 2D images. There are other formats of data that can be
used to create a dataset and also other generative Al models but for the scope of this
thesis only the ones mentioned are used.

4. Shell structures are selected for the evaluation of the generated patterns. In the thesis,
the patterns are morphed onto a dynamically relaxed mesh, to accommodate easier
customization of topology design ideas for a given form. Other structural designs are not
investigated.

5. The comparative aspects of the generated patterns are focused more than the
‘allowability’ of the results.

6. Optimization is not considered as the application of this thesis focusses on design
exploration during the initial design phases.

14



1.5 Approach and Methodology

The research has 5-stages according to different assessments described below:

Stage 1: Build background knowledge

In the first stage, the emphasis is on learning the concepts of Python, Al, Deep Learning,
TensorFlow and Keras, Autoencoders, Variational Auto Encoders, in that order, and other
necessary topics. The primary source of learning is online videos and tutorials. This stage is
necessary for learning the skills, techniques, and technical know-how for later training an Al
model.

Stage 2: Analysis of Precedents and Previous Researches

In the second stage, existing literature on Al in design was studied, focusing on structural
design and Al. Dr. Alberto and Ph.D. candidate Gabriele Mirra's paper on ‘Comparison between
human-defined and Al-generated design spaces for the optimization of shell structures’
influenced filtering the focus of the literature search. With their help, an approach to build on
their existing research was explored. There is literature available on Al learning from human-
defined design space, but there is a need of exploring nature-defined design spaces e.g.,
natural patterns, and forms. The properties of cellular solids depend directly on the shape and
structure of the cells, exploring the shape and topology of the cell walls might prove to be
interesting for application in topological optimization. Thus, for this thesis, natural cell
structures were selected as the study for creating the dataset for the Al model to train on.

Stage 3: Creating Dataset and Benchmark Testing

In the third stage, the domain of natural cell structures is explored for use as datasets. The
selection of the data and its representation play an important role in the performance of the Al
model. The task would be to explore the geometry and patterns and decide on the
representation of the data for making the dataset and choosing the design variables to
construct the design space. Thus, to have better control over the data, the dataset will be
artificially created by modeling the patterns of the cellular solids with a grasshopper script.
Testing of the Al model will happen simultaneously. The model will be written in Python, using
TensorFlow and Keras library and Convolutional Neural Networks. It will be tested with a
benchmark pre-existing dataset to assess its performance. This step is important to ensure
that the model works correctly before introducing the new dataset. The desired outcome of this
stage will be to have a completed dataset and a working Al model to train.
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Stage 4: Training and Integration

In this stage, the model will be trained with the new dataset created in Stage 3. During training,
the VAE (Al model] will extract implicit design variables from the dataset and generate the
design space. As the design space is defined by Al-selected variables, it can make the outcome
less predictable and more diverse. The Al-generated patterns, after training, will be used as a
UV map for an arbitrary shell for topology optimization. The objective is to compare the
structural performance of the generated patterns and verify that the Al-generated designs
spaces result in a greater variety of examples while ensuring a still good structural
performance. The comparative aspects are focused.

Stage 5: Results and Conclusion

The last stage will focus on documenting the results and concluding the findings. The final
report with the reflection and conclusion will be completed.

Analysis of Generating Dataset
. Precedents and X and Benchmark
“| Previous Researches | ’ Testing

Training the VAE Results and

Build Background -
and Application : > Conclusion

Knowledge

Figure 4 Diagrammatic representation of the Research Approach

1.6 Planning and Organization

The Timeline is added as an appendix at the end of the report.
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2.1 Artificial Intelligence

Artificial intelligence (Al) is a wide-ranging branch of computer science concerned with building
smart machines capable of performing tasks that typically require human intelligence. Machine
learning is a subset of Artificial intelligence and deep learning is a subset of machine learning.
The following sections are referenced from the book Deep Learning (J. D. Kelleher 2019) . It
briefly goes through the sections of deep learning and Neural Networks.

Artificial
Intelligence

Machine
Learning

Deep
Learning

Figure 5 Relationship between Artificial Intelligence, Machine Learning, and Deep Learning

2.1.1 Deep learning (J. D. Kelleher 2019)

Machine learning is teaching computers to recognize patterns in data. Deep learning is a
machine learning technique that learns features and tasks directly from data. Inputs are run
through "neural networks” which have hidden layers.

It is changing the world as we know it, and many Al breakthroughs we hear about in social
media are because of Deep learning. For example, DeepMind’s AlphaGo; the go board game;
was the first computer program to beat a professional Go player. The Go board game boasts to
have more possible moves in it than there are atoms in the universe. This was possible because
of deep learning, which increases the computational power extraordinarily.

Deep learning involves the training of neural networks, inspired by the neurons of the human
brain. They carry out the following tasks:

i) Take the data as input

18



i) Train themselves to understand patterns in the data. They extract the implicit
parameters from the data to learn.

iii) Output useful information.
Input Hidden Output
layer layer layer
X1 ;
Wi hi
O A=
X3 N i
’ o
3H Win Q yo >
Wh 2

Figure 6 Schematic representation of a Neural Network

The neural networks consist of

Xi: neurons,

Wi: weights of the channels;

hi: The biases of the neurons in the hidden layer;
Yi: output;

O: a non-linear function that decides if the particular neuron can contribute to the next layer.

[t's called the activation function.

The learning process of a Neural network can be broken into two processes:
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1. Forward propagation: Propagation of information from the input layer to the output
layer.

2. Back Propagation: The reverse of forward propagation. It is the reason why Neural
Networks (NN] are so powerful. It allows the NNs to go backward and adjust the initial
weights and biases that were randomly assigned in the beginning to get closer to the
predicted output and minimize loss.

Terms used in Neural Networks

1. Activation functions:

Introduces non-linearity in the network. It also decides if a neuron can contribute to the next
layer. There are different functions available and the uses depend on the Al model. But for this
thesis, the ReLU Function (Rectified Linear Unit) will be used.

R(z) = max (0, z)

This function is useful because it uses sparse activation, which means that at a time only 50% of
the neurons will activate which helps in the randomness and learning of the NN.

2. Loss functions:

Loss functions quantify the deviation of the predicted output by the neural networks to the
expected output.

3. Optimizers:

During training, we adjust the parameters to minimize the loss function and make out the
model as optimized as possible. Optimizers tie together the loss function and model parameters
by updating the network based on the output of the loss function.

4. Parameters and Hyperparameters:

Model parameters: These are variables internal to the neural network. The values are
estimated right from the data. E.g., Weights and biases.

Model hyperparameters: These are variable configurations external to the Neural Networks.
The value cannot be estimated right from the data. Usually, they are manually specified in the
model. E.g., Learning rate, activation function, etc.

5. Epochs, batches, batch size, and iterations.

These terms are required if the dataset is large, which is usually the case.

20



Epochs: When the entire dataset is passed forward and backward through the neural network
once.

Batch & batch size: large datasets are divided into smaller batches and those batches are fed to
the neural network.

lterations: Number of batches required to complete one Epoch.

2.1.2 Convolutional Neural network (CNNJ) (J. D. Kelleher 2019)

This Neural network is inspired by the organization of the neurons in the visual cortex of the
human brain. It is useful for processing data like images, audio, and video.

The hidden layers in CNN are:

i) Convolutional layers

ii) Pooling layers
iii) Fully connected layers
iv) Normalization Layers

In place of activation functions, convolutional and pooling layers are used.

Convolation:
laver of neurons

with shared weights Eapur-of

nonlinearity
functions

Feature

-
Convolutional layer

Figure 7 Illustrations of the different stages of processing in a convolutional layer. Note in this figure the Image and
Feature Map are data structures; the other stages represent operations on data. (J. D. Kelleher 2019)

Pooling reduces the number of neurons necessary in subsequent layers.
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The steps involved in the CNN are: (Dsouza 2020)
Step 1: Take an input image which is a 2D matrix of pixels with typically 3 color channels RGB.

Step 2: Use a convolutional layer with multiple filters to create a 2D feature matrix as an output
for each filter

Step 3: Pool the results to produce a down sample feature matrix for each filter in the

Convolutional Layer
Step 4: Repeat Steps 2 &3

Step 5: Add a few fully connected hidden layers to help classify the Image.

Step 6: Produce a classification prediction in the output layer

Figure 8 Representation of max pooling: Selecting a max value from a selective region

max(1,5,7,9)

Creating a deep Learning Model

i) Gathering Data: Picking the right data is the key as bad data can lead to a bad
model.

ii) Pre-processing the Data: These are done in various steps of A: Splitting the

datasets into subsets. B: Formatting. C: Fixing the problems of missing data. D:
Sampling. E: Feature Scaling.

iii) Training Data: This includes the steps of feeding the data, forward propagation,
loss functions, and backpropagation.

iv) Evaluation: Test the trained model on a validation set.
v) Optimization: This includes the following steps:
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al Hyperparameter Tuning: Increasing epochs and adjusting learning rates.

b] Addressing overfitting: by getting more data or reducing model size and
regularization. Data Augmentation: Artificially increasing the dataset.
Dropout: randomly dropping out neurons in the network.

2.1.3 Variational Auto Encoders

The Variational Autoencoder is a kind of deep generative model (Kingma and Welling 2019). A
VAE is an autoencoder whose encodings distribution is regularized during the training to ensure
that its latent space has good properties allowing us to generate some new data. Moreover, the
term "variational” comes from the close relationship there is between the regularization and
the variational inference method in statistics. (Rocca 2019)

Dimensionality Reduction

In machine learning, the features of the input data are reduced for better representation and
faster computation. The process can be referred to as “encoder” which produces ‘new features’
representation of old features. The “decoder” reverses this process. Dimensionality reduction
can also be referred to as data compression of the input data from the initial space to the
“latent space”.

| —
encoder decoder —
1
—
l—‘

. d L

| =T T ]

4 | p d
X: initial data e(x) _e"°°d‘3d d(e(x)) : decode
data in latent data
space

Figure 9 Illustration of the dimensionality reduction principle with encoder and decoder.

The main purpose is to find the best encoder and decoder pair that keeps the maximum
information when encoding and has the minimum reconstruction error when decoding.
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Autoencoders
Autoencoder sets neural networks as encoders and decoders and uses gradient descent to
minimize the reconstruction error.

But with autoencoders, there is no real way of producing new content.

Variational Autoencoders

To be able to generate new data, the latent space needs to be regular enough to facilitate
exploration. “A variational autoencoder is an autoencoder whose training is regularized to avoid
overfitting and ensure that the latent space has good properties that enable the generative
process.” (Rocca 2019)

The VAE instead of encoding the input data as a single point does it as a probability distribution
over the latent space; such as the mean and variance of a Gaussian. This approach produces a
continuous, structured latent space, which is useful for image generation (Kingma and Welling
2019). The loss function of a VAE is composed of a ‘reconstruction term’ on the final layer and a
‘regularization term’ on the latent layer. That regularization term is expressed as Kulback-
Leibler divergence.

The latent space should have two properties: continuity (two close points in latent space should
be similar) and completeness (any point sampled from the latent space should be meaningful).
With the regularization term, we ensure that the encoded data are not too far apart in the latent
space and encourage some overlap, this creates a ‘gradient’ over the information encoded in
the latent space.

Figure 10 Regularization tends to create a “gradient” over the information encoded in the latent space. (Rocca 2019)
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Example 1: (Mirra and Pugnale 2021)

The authors of this paper are the external advisors for this Thesis. The research of this thesis
seeks to build on their existing research.

The paper presents a comparison between human-defined and Al-generated design spaces.
The domain of shell structures was used to construct the dataset through an explicit definition
of their design variables. The human-defined design space was constructed using a
superstructure approach. The variables chosen were: A] The number of openings. B) The
opening rotation. C) The opening position. D) the opening Width. E] the curvature of the support
edges. A 2D depth map was used as the data format.

L (x,ﬁ)‘

| REC

Figure 11 Diagram showing the main components of the VAE model architecture. (Mirra and Pugnale 2021)

The dataset was then used by the VAE to create a generated data space. The model was trained
for 5000 epochs. The generative capabilities of the model were tested by using the decoder to
generate depth maps from new samples of the Latent space.

The resulting designs were tested in two applications. First, finding optimal design solutions for
a target triangular footprint. And the second, when the target footprint was a square.
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‘Target Foatprint: Square » Design Space: Human-Defined
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Figure 12 Results of the second application. On the left: representation of Pareto-optimal solutions in the objective
space; on the right: axonometric view of the selected designs and their footprints (Mirra and Pugnale 2021)

Learning: This paper presented that the Al-generated design space is flexible and can produce
more design variations than those present in the training dataset. This leads to more
unpredictable results than ones from human-defined design space, helping designers explore a
larger variety of solutions. However, one drawback was noticed that the Al-generated forms

were less balanced and had irregular edges and areas.

Example 2: [Renaud and Caitlin T. 2021)
The paper investigates the integration of conditional variational autoencoders in a qualitative

exploration of performance-driven design ideas. The research establishes a workflow for
systematically exploring the design space. A conditional VAE was used for training instead of a
standard one to train on a dataset of performance-driven samples. The performance condition
on the VAE can be used after the model is trained to control the decoder’s output and also to

help it encode and decode more easily.
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Figure 13 Long span roof example: summary of initial geometry, design variables, and performance measure. Design
variables 1 through 18 control the bottom surface and variables 19 through 36 control the top surface. (Renaud and
Caitlin T. 2021)
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The paper shows the possibility of a latent space visualization that shows both the geometric
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Figure 14 Prototype interface for latent space exploration. (Renaud
and Caitlin T. 2021)

diversity and the performance it contains. Fig 14 shows the potential exploration path a
designer can take through the latent space. The result shows that this yields diverse high-
performing ideas from which the designer can choose.

Learning: This paper presented the workflow for allowing designers to intuitively explore large
design spaces. The computer acts as a collaborator in the design process rather than only
focusing on quantitative rules. The exploration is focused more on better-informed design
options than finding the optimal solution. It would be interesting to find how this workflow can
be integrated into existing multi-objective optimization techniques.

2.2 Cellular Solids

Despite an estimated 7 million animal species living on earth,1 there is remarkable repetition in
the structures observed among the diversity of biological materials. This is because many
different organisms have developed similar solutions to natural challenges (e.g., ambient
environmental conditions, predation). As a result, the vast body of research on biological
materials often presents similar solutions, since the number of materials available in nature is
fairly limited and therefore resourceful combinations of them have to be developed to address
specific environmental constraints.

“A cellular solid is made up of an interconnected network of solid struts or plates which form
the edges and faces of cells.” (Gibsob and F.Ashby 1997)
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There are three typical structures of cellular solids shown in Figure 3 Examples of Cellular
solids: a) a two-dimensional honeycomb. b) a three-dimensional foam with open cells. c] a
three-dimensional foam with closed cells[Figure 3]. The first is the two-dimensional array of
hexagonal cells, which are referred to as honeycombs. The three-dimensional cellular
materials are called foams. For open-celled foams, the solid of which the foam is made is
contained only in the cell edges. For closed-cell, the faces of the cell are solid too and are
sealed off from their neighbors. (Gibsob and F.Ashby 1997)

2.2.1 Structure (Gibsob and F.Ashby 1997)

Topological laws govern the connectivity of edges and faces of the cell and impose constraints
on the dispersion of Cell sizes which help better understand the cell geometry.

Honeycombs:

The honeycombs which have hexagonal cells have edge connectivity of tAree. For honeycombs
with square or triangular cells the edge connectivity of fouror six. But they are less efficient as
they use more solid to enclose the cells.

Foams:

For foams, the surface tension draws solid into the cell edges and faces, leaving a thin skin
framed by thicker edges. The connectivity of the edges and faces of closed cells is harder to
establish. If the surface tension is the dominant force that shapes the structure, then four edges
meet at 109.4 degrees at each vertex, and three faces meet at 120 degrees at each edge. The
foams shown in [Figure 15] are all like that.

Figure 15 man-made foams: a) open-cell Polyurethane, b) closed-cell polyurethane, c) nickel, d) copper, €] zirconia, f)
mullite, g) glass, h) a polyether foam with both open and closed cells. (Gibsob and F.Ashby 1997)
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The properties of the cellular solids depend on the way the solid is distributed in the cell edges
and faces.

2.2.2. Shape, Size, and Topology (Gibsob and F.Ashby 1997)

A) Cell Shape:

The polygons found in two-dimensional cells are: a) equilateral triangle, b) isosceles triangle, c)
square, d) parallelogram, e) regular hexagon, f] irregular hexagon [Figure 17]. any triangle,
quadrilateral, or hexagon with a center of symmetry can fill the plane. In three dimensions, a
greater variety of cells is possible, the most known shapes are a) tetrahedron, b) triangular
prism, c) rectangular prism, d) hexagonal prism, e] octahedron, f) rhombic dodecahedron, g)
pentagonal dodecahedron, h) tetrakaidecahedron, i) icosahedron.

b

;

:

(b) (d) f)

Figure 16 Packing of 2D cells to fill a plane. (Gibsob and F.Ashby 1997)

B) Faces, edges, and vertices.
From a geometric point of view, the cell can be considered as vertices, joined by edges,
which surround faces. The number of vertices V, of edges E, of faces F and cells C, are
related by Euler's Law (Euler 1746) which states that:

F-E+V=1 (2D])
-C+F-E+V=1 (3D])
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Figure 17 The Packing of Polyhedra to fill a space: a) triangular prisms, b) Rectangular Prisms, c] hexagonal prisms,
d) rhombic dodecahedra, ] tetrakaidekahedral (Gibsob and F.Ashby 1997)

Example 1: (Pearce 1978)

This book attempts at providing a basis for the modularity of building components, while taking
inspiration from structures in nature. Closest packing is a structural arrangement with inherent
geometric stability which is found naturally in a 3-D arrangement of polyhedral cells in Biology.
The book explores the possibility of stacking modular components and designing triangulated
structures derived from closed-packed cells. Since the book studied the geometry and
arrangement of the cellular solids, it was used as literature research to understand the form of
the natural solids and possibly the grammar present in modeling them

Figure 18 Periodic lattice assemblies (Pearce 1978]
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Example 2: (Naboni 2017

The paper investigated cellular solids as a tectonic system in architecture that is based on a
complex form developed for material scarcity. The work explored the application of biological
bone microstructure to larger-scale architecture, using computational design and additive
manufacturing. Among the cellular solid models, that of a lattice cell was chosen. Cellular
lattice structures are composed of an interconnected network of struts, either pin-joined or
rigidly bonded at connections. For E.g., in a built environment is a Space truss. A comparative
analysis of typical 3D cells was carried out [Figure 19] with an evaluation of printability, relative

density, and visual permeability.
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Figure 19 The image shows eight different unit cells typologies for the Cellular Lattice Structure and their observed
characteristics; the first column shows unit cell types: A - orthogonal grid, B - star, C - tesseract, D - octahedron, E -
cross, F - octet, G - vintiles and H - Diamond.

Example 3: (Xin Zheng 2018])

In this paper, a self-supervised learning approach was presented for the segmentation of white
blood cells (WBC). The first module extracts the foreground region of the cell through
unsupervised learning using Al. The second module consists of using the results of the first
module and actively training the model in which each input sample contains a feature vector
and label. The two modules combined make the self-supervised model. The approach of
separating the background and foreground of the image and creating the dataset of just the
topology of the WBC is interesting and can be utilized in this thesis while creating the dataset.
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Figure 20 Overview of the Self-supervised learning Approach (Xin Zheng 2018)

2.3 Topology

Topology Optimization of solid structure involves the determinations of features such as the
number and location of holes and the connectivity of the domain. (Bensoe 1995). In other words,
it is @ mathematical method that spatially optimizes the distribution of material within a defined
domain. It has been used in the field of civil and mechanical engineering to minimize the
amount of used material and the strain energy of structures while maintaining mechanical
strength. (Bendsoe 2002). But optimization means that the best design is selected out of the
available options for a given set of parameters. This leaves little room for exploration, as the
intent is to find the one best solution, rather than explore many feasible solutions.

Shell structures are form-passive structures that resist loads through internal membrane
stresses. They are described by three dimensional curved surfaces with one dimension
extremely smaller than the other two (Adriaenssens, et al. 2014). In topology exploration of
shell structures, the patterns integrate the load bearing systems to be fabricated and
assembled (Tam 2021]). The topology of a pattern used for a shell structure matters because it
sets the boundaries for the available design space, within the general design space of the shell
structure. This geometric space, for a given topology may not contain efficient or even feasible
designs. Hence, rather than for optimizations, designers should have access to explore topology
findings during the conceptual design phases (Tam 2021).
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Example: (Oval 2019)

This paper explores the topology findings of patterns for shell structures such as beam grids for
grid shells or voussoir tessellations for vaults among others. The geometry of a pattern is
explored to achieve diverse design criteria; however, the predefined topology of the pattern
depends on the experience of the designer.

The design space of the patterns is created based on: a) The pattern singularity design space, b)
The pattern density design space, c) the pattern connectivity space, d) the pattern geometry

space.

TOPOLOGY GEOMETRY
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Figure 21 Design space structure of a pattern’s singularities, density, connectivity, and geometry, where each design
space is defined by the design choices in the upstream spaces. (Oval 2019)

Based on these parameters, modification can be added to the actual pattern. Below is the result
of quad-mesh pattern exploration.

(a) Seed (b) Kis (c) Ambo (d) Gyro

Figure 22 Exploring quad-based pattern symmetries with equivalent vertex or face singularities highlighted in pink by
applying different Conway operators on a seed quad mesh. (Oval 2019)

The patterns in this paper are designer generated, which limits the exploration of a design
space. But the process can be utilized in this thesis for the exploration of Al-generated patterns
on shell structures.
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Il DATASET GENERATION

Oxford dictionary defines dataset as “a collection of data that is treated as a single unit by a
computer”. The first step to training an Al model is to have a dataset of trainable data available.
The algorithm uses that data to train and find underling patterns and similarities to learn from.
This means that the data needs to made uniform and understandable for the Al model. The

following section explains how that is carried out.



There are different sources for collecting data; open source, internet and artificial data
generation. The free available datasets on the internet are useful for testing the working of the
Al model, but for specific projects it is more useful to generate the data. It provides more
control and directly corelates with the project goals.

Sources for Collecting Training Data

Artificial
Open Source Internet Data Generation

Features of a good Dataset:

Good quality of the dataset is essential for getting the desired training and output from the
trained Al model. This needs to be considered more carefully when generating a custom
dataset. While the characteristics of a good quality dataset may vary depending on the goals of
the model, some common ones are - Existence of similarity between some samples
(uniformity), some recurring features in all the samples (continual).

Sufficient quantity ensures that there is enough data for the Al model to train correctly. If there
is less data available it might lead to overfitting which is the model memorizing the data rather
than learning. This prevents the model from producing enough high-quality results.

[ Good Dataset ]

&

Good Quality Sufficient Quantity
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Figure 23 Summary of Section [ll

This thesis uses an artificially generated dataset from cellular solid structures. The flowchart
explains the content of this section which explains the process of selecting the data, generating
the dataset samples and, formatting the dataset.

3.1 Manual Selection of the Data

There are visible regularities of form found in nature. These regularities in mathematics find
explanation in fractals, topology, logarithmic spirals and other mathematical patterns. The
Cambridge dictionary defines patterns as “any regularly repeated arrangement, especially a
design made from repeated lines, shapes, or colors on a surface”. These patterns are observed
in the macro as well as the micro scale in nature. In micro scale, for example, we can observe
patterns in cellular solids. Their study offer insight into advantages in structural design such as
improved performance while maintaining structural integrity and decreasing weight (Schaedler
2016). From studying their deformation mechanism, cellular solids are classified into two main
groups: bending- dominated and stretching-dominated (M. Benedetti 2021). The stiffness of a
body is its resistance to deformation in response to applied force (Baumgart 2000). The stiffness
of the cellular solid structures depends on a) the mechanical properties of the structures, b) the
topology and cell geometry, c] the relative density (Arredondo-Soto M 2021). The stiffness of
such shapes can be tailored by modifying the shape of the patterns, while some shapes are
better suited for increasing stiffness, others are more flexible. Cellular structures have been
studied extensively in shape morphing applications as it provides stiffness to not deform under
out-of-plane loads as well as flexibility for morphing with actuation. For this application, 2D
cellular structures have been suggested for general morphing skin application, for example, 2D
lattices (Arredondo-Soto M 2021).
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Lattice materials are a subclass of cellular solids which are generated by tessellating a unit cell
either in a plane or space. If a unit cell is tessellated throughout a plane it is known as a 2D
lattice (Tekdglu 2017). They are open cell cellular solids where the shapes are formed by a
network of interconnected slender struts in place of surfaces which form the edges and faces of
the cells. Lattice structures have high stiffness-weight ratio because of which they have been
extensively used in the lightweight applications and additive manufacturing to reduce the mass
while maintain or even increasing the stiffness levels. Some examples of such research can be
read in the following books and papers: (Nguyen, Park and Rosen 2012), (Kantareddy, et al.
August 2016), (Cheng 2017), (Seharing 2020). In theory, 2D lattice material possess large in
plane passive stiffness and strength (Tekdglu 2017) . In the papers mentioned above, most of
the work is focused on optimization of the configuration of the unit cell of the lattice to get a
higher stiffness and structural stability with mass reduction.

3.1.1 Characteristics of the Patterns

For simplicity lattice structures that have been selected for the generating the dataset would be
referred to as lattice patterns in this paper. As previously mentioned 2D lattices have been
studied for skin morphing applications, and for this thesis, the application that is explored is
morphing the generated pattern to a shell structure, hence for creating the dataset only 2D
lattice patterns have been chosen. As topology and cell geometry are properties that effects
their stiffness, studying lattices with different variety of configurations would create a plausible
dataset for training the Al. As the patterns of the lattices are informed of their mechanical
properties, the intension is that the generated patterns from the model would also have some
mechanical properties translated. Certain topologies are preferred depending on the stiffness
objective of the model, to maximize stiffness a stretch dominated lattice is preferred, whereas if
flexibility is needed, a bending dominated lattice is preferred (Arredondo-Soto M 2021).

Data samples of lattice patterns of cell structures that are both increasing stiffness and
reducing stiffness (flexible) are used to train an Al model to generate new patterns that might
have properties of both. Six lattice patterns that are most commonly studied were selected from
reviewing papers ( (Arredondo-Soto M 2021), (Naboni 2017]) on their properties and they are
categorized on the basis of their stiffness.
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Increasing Stiffness

Reducing Stiffness
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Triangular
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Figure 24 2D lattice patterns for increasing stiffness are: Square (Mihai, Alayyash and Wyatt 2017), Kagome
(Lipperman, Fuchs and Ryvkin 2008), Triangular (Lubombo and Huneault 2018). 2D lattice patterns for reducing

stiffness are: Chiral, Re-entrant, Hexagonal.

For the scope of this thesis, the focus will be on generating these patterns artificially and
formatting the output such that it can be used as an input for the VAE. The detailed mechanical
properties of these lattice patterns can be found in the paper: (Arredondo-Soto M 2021) . The
selected lattices are shown above, which are Square, Kagome, triangular, Chiral, Re-entrant
and Hexagonal.
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3.2 Model Set-up for the Patterns

There are different formats of data samples that can be used to create a dataset for training an
Al model. In generating the dataset from lattice patterns, images would be appropriate in
translating the characteristics of the patterns and also easier to artificially create from a model
of the patterns. For this thesis, the format of data that will be used are images in greyscale. This
is similar to the MNIST handwritten digits dataset and fashion dataset (Yann, corinna and
Christopher J.C. 1998). The testing of the VAE model was done on MNIST handwritten digits
dataset so it would be convenient to keep a similar architecture for a similar format of the
dataset.

For a good dataset the data needs to be continuous and also uniform. Generating a dataset from
a parametric model ensures that those criteria are fulfilled. The parametric approach involves
defining a set of variables which can control the features of the data samples. This ensures that
the generated data have some similarities in their features as well as that the recurrence of
underlying features. The variables chosen to construct the dataset were 1) Type of the 2D lattice
selected, 2) the U and V divisions of the patterns, 3) the Thickness of the patterns, 4)
Transformation of the angle of the joints in the patterns that would not affect its shape.

A parametric model created in Grasshopper (Rhinoceros) was used to create the 3D model for
the patterns of the lattices. The first part of the parametric model was used to create the
models bounded by the range of variables that were selected. These are described in the Table
1 below. The bounds of the variables were selected to control the total number of variations of
the patterns for each unique pattern. To ensure that the data samples were consistent and not
biased, the number of iterations for each pattern were kept the same which was 198 for
hexagonal, chiral and re-entrant patterns, 126 for square and triangular, 176 for Kagome. The
intension was to keep the total iterations of the patterns between 100-200, and increase the
population of the data with data augmentation later.

The process of generating the lattice patterns for hexagonal, square, re-entrant and triangular
are similar and is explained in details with the example of the square lattice. The parametric
process in grasshopper of all the patterns are available in the appendices. The Kagome and the
square chiral patterns are also described in details in the text.
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Table 1 Variation Domain of the design variables for generating the dataset

Variables

Application

O

Types of
1 patterns f O XX
Square Triangular Re-entrant Kagome Square- Hexagonal
Chiral
Patterns Applied to Variable Domain
v (5, 10]
Square:  m=sesmeessmmm e
% [5, 101
u
Triangular ... ... [5'10] ,,,,,,
\ [5, 101
> U
Re-entrant [10:121
Size of the >< % [10,12]
2 Patterns U
X f5, ]
Kagome ... ...l
>< % [6, 91
>< Square- u [8,10]
Chiral V[810] """"
L CXO.
exagona [8.1[]]
Square (t) [50,601mm
Triangular  (t) [50,601mm
Re-entrant [t} [50,60lmm
3) Thickness
>< >< Kagome (t) [50,601mm
Square-
>< >< Chiral (t) [50,60]mm
>< >< Hexagonal (1] [50,60lmm
Re-entrant (a) [0.6,0.7]
Square-
4) Parameter for Chital (a) [0.5,0.6]
Transformation
Hexagonal (a) [0.2,0.3]
Total number of Iterations ><><><><
Square Triangular Re-entrant Kagome Square- Hexagonal
Chiral
126 126 198 176 198 198
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3.2.1 Square Lattice Patterns

The first part of the parametric model is to generate the iterations of the data for a specific
pattern. Generating the models for the square, hexagonal, re-entrant and triangular lattices
patterns use the grasshopper plugin called lunchbox, which had pre-existing components for
panels of those geometry. To create the patterns, a surface is taken as the base. The surface is
then sub divided into the panels using the grasshopper plugin according to the required pattern.
After getting the curves of the pattern, it then given an offset which will create its thickness. The
offset distance can be controlled so the thickness of the pattern can be altered. After this step
the offsets are used as boundary curves to create a surface for the pattern. The last step in the
modelling process is creating a mesh and custom previewing it with a white swatch in a black
background of rhinoceros. Figure 25 shows a detailed workflow for generating a square lattice
pattern in grasshopper. The design variables for square patterns are the number of divisions or
the size of the patterns (the higher the division, the smaller the patterns) and the thickness
(which is the offset distance of the curves).

N

‘ Create a Surface ‘

N
Create Square <—{ Size -[ UxV divisions) ‘
Panels
N o
Thickness N Offset Curve for l Graft the data tree
parameter thickness

Create planar
surfaces from
boundary curves

N

Make a mesh

!

Custom preview
White Swatch

( Formatting )

Figure 25 Workflow for Generating Square lattice Patterns
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1. Creating a surface 2. Creating Square Panels 3. offset curve for Thickness 4. Create planar surfaces 5. Convert into a mesh 6. Visualise in
black and white

Figure 26 Generating a Square lattice pattern

Figure 26 shows the sequence of generating the square lattice patterns, after this step the
output is then formatted to be of the correct resolution and all the iterations of the data are
recorded to create the data samples for the dataset

3.2.2 Square - Chiral Lattice patterns:

In the paper by (Kérner, Liebold-Ribeiro and Yvonne. (2015).) they explored square chiral
patterns, the quadratic mode 9 of the periodic boundary conditions lattice was selected as the
basis for the pattern of the chiral for this thesis. As the details of the parameterization are not
extensively available for that pattern, a process to generate it while studying the connections
was developed. The square chiral can be generated from a square module, and then arrayed to
create the pattern. The first step is to create a square with the length and width as inputs. The
square is then scaled down with reference to its center point. The geometry of the chiral is such
that the line segments from the corner of the larger square connect to first, the mid-point of the
corresponding rotated edge of the smaller square and then finally it extends to the center point
of the inner square. The rotation of the inner square provides different configuration of the
pattern. After the module of the square-chiral pattern is completed, it is arrayed to create the
pattern. The next step is to add the thickness which is done by first extracting the surfaces and
the boundary curves from the array and then offsetting them the required distance to generate
the thickness. Figure 27 shows the workflow for generating the pattern in grasshopper in more
details.
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Figure 27 Workflow for generating square-chiral lattice patterns
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3.2.3 Kagome Lattice patterns

Kagome is a 2D lattice of corner sharing triangles, and in macro scale it is also a popular type of
Japanese weaving pattern. The patterns have been studied for creating the interesting lattice
structures (Ayres (2018).]). The geometry of the pattern generated in the parametric model is the
same way the pattern in made during weaving. The first step is creating diagonals on the
surface of the plane. The geometry is then divided by vertical line segments which pass through
the intersection of the diagonals, this is to get the height of the triangles that make the corners
of the Kagome pattern. Points on the line segments at 0.25 and 0.75 are identified (the height of
the triangles will be 0.25 units). The points are then horizontally connected to create the base of
the triangles at the corners. After the base geometry of the Kagome pattern is completed, the
curves are then given an offset for thickness and connected to a custom preview with a white

Create a surface [size of the pattern)

Divide surface into a grid of {uv}
points

N
Size - UxV divisions) ]—)[ Create rectangular panels ‘

Create polygons

| Explode into segments and vertices l

swatch.

\L Segments Vertices l
ist through the Line segments to List through the points on the surface
create horizontal connections to create diagonals
’ Get points on the curves (0.75 & 0.25) I Weave into a custom pattern
| Weave into a custom pattern ’ Create a interpolated Curve through a
i set of points

Create a interpolated Curve through a ’
set of points

Thickness parameter i—9‘ Offset the curves for thickness I

Make a mesh

L

Custom preview
White Swatch

Formatting )

Figure 28 Workflow for generating Kagome lattice patterns
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3.2.4 Formatting the Data Samples

After completing the models for the lattice patterns, the patterns are custom previewed with a
white swatch on a black background to create a black and white preview. Grey scale images
have less information in their pixels than colored images. This ensures that the VAE model has
less information to process, similar to an MNIST handwritten numbers (Yann, corinna and
Christopher J.C. 1998) dataset which is also in greyscale. The next step is to format the image
exports to required resolution; the higher the pixels, the more complex the VAE architecture
needs to be to encode and decode. The handwritten dataset has a resolution of 28 x 28, since the
patterns are more complex than images a resolution of 64x64 was chosen.

Generate Design ‘ Aggregate the 7 N
_ ] | lterations for the | Generated data | Generated |
Design variables collection of sliders and save in a given I Data samples
of design variables location N/
‘ Location ‘ [ Image Settings ‘
! Viewport ‘ Pixels 64x64 ‘

Figure 29 Flowchart for the process of generating the formatted data samples images of patterns])

Figure 29 Shows the process of exporting images all the iteration of the lattice pattern models
in the correct resolution for use in the dataset. Since only the viewport and the resolution can be
used as an input, the placement of the pattern within the 64x64 resolution needs to be manually
adjusted and can be done with trial runs during the export [Figure 30]. Data samples are the
exported iterations of the lattice patterns which will constitute the dataset.

64 Pixels

e

64 Pixels

64 x 66 = 4096

Figure 30 Size of the formatted Lattice pattern images
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Figure 31 Shows an iteration of all the lattice patterns exported with the specified resolution. As
seen in the picture, some patterns are denser than the others, but since the data samples will
be augmented to scale up and crop the final dataset will have uniform samples of both sparse

and dense patterns.
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Figure 31 examples of all the Lattice pattern exported as 64x64 resolution greyscale images

All the patterns have iterations of combination of the different design variables and an example
of that can be seen in Figure 32 . For the same pattern, through different values for angles,
thickness and size, similarity and continuity can be achieved within the data samples.
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Figure 32 A few Iterations of the Square-Chiral lattice pattern

After completing the exports of all the data samples and their iterations, the images are
uploaded into the google drive. Google Collab is used as the coding platform for the VAE model
and since it's a remote computing platform, the files are accessible through google drive.
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3.3 Preprocessing the Dataset

The MNIST handwritten digits dataset has about 70,000 greyscale images of handwritten digits
which are 28x28 pixels. Having a large dataset ensures that the Al can learn faster as it has
more information to learn from. The challenge with generating an artificial dataset is that the
quantity might not be enough to properly train an Al model. The total number of data samples
that were generated from the lattice patterns were 1022, which even though is a large number,
studying other Al models it was inferred that around 4000 or more would be better suited to
train the VAE model. This can be done by data augmentation. After data augmentation the
dataset needs to be reshaped and normalized and then split into training and validation
datasets. These steps are explained in this section.

3.3.1 Data Augmentation

Deep convolutional Neural networks run well when it has access to big data, in order for it to
train properly and not overfit. However, large amounts of data are not available readily for
custom projects or in cases where the data is artificially generated (as in the case of this thesis).
Data Augmentation provides a solution to the problem of limited data (Shorten 2019). There are
different data augmentation algorithms available on image manipulations, like cropping,
flipping, color space transformation etc. For this thesis the geometric transformations that
were chosen were cropping the images in the factor 0.5 and 0.25 and then flipping the images
horizontally and vertically.

Data
Augmentation

s A
Image
Manipulation
L S8 o7
4 ™
Geometric
Transformation
\ . P
[ Crop J [ Flipping J
- Crop Scale 0.5 - Horizontal Flip
- Crop Scale 0.25 - Vertical Flip

Figure 33 Image data augmentation techniques
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Figure 33 Shows the image data augmentation techniques used in this thesis. There are keras
functions as well as TensorFlow methods that can be used for data augmentation but they are
compatible with predefined Sequential models in their library. To get better control over the
augmentation, OpenCV library was used. The dataset is loaded from the google drive, which is
shown in the following code snippet:

from goocgle.colab import drive

drive.mount ('/content/gdrive', force remount=True)
dataset path = '/content/gdrive/MyDrive/Thesis/Dataset2’

First all the image paths from the google drive folder containing the dataset was accessed and
called into an open list images_dataset []. As shown in the following code snippet:

from google.colab.patches import cv2 imshow
images dataset = []
images path = glob.glob ("/content/gdrive/MyDrive/Thesis/Dataset2/*.png")
for img path in images path:
img = cv2.imread (img path, cv2.IMREAD GRAYSCALE)

The augmentations were carried out in a loop. All the image augmentations were then
appended into the images_dataset [] so that it could be used as the new dataset with more data
from the data augmentation. A snippet of the code to scale the images by a factor of 0.5 is
shown below. Adapted from (Woshicver 2022):

scale = 0.5
height, width = int(img.shape[0]*scale), int(img.shape[l]*scale)
X = random.randint (0, img.shape[l] - int (width))
y = random.randint (0, img.shape[0] - int (height))
cropped = img[y:ytheight, x:x+width]
resized = cv2.resize(cropped, (img.shape[l], img.shape[0]))
images dataset.append(resized)

The total number of data samples in the new augmented dataset was 4089. This can be
increased further with more augmentations, but due to time constrain this was selected as the
final dataset.
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3.3.2 Data Reshaping and Normalization

To be used in Keras, the dataset needs to be reshaped to a 4-dimensional NumPy array from a
3-dimensional array. After the reshaping the data needs to be normalized. Normalization is
changing the range of pixel intensity values (SelectStar 2020). It is required to normalize the
data for training in neural networks, this is done by dividing the images by the max RGB values=
255. The reshaping and the normalization are defined as a function and is shown in the code
snippet below. Adapted from (Dutta 2021):

def map image (image) :
'""preprocesses the images'''
image tf.cast (image, dtype=tf.float32)
image = tf.image.resize(image, (IMAGE SIZE, IMAGE SIZE))
image = image / 255.0
tf.reshape (image, shape— (IMAGE ST7F, IMAGE STZE, 1,))
return image

image

3.3.3 Splitting the Data

In training a VAE model, the dataset is split into training dataset and the validation dataset. The
ratio is 80:20 which is the most commonly used. Training datasets are essentially the data from
which the VAE model learns from. It used it to start seeing and learning the underlying patterns
of the data and use it to make predictions. The validation dataset is used to validate the
progress of the training and adjust and optimize. It also helps check if the model is overfitting.

Original Data Randomly Selected 80% Training Data
Rows 20% Validating Data

Figure 34 Training data vs validation data
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The code for splitting the dataset is shown below (Dutta 2021):

# split the paths list into to training (80%) and validation sets(20%).
paths len = images dataset.shape[0]
train pakhs len = int (paths len * 0.8)

train paths = images dataset[:train paths len]

val paths = images dataset[train paths len:]

# load the training image paths into tensors, create batches and shuffle

training dataset = tf.data.Dataset.from tensor slices((train paths))
training dataset = training dataset.map (map image)

training dataset = training dataset.shuffle(1000) .batch(BATCH SIZE)
#training dataset = training dataset.map (augment)

# load the validation image paths into tensors and create batches

validation dataset tf.data.Dataset.from tensor slices((val paths))

validation dataset validation dataset.map (map image)

validation dataset = validation dataset.batch (BATCH SIZE)
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IV TRAINING THE VAE ON THE DATASET

For Autoencoders, the decoder samples from the latent variables. In Variational autoencoders
(VAEs) the decoder takes the sampling from a gaussian distribution. The samples from the input
dataset are used as a mean and variance of the gaussian distribution with some added noise
which the decoder uses to sample from and that is the reason why new images can be
generated from this architecture. The architecture of the VAE model used in this thesis as well
as the steps involved in creating a VAE is explained in detail in the following section.



4.1 Latent Space Sampling

For VAEs there is an additional sampling step in the latent space between the encoder and the
decoder. This section is informed from the book by (Cheong 2020) where the gaussian
distribution is explained in detail. This section will provide concise relevant information from the
book that is important to get an overview of the VAE. The encoder provides the mean and the
standard deviation for the gaussian distribution. Neural networks are trained using back
propagation, but sampling is not back-propagatable and hence not trainable. To avoid this
problem, a reparameterization trick is used where a gaussian distribution is sampled and then
the standard deviation from the encoder is multiplied and the mean is added to it.

Encoder

Input

Decoder

Output

Latent Space L

Figure 35 Gaussian Sampling in a VAE

For the VAE the encoder now needs to output the mean and the standard deviation to be used in
the sampling layer, this creates a change in its architecture than an autoencoder’s encoding
layer. The encoder has two convolutional layers with batch normalization then the output is
flattened and mu and sigma values are calculated. The encoder layers are shown in Figure 36
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Figure 36 Encoder

After the encoder is defined, a custom sampling layer code is added to the VAE architecture that
uses mu and sigma as inputs, the epsilon is the random normal gaussian distribution that uses
the shape of mu and sigma to give us the output of the sampling layer. The snippet of the code is
shown below:

The encoder model now has the combination of the sampling layer and the encoder layers
which creates the first part of the architecture of the VAE. We get z as the output which is the
sampling layer along with the mu and sigma from the encoder. The code for the same is shown
below:
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The first half of the architecture is now complete. The next step is to define a loss function and
then the decoder.

4.2 Loss function

To ensure that the Gaussian distribution that has been sampled aren’t too far apart, a
regularization term is added which is the Kullback-Leiber Divergence (KLD).

“KLD is a measurement of how different one probability distribution is to another. For two
distributions P and Q, the KLD of P with respect to Q is the cross-entropy of P and Q minus the
entropy of P. In information theory, entropy is a measure of information or uncertainty of a
random variable:

D [P11Q) = H [P, Q) -H[P)” Cheong 2020)

The code for the KLD is shown below, it uses the mu and sigma from the encoder model output
as an input.
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Other loss functions that are used in the VAE are the reconstruction loss. This measures the
difference between the reconstructed images and the target images. For this thesis the binary
cross-entropy (BCE] loss has been used, but for that reason the activation of the last layer of the
decoder needs to be sigmoid. The calculation of the reconstruction loss is done with-in the
training loop of the model, the loss is multiplied by the resolution of the images which is 64x64 =
4096. The code for the same is shown below (Dutta 2021):

for step, x batch train in enumerate (training dataset) :
with tf.GradientTape() as tape:

# pass batch of training data

reconstructed = vae(x batch train)

#to measure loss

flattened inputs

tf.reshape (x batch train, shape=[-1])

flattened outputs = tf.reshape (reconstructed, shape=[-1])

loss reconsbruckion — bee loss|(flabtensd inpuls, flakttensd oubputs)
* 4096

The two losses are then added together within the training loop so that it tries to minimize both
the losses after each step and update the weights and biases. The KLD loss term was added to
the VAE model hence it can be called by vae.losses. The code for the same is shown below:

loss = loss reconstruction + sum(vae.losses)

4.3 Decoder

The decoder reconstructs data from the latent space and in the process generates new data in
the VAE. The conv_shape is what has been saved from the encoder, for this architecture its
which means that there are those many numbers of images output from that layer. The decoder
is loaded with a dense layer with the same number of neurons as conv_shape. The output is
then reshaped and passed through tf.keras.layers.Conv2DTranspose layers with the reverse
number of filters as the encoder layers to invert the convolutional filters.

The architecture of the decoder is shown in the picture, the final output is a single filter
conv2DTranspose layer which will give the same output as the input which is a 64x64x1 image.
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After the decoder layers, the decoder model is created as a function which takes the latent

Dense Layer [ nurons = 16x16x64 )

Batch Normalization

S N/

Reshape )

Conv2DTranspose filters : 64, activation: relu) )

Batch Normalization )

Conv2DTranspose (filters : 32, activation: relu) )

Batch Normalization )

N i N =N\ N\ A N =N, 7N

Conv2DTranspose (filters : 1, activation: sigmoid) )

Figure 37 Decoder

dimension and the conv_shape from the encoder as it's inputs. These inputs are used to create

an input layer inside the function and we use that to call the decoder layers created before as

outputs. These inputs and outputs are then used to create a tf.keras.model for the decoder. The

code for the same is shown below:

#Decoder model

def decoder model (latent dim, conv_shape):

inputs = tf.keras.layers.Input (shape=(latent dim))

outputs = decoder layers (inputs, conv shape)

model = tf.keras.Model (inputs, outputs)

return model
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4.4 Generation of New Patterns

After the Encoder, Sampling and the Decoder, the next step is to train the VAE model. The
hyperparameters such as epochs and learning rate of the model is controlled during this stage.
The number of epochs is the number of times the entire dataset will be passed through the VAE
model. The optimizer is also specified with the learning rate of the model. Learning rate is the
steps in which the model learns. A larger learning rate would overshoot the results and too
small will take forever to train. The standard learning rate for the Adam optimizer is 0.001.
During this stage iterations of the hyperparameters, batch size, latent dimensions are carried
out for the optimum result to reduce loss.

The first step is creating the VAE model from the encoder, decoder and sampling layers. The
inputs are from the encoder model (mu, sigma and z) and the output is the decoder model
which decodes z. The kI_divergence_loss is added to the model in this stage so that it recognizes
it as a loss later on during training. The code for the VAE model is shown below (Dutta 2021):

# Final VAE Model
def vae model (encoder,decoder, input shape):
inputs = tf.keras.layers.Input (shape=input shape)
mu, sigma,z = encoder (inputs)
reconstructed = decoder (z)
model = tf_keras.Model (inputs=inputs, outputs=reconstructed)

loss = kl divergence loss(inputs, z, mu, sigma)
model .add loss(loss)

return model

For this step a custom training model is created. In Keras, it is difficult to customize the training
process with pre-existing training functions like fit() and evalulate(). With tf.Gradient.tape() we can
compute the loss for each batch during a training and can add an optimizer to update the
weights and biases during the training itself based on the gradients. This allows for more
control over the training process. The loop measures the total loss every epoch and then

updated the weights and biases after every epoch. The code for the training loop is given below
(Dutta 2021):
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4.4.1 Training Results

After building the VAE model, it was trained on the dataset of lattice patterns. The dataset
contained 4089 samples after data augmentation. During the training process the weights and
biases are updated in the model after each epoch to reduce the loss. To increase the efficiency
of the model and hyperparameters such as, epoch, batch size, learning rate can be modified
and checked for better loss. However, the architecture of the VAE can also be adjected to check
if there are better configurations of it to reduce the loss. For example, the number of
convolutional layers, latent dimensions, filters of the convolutional layers and dense layer etc.
Different configurations of latent dimensions were tested as they produced different results.

The total loss was recorded and compared with the validation loss to check if the model was a
good fit or if it was overfitting. The model for most cases, except for the one mentioned below
was a good fit and the validation loss and the total loss converged after a certain point. After
setting up the model the first iteration was the latent dimension. In different studies, depending
on the complexity of the dataset, the latent dimension is adjusted. From precedents of VAEs
trained with MNIST greyscale images the latent dimension usually selected was 2, however in
other cases with more custom datasets, higher latent dimensions are also selected
(Vogelsanger and Federau 2021). Values ranging from 2,3,8, 32,64 and 128 were selected for
the latent dimension for epochs of 1000. The results showed that even though the loss was less
for higher dimensions, the generated images were blurrier. Through visual comparison, it was
observed that, the generated images with higher latent dimensions, even though had reduced
total loss, were high in contrast but more organic and less similar to the images from the
original dataset. This can be observed in the figure below where latent dimensions of 2, 3 and 8
are shown. The second observation was that reducing the learning rate to 0.0005 (No.2) in the
figure caused overfitting of the model, the loss was significantly less than iteration No.1 in the
figure during the initial epochs but then started increasing over time. Through these
observations, since the thesis aims to generate images that can be used in design, latent
dimension of 2 and learning rate of 0.001 was selected for further training of the model.
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Latent Dimension (l_d) :2
Epochs (e) : 1000
Learning Rate (L_r] : 0.001
Total Loss : 1299

Latent Dimension (L_d) : 3
Epochs (e) : 1000
Learning Rate (L_r) : 0.001
Total Loss : 1232

Latent Dimension (L_d) :2
Epochs [e) : 1000

Learning Rate (L_r) : 0.0005
Total Loss : 1271
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Latent Dimension (L_d) : 8
Epochs (e) : 1000

Learning Rate (L_r) : 0.0005
Total Loss : 1111

Figure 38 generated images for different iterations of Latent Dimensions. Since Latent Dimensions of higher than 8
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The model was further trained for different hyperparameter iterations of latent dimension 2.
The hyperparameters that were adjusted were the epoch, batch size and the learning rate was
kept at 0.001 which worked best for the model. The model architecture was not adjusted during
the training, except for adjusting the dense layer filters in the encoder layer, to check if there
were any changes in the loss. A few of the results of the hyperparameter tuning are shown
below in the figure. Option 1 had the least loss among the many iterations and hence, due to the
time constraint and for the scope of this thesis it was selected as the final output of the VAE
model. However, more iterations and hyperparameter tuning can be carried out to get better
results. The generated images are still relatively blurry but the outline of the patterns could be
identified from some of them.

i N

1
Latent Dimension (L_d) :2 Latent Dimension (L_d) :2
Epochs (e] : 6000 Epochs (e) : 4000
Dense layer Filters (dl) : 60 Dense layer Filters (dl) : 20
Batch Size (b) : 64 Batch Size (b) : 64
Total Loss : 1249 Total Loss : 1324

3
Latent Dimension (L_d) : 2 Latent Dimension (L_d) : 2
Epochs (e) : 4000 Epochs (e] : 4000
Dense layer Filters (dl) : 20 Dense layer Filters (dl) : 100
Batch Size (b) : 32 Batch Size (b) : 64
Total Loss : 1343 Total Loss : 1272

B
Latent Dimension (L_d) : 2
Epochs (e] : 4000
Dense layer Filters (dl) : 60
Batch Size (b) : 64
Total Loss : 1255

3 7
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After the selection of the result from the training, a collage of the generated images sampled
from the decoder was made. The images that were more defined than the rest were visually
compared with the images from the existing dataset and the ones that appeared new were
selected. In the figure below the new generated patterns are identified.
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Figure 42 Sampling of Generated patterns
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V USING THE VAE AS A DESIGN TOOL

The design process consists of various stages. Major decisions regarding the building geometry,
structure, massing is made during the conceptual design phase which account for 75% of the
total product costs (Hsu 2000). Generative Al models can provide an opportunity of exploring
larger variety of designs during the conceptual design phase, which can be structurally
informed to create a better design - build workflow for the future.
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Figure 43 Design Workflow with Al

The exercise of this thesis was to explore a way of generating new patterns through Al and
incorporating that into the conceptual design phase as a tool for exploration of topological
design ideas. For the application of the patterns, topological exploration of shell structures was
used.

From the previous section, the most distinct patterns from the new generated patterns were
identified. Out of the selected patterns, only few could be extracted for use as the rest were too
blurry. The patterns are then edited to make them sharper by increasing the contrast and the
brightness.

Figure 44 Generated Images selected for application in the Shell structure

5.1 Application in Topology Exploration

After training of the VAE, its output is 2D images in the same format of 64xé4 pixel resolution as
the dataset. These images are of patterns that did not exist before but are generated by the Al.
Since previously explained, the 2D lattice patterns are widely studied for their stiffness and skin
morphing properties (Arredondo-Soto M 2021), the new generated patterns could also have
some of the underlying properties of the original data translated. For use of these patternsin
the conceptual design phases on shell structures a basic workflow of the same has been
developed. This workflow has 4 stages.
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The first stage is the extraction of the geometry from the 2D image pattern into a data structure
which can be controlled in the parametric model. This is done by removing the darker points
from the surface and only keeping the high contrast points of the pattern. The drawback of this
process is that if there are low contrast areas, it removes those parts of the pattern too, so if the
generated image has a high variance in its brightness levels, it would be efficient to edit the
contrast and then import into the parametric model.

The second step is to create the form of the shell on which the pattern will be morphed. The
plane of the pattern and the footprint of the shell are the same size and geometry. The form of
the shell is generated through mesh relaxation for this application example, but other
approaches can be taken too.

The pattern is morphed on the shell form rather than the pattern themselves being relaxed to
create the shell is because, having the form as a separate part of the process allows for greater
diversity in the design. And the process is simpler to morph the pattern on a form, and it does
not affect the structural analysis as the FEM analysis in grasshopper takes the morphed pattern
as the final form of the shell for its calculation. Workflow for Stages 1 and 2 are shown in Figure
46.
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Figure 45 Stage 1 and Stage 2 of the application process
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Figure 46 Stage 1 and 2 of the application

The third stage is morphing the pattern mesh from stage 1 on the form created in stage 2 and
the fourth stage is the FEM analysis. In the parametric model in Grasshopper, this is done with
Karamba. The morphed surface with the pattern is considered a shell in the input for the
analysis, and loads conditions and support conditions can be defined. The material of the shell
as well as the cross-section of the elements can also be defined which makes it customizable to
go through different design iterations. Since this application is for conceptual design phase, the
focus was more on creating a workflow that helps in exploring and analyzing different options
rather than optimizing a single solution. Figure 47 shows the detailed workflow for stages 3 and

4 in the application process.
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3. Morphing the Pattern onto the shell form
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Figure 47 Stage 3 and 4 of the application

Figure 48 Stage 3 and Stage 4 of the application process




The next step is integrating the generated patterns into the process. In that process it was
observed that some of the details of the patterns do not get translated into the parametric
model (observed in option d]. This might be because of the lower resolution of the generated
images which the inverted luminance component fails to identify points in different luminance
with higher precision. The following figure shows the final shell structure with the topology of

the new generated patterns.

Figure 49 New topology design ideas from generated patterns.
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Future Development of Application:

We can observe that, integrating the VAE into the design process can yield more variety of
options which are informed by the design options that were used during the training. Though
this process can be used to explore more design options, this is not the ideal realization of the
workflow, there are a few steps that were missing and are important for future applications.
The importance of VAE exists in its capability to compress information into a lower dimension.
Though it is not within the scope of this thesis, but in terms of future application and integration,
the most powerful way a VAE can be utilized is through the exploration of the latent space. The
latent space contains all the learned features of the input data that is stored by the VAE in a
reduced dimension. For example, in this thesis, the original dataset of images is with
dimensions 64x64x1, and the latent space is 2x1, the compressed datapoint of each data sample
is a vector with 2 dimensions. New data can be generated through the linear interpolation of the
latent space, using the model decoder to reconstruct the latent space representation into a 2D
image of the same dimensions as the original images. An example of using the latent space for
design exploration are in the papers: (Renaud and Caitlin T. 2021}, (Mirra and Pugnale 2021).
Exploring the latent space can provide insight into understanding the patterns of the data and
similarities within the data which can be extremely useful in the design process, as design data
samples that have similar features (for example: performance) would be closer together along
with new generated options with similar features, this can then aid the designer in exploring the
latent space in the direction of the desired results.

70



VI DISCUSSION AND CONCLUSION



6.1 Discussion

This section presents the discussion for the dataset creation, VAE architecture and training,

and the application process carried out in this thesis. There are four sections discussed which

are defined as: Dataset creation, the VAE architecture and training, Generation of new data, and

Application of Al in design.

1.

Dataset creation: The dataset for training the VAE model was artificially created using 6
different typologies of 2D lattice patterns. The patterns were modelled in grasshopper
and then the iterations were exported as 2D images in greyscale. The resolution of the
data samples was set to be 64x64 as the information in the data samples (patterns) were
not extremely complex and increasing the resolution would make the feature extraction
more complex and would result in a more complex VAE architecture. The size of the
dataset was relatively small in comparison to other open-source datasets which have
larger quantities of data samples which might have led to the model not performing that
well during training. Also, the scale of some of the patterns were too small, even though
they well scaled during data augmentation, because of which during training there were
generated images with a lot of noise as it couldn’t differentiate appropriately the
features of the data samples. The format of the data samples used to create the dataset
could also be changed to a format other than 2D images, for example depth maps or
points but since the images could translate the topology of the patterns, they were
selected. There was no error reported during import of the dataset into the VAE model,
so the methodology used in this thesis worked. However, there can be improvements in
the artificial generation of the data and also increasing the size of the dataset.

VAE Architecture and training: The VAE has two convolutional layers, one with 32 filters
and the second one with 64 filters in the encoder. This was observed to be the most
efficient in terms of utilizing the computational power and also the most used in other
examples of datasets with the same format. However, the number and the filters of the
convolutional layers could be increased or adjusted depending on the complexity of the
data samples. Due to the time limitation, only a few hyperparameter iterations were
tested, but there can be further iterations tested, which might lead to a better loss.

72



The platform used to write the code was google collab notebooks, which is an online
coding platform. It was convenient to use it as it did not require any installations and all
the libraries and their most recent versions could be imported into the notebook.
However, the drawbacks were that the dataset needed to be located in the google drive
for it to be accessible through google collab and the maximum duration of a runis 12
hours. Because of which, for longer epochs and complex architecture it might not be
convenient, and for this thesis, the architecture of the VAE had to be made as simple as
possible to be computed without hindering the actual training of the model. The loss
function used was binary cross entropy because of which the last activation of the
decoder layer had to be sigmoid, but other loss functions for example mse, could be
explored. Another observation during training was that, the reconstructed images
sampled for the exact input coordinates were very noisy, but when random points were
sampled from the decoder, there were still some clearer patterns. This needed to be
further researched, as to why that was occurring. Since, the model did run without
errors and there was convergence of the total loss and the validation loss, it can still be
concluded that the model was a good fit. However, it can of course be made more
efficient and the training results can be improved.

Generation of new data: Simple VAE (model used in this thesis) among the generative
models of Al produces blurrier images than other hybrid models of VAE or GAN
(Vogelsanger and Federau 2021). This can be observed in the results of the training, but
in context to this thesis, the hyperparameters could also be explored further. The VAE
did produce some distinct patterns that were new and didn't exist before, but to be able
to discover the full potential of generative models in Al, it might be interesting to test out
this dataset in other hybrid models of VAE or GANs. In this thesis, since the generated
data was blurry, the selected patterns were postprocessed to be made sharper, but
ideally that would not be necessary with better models or clearer results.

Application of Al in design: The application process explained in this thesis involved a
workflow with the parametric modelling software - grasshopper in rhinoceros, since it is
a commonly used platform. The algorithm in grasshopper culls the pattern based on
contrast and pixels. In this thesis, the resolution of the data samples was relatively
small (64x64) which led to the geometry in the parametric platform to have rough edges
and not a smooth geometry. This can be improved if the resolution is increased. The
results of the application are more for comparison and presenting what is practically
possible. But this is just a preliminary exploration of the possibilities of generative Al
models in design, and other applications are also possible and should be explored. The
latent space interpolation and data generation can become a powerful tool in the design
process.
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6.2 Conclusion

The use of Al in design is still in its early stages and this thesis explored a workflow of possible
integration of a generative Al model (VAE] into the design process. To explore the possibilities a
series of questions were formulated that guided the research process. They can be answered as
follows:

Main Question: How can Al extract useful information from a dataset of cellular solid structure
patterns and reuse it to generate new patterns for structural design?

The Al model used in this thesis that can generate new patterns is the Variational Autoencoder
(VAE). The VAE learns by training on a dataset made up of a collection of data samples. These
data samples are either artificially generated or sourced. For the VAE model to train on cellular
solid patterns, the dataset had to be generated as images of cellular solids that fit the format to
train a VAE model in sufficient quantity and quality is not available. 2D lattice patterns were
chosen to create the data samples for the dataset. The data is then augmented to increase the
population of the dataset. After the dataset is formatted, normalized and reshaped, it is fed into
the VAE model. Inside the model the data is first compressed by the encoder and then it is sent
to the latent space where noise is added (gaussian distribution) to the original data, so that
when the decoder decodes the latent space it can sample data that didn’t exist before, hence
generating new data. This process gets more efficient with the training of the VAE which
minimizes the loss. And at the end of the process the VAE can generate new data. The steps are
described in further detail in the sub questions

Sub Question 1: What are the selection criteria of the cellular solid patterns for creating the
dataset?

The selection criteria were the diversity of the patterns and if their mechanical properties were
dependent on their topology. The patterns needed to be in 2D as the dataset was made of
images. The 2D cellular solid patterns that had distinct mechanical properties, were diverse
enough and also which were researched enough to be able to get the required information to
artificially make the dataset were 2D lattice patterns. Out of the existing 2D lattice patterns, the
most popularly researched patterns in terms of their stiffness or flexibility were chosen.
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Sub Question 2: How to artificially create a dataset?

The format of the data selected to be used in training the VAE model was greyscale images;
similar to the MNIST handwritten number dataset, because the benchmark testing of the VAE
was done on that dataset and using the same format meant least changes to the architecture of
the VAE model. The next step was translating the lattice patterns to images. This was done by
creating a model of the lattice patterns in a parametric design space (grasshopper, rhinoceros).
The model was then used to generate iterations of the lattice patterns over selected design
variables and export those iterations as images of a fixed resolution. This resolution was 64x64
pixels. After generating the data, to ensure that the Al has enough data to train on, data
augmentation of the geometric features of the images are carried out. After data augmentation,
the dataset is reshaped and normalized to be used within the model and then finally split into
test and validation datasets.

Sub Question 3: How can the Al-generated patterns be used to explore topology optimization
design ideas? [Application)

The generated patterns are just images in the same resolution as the input data. To explore
topological design ideas, these patterns need to be translated into a geometry, which can be
analyzed. One such method that was suggested in this thesis was to morph the pattern onto a
form which can be a generated shell form from parametric modelling. Morphing of the pattern
onto an existing form makes it easier to alternate between different patterns and explore a
wider variety of options. Since this is done during the initial design phase having better control
over customization would be helpful. The morphed patterns are then analyzed by a FEM to get
the overall comparison of the results of the different patterns and how they perform.

6.3 Limitations

1) The dataset was limited to only é lattice patterns. For the scope of this thesis, these
patterns were easier to produce in the time frame. But more organic patterns and more
complex patterns can also be used to train and Al model

2) The data augmentation is only done to crop and flip the images, but other geometric
transformations are also possible.

3) Google collab was used to implement the code. It is online, so the dataset needed to be
uploaded in the google drive. But any other platform can be used to run the code, after
checking the compatibility of the libraries used.

4) This workflow for creating the Al model is just one way of doing it. There are a lot of
different approaches available. This approach was chosen is in no way tested to be superior
to a different VAE architecture. Customization according to goal of the model is necessary.
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5) The output of the VAE training can be improved further, but within the time and scope of
this thesis, the best result out of the iterations of hyperparameters is chosen.

6) The application process is only to show an example of how a VAE can fit into the design
process. It can be explored further.

7) The detailed mechanical properties of the lattice structures are not studied for this paper.
The geometry is developed based on available data or through studying the pattern.

6.4 Future Development

There are a lot of opportunities for future development from this thesis. Al is still a novel field
of research in design and there were a lot of aspects that due to time constraint were not
explored.

1. The interpolation of the latent space to navigate through the data samples (original and
generated) better, which could be interesting to explore traversing design options.

2. Exploring the use of 3D shapes to create the dataset. How would the data be fed into the
Al model and which information would be extracted from it?

3. Develop the Al model from this thesis further. It needs further training and the code can
be made more efficient.

4. Explore other possibilities of application of the generated patterns and analyze their
mechanical properties and check if they can be compared to the original lattice patterns,
if at all.

5. The optimization of the generated pattern and their corresponding shell structures
could be explored.
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~ SET UP

import tensorflow as tf

import tensorflow_datasets as tfds
from tensorflow import keras
import datetime

from packaging import version

from keras import layers

import tensorboard

import cv2

import glob

import numpy as np
import os

import zipfile

import urllib.request
import random

import matplotlib.pyplot as plt
from IPython import display

Ipip install wandb -qqq
import wandb

# Log in to your W&B account
wandb.login()

print(tf.__version_ )

IMPORT DATASET FROM GOOGLE DRIVE

from google.colab import drive
drive.mount('/content/gdrive', force_remount=True)

dataset_path = '/content/gdrive/MyDrive/Thesis/Dataset2’

np.random.seed(51)

BATCH_SIZE = 64
LATENT_DIM = 2
IMAGE_SIZE = 64

DATA PREPROCESSING

# open cv image augmentation

#load data

from google.colab.patches import cv2_imshow
images_dataset = []

images_path = glob.glob("/content/gdrive/MyDrive/Thesis/Dataset2/*.png")

for img_path in images_path:
img = cv2.imread(img_path, cv2.IMREAD_GRAYSCALE)
#Check import

# random crop open cv

scale = 9.65

height, width = int(img.shape[@]*scale), int(img.shape[1]*scale)
x = random.randint (@, img.shape[1l] - int(width))

y = random.randint(@, img.shape[@] - int(height))

cropped = img[y:y+height, x:x+width]

resized = cv2.resize(cropped, (img.shape[1], img.shape[0]))
images_dataset.append(resized)

scale = 0.75

height, width = int(img.shape[@]*scale), int(img.shape[1l]*scale)
x = random.randint (@, img.shape[1l] - int(width))

y = random.randint(@, img.shape[@] - int(height))

cropped = img[y:y+height, x:x+width]

resized = cv2.resize(cropped, (img.shape[1], img.shape[0]))
images_dataset.append(resized)

#H

Horizontal Flip
def horizontal_flip(img, flag):
if flag:
return cv2.flip(img, 1)

VAE Code : adapted from Generative Deep Learning with
TensorFlow

by DeepLearning.Al [ Authour : Laurence Moroney)

Link : https://www.coursera.org/learn/generative-deep-
learning-with-tensorflow/home/info

and

(Dutta 2021)

Dutta, Balaram. 2021. Variational Autoencoders on
Anime Faces. March 1. Accessed March 20, 2022.
https://github.com/duttab49/tfwork/blob/main/
variationalAutoencodersOnAnimeFace.py



else:
return img
img = horizontal_flip(img, True)
images_dataset.append(img)

#Vertical flip
def vertical_flip(img, flag):
if flag:
return cv2.flip(img, @)
else:
return img
img = vertical_flip(img, True)
images_dataset.append(img)

images_dataset.append(img)
print("Number of items in the list = "
cv2_imshow(images_dataset[2])
cv2.waitKey(0)

cv2.destroyAllWindows ()
print('Dimensions : ',img.shape)

, len(images_dataset))

images_dataset = np.expand_dims(np.array(images_dataset),-1)
print('Dimensions New : ',images_dataset.shape)

def get_dataset_slice_paths(image_dir):
'"'returns a list of paths to the image files'''
image_file_list = os.listdir(image_dir)
image_paths = [os.path.join(image_dir, fname) for fname in image_file_list]

return image_paths

def map_image(image):
'"'preprocesses the images'''

image = tf.cast(image, dtype=tf.float32)

image = tf.image.resize(image, (IMAGE_SIZE, IMAGE_SIZE))
image = image / 255.0

image = tf.reshape(image, shape=(IMAGE_SIZE, IMAGE_SIZE, 1,))

return image

SPLIT THE DATASET

# split the paths list into to training (80%) and validation sets(20%).
paths_len = images_dataset.shape[0]
train_paths_len = int(paths_len * 0.8)

train_paths = images_dataset[:train_paths_len]
val_paths = images_dataset[train_paths_len:]

# load the training image paths into tensors, create batches and shuffle
training_dataset = tf.data.Dataset.from_tensor_slices((train_paths))
training_dataset = training_dataset.map(map_image)

training_dataset = training_dataset.shuffle(1000).batch(BATCH_SIZE)
#training_dataset = training_dataset.map(augment)

# load the validation image paths into tensors and create batches
validation_dataset = tf.data.Dataset.from_tensor_slices((val_paths))
validation_dataset = validation_dataset.map(map_image)
validation_dataset = validation_dataset.batch(BATCH_SIZE)

print(f'number of batches in the training set: {len(training_dataset)}')
print(f'number of batches in the validation set: {len(validation_dataset)}"')

i=0
for image in validation_dataset:
i+=1

print("Shape",image.shape)

VAE ARCHITECTURE

# Encoder_layers

def encoder_layers(inputs, latent_dim):
#1
x = tf.keras.layers.Conv2D(filters=32, kernel_size= 3, strides = 2, padding = ‘same’,



activation = 'relu’, name = "encode_convl") (inputs)
x = tf.keras.layers.BatchNormalization()(x)

#2

x = tf.keras.layers.Conv2D(filters=64, kernel_size= 3, strides = 2, padding = 'same’,
activation = ‘relu', name = "encode_conv2")(x)

batch_2 = tf.keras.layers.BatchNormalization()(x)

#3

x = tf.keras.layers.Flatten(name="encode_Flatten")(batch_2)

#4

x = tf.keras.layers.Dense(60, activation='relu', name="encode_dense")(x)

x = tf.keras.layers.BatchNormalization()(x)

#5

mu = tf.keras.layers.Dense(latent_dim, name='latent_mu')(x)
sigma = tf.keras.layers.Dense(latent_dim, name="latent_sigma")(x)

return mu, sigma, batch_2.shape

#Sampling
class Sampling(tf.keras.layers.Layer):
def call(self,inputs):
mu, sigma = inputs

batch = tf.shape(mu)[0]
dim = tf.shape(mu)[1]

epsilon = tf.keras.backend.random_normal(shape=(batch,dim))

return mu + tf.exp(@.5*sigma) * epsilon

#Encoder_model
def encoder_model(latent_dim, input_shape):
inputs = tf.keras.layers.Input(shape=input_shape)
mu, sigma, conv_shape = encoder_layers(inputs, latent_dim=LATENT_DIM)
z = Sampling()((mu,sigma))
model = tf.keras.Model(inputs, outputs=[mu,sigma,z])

return model, conv_shape

#Decoder_layers
def decoder_layers(inputs, conv_shape):
units = conv_shape[1]*conv_shape[2]*conv_shape[3]
#1
x = tf.keras.layers.Dense(units, activation='relu', name="decode_densel")(inputs)
x = tf.keras.layers.BatchNormalization()(x)
#2

x = tf.keras.layers.Reshape((conv_shape[1],conv_shape[2],conv_shape[3]), name="decode_reshape")(x)

x = tf.keras.layers.Conv2DTranspose(filters=64, kernel_size=3, strides=2, padding='same', activation='relu', name="decode_conv2d_2")(x)
x = tf.keras.layers.BatchNormalization()(x)

x = tf.keras.layers.Conv2DTranspose(filters=32, kernel_size=3, strides=2, padding='same', activation='relu', name="decode_conv2d_3")(x)
x = tf.keras.layers.BatchNormalization()(x)

x = tf.keras.layers.Conv2DTranspose(filters=1, kernel_size=3, strides=1, padding='same', activation='sigmoid', name="decode_final")(x)

return x

#Decoder_model

def decoder_model(latent_dim, conv_shape):
inputs = tf.keras.layers.Input(shape=(latent_dim))
outputs = decoder_layers(inputs, conv_shape)
model = tf.keras.Model(inputs, outputs)

return model

DEFINE THE LOSS FUNCTION



#KL reconstruction loss
def kl_reconstruction_loss(inputs,outputs,mu,sigma):

kl_loss = 1 + sigma - tf.square(mu) - tf.math.exp(sigma)
kl_loss = tf.reduce_mean(kl_loss) * -0.5

return kl_loss

# Final VAE Model
def vae_model(encoder,decoder, input_shape):
inputs = tf.keras.layers.Input(shape=input_shape)
mu,sigma,z = encoder(inputs)
reconstructed = decoder(z)
model = tf.keras.Model(inputs=inputs, outputs=reconstructed)

loss = kl_reconstruction_loss(inputs, z, mu, sigma)
model.add_loss(loss)

return model

# getting the different models
def get_models(input_shape, latent_dim):
encoder, conv_shape = encoder_model(latent_dim=latent_dim, input_shape=input_shape)
decoder = decoder_model(latent_dim=1latent_dim, conv_shape=conv_shape)
vae = vae_model(encoder, decoder, input_shape=input_shape)
return encoder, decoder, vae
encoder, decoder, vae = get_models(input_shape = (64,64,1,), latent_dim=LATENT_DIM)
encoder. summary ()

decoder. summary ()
vae.summary ()

DEFINE LOSS AND OPTIMIZERS

# Defining loss and optimizers

optimizer = tf.keras.optimizers.Adam(learning rate = ©.001)
loss_metric = tf.keras.metrics.Mean()

bce_loss = tf.keras.losses.BinaryCrossentropy()

val_acc_metric = keras.metrics.SparseCategoricalAccuracy()

#display images while training
def generate_and_save_images(model, epoch, step, test_input):

# generate images from the test input
predictions = model.predict(test_input)

# plot the results
fig = plt.figure(figsize=(8,8))

for i in range(predictions.shape[@]):
plt.subplot(4, 4, i+1)
plt.imshow(predictions[i, :, :, @], cmap='gray')
plt.axis('off")

# tight_layout minimizes the overlap between 2 sub-plots
fig.suptitle("epoch: {}, step: {}".format(epoch, step))
plt.savefig('image_at_epoch_{:04d}_step{:04d}.png'.format(epoch, step))
plt.show()

# Display the Latent Space
x_test = train_paths
# display a 2D plot of the digit classes in the latent space

z_test = encoder.predict(x_test, batch_size=BATCH_SIZE)
plt.figure(figsize=(6, 6))



plt.scatter(z_test[@], z_test[1], c= '#6667ab’,
alpha=.4, s=3*%*2)
plt.title("Projection of 2D Latent-Space

, size=20)

plt.show()

# Use TSNE only when AlLtent_dim > 2
X = train_paths

X_encoded = encoder.predict(X)

X_encoded = np.array(X_encoded)
print(X_encoded.shape)

X_encoded = np.reshape(X_encoded, (-1,LATENT_DIM))
print(X_encoded.shape)

from sklearn.manifold import TSNE
m = TSNE(learning_rate=50)

tsne_features = m.fit_transform(X_encoded)
tsne_features[1:4,:]

import seaborn as sns
sns.scatterplot(x= tsne_features[:,0], y= tsne_features[:,1], data=X_encoded, legend= "auto")

plt.show()

TRAINING

random_vector_for_generation = tf.random.normal(shape=[16, LATENT_DIM])

epochs = 6000
generate_and_save_images(decoder,0,0, random_vector_for_generation)

run = wandb.init(project="Loss2", entity="nb42" )
wandb.config ={
"epochs": epochs,
"batch_size": BATCH_SIZE,
"lr": 0.001,
"dropout": random.uniform(©.01, ©.80),
}

#loop

for epoch in range(epochs):
print('start of epoch %d'%(epoch,))

for step, x_batch_train in enumerate(training_dataset):
with tf.GradientTape() as tape:

# pass batch of training data
reconstructed = vae(x_batch_train)

#to measure loss
flattened_inputs = tf.reshape(x_batch_train, shape=[-1])
flattened_outputs = tf.reshape(reconstructed, shape=[-1])
loss_reconstruction = bce_loss(flattened_inputs, flattened_outputs) * 4096

# adding KLD regularization loss
loss = loss_reconstruction + sum(vae.losses)

# get the gradients and update the weights
grads = tape.gradient(loss, vae.trainable_weights)
optimizer.apply_gradients(zip(grads, vae.trainable_weights))

# compute the loss metric
total_loss = loss_metric(loss)
reconstruction_loss = loss_metric(loss_reconstruction)
regularisation_loss = loss_metric(sum(vae.losses))

#wandb

wandb.log({"total_loss": loss_metric.result().numpy(),
"reconstruction_loss": reconstruction_loss,
"regularisation_loss":regularisation_loss})



# display outputs every 100 steps and Latent space
if step % 100 == 0:
display.clear_output(wait=False)
generate_and_save_images(decoder, epoch, step, random_vector_for_generation)
print('Epoch: %s step: %s mean loss = %s reconstruction loss = %s ' % (epoch, step, loss_metric.result().numpy(), reconstruction_loss))

# display a 2D plot of the digit classes in the latent space

for step, x_batch_val in enumerate(validation_dataset):
validation = vae(x_batch_val)
flattened_inputs = tf.reshape(x_batch_val, shape=[-1])
flattened_outputs = tf.reshape(validation, shape=[-1])
val_loss = bce_loss(flattened_inputs, flattened_outputs) * 4096

validation_loss = loss_metric(val_loss)
print('validation loss = %s ' % (validation_loss))

wandb.log({"Vval_loss": validation_loss})

wandb.finish()

PLOTTING RECONSTRUCTED IMAGES

def display_one_row(disp_images, offset, shape=(28,28)):
'"'Displays a row of images.
for idx, image in enumerate(disp_images):
plt.subplot(3, 10, offset + idx + 1)
plt.xticks([])
plt.yticks([])
image = np.reshape(image, shape)
image = np.squeeze(image, axis =2)
plt.imshow(image, cmap = 'gray')

def display_results(disp_input_images, disp_predicted):
'''Displays input and predicted images.'''
plt.figure(figsize=(15, 5))
display_one_row(disp_input_images, @, shape=(IMAGE_SIZE,IMAGE_SIZE,1))
display_one_row(disp_predicted, 20, shape=(IMAGE_SIZE,IMAGE_SIZE,1))

test_dataset = validation_dataset.take(1)
output_samples = []

for input_image in tfds.as_numpy(test_dataset):
output_samples = input_image

idxs = np.random.choice(64, size=10)

vae_predicted = vae.predict(test_dataset)
display_results(output_samples[idxs], vae_predicted[idxs])

def plot_images(rows, cols, images, title):
'''Displays images in a grid.'''
grid = np.zeros(shape=(rows*64, cols*64, 1))
for row in range(rows):
for col in range(cols):
grid[row*64: (row+l)*64, col*64:(col+l)*64, : ] = images[row*cols + col]
grid = np.squeeze(grid, axis=2)
plt.figure(figsize=(12,12), dpi= 300)
plt.imshow(grid, cmap = ‘gray')
plt.title(title)
plt.show()

# initialize random inputs
test_vector_for_generation = tf.random.normal(shape=[64, LATENT_DIM])

# get predictions from the decoder model
predictions= decoder.predict(test_vector_for_generation)

# plot the predictions
plot_images(8,8,predictions, 'Generated Images')

SAVE THE MODEL

vae.save("thesisl2.h5")

WARNING:tensorflow:Compiled the loaded model, but the compiled metrics have yet to be built. “model.compile_metrics® will be empty until you train or
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Explore the Al generated patterns

Explore solutions for topology
optimisation using the generated patterns

Analyse results

Conclusion

Write report

P4 presentation

P5 :Results

Improve Final Results

Reflection on Research

Recommendations

P5 presentation




3.2.1 Lattice Patterns (a)
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3.2.1 Lattice Patterns (b)
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3.2.2 Square - Chiral Lattice patterns:

Chiral




3.2.3 Kagome Lattice patterns

Kagome




Pattern 5.1 Application in topology Exploration
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