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Identifying important nodes in networks is essential to analysing their structure and understanding their
dynamical processes. In addition, myriad real systems are time-varying and can be represented as tem-
poral networks. Motivated by classic gravity in physics, we propose a temporal gravity model to identify
important nodes in temporal networks. In gravity, the attraction between two objects depends on their
masses and distance. For the temporal network, we treat basic node properties (e.g., static and temporal
properties) as the mass and temporal characteristics (i.e., fastest arrival distance and temporal shortest
distance) as the distance. Experimental results on 10 real datasets show that the temporal gravity model
outperforms baseline methods in quantifying the structural influence of nodes. When using the temporal
shortest distance as the distance between two nodes, the proposed model is more robust and more ac-
curately determines the node spreading influence than baseline methods. Furthermore, when using the
temporal information to quantify the mass of each node, we found that a novel robust metric can be used
to accurately determine the node influence regarding both network structure and information spreading.

© 2021 Elsevier Ltd. All rights reserved.

1. Introduction

Network science is increasingly important in numerous fields,
including physics, biology, finance, and social sciences. In fact,
many real systems can be suitably represented as complex net-
works [1,2].

The nodes in a network may exhibit varying connectivity and
represent different dynamical processes, such as epidemic spread-
ing, information diffusion, and opinion formation. If we remove a
node from a network such that the network collapses into discon-
nected components, this node is important in terms of network
connectivity. We call this type of influence the structural influence.
On the other hand, a node can be the seed of information (epi-
demic) spreading and cause wide circulation through the network.
Such a node is influential in terms of spreading, so we call this
type of influence the spreading influence. For any type of influ-
ence, we call the corresponding node an important node.
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Because important nodes influence network behaviour, they
should be identified [3-6]. If the connections between nodes are
fixed, they establish a static network. Various methods for im-
portant node identification have been developed for static net-
works [7], and they can be divided into structural-based central-
ity methods [8,9] (e.g., degree [10], closeness [11] and betweenness
centrality [12]) and iterative-based centrality methods (e.g., PageR-
ank [13], HITS [14], and SALSA [15]). Inspired by the concept of
gravity, Ma et al. [16] proposed two gravity models, namely, grav-
ity centrality and extended gravity centrality, to identify influential
spreaders on static networks by considering both neighbourhood
information and path information. Likewise, Li et al. [17] proposed
a local gravity model that relies on a truncation radius. However,
these methods are restricted to static networks.

In practice, many systems are time-varying [18-21], and the
time order has been shown to substantially influence the network
structure and information spreading [19,22]. Connections appear-
ing in a complex system can be represented by a temporal net-
work [23,24]. In temporal networks, however, identifying impor-
tant nodes is much more challenging than in static networks. In
fact, a node may play different roles over time in a temporal net-
work [22], so its importance varies over time. For example, an in-
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dividual may be very active and post several messages and infor-
mation on a social network during a given year and then become
inactive the next year, interrupting all information spread. Thus,
to identify important nodes in temporal networks, we should con-
sider structural properties and time-dependent information.

Most metrics for temporal networks extend those for static net-
works [25,26]. Hence, various methods either integrate a temporal
network into a static one or segment a temporal network into a se-
ries of static snapshots over time. For instance, a temporal network
considering centrality metrics can be analysed as follows. First, the
temporal network is divided into several snapshots at a given time
resolution. Each snapshot is viewed as a static network. The cen-
trality score per node and snapshot is then obtained. The overall
centrality score of a node is obtained as the average of the scores
across snapshots [27,28]. Although such methods allow better iden-
tification of important nodes compared to static centrality meth-
ods, they may lose temporal information, such as the time order
of contacts.

We propose a temporal gravity model to identify important
nodes in temporal networks. Two main elements in universal grav-
itation are the masses of objects and the distance between them.
Our main assumption is that the centrality of a node depends
on its gravitation to nearby nodes, which is determined from the
temporal distance. Hence, nearby nodes should be close to target
nodes in both structure and time. In addition, we use node proper-
ties, such as static centrality metrics and their extension to tempo-
ral networks, to represent mass and the temporal distance between
nodes to represent distance. The temporal distance between nodes
captures both the structure and time order of contacts. Specifically,
we use two definitions for temporal distance between two nodes:
the fastest arrival distance and the temporal shortest distance.
We use the temporal gravity model to identify important nodes
with structural influence and spreading influence in 10 temporal
networks. We use the network efficiency to determine the refer-
ence structural influence and the susceptible-infected-recovered
(SIR) model to describe spreading in the temporal networks. The
node spreading capacity, which is the range of spreading caused
by a node, determines the reference spreading influence. Next, we
obtain the Kendall correlation between the node reference influ-
ence and the importance score obtained from a centrality met-
ric. A higher correlation coefficient indicates higher performance
of the centrality method to identify important nodes. Experimen-
tal results demonstrate that the temporal gravity model consider-
ably outperforms state-of-the-art centrality methods for important
node identification.

The remainder of this paper is organised as follows. In
Section 2, we describe the representation of a temporal network
and the definition of the temporal distance between nodes. We
briefly describe the static and temporal centrality metrics, which
correspond to node mass in the proposed temporal gravity model,
along with baseline metrics. In Section 3, we detail the proposed
temporal gravity model based on baseline centrality metrics. In
Section 4, we report experimental results obtained from the tem-
poral gravity model and baseline metrics on real temporal net-
works. We also introduce a novel metric, the time degree, that rep-
resents the mass of the proposed temporal gravity model, improves
robustness, and reduces computational complexity. In Section 5,
we further analyse the performance of the proposed metrics on
synthetic temporal networks. In Section 6, we draw conclusions
from our study.

2. Preliminaries
In this section, we present basic concepts about temporal net-

works, including their representation, temporal paths, and dis-
tance. We then briefly describe benchmark centrality metrics. Cen-
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trality metrics and the temporal distance are the bases of the pro-
posed temporal gravity model for important node identification.

2.1. Basic notations and definitions

Let GT = (V,ET) represent a temporal network on time inter-
val [1, T]. The network consists of a set V of N = |V| nodes and a
set of temporal events ET. Each event e € ET is given by a three-
tuple (v;,v;,t), denoting that node v; and node v; make contact
at time t. At each t €[1,T], the adjacency matrix is A;, where
At (i, j) = 1 represents that nodes v; and v; are connected at time
t, and A¢(i, j) = 0 represents no connection between the nodes.

We can generate networks at various time scales according to
the time resolution of network data. For example, email exchange
datasets are usually collected in seconds. By setting the time reso-
lution to 1 h, we can represent hourly data on the connection be-
tween two users within that period. We denote the time resolution
as At. Temporal network GT with n = T/At snapshots can repre-
sent a dataset. The network snapshots are given by G{, Gy, ... Gu. If
At is small, the temporal network has several snapshots. If At =T,
we obtain the corresponding static network of G', denoted as
G = (V,E). A pair of nodes v;, v; is connected by a link (v;,v;) € E
if the nodes have at least one contact in G'. The adjacency ma-
trix of G is denoted as A, where A(i, j) = 1 if nodes v; and v; are
connected, and A(i, j) = 0 otherwise. Each snapshot of G can be
considered as a static network within the period corresponding to
At.

Let us consider the example of a temporal network shown in
Fig. 1. Fig. 1(b) shows a temporal network with five nodes and
T = 4 time steps. By setting At = 1, the temporal network contains
four snapshots, Gq, Gy, G3, and G4. Fig. 1(a) shows the correspond-
ing aggregated static network G.

2.1.1. Temporal path

Given temporal network GT = (V,ET) with n snapshots, a
temporal path is a node sequence P=<vy,Vy, ..., Vg, Viyr >,
where event (v;,Vi,q,t;) € ET is the ith temporal event on P
for 1<i<k and t; <tq. Hence, t; is the initial time of P,
denoted as tsqre(P), and ¢t is the final time of P, denoted
as t,,q(P). We define the temporal path length of P as I(P) =
tond (P) — tstart (P) + 1. Given a time interval [tq, tp], v; is the initial
node, and v; is the final node Vv;,vjeV. Let P(v;, v}, [ta, tp]) =
{P|P be a temporal path from v; to v}, such that tsare (P) > ta and
tena(P) <tp}. We consider two different definitions of temporal
paths: the fastest arrival path and the temporal shortest path [29].
These paths are representative in temporal networks.

Fastest arrival path [29] The fastest arrival path between initial
node v; and final node v; is the temporal path with the mini-
mum duration counted from t = 1. Hence, the fastest arrival path
is the path from initial node v; to final node v; with the minimum
elapsed time over a period. Therefore, P € P(v;, v}, [ta, tp]) is the
fastest arrival path if t,,q(P) = min{t,,q(P)|P" € P(v;, vj, [ta, ]}
The fastest arrival distance, ¢ (v;, v;), between nodes v; and v; is
the path length of the corresponding fastest arrival path.

Temporal shortest path [29] The temporal shortest path be-
tween initial node v; and final node v; is the path for which
the overall time needed to communicate is the shortest. In
other words, P e P(v;, v}, [ta. tp]) is the temporal shortest path if
I(P) = min{l(P")|P" € P(v;,vj, [ta. tp])}. The temporal shortest dis-
tance, 0 (v;, vj), between nodes v; and v; is the path length of the
corresponding temporal shortest path.

Let us illustrate the calculation of the temporal paths as shown
in Fig. 1(c) and (d). The fastest path from node 1 to 4 is P, =<
1,2, 3,4 >. The fastest arrival distance, [(P;), between nodes 1 and
4 is ¢(1,4) = 3. On the other hand, the temporal shortest path



J. Bi, J. Jin, C. Qu et al.

O
) (2)

";:5m_
©)
0/9

G ! Gy

(a) Aggregated static network

(c) Fastest arrival path between node 1 and node 4

1
o o .I. _____________
1

Chaos, Solitons and Fractals 147 (2021) 110934

@ ®

(b) Snapshots of temporal network

®
® VO
O—0

(d) Temporal shortest path between node 1 and node 4

Fig. 1. Temporal network G = (V, ET) with five nodes and T = 4 time steps. (a) Aggregated static network G. (b) Static snapshots Gy, G, G3, and G,. (c) Fastest arrival path
from initial node 1 to final node 4. (d) Temporal shortest path from initial node 1 to final node 4. The corresponding fastest arrival distance and temporal shortest distance

are 3 and 2, respectively.

Table 1

Fastest arrival distance between nodes
in the temporal network shown in
Fig. 1. Node pairs without fastest ar-
rival paths are denoted by oco.

Node 1 2 3 4 5

1 0 1 2 3 o

2 1 0 2 3 o

3 3 2 0 3 o

4 ) ) 3 0 1

5 9] 9] 3 1 0]
Table 2

Temporal shortest distance between
nodes in the temporal network shown
in Fig. 1. Node pairs without temporal
shortest paths are denoted by oc.

Node 1 2 3 4 5
1 0 1 1 2 o
2 1 0 1 2 o
3 1 1 0 1 00
4 9] 9] 1 0 1
5 00 ) 2 1 0

from node 1 to node 4 is P, =< 1, 3,4 >, with the temporal short-
est distance being 6 (1, 4) = 2. The fastest arrival distance and tem-
poral shortest distance of every pair of nodes in Fig. 1 are listed in
Tables 1 and 2, respectively.

2.2. Benchmark centrality metrics

We briefly introduce existing centrality metrics to identify im-
portant nodes.

Degree centrality. The degree of a node is defined on static net-
work G as the number of its neighbours [10]. The degree central-
ity (DC) of a node is the proportion of nodes it is connected to.
A higher degree implies greater importance of a node. The DC is
defined as

DC() = e M)

where k; is the degree of node v;, and N is the number of nodes
in the network.

Closeness centrality. The closeness centrality (CC) [11] measures
the distance between nodes. In practice, the CC determines the
speed of communication of a node with all other nodes in a net-
work. For a disconnected network, the CC is calculated as the sum
of the reciprocal of the shortest distances from a given node v; to
all other nodes in static network G:

1 1
CC(i) = —— -, 2
()qu% (2)
i#]
where d;; is the shortest distance between v; and v; in G.
Betweenness centrality. The betweenness centrality

(BC) [12] measures the number of shortest paths passing through
node v; in static network G:

1
BC() = Y- 2, 3)
sitt ot
where oy is the number of shortest paths between nodes vs and
V¢, and osit is the number of shortest paths between nodes vs and
vy through node v;.

PageRank. The PageRank (PR) [13] was introduced by Google to
measure the importance of webpages from their hyperlink network
structure. The PR measures the importance of a webpage (node)
considering its neighbours and the number of pages (nodes) linked
to each neighbour defined on static network G. Explicitly, PR is de-
fined as

N
PR()" = (a;

j=1

PR(i t-1
RO, @
j

where k;?”t is the out degree of node v;, and a;; represents the con-
nection between nodes v; and v;. PR(i)" is the PR value of node v;
at time step t. After several iterations, the PR value gradually con-
verges and stabilises. We use PR(i) to represent the final PR value
of node v;.

Gravity model. The gravity centrality [16] of a node v; is defined
on static network G as

. ks;ks ;
g =3 —5+ (5)
vieg; ij
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Table 3

Centrality scores per node obtained from temporal snapshots (row Averaged)
and aggregated static network (row Aggregated). The temporal network and
corresponding static network are show in Fig. 1.

Node  Type PageRank  Degree  Closeness  Betweenness
1 Averaged 0.163 0.188 0.203 0.083
Aggregated 0.192 0.500 0.571 0.000
2 Averaged 0.178 0.188 0.219 0.000
Aggregated  0.192 0.500 0.571 0.000
3 Averaged 0.250 0.250 0.266 0.083
Aggregated 0.283 0.750 0.800 0.667
4 Averaged 0.265 0.250 0.281 0.000
Aggregated 0.213 0.500 0.667 0.500
5 Averaged 0.145 0.125 0.125 0.000
Aggregated 0.120 0.500 0.444 0.000

where ks; is the k-shell index of node v;, ¢; is the neighbour set of
node v;, and d;; is the shortest distance between nodes v; and v;.

Local gravity centrality The local gravity centrality [17] of node
v; in static network G is defined as

. kik;
&)= ) ‘;2] . (6)
dij<Ri#j i

where k; is the degree of node v;, and d;; is the shortest distance
between nodes v; and v;. We use R to truncate the contribution of
high-order nodes on the centrality score of target node v;. Specifi-
cally, d;; < R indicates that nodes within distance R to v; contribute
to centrality score gg(i). This truncation represents a trade-off in
node centrality between the local and global network structures.

2.3. Centrality metrics on temporal networks

Because each snapshot of a temporal network can be viewed
as a static network, we can compute the centrality score per node
in each snapshot. The centrality of a node in the temporal net-
work can then be defined as the average centrality score across
snapshots [27,30]. Consider the DC as an example. We can com-
pute the DC of node v; per snapshot to obtain an n-dimensional
sequence of DC scores. The DC of node v; in the temporal net-
work is the average of this sequence. For a temporal network with
n snapshots Gy, Gy, ..., Gy, we can analogously compute the four
centrality scores, namely, PR, DC, CC, and BC, per node. For clar-
ity, we denote the corresponding average centralities of a temporal
network divided into snapshots as PR™, DC™, CC™, and BC™. We
also compute the centrality scores on the aggregated network and
denote them as PR®, DC°, CC°, and BC® to indicate the centrality
scores of aggregated static network G.

The centrality scores per node of the temporal network shown
in Fig. 1 are listed in Table 3, where ‘Averaged’ and ‘Aggregated’
indicate the corresponding centrality scores. The centrality scores
for the metrics obtained from the temporal network by snapshot
averaging considerably differ from those obtained from the static
network.

3. Temporal gravity model for node ranking

The classical law of gravitation establishes a relation containing
the mass of objects in the numerator and the distance between
two objects in the denominator. Gravity models, such as the k-
shell-based gravity model and local gravity model, have been used
to identify important nodes in static networks. Inspired by the con-
cept of gravity and existing gravity models for static networks, we
propose a temporal gravity model to identify important nodes in
temporal networks. In the temporal gravity model, the importance
of a node depends on both its temporal distance to other nodes
and its structural properties.

Chaos, Solitons and Fractals 147 (2021) 110934

In the proposed temporal gravity model, we use the node prop-
erties as the mass and the distance between two nodes on a tem-
poral network as the distance. Thus, the node importance of v; is
defined as follows:

. MM
o) = Y~ (7)

dij<Ri#j if

where TG denotes the temporal gravity model, M; represents the
node properties of v;, d;; is the temporal distance between nodes
v; and v;, and R is a truncation radius.

As node properties, we use baseline centrality metrics PR*, DC*,
CC%, BCS, PR™, DC™, CC™, and BC™ to represent mass M; of node
v;. For the temporal distance (denominator of Eq. (7)), we consider
either the fastest arrival distance (TG-fad model) or the temporal
shortest distance (TG-std model).

We denote the temporal gravity model as
function TG(x,y), where x € {fad, std} and ye
{PR™, DC™, CC™,BC™, PRS, DC*, CC?, BC}}. For example, if PR™ rep-
resents the mass and FAD represents the distance in Eq. (7), the
corresponding model is denoted as TG(fad, PR™).

4. Evaluation of temporal gravity model on real temporal
networks

We use the centrality metrics described in
Sections 2.2 and 2.3 as baseline metrics to evaluate the tem-
poral gravity model. We use the network efficiency and SIR
spreading model on temporal networks for performance evalua-
tion. The network efficiency aims to determine the role of a node
in information exchange, whereas the SIR spreading model aims
to evaluate the spreading capacity of a node.

The node importance score obtained from different centrality
metrics and the performance evaluation methods—namely, net-
work efficiency and SIR spreading model—are compared by using
Kendall correlation coefficient t.! A high Kendall correlation coef-
ficient 7 indicates that the centrality metric suitably identifies im-
portant nodes in a temporal network.

We first define the network efficiency on temporal networks
and present the results of identifying structural influence nodes in
temporal networks by using centrality metrics and the temporal
gravity model. We then compare the temporal gravity model and
the baseline centrality metrics on the identification of important
nodes during SIR spreading in temporal networks.

4.1. Network efficiency

For network efficiency [32], we assume that information in a
network is transmitted only through the temporal shortest paths.
The efficiency measures the quality of information exchange over
a network. We define the network efficiency of temporal network
GT as follows:

1
) =mw-n

>

,
v #V;eGT Y

(8)

1 Kendall's tau [31] is a measure of the correlation strength between two se-
quences. A larger tau indicates higher similarity between the sequences. Consider
two sequences with N elements, X =(x1,X2,..., xy) and Y = (y1,¥2, ..., Yn). Any
pair of two-tuples (x;,y;) and (x;.y;)(i # j) is concordant if both x; > x; and y; > y;
or both x; < xj and y; < y;. The pair is discordant if x; > x; and y; < y; or x; < x; and
Yi >Y;j. If x; =x; or y; =y;, the pair is neither concordant nor discordant. Kendall’s
tau of two sequences X and Y can be calculated as

1
R = gjsgn(x,- - X;)sgn(yi — y;)-
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Table 4
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Kendall correlation coefficient T between node centrality score obtained from NEf,; and centrality metrics for 10 empirical networks. The highest 7 of each
network is highlighted in bold and with an asterisk. The highest t of each network obtained from baseline metrics is highlighted in bold.

HS2011 HS2012 HS2013 WP HC PS HT2009 Infections ~ SFHH DNC
TG(fad, PR™) 0.73206 0.72502 0.63329 0.68323 0.88180 0.62505*  0.79741 0.83589* 0.82366*  0.70045*
TG(fad, PR®) 0.73206 0.75233*  0.67115* 0.74104 0.87459 0.49604 0.78729 0.79583 0.77739 0.62305
TG(fad, DC™) 0.71632 0.69758 0.62841 0.72193 0.78883 0.57745 0.72408 0.69442 0.75628 0.63410
TG(fad, DC*) 0.71606 0.73979 0.66849 0.75108*  0.85225 0.46723 0.77655 0.71594 0.74235 0.60856
TG(fad,CC™) 0.73333 0.69944 0.63108 0.73053 0.81189 0.52711 0.75411 0.73038 0.79462 0.68422
TG(fad, CC%) 0.74375* 0.72539 0.64233 0.68849 0.91063*  0.59473 0.80468*  0.83317 0.80798 0.63972
TG(fad, BC™) 0.69973 0.65347 0.61902 0.66444 0.59495 0.46867 0.62263 0.54512 0.62040 0.33123
TG(fad, BC*) 0.63378 0.62702 0.61839 0.72241 0.75063 0.37945 0.66498 0.50254 0.62421 0.34447
PR™ 0.41029 0.38423 0.37716 0.30244 0.30523 0.33336 0.33028 0.07638 0.42005 0.37230
e 0.51515 0.40689 0.41068 0.31342 0.32924 0.36287 0.35987 0.09910 0.41199 0.53762
ccm 0.53041 0.41043 0.41014 0.32011 0.30306 0.26374 0.41056 0.16953 0.45180 0.50284
BC™ 0.51660 0.34806 0.37426 0.27800 0.27712 0.28027 0.27497 0.19491 0.33410 0.32488
PR 0.46210 0.34364 0.40947 0.39943 0.37946 0.22883 0.36315 0.13729 0.36444 0.17510
DC* 0.47604 0.35421 0.41230 0.41010 0.38060 0.22845 0.36582 0.11060 0.36446 0.37313
cc 0.44594 0.30643 0.39309 0.40781 0.38671 0.22781 0.36740 0.17343 0.36301 0.37683
BC* 0.43975 0.27940 0.38872 0.37458 0.37225 0.23398 0.35240 0.17433 0.35885 0.33477
max of all metrics 0.74375 0.75233 0.67115 0.75108 0.91063 0.62505 0.80468 0.83589 0.82366 0.70045
max of baseline metrics ~ 0.53041 0.41043 0.41230 0.41010 0.38671 0.36287 0.41056 0.19491 0.45180 0.53762

where d;; is the temporal distance between nodes v; and v;. The
temporal distance between two nodes can be defined by either the
fastest arrival distance or the temporal shortest distance.

Removing a node from a temporal network may decrease the
network efficiency if the network becomes disconnected. There-
fore, the efficiency after node removal can reflect the importance
of nodes in temporal networks [28]. A larger efficiency reduction
indicates a higher node importance in terms of structural influ-
ence. Let GT \ v; denote the temporal network after removing node
v; and all contacts associated with it. The difference between the
network efficiency of GT and that of G \ v; is defined as the im-
portance score of node v; regarding network efficiency:

NE(;) = e(G") — e(G" \ v3). (9)

The node efficiencies based on fastest arrival distance and temporal
shortest distance are denoted as NEjqq and NEg,, respectively.

We analyse the performance of the temporal gravity model and
the baseline centrality metrics to identify important nodes regard-
ing network efficiency by using the fastest arrival distance as the
distance in the temporal gravity model.

In the temporal gravity model, we first use the baseline central-
ity metrics to represent mass. Taking PR centrality as an example,
temporal gravity model TG(fad, PR™) integrates the PR score of
nodes within a certain temporal distance as the centrality score of
the target node. PR centrality PR™ can also be independently used
as a centrality metric. We report the results from 10 empirical tem-
poral networks (see Appendix Table A1). Fig. 2 shows that the tem-
poral gravity model improves important node identification com-
pared with the use of baseline centrality metrics PR™, DC™, CC™,
and BC™ for the temporal network snapshots and PR, DC,CC*,
and BC® for the aggregated static networks. The temporal gravity
model based on different baseline centrality metrics is more effec-
tive than the simple use of the corresponding baseline centrality
metrics for important node identification in all evaluated networks.

Table 4 lists the Kendall correlation coefficient t between
the node centrality scores derived by the corresponding cen-
trality metrics and the node efficiency based on fastest ar-
rival distance NEfq. In general, the temporal gravity model bet-
ter identifies important nodes than baseline centrality metrics
PR™, DC™,CC™, BC™, PR®, DC®,CC°, and BC®. Except for temporal
gravity models TG(fad, BC™) and TG(fad,BC®) in network DNC,
the Kendall correlation coefficients of the temporal gravity mod-
els are higher than those obtained from the baseline centrality
metrics. Specifically, the highest T of the temporal gravity model
is 85.47% higher on average than the highest t obtained from

the baseline centrality metrics across the 10 empirical networks.
Remarkably, t of network Infectious increases from 0.19491 to
0.83589 from the best baseline metric to the best of temporal grav-
ity model, representing an improvement of 328.85%.

Fig. 2 and Table 4 show the results considering the fastest
arrival distance. Using the temporal gravity model based on the
shortest distance to estimate NEg, is similar to using the model
based on the fastest arrival distance to estimate NEg,y. Compared
with using only the baseline centrality metrics (Fig. 3), the cor-
responding temporal gravity model improves the important node
identification, except when compared with the aggregated DC in
networks HT2009 and HS2011. Even under this condition, the per-
formance of the proposed TG(std, DC%) is comparable with that of
aggregated DC DCS.

The results of important node identification based on the tem-
poral shortest distance are listed in Table 5, which shows that the
proposed model can suitably identify important nodes. The high-
est T of the temporal gravity model is 5.79% higher on average
than the highest T obtained from the baseline centrality metrics
across the 10 empirical networks. In network DNC, 7 increases
from 0.65626 to 0.78852 from the best baseline metric to the best
temporal gravity model, representing an improvement of 20.15%.

4.2. Performance evaluation based on spreading capacity

A node is important if it originates information that spreads to
a large population. We call such a node a seed node given its high
spreading capacity. We evaluate the performance of the proposed
temporal gravity model and baseline metrics for important node
identification in temporal networks in terms of the spreading ca-
pacity. We use the SIR model to simulate information spreading
in temporal networks [28,33]. In the SIR spreading model, a node
can be susceptible (S), infected (I), or recovered (R), as illustrated
in Fig. 4. A susceptible node can become infected after contact
with an infected node with probability 8. An infected node can be-
come recovered with probability p. The spreading process follows
the flow of temporal networks. In the reported experiments, the
infection and recovery probabilities remain fixed to 8 = 0.1 and
= 0.01, respectively.

In a temporal network with n snapshots G;, Gy, ..., Gp, a node
can appear in multiple snapshots. Therefore, if we choose a seed
node, we should consider the time to start spreading. For node
v;, we assume the node appears at time T, = {t} 7, ....t]l}. We

take every time step t,{i €Ty, as the starting time of the spread-
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Table 5

Chaos, Solitons and Fractals 147 (2021) 110934

Kendall correlation coefficient T between node centrality score obtained from NE;; and centrality metrics for 10 empirical networks. The highest 7 of each
network is highlighted in bold and with an asterisk. The highest T of each network obtained from baseline metrics is highlighted in bold.

HS2011  HS2012  HS2013 WP HC PS HT2009 Infections  SFHH DNC
TG(std, PR™) 083238 081142 080938  0.87864' 0.82270  0.86413  0.86504 067578  0.83927  0.73534
TG(std, PR°) 083365 083439 081674 086670  0.87459 091646 092225 067077  0.86971*  0.66210
TG(std, DC™) 077397 074811 071640 076684 084649 081907 083850  0.64911 085884  0.77186
TG(std, DC°) 080800  0.82297 079362 085714 086883 090954 091561  0.69403  0.86551  0.62968
TG(std,CC™) 0.73003 0.71471 0.72199 0.76684 0.83063 0.83375 0.83123 0.72909 0.81936 0.78852*
TG(std, CC°) 083721 0.85102° 0.84184° 085714  0.90126° 0.92943° 0.93268° 0.78484° 086917  0.76614
TG(std, BC™) 076830 070524 076131 071031 064108 064137 079709 067989  0.80382  0.35997
TG(std, BCY) 080952 075353 077982  0.80889  0.82991  0.88094 090076 053887 083619  0.37066
PR™ 060000 064184 060432 062255 065766  0.66051 073925 035974 065145  0.25222
hlad 074402 070797 065638 066571 080846 073185 079285 054285 083115  0.53272
ccn 066425 064544 056811 066699 071748 073410 075190  0.66781  0.66695  0.65626
BC™ 069516 063571 070018 062986 057477 053719 075474 058768 075721  0.35106
PR* 081689 078994  0.77404 083421 083423 090686 092004 052716 085573  0.14369
hles 082287 080619 077157  0.85886  0.84518 091203 092330 062512  0.86124  0.41227
cc 0.80315 0.75970 0.73217 0.76988 0.85556 0.91556 0.92542 0.62666 0.85401 0.42378
BC 075594  0.68674 073460 078261 077802 083670 087389 047615  0.80663  0.35896
max of all metrics 083721 085102 084184 087864 090126 092943 093268 078484 086971  0.78852
max of baseline metrics  0.82287 ~ 0.80619 077404  0.85886  0.85556  0.91556  0.92542  0.66781  0.86124  0.65626
R),

| e
S I R

Fig. 4. Diagram of SIR spreading model.

ing. Let node v; be the seed and t,{i be the starting time. We run
SIR spreading until the end of the temporal network to obtain the
final spreading range, RJ[_, which describes the infected and re-

covered nodes after spreading. For each t{,;_ as the starting time,
spreading proceeds over 100 trials to obtain the average spreading

range, R{;l_. In addition, for each seed node v;, spreading proceeds
starting at time t,{i over 100 trials. Therefore, the spreading ranges

are R(v;) = {Rli,Riz,i, ... RT’}?} We use two definitions for the node
spreading capacity. First, the average spreading capacity of node v;
can be given by the average spreading range, Rmean(V;), Over set
R(v;). Second, the normalised spreading capacity can be given by

Table 6

Rnorm (V;) = % 2’171:1 aa A large Rmean OT Ryorm implies that the
S

node has a high spreadling capacity.

We evaluate the temporal gravity model and baseline centrality
metrics for identifying nodes with high spreading capacity in tem-
poral networks. The temporal gravity model considers the tempo-
ral shortest distance. The real temporal capacity of a node is de-
fined by Rmean O Rnorm. Taking the temporal gravity model as an
example, we determine the performance using the Kendall corre-
lation coefficient. First, we compute the importance score of every
node using the temporal gravity model to obtain a list of central-
ity scores per node. Then, spreading proceeds to determine a list
of spreading capacities per node. Kendall correlation coefficient t
is computed between the lists of centrality scores and spreading
capacities. A high value of 7 indicates that the evaluated centrality
metric can suitably identify important nodes.

The important node identification results are listed in
Tables 6 and A2 for spreading capacities Rporm and Rmean, re-
spectively. The spreading influence in the experiment is the
normalised (or averaged) result of the nodes at different starting
times. Therefore, the gravity model considering the shortest path

Kendall correlation coefficient T between real node spreading capacity Rnsm and node centrality score obtained from centrality metrics for 10 empirical
networks. The highest t of each network is highlighted in bold and with an asterisk. The highest 7 of each network obtained from baseline metrics is

highlighted in bold.

HS2011 HS2012 HS2013 WP HC PS HT2009 Infections ~ SFHH DNC
TG(std, PR™) 0.59924 0.62359 0.60481 0.38939 0.54955 0.47882 0.70796 0.54029 0.61821 0.65801*
TG(std, PR’) 0.57283 0.56760 0.58575 0.30769 0.55604 0.46655 0.67636 0.53137 0.58379 0.59151
TG(std, DC™) 0.65714*  0.66096*  0.69359*  0.42714* 0.58486 0.51620*  0.74210*  0.57452* 0.62799* 0.62994
TG(std, DC*) 0.58425 0.59243 0.61126 0.29861 0.55315 0.46552 0.67573 0.54868 0.58192 0.61340
TG(std,CC™) 0.62717 0.64444 0.59149 0.41376 0.50559 0.46408 0.67794 0.49205 0.59157 0.61191
TG(std, CC*) 0.57917 0.57480 0.57854 0.31199 0.55027 0.46518 0.68173 0.48330 0.59718 0.65043
TG(std, BC™) 0.51381 0.58320 0.47167 0.33186 0.50775 0.40146 0.69216 0.37630 0.54656 0.40272
TG(std, BC™) 0.46057 0.43633 0.44639 0.30148 0.52937 0.43658 0.65518 0.29761 0.54942 0.38472
PR™ 0.41867 0.57666 0.47059 0.42379 0.48108 0.43918 0.66688 0.36852 0.52167 0.24533
Dpc™ 0.63226 0.63544 0.66220 0.41901 0.60029*  0.51156 0.73904 0.55896 0.61955 0.45733
cc 0.59416 0.59814 0.49674 0.41567 0.42559 0.44062 0.64096 0.48547 0.51259 0.47610
BC™ 0.43812 0.52671 0.42033 0.33058 0.49045 0.35181 0.68173 0.35857 0.51717 0.39356
PR 0.53752 0.51173 0.53172 0.31151 0.55243 0.45551 0.66941 0.48628 0.56537 0.16401
DC* 0.56493 0.56181 0.58323 0.31907 0.55945 0.46196 0.67751 0.56921 0.57046 0.41924
cc 0.49522 0.49158 0.45245 0.30237 0.55753 0.45885 0.67698 0.32204 0.56927 0.46352
BC* 0.41816 0.38331 0.40110 0.30387 0.50198 0.41868 0.63401 0.24377 0.52846 0.37387
max for all 0.65714 0.66096 0.69359 0.42714 0.60029 0.51620 0.74210 0.57452 0.62799 0.65801
max for based methods  0.63226 0.63544 0.66220 0.42379 0.60029 0.51156 0.73904 0.56921 0.61955 0.47610
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Fig. 5. Kendall correlation coefficient T between real node spreading capacity Rqorm and the node centrality score obtained from centrality metrics. The correlation histograms
between Ryorm and the temporal gravity model/baseline centrality metrics are shown in grey/blue. (For interpretation of the references to colour in this figure legend, the

reader is referred to the web version of this article.)

is more suitable for this type of influence. To reduce the effect of
noise from neighbouring nodes, we set the truncation radius of
temporal gravity model TG-std to R =5 (see Fig. Al). Fig. 5 shows
that TG-std based on the baseline centrality metrics outperforms
the use of baseline centrality metrics to identify important nodes.

In fact, temporal gravity model TG-std presents high-performance
important node identification in most temporal networks. Even
for some datasets for which TG-std fails to provide the highest
performance, its Kendall correlation coefficients remain high.
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Fig. 7. Kendall correlation coefficient T between the node centrality score obtained
from NEg, and temporal gravity models for 10 empirical networks.

4.3. Efficient node centrality metric

By considering temporal information to quantify the mass, we
propose a node degree for temporal networks, called the time de-
gree, which can be used as the mass of a node in Eq. (7). The time
degree is defined below.

e Time degree
For a temporal network with n snapshots, Gy, G, ...,and Gp,
the degree centrality values of node v; for the snapshots are
given by DC(1),DC(2),...,and DC(n), respectively. We define
the time degree of node v; as

TD(i) = P 4 ePC@) 4 4 gPCm),

The temporal gravity model can consider both the structural
properties and time information to obtain an overall improvement
in important node identification. Considering the influence of the
degree of a node at different snapshots, we obtain the time de-
gree. Among the temporal gravity models, the one based on time
degree TD has relatively stable performance on the NE;q; predic-
tion, as shown in Fig. 6.

Among the temporal gravity models, the one based on the time
degree, TG(std, TD), also has relatively stable and robust perfor-
mance, as shown in Fig. 7. TG(std, TD) is more effective than the
baseline centrality metrics in the 10 networks. In general, when
measuring the structural influence of a temporal network, we can
use the temporal gravity model based on the time degree to re-
duce both the selection burden of indicators and computational
complexity.

10

Chaos, Solitons and Fractals 147 (2021) 110934

0.8 O TG(std,PR™)
’ A TG(std,PR®)
v W TG(std, DC™)
0.71 v ﬁ TG(std,DCS)
v Y 5 TG(std,CC™)
o Y .
067 ® 8 v g X T'G(std,CC%)
£ ® 8 b4 e O TG(std,BC™)
B
| o 3 v ° TG(std,BCS)
0.5 J ® TG(std,TD)
o " —
¥ l¢) o)
0.4
o o
0.3 2
T T T T T T T T T 1
oo 9O 0 o ©
SR 9@«\‘5@0\ $ 9

Fig. 8. Kendall correlation coefficient T between the node centrality score obtained
from Ryorm and temporal gravity models for 10 empirical networks.

The spreading influence has a high correlation with the node
degree, and a higher degree implies a faster spreading. The aver-
age degree can better reflect the overall state over time than the
aggregated degree. Compared with the proposed TG-std methods,
TG(std, DC™) more accurately predicts the node spreading influ-
ence (see Fig. 8), and TG(std, TD) also provides stable performance.
When measuring the spreading influence of temporal networks, we
can use TG(std, TD) or TG(std, DC™) to reduce the selection bur-
den of indicators.

5. Performance analysis in activity-driven network models

Based on the analysis in Section 4, the temporal gravity model
achieves an overall improvement compared with the baseline cen-
trality metrics. For structural influence, the temporal gravity model
based on time degree TD shows a steady improvement. For spread-
ing influence, TG(std, DC™) and TG(std, TD) are better predictors.
Thus, we can use the temporal gravity model with TD or DC™ to
reduce the selection burden of indicators. We further analyse the
performance of the proposed metrics on synthetic temporal net-
works. To analyse the type of data for which the proposed method
is more suitable, our empirical analysis naturally leads to the use
of the activity-driven model [34] to generate the synthetic tempo-
ral networks.

The activity-driven network model considers N nodes (aggre-
gated) and gives each node a fixed activity probability per unit
time a; = nx;, which is defined as the probability to create edges
with other nodes. Here, x; (bounded in the interval € <x; <1) is
the activity potential of node v;, which is distributed according to
power law distribution F(x) ~x~7, and 7 is a rescaling factor that
determines the average number of nodes per unit time, n(x)N. A
network evolves according to the following steps: (i) Each node has
a fixed activity potential probability x;. At the beginning of each
time snapshot t, the N nodes of network G; are disconnected ini-
tially. (ii) Through random seeding, each node becomes an active
node with probability a;At and connects with m other nodes ran-
domly. (iii) At the next snapshot t + At, all edges are removed, and
step 2 is repeated.

The average degree per unit time of the temporal network is
(k) = 2mn(k). The values of link number m influence the aver-
age degree (k), and the network density. By changing the value
of m, we can obtain experimental networks with different aver-
age degrees. Most social networks are heterogeneous. Without loss
of generally, we fix the parameters € = 1073, At =1, n =10 and
y = 2.5. In order to better evaluate our method, we set random
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Fig. 9. Measures of correlations between NEfq  (or NEy4) and temporal gravity models under different parameter link number m in the empirical networks. We fix N = 100,
T =80, n=10, F(x) ~x¥ with y =2.5, and € < x < 1 with € = 10~3. Under each m, we set random seeds to generate 20 temporal networks, and the coefficient result is
the corresponding box. The blue line is the mean value under each m. (a) shows the different Kendall correlation coefficients T between NEf,y and our method TG(fad, TD)
on the parameters m. (b) shows the different Kendall correlation coefficients t between NEy,; and our method TG(std, TD) on the parameters m. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)

Rnorm

070 TG(sd,TD) o
0.65 1
0.60 1
0.55 1
0.50 1
0.45 4
0.40 1
0.351
0.30 1
0.25 1
0.20 1
0.15 1

o 0.451

Rnorm

0.704 —— TG(std,DC™)
0.65
0.60 1
0.55 |

0.50 1

0.40
0.35 1
0.30 1
0.25 4
0.20 1

0.15

(b)

Fig. 10. Measures of correlations between Ry,m and temporal gravity models under different parameter link number m in the empirical networks. We fix N = 100, T = 80,
n =10, F(x) ~x¥ with y =25, and € <x <1 with € = 103, Under each m, we set random seeds to generate 20 temporal networks, and the coefficient result is the
corresponding box. The blue line is the mean value under each m. (a) and (b) show the different Kendall correlation coefficients T between Rpom and our method TG(std, TD)
(or TG(std, DC™)) on the parameters m. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

seeds to generate 20 networks with the same average degree (k),
under each link number m.

We examine how the parameter m influences our method iden-
tification quality. For network efficiency, the effect of the parame-
ter m on the value of correlation t is plotted in Fig. 9. As shown
in Fig. 9(a), the value of correlation 7 obtained by comparing NE f4g
and TG(fad, TD) is stable when m is increased. Fig. 9(a) indicates
that m has little effect on important node identification in terms
of network efficiency NEjq4. However, in Fig. 9(b), we can see that
the 7 obtained by comparing NEy; and TG(std, TD) increases as
m increases in general. The mean value of t increases to 0.91000.
Fig. 9 suggests that our method can also identify the structural
influential nodes on synthetic networks. For NE;, our method is
more suitable for denser networks.

In terms of spreading influence, the evolution of the correlation
T between Ryorm and temporal gravity models with increasing m is

1

plotted in Fig. 10. The correlation t increases greatly with increas-
ing m. Therefore, the increase in the correlation when m is large
implies that our model is more suitable for denser networks.

6. Discussion and conclusions

In practice, most complex systems are dynamic and time vary-
ing. To preserve the temporal information of systems, we can rep-
resent them as temporal networks. Although many centrality met-
rics have been proposed for static networks, important node iden-
tification in temporal networks remains an open question.

The law of gravitation is a simple, elegant, and representative
formula to estimate the strength of interaction between objects
by considering the inherent influence of the objects and their dis-
tance. Inspired by the concept of gravity and existing gravity mod-
els for static networks, we propose a temporal gravity model to
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identify important nodes in temporal networks. The temporal grav-
ity model leverages both neighbourhood information and temporal
information. In addition, it provides a mathematical and compu-
tational framework that can use different node properties to rep-
resent the node masses and different temporal distances as dis-
tance analogous in gravity. To determine the node properties, we
use baseline centrality metrics and the proposed time degree. For
the temporal distance, we consider either the fastest arrival dis-
tance or the temporal shortest distance.

The Kendall correlation measures the ranking correlation be-
tween two variables. Hence, we use Kendall correlation coefficient
T between the real influence of a node on either the network con-
nectivity or spreading and the importance score obtained from dif-
ferent centrality metrics to evaluate the metric performance on
empirical temporal networks. To enhance the demonstration re-
sults, we also use the Spearman correlation p? to quantify the
performance (see Appendix B). In addition, we consider the net-
work efficiency based on the temporal shortest path, NEg,;, and
that based on the fastest arrival path, NE;,. Regarding NEfu.
TG — fad outperforms the baseline centrality metrics across dif-
ferent networks. Specifically, the Kendall correlation coefficient t
of the temporal gravity model increases by 85.51% on average com-
pared with the highest T obtained from baseline centrality metrics
across the 10 empirical networks. Regarding NEg,, the TG — std
methods provide an overall improvement. For structural influence,
the proposed temporal gravity model based on time degree TD
shows a steady improvement over the baseline centrality metrics.
When measuring the structural influence of temporal networks, we
can thus use the temporal gravity model with TD to reduce the se-
lection burden of indicators.

Regarding the spreading influence, we simulate the SIR spread-
ing model on the empirical temporal networks. We use the nor-
malised and average spreading ranges to represent the node
spreading capacity. The TG — std methods using the baseline cen-
trality metrics (average scores) outperform the baseline central-
ity metrics. TG(std, DC™) and TG(std, TD) are better predictors for
node spreading influence. We also use the activity-driven model to
generate synthetic temporal networks for further analysis. As net-
work density changes, our method is stable for NE 4. For NEg and
Rnorm, our method is more suitable for denser networks. Overall,
the temporal gravity model provides robust performance for im-
portant node identification across networks. The temporal gravity
model using baseline centrality metrics to represent mass outper-
forms the corresponding baseline centrality metrics, and the model
has superior robustness for important node identification in tem-
poral networks. Considering the suitability of the gravity model
for important node identification in both static and temporal net-
works, we will extend the model to other types of networks, such
as multi-layer networks [36,37] and bipartite networks [2]. More-
over, the spreading influence of a node can vary if we consider
different dynamical processes. Thus, we can further explore impor-
tant node identification related to different spreading models, such
as susceptible-infected-susceptible [6] and coevolution spreading
processes [38], for temporal networks.

2 Spearman’s rank correlation [35] coefficient p is a nonparametric measure of
rank correlation. The closer p to 1, the stronger the association between the two
ranks. Consider two sequences with N elements. Start by ranking the two se-
quences. Data ranking can be achieved by assigning the ranks ‘1’ to the largest
number, 2’ to the second-largest number, and so forth. Calculate the difference be-
tween ranks denoted as ‘d’. The coefficient p can be depicted in the formula

63 d?

P=1" N -1y

12

Chaos, Solitons and Fractals 147 (2021) 110934
Declaration of Competing Interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

CRediT authorship contribution statement

Jialin Bi: Conceptualization, Methodology, Software, Formal
analysis, Writing - original draft, Writing - review & editing, Vi-
sualization. Ji Jin: Software, Validation, Formal analysis, Investiga-
tion, Data curation. Cunquan Qu: Methodology, Writing - origi-
nal draft, Writing - review & editing, Supervision, Funding acquisi-
tion. Xiuxiu Zhan: Conceptualization, Methodology, Investigation,
Writing - review & editing. Guanghui Wang: Resources, Writing -
review & editing, Funding acquisition. Guiying Yan: Methodology,
Writing - review & editing.

Acknowledgements

The authors were supported in part by National Natural Science
Foundation of China under Grants 11631014, 11871311, 12001324,
in part by China Postdoctoral Science Foundation under Grants
2019TQ0188, 2019M662315, in part by Shandong University multi-
disciplinary research and innovation team of young scholars under
Grand 2020QNQTO017, in part by Taishan Scholars Program Founda-
tion of Shandong Province, China. We thank the SocioPatterns col-
laboration (http://www.sociopatterns.org) and the KONECT (http:
/[konect.uni-koblenz.de/networks) for providing the datasets. The
scientific calculations in this paper have been done on the HPC
Cloud Platform of Shandong University.

Appendix A. Empirical networks

We evaluate the performance of the temporal gravity model on
the following empirical temporal network datasets. Some of the
detailed properties of the networks are shown in Table Al.

e High school 2011 (2012,2013) dynamic contact net-

works [39,40] (HS2011, HS2012, HS2013). These datasets

correspond to the contacts and friendship relations between
students in a high school in Marseilles, France.

Workplace (WP) [41]. This dataset contains contacts between

employees in an office building in France from June 24 to July

3, 2013.

o Hospital contract (HC) [42]. This dataset contains contacts
between patients, contacts between patients and health-care
workers (HCWs), and contacts between HCWs in a hospital
ward in Lyon, France, from December 6 to December 10, 2010.

Table A1l

Property description of the empirical networks. The
number of nodes N, the number of snapshots n,
the total number of contacts |C|, and the number of
links |E| in aggregated static network G are shown.

Network N n IC| |E|
HS2011 126 76 28,561 1710
HS2012 180 203 45,047 2239
HS2013 327 101 188,508 5818
WP 92 275 9827 755
HC 75 97 32,424 1139
PS 242 65 125,773 8317
HT2009 113 118 20,818 2196
Infectious 410 79 17,298 2765
SFHH 403 64 70,261 9889
DNC 1760 71 38,484 5428
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Table A2
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Kendall correlation coefficient T between Rpeqn and temporal network methods for 10 empirical networks. The highest T of each network is highlighted in
bold and with an asterisk. The highest 7 of each network obtained from centrality metrics is highlighted in bold. The SIR model parameters are 8 = 0.1 and
= 0.01. For each node at one occurrence, the spreading range is the average across 100 independent trials.

HS2011 HS2012 HS2013 WP HC PS HT2009 Infections ~ SFHH DNC
TG(std, TD) 0.63911 0.51421 0.47716 0.50024 0.38667 0.26072 0.49905 0.67884 0.44923 0.57545*
TG(std, PR™) 0.58324 0.54364 0.47205 0.55996 0.38234 0.28830 0.50569 0.60043 0.46883 0.56827
TG(std, PR®) 0.60356 0.48939 0.46147 0.48782 0.39604 0.26710 0.48546 0.63600 0.43293 0.47618
TG(std, DC™) 0.65486 0.58150*  0.54140* 0.63497 0.40613*  0.28452 0.52465 0.67760 0.47096 0.54119
TG(std, DC*) 0.63276 0.50726 0.47881 0.48065 0.39892 0.26100 0.48609 0.66925 0.43066 0.49881
TG(std,CC™) 0.68737* 0.57418 0.48740 0.63306 0.37441 0.25188 0.53445*  0.68208* 0.47380* 0.52520
TG(std, CC*) 0.63429 0.49460 0.45772 0.47874 0.39171 0.26024 0.49210 0.67898 0.44513 0.56842
TG(std, BC™) 0.52118 0.52410 0.35925 0.51105 0.32036 0.20805 0.47977 0.59671 0.41199 0.35615
TG(std, BC*) 0.46489 0.36655 0.35056 0.41949 0.38523 0.29131 0.47440 0.39009 0.41302 0.34179
PR™ 0.37625 0.49472 0.34519 0.59245 0.34847 0.29296*  0.45828 0.29588 0.41575 0.30063
Dc™ 0.57574 0.57435 0.51316 0.63260 0.40513 0.29065 0.51590 0.60771 0.46870 0.43246
ccn 0.61879 0.55742 0.42230 0.64262*  0.33766 0.24145 0.52339 0.64752 0.44884 0.35385
BC™ 0.43279 0.48946 0.31272 0.48835 0.31027 0.18597 0.46492 0.51072 0.39357 0.34816
PR 0.51390 0.44022 0.41712 0.50215 0.39243 0.27348 0.47724 0.50993 0.42064 0.15792
DC* 0.57084 0.47402 0.45397 0.50700 0.39369 0.26684 0.48043 0.62944 0.42280 0.36675
cc 0.54144 0.39203 0.35006 0.40685 0.38962 0.26424 0.48079 0.51059 0.42174 0.37786
BC* 0.41994 0.30460 0.31135 0.41328 0.38955 0.28795 0.45575 0.31524 0.40204 0.33171
max of all metrics 0.68737 0.58150 0.54140 0.64262 0.40613 0.29296 0.53445 0.68208 0.47380 0.57545
max of baseline metrics ~ 0.61879 0.57435 0.51316 0.64262 0.40513 0.29296 0.52339 0.64752 0.46870 0.43246

Table A3

Spearman correlation coefficient p between node centrality score obtained from NEf,4 and centrality metrics for 10 empirical networks. The highest o of each
network is highlighted in bold and with an asterisk. The highest p of each network obtained from baseline metrics is highlighted in bold.

HS2011 HS2012 HS2013 WP HC PS HT2009 Infections ~ SFHH DNC
TG(fad, TD) 0.89210 0.85391 0.78106 0.83655 0.98020*  0.74414 0.84907 0.91782 0.91859 0.76046
TG(fad, PR™) 0.89477 0.86688 0.80890 0.84742 0.97425 0.80148*  0.86698 0.92729* 0.94350* 0.78780
TG(fad, PR®) 0.89597 0.88765*  0.84395* 0.89430 0.97229 0.67005 0.86778*  0.91846 0.92399 0.76071
TG(fad, DC™) 0.88242 0.85916 0.80747 0.88680 0.93542 0.75832 0.83399 0.85746 0.91290 0.84307*
TG(fad, DC*) 0.88457 0.88114 0.84204 0.90155*  0.96512 0.63562 0.86418 0.87202 0.90150 0.77276
TG(fad,CC™) 0.88894 0.85621 0.80523 0.88703 0.94703 0.70498 0.85199 0.87931 0.93370 0.83320
TG(fad, CC%) 0.90326* 0.86671 0.81462 0.85344 0.97994 0.77464 0.86571 0.92466 0.93350 0.80276
TG(fad, BC™) 0.87852 0.82275 0.80359 0.85278 0.79661 0.64223 0.76799 0.71367 0.80801 0.41180
TG(fad, BC*) 0.82626 0.80814 0.80551 0.89520 0.91084 0.53600 0.80259 0.66977 0.81105 0.42559
PR™ 0.56408 0.53428 0.53317 0.43988 0.43713 0.48051 0.46716 0.10137 0.58231 0.52376
Dpc™ 0.70179 0.56574 0.57988 0.45075 0.46463 0.51896 0.50617 0.15626 0.56972 0.66341
ccn 0.71955 0.56895 0.57955 0.46400 0.41775 0.37823 0.56863 0.25018 0.63461 0.66878
BC™ 0.69036 0.49843 0.52836 0.40935 0.40492 0.40192 0.39139 0.27832 0.47304 0.40347
PR 0.63744 0.48947 0.57461 0.55676 0.51562 0.33650 0.49800 0.20387 0.51336 0.25229
DC* 0.65079 0.49785 0.57251 0.56031 0.51250 0.33458 0.49896 0.16761 0.51141 0.46669
cc 0.60741 0.43467 0.55125 0.57205 0.51925 0.33371 0.50269 0.23409 0.51175 0.51012
BC* 0.60748 0.40673 0.54798 0.53564 0.51166 0.34457 0.49094 0.25647 0.50766 0.41213
max of all metrics 0.90326 0.88765 0.84395 0.90155 0.98020 0.80148 0.86778 0.92729 0.94350 0.84307
max of baseline metrics ~ 0.71955 0.56895 0.57988 0.57205 0.51925 0.51896 0.56863 0.27832 0.63461 0.66878

Primary school (PS) [43]. This dataset contains contacts be-
tween the children and teachers used in the study published
in BMC Infectious Diseases 2014.

Hypertext2009 (HT2009) [44]. This network contains contacts

between the attendees of the ACM Hypertext 2009 conference.

Infectious [44]. This network contains contacts between people

during the exhibition INFECTIOUS: STAY AWAY in 2009 at the

Science Gallery in Dublin.

e SFHH conference (SFHH) [45]. This dataset contains contacts
between participants in the 2009 SFHH conference in Nice,
France.

o DNC Email (DNC) [46]. This is the network of emails in the 2016

Democratic National Committee email leak.

We evaluate the temporal gravity model and baseline centrality
metrics for identification of nodes with high spreading capacity in
temporal networks.

The effect of the truncation radius on the temporal gravity
model is illustrated in Fig. A1.
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The results considering average spreading range Rpeqn are listed
in Table A2.

Appendix B. Evaluation of temporal gravity model based on
spearman correlations

We also use the Spearman correlations to quantify the perfor-
mance. The results based on real data are shown in Table A3, A4,
A5 and A6, and the results of experimental data are shown in Fig.
A2 and A3. In terms of network efficiency, the effect of the param-
eter m on the value of Spearman correlation coefficient p is plot-
ted in Fig. A2. As shown in Fig. A2(a), the value of p obtained by
comparing NEs,q and TG(fad, TD) is stable when m is increased.
The average value of coefficient p is 0.85980. In Fig. A2(b), we can
see that the p obtained by comparing NE;,; and TG(std, TD) in-
creases as m increases in general. The mean value of p increases
to 0.98583. In terms of spreading influence, the evolution of the
correlation p between Ry, and temporal gravity models with in-
creasing m is plotted in Fig. A3. The correlation p increases with
increasing m.
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Fig. A1. Kendall correlation coefficient T between node centrality score obtained from Ry, and temporal gravity models with truncation radius from 1 to the maximum for
10 empirical networks. A stable value can be reached at a truncation radius of 5.
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Table A4
Spearman correlation coefficient p between node centrality score obtained from NEy, and centrality metrics for 10 empirical networks. The highest p of each
network is highlighted in bold and with an asterisk. The highest p of each network obtained from baseline metrics is highlighted in bold.

HS2011 HS2012 HS2013 WP HC PS HT2009 Infections ~ SFHH DNC
TG(std, TD) 0.95891 0.95280 0.95765 0.98029*  0.98723*  0.99022*  0.99045 0.91283 0.97386 0.89259
TG(std, PR™) 0.95560 0.93474 0.94720 0.97656 0.95055 0.97241 0.97002 0.85468 0.96508 0.89206
TG(std, PR’) 0.96255* 0.95048 0.95021 0.97121 0.97323 0.98724 0.98970 0.85094 0.97602* 0.78065
TG(std, DC™) 0.92091 0.89756 0.88468 0.92032 0.96555 0.95175 0.96092 0.83969 0.97343 0.86079
TG(std, DC*) 0.94899 0.94450 0.93676 0.96746 0.97183 0.98569 0.98846 0.87344 0.97439 0.80556
TG(std,CC™) 0.88984 0.87643 0.88925 0.91865 0.95550 0.95961 0.95114 0.89438 0.95287 0.90310*
TG(std, CC°) 0.96097 0.95646*  0.96090* 0.96827 0.98336 0.98930 0.99178*  0.92978* 0.97526 0.89262
TG(std, BC™) 0.92644 0.87271 0.91996 0.88777 0.83087 0.80704 0.94358 0.86082 0.94942 0.44549
TG(std, BC®) 0.94708 0.91035 0.93202 0.94493 0.95220 0.98016 0.98430 0.72301 0.96267 0.45722
PR™ 0.79327 0.82617 0.78940 0.81581 0.79414 0.84995 0.90297 0.50032 0.84173 0.36366
Dc™ 0.90348 0.87322 0.83897 0.84660 0.94584 0.89724 0.94041 0.73322 0.96103 0.64780
ccm 0.84560 0.82142 0.75641 0.84279 0.88731 0.90705 0.90375 0.85255 0.85205 0.81203
BC™ 0.87242 0.81801 0.87529 0.82003 0.76267 0.70620 0.91891 0.78334 0.92240 0.43366
PR 0.95508 0.93315 0.92780 0.96113 0.95565 0.98538 0.98895 0.70667 0.97116 0.21815
DC* 0.95521 0.93510 0.92112 0.96444 0.95968 0.98517 0.98874 0.80480 0.97137 0.50834
cc 0.94639 0.90941 0.90031 0.92037 0.96465 0.98642 0.98930 0.81744 0.97019 0.56723
BC* 0.91523 0.86490 0.90212 0.92562 0.90993 0.96304 0.97665 0.64494 0.94899 0.44082
max of all metrics 0.96255 0.95646 0.96090 0.98029 0.98723 0.99022 0.99178 0.92978 0.97602 0.90310

max of baseline metrics ~ 0.95521 0.93510 0.92780 0.96444 0.96465 0.98642 0.98930 0.85255 0.97137 0.81203

Table A5

Spearman correlation coefficient p between Ryorm and temporal network methods for 10 empirical networks. The highest p of each network is highlighted in
bold and with an asterisk. The highest p of each network obtained from centrality metrics is highlighted in bold. The SIR model parameters are 8 = 0.1 and
i = 0.01. For each node at one occurrence, the spreading range is the average across 100 independent trials.

HS2011 HS2012 HS2013 WP HC PS HT2009 Infections ~ SFHH DNC
TG(std, TD) 0.75275 0.75858 0.79315 0.44725 0.72498 0.64320 0.86375 0.67608 0.78621 0.83366
TG(std, PR™) 0.74707 0.79454 0.79046 0.52347 0.71260 0.65411 0.87700 0.71876 0.79572 0.84327*
TG(std, PR°) 0.73838 0.75659 0.78075 0.42976 0.72407 0.64529 0.85842 0.71158 0.76795 0.77537
TG(std, DC™) 0.79282*  0.82724*  0.86617* 0.56889 0.76048 0.69212*  0.89937*  0.74084 0.80681* 0.80949
TG(std, DC*) 0.74815 0.77998 0.80557 0.41720 0.71929 0.64523 0.85699 0.71787 0.76690 0.79411
TG(std,CC™) 0.76427 0.80596 0.76868 0.55278 0.68267 0.63552 0.84393 0.64515 0.76611 0.79887
TG(std, CC*) 0.73952 0.75948 0.77210 0.43355 0.71750 0.64246 0.86184 0.63591 0.78224 0.83871
TG(std, BC™) 0.68202 0.77290 0.65366 0.47191 0.70014 0.56248 0.87399 0.53029 0.73246 0.50906
TG(std, BC*) 0.62748 0.61338 0.62312 0.42853 0.70993 0.61418 0.84415 0.42789 0.73161 0.49103
PR™ 0.56806 0.74539 0.64129 0.58669*  0.65693 0.60246 0.84664 0.53855 0.69838 0.36150
BC™ 0.77887 0.79989 0.84029 0.56789 0.77582*  0.68489 0.89842 0.73886 0.79624 0.58578
ccn 0.73435 0.76380 0.67038 0.55404 0.59844 0.60333 0.81214 0.64917 0.68593 0.64193
BC™ 0.59851 0.71063 0.58999 0.47349 0.68262 0.49983 0.86296 0.51256 0.70359 0.49835
PR 0.71220 0.69939 0.72485 0.43321 0.72760 0.63505 0.85355 0.67410 0.75029 0.24999
DC* 0.73525 0.74757 0.77203 0.43680 0.72770 0.63897 0.85576 0.74373* 0.75312 0.52820
cc 0.66744 0.67295 0.62946 0.42352 0.72806 0.63704 0.85622 0.45170 0.75280 0.62938
BC* 0.58110 0.54489 0.56924 0.43432 0.68558 0.59233 0.82926 0.35562 0.70912 0.47612
max of all metrics 0.79282 0.82724 0.86617 0.58669 0.77582 0.69212 0.89937 0.74373 0.80681 0.84327

max of baseline metrics  0.77887 0.79989 0.84029 0.58669 0.77582 0.68489 0.89842 0.74373 0.79624 0.64193

Table A6

Spearman correlation coefficient p between Ryeqn and temporal network methods for 10 empirical networks. The highest p of each network is highlighted in
bold and with an asterisk. The highest p of each network obtained from centrality metrics is highlighted in bold. The SIR model parameters are § = 0.1 and
= 0.01. For each node at one occurrence, the spreading range is the average across 100 independent trials.

HS2011 HS2012 HS2013 WP HC PS HT2009 Infections ~ SFHH DNC
TG(std, TD) 0.82404 0.68747 0.65958 0.68694 0.52976 0.33982 0.64676 0.86972 0.62829 0.72014
TG(std, PR™) 0.76787 0.71877 0.64925 0.74912 0.53388 0.36463 0.65013 0.78898 0.64654 0.72328*
TG(std, PR®) 0.79257 0.66851 0.64172 0.66682 0.55021 0.35113 0.63442 0.83029 0.60733 0.64354
TG(std, DC™) 0.83403 0.75789*  0.72489* 0.82035 0.55269*  0.35061 0.67426*  0.86847 0.65143* 0.70729
TG(std, DC*) 0.82069 0.68680 0.66187 0.65839 0.54982 0.34261 0.63291 0.86582 0.60501 0.66159
TG(std, CC™) 0.86166* 0.75060 0.65361 0.81479 0.50805 0.31376 0.67354 0.87366* 0.64324 0.66670
TG(std, CC*) 0.81677 0.67151 0.63561 0.65720 0.53733 0.33909 0.64192 0.86884 0.62264 0.71785
TG(std, BC™) 0.69650 0.72059 0.51645 0.70939 0.47616 0.28217 0.63920 0.79522 0.58143 0.45087
TG(std, BC*) 0.63711 0.52322 0.50173 0.60205 0.54259 0.39004 0.61885 0.55170 0.58107 0.43712
PR™ 0.52689 0.66865 0.49622 0.77615 0.49770 0.37503 0.60425 0.43545 0.58047 0.44111
Dpc™ 0.76074 0.74803 0.69619 0.81048 0.54875 0.35594 0.66522 0.80598 0.64637 0.55556
cc 0.79954 0.73225 0.57539 0.82162x  0.45841 0.29600 0.65850 0.84363 0.60858 0.47836
BC™ 0.59769 0.67991 0.45558 0.68365 0.46629 0.25988 0.61969 0.70299 0.55927 0.44210
PR 0.70364 0.61446 0.58890 0.67110 0.55004 0.36500 0.62125 0.69861 0.59293 0.23725
DC* 0.75635 0.64735 0.62842 0.66989 0.54520 0.35275 0.62295 0.81857 0.59333 0.46380
cc 0.72393 0.55265 0.49989 0.57252 0.54024 0.34696 0.62510 0.70874 0.59235 0.51640
BC* 0.57444 0.43997 0.45161 0.59287 0.55115 0.39155*  0.60043 0.45254 0.56507 0.42429
max of all metrics 0.86166 0.75789 0.72489 0.82162 0.55269 0.39155 0.67426 0.87366 0.65143 0.72328

max of baseline metrics ~ 0.79954 0.74803 0.69619 0.82162 0.55115 0.39155 0.66522 0.84363 0.64637 0.55556
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Fig. A2. Measures of correlations between NEf,q (or NEyq) and temporal gravity models under different parameter link number m in the empirical networks. We fix N = 100,
T =80, n =10, F(x) ~x¥ with y = 2.5, and € < x < 1 with € = 10-3. Under each m, we set random seeds to generate 20 temporal networks, and the coefficient result is the
corresponding box. The blue line is the mean value under each m. (a) shows the different Spearman correlation coefficients p between NEf,; and our method TG(fad.TD)
on the parameters m. (b) shows the different Spearman correlation coefficients p between NE,; and our method TG(std, TD) on the parameters m. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. A3. Measures of correlations between Ryom and temporal gravity models under different parameter link number m in the empirical networks. We fix N = 100, T = 80,
n =10, F(x) ~x7 with ¥ =2.5, and € <x <1 with € = 10-3. Under each m, we set random seeds to generate 20 temporal networks, and the coefficient result is the
corresponding box. The blue line is the mean value under each m. (a) and (b) show the different Spearman correlation coefficients p between Rnorm and our method
TG(std, TD) (or TG(std, DC™)) on the parameters m. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)
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