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Abstract

In this thesis, we explore the structure of consistent bootstrap statistics in hypothesis testing. Boot-
strap, as a very useful technique when theoretical distributions are not available or when the sample
size is small, enjoys a lot of interest from applied statisticians. Historically, guidelines for performing
Bootstrap have been proposed. One of the guidelines proposed is to center the bootstrap statistic
around the true statistic, calculated from the original sample. The second, is to perform resampling in
a way such that the new sample reflects the hypothesis tested. However, both of the guidelines are
proposed based mostly on an empirical point of view. In this project, we show that the calculation of
the bootstrap statistic is directly related to the way the new sample is generated. We describe the spe-
cific conditions under which the Bootstrap statistic should or should not be centered around the true.
As mentioned the resampling scheme that is picked directly influences this choice. The motivation is
derived from the independence test and the same arguments apply to the regression slope test. Fi-
nally, we provide a generalized setting where a consistent bootstrap statistic is provided, based on the
resampling scheme that is picked.
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List of Notations

• Probability Theory

𝑖.𝑖.𝑑.∼ Independent and Identically Distributed
𝑑−→ Convergence in distribution
ℙ−→ Convergence in probability w.r.t. probability measure ℙ

𝔹(𝔻) Borel sets of a separable metric space 𝔻
𝔹(ℝ𝑑) Borel sets of ℝ𝑑

𝑑= Equality in Distribution
𝑑𝐵𝐿(𝑃, 𝑄) Bounded Lipschitz Distance between measures 𝑃, 𝑄
𝑑𝐾(𝑃, 𝑄) Kolmogorov Distance between measures 𝑃, 𝑄

𝛿 Dirac Measure
𝑃𝑓 ∫𝑓𝑑𝑃 for a probability measure 𝑃
ℙ𝑛 Empirical measure of a given sample from ℙ
ℙ̂𝑛 Empirical distribution of a bootstrap sample
𝔾ℙ ℙ-Brownian Bridge

𝑃𝑟(⋅|𝒞) Regular Conditional Probability
𝜇𝑋|𝒞(⋅|𝒞) Regular Conditional Distribution

• Hypothesis Testing

X𝑛 A finite sample 𝑋1, … , 𝑋𝑛
𝐻0 Null Hypothesis
𝐻1 Alternative Hypothesis
𝐵 Number of bootstrap replications
�̂�𝑛 Empirical distribution of multivariate random sample
�̂�∗𝑛 Empirical distribution of a Bootstrap random sample
𝑇𝑛 The true statistic
𝑇∗𝑒𝑞𝑛 Bootstrap Equivalent statistic
𝑇∗𝑐𝑛 Bootstrap Centered statistic

pvalue𝑛 Bootstrap p-value
pvalue𝑛, 𝐵 Approximated bootstrap p-value
𝜋(ℙ; 𝑇𝑛 , 𝑇∗𝑛) Power of the Bootstrap test (for any Type of Bootstrap statistic 𝑇∗𝑛)

GR General Resampling Bootstrap Scheme
NHR Null Hypothesis Resampling Bootstrap Scheme
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1
Introduction

1.1. Motivation
Testing is crucial in various areas of life, including scientific research, industry, and everyday scenarios.
Experiments or studies provide answers to questions such as whether a certain diet is effective for
weight loss or if one brand of laptop is more reliable than another. However, the results of experiments
can be ambiguous, and many conflicting hypotheses may appear viable. The theory of testing aims to
formalize the decision-making process between these hypotheses.

Bootstrap hypothesis testing is a powerful and versatile non-parametric technique for assessing
the validity of hypotheses based on observed data. The method relies on resampling techniques to
estimate the sampling distribution of a test statistic and provides a robust alternative to classical hy-
pothesis testing, particularly when no parametric assumptions are made for the observations or when
the limiting variance of a test statistic is intractable.

Bootstrap testing can be summarized in two steps. One collects a random sample from a distribu-
tion and calculates a test statistic, referred to as the “true test statistic”, based on this sample. Then
the statistician generates a new sample, called “Bootstrap sample”, from the original. From this boot-
strap sample is computed a “Bootstrap test statistic”, corresponding to the true test statistic. A large
distance between the bootstrap test statistic and the true test statistic constitutes indication against a
null hypothesis. However, the way the Bootstrap sample is generated or the formula used to calcu-
late a Bootstrap statistic directly influences the “appropriateness” of the statistical test. The extensive
interest in Bootstrap in various applications, for instance in the medical sector [12][11], presents the
necessity to provide a solid mathematical framework, in order to assist applied scientists and transfuse
confidence in the experiments’ results.

Various suggestions have been proposed to efficiently calibrate a Bootstrap hypothesis test. In [7]
the importance of ensuring that the resampling process reflects the null hypothesis, even when the
data might not be drawn from a population that satisfies the null hypothesis, is emphasized. The first
guideline that is proposed in performing Bootstrap testing, in this work, suggest to center the Bootstrap
statistic around the true, in order for the Bootstrap statistic to reflect the null hypothesis. In other words,
given a true statistic, calculated as a functional on the original sample, and its Bootstrap equivalent
calculated as the same functional on the Bootstrap sample, the Bootstrap statistic proposed to perform
the test is the true statistic substracted from its Bootstrap equivalent. The argument for this suggestion
is that the test performed without centering does not lead to a correct decision rule accordingly with the
statistical testing framework. Indeed, in the setting discussed in this work, failing to center the Bootstrap
statistic results to a poor hypothesis test. The empirical results in this paper make an argument for their
suggestion. However, in this project only the standard non parametric Bootstrap was used. Hence a
systematic comparison between different kinds of resampling schemes deems necessary, as well as
the probabilistic framework that explains the empirical observations.

Various resampling schemes are known in the literature, the most common of which being the
nonparametric bootstrap. It is a process that picks observations uniformly from the original sample.
In [3], the Wild Bootstrap for regression with heteroskedastic noise is introduced, while in [2] a similar
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4 1. Introduction

Multiplier (Wild) Bootstrap is used to estimate the maximum of a sum of random vectors. Remillard and
Genest [6] prove the efficiency of the parametric Bootstrap in the parametric Goodness of Fit test. In
[10, Section 3.8], another type of resampling is discussed for the independence test: from a bivariate
dataset, the statistician resamples independently the two variables using the nonparametric Bootstrap,
and concatenates the two univariate Bootstrap samples to create a new bivariate Bootstrap sample.
The results from [10] imply that, in this setting, the equivalent Bootstrap statistic without centering leads
to a valid hypothesis test.

For the unsuspecting eye, this seems to contradict the guideline from [7]. The apparent contradiction
motivates the interest to discuss and research how to properly resample and calculate a bootstrap test
statistic. Hence, the impetus to perform simulations with various resampling schemes and bootstrap
statistics in order to detect any possible pattern. For different resampling schemes, the statistician
may need to use a different bootstrap test statistic. More specifically, we experiment with two types
of Bootstrap schemes, where the first type of Bootstrap, mentioned as “General Resampling (GR)”
throughout this project, generates a sample that is “very similar” in distribution to the original regardless
of whether the null hypothesis holds or not, while the second type of Bootstrap, mentioned as “Null
Hypothesis Resampling (NHR)”, generates samples that always satisfy the null hypothesis. First, by
doing simulations, we explore the relationships between each of these type of resampling schemes and
the centering/lack of centering of the bootstrap test statistic. In [8] the NHR scheme is assessed with
respect to a resampling scheme the authors refer to as “alternative” resampling. The latter involves
generating Bootstrap samples that satisfy the setting’s alternative hypothesis. The authors present
some cases of NHR in the settings of correlation coefficient test, variance test and goodness of fit test.
In [9] the same NHR scheme as in [8] is discovered for the goodness of fit test. Finally, in [4] Bootstrap
schemes for conditional copulas tests are compared and evaluated, where a natural NHR scheme is
derived and proved to consist a proper option for the test.

Our first simulation results, detailed in Section 1.6, indicate an interesting implication. When per-
forming a GR Bootstrap the centered statistic seems to lead to a hypothesis test with good level, while
the un-centered statistic does not. And vice versa, when performing a NHR Bootstrap the un-centered
statistic seems to lead to a correct test, while the centered does not. The simulations are performed
in the settings of the independence test and the regression slope test, where one would like to test
whether the slope between the dependent and explanatory variable is zero. A common GR Bootstrap
used, in both cases, is the non-parametric Bootstrap. The NHR Boostrap scheme used in the inde-
pendence test is the one mentioned earlier from [10], which generates independent joint samples that
directly satisfy the null hypothesis. The nature of the regression slope test, and its deeper complexity,
provides an environment where one could easily think of many ways to generate new samples, hence
there is a greater variety of Bootstrap schemes. A NHR Bootstrap in the regression is the same inde-
pendent resampling as the NHR in the independence test, which happens to satisfy the null hypothesis
in this setting too.

The natural conjecture that arose is that the two specific combinations mentioned, of Bootstrap
statistics and Bootstrap schemes, perform well with each other, while other combinations fail. In this
work, we prove this claim first in the independence test. Then we proceed with the proof of the equiv-
alent argument in the regression slope test. Finally, we present a more general argument in bootstrap
hypothesis testing, of which all the previous arguments become special cases.

1.2. Hypothesis Testing
Let 𝒫 denote the set of all probability measures that could potentially describe the distribution of a
sample, which serves as the parameter space for the hypothesis test. The parameter space can be
partitioned into two disjoint subsets, namely 𝒫0 and 𝒫\𝒫0. We wish to test the null hypothesis 𝐻0 ∶ ℙ ∈
𝒫0 against the alternative hypothesis 𝐻1 ∶ ℙ ∈ 𝒫\𝒫0, where 𝒫0 and is a subset of the space of possible
distribution 𝒫.

Definition 1.2.1. Let 𝑋 be a random variable with 𝑋 ∼ ℙ and let 𝒫 be a family of distributions such that
ℙ ∈ 𝒫. Let 𝒫0 and 𝒫\𝒫0 be a partition of 𝒫.

The null hypothesis is a statement about the distribution of 𝑋. It is denoted by 𝐻0 and defined as:

𝐻0 ∶ ℙ ∈ 𝒫0
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On the other hand, the alternative hypothesis is a statement that contradicts the null hypothesis and
is denoted by 𝐻1. It is defined as:

𝐻1 ∶ ℙ ∈ 𝒫\𝒫0
Definition 1.2.2. Given a null hypothesis 𝐻0, a statistical test consists of a set 𝐾 of possible values for
the observation 𝑋, the critical region; this can potentially be a random set. Let 𝑋 be a random variable,
that represents an observation. 𝐻0 is rejected, if 𝑋 ∈ 𝐾; 𝐻0 is not rejected, if 𝑋 ∉ 𝐾.

In hypothesis testing, the possible mistakes can be classified into two types based on our conclu-
sions drawn from the observations:

• Type I error occurs when we reject the null hypothesis (𝐻0) while it is true;

• Type II error occurs when we fail to reject 𝐻0 while it is false.

Since we prioritize the null hypothesis in hypothesis testing, it is crucial to choose𝐻0 and𝐻1 carefully.
The statement we want to demonstrate is formulated as the alternative hypothesis, and we argue for
𝐻0 unless there is strong evidence against it.

The quality of a test is measured by the function ℙ ↦ ℙ(𝑋 ∈ 𝐾), also known as the power function.
The following definition introduces the power function as the function 𝜋(ℙ;𝐾) = ℙ(𝑋 ∈ 𝐾) for a test with
critical region 𝐾. The power function should have small values when ℙ ∈ 𝒫0 and large values when
ℙ ∈ 𝒫\𝒫0.

Definition 1.2.3. The power function of a test with critical region K is ℙ → 𝜋(ℙ;𝐾) = ℙ(𝑋 ∈ 𝐾).

We seek a critical region for which the power function takes on ”small values” (close to 0) when ℙ ∈ 𝒫0
and ”large values” (close to 1) when ℙ ∈ 𝒫\𝒫0.

Definition 1.2.4. We say that the test achieves good level when the power function is small for ℙ ∈ 𝒫0
and that the test achieves good power when the power function converges to 1 for ℙ ∈ 𝒫\𝒫0.

Remark 1.2.5. The level of the test, which means the acceptable value of the power function under
the null hypothesis, is defined arbitrarily and denoted by 𝛼. So a hypothesis test with a level 𝛼 is a test
that falsely rejects the null hypothesis with probability at most 𝛼.

1.3. Preliminaries
In this section, we introduce the general probabilistic framework to define Bootstrap schemes and
probability measures of Bootstrap samples. Let (Ω,𝒜, ℙ) be a probability space and 𝔻 a metric space.

Definition 1.3.1. Let (𝔻, 𝑑) be a metric space. 𝔻 is said to be a separable space if there exists a
countable dense subset 𝑈 of 𝔻, namely for every 𝑥 ∈ 𝔻 there exists a sequence (𝑥𝑛)∞𝑛=1 such that for
every 𝑛 ∈ ℕ, 𝑥𝑛 ∈ 𝑈 and 𝑥𝑛 → 𝑥.

For the rest of this project, (𝔻, 𝑑) represents a metric space and 𝔹(𝔻) denotes the Borel sets of 𝔻.

Definition 1.3.2. Let (𝑋𝑛)𝑛∈ℕ be a sequence of 𝔻-valued random variables defined on (Ω,𝒜, ℙ).

1. We say that the sequence (𝑋𝑛) converges in distribution to the random variable 𝑋 (𝑋𝑛
𝑑−→ 𝑋) if for

every 𝐴 ∈ 𝔹(𝔻):
ℙ(𝑋𝑛 ∈ 𝐴) −→ ℙ(𝑋 ∈ 𝐴) as 𝑛 −→ +∞.

2. We say that the sequence (𝑋𝑛) converges in probability to the random variable 𝑋 (𝑋𝑛
ℙ−→ 𝑋) if for

every 𝜖 > 0:

ℙ(𝑑(𝑋𝑛 , 𝑋) > 𝜖) −→ 0 as 𝑛 −→ +∞.

In the following, we will need the concepts of “version” of a random variable and “regular conditional
distribution”. For completeness, we state these definitions.
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Definition 1.3.3. Let 𝑋 ∶ Ω → 𝔻 be a random variable in the probability space (Ω,𝒜, ℙ). The random
variable 𝑌 ∶ Ω → 𝔻 is said to be a version of 𝑋 if ℙ(𝐵) = 0 where 𝐵 is the set defined by 𝐵 ∶= {𝜔 ∈ Ω ∶
𝑋(𝜔) ≠ 𝑌(𝜔)}.

By definition of the set 𝐵, whenever 𝑌 is a version of 𝑋 we have 𝑋|Ω\𝐵 = 𝑌|Ω\𝐵, where for a set 𝐴 ⊆ Ω,
𝑋|𝐴 denotes the restriction of the mapping 𝑋 in 𝐴, namely 𝑋|𝐴 ∶ 𝐴 ↦ ℝ such that ∀𝜔 ∈ 𝐴, 𝑋|𝐴(𝜔) = 𝑋(𝜔).
Definition 1.3.4 (Section 5.1.3 in [5]). Let 𝑋 be a random variable, 𝑋 ∶ (Ω,𝒜, ℙ) ↦ (𝔻,𝔹(𝔻)). For each
𝐵 ∈ 𝔹(𝔻), let:

𝜇𝑋|𝒞(𝐵|𝒞)(𝜔) ∶= ℙ(𝑋−1(𝐵)|𝒞)(𝜔).
Then the mapping 𝜇𝑋|𝒞(⋅|𝒞)(⋅) ∶ 𝔹(𝔻) × Ω ↦ [0, 1] is a regular conditional distribution of 𝑋 given 𝒞 if
the following hold:

1. ∀𝐵 ∈ 𝔹(𝔻), 𝜇𝑋|𝒞(𝐵|𝒞)(⋅) is a version of 𝔼(1𝑋∈𝐵|𝒞).
2. For ℙ-a.s. 𝜔 ∈ Ω, 𝜇𝑋|𝒞(⋅|𝒞)(𝜔) is a probability measure on (𝔻,𝔹(𝔻)).

1.4. The Bootstrap
Bootstrapping is a technique that involves resampling data to perform inference about a population.
For instance, one would like to estimate the variance of an estimator, as the true error in a sample
statistic against its population value is usually unknown. In bootstrapping, the ”population” is the sample
itself, which is known, allowing for the measurement of the quality of inference of the true sample
from resampled data. This method estimates the distribution of an estimator or test statistic and is
comparable in accuracy to first-order asymptotic theory, making it a practical alternative in cases where
calculating the asymptotic distribution is challenging.

Let 𝑋 ∶ Ω → 𝔻 be a random variable following the (unknown) distribution ℙ and let 𝑋1, … , 𝑋𝑛 be a
random sample from 𝑋, namelyX𝑛 = (𝑋1, … , 𝑋𝑛)

𝑖.𝑖.𝑑.∼ ℙ. The objective is to estimate the distribution of a
𝔼-valued statistic, where (𝔼, 𝑑) is a metric space, denoted by 𝑇𝑛 = 𝑇𝑛(X𝑛). In the context of hypothesis
testing, 𝑇𝑛 represents the true test statistic and we need to estimate or approximate its distribution.

For this purpose, we aim to construct bootstrap replicates of 𝑇𝑛. First, we need to introduce the i.i.d.
random variables (𝑊(𝑏)

𝑛 )𝑏∈ℕ that introduce additional sources of randomness. They are assumed to be
valued in some measurable space 𝒲 and independent of the original sample X𝑛. The bootstrapped
observations X∗𝑛 are generated from the original sample (𝑋1, … , 𝑋𝑛) and some other source of random-
ness 𝑊(𝑏)

𝑛 . In this sense, we can write X∗𝑛 = X∗𝑛(𝑋1, … , 𝑋𝑛;𝑊(𝑏)
𝑛 ). These bootstrapped observations

are generated such that the law of X∗𝑛 given the original sample (𝑋1, … , 𝑋𝑛) is precisely the probability
measure 𝑅𝑛. This is formalized in the following definitions.

Definition 1.4.1. A bootstrapping scheme (𝑅𝑛)∞𝑛=1 is a sequence of probability measures on 𝒳 that
depends on the observed sample (𝑋1, … , 𝑋𝑛). In that sense, for a given sample X𝑛, 𝑅𝑛 ∶ 𝔻𝑛 ↦ �̃�,
where �̃� is the set of probability measures on 𝔻.
Definition 1.4.2. For a Bootstrap scheme (𝑅𝑛)∞𝑛=1, a bootstrap sample X∗𝑛 = (𝑋∗1 , … , 𝑋∗𝑛) is an i.i.d.
sample of size n simulated from 𝑅𝑛, conditionally to the original sample X𝑛.

In this sense, we define resampling as a sequence of measures, mapping each finite sample of size
𝑛 to a probability measure. This measure is used to simulate the new observations in the bootstrap
sample. As a consequence, for any measurable set 𝐴 ⊆ 𝒳,

Prob(𝑋∗1 ∈ 𝐴|X𝑛) = 𝑅𝑛(X𝑛)(𝐴),

and for any measurable sets 𝐴1, … , 𝐴𝑛 ⊆ 𝑋,

Prob(X∗𝑛 ∈ 𝐴1 ×⋯× 𝐴𝑛|X𝑛) =
𝑛

∏
𝑖=1

𝑅𝑛(X𝑛)(𝐴𝑖).

Let 𝐵 > 0 be the number of boostrap replications, and let X∗(𝑖)𝑛 , 𝑖 = 1,… , 𝐵 be 𝐵 independent samples
of size 𝑛 from the bootstrap scheme 𝑅𝑛(X𝑛). For a given mapping 𝑇∗ ∶ 𝒳𝑛 × 𝒳𝑛 → ℝ, we define



1.5. Bootstrap Consistency 7

the bootstrapped statistics 𝑇∗(𝑏)𝑛 ∶= 𝑇∗(X𝑛 ,X∗(𝑏)𝑛 ) for any 𝑏 ≥ 0. Therefore, the random variables
𝑇∗(1)𝑛 , 𝑇∗(2)𝑛 , … are conditionally independent given X𝑛.

Definition 1.4.3. With the previous notation, the p-value is defined by:

pvalue𝑛 ∶= Prob (𝑇∗(1) > 𝑇𝑛(X𝑛)|X𝑛), (1.1)

and the (bootstrapped approximated) p-value is defined by

pvalue𝑛, 𝐵 ∶=
|𝑖 ∈ {1, … , 𝐵} ∶ 𝑇∗(𝑖)𝑛 > 𝑇(𝑋1, … , 𝑋𝑛)|

𝐵 = 1
𝐵

𝐵

∑
𝑖=1
1 (𝑇∗(𝑖)𝑛 > 𝑇𝑛) , (1.2)

and as usual, for a given level 𝛼 ∈ (0, 1), we reject if and only if the p-value is smaller than 𝛼.
Remark 1.4.4. In the particular case where the original test statistic 𝑇𝑛(𝑋1, … , 𝑋𝑛) is bigger than all the
bootstrapped test statistics 𝑇∗(𝑖), then the (bootstrapped approximated) p-value is 0 and we reject at
all levels.

1.5. Bootstrap Consistency
In order to determine the consistency of a resampling scheme, it is necessary to show that the distance
between the conditional distribution of a bootstrap replicate of a statistic 𝑇∗𝑛 , given the available obser-
vations, and the distribution of 𝑇𝑛 itself, converges to zero in probability. Interestingly, under minimal
assumptions, this convergence of conditional laws is equivalent to the unconditional weak convergence
of 𝑇∗𝑛 jointly with two bootstrap replicates to independent copies of the same limit. Additionally, the dis-
tance between the empirical distribution of the bootstrap replicates and the unobservable distribution
of 𝑇∗𝑛 should converge in probability to zero as the number of replicates and the sample size increase.

Note that there are various metrics that can potentially be used to measure the distance between
two distributions. In this framework we will make use of the Bounded-Lipschitz distance 𝑑𝐵𝐿 and the
Kolmogorov distance 𝑑𝐾, defined below.

Definition 1.5.1. Let (𝔻, 𝑑) be a metric space and 𝐵𝐿 = {ℎ ∶ 𝔻 → [−1, 1] such that |ℎ(𝑥) − ℎ(𝑦)| ≤
𝑑(𝑥, 𝑦), ∀𝑥, 𝑦 ∈ 𝔻}. Then for any probability measures 𝑃, 𝑄 on 𝔻, the Bounded Lipschitz metric is
defined as:

𝑑𝐵𝐿(𝑃, 𝑄) ∶= sup
𝑓∈𝐵𝐿

|∫𝑓𝑑𝑃 − ∫𝑓𝑑𝑄| .

The Kolmogorov distance between two measures on ℝ𝑑 is defined as:

𝑑𝐾(𝑃, 𝑄) ∶= sup
𝑥∈ℝ𝑑

|𝑃((−∞, 𝑥]) − 𝑄((−∞, 𝑥])| .

Definition 1.5.2. Let X𝑛 be a random sample from a distribution function F on ℝ𝑑, for some 𝑑 > 0. If
we denote 𝑋𝑖 = (𝑋𝑖,1, … , 𝑋𝑖,𝑑), the empirical distribution function is defined as:

𝐹𝑛(t) ∶=
1
𝑛

𝑛

∑
𝑖=1
1(𝑋𝑖,1 ≤ 𝑡1, … , 𝑋𝑖,𝑑 ≤ 𝑡𝑑), (1.3)

where t = (𝑡1, … , 𝑡𝑑) ∈ ℝ𝑑.
Definition 1.5.3. Let X𝑛 be a random sample from a probability measure ℙ on a measurable space
(Ω,𝒜). The empirical measure is the discrete uniform measure on the observations, denoted by:

ℙ𝑛 ∶=
1
𝑛

𝑛

∑
𝑖=1
𝛿(𝑋𝑖), (1.4)

where 𝛿(𝑥) is the Dirac measure:

𝛿(𝑥)(𝐴) ∶= { 1, if 𝑥 ∈ 𝐴,0, if 𝑥 ∉ 𝐴,
for any 𝑥 ∈ 𝒳.
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Remark 1.5.4. Assume that 𝔻 = ℝ𝑑 for a given 𝑑 > 0. In this space, the empirical distribution can be
seen as a special case of the empirical measure. Indeed pick 𝐴 = ((−∞,… ,−∞), t] and we get:

𝛿(X)(𝐴) = 1(𝑋 ≤ t).

In order to achieve good power in hypothesis testing, it is necessary to construct statistics that when
the null hypothesis holds, both the true and the Bootstrap statistics converge to the same distribution.
In the context of hypothesis testing, the Bounded Lipschitz Distance between the distributions of those
statistics converging to 0 is the sufficient condition to check, in order for this to hold. When this is
achieved we say that the Bootstrap statistic is consistent with the true statistic. Before stating this
important result, we state a condition on the regularity of the conditional distribution of a bootstrap
statistic.

Condition 1. [Condition 2.1 in [1]] The conditional distributionℙ(𝑇∗(1)𝑛 ∈ • |X𝑛) admits a regular version,

denoted by ℙ𝑇
∗(1)
𝑛 |X𝑛 .

Note that if 𝔼 is complete and separable, then Condition 1 is satisfied. This can be proved by
combining Theorems 2.1.15 and 5.1.9 of [5]. This is the case in particular if the statistic 𝑇∗(1)𝑛 is real-
valued. The following Lemma from [1] presents the equivalent conditions of Bootstrap consistency.

Lemma 1.5.5. [Lemma 2.2 in [1]] Let X𝑛 be a sample of size 𝑛 from ℙ. For a sequence of Bootstrap
samples of size 𝐵, and the respective statistics 𝑇∗(1)𝑛 , … , 𝑇∗(𝐵)𝑛 , denote the empirical measure of the
Bootstrap statistics by

ℙ̂𝑇
∗𝑛
𝐵 ∶= 1

𝐵

𝐵

∑
𝑖=1
𝛿(𝑇∗(𝑖)𝑛 ). (1.5)

Assume that Condition 1 is met and that the true statistic 𝑇𝑛 converges weakly to a random variable 𝑇
in 𝔻. Then the following are equivalent:

1. ℙ(𝑇𝑛 , 𝑇
∗(1)
𝑛 , 𝑇∗(2)𝑛 ) 𝑑−→ ℙ𝑇⊗ℙ𝑇⊗ℙ𝑇 as 𝑛 → ∞.

2. ℙ(𝑇𝑛 , 𝑇
∗(1)
𝑛 , … , 𝑇∗(𝐵)𝑛 ) 𝑑−→ (ℙ𝑇)⊗(𝐵+1) as 𝑛 → ∞ and for 𝐵 ≥ 2.

3. 𝑑𝐵𝐿 (ℙ𝑇
∗(1)
𝑛 |X𝑛 , ℙ𝑇𝑛) ℙ−→ 0 as 𝑛 → ∞.

4. 𝑑𝐵𝐿 (ℙ̂𝑇
∗𝑛
𝐵 , ℙ𝑇𝑛)

ℙ−→ 0 as 𝑛, 𝐵 → ∞.

If additionally 𝔻 = ℝ𝑑 and the cumulative distribution function of 𝑇 is continuous then the preced-
ing conditions are also equivalent to:

5. 𝑑𝐾 (ℙ𝑇
∗(1)
𝑛 |X𝑛 , ℙ𝑇𝑛) ℙ−→ 0 as 𝑛 → ∞.

6. 𝑑𝐾 (ℙ̂𝑇
∗𝑛
𝐵 , ℙ𝑇𝑛)

ℙ−→ 0 as 𝑛, 𝐵 → ∞.

For a consistent Bootstrap statistic 𝑇∗𝑛 with respect to a true statistic 𝑇𝑛, we will be showing that
𝑇∗𝑛 conditionally on X𝑛 and 𝑇𝑛 converge in distribution to the same limit. This means that equiva-
lent condition 3 of Lemma 1.5.5 holds. Instead of the empirical measures, we denote the Bounded-
Lipschitz distance by the statistics themselves. Hence to make the notation lighter, in the rest of the
text 𝑑𝐵𝐿 (𝑇𝑛 , 𝑇∗𝑛|X𝑛) represents 𝑑𝐵𝐿 (ℙ𝑇𝑛 , ℙ𝑇

∗𝑛|X𝑛).
The following Corollary from [1] is crucial in recognizing which bootstrap statistics lead to good

power and getting a sense of the central claim of this thesis. The corollary states that the p-values 𝑝𝑛
of a consistent Bootstrap converge in distribution to a uniform random variable. This property leads to
controlling the Type I error of the hypothesis test, meaning that for a test of significance 𝛼, we falsely
reject the null hypothesis only 𝛼-% of the time.
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Corollary 1.5.6 (Corollary 4.3 in [1]). Assume that 𝔻 = ℝ and that 𝑇 has a continuous distribution
function. Assume that one of the equivalent conditions in Lemma 1.5.5 is met. Then

pvalue𝑛
𝑑−→ 𝑈(0, 1), and pvalue𝑛, 𝐵

𝑑−→ 𝑈(0, 1) as 𝑛, 𝐵 → ∞, (1.6)

where the p-values are as defined in Equation (1.2).

When a proper Bootstrap scheme and statistic is picked, the Bootstrap p-value, as defined in Equa-
tion (1.1), holds its level asymptotically, in the sense that, under 𝐻0,

lim
𝑛→∞

Prob (𝑇∗(1)𝑛 > 𝑇𝑛) = 1 − 𝛼,

or equivalently:
lim
𝑛→∞

Prob (𝑇∗(1)𝑛 ≤ 𝑇𝑛) = 𝛼,

as a consequence of Corollary 1.5.6.

1.6. Introductory examples
As mentioned before, a consistent Bootstrap statistic leads to asymptotically uniform p-values, when
the null hypothesis holds. In our simulations, the p-values histogram for each combination of Bootstrap
schemes (GR,NHR) and Bootstrap statistics (𝑇∗𝑒𝑞𝑛 , 𝑇∗𝑐𝑛 ), is enlightening. Corollary 1.5.6 leads us to
search for the uniform, or better ”approximately” uniform, histogram of p-values. From the four combi-
nations of Bootstrap schemes and Bootstrap statistics, four different histograms are obtained but only
two of them indicate convergence to the uniform distribution.

We initially focus on examining the behavior of two types of bootstrap statistics in the settings of the
independence test and the regression slope test. Given an original sample X𝑛, a true statistic 𝑇𝑛 and
a Bootstrap sample X∗𝑛, denote by 𝑇∗𝑒𝑞𝑛 the Bootstrap equivalent of 𝑇𝑛 and 𝑇∗𝑐𝑛 the Bootstrap centered
statistic.

1.6.1. Regression Slope test
Let 𝑋, 𝑌 be random variables in ℝ such that (𝑋, 𝑌) ∼ ℍ, 𝑋 ∼ ℙ, 𝑌 ∼ ℚ where ℙ,ℚ,ℍ are restricted so
that they satisfy the following setting. First, 𝑋 has a finite second moment, namely 𝔼ℙ(𝑋2) < ∞. The
variable 𝜖, called ”noise” is independent of 𝑋 and 𝑌 and satisfies 𝔼(𝜖2) = 𝜎2𝜖 for some 𝜎2𝜖 > 0. Then let
𝑎, 𝑏 ∈ ℝ such that conditionally on an observation 𝑋, 𝑌 is described as:

𝑌 = 𝑎 + 𝑏𝑋 + 𝜖. (1.7)

The probability measure ℍ is called the joint probability measure, while ℙ,ℚ are called the marginals
of 𝑋, 𝑌 respectively. Note that ℚ does not describe Equation (1.7), since this equation describes the
conditional distribution of 𝑌 given 𝑋. The definition of 𝑏 in the regression setting is:

𝑏 = 𝔼ℍ(𝑋𝑌) − 𝔼ℍ(𝑋)𝔼ℍ(𝑌)
𝔼ℍ(𝑋2) − 𝔼ℍ(𝑋)2

= 𝐶𝑜𝑣ℍ(𝑋, 𝑌)
𝑉𝑎𝑟ℍ(𝑋)

.

The number 𝑏 is called the slope of 𝑌 given 𝑋. For a finite sample (𝑋1, 𝑌1), … , (𝑋𝑛 , 𝑌𝑛), the OLS estimator
is calculated as:

�̂� =
∑𝑛𝑖=1 𝑋𝑖𝑌𝑖 − ∑

𝑛
𝑖=1 𝑋𝑖 ∑

𝑛
𝑖=1 𝑌𝑖

∑𝑛𝑖=1 𝑋2𝑖 − (∑
𝑛
𝑖=1 𝑋𝑖)2

.

Consider the test:
𝐻0 ∶ 𝑏 = 0 vs 𝐻1 ∶ 𝑏 ≠ 0.

The true statistic is set as 𝑇𝑛 = |�̂�|. Assume resmapling scheme (𝑅𝑛)∞𝑛=1, where for each 𝑛 ∈ ℕ, the
number of Bootstrap replications generated is fixed 𝐵 = 𝑛. For fixed 𝑛 ∈ ℕ, let (𝑋∗1 , 𝑌∗1 ), … , (𝑋∗𝑛 , 𝑌∗𝑛)
bootstrap sample generated by 𝑅𝑛. The two Bootstrap statistics are 𝑇∗𝑒𝑞𝑛 = | ̂𝑏∗| and 𝑇∗𝑐𝑛 = |�̂�∗ − �̂�|,
where:
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�̂�∗ =
∑𝑛𝑖=1 𝑋∗𝑖 𝑌∗𝑖 − ∑

𝑛
𝑖=1 𝑋∗𝑖 ∑

𝑛
𝑖=1 𝑌∗𝑖

∑𝑛𝑖=1(𝑋∗𝑖 )2 − (∑
𝑛
𝑖=1 𝑋∗𝑖 )2

,

is the OLS estimator calculated on the Bootstrap sample. Although we can state various examples
for each type of resampling schemewe provide the context of one from each type. A general resampling
scheme is simulating from the joint empirical measure ℍ𝑛 =

1
𝑛 ∑

𝑛
𝑖=1 𝛿(𝑋𝑖 , 𝑌𝑖). An example from the null

resampling category is generating samples from the empirical product ℙ𝑛 ⊗ ℚ𝑛, where ℙ𝑛 , ℚ𝑛 are
the empirical measures of the samples X𝑛 ,Y𝑛 respectively. For a sample generated by ℙ𝑛 ⊗ℚ𝑛 we
see that 𝐶𝑜𝑣ℙ𝑛⊗ℚ𝑛(𝑋, 𝑌) = 0. If one modelled the Bootstrap samples generated by this measure as a
regression model, the theoretical slope would be zero and hence the ”null” resampling characterization.

We perform 𝑠 = 1000 simulations for each one of the combinations between Bootstrap statistics
and Bootstrap schemes. On each iteration, we generate a random sample of size 𝑛 = 100, of 𝑋𝑖 , 𝑌𝑖,
where the 𝑋𝑖 are generated from a uniform distribution between random lower and upper bounds. An
intercept 𝛼 is also generated by a uniform distribution between random bounds and a random noise 𝜖
is generated from the standard normal distribution. Finally, 𝑏 is set to be zero and the 𝑌𝑖 are set to be:

𝑌𝑖 = 𝑎 + 𝑏𝑋𝑖 + 𝜖𝑖 .

For each iteration, 𝑏 = 100 Bootstrap observations are generated for each one of the resampling
schemes GR, NHR. For every Bootstrap sample, the pvalues are calculated according to the statistics
𝑇∗𝑐𝑛 , 𝑇∗𝑒𝑞𝑛 and are appended to a list. Hence we obtain 4 lists containing 1000 pvalues, one pvalue for
each one of the Bootstrap samples generated and one list for each one of the combinations among
GR,NHR and 𝑇∗𝑐𝑛 , 𝑇∗𝑒𝑞𝑛 . The histogram of the pvalues for each combination are displayed in Figure 1.1.

Figure 1.1: Histogram of the Bootstrap p-values when 𝐻0 is true

Blue color histograms represent consistent Bootstrap processes. Red color histograms represent
inconsistent Bootstrap.

From this figure, we make an obvious remark. The pvalues histograms colored with blue seem
to approximate a uniform distribution, while the red colored ones seem to have some erratic behavior
among them and between the red. This observation leads us to the inclination to believe that Corollary
1.5.6 is satisfied for the pvalues displayed in the main diagonal of the table, while the red histograms
remain to present unidentified behavior. The asymptotic uniform distribution of the pvalues is a direct
consequence of a consistent Bootstrap process. This property renders the decision rule meaningful,
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such that the statistician can control the Type I Error and falsely rejects a null hypothesis with probability
𝛼.

We proceed with providing a definition of the two types of Bootstrap schemes we examine through-
out this project. This is an informal version of the Definition provided in Chapter 5 and should not be
examined with a strict point of view but rather with an intuitive approach.

Definition 1.6.1 (Informal Version of Definition 5.1.2). Let 𝑋1, … , 𝑋𝑛 be a random sample from ℍ and
let 𝒫0, 𝒫\𝒫0 be a partition of the class of probability measures 𝒫, such that the null hypothesis holds if
ℍ ∈ 𝒫0. Let ℍ𝑛 denote its empirical measure. A Bootstrap scheme �̂� = (𝑅𝑛)∞𝑛=1 is called

• General Resampling (GR) scheme if:

∀ℍ ∈ 𝒫, 𝑅𝑛 ≈ ℍ𝑛 ,

• Null Resampling (NHR) scheme if:

∀ℍ ∈ 𝒫0, 𝑅𝑛 ≈ ℍ𝑛 , and ∀ℍ ∈ 𝒫, 𝑅𝑛 ∈ 𝒫0.

This leads us to the following conjecture.

Conjecture:

• Under GR Bootstrap, 𝑅𝑛, for the Bootstrap statistic 𝑇∗𝑐𝑛 :

for all ℍ ∈ 𝒫0, lim𝑛→∞𝜋(ℍ; 𝑇𝑛 , 𝑇
∗𝑐
𝑛 ) = 𝛼,

and

for all ℍ ∈ 𝒫\𝒫0, lim𝑛→∞𝜋(ℍ; 𝑇𝑛 , 𝑇
∗𝑐
𝑛 ) = 1.

• Under NHR Bootstrap, 𝑅𝑛, for the Bootstrap statistic 𝑇∗𝑛 :

for all ℍ ∈ 𝒫0, lim𝑛→∞𝜋(ℍ; 𝑇𝑛 , 𝑇
∗𝑒𝑞
𝑛 ) = 𝛼,

and

for all ℍ ∈ 𝒫\𝒫0, lim𝑛→∞𝜋(ℍ; 𝑇𝑛 , 𝑇
∗𝑒𝑞
𝑛 ) = 1,

Notice that in order to show that a Bootstrap Hypothesis test will not lead to a good power, it suffices
to show that the Bootstrap statistic used in not consistent with the true statistic according equivalent
condition 5 of Lemma 1.5.5. The goal of this project is to show that given a Bootstrap scheme �̂� that
belongs to one of the categories GR or NHR, only one of the two bootstrapped test statistics 𝑇∗𝑒𝑞𝑛 or
𝑇∗𝑐𝑛 will lead to good power, even given arbitrary sample size n of data from ℙ and arbitrary computer
power B to simulate new replications.





2
Empirical Processes and Weak

Convergence
In this chapter, we provide the tools that are used to examine the asymptotic behavior of the true
and Bootstrap statistics. Naturally, the statistics that are considered are mostly based on empirical
measures constructed from samples and Bootstrap samples. Hence, for a probability measure ℙ, a
finite sample X𝑛 and its empirical measure ℙ𝑛 as defined in 1.5.3, the quantity ℙ𝑛 − ℙ is of extreme

interest. The Central Limit Theorem for processes implies that this quantity converges at the rate𝑂( 1
√𝑛
)

to a Gaussian process, the Brownian Bridge, defined in Section 2.1. Section 2.2 provides the necessary
conditions for the Central Limit Theorem for empirical processes to hold. Finally, in Section 2.3, we
introduce the equivalent Central Limit Theorem for the empirical process, but instead of estimating a
fixed distribution measure ℙ, the random samples are generated from a different probability measure
for each 𝑛. Assuming we have a finite sample X∗𝑛 generated by a probability measure 𝑅𝑛, we are
interested in characterizing the asymptotic behavior of the empirical measure, as in the standard case.
The difference is that the data is not assumed to be generated by a fixed probability measure ℙ, but for
every 𝑛, a different probability measure 𝑅𝑛 is used to simulate. This sequence of measures represents
the Bootstrap scheme in each case, where for every 𝑛, 𝑅𝑛 depends on the original sample X𝑛.

All theorems and definitions of this chapter are derived from [10].

2.1. The Brownian Bridge
In this thesis, the process:

𝔾𝑛 =
1
√𝑛

𝑛

∑
𝑖=1
(𝛿(𝑋𝑖) − ℙ)

is of primary interest. Its asymptotic behavior will demonstrate which bootstrap statistics are consistent
and under which bootstrap scheme. We shall lay the conditions and framework for which 𝔾𝑛 converges
weakly to a suitable tight limit 𝔾.

Let 𝑇 be an arbitrary set. The space 𝓁∞(𝑇) is the set of all bounded, real-valued functions on 𝑇,
denoted by 𝑧 ∶ 𝑇 → ℝ such that ‖𝑧‖𝑇 ∶= sup𝑡∈𝑇 |𝑧(𝑡)| < ∞. It is a metric space with respect to the
uniform distance 𝑑(𝑧1, 𝑧2) = ‖𝑧1 − 𝑧2‖𝑇. This space, or a suitable subspace of it, is a natural space for
stochastic processes with bounded sample paths.

Definition 2.1.1 (Page 34 in [10]). A stochastic process is an indexed collection 𝑋(𝑡) ∶ 𝑡 ∈ 𝑇 of random
variables defined on the same probability space, where each 𝑋(𝑡) ∶ Ω → ℝ is a measurable map. If
every sample path 𝑡 ↦ 𝑋(𝑡, 𝜔) is bounded, then the stochastic process yields a map 𝑋 ∶ Ω → 𝓁∞(𝑇).

Definition 2.1.2 (Page 16 in [10]). A Borel probability measure 𝐿 on a space 𝔻 is said to be tight if for
every 𝑐 > 0, there exists a compact set 𝐾 ⊂ 𝔻 such that 𝐿(𝐾) ≥ 1 − 𝑐.

13
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A Borel measurable map 𝑋 ∶ Ω → 𝔻 is called tight if its law ℒ(𝑋) = ℙ(𝑋 ∈ 𝐴) for 𝐴 ∈ 𝔹(𝔻) is tight,
where ℙ denotes the probability measure on the space of probability measures on 𝔹(𝔻).

With this setting, the following Lemma is crucial in the characterization of the Brownian Bridge, a
pivotal notion in our research:

Lemma 2.1.3 (Lemma 1.5.3 in [10]). Let 𝑋 and 𝑌 be tight Borel measurable maps into 𝓁∞(𝑇). Then 𝑋
and 𝑌 are equal in law if and only if all corresponding marginals of 𝑋 and 𝑌 are equal in law.

Definition 2.1.4. Let 𝑋 be a tight, Borel measurable mapping in 𝓁∞(𝑇), according to Definition 2.1.1.
The mapping (𝑠, 𝑡) ↦ 𝜌𝑝(𝑠, 𝑡), 𝑤ℎ𝑒𝑟𝑒:

𝜌𝑝(𝑠, 𝑡) = (𝔼|𝑋(𝑠) − 𝑋(𝑡)|𝑝)
1
𝑝 (2.1)

is called the 𝜌𝑝 semimetric.

Definition 2.1.5 (Example 1.5.10 in [10]). A stochastic process 𝑋 is called Gaussian if for every 𝑛 ∈ ℕ
and 𝑡1, … , 𝑡𝑛 ≥ 0 the marginals (𝑋(𝑡1), … , 𝑋(𝑡𝑛)) are normally distributed on ℝ𝑛.
Remark 2.1.6. Let ℱ be a class of functions 𝑓 ∶ 𝔻 → 𝔼, where 𝔻 is separable metric space. For a
probability measure ℙ and a measurable function 𝑓, we denote:

ℙ𝑓 ∶= ∫𝑓𝑑ℙ.

Let:
𝜌ℙ(𝑓) = (ℙ(𝑓 − ℙ𝑓)2)1/2,

denote a seminorm 𝜌ℙ on ℱ with 𝑝 = 2 from Equation (2.1). Throughout this project by 𝜌ℙ we refer to
this semimetric.

Let 𝑋 ∶ Ω → 𝔻 be a random variable from (Ω,𝒜, ℙ) to a separable metric space 𝔻 and let 𝑋1, … , 𝑋𝑛
be an i.i.d. sample from ℙ. Let also ℱ be a collection of measurable functions 𝑓 ∶ 𝔻 → 𝔼. The empirical
measure ℙ𝑛 =

1
𝑛 ∑

𝑛
𝑖=1 𝛿(𝑋𝑖) induces a mapping from ℱ to ℝ: 𝑓 ↦ ℙ𝑛𝑓. Note that:

ℙ𝑛𝑓 =
1
𝑛

𝑛

∑
𝑖=1
∫𝑓𝑑𝛿(𝑋𝑖) =

1
𝑛

𝑛

∑
𝑖=1
𝑓(𝑋𝑖).

For a function 𝑓 such that 𝑓(𝑋) ∈ 𝐿2(ℙ), set
𝔾𝑛𝑓 ∶= √𝑛(ℙ𝑛 − ℙ)𝑓.

From the Law of Large Numbers we get:

ℙ𝑛𝑓 =
1
𝑛

𝑛

∑
𝑖=1
𝑓(𝑋𝑖)

𝑎.𝑠.−−→ 𝔼(𝑓(𝑋1)) = ℙ𝑓.

Further, from the Central Limit Theorem:

𝔾𝑛𝑓
𝑑−→ 𝒩(0, ℙ(𝑓 − ℙ𝑓)2).

Indeed, we can see that

𝔼 ((ℙ𝑛 − ℙ)𝑓) = 𝔼(𝑓(𝑋1)) − 𝔼(𝑓(𝑋)) = 0

and

𝑉𝑎𝑟 ((ℙ𝑛 − ℙ)𝑓) = 𝑉𝑎𝑟 (ℙ𝑛𝑓) = ℙ(𝑓 − ℙ𝑓)2.
Thus we get that for a fixed function 𝑓, the process 𝔾𝑛 applied to this function converges to a normal

distribution. In the statistical setting, in order to obtain convergence for various statistical quantities it
is desirable to expand this property to a large class of functions. The following definitions, describe the
classes of functions that make the empirical process feasible to examine from a statistics point of view.
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Definition 2.1.7 (Page 81 in [10]). Denote the norm:

‖ℙ‖ = sup
𝑓∈ℱ

|ℙ𝑓|.

A class of functions ℱ is called Glivenko-Cantelli if:

‖ℙ𝑛 − ℙ‖ = sup
𝑓∈ℱ

|ℙ𝑛𝑓 − ℙ𝑓|
𝑎.𝑠.−−→ 0.

Definition 2.1.8 (Page 81 in [10]). Let ℱ be a class of functions, such that for every x: sup𝑓∈ℱ |𝑓(𝑥) −
ℙ𝑓| < ∞. Then ℱ is called Donsker class (or ℙ-Donsker), if:

𝔾𝑛 = √𝑛(ℙ𝑛 − ℙ)
𝑑−→ 𝔾ℙ in 𝑙∞(ℱ), (2.2)

for 𝔾ℙ a tight Borel measurable element in 𝑙∞(ℱ).
Definition 2.1.9. Let ℱ be a ℙ-Donsker Class. The limit process 𝔾ℙ from Definition 2.1.8 is a Gaussian
process with the following property:

𝔼(𝔾ℙ𝑓1) = 0,
and

𝔼(𝔾ℙ𝑓1𝔾ℙ𝑓2) = ℙ(𝑓1 − ℙ𝑓1)(𝑓2 − ℙ𝑓2) = ℙ𝑓1𝑓2 − ℙ𝑓1ℙ𝑓2, (2.3)
for arbitrary functions 𝑓1, 𝑓2 ∈ ℱ. This process is called the Brownian Bridge.

Remark 2.1.10. By Lemma 2.1.3 and the expression above, tightness and the covariance function
completely determine the distribution of the process in the definition. Moreover we get the uniqueness
of the Brownian Bridge. For probability measures ℙ,ℚ, ℙ = ℚ implies that 𝔾ℙ

𝑑= 𝔾ℚ.

2.2. VC classes and Entropy Conditions
We proceed with presenting the notions that we use throughout this project in order to assert that we
work on Donsker classes of functions. The first one is the Uniform Entropy Bound which implies that
the underlying class is Donsker. The second is the VC-dimension of a class which, when finite, implies
that it satisfies the Uniform Entropy Bound. Let (ℱ, ‖⋅‖) be a normed space of real functions 𝑓 ∶ 𝔻 → ℝ.

Definition 2.2.1 (Covering numbers). The covering number 𝑁(𝜖, ℱ, ‖⋅‖) is the minimal number of balls
{𝑔 ∶ ‖𝑔 − 𝑓‖ < 𝜖} of radius 𝜖 needed to cover the set ℱ. The entropy is the logarithm of the covering
number.

Condition 2 (Uniform Entropy). [2.1.7 in [10]] Let 𝐹 be a square-integrable function. Denote ‖𝐹‖ℙ,2 the
𝐿2-norm of 𝐹 with respect to a probability measure ℙ. Then the uniform entropy condition is satisfied if
the uniform entropy bound is finite:

∫
∞

0
sup
𝑄
√log𝑁 (𝜖‖𝐹‖𝑄,2, 𝐹, 𝐿2(𝑄))𝑑𝜖 < ∞

The supremum is taken over all finite discrete probability measures 𝑄 on (Ω,𝒜) such that ‖𝐹‖2𝑄,2 =
∫𝐹2𝑑𝑄 > 0.
Definition 2.2.2 (VC Classes of Sets). Let 𝒞 be a collection of subsets of a set 𝒳. An arbitrary subset
of 𝑛 points {𝑥1, … , 𝑥𝑛} from 𝒳 possesses 2𝑛 subsets. If a subset of {𝑥1, … , 𝑥𝑛} can be formed as 𝐶 ∩
{𝑥1, … , 𝑥𝑛} for 𝐶 ∈ 𝒞, we say that 𝒞 picks this subset. The family 𝒞 shatters {𝑥1, … , 𝑥𝑛} if each of its 2𝑛
subsets can be picked. The VC-index 𝑉(𝒞) of the class 𝒞 is the smallest 𝑛 for which no set of size 𝑛 is
shattered by 𝒞. Formally, let:

Δ𝑛(𝒞, 𝑥1, … , 𝑥𝑛) = #{𝐶 ∩ {𝑥1, … , 𝑥𝑛} ∶ 𝐶 ∈ 𝒞},
then the 𝑉(𝒞) index is defined as:

𝑉(𝒞) = inf{𝑛 ∶ max
𝑥1 ,…,𝑥𝑛∈𝒳

Δ𝑛(𝒞, 𝑥1, … , 𝑥𝑛) < 2𝑛}.

A collection of measurable sets 𝒞 is called VC-class if 𝑉(𝒞) < ∞.
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The following theorem displays a direct connection between covering numbers and the VC index of
a class of sets. For a class of sets 𝒞, a bound for its covering numbers is provided, that holds uniformly
over any probability measure defined on this class.

Theorem 2.2.3 (Theorem 2.6.4 in [10]). There exists a universal constant K such that for any VC-class
𝒞 of sets, any probability measure ℙ, 𝑟 ≥ 1 and 𝜖 ∈ (0, 1):

𝑁(𝜖, 𝒞, 𝐿𝑟(𝑄)) ≤ 𝐾𝑉(𝒞)4𝑉(𝒞) ⋅ 𝜖𝑉(𝒞)−𝑟(𝑉(𝒞)−1).

Definition 2.2.4. For a function 𝑓 ∶ 𝔻 → ℝ, the subgraph of 𝑓 is a subset of 𝔻 × ℝ given by {(𝑥, 𝑡) ∶
𝑡 < 𝑓(𝑥)}. A collection ℱ of measurable functions on a sample space is called VC-subgraph class if
the collection of all subgraphs of the functions in ℱ forms a VC-class of sets in 𝔻×ℝ.

Denote by 𝑉(ℱ) the VC-index of the set of subgraphs of ℱ.

Theorem 2.2.5. For a VC-class of functions with measurable envelope function 𝐹 and 𝑟 ≥ 1, for any
probability measure 𝑄 with ‖𝐹‖𝑄,𝑟 > 0, there exists a universal constant K such that for 𝜖 ∈ (0, 1) the
following holds:

𝑁(𝜖‖𝐹‖𝑄,𝑟 , ℱ, 𝐿𝑟(𝑄)) ≤ 𝐾𝑉(ℱ)16𝑉(ℱ)𝜖𝑉(ℱ)(1−𝑟)+𝑟

Definition 2.2.6 (Envelope Function). Letℱ be a class of measurable functions from a separable metric
space 𝔻 to the real numbers. A function 𝐹 ∶ 𝔻 → ℝ is called the Envelope Function of ℱ, if for every
𝑓 ∈ ℱ and for every 𝑥 ∈ 𝔻: |𝑓(𝑥)| ≤ 𝐹(𝑥). The mapping 𝑥 ↦ sup𝑓∈ℱ 𝑓(𝑥) is called the Minimal
Envelope Function.

In the rest of this text, when we refer to the envelope function of a class, we mean the Minimal
Envelope Function and we assume that it is a.s. finite.

Theorem 2.2.7 (Theorem 2.5.2 in [10]). Let ℱ be a class of measurable functions, with envelope
function 𝐹, that satisfies the Uniform Entropy Condition 2. Let the classes ℱ𝛿,ℙ = {𝑓 − 𝑔 ∶ 𝑓, 𝑔 ∈
ℱ, ‖𝑓 − 𝑔‖ℙ,2 < 𝛿} and ℱ2∞ ∶= {(𝑓 − 𝑔)2 ∶ 𝑓, 𝑔 ∈ ℱ} are ℙ-measurable for every 𝛿 > 0. If ℙ𝐹 < ∞ then
ℱ is ℙ-Donsker.

Remark 2.2.8. Notice that the right side bound of the Covering numbers for a probability measure 𝑄
from Theorem 2.2.5 does not depend to the probability measure itself. Hence, the preceding theorems
imply that a VC-class of functions satisfies the Uniform Entropy Condition. Thus if it also satisfies certain
measurability conditions the class is 𝑃-Donsker for any probability measure 𝑃 for which the envelope
function is square integrable.

Remark 2.2.9. The collection of cells (−∞, 𝑡] for 𝑡 ∈ ℝ is a VC-class with 𝑉(𝒞) = 2. Indeed, every
single point set is shattered but no two point set is. Further, if a collections of sets 𝒞 is a VC-class, then
the collection of indicators of sets in 𝒞 is a VC-subgraph calls of the same index. Hence the collection
of indicators of the form 1(−∞,𝑡] is a VC-class and satisfies the Uniform Entropy Condition and is 𝑃-
Donsker. This property of the class of indicators on the real line will be of great importance in Chapter
3 where the general proofs for the consistency of the statistics of empirical measures will be specified
for the equivalent statistics of empirical distribution functions.

2.3. CLT under Sequences
Consider the triangular array scheme where for each 𝑛 ∈ ℕ, 𝑋∗1 , … , 𝑋∗𝑛

𝑖.𝑖.𝑑.∼ 𝑅𝑛 for sequence of probability
measures 𝑅𝑛. Denote the empirical measure:

ℍ̂𝑛 =
𝑛

∑
𝑖=1
𝛿(𝑋∗𝑖 ).

The interest now shifts to the convergence of the process:

𝔾𝑛,𝑅𝑛 = √𝑛(ℍ̂𝑛 − 𝑅𝑛).
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The sequence 𝑅𝑛 can be imagined as the bootstrap measure, that describes the probability distribution
of a bootstrap sample 𝑋∗1 , … , 𝑋∗𝑛 conditional on a finite sample 𝑋1, … , 𝑋𝑛. Assuming that the sequence
𝑅𝑛 conditional on X𝑛 converges to a measure 𝑅 we shall display the framework for which:

𝔾𝑛,𝑅𝑛 |X𝑛
𝑑−→ 𝔾𝑅 in 𝓁∞(ℱ).

The following Theorem is the central result in proving that a Bootstrap scheme is meaningful and
examining the asymptotic behavior of the empirical distribution for samples generated under a resam-
pling scheme 𝑅𝑛. Although the theorem provides a general convergence result, the convergence that
is displayed in this project is conditional on a finite sample X𝑛, since the resampling schemes are
conditional.

Theorem 2.3.1 (Theorem 2.8.9 in [10]). Let ℱ a class of measurable functions, with measurable enve-
lope function 𝐹 and denote:

ℱ𝛿,ℙ = {𝑓 − 𝑔 ∶ 𝑓, 𝑔 ∈ ℱ, 𝜌ℙ(𝑓 − 𝑔) < 𝛿}.

Assume that ℱ𝛿,𝑅𝑛 = {𝑓 − 𝑔 ∶ 𝑓, 𝑔 ∈ ℱ, ‖𝑓 − 𝑔‖𝑅𝑛 ,2 < 𝛿} and ℱ2∞ ∶= {(𝑓 − 𝑔)2 ∶ 𝑓, 𝑔 ∈ ℱ} are 𝑅𝑛-
measurable for every 𝛿 > 0 and 𝑛. Suppose that ℱ satisfies the Uniform Entropy Condition 2 and
𝑅𝑛𝐹2 = 𝑂(1). Finally assume that the following conditions are satisfied:

1. 𝜌𝑅𝑛 seminorms converge uniformly to 𝜌𝑃0 :

sup
𝑓∈ℱ

|𝜌𝑅𝑛(𝑓) − 𝜌𝑅(𝑓)|
𝑎.𝑠.−−→ 0. (2.4)

2. For every 𝜖 > 0:
limsup
𝑛→∞

𝑅𝑛𝐹21(𝐹 ≥ 𝜖√𝑛) = 0 a.s.. (2.5)

Then:
𝔾𝑛,𝑅𝑛

𝑑−→ 𝔾𝑅 in 𝓁∞(ℱ),
where 𝔾𝑅 is a 𝑅-Brownian Bridge.





3
Independence Test

In this section we state and prove the special case of our claim in the independence test. We proceed
by stating the formal independence test setting, then we provide all the necessary theoretical tools for
the proof and we conclude with the complete proof.

Let 𝒫 be the set of all bivariate distributions and 𝒫0 be the set of independent bivariate distributions.
A bivariate random sample (𝑋1, 𝑌1), … , (𝑋𝑛 , 𝑌𝑛) is obtained from the joint distribution ℍ. We denote
ℙ,ℚ the marginal distributions of 𝑋, 𝑌, namely 𝑋 ∼ ℙ, 𝑌 ∼ ℚ. We are interested in testing whether the
random variables 𝑋, 𝑌 are independent. This translates to the joint distribution of the jointℍ being equal
to the product of the marginal distributions ℙ,ℚ. Thus, in this framework the test is stated:

𝐻0 ∶ ℍ ∈ 𝒫0 vs 𝐻1 ∶ ℍ ∈ 𝒫\𝒫0.

For a finite random sample, set the empirical measures:

ℙ𝑛 =
1
𝑛

𝑛

∑
𝑖=1
𝛿(𝑋𝑖), ℚ𝑛 =

1
𝑛

𝑛

∑
𝑖=1
𝛿(𝑌𝑖), and ℍ𝑛 =

1
𝑛

𝑛

∑
𝑖=1
𝛿(𝑋𝑖 , 𝑌𝑖). (3.1)

We also set the following measure product: ℙ𝑛⊗ℚ𝑛 =
1
𝑛2 ∑

𝑛
𝑖,𝑗=1 𝛿(𝑋𝑖 , 𝑌𝑗).

The processes defined above will completely define the bootstrap schemes, test statistics and their
asymptotic behavior. It is of high importance to highlight the difference between ℍ𝑛 and ℙ𝑛⊗ℚ𝑛. We
can see that while the process ℍ𝑛 is defined so that it estimates the joint distribution of (𝑋𝑖 , 𝑌𝑖)𝑛𝑖=1, the
process ℙ𝑛⊗ℚ𝑛 differs. When used as resampling schemes,ℍ𝑛 represents a simulation from the joint
distribution, while ℙ𝑛⊗ℚ𝑛 represents independent resampling from the marginals and a generation of
a joint sample by concatenating the marginal simulations.

Given a resampling scheme a Bootstrap sample (𝑋∗𝑖 , 𝑌∗𝑖 )𝑛𝑖=1 is generated and we denote:

ℙ̂𝑛 =
1
𝑛

𝑛

∑
𝑖=1
𝛿(𝑋∗𝑖 ), ℚ̂𝑛 =

1
𝑛

𝑛

∑
𝑖=1
𝛿(𝑌∗𝑖 ), and ℍ̂𝑛 =

1
𝑛

𝑛

∑
𝑖=1
𝛿(𝑋∗𝑖 , 𝑌∗𝑖 ).

Remark 1.5.4 implies that the empirical distribution can be seen as a special case of the empirical
measure, for instance: �̂�(𝑠, 𝑡) = ℍ𝑛((−∞, 𝑠] × (−∞, 𝑡]), �̂�∗(𝑠, 𝑡) = ℍ̂𝑛((−∞, 𝑠] × (−∞, 𝑡]).

In the next Chapter we provide a concrete characterization of the independence test setting, two
options for resampling and describe the true statistic 𝑇𝑛, as well as the Bootstrap statistics 𝑇∗𝑒𝑞𝑛 , 𝑇∗𝑐𝑛 .

3.1. Setting
Let 𝑋, 𝑌 be two random variables defined on measurable spaces (𝒳,𝒜), (𝒴, ℬ) respectively, such that
𝑋 ∼ ℙ, 𝑌 ∼ ℚ, and let the joint random variable (𝑋, 𝑌) defined on the product space (𝒳 × 𝒴,𝒜 × ℬ)
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such that (𝑋, 𝑌) ∼ ℍ. Let ℱ, 𝒢 be classes of functions defined on the spaces 𝒳,𝒴 respectively and let
ℱ × 𝒢 be the class of functions 𝑓 × 𝑔 such that:

ℱ × 𝒢 = {𝑓 × 𝑔 ∶ (𝑓 × 𝑔)(𝑥, 𝑦) = 𝑓(𝑥)𝑔(𝑦)}.

In our setting, testing independence is formalized as the following hypothesis test of equality between
probability measures.

𝐻0 ∶ ℍ = ℙ⊗ℚ vs 𝐻1 ∶ ℍ ≠ ℙ⊗ℚ.
Since there is a one-to-one mapping between probability measures and cumulative distribution func-
tions, for random variables in ℝ𝑑 the independence test can be equivalently rewritten as the test of:

𝐻0 ∶ 𝐹 = 𝐹𝑋 × 𝐹𝑌 vs 𝐻0 ∶ 𝐹 ≠ 𝐹𝑋 × 𝐹𝑌 ,

where 𝐹, 𝐹𝑋 , 𝐹𝑌 are respectively the cumulative distribution function of ℍ,ℙ,ℚ.
Set the true and bootstrap statistics:

𝑇𝑛 = ‖√𝑛(�̂� − �̂�𝑋 × �̂�𝑌)‖,
𝑇∗𝑒𝑞𝑛 = ‖√𝑛(�̂�∗ − �̂�∗𝑋 × �̂�∗𝑌)‖,
𝑇∗𝑐𝑛 = ‖√𝑛(�̂�∗ − �̂� + �̂�𝑋 × �̂�𝑌 − �̂�∗𝑋 × �̂�∗𝑌)‖.

For a finite sample X𝑛 ,Y𝑛 from ℍ, denote U𝑛 = (X𝑛 ,Y𝑛). The objective is to show that, when the null
hypothesis holds, under GR Bootstrap:

𝑑𝐵𝐿 (𝑇𝑛 , 𝑇∗𝑐𝑛 |U𝑛)
ℍ−→ 0,

and under NHR Bootstrap:

𝑑𝐵𝐿 (𝑇𝑛 , 𝑇∗𝑒𝑞𝑛 |U𝑛)
ℍ−→ 0,

so that the equivalent condition (4) from Lemma 1.5.5 holds and the respective statistics are consistent
with the true statistic under each resampling scheme.

3.2. Main results
Following the discussion in the previous Section, the combinations we pick to apply Lemma 1.5.5 are
(𝑇∗𝑒𝑞𝑛 ,NHR ) and (𝑇∗𝑐𝑛 ,GR ).

For a Bootstrap statistic 𝑇∗𝑛 , in the independence test we define the power of the test as:

ℍ ↦ 𝜋(ℍ; 𝑇𝑛 , 𝑇∗𝑛) ∶= ℍ(𝑇∗𝑛 < 𝑇𝑛|U𝑛).

Theorem 3.2.1. Under the null hypothesis ℍ ∈ 𝒫0 or equivalently ℍ = ℙ⊗ℚ, for the expressions of
the Bootstrap statistics we have the following:

1. For almost every sequence (𝑋1, 𝑌1), ..., (𝑋𝑛 , 𝑌𝑛) and (𝑋∗1 , 𝑌∗1 ), ..., (𝑋∗𝑛 , 𝑌∗𝑛) distributed according to the
probability measure 𝑃𝑛 = ℍ𝑛:

𝑑𝐵𝐿 (𝑇𝑛 , 𝑇∗𝑐𝑛 |U𝑛)
ℍ−→ 0.

2. For almost every sequence (𝑋1, 𝑌1), ..., (𝑋𝑛 , 𝑌𝑛) and (𝑋∗1 , 𝑌∗1 ), ..., (𝑋∗𝑛 , 𝑌∗𝑛) distributed according to the
probability measure 𝑃𝑛 = ℙ𝑛⊗ℚ𝑛:

𝑑𝐵𝐿 (𝑇𝑛 , 𝑇∗𝑒𝑞𝑛 |U𝑛)
ℍ−→ 0.

Theorem 3.2.2. Under the null hypothesis the following hold:

1. For a GR Bootstrap Scheme (generate Bootstrap samples from ℍ𝑛):

pvalue𝑛 = ℍ(𝑇∗𝑐𝑛 > 𝑇𝑛|U𝑛)
𝑑−→ 𝑈(0, 1).
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2. For a NHR Bootstrap Scheme (generate Bootstrap samples from ℙ𝑛⊗ℚ𝑛):

pvalue𝑛 = ℍ(𝑇
∗𝑒𝑞
𝑛 > 𝑇𝑛|U𝑛)

𝑑−→ 𝑈(0, 1).

Theorem 3.2.3. Under the alternative hypothesis the following hold:

1. For a Bootstrap Scheme of GR (generate Bootstrap samples from ℍ𝑛):

ℍ(𝑇∗𝑐𝑛 < 𝑇𝑛|U𝑛)
𝑑−→ 1.

2. For a Bootstrap Scheme of NHR (generate Bootstrap samples from ℙ𝑛⊗ℚ𝑛):

ℍ(𝑇∗𝑒𝑞𝑛 < 𝑇𝑛|U𝑛)
𝑑−→ 1.

Theorem 3.2.4. In the independence test of significance 𝛼, the following hold.

• Under GR Bootstrap, 𝑅𝑛 = ℍ𝑛, for the Bootstrap statistic 𝑇∗𝑐𝑛 :

for all ℍ ∈ 𝒫0, lim𝑛→∞𝜋(ℍ; 𝑇𝑛 , 𝑇
∗𝑐
𝑛 ) = 𝛼,

and

for all ℍ ∈ 𝒫\𝒫0, lim𝑛→∞𝜋(ℍ; 𝑇𝑛 , 𝑇
∗𝑐
𝑛 ) = 1,

• Under NHR Bootstrap, 𝑅𝑛 = ℙ𝑛⊗ℚ𝑛, for the Bootstrap statistic 𝑇∗𝑒𝑞𝑛 :

for all ℍ ∈ 𝒫0, lim𝑛→∞𝜋(ℍ; 𝑇𝑛 , 𝑇
∗𝑒𝑞
𝑛 ) = 𝛼,

and

for all ℍ ∈ 𝒫\𝒫0, lim𝑛→∞𝜋(ℍ; 𝑇𝑛 , 𝑇
∗𝑒𝑞
𝑛 ) = 1,

3.2.1. Inconsistent Combinations
In this section, we show that the combinations (𝑇∗𝑒𝑞𝑛 ,GR ), (𝑇∗𝑐𝑛 ,NHR), do not lead to hypothesis tests
with good power. To achieve that, it suffices to show that under the null hypothesis the respective
bootstrap statistics are not consistent with the true statistic 𝑇𝑛, hence it is impossible to control the
Type I error.

Theorem 3.2.5. Then under the null hypothesis the following hold:

𝑑𝐵𝐿 (𝑇𝑛 , 𝑇∗𝑒𝑞𝑛 |U𝑛) ↛ 0 under GR Bootstrap, 𝑅𝑛 = ℍ𝑛 ,
𝑑𝐵𝐿 (𝑇𝑛 , 𝑇∗𝑐𝑛 |U𝑛) ↛ 0 under NHR Bootstrap, 𝑅𝑛 = ℙ𝑛⊗ℚ𝑛 .

3.3. Empirical process point-of-view and proofs of the results
We define the following processes:

ℤ𝑛 = √𝑛 [(ℍ𝑛 − ℙ𝑛⊗ℚ𝑛) − (ℍ − ℙ⊗ℚ)] ,

and conditional on a finite sample U𝑛:

�̂�𝑛 = √𝑛 [(ℍ̂𝑛 − ℙ̂𝑛⊗ ℚ̂𝑛) − (ℍ𝑛 − ℙ𝑛⊗ℚ𝑛)] , (3.2)
�̂�𝑛 = √𝑛 (ℍ̂𝑛 − ℙ̂𝑛⊗ ℚ̂𝑛) . (3.3)

Under the null hypothesisℍ = ℙ⊗ℚ and by applying the product indicator 1(𝑋 ≤ 𝑠)⊗1(𝑌 ≤ 𝑡) we get
the test statistics 𝑇𝑛 , 𝑇∗𝑐𝑛 , 𝑇∗𝑒𝑞𝑛 respectively, as special cases of the norms of the previous processes.
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Theorems 3.3.3 and 3.3.2, imply the consistency of the empirical measure statistics:

�̂�𝑛 = √𝑛 [(ℍ̂𝑛 − ℙ̂𝑛⊗ ℚ̂𝑛) − (ℍ𝑛 − ℙ𝑛⊗ℚ𝑛)] under GR Bootstrap, 𝑅𝑛 = ℍ𝑛 ,
�̂�𝑛 = √𝑛 (ℍ̂𝑛 − ℙ̂𝑛⊗ ℚ̂𝑛) under NHR Bootstrap, 𝑅𝑛 = ℙ𝑛⊗ℚ𝑛 ,

with respect to the true empirical measure statistic:

ℤ𝑛 = √𝑛 [(ℍ𝑛 − ℙ𝑛⊗ℚ𝑛) − (ℍ − ℙ⊗ℚ)] .

The following theorem from [10] describes the asymptotic behavior of ℤ𝑛, and equivalently the dis-
tribution of the statistic 𝑇𝑛, as a special case of the former.

Theorem 3.3.1 (Theorem 3.8.1 in [10]). Let ℱ, 𝒢 be classes of measurable functions on measurable
spaces (𝑋,𝒜) and (𝑌, ℬ) respectively. If ℱ×𝒢,ℱ, and 𝒢 are ℍ-Donsker and ‖ℙ‖ℱ < ∞ and ‖ℚ‖𝒢 < ∞,
then the sequence of independence processes ℤ𝑛 conditionally on a finite sample U𝑛 converges in
distribution in 𝑙∞(ℱ × 𝒢) to the Gaussian process:

ℤℍ(𝑓 × 𝑔) = 𝔾ℍ((𝑓 − ℙ𝑓) × (𝑔 − ℚ𝑔)),

for a tight ℍ-Brownian bridge 𝔾ℍ.

3.3.1. NHR
We proceed by presenting the case for the NHR Bootstrap, i.e. resampling from the null hypothesis.
Specifically, the Bootstrap new sample is generated from the empirical product ℙ𝑛 ⊗ ℚ𝑛. In prac-
tice, what this means is that two bootstrap samples (𝑋∗𝑖 )𝑛𝑖=1 ∼ ℙ𝑛, (𝑌∗𝑖 )𝑛𝑖=1 ∼ ℚ𝑛 independently and
concatenate to results to create the joint sample (𝑋∗𝑖 , 𝑌∗𝑖 )𝑛𝑖=1 ∼ ℙ𝑛⊗ℚ𝑛.

Theorem 3.3.2 (Theorem 3.8.3 in [10]). Let ℱ and 𝒢 be separable classes of measurable functions
on measurable spaces (𝑋,𝒜) and (𝑌, ℬ) respectively such that ℱ × 𝒢 satisfies the Uniform Entropy
Condition 2 for envelope functions 𝐹, 𝐺 and 𝐹 × 𝐺 are ℍ-square integrable. Given a sequence U𝑛 =
(X𝑛 ,Y𝑛), let (𝑋∗1 , 𝑌∗1 ), ..., (𝑋∗𝑛 , 𝑌∗𝑛) generated by the probability measures 𝑃𝑛 = ℙ𝑛⊗ℚ𝑛. Then:

�̂�𝑛 = √𝑛(ℍ̂𝑛 − ℙ𝑛⊗ℚ𝑛)
𝑑−→ 𝔾ℙ⊗ℚ, in 𝑙∞(ℱ × 𝒢), conditionally on U𝑛 ,

�̂�𝑛 = √𝑛[(ℍ̂𝑛 − ℙ̂𝑛⊗ ℚ̂𝑛)]
𝑑−→ ℤℙ⊗ℚ, in 𝑙∞(ℱ × 𝒢), conditionally on U𝑛 ,

given 𝐻∞-almost every sequence (𝑋1, 𝑌1), (𝑋2, 𝑌2)..., where 𝔾ℙ⊗ℚ is a ℙ⊗ℚ-Brownian bridge.

Proof. We can rewrite the bootstrap independence process as follows:

�̂�𝑛(𝑓 × 𝑔) = √𝑛(ℍ̂𝑛 − ℙ𝑛⊗ℚ𝑛)(𝑓 × 𝑔) − √𝑛(ℙ̂𝑛 − ℙ𝑛)𝑓ℚ𝑛𝑔,
− ℙ𝑛𝑓√𝑛(ℚ̂𝑛 −ℚ𝑛)𝑔 − √𝑛(ℙ̂𝑛 − ℙ𝑛)𝑓(ℚ̂𝑛 −ℚ𝑛)𝑔.

First, we show that conditionally on every sequence of original observations U𝑛, the following hold:

(ℙ𝑛⊗ℚ𝑛)(𝐹 × 𝐺)2 = 𝑂(1), (3.4)
(ℙ𝑛⊗ℚ𝑛)(𝐹 × 𝐺)21|𝐹×𝐺|≥𝜖√𝑛 −→ 0, for every 𝜖 > 0, (3.5)

sup
ℎ1 ,ℎ2∈ℱ×𝒢

|𝜌ℙ𝑛⊗ℚ𝑛(ℎ1, ℎ2) − 𝜌ℙ⊗ℚ(ℎ1, ℎ2)| −→ 0. (3.6)

Equation 3.4 holds since the envelope 𝐹 × 𝐺 is ℍ square integrable. Then equation (3.5) can be
written as:

1
𝑛2

𝑛

∑
𝑖,𝑗=1

𝐹2(𝑋𝑖)𝐺2(𝑌𝑗)1(|𝑓 × 𝐺| ≥ 𝜖√𝑛),

and for 𝑀2 ≤ 𝜖√𝑛 this quantity is bounded by above by:

ℙ𝑛𝐹21𝐹≥𝑀ℚ𝑛𝐺2 + ℙ𝑛𝐹2ℚ𝑛𝐺21𝐺≥𝑀 , (3.7)
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which converges almost surely to a fixed value, which can be made arbitrarily small by choosing 𝑀
large. In fact

ℙ𝑛𝐹21𝐹≥𝑀ℚ𝑛𝐺2 + ℙ𝑛𝐹2ℚ𝑛𝐺21𝐺≥𝑀 =
1
𝑛2

𝑛

∑
𝑖,𝑗=1

𝐹(𝑋𝑖)𝐺(𝑌𝑗)1[𝐹(𝑋𝑖)≥𝑀]∪[𝐺(𝑋𝑗)≥𝑀],

and since {𝐹(𝑋𝑖)𝐺(𝑌𝑗) ≥ 𝜖√𝑛} ⊂ {𝐹(𝑋𝑖) ≥ 𝑀} ∪ {𝐺(𝑋𝑗) ≥ 𝑀} for 𝑀2 ≤ 𝜖√𝑛, the upper bound follows.
This argument shows the validity of Condition 2.5 in this setting.

Finally:

𝜌ℙ𝑛⊗ℚ𝑛 = (ℙ𝑛⊗ℚ𝑛)(𝑓 × 𝑔 − (ℙ𝑛⊗ℚ𝑛)(𝑓 × 𝑔))2
= ℙ𝑛𝑓2 ⋅ ℚ𝑛𝑔2 − (ℙ𝑛𝑓)2(ℚ𝑛𝑔)2,

and:

𝜌ℙ⊗ℚ = ℙ𝑓2 ⋅ ℚ𝑔2 − (ℙ𝑓)2(ℚ𝑔)2.

By substracting the previous quantities and taking absolute values and supremum over 𝑓 × 𝑔 ∈ ℱ × 𝒢
we show that Equation 3.6 is satisfied, which implies that Condition 2.4 holds.

Hence we can apply Theorem 2.3.1, for 𝑃𝑛 = ℙ𝑛⊗ℚ𝑛 and we obtain the convergence of �̂�𝑛.
We have:

(ℍ̂𝑛 − ℙ𝑛⊗ℚ𝑛)(𝑓 × 𝑔) = ∫𝑓 × 𝑔𝑑(ℍ̂𝑛 − ℙ𝑛⊗ℚ𝑛)

= ∫𝑓 × 𝑔𝑑ℍ̂𝑛 −∫𝑓 × 𝑔𝑑ℙ𝑛 × ℚ𝑛 .

But:

∫𝑓 × 𝑔𝑑ℍ̂𝑛 =
1
𝑛

𝑛

∑
𝑖=1
∫𝑓 × 𝑔𝑑𝛿(𝑋∗𝑖 , 𝑌∗𝑖 )

= 1
𝑛

𝑛

∑
𝑖=1
𝑓(𝑋∗𝑖 )𝑔(𝑌∗𝑖 ),

and:

∫𝑓 × 𝑔𝑑ℙ𝑛⊗ℚ𝑛 =
1
𝑛2

𝑛

∑
𝑖,𝑗=1

𝑓(𝑋𝑖)𝑔(𝑌𝑗).

By setting 𝑔 = 1, in the previous we get:

∫𝑓 × 1𝑑ℍ̂𝑛 =
1
𝑛

𝑛

∑
𝑖=1
𝑓(𝑋∗𝑖 ) = ℙ̂𝑛𝑓,

∫𝑓 × 1𝑑ℙ𝑛⊗ℚ𝑛 =
1
𝑛

𝑛

∑
𝑖=1
𝑓(𝑋𝑖) = ℙ𝑛𝑓,

√𝑛(ℍ̂𝑛 − ℙ𝑛⊗ℚ𝑛)(𝑓 × 1) = √𝑛(ℙ̂𝑛 − ℙ𝑛)
𝑑−→ 𝔾ℙ⊗ℚ(𝑓 × 1),



24 3. Independence Test

and by setting 𝑓 = 1 we get:

∫1 × 𝑔𝑑ℍ̂𝑛 =
1
𝑛

𝑛

∑
𝑖=1
𝑔(𝑌∗𝑖 ) = ℚ̂𝑛𝑔,

∫1 × 𝑔𝑑ℙ𝑛⊗ℚ𝑛 =
1
𝑛

𝑛

∑
𝑖=1
𝑔(𝑌𝑖) = ℚ𝑛𝑔,

√𝑛(ℍ̂𝑛 − ℙ𝑛⊗ℚ𝑛)(1 × 𝑔) = √𝑛(ℚ̂𝑛 −ℚ𝑛)
𝑑−→ 𝔾ℙ⊗ℚ(1 × 𝑔),

and by making use of the Continuous Mapping Theorem and Slutsky’s Lemma, we get that the inde-
pendence process:

�̂�𝑛(𝑓 × 𝑔)
𝑑−→ 𝔾ℙ⊗ℚ(𝑓 × 𝑔) − 𝔾ℙ⊗ℚ(𝑓 × 1)ℚ𝑔 − ℙ𝑓𝔾ℙ⊗ℚ(1 × 𝑔),

which is a Gaussian process with the same covariance as ℤℙ⊗ℚ.

3.3.2. GR
Theorem 3.3.3. Let ℱ and 𝒢 be separable classes of measurable functions on measurable spaces
(𝑋,𝒜) and (𝑌, ℬ) respectively such that ℱ × 𝒢 satisfies the Uniform Entropy Condition 2 for enve-
lope functions 𝐹, 𝐺 and 𝐹 × 𝐺, that are ℍ-square integrable. Given a sequence U𝑛 = (X𝑛 ,Y𝑛), let
(𝑋∗1 , 𝑌∗1 ), ..., (𝑋∗𝑛 , 𝑌∗𝑛) distributed according to the probability measure 𝑅𝑛 = ℍ𝑛. Then:

�̂�𝑛 = √𝑛(ℍ̂𝑛 −ℍ𝑛)
𝑑−→ 𝔾ℍ, in 𝑙∞(ℱ × 𝒢), conditionally on U𝑛 ,

�̂�𝑛 = √𝑛[(ℍ̂𝑛 − ℙ̂𝑛⊗ ℚ̂𝑛) − (ℍ𝑛 − ℙ𝑛⊗ℚ𝑛)]
𝑑−→ ℤℍ, in 𝑙∞(ℱ × 𝒢), conditionally on U𝑛 ,

given 𝐻∞-almost every sequence (𝑋1, 𝑌1), (𝑋2, 𝑌2)..., where 𝔾ℍ is an ℍ-Brownian bridge.

Proof. We can rewrite the bootstrap independence process as follows:

�̂�𝑛(𝑓 × 𝑔) = √𝑛(ℍ̂𝑛 −ℍ𝑛)(𝑓 × 𝑔) − √𝑛(ℙ̂𝑛 − ℙ𝑛)𝑓ℚ𝑛𝑔
− ℙ𝑛𝑓√𝑛(ℚ̂𝑛 −ℚ𝑛)𝑔 − √𝑛(ℙ̂𝑛 − ℙ𝑛)𝑓(ℚ̂𝑛 −ℚ𝑛)𝑔.

First, we show that conditionally on every sequence of original observations U𝑛, the following hold:

(ℍ𝑛)(𝐹 × 𝐺)2 = 𝑂(1), (3.8)
ℍ𝑛(𝐹 × 𝐺)21|𝐹×𝐺|≥𝜖√𝑛 −→ 0, for every 𝜖 > 0, (3.9)

sup
ℎ1 ,ℎ2∈ℱ×𝒢

|𝜌ℍ𝑛(ℎ1, ℎ2) − 𝜌ℍ(ℎ1, ℎ2)| −→ 0. (3.10)

Equation (3.8) holds since the enbelope function is ℍ squre integrable. Then Equation (3.9) can be
written as:

1
𝑛2

𝑛

∑
𝑖=1
𝐹2(𝑋𝑖)𝐺2(𝑌𝑖)1|𝐹×𝐺|≥𝜖√𝑛 ,

which is again bounded by the quantity in (3.7). This argument shows the validity of Condition 2.5 in
this setting.

Finally:

𝜌ℍ𝑛 = (ℍ𝑛)(𝑓 × 𝑔 −ℍ𝑛(𝑓 × 𝑔))2
= ℍ𝑛(𝑓 × 𝑔)2 − (ℍ𝑛(𝑓 × 𝑔))2,
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and:

𝜌ℍ = ℍ(𝑓 × 𝑔)2 − (ℍ(𝑓 × 𝑔))2.

By substracting the previous quantities and taking absolute values and supremum over 𝑓 × 𝑔 ∈ ℱ × 𝒢
we show that Equation 3.10 is satisfied, which implies that Condition 2.4 holds.

Then, we apply Theorem 2.3.1, for 𝑅𝑛 = ℍ𝑛 and we obtain the convergence of �̂�𝑛.
We have:

(ℍ̂𝑛 −ℍ𝑛)(𝑓 × 𝑔) = ∫𝑓 × 𝑔𝑑(ℍ̂𝑛 −ℍ𝑛)

= ∫𝑓 × 𝑔𝑑ℍ̂𝑛 −∫𝑓 × 𝑔𝑑ℍ𝑛 .

But:

∫𝑓 × 𝑔𝑑ℍ̂𝑛 =
1
𝑛

𝑛

∑
𝑖=1
∫𝑓 × 𝑔𝑑𝛿(𝑋∗𝑖 , 𝑌∗𝑖 )

= 1
𝑛

𝑛

∑
𝑖=1
𝑓(𝑋∗𝑖 )𝑔(𝑌∗𝑖 ),

and:

∫𝑓 × 𝑔𝑑ℍ𝑛 =
1
𝑛2

𝑛

∑
𝑖=1
𝑓(𝑋𝑖)𝑔(𝑌𝑖).

By setting 𝑔 = 1, in the previous we get:

∫𝑓 × 1𝑑ℍ̂𝑛 =
1
𝑛

𝑛

∑
𝑖=1
𝑓(𝑋∗𝑖 ) = ℙ̂𝑛𝑓,

∫𝑓 × 1𝑑ℙ𝑛⊗ℚ𝑛 =
1
𝑛

𝑛

∑
𝑖=1
𝑓(𝑋𝑖) = ℙ𝑛𝑓,

√𝑛(ℍ̂𝑛 −ℍ𝑛)(𝑓 × 1) = √𝑛(ℙ̂𝑛 − ℙ𝑛)
𝑑−→ 𝔾ℍ(𝑓 × 1),

and by setting 𝑓 = 1 we get:

∫1 × 𝑔𝑑ℍ̂𝑛 =
1
𝑛

𝑛

∑
𝑖=1
𝑔(𝑌∗𝑖 ) = ℚ̂𝑛𝑔,

∫1 × 𝑔𝑑ℙ𝑛⊗ℚ𝑛 =
1
𝑛

𝑛

∑
𝑖=1
𝑔(𝑌𝑖) = ℚ𝑛𝑔,

√𝑛(ℍ̂𝑛 −ℍ𝑛)(1 × 𝑔) = √𝑛(ℚ̂𝑛 −ℚ𝑛)
𝑑−→ 𝔾ℍ(1 × 𝑔),

and by making use of the Continuous Mapping Theorem and Slutsky’s Lemma, we get that the inde-
pendence process:

𝕊𝑛(𝑓 × 𝑔)
𝑑−→ 𝔾ℍ(𝑓 × 𝑔) − 𝔾ℍ(𝑓 × 1)ℚ𝑔 − ℙ𝑓𝔾ℍ(1 × 𝑔), (3.11)

which is a Gaussian process with the same covariance as ℤ𝐻.
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According to 2.1.3 and the discussion resulting in the covariance of a ℙ-Brownian Bridge in (2.3), a
Brownian Bridge is completely determined by tightness and by:

𝔼ℙ(𝔾𝑓1𝔾𝑓2) = ℙ(𝑓1𝑓2) − ℙ(𝑓1)ℙ(𝑓2).

By making use of this expression for the covariance and the Fubini Theorem for probability measures
we verify the claim that the limit in (3.11) has the same covariance as ℤℍ and the limit process has
indeed the same distribution with the Brownian Bridge.

3.3.3. General Proofs for Independence Test
Theorem 3.3.4. Assume the null hypothesis holds.

Then, for almost every sequence U𝑛 = (X𝑛 ,Y𝑛) and (𝑋∗1 , 𝑌∗1 ), ..., (𝑋∗𝑛 , 𝑌∗𝑛) distributed according to the
probability measure 𝑃𝑛 = ℍ𝑛:

𝑑𝐵𝐿(ℤ𝑛 , �̂�𝑛|U𝑛)
ℍ−→ 0.

Similarly, for almost every sequence (𝑋1, 𝑌1), ..., (𝑋𝑛 , 𝑌𝑛) and (𝑋∗1 , 𝑌∗1 ), ..., (𝑋∗𝑛 , 𝑌∗𝑛) generated by the
probability measures 𝑃𝑛 = ℙ𝑛⊗ℚ𝑛:

𝑑𝐵𝐿(ℤ𝑛 , �̂�𝑛|U𝑛)
ℍ−→ 0.

The preceding theorem is a direct consequence of Theorem 3.3.3 and Theorem 3.3.2.

We now proceed with the consistency of the Bootstrap statistics under the null hypothesis and the
desired result for the asymptotic p-values.

Proof of Theorem 3.2.1. First, as mentioned earlier, by applying the tensor product (1(𝑋 ≤ 𝑠) × 1(𝑌 ≤
𝑡)) to the process ℤ𝑛, under the null hypothesis the true statistic 𝑇𝑛 is obtained.

For Assertion 1 of the Theorem we apply the same tensor product to the process �̂�𝑛 and by making
use of the Theorem 3.3.4 and the Continuous Mapping Theorem we obtain the weak convergence:

𝑑𝐵𝐿 (𝑇𝑛 , 𝑇∗𝑐𝑛 |U𝑛)
ℍ−→ 0.

For Assertion 2 of the Theorem we apply the same tensor product to the process �̂�𝑛 and by making
use of the Theorem 3.3.4 and the Continuous Mapping Theorem we obtain the weak convergence:

𝑑𝐵𝐿 (𝑇𝑛 , 𝑇∗𝑒𝑞𝑛 |U𝑛)
ℍ−→ 0.

We now present the proof of Theorems 3.2.2 and 3.2.3, for the p-values under the null and alterna-
tive hypothesis, respectively.

Proof of Theorem 3.2.2. Combine Theorem 3.2.1 with Corollary 1.6 and the assertion follows.

Proof of Theorem 3.2.3. Let ℝ̂𝑛 = ℤ𝑛 + √𝑛(ℍ − ℙ ⊗ ℚ), denote the process that produces the true
statistic 𝑇 by applying the tensor product 𝑓 × 𝑔 = 1(−∞, 𝑠) × 1(−∞, 𝑡) = 1𝐴 and the norm, where:

𝐴 = (−∞, 𝑠) × (−∞, 𝑡). (3.12)

Furthermore, denote ℎ ∶ 𝒫 → ℝ the continuous mapping that applies 𝑓 × 𝑔 and the norm to the inde-
pendence processes, i.e. :

𝑇𝑛(𝑋1, … , 𝑋𝑛) = ℎ(ℝ̂𝑛),
𝑇∗𝑐𝑛 (𝑋1, … , 𝑋𝑛) = ℎ(�̂�𝑛),
𝑇∗𝑒𝑞𝑛 (𝑋1, … , 𝑋𝑛) = ℎ(�̂�𝑛).
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Specifically, we get:

‖ℝ̂𝑛(𝑓 × 𝑔)‖ = ‖ℤ𝑛(𝑓 × 𝑔) + √𝑛(ℍ(1(−∞, 𝑠) × 1(−∞, 𝑡)))‖.
Now, recall from Theorem 3.3.1 that:

ℤ𝑛
𝑑−→ ℤℍ.

Then by applying 𝜙 to ℝ̂𝑛, under 𝐻1, we get:

lim
𝑛→∞

𝑇(𝑋1, … , 𝑋𝑛) = lim
𝑛→∞

‖ℤ𝑛(𝑓 × 𝑔) + √𝑛(ℍ(1(−∞, 𝑠) × 1(−∞, 𝑡)))‖ (3.13)

≥ lim
𝑛→∞

‖√𝑛(ℍ(1(−∞, 𝑠) × 1(−∞, 𝑡)))‖ − ‖ℤℍ‖ = +∞, (3.14)

where we used the triangle inequality and the Continuous Mapping Theorem for ℎ.
For Assertion 1 of the Theorem we recall from Theorem 3.3.3 that:

�̂�𝑛|U𝑛
𝑑−→ ℤℍ,

which is a Gaussian process and:
ℍ(ℤℍ < ∞) = 1.

Hence by applying ℎ to �̂�𝑛:
lim
𝑛→∞

ℍ(𝑇∗𝑐𝑛 < 𝑇𝑛|U𝑛) = lim
𝑛→∞

ℍ(ℎ(�̂�𝑛) < ℎ(ℝ̂𝑛)|U𝑛)

= ℍ(ℎ(ℤℍ) < ∞) = 1.
Similarly for Assertion 2, from Theorem 3.3.2:

ℝ̂𝑛|U𝑛
𝑑−→ ℤℙ⊗ℚ,

which is a Gaussian process and:
ℍ(ℤℙ⊗ℚ < ∞) = 1.

Hence by applying ℎ to ℝ̂𝑛:
lim
𝑛→∞

ℍ(𝑇∗𝑒𝑞𝑛 < 𝑇𝑛|U𝑛) = lim
𝑛→∞

ℍ(ℎ(ℝ̂𝑛) < ℎ(ℝ̂𝑛)|U𝑛)

= ℍ(ℎ(ℤℙ⊗ℚ) < ∞) = 1.
and the claim has been proved.

Finally, we show that the combinations (𝑇∗𝑒𝑞𝑛 ,GR ), (𝑇∗𝑐𝑛 ,NHR) do not result in hypothesis tests with
good power. .

Proof of Theorem 3.2.5. First, from Theorem 3.3.1 we have that:

ℤ𝑛
𝑑−→ ℤℍ.

For the first part, from Theorem 3.3.3, we have that �̂�𝑛|U𝑛
𝑑−→ ℤℍ. We can rewrite �̂�𝑛 and obtain the

convergence under 𝐻0:
�̂�𝑛 = �̂�𝑛 + ℤ𝑛

𝑑−→ 2ℤℍ conditional on U𝑛 .
From the Continuous Mapping Theorem:

lim
𝑛→∞

𝑑𝐵𝐿 (𝑇𝑛 , 𝑇∗𝑒𝑞𝑛 |U𝑛) = lim
𝑛→∞

𝑑𝐵𝐿(ℎ(ℤ𝑛), ℎ(�̂�𝑛)) = 𝑑𝐵𝐿(ℎ(ℤℍ), ℎ(2ℤℍ)) ≠ 0.

For the second part, from Theorem 3.3.2 we have �̂�𝑛
𝑑−→ ℤℙ⊗ℚ. Similarly under 𝐻0:

�̂�𝑛 = �̂�𝑛 − ℤ𝑛
𝑑−→ ℤℙ⊗ℚ − ℤℍ

𝑑= 0,
where the convergence holds conditionally on U𝑛. By applying the Continuous Mapping Theorem:

lim
𝑛→∞

𝑑𝐵𝐿 (𝑇𝑛 , 𝑇∗𝑐𝑛 |U𝑛) = lim
𝑛→∞

𝑑𝐵𝐿(ℎ(ℤ𝑛), ℎ(�̂�𝑛)) = 𝑑𝐵𝐿(ℎ(ℤℍ), ℎ(0)) ≠ 0.





4
Regression Slope Test

4.1. Setting
Consider the Regression setting as defined in Section 1.6.1. In this setting we observe a joint sample
(𝑋𝑖 , 𝑌𝑖)𝑛𝑖=1 from a joint distribution (𝑋, 𝑌) ∼ ℍ. Then the regression model admits the following assump-
tions:

𝑌𝑖 = 𝑎 + 𝑏𝑋𝑖 + 𝜖𝑖 , (4.1)
𝔼(𝜖𝑖) = 0, (4.2)
𝑉𝑎𝑟(𝜖𝑖) = 𝜎2𝜖 . (4.3)

We denote ℙ,ℚ the marginal distributions of 𝑋, 𝑌 respectively, i.e. 𝑋 ∼ ℙ, 𝑌 ∼ ℚ. Similarly, as in
the independence test, we assume that the random variables 𝑋, 𝑌 are defined on measurable spaces
(𝒳,𝒜), (𝒴, ℬ). Next, denote 𝜙 ∶ 𝒟[0, 1] −→ ℝ the Hadamard differentiable mapping:

𝜙(ℍ) = 𝔼ℍ(𝑋𝑌) − 𝔼ℍ(𝑋)𝔼ℍ(𝑌)
𝔼ℍ(𝑋2) − 𝔼ℍ(𝑋)2

.

It is known that 𝑏 = 𝜙(ℍ). We want to test the following hypothesis:

𝐻0 ∶ 𝑏 = 0 vs 𝐻1 ∶ 𝑏 ≠ 0.

or the test can be framed equivalently:

𝐻0 ∶ 𝜙(ℍ) = 0 vs 𝐻1 ∶ 𝜙(ℍ) ≠ 0.

Let ℍ𝑛 = ∑𝑛𝑖=1 𝛿(𝑋𝑖 , 𝑌𝑖) the empirical process of the joint sample. Then for the OLS estimator �̂� the
following holds:

�̂� =
𝔼ℍ𝑛(𝑋𝑌) − 𝔼ℍ𝑛(𝑋)𝔼ℍ𝑛(𝑌)
𝔼ℍ𝑛(𝑋2) − 𝔼ℍ𝑛(𝑋)2

= 𝜙(ℍ𝑛).

Given an original sample (𝑋𝑖 , 𝑌𝑖)𝑛𝑖=1 and a Bootstrap sample (𝑋∗𝑖 , 𝑌∗𝑖 )𝑛𝑖=1, we remind the empirical pro-
cesses:

ℍ𝑛 =
1
𝑛

𝑛

∑
𝑖=1
𝛿(𝑋𝑖 , 𝑌𝑖),

ℍ̂𝑛 =
1
𝑛

𝑛

∑
𝑖=1
𝛿(𝑋∗𝑖 , 𝑌∗𝑖 ).

29
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Based on the empirical processes, the following processes are defined:

ℤ𝑛 = √𝑛(𝜙(ℍ𝑛) − 𝜙(ℍ)), (4.4)
𝕊𝑛 = √𝑛(𝜙(ℍ̂𝑛) − 𝜙(ℍ𝑛)), (4.5)
𝕋𝑛 = √𝑛𝜙(ℍ̂𝑛), (4.6)

and we set the true and Bootstrap statistics as follows:

𝑇𝑛 = √𝑛|�̂�|,
𝑇∗𝑐𝑛 = |𝕊𝑛| = √𝑛|�̂�∗ − �̂�|,
𝑇∗𝑒𝑞𝑛 = |𝕋𝑛| = √𝑛|�̂�∗|.

The objective is to show that, when the null hypothesis holds, under GR Bootstrap:

𝑑𝐵𝐿 (𝑇𝑛 , 𝑇∗𝑐𝑛 |U𝑛)
ℍ−→ 0,

while under NHR Bootstrap:

𝑑𝐵𝐿 (𝑇𝑛 , 𝑇∗𝑒𝑞𝑛 |U𝑛)
ℍ−→ 0.

Under the null hypothesis we obtain the true statistic is obtained by 𝑇𝑛 = ‖ℤ𝑛‖. Theorems 4.3.3,
4.3.4 imply the consistency with respect to the true statistic ℤ𝑛:

𝕊𝑛 in GR Bootstrap, 𝑅𝑛 = ℍ𝑛 ,
𝕋𝑛 in NHR Bootstrap, 𝑅𝑛 = ℙ𝑛⊗ℚ𝑛 .

First, we display the asymptotic behaviour of the original process ℤ𝑛, the limit of which, under the null
hypothesis, is the same as the limit of the true statistic 𝑇𝑛, normed. In order to examine the asymptotic
behaviour of these processes we make use of the Delta Method.
Theorem 4.1.1 (Delta Method). [Theorem 3.9.4 in[10]] Let 𝔻,𝔼 be metrizable topological spaces. Let
𝜙 ∶ 𝔻𝜙 ↦ 𝔼 be Hadamard differentiable at 𝜃 tangentially to 𝔻0. Let 𝑋𝑛 ∶ Ω𝑛 ↦ 𝔻𝜙 be maps with

𝑟𝑛(𝑋𝑛 − 𝜃)
𝑑−→ 𝑋, for a sequence of constants 𝑟𝑛 −→ ∞, where 𝑋 is separable and takes values in 𝔻0.

Then:
𝑟𝑛(𝜙(𝑋𝑛) − 𝜙(𝜃))

𝑑−→ 𝜙′𝜃(𝑋).
In this setting we are interested in the asymptotic behavior of a Hadamard transformation of ℍ𝑛,

hence we replace 𝑋𝑛 by ℍ𝑛, where the randomness of ℍ𝑛 is derived from the random sample X𝑛. The
Donsker theorem gives a convergence rate of 𝑟𝑛 = √𝑛, 𝜃 = ℍ, and 𝔾ℍ is the asymptotic limit of the
empirical process, equivalent to the limit 𝑋, in the preceding theorem. Following this discussion, we
apply the Delta method to obtain the limit of the process ℤ𝑛.
Theorem 4.1.2. Let 𝑋, 𝑌 random variables defined on on measurable spaces (𝒳,𝒜), (𝒴, ℬ) respec-
tively and ℱ, 𝒢 classes of functions the equivalent measure spaces. Denote ℍ the joint distribution of
𝑋, 𝑌 on the measurable space (𝒳 × 𝒴,𝒜 × ℬ). If the class ℱ × 𝒢 is ℍ-Donsker then the sequence ℤ𝑛
converges in distribution in 𝓁∞(ℱ × 𝒢):

ℤ𝑛
𝑑−→ 𝜙′ℍ(𝔾ℍ),

where 𝔾ℍ is an ℍ−Brownian Bridge and 𝜙′ is the Hadamard derivative of 𝜙.
Proof. The class of functions ℱ × 𝒢 is Donsker thus, for the empirical measure ℍ𝑛, it holds that:

√𝑛(ℍ𝑛 −ℍ)
𝑑−→ 𝔾ℍ,

where 𝔾ℍ is an ℍ−Brownian Bridge. Further, 𝜙 is a Hadamard differentiable function, thus the Delta
method implies:

√𝑛(𝜙(ℍ𝑛) − 𝜙(ℍ))
𝑑−→ 𝜙′ℍ(𝔾ℍ),

which concludes the proof.



4.2. Main Results 31

Remark 4.1.3. Note that the Hadamard derivative is a linear transformation of its inputs. Hence, 𝜙′
calculated at a Brownian Bridge 𝔾, returns a Gaussian process with mean zero.

4.2. Main Results
Theorem 4.2.1. Under the null hypothesis 𝑏 = 𝜙(ℍ) = 0, for the expressions of the true and Bootstrap
statistics, as in (4.4), the following hold:

1. For almost every sequence (𝑋1, 𝑌1), ..., (𝑋𝑛 , 𝑌𝑛) and (𝑋∗1 , 𝑌∗1 ), ..., (𝑋∗𝑛 , 𝑌∗𝑛) distributed according to the
probability measure 𝑅𝑛 = ℍ𝑛:

𝑑𝐵𝐿 (𝑇𝑛 , 𝑇∗𝑐𝑛 |U𝑛)
ℍ−→ 0.

2. For almost every sequence (𝑋1, 𝑌1), ..., (𝑋𝑛 , 𝑌𝑛) and (𝑋∗1 , 𝑌∗1 ), ..., (𝑋∗𝑛 , 𝑌∗𝑛) distributed according to the
probability measure 𝑅𝑛 = ℙ𝑛⊗ℚ𝑛:

𝑑𝐵𝐿 (𝑇𝑛 , 𝑇∗𝑒𝑞𝑛 |U𝑛)
ℍ−→ 0.

Theorem 4.2.2. Under the null hypothesis the following hold:

1. For a Bootstrap Scheme of GR (generate Bootstrap samples from ℍ𝑛):

pvalue𝑛 = ℍ(𝑇∗𝑐𝑛 > 𝑇𝑛|U𝑛)
𝑑−→ 𝑈(0, 1).

2. For a Bootstrap Scheme of NHR (generate Bootstrap samples from ℙ𝑛⊗ℚ𝑛):

pvalue𝑛 = ℍ(𝑇
∗𝑒𝑞
𝑛 > 𝑇𝑛|U𝑛)

𝑑−→ 𝑈(0, 1).

Theorem 4.2.3. Under the alternative hypothesis the following hold:

1. Under GR Bootstrap, 𝑅𝑛 = ℍ𝑛:
ℍ(𝑇∗𝑐𝑛 < 𝑇𝑛|U𝑛)

𝑑−→ 1.

2. Under GR Bootstrap, 𝑅𝑛 = ℙ𝑛⊗ℚ𝑛:

ℍ(𝑇∗𝑒𝑞𝑛 < 𝑇𝑛|U𝑛)
𝑑−→ 1.

Theorem 4.2.4. Then under the null hypothesis the following hold:

𝑑𝐵𝐿 (𝑇𝑛 , 𝑇∗𝑐𝑛 |U𝑛) ↛ 0 under GR Bootstrap, 𝑅𝑛 = ℍ𝑛 ,
𝑑𝐵𝐿 (𝑇𝑛 , 𝑇∗𝑒𝑞𝑛 |U𝑛) ↛ 0 under NHR Bootstrap, 𝑅𝑛 = ℙ𝑛⊗ℚ𝑛 .

For a Bootstrap statistic 𝑇∗𝑛 , in the independence test we define the power of the test as:

ℍ ↦ 𝜋(ℍ; 𝑇𝑛 , 𝑇∗𝑛) ∶= ℍ(𝑇∗𝑛 < 𝑇𝑛|X𝑛).
Theorem 4.2.5. In the Regression Slope test of significance 𝛼, the following hold.

• Under GR Bootstrap, 𝑅𝑛 = ℍ𝑛, for the Bootstrap statistic 𝑇∗𝑐𝑛 :

for all ℍ ∈ 𝒫0, lim𝑛→∞𝜋(ℍ; 𝑇𝑛 , 𝑇
∗𝑐
𝑛 ) = 𝛼,

and

for all ℍ ∈ 𝒫\𝒫0, lim𝑛→∞𝜋(ℍ; 𝑇𝑛 , 𝑇
∗𝑐
𝑛 ) = 1.

• Under NHR Bootstrap, 𝑅𝑛 = ℙ𝑛⊗ℚ𝑛, for the Bootstrap statistic 𝑇∗𝑛 :
for all ℍ ∈ 𝒫0, lim𝑛→∞𝜋(ℍ; 𝑇𝑛 , 𝑇

∗𝑒𝑞
𝑛 ) = 𝛼,

and

for all ℍ ∈ 𝒫\𝒫0, lim𝑛→∞𝜋(ℍ; 𝑇𝑛 , 𝑇
∗𝑒𝑞
𝑛 ) = 1,
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4.3. Hadamard Derivative and Proof of Results
Let (𝑋𝑖 , 𝑌𝑖) ∼ ℍ a random sample and set the empirical processes:

ℙ𝑛 =
1
𝑛

𝑛

∑
𝑖=1
𝛿(𝑋𝑖),

ℚ𝑛 =
1
𝑛

𝑛

∑
𝑖=1
𝛿(𝑌𝑖).

As mentioned in the independence test, we can generate different Bootstrap samples by simulating
from ℍ𝑛 and ℙ𝑛⊗ℚ𝑛 and they belong to GR and NHR Bootstrap schemes respectively.

The Donsker Theorem implies that:

√𝑛(ℍ𝑛 −ℍ)
𝑑−→ 𝔾ℍ.

The mapping 𝜙 satisfies the assumptions for the Delta method, hence:

√𝑛(𝜙(ℍ𝑛) − 𝜙(ℍ))
𝑑−→ 𝜙′ℍ(𝔾ℍ).

Under the null hypothesis it holds that:

√𝑛𝜙(ℍ𝑛)
𝑑−→𝜙′ℍ(𝔾ℍ).

In order to show consistency we would require that the asymptotic limit of the Bootstrap statistic
would be equal to 𝜙′ℍ(𝔾ℍ), hence the motivation to calculate the Hadamard Derivative of 𝜙 and for
probability measure ℍ and random variable 𝜖:

𝜙′𝐻(𝜖) =
𝔼𝜖(𝑋𝑌) − 𝔼𝐻(𝑋)𝔼𝜖(𝑌) − 𝔼𝜖(𝑋)𝔼𝐻(𝑌) − 𝜙(𝐻)𝔼𝐻(𝑌)𝔼𝜖(𝑋2) + 2𝜙(𝐻)𝔼𝐻(𝑋)

𝔼𝐻(𝑋2) − 𝔼𝐻(𝑋)2
.

The proof of this calculation is given on Lemma A.0.1 of the Appendix A.

In a natural manner, it is of high interest to extend the Delta Method for sequences according to the
following theorem.

Definition 4.3.1. A mapping 𝜙 ∶ 𝔻𝜙 ↦ 𝔼 is called Uniformly Hadamard differentiable if:

𝑟𝑛(𝜙(𝜃𝑛 + 𝑟−1𝑛 ℎ𝑛) − 𝜙(𝜃𝑛))
𝑑−→ 𝜙′𝜃(ℎ), (4.7)

for a sequence of constants 𝑟𝑛 −→ ∞, for every converging sequence ℎ𝑛 with 𝜃𝑛 + 𝑟−1𝑛 ℎ𝑛 ∈ 𝔻𝜙 for all 𝑛
and ℎ𝑛 → ℎ ∈ 𝔻0 and some arbitrary map 𝜙′𝜃 on 𝔻0.

Theorem 4.3.2 (Delta Method). [Theorem 3.9.5 in[10]] Let 𝔻,𝔼 be metrizable topological variable
spaces and let 𝑟𝑛 sequence of constants such that 𝑟𝑛 → ∞. Let 𝜙 ∶ 𝔻𝜙 ↦ 𝔼 Uniformly Hadamard
differentiable according to Definition 4.3.1.

Let 𝑋𝑛 ∶ Ω𝑛 ↦ 𝔻𝜙 be maps with 𝑟𝑛(𝑋𝑛 − 𝜃𝑛)
𝑑−→ 𝑋, for a sequence of constants 𝑟𝑛 −→ ∞, where 𝑋 is

separable and takes values in 𝔻0. Then:

𝑟𝑛(𝜙(𝑋𝑛) − 𝜙(𝜃𝑛))
𝑑−→ 𝜙′𝜃(𝑋).

The condition in Definition (4.3.1) is the sufficient condition for 𝜙, to extend the the Delta Method
for the Central Limit Theorem under sequences.

Theorem 4.3.3. [GR Bootstrap] Let ℱ, 𝒢 separable classes of measurable functions on measurable
spaces (𝒳,𝒜), (𝒴, ℬ) such that ℱ × 𝒢 satisfies the Uniform Entropy Condition for envelope functions
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𝐹, 𝐺, 𝐹 × 𝐺 that are ℍ-square integrable. Given a sample U𝑛 = (X𝑛 ,Y𝑛) from ℍ𝑛, let (𝑋∗𝑖 , 𝑌∗𝑖 )𝑛𝑖=1 a
Bootstrap sample generated by 𝑅𝑛 = ℍ𝑛. Conditionally on U𝑛 denote:

�̂�𝑛 = √𝑛(𝜙(ℍ̂𝑛) − 𝜙(ℍ𝑛)).

Then:
�̂�𝑛|U𝑛

𝑑−→ 𝜙′ℍ(𝔾ℍ).
for ℍ∞-almost every sequence (𝑋1, 𝑌1), (𝑋2, 𝑌2), …, where 𝔾ℍ is a ℍ Brownian Bridge.

Proof. As mentioned in the previous chapter, the sequence 𝑅𝑛 = ℍ𝑛, satisfies the conditions for the
Theorem 2.3.1 with limit ℍ, hence:

√𝑛(ℍ̂𝑛 −ℍ𝑛)
𝑑−→ 𝔾ℍ.

Further, 𝜙 satisfies the conditions for Theorem 4.3.2, hence:

√𝑛(𝜙(ℍ̂𝑛) − 𝜙(ℍ𝑛))
𝑑−→ 𝜙′ℍ(𝔾ℍ),

which concludes the proof.

Theorem 4.3.4. [NHR Bootstrap] Let ℱ, 𝒢 separable classes of measurable functions on measurable
spaces (𝒳,𝒜), (𝒴, ℬ) such that ℱ × 𝒢 satisfies the Uniform Entropy Condition for envelope functions
𝐹, 𝐺, 𝑓 × 𝑔 that are ℍ-square integrable. Given a sample U𝑛 = (X𝑛 ,Y𝑛) from ℍ, let (𝑋∗𝑖 , 𝑌∗𝑖 )𝑛𝑖=1 a
Bootstrap sample generated by 𝑅𝑛 = ℙ𝑛⊗ℚ𝑛. Conditionally on U𝑛 denote:

�̂�𝑛 = √𝑛𝜙(ℍ̂𝑛).

Then:
�̂�𝑛|U𝑛

𝑑−→ 𝜙′ℙ⊗ℚ(𝔾ℙ⊗ℚ),
for ℍ∞-almost every sequence (𝑋1, 𝑌1), (𝑋2, 𝑌2), …, where 𝔾ℙ⊗ℚ is a ℙ⊗ℚ Brownian Bridge.

Proof. As mentioned in the previous chapter, the sequence 𝑅𝑛 = ℙ𝑛⊗ℚ𝑛, satisfies the conditions for
the Theorem 2.3.1 with limit ℙ⊗ℚ, hence:

√𝑛(ℍ̂𝑛 − ℙ𝑛⊗ℚ𝑛)
𝑑−→ 𝔾ℙ⊗ℚ.

Further, 𝜙 satisfies the conditions for Theorem 4.3.2, hence:

√𝑛(𝜙(ℍ̂𝑛) − 𝜙(ℙ𝑛⊗ℚ𝑛))
𝑑−→ 𝜙′ℙ⊗ℚ(𝔾ℙ⊗ℚ).

However, the way 𝜙 is defined, it holds that 𝜙(ℙ𝑛⊗ℚ𝑛) = 0, which concludes the proof.

4.3.1. General Proofs for the Regression Test
Given the Theorems of the previous subsections we proceed with the proofs for the consistency.

Proof of Theorem 4.2.1. First, Theorem 4.1.2 implies the convergence of ℤ𝑛 to 𝜙′ℍ(𝔾ℍ). For 𝑇∗𝑐𝑛 =
‖𝕊𝑛‖ and 𝑅𝑛 = ℍ𝑛, the proof is straightforward since Theorem 4.3.3 implies the convergence of 𝕊𝑛 to
𝜙′ℍ(𝔾ℍ). The result follows by applying the Continuous Mapping Theorem to these processes, for the
continuous mapping of the norm.

For the combination 𝑇∗𝑒𝑞𝑛 = ‖𝕋𝑛‖ and 𝑅𝑛 = ℙ𝑛 ⊗ℚ𝑛, Theorem 4.3.4 implies the convergence of
𝕋𝑛 to 𝜙′ℙ⊗ℚ(𝔾ℙ⊗ℚ). Hence, the objective is to show that under the null hypothesis:

𝜙′ℍ(𝔾ℍ)
𝑑= 𝜙′ℙ⊗ℚ(𝔾ℙ⊗ℚ).

This claim is fully proved in Lemma A.0.2, therefore we provide a sketch of the proof. As noted in Re-
mark 4.1.3, we know that since 𝜙′ is a linear transformation of its argument and the Brownian Bridge
is a zero mean Gaussian process, then both 𝜙′ℍ(𝔾ℍ) and 𝜙′ℙ⊗ℚ(𝔾ℙ⊗ℚ) are zero mean Gaussian pro-
cesses. Thus, in order to prove that they are equal in distribution, it suffices to show that their variances
are equal.
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Under the null hypothesis, for 𝜙′ℍ(𝔾ℍ), the following holds:

𝜙′ℍ(𝔾ℍ) =
𝔼𝔾ℍ(𝑋𝑌) − 𝔼ℍ(𝑋)𝔼𝔾ℍ(𝑌) − 𝔼𝔾ℍ(𝑋)𝔼ℍ(𝑌)

𝔼ℍ(𝑋2) − 𝔼ℍ(𝑋)2

= ∫𝑋𝑌𝑑(𝔾ℍ −ℍ⊗𝔾ℍ − 𝔾ℍ⊗ℍ)
𝔼ℍ(𝑋2) − 𝔼ℍ(𝑋)2

= ∫𝑋𝑌𝑑(𝔾ℍ − ℙ⊗𝔾ℚ − 𝔾ℙ⊗ℚ)
𝔼ℍ(𝑋2) − 𝔼ℍ(𝑋)2

,

where we used the fact that ∫𝑋𝑑𝔾ℍ = ∫𝑋𝑑𝔾ℙ and ∫𝑌𝑑𝔾ℍ = ∫𝑌𝑑𝔾ℚ. The proof of these claims is
given in the Appendix. Similarly, we calculate:

𝜙′ℙ⊗ℚ(𝔾ℙ⊗ℚ) =
∫𝑋𝑌𝑑(𝔾ℙ⊗ℚ − ℙ⊗𝔾ℚ − 𝔾ℙ⊗ℚ)

𝔼ℍ(𝑋2) − 𝔼ℍ(𝑋)2
.

It holds that ∫𝑋𝑌𝑑𝔾ℍ
𝑑= ∫𝑋𝑌𝑑𝔾ℙ⊗ℚ. The result is a direct consequence of the Continuous Mapping

Theorem for the norm, and the proof is concluded.

Proof of Theorem 4.2.1. First, Theorem 4.1.2 implies that:

ℤ𝑛
𝑑−→ 𝜙′ℍ(𝔾ℍ).

Under the null hypothesis and by applying the norm to process ℤ𝑛, the true statistic 𝑇𝑛 is obtained. The
continuous mapping theorem then, implies that:

𝑇𝑛 = |ℤ𝑛|
𝑑−→ |𝜙′ℍ(𝔾ℍ)|.

For the first part of the Theorem, it is known from Theorem 4.3.3 that:

√𝑛(𝜙(ℍ̂𝑛) − 𝜙(ℍ𝑛))
𝑑−→ 𝜙′ℍ(𝔾ℍ).

By applying the norm to the previous process, we obtain the Bootstrap statistic 𝑇∗𝑐𝑛 . The Continuous

Mapping Theorem implies that 𝑇∗𝑐𝑛
𝑑−→ |𝜙′ℍ(𝔾ℍ)|, hence:

𝑑𝐵𝐿 (𝑇𝑛 , 𝑇∗𝑐𝑛 |U𝑛)
ℍ−→ 0,

and the proof of the first part is concluded.
For the second part, Theorem 4.3.4 implies that:

√𝑛𝜙(ℍ̂𝑛)
𝑑−→ 𝜙′ℙ⊗ℚ(𝔾ℙ⊗ℚ).

By applying the norm to the previous process, the Bootstrap statistic 𝑇∗𝑒𝑞𝑛 is obtained. The Continuous

Mapping Theorem implies that 𝑇∗𝑒𝑞𝑛
𝑑−→ |𝜙′ℙ⊗ℚ(𝔾ℙ⊗ℚ)|. Lemma A.0.2 implies that under 𝐻0:

𝜙′ℙ⊗ℚ(𝔾ℙ⊗ℚ)
𝑑= 𝜙′ℍ(𝔾ℍ).

Hence:
𝑑𝐵𝐿 (𝑇𝑛 , 𝑇∗𝑒𝑞𝑛 |U𝑛)

ℍ−→ 0,
which concludes the second part.

Proof of Theorem 4.2.2. Combine Theorem 4.2.1 with Corollary 1.6 and the assertion follows.

Denote ℝ𝑛 = ℤ𝑛 + √𝑛𝜙(ℍ). Under the null hypothesis it holds that ℝ𝑛 = ℤ𝑛. Recall from Theorem

4.1.2 that ℤ𝑛
𝑑−→ 𝜙′ℍ(𝔾ℍ).
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Proof of Theorem 4.2.3. Under the alternative hypothesis 𝜙(ℍ) ≠ 0. The triangle inequality implies
that:

|ℝ𝑛| ≥ √𝑛|𝜙(ℍ)| + |ℤ𝑛|
𝑑−→ ∞,

since 𝜙(ℍ) ≠ 0 and ℤ𝑛
𝑑−→ 𝜙′ℍ(𝔾ℍ). For the first part:

ℍ(𝑇∗𝑐𝑛 < 𝑇𝑛|U𝑛) = ℍ(|�̂�𝑛| < |ℝ𝑛||U𝑛) −→ ℍ(|𝜙′ℍ(𝔾ℍ)| < ∞) = 1

For the second part:

ℍ(𝑇∗𝑒𝑞𝑛 < 𝑇𝑛|U𝑛) = ℍ(|�̂�𝑛| < |ℝ𝑛||U𝑛) −→ ℍ(|𝜙′ℙ⊗ℚ(𝔾ℙ⊗ℚ)| < ∞) = 1

Proof of Theorem 4.2.4. For the first part, assume resampling scheme of 𝑅𝑛 = ℍ𝑛 and observe that
conditionally on U𝑛:

�̂�𝑛 = �̂�𝑛 +ℝ𝑛 .

Theorem 4.3.3 implies that �̂�𝑛|U𝑛
𝑑−→ 𝜙′ℍ(𝔾ℍ). The Continuous Mapping Theorem implies that

�̂�𝑛|U𝑛
𝑑−→ 2𝜙′ℍ(𝔾ℍ), which concludes the first part.

For the second part, assume resampling scheme of 𝑅𝑛 = ℙ𝑛 ⊗ℚ𝑛 and observe that conditionally
on U𝑛:

�̂�𝑛 = �̂�𝑛 −ℝ𝑛 .

Theorem 4.3.4 implies that �̂�𝑛|U𝑛
𝑑−→ 𝜙′ℙ⊗ℚ(𝔾ℙ⊗ℚ). The Continuous Mapping Theorem implies that

�̂�𝑛|U𝑛
𝑑−→ 0, which concludes the second part.
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General Case

5.1. Main Result
In the previous Chapter, we saw that for a resampling scheme 𝑅𝑛, with limit 𝑅, the condition 𝜙𝑅(𝔾𝑅)

𝑑=
𝜙ℍ(𝔾ℍ), was the necessary condition for the Bootstrap statistic to be consistent with the true statistic.
In the Regression setting, the test was reduced to the test 𝜙(ℍ) = 0, where 𝜙 was a Hadamard
differentiable function. Naturally, it makes sense to search for a similar function that describes the
Independence Test with the same reduction.

Let 𝒫 denote the set of bivariate probability measures. Apparently, for random variables 𝑋 ∼ ℙ, 𝑌 ∼
ℚ and (𝑋, 𝑌) ∼ ℍ, the test can be posed:

𝐻0 ∶ 𝜙(ℍ) = 0 vs 𝐻1 ∶ 𝜙(ℍ) ≠ 0,

where, 𝜙 ∶ 𝒫 → 𝔼, with 𝜙(ℍ) = ℍ−ℙ⊗ℚ. The partition of the measure class is then 𝒫 = 𝒫0 ∪ 𝒫\𝒫0,
where

𝒫0 = {ℍ ∈ 𝒫 ∶ 𝜙(ℍ) = 0}.
The functional 𝜙, maps an argument to the difference of the identity and tensor product of its projections
on each dimension. In the Appendix B, it is shown that in this case 𝜙 is indeed Uniformly Hadamard
differentiable and we can work similarly as in the Regression Chapter, to derive consistent Bootstrap
statistics.

Hence, we are inclined to examine whether both the regression slope test and the independence test
belong to a more general class of tests that could generalize the common assumptions and properties
between them. We present a general theorem for Bootstrap Hypothesis Testing which is verified to be
a general case for these two settings and could potentially include a larger class of testing settings.

Theorem 5.1.1. Let 𝔻 and 𝔼 be two normed vector spaces. Let 𝒫 be a set of probability measures
on 𝔻. Let ℱ be a separable class on 𝔻. Let 𝑋1, … , 𝑋𝑛 be an i.i.d. sample from a distribution ℍ ∈ 𝒫.
Consider the test:

𝐻0 ∶ 𝜙(ℍ) = 0 vs 𝐻1 ∶ 𝜙(ℍ) ≠ 0,
for a uniformly Hadamard differentiable functional 𝜙 ∶ 𝒫 → 𝔼, where 𝒫 is seen as a subspace of 𝓁∞(ℱ),
equipped with the norm ‖ℍ‖ ∶= sup𝑓∈ℱ |ℍ𝑓|. Let (𝑅𝑛)∞𝑛=1 be a resampling scheme and assume that
there exists a limit probability measure 𝑅 = lim𝑛→∞ 𝑅𝑛, in the sense of the CLT under sequences:

√𝑛(ℍ̂𝑛 − 𝑅𝑛)
𝑑−→ 𝔾𝑅 in 𝓁∞(ℱ) (5.1)

with the limit 𝑅 satisfying
𝜙′𝑅(𝔾𝑅) = 𝜙′ℍ(𝔾ℍ), (5.2)

whenever 𝜙(ℍ) = 0. Let 𝑇𝑛 = √𝑛‖𝜙(ℍ𝑛)‖ be the true test statistic. Then, using the bootstrap test
statistic

𝑇∗𝑛 ∶= ‖√𝑛(𝜙(ℍ̂𝑛) − 𝜙(𝑅𝑛))‖,
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yields a test such that

for all ℍ ∈ 𝒫0, lim𝑛→∞𝜋(ℍ; 𝑇𝑛 , 𝑇
∗
𝑛) = 𝛼,

and

for all ℍ ∈ 𝒫\𝒫0, lim𝑛→∞𝜋(ℍ; 𝑇𝑛 , 𝑇
∗
𝑛) = 1,

where 𝒫0 ∶= {ℍ ∈ 𝒫 ∶ 𝜙(ℍ) = 0}.
Proof. The empirical measure ℍ𝑛 satisfies:

√𝑛(ℍ𝑛 −ℍ)
𝑑−→ 𝔾ℍ.

The Delta method implies:

ℤ𝑛 = √𝑛(𝜙(ℍ𝑛) − 𝜙(ℍ))
𝑑−→ 𝜙′ℍ(𝔾ℍ),

for 𝔾ℍ an ℍ-Brownian Bridge.

The function 𝜙 is Uniformly differentiable hence, the extension of the Delta method for sequences
and the assumption (5.1) implies:

√𝑛(𝜙(ℍ̂𝑛) − 𝜙(𝑅𝑛))
𝑑−→ 𝜙′𝑅(𝔾𝑅),

Under the null hypothesis the continuous mapping theorem implies that:

𝑑𝐵𝐿 (𝑇𝑛 , 𝑇∗𝑛|X𝑛) = 𝑑𝐵𝐿(√𝑛‖𝜙(ℍ𝑛)‖ , √𝑛‖𝜙(ℍ̂𝑛) − 𝜙(𝑅𝑛)‖|X𝑛)

ℍ−→ 𝑑𝐵𝐿(‖𝜙′ℍ(𝔾ℍ)‖, ‖𝜙′𝑅(𝔾𝑅)‖) = 0,

where in the last equality we used (5.2). Further, it holds that:

𝑇𝑛 = ‖ℤ𝑛 + √𝑛𝜙(ℍ)‖

≥ √𝑛‖𝜙(ℍ)‖ − ‖ℤ𝑛‖
𝑑−→ ∞,

under the alternative hypothesis 𝜙(ℍ) ≠ 0 and by using the fact that lim𝑛→∞‖ℤ𝑛‖ = ‖𝜙′ℍ(𝔾ℍ)‖. Hence:

ℍ𝐻1(𝑇∗𝑛 < 𝑇𝑛|X𝑛)
𝑑−→ ℍ𝐻1(‖𝜙′𝑅(𝔾𝑅)‖ < ∞) = 1,

where we used the fact that 𝜙′ is a linear functional of Gaussian processes and thus its norm is finite
with probability 1.

A Hypothesis Test in this framework is framed by the root of any Hadamard differentiable mapping 𝜙
of the measureℍ. The mapping 𝜙(ℍ𝑛) naturally yields the true statistic, since it directly inherits the dis-
tributional properties of the original sample, when the classic Delta Method 4.1.1 is applicable. For the
examination Bootstrap processes asymptotic behaviour, the “slightly” stronger assumption of uniform
differentiability 4.3.1 is required to extend the Delta method for the Bootstrap. The preceding theorem
provides a concrete answer on to which Bootstrap statistic is the consistent with the true, depending
directly on the resampling scheme 𝑅𝑛 that is picked. Condition 5.2 states that a resampling scheme
𝑅𝑛 should be generating new samples that preserve some similar structure of the null hypothesis. This
equality of Hadamard derivatives summarizes this information via 𝜙′ by the resampling scheme 𝑅, its
Brownian Bridge 𝔾𝑅 and, of course, the structure of the setting described in 𝜙 itself. Hence, when
possible to extend the Delta Method, and since the Delta Method yields a unique representation of
the Bootstrap statistic ,this theorem implies that the Bootstrap consistency depends only on a proper
choice of resampling scheme 𝑅𝑛.

It is natural to wonder whether the consistent statistic is indeed unique in some sense. Apparently,
for a finite Bootstrap sample generated by 𝑅𝑛 the quantity 𝜙(𝑅𝑛) is of high importance. The NHR
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scheme should by definition satisfy the null hypothesis, which in our setting means that 𝜙(𝑅𝑛) = 0. This
reduces the consistent Bootstrap process to √𝑛𝜙(ℍ̂𝑛). In contrast, the case of GR, where 𝑅𝑛 = ℍ𝑛
yields a consistent process of the form √𝑛(𝜙(ℍ̂𝑛) − 𝜙(ℍ𝑛)). It would be naive to state that these
two Bootstrap processes differ only in the term 𝜙(ℍ𝑛). The reason is that the Bootstrap samples are
generated by different probability measures, hence the Bootstrap empirical measure ℍ̂𝑛 should also
reflect this difference. This discussion leads us to the equivalent formal version of Definition 1.6.1 that
summarizes the information of Conjecture 1.6.1.

Definition 5.1.2 (Formal version of Definition 1.6.1). Let 𝑋1, … , 𝑋𝑛 be a random sample from ℍ and let
𝒫0, 𝒫\𝒫0 be a partition of the class of probability measures 𝒫, where:

𝒫0 = {ℍ ∈ 𝒫 ∶ 𝜙(ℍ) = 0}.

Let ℍ𝑛 denote the empirical measure of the finite sample X𝑛. A Bootstrap scheme �̂� = (𝑅𝑛)∞𝑛=1 is
called

• General Resampling (GR) scheme if:

𝜙(𝑅𝑛)
𝑑= 𝜙(ℍ𝑛), ∀𝑛 ∈ ℕ.

• Null Resampling (NHR) scheme if:

𝜙(𝑅𝑛) = 0, ∀𝑛 ∈ ℕ.

This definition provides clarity regarding the distinct types of resampling methods investigated in
this project. Firstly, we observe that a General Resampling (GR) scheme encompasses any sequence
of measures that emulates the structure of the original sample. As a result, the original empirical mea-
sure, denoted as ℍ𝑛, serves as our point of reference. In contrast, a Null Resampling (NR) scheme
constitutes any Bootstrap method that generates samples consistent with the null hypothesis. This ob-
servation, in conjunction with Theorem 5.1.1 and the consistent Bootstrap formula, leads us to a second
observation and establishes a connection with the initial Conjecture 1.6.1. Specifically, we note that in
the case of General Resampling, the consistent Bootstrap process is essentially ”centered” around the
true statistic, as evidenced by 𝜙(𝑅𝑛) = 𝜙(ℍ𝑛). Conversely, in Null Resampling, the Bootstrap process
is simplified to the term 𝜙(ℍ̂𝑛). However, it is crucial to avoid jumping to the conclusion that centering is
the sole distinction. While the calculations leading to 𝜙(ℍ̂𝑛) remain consistent regardless of the choice
of 𝑅𝑛, the difference in the simulation process is also manifest in ℍ̂𝑛, given the structural variations in
the distribution of the generated samples.

5.2. Application: Independence test revisited
In this section, we present the proof of Conjecture 1.6.1 by leveraging Theorem 5.1.1. We maintain our
focus on the Independence Test setting, as outlined in Section 3.1. The argument for the Regression
Slope test is straightforward, and the foundation for the assumptions in Theorem 5.1.1 was established
within this context. In Chapter 4, we demonstrated that this setting constitutes a specific instance of
the general theorem. Consequently, our current objective is to establish the same relationship for the
Independence test.

We remind that for 𝑋, 𝑌 random variables defined on measurable spaces (𝒳,𝒜), (𝒴, ℬ) respectively,
such that 𝑋 ∼ ℙ, 𝑌 ∼ ℚ, and the joint (𝑋, 𝑌) ∼ ℍ, on the product space (𝒳 × 𝒴,𝒜 × ℬ), the test is:

𝐻0 ∶ ℍ = ℙ⊗ℚ vs 𝐻1 ∶ ℍ ≠ ℙ⊗ℚ,

where ℍ ∈ 𝒫 and 𝒫 is the set of all bivariate probability measures. Let 𝜙 ∶ 𝒫 ↦ 𝔼, with 𝜙(ℍ) =
ℍ − ℍ(⋅ × ℝ) ⊗ ℍ(ℝ × ⋅). We can see that for this setting the projections of the joint are exactly the
marginal distributions ℙ,ℚ of 𝑋, 𝑌. We can restate the test:

𝐻0 ∶ 𝜙(ℍ) = 0 vs 𝐻1 ∶ 𝜙(ℍ) ≠ 0,
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since 𝜙(ℍ) = ℍ − ℙ ⊗ ℚ. In Lemma B.0.1 of the Appendix, we show that 𝜙 is indeed Uniformly
Hadamard differentiable and obtain the Hadamard derivative of 𝜙 calculated as:

𝜙′𝐻(𝜖) = 𝜙′𝐻(𝜖) = 𝜖 − 𝐻(⋅ × ℝ)⊗ 𝜖(ℝ × ⋅) − 𝜖(⋅ × ℝ)⊗𝐻(ℝ × ⋅).

Set 𝑇𝑛 = √𝑛 ‖𝜙(ℍ𝑛)‖ = √𝑛 ‖ℍ𝑛 − ℙ𝑛⊗ℚ𝑛‖. Under the null hypothesis the expression for the
asymptotic empirical limit describing 𝑇𝑛 as:

𝜙′ℍ(𝔾ℍ) = 𝔾ℍ −ℍ(⋅ × ℝ)⊗𝔾ℍ(ℝ × ⋅) − 𝔾ℍ(⋅ × ℝ)⊗ℍ(ℝ × ⋅)
= 𝔾ℍ − ℙ(⋅ × ℝ)⊗𝔾ℍ(ℝ × ⋅) − 𝔾ℍ(⋅ × ℝ)⊗ℚ(ℝ × ⋅)
= 𝔾ℍ − ℙ(⋅ × ℝ)⊗𝔾ℚ(ℝ × ⋅) − 𝔾ℙ(⋅ × ℝ)⊗ℚ(ℝ × ⋅).

where in the third equality we used Lemma B.0.2 from Appendix B and the fact that under the null
hypothesis ℍ = ℙ⊗ℚ. We examine the two resampling schemes proposed earlier ℍ𝑛 , ℙ𝑛⊗ℚ𝑛.

Lemma 5.2.1. The resampling schemes 𝑅𝑛 = ℍ𝑛 and 𝑅𝑛 = ℙ𝑛⊗ℚ𝑛 satisfy the conditions of Theorem
5.1.1.

Proof. Both of these schemes have been shown in Chapter 3 to satisfy the conditions for CLT Under
Sequences Theorem 2.3.1 with limit measuresℍ,ℙ⊗ℚ respectively. It remains to derive the expression
for 𝑇∗𝑛 and the asymptotics of 𝜙′𝑅(𝔾𝑅) for each one of those schemes. Denote ℍ̂𝑛 the empirical measure
of a joint Bootstrap sample (𝑋, 𝑌) distributed according to 𝑅𝑛. Denote ℙ̂𝑛 , ℚ̂𝑛 the empirical measures
of the Bootstrap samples 𝑋 and 𝑌 respectively.

Let 𝑅𝑛 = ℍ𝑛. Then 𝜙(ℍ𝑛) = ℍ𝑛 −ℙ𝑛⊗ℚ𝑛 according to the definition of 𝜙 and obviously 𝜙(𝑅𝑛)
𝑑=

𝜙(ℍ𝑛), hence this is a GR scheme according to Definition 5.1.2. Since 𝑅𝑛 → ℍ, we get that 𝜙𝑅(𝔾𝑅) =
𝜙′ℍ(𝔾ℍ), which implies that Condition (5.2) is trivially satisfied. Hence the assumptions of Theorem
5.1.1 are satisfied for 𝑅𝑛 = ℍ𝑛 and we obtain the consistent Bootstrap statistic:

𝑇∗𝑛 = √𝑛 ‖𝜙(ℍ̂𝑛) − 𝜙(𝑅𝑛)‖
= √𝑛 ‖𝜙(ℍ̂𝑛) − 𝜙(ℍ𝑛)‖
= √𝑛 ‖ℍ̂𝑛 − ℙ̂𝑛⊗ ℚ̂𝑛 −ℍ𝑛 + ℙ𝑛⊗ℚ𝑛‖
= 𝑇∗𝑐𝑛 .

Let 𝑅𝑛 = ℙ𝑛⊗ℚ𝑛. Then 𝜙(ℍ𝑛) = 0 according to the definition of 𝜙 and obviously 𝜙(𝑅𝑛)
𝑑= 𝜙(ℍ𝑛),

hence we see that this is a NHR scheme according to Definition 5.1.2. It holds that 𝑅𝑛 = ℙ𝑛 ⊗ℚ𝑛 →
ℙ ⊗ ℚ. Lemma B.0.3 implies that under the null hypothesis 𝜙′ℍ(𝔾ℍ)

𝑑= 𝜙′ℙ⊗ℚ(𝔾ℙ⊗ℚ). Hence the
assumptions of Theorem 5.1.1 are satisfied for 𝑅𝑛 = ℙ𝑛⊗ℚ𝑛 and we obtain the consistent Bootstrap
statistic:

𝑇∗𝑛 = √𝑛 ‖𝜙(ℍ̂𝑛) − 𝜙(𝑅𝑛)‖
= √𝑛 ‖𝜙(ℍ̂𝑛) − 𝜙(ℙ𝑛⊗ℚ𝑛)‖
= √𝑛 ‖ℍ̂𝑛 − ℙ̂𝑛⊗ ℚ̂𝑛‖
= 𝑇∗𝑒𝑞𝑛 ,

which concludes the proof.



6
Simulation study

In this Chapter we present the simulation research that was conducted and led to the main Conjecture
1.6.1 and finally to the motivation to prove it. The experiments were performed for the settings of
Regression Slope test and Independence test. The experiments are divided in two main parts.

The first part of the simulation includes generation of a random samples of size 𝑛 that either satisfies
the null hypothesis or does not. For this sample the true statistic 𝑇𝑛 is calculated. Two resampling
schemes are picked one from each of the two types (GR, NHR). 𝐵 Bootstrap samples of size 𝑛 are
generated and for 𝑟 = 1,… , 𝐵 a Bootstrap statistic 𝑇∗(𝑟)𝑛 is obtained, one from each of the two types
𝑇∗𝑒𝑞𝑛 , 𝑇∗𝑐𝑛 . Finally, the histogram for each combination of Bootstrap schemes and Bootstrap statistic type
is plotted.

The second part is related to the p-values and includes a part of the process from the previous part.
Instead of generating one sample, many samples of size 𝑛 are generated. Say 𝑠 is the size of the
collection of samples generated. For each sample, we generate 𝐵 Bootstrap samples of size 𝑛 and
calculate the pvalue𝑛, 𝐵. Hence 𝑠 values for pvalue𝑛, 𝐵 are calculated and stored. The histograms of
the p-values are plotted. Naturally four histograms are obtained, one for each combination of Bootstrap
scheme and Bootstrap statistic type.

The histograms display the four combinations in a way to distinguish between the consistent and
inconsistent ones. Histograms with red color display the consistent Bootstrap processes while blue
represent the inconsistent. In the Bootstrap statistics histograms the black line represents the value of
the true statistic 𝑇𝑛, while in the pvalue𝑛, 𝐵 histograms the black line represents the rejection level 𝛼
which is set to 0.05.

6.1. Regression Test
In this section we present the simulation results for the Regression Slope test.

For the first part of the experiment we set the following parameters:

• 𝐵 = 100,

• 𝑛 = 100.
For the 𝐻0 case, we generate a random intercept 𝑎 between 0 and 100 and a random sample

X𝑛 from the uniform distribution. We also generate the random noise 𝜖 from the standard Gaussian
distribution. Finally we set 𝑏 = 0 and generate the sample Y𝑛 as follows:

𝑌𝑖 = 𝑎 + 𝑏 ⋅ 𝑋𝑖 + 𝜖. (6.1)

The following quantities are calculated using the OLS:

• �̂�,

• �̂�,

• ̂𝜖𝑖 for 𝑖 = 1,… , 𝑛.
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The true statistic is set to be 𝑇𝑛 = |�̂�|.
For the GR scheme case we perform the following procedure. 𝐵 Bootstrap samples of size 𝑛 are

generated using the Non-Parametric Bootstrap from 𝑋𝑖 , ̂𝜖𝑖, and the OLS �̂�. More specifically we gener-
ate 𝑋∗(𝑟)𝑖 , ̂𝜖∗(𝑟)𝑖 and for every 𝑖 = 1,… , 𝑛, we set:

𝑌∗(𝑟)𝑖 = �̂� + �̂�𝑋∗(𝑟)𝑖 + ̂𝜖∗(𝑟)𝑖 . (6.2)

Then the OLS On the Bootstrap sample returns �̂�∗. Finally we calculate for every 𝑟 the Bootstrap
statistics:

• 𝑇∗𝑐𝑛 = |�̂�∗ − �̂�|,
• 𝑇∗𝑒𝑞𝑛 = |�̂�∗|.
For the NHR scheme we perform the following procedure instead. 𝐵 Bootstrap samples of size 𝑛

are generated using the Non-Parametric Bootstrap from 𝑋𝑖 , ̂𝜖𝑖, and the a slope of zero. More specifically
we generate 𝑋∗(𝑟)𝑖 , ̂𝜖∗(𝑟)𝑖 and for every 𝑖 = 1,… , 𝑛, we set:

𝑌∗(𝑟)𝑖 = �̂� + 0 ⋅ 𝑋∗(𝑟)𝑖 + ̂𝜖∗(𝑟)𝑖 . (6.3)

Then the OLS On the Bootstrap sample returns �̂�∗. Finally we calculate for every 𝑟 the Bootstrap
statistics:

• 𝑇∗𝑐𝑛 = |�̂�∗ − �̂�|,
• 𝑇∗𝑒𝑞𝑛 = |�̂�∗|.
The histograms are displayed in Figure 6.1.

Figure 6.1: Regression Slope Test - Histogram of the Bootstrap statistics when 𝐻0 is true .Blue color histograms represent
consistent Bootstrap processes. Red color histograms represent inconsistent Bootstrap.

For the 𝐻1 case, we generate a random intercept 𝑎 between 0 and 100 and a random sample
X𝑛 from the uniform distribution. We also generate the random noise 𝜖 from the standard Gaussian
distribution. Finally we set 𝑏 = 10 and generate the sample Y𝑛 as follows:

𝑌𝑖 = 𝑎 + 𝑏 ⋅ 𝑋𝑖 + 𝜖. (6.4)

The same statistical quantities �̂�, �̂�, ̂𝜖𝑖are calculated using the OLS. The true statistic is set to be
𝑇𝑛 = |�̂�|. We then pick the same Boostrap schemes to perform the simulations and obtain the results
displayed in Figure 6.2

We now proceed to the second part of the experiment and set the following parameters:
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Figure 6.2: Regression Slope Test - Histogram of the Bootstrap statistics when 𝐻0 is not true. Blue color histograms represent
consistent Bootstrap processes. Red color histograms represent inconsistent Bootstrap.

• 𝑠 = 1000,
• 𝐵 = 100,
• 𝑛 = 100.
In the 𝐻0 case we generate 𝐵 Bootstrap samples of size 𝑛 based on both the GR and NHR schemes

and calculated the 𝑇∗𝑐𝑛 , 𝑇𝑛 for each case. Finally, for each combination we calculate the pvalue𝑛, 𝐵. This
simulation is performed for𝑠 iterations and the pvalue𝑛, 𝐵 (for each one of the combinations of Bootstrap
scheme and type of statistic) are appended to a list. The histograms are displayed in Figure 6.3.

We observe the blue colored p-values tending to resemble to a uniform distribution. These combi-
nations represent the consistent Bootstrap processes.

We follow the same procedure for the 𝐻1 case. The histograms are displayed in Figure 6.4. We
observe that in this case following the blue colored p-values we would have correctly rejected the null
hypothesis every single time, while we would have falsely accepted the null hypothesis every time in
the rest two of the cases.

6.2. Independence Test
In this section we present the simulation results for the Independence test.

For the first part of the experiment we set the following parameters:

• 𝐵 = 100,
• 𝑛 = 100.
For the 𝐻0 case, we generate two independent random samples X𝑛 ,Y𝑛 from the normal distribution

and calculate the true statistic 𝑇𝑛 = |�̂�𝑋,𝑌 − �̂�𝑋�̂�𝑌|, where �̂� is the empirical distribution.
For the GR scheme we perform the Non-Parametric Bootstrap on the joint sample, namely we

simulate from ℍ𝑛, and generate 𝐵 Bootstrap samples of size 𝑛. For the NHR scheme we simulate
from ℙ𝑛 ⊗ℚ𝑛 instead and calculate the Bootstrap statistics. The two types of statistics 𝑇∗𝑐𝑛 , 𝑇∗𝑒𝑞𝑛 are
calculated for 𝑟 = 1,… , 𝐵 for each one of the resampling schemes and the results are displayed in
Figure 6.5.

For the 𝐻1 case, we generate a random sample X𝑛 from the uniform distribution and a Gaussian
noise sample denoted by 𝜖. Then we create the Y𝑛 sample the following way:

𝑌 = 𝑋 + 𝜖. (6.5)
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Figure 6.3: Regression Slope Test - Histogram of the Bootstrap p-values when 𝐻0 is true. Blue color represent consistent
Bootstrap processes. Red color histograms represent inconsistent Bootstrap.

The true statistic 𝑇𝑛 is calculated. Then, the same Bootstrap schemes are used to generate Bootstrap
samples. The histograms for this simulation are displayed in Figure 6.6.

For the second part of the experiment we set 𝑠 = 1000, 𝐵 = 100, 𝑛 = 100. We perform the simu-
lations for both the null and alternative hypothesis accordingly to the previous settings describe. The
results for the 𝐻0 case are displayed in Figure 6.7, while the results for the alternative are displayed in
Figure 6.8.
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Figure 6.4: Regression Slope Test - Histogram of the Bootstrap p-values when 𝐻0 is not true. Blue color represent consistent
Bootstrap processes. Red color histograms represent inconsistent Bootstrap.

Figure 6.5: Independence Test - Histogram of the Bootstrap statistics when𝐻0 is true. Blue color histograms represent consistent
Bootstrap processes. Red color histograms represent inconsistent Bootstrap.
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Figure 6.6: Independence Test - Histogram of the Bootstrap statistics when𝐻0 is true. Blue color histograms represent consistent
Bootstrap processes. Red color histograms represent inconsistent Bootstrap.

Figure 6.7: Independence Test - Histogram of the Bootstrap p-values when 𝐻0 is true

Blue color represent consistent Bootstrap processes. Red color histograms represent inconsistent
Bootstrap.
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Figure 6.8: Independence Test - Histogram of the Bootstrap p-values when 𝐻0 is true

Blue color represent consistent Bootstrap processes. Red color histograms represent inconsistent
Bootstrap.





7
Conclusion and Discussion

Within this project, we have delved into fundamental properties of consistent Bootstrap processes in
the context of hypothesis testing. Persistent gaps in theoretical understanding have remained in the
literature concerning resampling and testing. Our endeavor in this project was aimed at shedding light
on the factors that contribute to the construction of a robust hypothesis test with both accurate statistical
significance and power, utilizing the Bootstrap. Our initial motivation, sparked by Conjecture 1.6.1, was
to gain insights into how the choice of a resampling scheme interacts with Bootstrap statistics and
how it influences the significance level of the hypothesis test. Prior research has already touched
upon the implications of this conjecture. For instance, in [7], the centered statistic 𝑇∗𝑐𝑛 is introduced
as a practical tool for implementing Bootstrap in the Goodness of Fit test. Similarly, in [10], the 𝑇∗𝑒𝑞𝑛
statistic is demonstrated to be consistent under a simulated measure of Null Resampling in the context
of the Independence test. Additionally, in [6], the 𝑇∗𝑒𝑞𝑛 statistic is shown to be consistent under a
Null Resampling Bootstrap scheme. While these observations and results are well-documented, the
absence of universality between the choice of 𝑇∗𝑐𝑛 and 𝑇∗𝑒𝑞𝑛 may raise questions within the field of
statistics.

We successfully distinguished the varying behaviors of these statistics, both in terms of their effec-
tiveness and failure in maintaining the desired test level. We demonstrated that, in the specific test
settings we have examined, each Bootstrap statistic performs well only when paired with its corre-
sponding resampling scheme. This idea initially surfaces in Van Der Vaart’s proof of consistency for
the statistic 𝑇∗𝑒𝑞𝑛 in the Independence test, as presented in [10]. By following the steps of the author’s
proof, we were able to establish an equivalent assertion to Conjecture 1.6.1 for 𝑇∗𝑐𝑛 . However, we
acknowledge that we have yet to fully comprehend the underlying structural factors that lead to this
outcome. The convergence of the independence processes �̂�𝑛 and �̂�𝑛 is demonstrated through alge-
braic calculations applied to the Central Limit Theorem under sequences for the Bootstrap empirical
process.

In contrast, the Regression setting led our research in a different approach. The definition of the
slope, denoted as 𝑏, and the definitions of the statistics naturally pointed toward the Delta Method as
the most suitable direction. In this setting, we not only managed to validate Conjecture 1.6.1, but we
also leveraged the Delta Method to directly illustrate the distinct behavior of the Bootstrap schemes.
The representation of 𝑏 through the mapping 𝜙 of the probability measure underlying the data offers
a direct reflection of various measures through the image of 𝜙. This representation serves not only
as a natural plug-in estimator for 𝑏 but also, through experimentation with the resampling schemes,
allows us to develop a more comprehensive understanding of the NHR and GR schemes. Finally, in
the case of NHR schemes, we managed to uncover precisely why the 𝑇∗𝑒𝑞𝑛 statistic emerges as the
consistent Bootstrap statistic, thanks to the condition 𝜙(𝑅𝑛) = 0 and the extension of the Delta Method
for sequences.

The approach in the Regression test has provided enlightening insights. In summary, by combining
the Donsker Theorem and the Delta Method, we have successfully derived the asymptotic limit of the
true statistic, represented by the Hadamard derivative of 𝜙 calculated within the original measure ℍ,
along with its associated Brownian Bridge 𝔾ℍ. Furthermore, we have ensured that the selected re-
sampling scheme aligns with the necessary assumptions for Theorem 2.3.1, including the Lindeberg
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Condition. It’s important to note that within the existing literature, the sequences ℍ𝑛 and ℙ𝑛 ⊗ ℚ𝑛
(as defined in this project) have been demonstrated to satisfy these conditions and can be effectively
employed. When considering a specific resampling scheme 𝑅𝑛, we have effectively utilized the Central
Limit Theorem under sequences and the Delta Method for sequences to establish the asymptotic limit
of the bootstrap empirical process, which is transformed through the application of 𝜙. The equality of
Hadamard derivatives under the null hypothesis serves as the condition that guarantees the consis-
tency of the Bootstrap process generated by 𝑅𝑛. Furthermore, we have framed the hypothesis test as
an evaluation of whether ℍ functions as a root of 𝜙. This approach has streamlined the assumptions
and statements of the original test, effectively incorporating them into the framework of the Hadamard
differentiable mapping 𝜙.

Naturally, we are left wondering whether it is feasible to achieve a similar compression of the in-
dependence test through a comparable mapping. Evidently, as demonstrated in Section 5.2, this is
indeed possible. In addition to the quest for a differentiable mapping that transforms the setting into
a root test, we also require this mapping to exhibit uniform differentiability, a characteristic observed
in the regression setting. Fortunately, this requirement is not overly demanding. Our observation that
the independence test shares precisely the same structural framework as the regression test has led
to the formulation of Theorem 5.1.1.

Theorem 5.1.1 represents a generalization of hypothesis test setups to a more inclusive framework.
We have demonstrated that the two primary settings under scrutiny in this project can be simplified
into this comprehensive framework, serving as particular instances of this theorem. Additionally, we
have offered insights into the construction of a reliable Bootstrap statistic. In essence, the consistent
Bootstrap statistic is a direct equivalent of the empirical process resulting from the resampling scheme
𝑅𝑛, mapped through the test mapping of interest, 𝜙.

It is particularly intriguing to observe that the tests we have investigated can all be distilled into a
root test of this Hadamard differentiable mapping. In [6], within the specific context of NHR, 𝑇∗𝑒𝑞𝑛 is
demonstrated to maintain consistency in the Goodness of Fit test. This outcome aligns with the initial
Conjecture 1.6.1 of this project. Consequently, this motivates further examination of the validity of the
assumptions presented in Theorem 5.1.1 within this specific setting. Furthermore, exploring various
other scenarios, such as the randomization model, holds significant interest. In summary, the existence
of a smooth mapping 𝜙 that potentially characterizes a hypothesis test as a root test may position this
test as a distinct case within the broader framework of Theorem 5.1.1, providing justification for the
distinct behavior observed in various Bootstrap statistics under diverse resampling schemes.

From a theoretical standpoint, there is a keen interest in determining whether the assumptions of
Theorem 5.1.1 represent the minimal requirements. It can be argued that some level of smoothness
assumptions for the mapping 𝜙 are inherently necessary. The mappings that have been investigated
thus far exhibit certain smoothness properties, which are essential for the application of both the clas-
sical Delta Method and the extended Delta Method for sequences. Given our predominant focus on
Donsker classes of functions, where empirical processes converge to a Brownian Bridge, properties of
𝜙 facilitating the use of the extended Delta Method for sequences would likely be sufficient to extend
the same analytical approach to other scenarios as well.

From an applied perspective, a key takeaway is that the consistent Bootstrap statistic invariably
revolves around the computation of 𝜙 within the chosen resampling scheme 𝑅𝑛. Interestingly, when
employing NHR schemes, this centering is precisely at zero. With this understanding in hand, statisti-
cians are now equipped to calculate the consistent Bootstrap statistic in accordance with their selected
resampling scheme. This insight paves the way for future research to determine which resampling
scheme represents the optimal choice and what criteria should guide this selection. A power analy-
sis, as demonstrated in [4], could potentially offer valuable insights into how rapidly the power function
converges to 1 when the data does not align with the null hypothesis.

In conclusion, this project has provided valuable insights into the intricate relationship between
resampling schemes and Bootstrap statistics within the context of hypothesis testing. By carefully
examining the nuances of various test settings, we have uncovered the crucial importance of align-
ing the appropriate Bootstrap statistic with its corresponding resampling scheme. Theorems such as
5.1.1 have allowed us to abstract these insights into a broader framework, raising questions about
the universality of these findings. The existence of a smooth mapping, such as 𝜙, capable of fram-
ing hypothesis tests as root tests, has emerged as a central theme, offering a unifying perspective on
Bootstrap statistics under different resampling schemes. From both theoretical and practical perspec-
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tives, this research paves the way for exploring the minimal assumptions required for such mappings
and optimizing resampling scheme selection. As we move forward, these findings hold promise for
advancing our understanding of hypothesis testing and enhancing the precision of statistical analyses
in various contexts.





A
Regression Hadamard Derivative

Lemma A.0.1. Let 𝜙 ∶ 𝔻 ↦ ℝ𝑑, such that:

𝜙(𝐻) = 𝔼𝐻(𝑋𝑌) − 𝔼𝐻(𝑋)𝔼𝐻(𝑌)
𝔼𝐻(𝑋2) − 𝔼𝐻(𝑋)2

Then 𝜙 is Uniformly Hadamard differentiable with:

𝜙′𝐻(𝜖) ∶=
𝔼𝜖(𝑋𝑌) − 𝔼𝐻(𝑋)𝔼𝜖(𝑌) − 𝔼𝜖(𝑋)𝔼𝐻(𝑌) − 𝜙(𝐻)𝔼𝜖(𝑋2) + 2𝜙(𝐻)𝔼𝐻(𝑋)𝔼𝜖(𝑋)

𝔼𝐻(𝑋2) − 𝔼𝐻(𝑋)2
.

Proof.

𝜙(𝐻 + 𝜖) = 𝔼𝐻+𝜖(𝑋𝑌) − 𝔼𝐻+𝜖(𝑋)𝔼𝐻+𝜖(𝑌)
𝔼𝐻+𝜖(𝑋2) − 𝔼𝐻+𝜖(𝑋)2

= 𝔼𝐻(𝑋𝑌) + 𝔼𝜖(𝑋𝑌) − (𝔼𝐻(𝑋) + 𝔼𝜖(𝑋)) (𝔼𝐻(𝑌) + 𝔼𝜖(𝑌))
𝔼𝐻(𝑋2) + 𝔼𝜖(𝑋2) − (𝔼𝐻(𝑋) + 𝔼𝜖(𝑋))

2

= 𝔼𝐻(𝑋𝑌) + 𝔼𝜖(𝑋𝑌) − 𝔼𝐻(𝑋)𝔼𝐻(𝑌) − 𝔼𝐻(𝑋)𝔼𝜖(𝑌) − 𝔼𝜖(𝑋)𝔼𝐻(𝑌) + 𝑜(𝜖)
𝔼𝐻(𝑋2) + 𝔼𝜖(𝑋2) − 𝔼𝐻(𝑋)2 − 2𝔼𝐻(𝑋)𝔼𝜖(𝑋) + 𝑜(𝜖)

= 𝔼𝐻(𝑋𝑌) + 𝔼𝜖(𝑋𝑌) − 𝔼𝐻(𝑋)𝔼𝐻(𝑌) − 𝔼𝐻(𝑋)𝔼𝜖(𝑌) − 𝔼𝜖(𝑋)𝔼𝐻(𝑌) + 𝑜(𝜖)
(𝔼𝐻(𝑋2) − 𝔼𝐻(𝑋)2)(1 +

𝔼𝜖(𝑋2)−2𝔼𝐻(𝑋)𝔼𝜖(𝑋)
𝔼𝐻(𝑋2)−𝔼𝐻(𝑋)2

+ 𝑜(𝜖))

= 𝔼𝐻(𝑋𝑌) + 𝔼𝜖(𝑋𝑌) − 𝔼𝐻(𝑋)𝔼𝐻(𝑌) − 𝔼𝐻(𝑋)𝔼𝜖(𝑌) − 𝔼𝜖(𝑋)𝔼𝐻(𝑌) + 𝑜(𝜖)
𝔼𝐻(𝑋2) − 𝔼𝐻(𝑋)2

× (1 − 𝔼𝜖(𝑋
2) − 2𝔼𝐻(𝑋)𝔼𝜖(𝑋)

𝔼𝐻(𝑋2) − 𝔼𝐻(𝑋)2
+ 𝑜(𝜖))

= 𝜙(𝐻) + 𝜙′𝐻(𝜖) + Ξ𝐻(𝜖) + 𝑜(𝜖2),

where

𝜙′𝐻(𝜖) ∶=
𝔼𝜖(𝑋𝑌) − 𝔼𝐻(𝑋)𝔼𝜖(𝑌) − 𝔼𝜖(𝑋)𝔼𝐻(𝑌) − 𝜙(𝐻)𝔼𝜖(𝑋2) + 2𝜙(𝐻)𝔼𝐻(𝑋)𝔼𝜖(𝑋)

𝔼𝐻(𝑋2) − 𝔼𝐻(𝑋)2

and:
Ξ𝐻(𝜖) = −

(𝔼𝜖(𝑋𝑌) − 𝔼𝐻(𝑋)𝔼𝜖(𝑌) − 𝔼𝜖(𝑋)𝔼𝐻(𝑌)) ⋅ (𝔼𝜖(𝑋2) − 2𝔼𝐻(𝑋)𝔼𝜖(𝑋))
(𝔼𝐻(𝑋2) − 𝔼𝐻(𝑋)2)2

We see that 𝜙′𝐻 is linear with respect to 𝜖, hence the Hadamard derivative is obtained. The quantity
Ξ(𝜖) implies that 𝜙 is also Uniformly Hadamard differentiable. Indeed:

√𝑛(𝜙(𝑅𝑛 +
1
√𝑛
ℎ𝑛) − 𝜙(𝑅𝑛)) = √𝑛𝜙𝑅𝑛(

1
√𝑛
ℎ𝑛) + √𝑛Ξℍ𝑛(

1
√𝑛
ℎ𝑛) + √𝑛𝑜(

1
𝑛ℎ

2
𝑛)
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It easy to show that for 𝜖 = 1
√𝑛
ℎ𝑛 and 𝐻 = ℍ𝑛, √𝑛Ξℍ𝑛(

1
√𝑛
ℎ𝑛) → 0, hence 𝜙 is Uniformly differen-

tiable.

Lemma A.0.2. Under the null hypothesis 𝜙(ℍ) = 0:

𝜙′ℍ(𝔾ℍ)
𝑑= 𝜙′ℙ⊗ℚ(𝔾ℙ⊗ℚ).

Proof. Under the null hypothesis 𝜙(ℍ) = 0:

𝜙′ℍ(𝔾ℍ) ∶=
𝔼𝔾ℍ(𝑋𝑌) − 𝔼ℍ(𝑋)𝔼𝔾ℍ(𝑌) − 𝔼𝔾ℍ(𝑋)𝔼ℍ(𝑌)

𝔼ℍ(𝑋2) − 𝔼ℍ(𝑋)2

= ∫𝑋𝑌𝑑(𝔾ℍ −ℍ⊗𝔾ℍ − 𝔾ℍ⊗ℍ)
𝔼ℍ(𝑋2) − 𝔼ℍ(𝑋)2

= ∫𝑋𝑌𝑑(𝔾ℍ − ℙ⊗𝔾ℚ − 𝔾ℙ⊗ℚ)
𝔼ℙ(𝑋2) − 𝔼ℙ(𝑋)2

Claim:∫𝑋𝑑𝔾ℍ
𝑑= ∫𝑋𝑑𝔾ℙ and ∫𝑌𝑑𝔾ℍ

𝑑= ∫𝑌𝑑𝔾ℚ. Indeed:

𝑉𝑎𝑟 (∫𝑋𝑑𝔾ℍ) = 𝔼(𝔾ℍ𝑋𝔾ℍ𝑋)

= ℍ(𝑋2) − ℍ(𝑋)2
= 𝑉𝑎𝑟ℍ(𝑋)
= 𝑉𝑎𝑟ℙ(𝑋)

= 𝑉𝑎𝑟 (∫𝑋𝑑𝔾ℙ) ,

where we used the properties of the Brownian Bridge:

𝔼(𝔾ℙ𝑓1𝔾ℙ𝑓2) = ℙ(𝑓1 − ℙ𝑓1)(𝑓2 − ℙ𝑓2) = ℙ𝑓1𝑓2 − ℙ𝑓1ℙ𝑓2,
𝔼(𝔾ℙ𝑓1) = 0.

The assertion for 𝑌 is proven equivalently.

Similarly:

𝜙′ℙ⊗ℚ(𝔾ℙ⊗ℚ) =
∫𝑋𝑌𝑑(𝔾ℙ⊗ℚ − ℙ⊗𝔾ℚ − 𝔾ℙ⊗ℚ)

𝔼ℙ(𝑋2) − 𝔼ℙ(𝑋)2

It suffices to show that ∫𝑋𝑌𝑑𝔾ℍ
𝑑= ∫𝑋𝑌𝑑𝔾ℙ⊗ℚ. We use again the property:

𝐸(𝔾𝑃𝑓1𝔾𝑃𝑓2) = 𝑃𝑓1𝑓2 − 𝑃𝑓1𝑃𝑓2.

Set 𝑓1 = 𝑓2 = 𝑋𝑌. Let 𝜇 = 𝐸ℙ(𝑋), 𝜎2 = 𝑉𝑎𝑟(𝑋), 𝜎2𝜖 = 𝐸(𝜖2). Under the null hypothesis 𝜙(ℍ) = 0
and 𝑌 = 𝑎 + 𝜖.

𝑉𝑎𝑟 [∫𝑋𝑌𝑑𝔾ℍ] = 𝑉𝑎𝑟 (𝔾𝐻(𝑋𝑌))

= 𝔼ℍ (𝔾ℍ(𝑋𝑌)𝔾𝐻(𝑋𝑌)) − 𝔼ℍ(𝔾ℍ(𝑋𝑌))2
= ℍ(𝑋2𝑌2) − ℍ(𝑋𝑌)2
= 𝐸ℍ(𝑋2𝑌2) − (𝐸ℍ(𝑋𝑌))2
= 𝐸ℍ(𝑋2𝐸ℍ(𝑌2|𝑋)) − (𝐸ℍ(𝑋𝐸ℍ(𝑌|𝑋)))2
= 𝐸ℍ(𝑋2(𝑎2 + 𝜎2𝜖 ))) − (𝐸ℍ(𝑋𝑎))2
= (𝑎2 + 𝜎2𝜖 )(𝜇2 + 𝜎2) − 𝑎2𝜇2,
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and

𝑉𝑎𝑟(∫𝑋𝑌𝑑𝔾ℙ⊗ℚ) = 𝑉𝑎𝑟(𝔾ℙ⊗ℚ(𝑋𝑌))

= 𝔼(𝔾ℙ⊗ℚ(𝑋𝑌)𝔾ℙ⊗ℚ(𝑋𝑌)) − 𝔼(𝔾ℙ⊗ℚ(𝑋𝑌))2
= (ℙ⊗ℚ)(𝑋2𝑌2) − (ℙ⊗ℚ)(𝑋𝑌)2
= 𝔼ℙ⊗ℚ(𝑋2𝑌2) − (𝔼ℙ⊗ℚ(𝑋𝑌))2
= 𝔼ℙ(𝑋2)𝔼ℚ(𝑌2) − (𝔼ℙ(𝑋)𝔼ℚ(𝑌))2
= (𝑎2 + 𝜎2𝜖 )(𝜇2 + 𝜎2) − 𝑎2𝜇2,

which concludes the proof.





B
Independence Hadamard Derivative

Lemma B.0.1. Let 𝜙 ∶ 𝔻 → 𝔼, such that:

𝜙(ℍ) = ℍ −ℍ(⋅ × ℝ)⊗ℍ(ℝ × ⋅).

Then 𝜙 is Uniformly Hadamard differentiable with:

𝜙′𝐻(𝜖) = 𝜖 − 𝐻(⋅ × ℝ)⊗ 𝜖(ℝ × ⋅) − 𝜖(⋅ × ℝ)⊗𝐻(ℝ × ⋅)

Proof.
𝜙(𝐻) = 𝐻 − 𝑃⊗𝑄 = 𝐻 − 𝐻(⋅ × ℝ)⊗𝐻(ℝ × ⋅)

𝜙(𝐻 + 𝜖) = 𝐻 − 𝐻(⋅ × ℝ)⊗𝐻(ℝ × ⋅)
= 𝐻 + 𝜖 − (𝐻 + 𝜖)(⋅ × ℝ)⊗ (𝐻 + 𝜖)(ℝ × ⋅)
= 𝜙(𝐻) + 𝜖 − 𝐻(⋅ × ℝ)⊗ 𝜖(ℝ × ⋅) − 𝜖(⋅ × ℝ)⊗𝐻(ℝ × ⋅) + Ξ(𝜖) + 𝑜(𝜖2)
= 𝜙(𝐻) + 𝜙′𝐻(𝜖) + Ξ𝐻(𝜖) + 𝑜(𝜖2),

where:
𝜙′𝐻(𝜖) = 𝜖 − 𝐻(⋅ × ℝ)⊗ 𝜖(ℝ × ⋅) − 𝜖(⋅ × ℝ)⊗𝐻(ℝ × ⋅)

and:
Ξ𝐻(𝜖) = 𝜖(⋅ × ℝ)⊗ 𝜖(ℝ × ⋅)

We see that 𝜙′𝐻 is linear with respect to 𝜖, hence the Hadamard derivative is obtained. The quantity
Ξ(𝜖) implies that 𝜙 is also Uniformly Hadamard differentiable. Indeed:

√𝑛(𝜙(𝑅𝑛 +
1
√𝑛
ℎ𝑛) − 𝜙(𝑅𝑛)) = √𝑛𝜙𝑅𝑛(

1
√𝑛
ℎ𝑛) + √𝑛Ξℍ𝑛(

1
√𝑛
ℎ𝑛) + √𝑛𝑜(

1
𝑛ℎ

2
𝑛)

It easy to show that for 𝜖 = 1
√𝑛
ℎ𝑛 and 𝐻 = ℍ𝑛, √𝑛Ξℍ𝑛(

1
√𝑛
ℎ𝑛) → 0, hence 𝜙 is Uniformly differen-

tiable.

Lemma B.0.2. Denote 𝔾ℍ, 𝔾ℙ, 𝔾ℚ Brownian Bridges where 𝔾ℍ is a two dimensional process while
𝔾ℙ, 𝔾ℚ are one dimensional processes. Denote ℍ1 = ℍ(⋅ × ℝ), ℍ2 = ℍ(ℝ × ⋅) and 𝔾1 = 𝔾(⋅ × ℝ),
𝔾2 = 𝔾(ℝ × ⋅). Under the null hypothesis ℍ = ℙ⊗ℚ, the following hold:

𝔾ℍ(⋅ × ℝ)
𝑑= 𝔾ℙ(⋅),

𝔾ℍ(ℝ × ⋅)
𝑑= 𝔾ℚ(⋅).
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Proof. We show the claim for the first dimension and the other is proved identically. Since all of the
processes are zero-mean Gaussian it suffices to show that the variances are equal. Let 𝑓 ∈ ℱ.

𝑉𝑎𝑟(𝔾1ℍ𝑓) = 𝔼((𝔾1ℍ𝑓)2)
= ℍ1(𝑓2) − ℍ1(𝑓)2
= ℙ(𝑓2) − ℙ(𝑓)2
= 𝑉𝑎𝑟(𝔾ℙ𝑓),

where in the third equality we used that ℍ = ℍ1⊗ℍ2 = ℙ⊗ℚ. The proof is concluded.

Lemma B.0.3. Under the null hypothesis 𝜙(ℍ) = 0:

𝜙′ℍ(𝔾ℍ)
𝑑= 𝜙′ℙ⊗ℚ(𝔾ℙ⊗ℚ).

Proof.

𝜙′ℍ(𝔾ℍ) = 𝔾ℍ −ℍ(⋅ × ℝ)⊗𝔾ℍ(ℝ × ⋅) − 𝔾ℍ(⋅ × ℝ)⊗ℍ(ℝ × ⋅)
= 𝔾ℍ − ℙ(⋅ × ℝ)⊗𝔾ℍ(ℝ × ⋅) − 𝔾ℍ(⋅ × ℝ)⊗ℚ(ℝ × ⋅).

Lemma B.0.2 implies that under the null hypothesis 𝔾ℙ(⋅ × ℝ)
𝑑= 𝔾ℙ(⋅) and 𝔾ℍ(ℝ × ⋅)

𝑑= 𝔾ℚ(⋅), thus:

𝜙′ℍ(𝔾ℍ) = 𝔾ℍ − ℙ(⋅) ⊗ 𝔾ℚ(⋅) − 𝔾ℙ(⋅) ⊗ ℚ(⋅).

Similary we calculate:

𝜙′ℙ⊗ℚ(𝔾ℙ⊗ℚ) = 𝔾ℍ − ℙ(⋅) ⊗ 𝔾ℚ(⋅) − 𝔾ℙ(⋅) ⊗ ℚ(⋅),

which concludes the proof.
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