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Abstract

Fibre-reinforced polymer (FRP) composites have become indispensable in aerospace engi-
neering over the past two decades, driving the need for efficient and standardized testing
protocols to certify their reliability. However, no standardized protocol currently exists for fa-
tigue testing of FRPs, particularly due to fibre bridging—a phenomenon prominent in testing
but rarely encountered in real-world applications. This study investigates existing fatigue data
processing techniques, with a primary focus on a regression-based approach that could stan-
dardize fatigue data analysis.

Current fatigue delamination characterization methods often rely on single-parameter empiri-
cal models, which struggle to capture the complex interaction between cyclic and monotonic
load components, expressed as ∆

√
G and Gmax, respectively. This study demonstrates that

the regression method’s zero-bridging technique effectively incorporates both parameters, of-
fering a comprehensive view of delamination growth by isolating it from fibre bridging effects.
This approach suggests a shift away from the traditional 2D analysis to a 3D framework, which
considers both Gmax and ∆

√
G, enabling a more accurate depiction of delamination behav-

ior across various stress ratios. Notably, the results reveal that zero-bridging data align on
a common plane under consistent stress ratios, shifting as stress ratios increase. Addition-
ally, fiber orientation influences data clustering, with similar orientations exhibiting stronger
convergence than dissimilar ones.

Comparison of this regression-basedmethodwith themodified Paris law reveals significant dis-
crepancies in its current implementation, suggesting alternative approaches to address these
limitations. This study also highlights the impact of data size and selection on the model be-
havior, stressing their importance in accurate model representation. This research validates
the regression method as a promising candidate for standardizing fatigue data processing,
improving the precision and reliability of post-test analysis for fibre-reinforced polymer com-
posites.
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1
Introduction

The use of composites for aircraft primary structures dates back to 1984 when it was used in
the Boeing 737 horizontal tail[2]. This structure was certified by the Federal Aviation Authority
using the Airworthiness Advisory Circular 20-107A in 1984. This certification was carried out
based on the use of a test based no-detrimental damage growth philosophy which closely
resembles the safe life methodology in its metallic counterparts.

This has paved the way for the use of composites structures on aircrafts such as the Boeing
787 Dreamliner[3] and the LockheedMartin F-35A[4] where they are composed almost entirely
of composite skins which has resulted in a 30-40% ratio of composite structures to aircraft
weight. Even though multiple decades have passed, aircrafts such as the Boeing 787 are still
lifed under the same no-detrimental growth philosophy which works based on physical testing.

This conservative design philosophy, while effective in ensuring structural safety, has led to
significant expenditure on structural testing. The need for such conservative measures has,
in turn, resulted in thicker composites, ultimately increasing aircraft weight. In 2009, the FAA
updated its guidelines[5] to allow for the use of damage-tolerant systems, provided the an-
ticipated damage remains slow, stable, and predictable throughout the structure’s service life.
This update has spurred extensive research into understanding andmanaging fatigue damage
growth, aiming to optimize structural design without compromising safety.

Given the rigorous certification requirements in order to avoid catastrophic failures the safety
and reliability of the composites need to be studied extensively. Composites are susceptible
to various modes of damage like fibre breakage, matrix cracking, delamination between adja-
cent layers etc. This, coupled with the interaction between different damage modes, makes
characterizing damage evolution very difficult. Past research has resulted in a common con-
sensus that delamination was the most important damage mechanism in composite laminates
and plays a crucial role in structural design when using composites[6]. This delamination can
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2

be caused due to stress concentrations and poor interlaminar properties of the material. De-
lamination and delamination propagation can easily be caused by to lack of reinforcement in
the thickness direction between adjacent layers. Specifically, under fatigue loading this delam-
ination can propagate causing gradual degradation in strength and stiffness finally resulting in
the catastrophic failure of the composite structures in their service lives.

With safety factors and tolerance being an important part of any design process the need to
characterize fatigue delamination for composite laminates becomes a necessity. Pascoe[6]
stressed that the methods based on fracture mechanics were influential in characterizing de-
lamination growth. With this framework as the base, stress intensity factor (SIF) and strain
energy release rate (SERR) can be used to determine the crack growth. The Paris relation
has been widely used in designs and studies over the last several decades even though it
has been a common consensus amongst researchers that it is nothing more than an empirical
correlation and is not based on physical understanding of fatigue delamination growth[6]. The
lack of a consensus in a similitude parameter for fatigue delamination studies resulted in the
use of either the maximum SERR Gmax, The SERR range ∆G, or a combination of both to
determine fatigue crack growth[7–11].

A valid crack driving force (CDF) is needed for the ‘similitude hypothesis’ to be applicable[12].
In the case of metals, this is more straightforward as the range in the applied stress intensity
factor, ∆K is used as the CDF. In order to define a ‘similitude principle’ for composites it’s im-
portant to start with understanding what exactly the similitude principle in this context indicates.
In the case of metals, the basic ‘similitude hypothesis’ is expressed as:

”Two different cracks growing in two different specimens of the identical material with the same
thickness and the same CDF, and with the same value of Kmax, will grow at the same value
of da/dN.”

This definition cannot be directly applied to composites using the same or similar parameters,
as their behaviour is more complex than that of metals. Similar to the case of metals the
delamination growth is experimentally observed to have a linear relationship with the different
formulations of the SERR when plotted on the log-log scale. This results in a consensus on
the overall formulation of the delamination growth as a function of the SERR, f(G) but there is
no consensus on the term that can be used to define it. The most prominent formulations of
the f(G) areGmax [13, 14] whose use is analogous with the static delamination growth and∆G

which is believed to be the equivalence of the∆K that is used in the case of themetals. Amajor
issue highlighted in the literature regarding this approach is that it relies solely on curve fitting
through experimental data, without offering a physical explanation for the observed behaviour.

Another major obstacle in the standardization process is the concept of fibre bridging. Fibre
bridging is an important shielding mechanism that is exhibited where the bridging fibres in-
crease the interlaminar resistance by restraining the crack opening during crack extension[15–
17]. The issue that arises in the case of fibre bridging is the fact that this phenomenon is ob-
served only within the concept of testing and is very rarely seen in real operational conditions.
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As fibre bridging is known to enhance the toughness of the composite and slow down the
delamination process it becomes imperative that this phenomenon be accounted in order to
avoid under designed composite structures.

There have been prediction models that have been developed assessing the contribution of
this effect to the crack growth[18, 19] in the case of quasi-static crack growth, but this does
not translate to the fatigue delamination growth. Similar to the previous case, the models that
were proposed in order to account for fibre bridging were empirical curve fits to the data and
did not have a physical basis for them.

1.1. Thesis Outline
The literature review is presented in chapter 2, summarizing the existingmethods and consider-
ations relevant to this study. The research objective and the research questions are presented
in chapter 3. The methodology is outlined in chapter 4, detailing the calculations and plotting
techniques employed to analyze the proposed methods. chapter 5 presents the results and
discussions, starting with observations from the method and its validation. This is followed
by a comparison of the regression method with the modified Paris relation, highlighting the
strengths and limitations of both approaches. The conclusions and future work recommenda-
tions are provided in chapter 6 and chapter 7, respectively. Additionally, Appendix A includes
the plots of unsuccessful plane-fitting attempts.



2
Literature

There is a common tendency to treat the different fibre reinforced composites as though they
were metals. When the concept of fatigue was adapted from metals to composites, a similar
model was initially applied, assuming a single crack that progressively grows with each fa-
tigue cycle. However, crack growth in composites is far more complex due to the interactions
between different plies, leading to intricate damage mechanisms. It was once believed that
composite structures would not fail under cyclic fatigue loading if the applied load remained be-
low the material’s maximum stress[20]. Because of their high fatigue resistance, composites
were thought not to exhibit traditional fatigue crack growth behaviour. This idea was supported
by the assumption that the high stiffness in the fibre direction could prevent the strain levels
needed for damage initiation, which could be controlled through careful design modifications.

This assumption resulted in the over-designing of the structures which in turn resulted in in-
creased weight and costs. The anisotropic behaviour exhibited by composites also meant that
small out-of-plane loads or strains could initiate damage, ultimately resulting in failure. This
highlights the importance of studying damage growth in fibre-reinforced polymers (FRPs), es-
pecially in aerospace applications, where understanding these mechanisms is critical to en-
suring structural integrity and optimizing design.

2.1. Fatigue in Composites
To characterize fatigue in composites, it is essential to understand the mechanisms of de-
lamination growth under cyclic loading. In composites, a pre-existing crack may or may not
propagate under cyclic loading, depending on the material’s specific properties. Over time,
accumulated damage can reduce the composite’s residual load-bearing capacity to the point
where it falls to the maximum stress level of the fatigue cycle, as shown in Figure 2.1. Predict-
ing fatigue life in composites is complex due to the interaction of various damage mechanisms.
One approach to assess fatigue life is through the S-N curve, which relates cyclic stress to the
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number of cycles to failure. Unlike metals, composites often lack a clear fatigue limit, allowing
damage to accumulate even under low-stress conditions.

Figure 2.1: Degradation of composite strength until residual strength reaches maximum stress of the fatigue
cycle

When looking at delamination growth under fatigue loading it is important to understand how fa-
tigue works. During each cycle, the stress alternates between Smax and Smin, passing through
Smean as seen in Figure 2.2.

Figure 2.2: Fatigue Cycle[21]

This proposed delamination growth can occur in various modes: mode I (tensile), mode II
(shear), mode III (transverse shear) or mixed mode, which combines these different modes.

Figure 2.3: Different Modes of Delamination Growth
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The focus of this thesis is on mode I fatigue delamination. Fatigue delamination growth under
mode I occurs exclusively under tension loading, as the crack remains closed under mode I
compression, preventing any delamination growth. This cyclic loading can result in delamina-
tion growth in composites particularly in regions where the stress ratio (the ratio of minimum
stress to maximum stress, R = Smax/Smin)is between -∞ and 1. as seen in Figure 2.4. In the
tension-compression region, delamination primarily grows during the tension portion of the cy-
cle, as the compression portion typically closes the crack, preventing growth. When the stress
ratio R is 0, it indicates that the minimum stress is zero, meaning the material is fully relaxed
during the compression part of the cycle.

Figure 2.4: Stress ratio relation under Mode I[21]

2.2. Damage Tolerance in Composites
As discussed in chapter 1, composite structures can be certified using one of two main philoso-
phies: damage tolerance or safe life. The safe life approach has traditionally been the more
widely used method, as it requires less complex analytical work and focuses heavily on exten-
sive testing. This testing regimen is designed to demonstrate conclusively that the component
will not sustain damage throughout its entire operational lifespan, ensuring the structure re-
mains free from cracks or damage during service. However, the extensive time and high
costs associated with such testing have driven interest toward an alternative approach: dam-
age tolerance.

The damage tolerance philosophy, often associated with the ”slow growth” concept, is particu-
larly suitable for designing lighter structures. This approach accommodates the controlled and
predictable progression of damage, such as fatigue-induced cracks, allowing for the design of
components that can endure limited damage growth. For damage tolerance to be effective, the
damage mechanisms must be thoroughly understood so that inspections can be strategically
planned to detect and mitigate critical damage before it compromises structural integrity.

In metallic structures, damage progression in Mode I typically occurs perpendicular to the load-
ing direction. However, in composites, failure follows a more complex network of mechanisms,
often running parallel to the load axis. This emphasizes the need for both qualitative and quan-
titative understanding of interactions under fatigue loading, making accurate prediction of the
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behaviour challenging. This lack of comprehensive understanding leads to composite struc-
tures being consistently over sized for aerospace applications, thereby diminishing the cost
benefits that composites are supposed to provide compared to traditional metal structures.

2.3. Delamination Growth Prediction Methods
The Paris relation is frequently utilized to describe the fatigue crack growth rate, though it
remains a largely empirical formula. Prediction models for characterizing fatigue crack growth
are categorized into four primary types [6]:

• Stress/strain-based methods

• Fracture mechanics-based methods

• Cohesive zone models

• Extended finite element models

Stress/strain methods have traditionally been applied to model the strength and fatigue life
of adhesive bonds and metal structures[22]. This approach evaluates the stress and strain
fields within materials and their response to applied loads, aiming to predict failure under
these conditions. However, this method is less effective for modeling delamination growth
in fibre-reinforced polymer (FRP) composites due to its inability to capture the complexities
involved in the delamination process adequately. These methods are typically employed in
static delamination problems where the focus is on determining fatigue life rather than tracking
delamination growth[6]. Furthermore, these methods do not provide detailed insights into the
rate and progression of delamination growth under cyclic loading, which is a common scenario
for FRPs in practical applications.

2.3.1. Linear Elastic Fracture Mechanics

Linear elastic fracture mechanics involve the use of stress intensity factor (SIF) and strain
energy release rate (SERR) to model the growth of delamination under fatigue loading. It is
essential to understand that these two parameters are interchangeable, as neither provides
more or different information than the other. When it comes to composite materials, using
the Stress Intensity Factor (SIF) to characterize delamination growth presents significant chal-
lenges. The primary difficulty lies in the complex stress fields at the delamination front of
orthotropic materials, making SIF analysis inconvenient and less effective for these materials.
In contrast, the use of Strain Energy Release Rate (SERR) has proven to be a more effective
and practical alternative for analyzing delamination growth. Consequently, SERR has become
widely adopted for characterizing delamination behaviour in composite materials. The use of
fracture mechanics in fatigue characterization is not novel and dates back to Paris who pro-
posed his relation where he related the delamination growth rate as a function of the SIF. In
it’s most basic form it is written as:
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da

dN
= C∆Kn (2.1)

where the terms C and n are curve fitting parameters making the Paris relation an empirical
relation that is modified in order to provide the best curve fit. This was later written using SERR
instead but the major issue lied in the lack in consensus over the choice of the parameter that
was used. The general form of the relation written in terms of the SERR is as follows:

da

dN
= Cf(G)n (2.2)

where f(G) is a parameter that is a function of G.

2.3.2. Crack Driving Force in Composites

The certification process for composite structures using the slow crack growth methodology
requires that the lifing approach be both gradual and predictable. To achieve accurate predic-
tions, testing must effectively characterize the material’s slow crack growth behaviour under
specific geometries and loading conditions, a concept referred to as the similitude parameter.
Following the concepts of Linear Elastic Fracture Mechanics (LEFM) in metals, this similitude
parameter is well-established as the Stress Intensity Factor range,∆K = Kmax−Kmin, which
is plotted against the crack growth rate, da/dN , to produce a distinct fatigue crack growth curve.
For a given material, the crack growth rate corresponding to a particular Stress Intensity Factor
remains consistent, ensuring reliable predictions.

When applying this concept to composites, the focus shifts to the Strain Energy Release Rate
(SERR), which is analogous to the Stress Intensity Factor (SIF) in metals. In composites, the
stress intensity factor (SIF) range was adapted to the strain energy release rate (SERR) range,
defined as ∆G = Gmax − Gmin, or simply as the maximum SERR, Gmax. The SERR can be
calculated using the following equation:

G =
1

2t
P 2dC

da
(2.3)

Here, P represents the applied load, t is the thickness, C is the compliance, and a is the crack
length. The maximum and minimum values of SERR can be determined by substituting the
maximum and minimum forces for P .

However, it has been found that SERR is less effective as a similitude parameter in composites.
This ineffectiveness can be attributed to the noticeable reduction in SERR when the R-ratio
is increased. Moreover, the behaviour of delamination growth varies depending on which
parameter is used: whenGmax is employed, delamination growth decreases with an increased
R-ratio, while the opposite trend is observed when using ∆G as observed by Rans et al. [23].

This observation led to further research, revealing that the term G used in the SERR formu-
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lation is actually proportional to K2, the square of the Stress Intensity Factor. This discovery
resulted in the development of a more accurate similitude parameter related to∆

√
G, which is

defined as (
√
Gmax−

√
Gmin)

2. This parameter provided a better correlation for characterizing
crack growth in composites, aligning more closely with the behaviour observed in the materials
under varying conditions. The other issues highlighted in previous studies [24] appeared to
be mitigated when applying the new formulation within the modified Hartman-Schijve equation
Equation 2.4:

da

dN
= D

 ∆
√
G−∆

√
Gthr√

1−
√

Gmax/
√
A


n

(2.4)

In this equation, ∆
√
G = (

√
Gmax −

√
Gmin)

2, and Gthr can be derived from the R-curve.
Jones et al. [25, 26] asserts that using Equation 2.4 produces a curve that is independent of
variables such as material thickness, temperature, R-ratio, pre-crack length, ply configuration,
laminate, and adhesive thickness. This independence facilitates a more accurate analysis of
delamination growth in composites.

2.3.3. Stress Ratio Dependence

As mentioned previously, there is no consensus on whether the Paris relation should be a
function of Gmax or ∆G. Historically, the choice of parameter to characterize delamination
growth depended on the researcher’s understanding and convenience, with no established
standard enforcing the use of a specific parameter. While modeling delamination growth a
key parameter that needs to be considered is the stress ratio, R. The stress ratio is defined
as the ratio of the minimum stress to the maximum stress in a fatigue cycle. Experimental
evidence suggests that this parameter has a significant influence on the growth of delamination
in composites[10, 21].

Different definitions of f(G) have been considered when modeling delamination growth using
Equation 2.2, including Gmax, ∆G = Gmax − Gmin, and ∆

√
G = (

√
Gmax −

√
Gmin)

2. The
primary issue with using these parameters is that the exponent parameter often becomes
too large, leading to significant uncertainties in predicted delamination growth due to small
uncertainties in the applied loading[27]. The influence of the stress ratio on the delamination
growth is evident when plotting the Paris relation with with the maximum SERR or the SERR
range as seen in Figure 2.5. This influence can be characterized by a shift in the position of
the curves. The observed trend is an increase in the da/dN values as the R-ratio is increased
for the same cyclic load[28].

Researchers have explored various definitions of the strain energy release rate (SERR) to
characterize delamination growth in fibre-reinforced composites. When plotting data using
both the SERR range and the maximum SERR, a common observation emerged: using Gmax
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to plot different R ratios revealed a clear distinction between the curves. However, this distinc-
tion was not observed when using the SERR range (Gmax −Gmin)[29, 30]. Similar behaviour
was reported by Mall et al. [31] in bonded structures. Additionally, Rans et al. [23] noted that
when plottingGmax−Gmin, an increasing R ratio (and thus increasing the mean or peak stress)
resulted in a decrease in the growth rate for the same cyclic conditions. This behaviour was
attributed to the fact that for a constant∆G = Gmax−Gmin, both cyclic and monotonic loading
conditions change to preserve ∆G with varying R ratios. This paper later goes on to highlight
that the use of∆G = Gmax−Gmin in the is used in a form analogous to∆K but the definition of
SERR range that uses the same basis for similitude as ∆K was ∆

√
G = (

√
Gmax −

√
Gmin)

2.
This also reduced the mean load dependency that was present when∆G = Gmax−Gmin was
used.

In more recent studies using a two-parameter model, Khan et al. [1] noted that the cause of
the stress ratio effect remained unclear. He emphasized that the similitude parameters were
not well-conceived, with the representation largely constrained to a two-dimensional represen-
tation. This representation was often based either on the monotonic load component, Gmax,
or the cyclic load component, ∆

√
G. Khan’s findings led to the hypothesis that another phe-

nomenon or mechanismmight be responsible for the observed stress ratio effect. It was further
argued that the cyclic application of load, followed by the specimen’s deflection, suggests the
presence of cyclic energy. Since this cyclic energy is observed to vary with the stress ratio,
it is reasonable to expect that this variation would be reflected in the delamination resistance
results.

Figure 2.5: R-ratio effect as observed by Yao et al.[32]

2.4. Two-Parameter Models
Attempts were made to explain the effect of the R-ratio that was discussed in the previous
section and the most prominent approach that was followed was the two-parameter model.
This methodology revolved around the common belief that a single parameter cannot fully
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describe fatigue crack growth[1, 30, 33–38]. A similar issue as before was faced as there was
no physical explanation provided for the effect with most of the proposed models being curve
fits through empirical data. Under constant amplitude loading a fatigue cycle can be described
by both cyclic and monotonic load components as shown in Figure 2.6. These components
can be Pmax and∆P , Pa and Pm (where Pa is the amplitude load and Pm is the mean load), or
∆P and the stress ratio R. This is analogous with the idea that two parameters are required
to properly describe a fatigue cycle.

Figure 2.6: Constant Amplitude Fatigue Load

The initial efforts to implement the two-parameter model concentrated on the use of the Stress
Intensity Factor (SIF), incorporating both ∆K andKmax. Hojo et al. [10] established an empir-
ical relationship for this purpose, expressed as:

da

dN
= c(∆K)(1−γ)nKγn

max (2.5)

In this context, γ serves as a material parameter that reflects the relative influence of the
loading parameters. Its value ranges from 0 to 1: when γ is closer to 1, the crack growth
rate is predominantly influenced by Kmax, whereas when γ is closer to 0, ∆K becomes the
dominant factor. The application of SIF in this equation is consistent with its role as a similitude
parameter in the fatigue analysis of metals.

Jia et al. [36] expanded on Hojo’s approach by extending it to the Strain Energy Release Rate
(SERR), proposing an equivalent SERR term, Geq. Different formulations of this term were
explored, leading to the development of the following equation:

da

dN
= B(∆G(1−γ)Gγ

mean)
m (2.6)

Here, B and m are curve-fitting parameters, and the equation is another empirical fit. Note
must be taken for the fact that the definition of ∆G in this equation parallels that of ∆K in
Equation 2.5.
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Atodaria et al. [35] proposed a similar two-parameter model, but utilized (
√
G)average instead

of Gmax. The term (
√
G)average is defined as:

(√
G
)
average

=

 1

n

√
Gmax∑
√
Gth

(√
G
)w

1/w

(2.7)

In this equation, n represents the number of divisions between the maximum and threshold
values, and w is a weighting factor. This weighting factor revolves around that idea that the
process of fatigue crack growth is gradual with variations as stresses move between minimum
andmaximum. Thismeans that a lower growth rate is observed at lower stresses an vice versa.
However, the main limitation of Atodaria’s model was its reliance on five equation parameters
that had to be determined iteratively, making it cumbersome and complex.

Building on the insights proposed by Rans et al. [23] regarding the appropriate translation of
SERR from SIF, the original equation proposed by Hojo can be reformulated as:

da

dN
= c(

√
Gmax −

√
Gmin)

2(1−γ)Gγn
max (2.8)

Although the proposed equations are empirical, a consistent trend among them is their foun-
dation in linear elastic fracture mechanics. One of the more recent models proposed by Khan
et al. [37, 38] was a mechanistic approach that involved the use of fractography to correlate
the monotonic and cyclic part in the form of Gmax and ∆G and the relation is given as seen in
Equation 2.9 where the terms A, B, n and m are obtained from the SEM observations.

da

dN
= A(Gmax)

m +B(∆G)n (2.9)

Yao et al. [39] proposed another two-parameter model to investigate the effects of temperature
and stress ratios on fatigue delamination behaviour. This model extends the modified Paris
relation previously introduced by Yao et al. [40], but it utilizes ∆

√
Gtip and Gmax_tip as the two

parameters. The resulting equation is expressed as follows:

da

dN
= C

(
∆
√

Geff

)n
= C

[
∆
√
Gtip

(
1−

(
Gmax_tip
GIC0

)γ)(
Gmax_tip
GIC0

)γ]n
(2.10)

In this equation, Gmax_tip represents the maximum Strain Energy Release Rate (SERR) at the
delamination front, and γ is the weighting parameter. The value of Gmax_tip can be calculated
using the following formula:

Gmax_tip =
∆
√

Gtip

(1−R)2
(2.11)
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This formulation allows for the consideration of the combined effects of temperature and stress
ratios on the fatigue delamination process, offering a more comprehensive understanding of
the behaviour under varying conditions.

The main takeaways from the analysis of the two-parameter models that are proposed is that
the R-ratio effect seems to disappear when analysing experimental data. The empirical nature
of the proposed relations results in differences in the damage mechanisms that are followed
under monotonic and cyclic loading. This makes the product of the Gmax and ∆G a ques-
tionable choice. The γ term in the equation proposed by Hojo presented an issue, as it was
not constant for the same material and was dependent on the crack growth rate[41]. Khan
et al. [1] pointed out that the discrepancies with the model that was proposed by Hojo was
more evident at high crack growth rates. Despite the issues related to the proposed models,
the two-parameter models are essential for understanding the individual contributions of the
monotonic and cyclic parts of the fatigue cycle.

2.5. Effect of Fibre Bridging
Fibre Bridging acts as a shielding mechanism that can span fracture surfaces and inhibit crack
growth. This shielding mechanism is observed at the crack tip resulting in a reduced stress
intensity thereby inhibiting crack propagation. As the Double Cantilever Beam used in tests are
unidirectional, the presence of nesting fibres between adjacent plies results in fibre bridging
at the interface.

Figure 2.7: Bridging fibres during a DCB test [1]

Fibre bridging is known to enhance the toughness of the composite and can significantly slow
down the delamination process[15–17]. Furthermore, this phenomenon is observed only in the
context of the DCB tests that are performed and are very rarely seen in operation of real struc-
tures[42]. During quasi-static delamination, the fracture resistance initially increases even-
tually reaching a plateau due to fibre bridging behind the crack front. This behaviour can be
observed by the means of plotting an R-curve which represents the relation between the crack
length and fracture resistance. The plateau that is reached towards the end of the R-curve
marks the end of the development of bridging fibres.

Fibre bridging in composites has been extensively studied, with a primary focus on under-
standing the conditions under which delamination growth occurs. Fibre bridging enhances
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the fracture toughness of composite materials; however, since crack growth behaviour is influ-
enced by this phenomenon, its characterization is crucial. Early research attempted to quantify
the effect of fibre bridging by physically severing the bridged fibres and subsequently subject-
ing the material to fatigue loading. This approach demonstrated an increase in delamination
growth after cutting the bridged fibres[43]. Further studies revealed that the density of bridged
fibres varies along the crack length, with a higher density near the crack tip, which diminishes
with increasing distance from the tip[44]. This variation can be attributed to the detachment or
fracture of fibres, which no longer contribute to the bridging effect.

The influence of fibre bridging is effectively illustrated through resistance curves. Yao et al. [40]
demonstrates this relationship, as shown in Figure 2.8. As the pre-crack length increases, the
resistance curve shifts to the right. When the pre-crack length surpasses a certain threshold,
the resistance curves converge, indicating that fibre bridging has fully developed.

Figure 2.8: Fibre bridging effect in resistance curves[40]

Modeling delamination growth with fibre bridging introduces additional complexity, as the ex-
tent of fibre bridging is highly variable and challenging to accurately capture or standardize. Ini-
tial studies revealed that traditional Linear Elastic Fracture Mechanics (LEFM) methods were
inadequate for accurately capturing fibre bridging effects, underscoring the need for more
advanced models capable of representing this behaviour comprehensively. Several factors
influence the extent of fibre bridging, leading to inconsistencies in test results, which further
complicates the establishment of a standardized testing protocol.

Most research on fibre bridging has been predominantly phenomenological, with limited ground-
ing in fundamental physics. This lack of a robust physical foundation becomes apparent when
performing a dimensional analysis on the proposed equations[45]. Without a well-established
similitude parameter to accurately represent delamination growth under fatigue loading, many
approaches have relied on the stress intensity factor (SIF), a concept adapted from quasi-static
testing and fatigue growth behaviour in metals. While this approach offers some insights, it
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does not fully capture the complexities of delamination growth in fibre-reinforced composites.

Yao[46] investigated the underlying physics of fatigue delamination, observing that the energy
released during the process remains largely constant. He noted that while energy is stored
and released by the bridging fibres, it only contributes to the total energy released if the fibres
fail. Alderliesten[45] highlighted the importance of developing a predictive model based on the
crack driving force (CDF), rather than focusing solely on the consequences of crack growth.
Building upon these insights and scanning electron microscopy (SEM) observations of fracture
surfaces, Yao[40] proposed the use of the strain energy release rate that is applied directly to
the crack tip as the crack driving force in fatigue delamination with fibre bridging.

This concept was initially explored by Jones[47] as an extension of the Hartman-Schijve equa-
tion, utilizing the J-integral method to determine the threshold SERR. The J-integral method,
originally proposed by Suo[48], divides the total SERR around the crack front into the SERR
at the crack tip and the SERR contributed by the bridging fibres, as shown in Equation 2.12.
Jones further correlated the delamination growth rate da

dN with the term (
√
∆G−

√
∆Gth), rather

than directly using the expression for ∆g, due to the unavailability of comprehensive delami-
nation resistance data, as represented in Equation 2.13.

GIC = Gtip +Gbr (2.12)

da

dN
= c1 (∆g)n1 = c1

√
∆G−

√
∆Gth√

1−
√
Gmax√
A

n1

(2.13)

Yao[40] further advanced this concept by applying it to the observations illustrated in Figure 2.8.
In this approach, the strain energy release rate (SERR), GIC , was defined using an extended
form of the J-integral, originally proposed by Bao[49], as presented in Equation 2.14. In this
context, Gb represents the SERR associated with fibre bridging, while lLp denotes the length
of the process zone, defined as the point at which fully developed fibre bridging occurs.

GR(∆a) =

GTip +Gb
∆a
lLp

for ∆a < lLp

GTip +Gb for ∆a ≥ lLp

(2.14)

Using this Yao proposed a modified Paris equation that takes into account the effect of fibre
bridging. He adopted the SERR at the tip from a relation proposed by Donough[50] from which
he comes up with a modification for the Paris relation as seen in Equation 2.15 where c2 and
n2 are curve fitting parameters.

da

dN
= c2 (∆Geff )

n2 = c2

[
G0

GIC(a− a0)
∆G

]n2

(2.15)
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The proposed modified relation represents a generalized form of the Paris relation, incorporat-
ing the effect of fibre bridging, with delamination in the absence of fibre bridging treated as a
special case.

Various theoretical models have been developed to characterize fatigue delamination growth in
composite materials, many of which incorporate complex models in order to describe the effect
of fibre bridging. However, Alderliesten[42] proposed a simplified methodology for calculating
a delamination resistance curve that excludes fibre bridging, avoiding the need for theoretical
models to describe this phenomenon. His method aligns with his previous proposal that any
model for fatigue delamination should relate the crack driving force to the delamination crack
growth rate. In his analysis, Alderliesten considered the energy release rate in terms of ∆

√
G.

Alderliesten’s approach requires fatigue test data from a specimen that has undergone multi-
ple test sequences. As previous research has demonstrated, this data can be plotted using
the Paris relation, with the G-term represented by ∆

√
G, as shown in Equation 2.2. In this

framework, each data point corresponds to a specific crack length a− a0. Regression is then
performed over the surface defined by ∆

√
G, a − a0, and the crack growth rate da/dN. By

linearizing and plotting the data, a surface fit is obtained using the regression equation ( Equa-
tion 2.16).

log(∆
√
G)2reg = C0 + C1(a− a0) + C2 log

(
da

dN

)
+ C3(a− a0)

2 + C4 log

(
da

dN

)2

(2.16)

In the next step, the term a − a0 is set to zero to calculate ∆
√
G using the same regression

equation, with the coefficients obtained from the surface fit. This calculated value is then
translated to the zero-bridging curve, using the transformation described in Equation 2.17.

log(∆
√
G)2T =

[
log(∆

√
G)2 − log(∆

√
G)2reg

]
+ log(∆

√
G)a−a0=0 (2.17)

Although this method holds significant potential for generating valid and consistent zero-fibre
bridging curves, it remains relatively new and requires further research and validation. One
challenge of this approach is that it relies on the availability of multiple test sequences to ensure
sufficient fibre bridging development. Without enough data points or sequences, the method
becomes inapplicable, limiting its practical use in some scenarios.

2.6. Conclusions from Literature
This chapter provides an overview of key concepts and research relevant to fatigue delamina-
tion in composites. It covers the fundamental differences between crack growth in metals and
fibre-reinforced polymers (FRPs), focusing on delamination mechanisms under cyclic loading.
Various methods for predicting delamination growth, including stress/strain approaches, frac-
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ture mechanics, and cohesive zone models, are discussed. Additionally, the chapter explores
the effect of fibre bridging on delamination behaviour, the challenges of characterizing it, and
the development of predictive models based on strain energy release rate (SERR). These in-
sights are critical to understanding fatigue delamination and informing the standardization of
testing methods.



3
Research Objective

Based on the literature study presented in chapter 2, various methodologies for the charac-
terization of delamination growth in fibre-reinforced composites have been analyzed. This
review has provided a comprehensive understanding of the critical aspects to consider when
analyzing fatigue test data.

A major takeaway from the literature is that Linear Elastic Fracture Mechanics (LEFM) remains
the most widely adopted and appropriate framework for defining fatigue delamination growth,
particularly in terms of gaining a deeper understanding of the physics underlying key phe-
nomena, including fibre bridging. When attempting to capture the physical processes driving
fatigue crack growth, the crack driving force(CDF) emerges as the most suitable parameter
for characterizing delamination behaviour. Extensive research, along with SEM analysis, sup-
ports the conclusion that the strain energy release rate (SERR) applied directly at the crack
tip is the optimal choice for representing this crack driving force.

Another important factor highlighted in the literature is the influence of the stress ratio on delam-
ination growth. While past research largely focused on identifying a single similitude parameter
to characterize delamination growth, it has since been recognized that this approach may be
insufficient. Because fatigue delamination growth in composites is influenced by both mono-
tonic and cyclic components, a more comprehensive representation is necessary. The correct
parameter for composites, analogous to the similitude parameter used in metals, is expressed
as ∆

√
G =

(√
Gmax −

√
Gmin

)2. This parameter captures the cyclic load component, while
the Gmax term represents the monotonic load component. A representation between these
two and the delamination growth rate in three dimensions will provide a complete picture for
the delamination growth rate in composites.

Focusing specifically on the phenomenon of fibre bridging, it is important to note that this ef-
fect is predominantly observed during testing on Double Cantilever Beam (DCB) specimens.

18
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Fibre bridging is typically not encountered outside of this specific testing context, which can
lead to an underestimation of structural design requirements, as the presence of fibre bridging
is known to enhance delamination resistance. The methodologies used to characterize delam-
ination growth have largely been developed through empirical models based on curve fitting
of experimental data. However, as highlighted in the literature, there is a general consensus
among researchers that a single parameter is insufficient to fully describe delamination growth,
given the complexity of the process. As a result, there has been significant research into the
development of two-parameter models to account for additional effects such as stress ratio
and fibre bridging.

The literature identifies three primary methods for plotting delamination growth data while ex-
cluding the influence of fibre bridging:

• Hartman-Schijve Model

• Modified Paris Relation

• Regression Method

Among these, the Modified Paris Relation and the Regression Method are relatively recent
approaches, with limited research available on their validation. However, both methods show
significant promise based on the current body of studies. Further validation of these method-
ologies would be a critical first step toward establishing standardized testing procedures for
Mode I fatigue delamination in fibre-reinforced polymers.

Therefore, the main objective of this thesis can be summarized as:

To develop and ISO standard for mode I fatigue delamination testing in fibre reinforced
polymer composites

With the main objective established, the next step is to define a set of research questions that
will guide the achievement of this objective.

Main Research Question:

What is the most appropriate method that can be used to ensure convergence to a
single delamination growth curve?

Sub-Questions

SQ1 - What is the optimal parameter for describing similitude in fatigue delamination
growth?
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SQ2 - What is the most effective methodology for generating a curve that accurately
represents fatigue delamination growth without the influence of fibre bridging?



4
Methodology

For this study, the testing was not performed by the author. The test methodology, data reduc-
tion, and results discussed and analyzed in this work are derived from existing published data
from various sources. The procedures for testing and data reduction outlined in the following
sections adhere to three established standards: ASTM E647, ISO 15024, and ASTM D5528.

The ASTM E647 standard titled “Standard Test Method for Measurement of Fatigue Crack
growth Rates” is designed to measure the fatigue crack growth rates in materials, expressed
in terms of stress intensity factor range ∆K. This standard is essential for understanding the
resistance of materials to stable crack growth under cyclic loading which in turn helps in the
estimation of the durability and lifespan of the component subjected to this cyclic stress. As
previously discussed, using the SIF for characterization, particularly in composites, is not ideal;
instead, the SERR should be utilized.

With the use of SERR value for the data reduction of the test data in the case of FRP’s, ISO
15024 and ASTM 5528 recommend methodology for the calculation of the GIC value, where
GIC is the SERR for mode I cracks. Three different methods are proposed by both ASTM and
ISO for the calculation of theGIC value: Modified BeamTheory (MBT), ComplianceCalibration
(CC) andModified Compliance Calibration (MCC). As observed by Yao et al. [51] the difference
between the GIC value that is calculated using the 3 different methods differ by no more than
3.1%. Hence for the purpose of this study the MCC method is used for the determination of
GIC .

4.1. Test setup and Procedure
According to ASTM E647 guidelines, the DCB specimen must have minimum dimensions
of 125 mm by 20 mm, with a minimum thickness of 3 mm for CFRP and 5 mm for GFRP.
The dimensions of the specimen was taken to be 200mm by 20mm in order to facilitate the
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generation of multiple curves and the thickness was taken to be 5mm to reduce the compliance
of the specimen. Two aluminium blocks each measuring 25mm by 20mm was clamped on
either side of the specimen in the orientation as indicated in Figure 4.1.

The DCB specimen with fibre orientation 0//0 and 45//45 was manufactured using CFRP
M30SC/DT120 prepreg which was arranged in a unidirectional layup of 32 plies with the
stacking sequence [016//016] and [(±45/012/∓45)//(±45/012/∓45)] respectively. A pre-crack was
generated with the help of a 12.7 µm thick Teflon layer during the hand layup process. The
composite was then cured in an autoclave based on the cycle prescribed by the manufacturer.

Figure 4.1: Double Cantilever setup with initial delamination

Key
b Specimen width
2h Specimen thickness
a0 Initial delamination length
a Total delamination length
A Insert length
l Specimen length
l1 Distance from centre of loading pin (or piano hinge axis) to mid-plane of specimen
l2 Distance from centre of loading pin (or piano hinge axis) to edge of load block (or piano hinge)
l3 Block length
H Block thickness

4.1.1. Quasi-Static Delamination Test

The quasi-static delamination test was carried out as recommended by ASTM D5528 where
the pre-crack values were determined. A displacement control approach was adopted where
the rate of loading was 1mm/min. This quasi-static load is applied until crack propagation is
observed. The corresponding displacement value is set as the δmax. Based on the stress ratio
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the δmin can be calculated according to Equation 4.1. The same methodology is repeated to
determine the pre-crack value for all the subsequent sequences and the cyclic loading in the
MTS is programmed to oscillate between these maximum and minimum values.

R =
δmin

δmax
(4.1)

4.1.2. Fatigue Delamination Growth Tests

Fatigue delamination tests can be conducted using either the force-controlled or displacement-
controlled method. The displacement-controlled method is generally preferred, as it facilitates
automatic load shedding. As delamination progresses and stiffness decreases, the applied
load reduces accordingly, making the process more efficient. In the case of force-control,
the specimen compliance increases resulting in larger displacements as the number of cycles
increases. The determination of the initial load that can achieve a broad range of crack growth
rates is the major drawback of using the force control.

Given this apparent advantage, displacement control is adopted with a frequency of 5Hz. Ini-
tially an interval of 100 cycles is taken for the first 5000 fatigue cycles. This was followed by
intervals of 500 cycles for the next 15000 cycles. Once the fatigue cycle surpasses 20000 the
intervals are increased to every 1000 cycles.

4.2. Data Acquisition and Reduction
The raw data from the testing typically contains the data corresponding to the crack length,
force, displacement and cycle number. The data that was published by Yao et al. [51] con-
tained additional data in the form of the delamination growth rate as well as strain energy
release rate, but this was not taken into consideration as it was not a part of ideal raw data
and is thus excluded from the analysis.

4.2.1. Delamination Growth Rate Calculation

The delamination growth rate can be calculated using an incremental polynomial method. The
ASTM E647 standard prescribes the use of either the secant method or the 7 point polynomial
method for the calculation of the delamination growth rate as illustrated in Figure 4.2.
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Figure 4.2: Schematic representation of incremental polynomial method

In the secant method the value can be determined by the calculation of the slope between 2
adjacent data points in a plot between the crack length and the number of cycles as indicated
by Equation 4.2.

da

dN
=

(ai+1 − ai)

(Ni+1 −Ni)
(4.2)

The 7-point incremental method is used in this analysis and is more complex compared to the
secant method. A second order polynomial is fitted to sets of 2n + 1 successive data points
where n = 3. The equation of the polynomial fit is:

âi = b0 + b1

(
Ni − C1

C2

)
+ b2

(
Ni − C1

C2

)2

(4.3)

where:

−1 ≤
(
Ni − C1

C2

)
≤ +1 (4.4)

The parameters b0, b1, and b2 are regression coefficients determined by the least squares
method over the range ai−n ≤ a ≤ ai+n. To avoid numerical difficulties in calculating the
regression parameters, the following values for C1 and C2 are used to scale the input param-
eters:

C1 =
1

2
(Ni−n +Ni+n) (4.5)

C2 =
1

2
(Ni+n −Ni−n) (4.6)
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4.2.2. Strain Energy Release Rate Calculation

As outlined at the beginning of this chapter, due to the minimal variation in the SERR values
calculated using the modified beam theory, compliance calibration, and modified compliance
calibration methods, the Modified Compliance Calibration method is recommended for use in
this thesis.

The first step in the calculation of the strain energy release rate using MCC is the calculation
of the compliance value. Equation 4.7 can be used for this purpose where the D represents
the displacement and P represents the force. This is followed by a plot between C1/3 and a/h,
where the slope of this plot gives the value of A1.

C =
(Dmax −Dmin)

(Pmax − Pmin)
(4.7)

Using the calculated values the GIC can be calculated using Equation 4.8, where C is the
compliance, B is the width of the specimen and h is the thickness of the specimen. Gmax and
Gmin can be calculated by using Pmax and Pmin respectively.

GI =
3P 2C(2/3)

2A1Bh
(4.8)
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Figure 4.3: C1/3 vs a/h for Specimen 7

4.3. Reduction Methods
Since two different methodologies are implemented in this thesis, the approach for each is
detailed in the following sub-sections. The challenges encountered during implementation,
along with a comparison of the different approaches that could be applied, are discussed in
the subsequent chapter.
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4.3.1. Regression Method

From previous discussions it is clear that there is no consensus on the choice of the parameter
that can be used as a similitude. For this purpose, two of the most prominent choices: ∆(

√
G)

and Gmax are used to plot the data and analysis is done on the basis of the results. The
selection of these two parameters is based on findings from the literature, highlighting their
dependence on both cyclic and monotonic load components.

Paris relation has been used for the characterization of the crack growth rate where the da/dN
values are plotted against the similitude parameter which in this case is either∆(

√
G) or Gmax

following the relations:

da

dN
= C(∆

√
G)n (4.9)

da

dN
= C

′
(Gmax)

n
′

(4.10)
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Figure 4.4: Paris Curve Representation of Fatigue Delamination Growth with ∆
√
G for Specimen 7



4.3. Reduction Methods 27

200 300 400 500
Gmax

10−7

10−6
da dN

Sequence1
Fit for Sequence 1
Sequence2
Fit for Sequence 2
Sequence3
Fit for Sequence 3
Sequence4
Fit for Sequence 4
Sequence5
Fit for Sequence 5
Sequence6
Fit for Sequence 6

Figure 4.5: Paris Curve Representation of Fatigue Delamination Growth with Gmax for Specimen 7

Alderliesten[42] proposed the regression equation where the value of (∆
√
G)2reg is plotted as

a function of the crack length and the crack growth rate as shown in Equation 4.11. Here, the
C0, C1, C2, C3 and C4 are the constants that are obtained from the regression fit.

log(∆
√
G)2reg = C0 + C1(a− a0) + C2log(

da

dN
) + C3(a− a0)

2 + C4log(
da

dN
)2 (4.11)

A zero-bridging curve can be generated from this regression by setting the value of a−a0 equal
to zero and then plotting the curve. It must be noted that the coefficients in the zero-bridging
equation is taken from the initial regression fit. Equation 4.12 shows the zero bridging relation.

log(∆
√
G)2reg = C0 + C2log(

da

dN
) + C4log(

da

dN
)2 (4.12)

All the generated data and the scatter can be translated to obtain the zero bridging curve using
Equation 4.13.

log(∆
√
G)2T = [log(∆

√
G)2 − log(∆

√
G)2reg] + log(∆

√
G)a−a0=0 (4.13)
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Figure 4.6: Zero Bridging using Regression Method for Specimen 7

4.3.2. Modified Paris Relation

The second method that is implemented is the modified Paris relation that was proposed by
Yao et al. [40]. He hypothesized that the SERR that is directly applied on the crack is a better
choice for the crack driving force and the representation of the power law relation based on
this can be used to represent fatigue delamination growth behaviour.

The method was proposed based on the idea that was proposed by Donough et al. [50] where
he proposed a proportional relation forGtip which correlated to the applied SERR in the loading
and unloading cycle as shown by Figure 4.7. The proposed relation was as follows:

Gtip =
Gtip

max

Gapp
max

Gapp (4.14)

Figure 4.7: Gtip in fatigue when fibre bridging is present[50]
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From this relation the Gapp
max is comparable to GIC(a − a0) for the case where the maximum

load at the end of the loading phase is equal to the critical load. This results in the following
relation for Gtip:

Gtip =
G0

GIC(a− a0)
Gapp (4.15)

The G0 in Equation 4.15 is equal to Gtip
max which represents the initial delamination resistance.

For the determination of theGIC the R-curve needs to be created. This method is implemented
to enable a comparison with the regression method. Consequently, an effort was made to
replicate the results obtained by Yao et al. [40] to the greatest extent possible. The function for
GIC is obtained from this R-curve plot which can be generated by plotting the Gmax calculated
by the MCC method against the corresponding a − a0 value as seen in Figure 4.8a. Using
Equation 4.16 the modified Paris relation with fibre bridging can be plotted.

da

dN
= c (∆Geff )

n = c

[
G0

GIC(a− a0)
∆G

]n
(4.16)

The c and n in the equation similar to the other cases act as curve fits for the proposed relation.
An important note needs to be taken for the fact that the mentioned relation is the general form
of the Paris relation with fibre bridging and the fatigue delamination without fibre bridging is
just a special case of this relation.
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(a) R-curve for Specimen 7
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(b) Zero-Bridging using Modified Paris Relation
for Specimen 7

Figure 4.8: Modified Paris Relation Implementation

4.4. Validation Methods
Two primary validation methods have been employed in this thesis to ensure both the proper
implementation of the methodology and the assessment of data scatter. The first validation
method focuses on verifying the accuracy of the implementation. This is achieved by reverse-
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implementing the methodology to determine if the predicted curves lie within the 95% confi-
dence interval, thereby confirming the reliability of the model in capturing the expected range
of outcomes.

The second validation method utilizes the cumulative distribution function (CDF) to evaluate
the quality of data scatter and the goodness of fit. This approach provides a comprehensive
assessment of how well the data distribution is represented across different implementations
of the same dataset, particularly when data sizes vary. Analyzing the degree of scatter and the
quality of the fit offers a comprehensive assessment of the proposed method’s performance.
Together, these validationmethods provide a rigorous framework for evaluating both the fidelity
of the implementation and the statistical soundness of the data analysis.

4.4.1. Translated Curve Implementation Check

To verify the robustness of the translated curve implementation, an approach opposite to the
initial methodology was applied. In this approach, two boundary data points were selected
from each dataset within the translated curve. These points represent key positions on the
curve, capturing the extremes of the data distribution. For each boundary point, the pre-crack
length associated with a specific crack growth rate, denoted as da/dN , was added to the
translated∆

√
G value. This cumulative value was then used to construct a predicted curve for

each sequence, intended to represent themodified behaviour of thematerial under a controlled
translation of the fracture energy values.

Following this, the original sequence data was plotted as the baseline experimental data.
Alongside this experimental data, a 95% confidence interval was established to define the
range of expected values based on the original dataset. The predicted translated data was
then plotted and assessed for whether it fell within this confidence interval. By evaluating the
translated curves in relation to this interval, it was possible to determine if the predictive imple-
mentation maintained the expected statistical distribution and was consistent with observed
behaviour.

Although this methodology may not be ideal for accurate future predictions due to its assump-
tion of linearity and reliance on specific boundary points, it provides a strong basis for verifi-
cation. The key challenge addressed here is the slope disparity between the translated and
experimental data curves. The translated curve often exhibits a steeper slope than the exper-
imental data, which, if left uncorrected, would imply a mismatch in the rate of crack growth
across different crack lengths.

A simple translation of data points based solely on pre-crack length would result in a predicted
curve with a similar slope to the original zero-bridging data, failing to capture the necessary
changes in behaviour. By accounting for the adjusted slope, this methodology corrects for
such discrepancies, allowing the predicted curve to more accurately reflect the experimental
trend. As a verification step, this approach ensures that the translation process is effectively
implemented, yielding a curve with an appropriate slope that more closely aligns with observed
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behaviour, thus enhancing the validity of the method in capturing progressive damage char-
acteristics in the material.

4.4.2. Cumulative Distribution Function

Themethodology for developing a Cumulative Distribution Function (CDF) serves as an essen-
tial data quality assurance step, allowing for the systematic evaluation of data scatter and the
subsequent analysis of the influence of sample size on the quality of the fit obtained. This step
is particularly crucial within the context of this thesis, where a comprehensive understanding
of crack growth behaviour and its variability is needed for the accurate comparison between
the different implementations.

To implement the CDF, the data points are first translated to a specific level of crack growth
rate, denoted as da/dN, and then ranked in ascending order from the lowest to the highest
value. Once the data points are ranked, a probability is assigned to each data point using the
formula:

P =
n

ntotal + 1

where n is the rank number of the data point, and ntotal represents the total number of data
points for that particular curve. This method ensures that each data point is appropriately
weighted in terms of its contribution to the overall distribution, enabling a meaningful assess-
ment of data scatter.

The assignment of probabilities allows for a clearer understanding of the distribution character-
istics, particularly when comparing datasets of varying sizes. This method allows for assessing
and gaining a deeper understanding of the impact of data size on the model fit. Moreover, the
cumulative distribution can be graphically represented to visualize the distribution trends and
to detect any anomalies or outliers that may indicate data quality issues. This graphical rep-
resentation also aids in comparing multiple datasets, providing a visual means of assessing
whether the scatter in the data is consistent across different sample sizes or experimental
conditions.

Additionally, this approach can be extended to incorporate various statistical metrics, such as
confidence intervals or goodness-of-fit tests, to further validate the accuracy and consistency
of the model. By rigorously assessing the data scatter, the analysis ensures that any conclu-
sions drawn from the models are well-founded and robust against the inherent variability in
the experimental data.



5
Results and Discussion

The data analyzed in this study was used to compare different stress ratios and interface
conditions. As previously mentioned, the experimental tests were not performed as part of
this research; instead, the data was obtained from a previously published study. Table 5.1
presents the details of the stress ratios and interface conditions that were considered for the
analysis.

Specimen Interface Stress Ratio

Specimen 7 0//0 0.1

Specimen 11 0//0 0.1

Specimen 10 0//0 0.5

Specimen 12 0//0 0.5

Specimen 33 45//45 0.1

Specimen 34 45//45 0.5

Specimen 41 45//45 0.7

Specimen 47 +45//-45 0.5

Specimen 53 +45//-45 0.1

Specimen 54 0//0 0.5

Specimen 55 0//0 0.5

Specimen 56 0//0 0.5

Table 5.1: Summary of Specimen Data used for Analysis

The data in Table 5.1 was originally used by Yao in his thesis, where he proposed a modified

32
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Paris relation and performed detailed analyses on Specimen 7 and Specimen 11. Furthermore,
Specimens 10, 12, and 54 were used by Yao in a subsequent validation study. According to the
principle of similitude, specimens with the same interface, stress ratio, and material properties
are expected to exhibit similar crack growth behaviour. Therefore, specimens with identical
interface and stress ratio conditions are compared in this study.

5.1. Zero Bridging using Regression
The concept of similitude implies that specimens with the same interface orientation, stress
ratio, and ∆

√
G will exhibit identical crack growth rates, da/dN , across different specimens.

This assumption relies on ∆
√
G as the primary similitude parameter governing crack growth.

The choice of an appropriate method must be closely aligned with the selection of the simili-
tude parameter, as both decisions are interdependent. For the proposed model to be effective,
selecting the correct similitude parameter is crucial. With this approach, the methodology pro-
posed by Alderliesten[42] was evaluated using both ∆

√
G and Gmax as potential similitude

parameters. While literature suggests that two parameters are generally required—one rep-
resenting the monotonic load component and the other the cyclic load component—individual
analyses of each parameter were conducted to understand the trends they exhibit. This anal-
ysis specifically focused on Specimens 7 and 11, as prior studies have also examined these
specimens helping establish a baseline to validate the correct implementation of the method-
ology.
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Figure 5.1: Regression-Based Zero-Bridging Curve for Specimens 7 and 11(R=0.1) Using ∆
√
G
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Figure 5.2: Regression-Based Zero-Bridging Curve for Specimens 7 and 11(R=0.1) Using Gmax

The plots in Figure 5.1 and Figure 5.2 reveal a clear correlation between the zero-bridging
curves for both specimens, even though they do not align perfectly. Notably, when Gmax is
used in the regression analysis, the curve for Specimen 11 shows a slight deviation from that
of Specimen 7 along the x-axis. For comparison, the zero-bridging curves for Specimens 10
and 12, tested with a stress ratio of 0.5, are also presented.
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Figure 5.3: Regression-Based Zero-Bridging Curve for Specimens 10 and 12(R=0.5) Using ∆
√
G
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Figure 5.4: Regression-Based Zero-Bridging Curve for Specimens 10 and 12(R=0.5) Using Gmax

A noticeable difference in correlation is observed between the two curves when comparing
specimens with a stress ratio of 0.5 to those with a stress ratio of 0.1. This variation in cor-
relation also depends on the choice of parameter, whether ∆

√
G or Gmax is used. To sub-

stantiate this observation, a cumulative distribution function (CDF) comparison between the
two parameters would provide deeper insights into the level of correlation across the datasets
represented by the curves.
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(a) Cumulative Probability Distribution Function using ∆
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(b) Cumulative Probability Distribution Function using Gmax

Figure 5.5: Comparison of Correlation using CDF for different similitude parameters R=0.1
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(a) Cumulative Probability Distribution Function using ∆
√
G
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(b) Cumulative Probability Distribution Function using Gmax

Figure 5.6: Comparison of Correlation using CDF for different similitude parameters R=0.5

Literature findings highlight the importance of considering both monotonic and cyclic load com-
ponents to accurately characterize fatigue delamination growth rates and achieve a thorough
understanding of the process. Most prior studies have attempted to integrate these two com-
ponents within a single equation to capture the interdependence between the parameters
effectively.

Both the Hartman-Schijve and Modified Paris Relation share an intriguing commonality in their
approach to characterize fatigue delamination growth. Both of the proposed equations use two
key parameters to characterize the crack growth rate: ∆

√
G and Gmax. A critical feature of

both equations is the denominator term, which acts as a delamination resistance factor. In the
Modified Paris relation, the GIC(a − a0) term effectively captures the variation in Gmax as a
function of a− a0.

da

dN
= c1 (∆g)n1 = c1


√
∆G−

√
∆Gth√

1−
√
Gmax√
A


n1

(5.1)

da

dN
= c2 (∆Geff )

n2 = c2

[
G0

GIC(a− a0)
∆G

]n2

(5.2)

Yao et al. et al. [40] compared theModified Paris relation he proposedwith the Hartman-Schijve
model, demonstrating better performance of the Modified Paris relation. Consequently, this
study focuses on comparing the regression method with the Modified Paris relation. However,
due to differing interpretations regarding the implementation methodology for the Modified
Paris relation, as discussed in detail in section 5.3, both implementations are presented for
clarity in Figure 5.7 to facilitate discussion.
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(a) Modified Paris Relation using
Bi-Linear Fit from Paper for Specimen 11
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(b) Modified Paris Relation using
Individual Polynomial Fit from Paper for Specimen 11

Figure 5.7: Comparison of Regression and Various Implementations of the
Modified Paris Relation for Specimen 11

This difference in the interpretation of the methodology arises from the calculation of the Geff

term. Despite the differences in implementation, the two curves exhibit significant overlap.
Notably, this correlation, especially in the case of the regression method, was achieved by
using only ∆

√
G as the sole similitude parameter. In light of the initial hypothesis, attempts

were made to includeGmax as either a separate term or a cross term in the existing regression
equation. Early iterations of these attempts resulted in the regression equation appearing as
shown in Equation 5.3 where, a sixth coefficient was introduced, which was related to theGmax

term.

log(∆
√
G)2reg = C0+C1(a−a0)+C2 log

(
da

dN

)
+C3(a−a0)

2+C4 log

(
da

dN

)2

+C5 log(Gmax)

(5.3)

The resulting regression curve, shown in blue in Figure 5.8, exhibits significant scatter. Given
the initial correlation between the Modified Paris Relation and the regression curves, the Mod-
ified Relation curve is considered the baseline for comparison. Various iterations of the re-
gression equation were tested, incorporating the Gmax term either independently or as part of
cross terms. However, most of these iterations yielded inconclusive results, with the plot either
resembling the one in Figure 5.8 or, in some cases, matching Figure 5.7, though in the latter,
the coefficients related to the Gmax term were effectively zero. This led to the conclusion that
this methodology is not the most suitable approach for incorporating the Gmax term.
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Figure 5.8: Regression Method with an additional term for Gmax

To refine the approach and better understand the role of Gmax in the regression equation, it is
crucial to consider the effect of the stress ratio. In Yao’s validation study[32] of the Modified
Paris relation, the effect of the stress ratio was analyzed and presented, as shown in Figure 5.9.

Figure 5.9: Effect of Stress Ratio when using the Modified Paris Relation[32]

Based on this, it is reasonable to expect a similar trend when plotting the zero-bridging curve
using the regression method. Indeed, when the plot is generated, as seen in Figure 5.10, a
comparable behaviour is observed. However, a more intriguing result emerges when the data
is plotted against Gmax, as previously done. As shown in Figure 5.11, an opposite trend is
noted. Further analysis of specimens with different stress ratios revealed a consistent trend
across all cases.
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Figure 5.10: Comparison of Regression Method Using ∆
√
G for Stress Ratios 0.1 and 0.5
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Figure 5.11: Comparison of Regression Method Using Gmax for Stress Ratios 0.1 and 0.5

This variation in behaviour indicates that a 3D plot could better illustrate the correlation be-
tween the three parameters. Plotting the data from the two specimens in terms of translated
∆
√
G, Gmax, and da/dN reveals, as shown in Figure 5.12, that the data points for specimens

with the same stress ratio align within a single plane.
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(a) 3D plot between ∆
√
G, Gmax and da/dN

(b) 3D plot between ∆
√
G, Gmax and da/dN

Figure 5.12: Combined 3D Plots of ∆
√
G, Gmax, and da/dN for Stress Ratios 0.1 and 0.5

The plots in Figure 5.12 demonstrate a clear pattern when the zero-bridging curves are plot-
ted in the three-dimensional space, relating the translated values of Gmax and ∆

√
G against

da/dN . This behaviour is further validated by analyzing the data from Specimen 33, Speci-
men 34, and Specimen 41. As shown in Table 5.2, these specimens share the same interface
but differ in their applied stress ratios, with values of 0.1, 0.5, and 0.7, respectively where a
separate plane is obtained for each of the different stress ratios.

When plotting specimens with the same stress ratio, it is observed that their data points lie
on the same plane, as shown in Figure 5.13, where the translated data for specimens 7 and
11 are presented in 3D. This in comparison to the plot shown in Figure 5.14 and Figure 5.12
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demonstrates that the stress ratio is the key factor distinguishing the plane location for the data
points. Notably, Specimen 41, which has a higher stress ratio, shows significantly more scatter
in the translated zero-bridging curve compared to the other two specimens, where scatter
decreases as the stress ratio is reduced. This behaviour suggests a possible relationship
between the stress ratio and the scatter in the translated data. However, this relationship
could not be confirmed due to insufficient data, particularly for specimens with higher stress
ratios.

(a) 3D plot between ∆
√
G, Gmax and da/dN

(b) 3D plot between ∆
√
G, Gmax and da/dN

Figure 5.13: Combined 3D Plots of ∆
√
G, Gmax, and da/dN for Stress Ratio 0.1
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Figure 5.14: Combined 3D Plots of ∆
√
G, Gmax, and da/dN for Specimens 33 (R = 0.1), 34 (R = 0.5), and 41

(R = 0.7)

5.1.1. Varying Orientations

In the previous section, the generated 3D plots demonstrated that, for specimens with iden-
tical stress ratios, the zero-bridging curves produced through regression analysis lie on the
same plane. When the stress ratio is altered, however, the data points shift to distinct planes,
indicating a clear dependence of the zero-bridging plane orientation on the stress ratio. This
raises the question of how the plot behaviour might change when different fibre orientations
are plotted within the same 3D space, while maintaining a consistent stress ratio across all
orientations.

(a) Combined 3D plot for the same stress ratio R = 0.1 and varying orientations
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(b) Combined 3D plot for the same stress ratio R = 0.1 and varying orientations

Figure 5.15: Comparison of 3D plots for the same stress ratio R = 0.1

By examining data for various interface orientations—namely, the 0//0, 45//45, and 45//-45
configurations—and plotting the crack growth rate (da/dN ), energy release rate increment
(∆

√
G), and maximum energy release rate (Gmax) in 3D space, further insights into orientation

effects on the zero-bridging behaviour are obtained.

The primary observation from these 3D plots is that, irrespective of orientation differences, the
zero-bridging curves consistently lie on the same plane as long as the stress ratio remains
constant. This reinforces the concept that the stress ratio is the primary driver for positioning
the zero-bridging plane within the 3D plot. An interesting pattern emerges when comparing the
zero-bridging curves of different orientations but identical stress ratios: the 45//45 and 45//-45
interface curves are closely aligned with each other, while the curve for the 0//0 interface is
more distant from these two, showing a distinct separation.

(a) Combined 3D plot for the same stress ratio R = 0.5 and varying orientations
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(b) Combined 3D plot for the same stress ratio R = 0.5 and varying orientations

Figure 5.16: Comparison of 3D plots for the same stress ratio R = 0.5

This behaviour holds true for both stress ratios examined, 0.1 and 0.5, indicating a robust
trend across different loading conditions. These observations suggest that, while the stress
ratio dictates the plane in which the zero-bridging data lies, the fibre orientation influences the
proximity and grouping of the data within that plane. The closer alignment of 45//45 and 45//-45
curves may imply that orientations with similar fibre angles exhibit similar damage progression
behaviours, while the 0//0 orientation, with its distinct alignment, diverges from these patterns.

This orientation-based clustering within the same stress ratio plane points to a nuanced inter-
action between stress ratio and fibre orientation in determining crack growth behaviour. While
the stress ratio appears to have the dominant effect, governing the plane of data alignment,
the fibre orientation further modulates the data distribution within that plane. Specifically, ori-
entations with similar fibre alignments tend to group closer together, suggesting that certain
orientation pairings exhibit analogous crack progression characteristics. This finding could
inform the design of composite materials by highlighting that specific fibre orientations, when
subjected to identical stress ratios, yield comparable damage responses, potentially enhanc-
ing predictability in material performance across various configurations.

5.1.2. Exploration of Plane-Fitting Approaches for Stress Ratio Effects

The behaviour of the translated plots discussed in the previous section indicated that, for each
stress ratio, the translated data points of Gmax and∆

√
G would lie on the same plane, regard-

less of the orientation of the plies in the composite. This observation led to the hypothesis that
a single, common plane could capture the effect of stress ratio, as this behaviour did not align
with any previously observed patterns.

The hypothesis proposed that a single plane equation could be derived to represent the data
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across different stress ratios, allowing all data points to be described by one plane, irrespective
of the specific stress ratio. However, visual inspection of the data and the proposed hypoth-
esis revealed that, if such a plane were obtained, there would be a considerable amount of
scatter perpendicular to it. This scatter would vary, with lower stress ratios exhibiting smaller
deviations and higher stress ratios showing larger variations, indicating that the scatter around
the proposed plane would not be uniform but would depend on both the data and the stress
ratio.

To test this hypothesis, an initial approach was taken by attempting to fit a plane to the scat-
ter data using three parameters: da/dN , Gmax, and ∆

√
G. Each of these parameters was

linearized to create a linear plot, and the coefficients of the plane equation, along with the
intercept, were determined. This plane was then plotted to evaluate the fit. As shown in Fig-
ure 5.17, the resulting plane provides a poor fit for the data across the different stress ratios,
suggesting that further refinement of the model may be necessary.

Figure 5.17: Plane Fit using Regression for Coefficient of the Plane Equation

Since the initial attempt was unsuccessful, the next approach involved adding a cross-term
to the existing three parameters and performing regression with this modified model. This
cross-term was introduced as the product of Gmax and ∆

√
G. The resulting plots are shown

in Figure 5.18 and Figure 5.19.
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Figure 5.18: Plane Fit with additional Cross-Term

Figure 5.19: Surface Fit with Cross-Term

As observed in Figure 5.18, the fit with the cross-term is significantly improved compared to the
previous attempt. However, Figure 5.19 reveals that the plane is slightly over-fitted, resulting
in a noticeable kink at one end of the plane. This overfitting is problematic, as it indicates that
the model may be too closely tailored to the specific data points, capturing noise rather than
the underlying trend.

This kink suggests that the inclusion of the cross-term, while improving the overall fit, intro-
duces artifacts that distort the plane’s ability to generalize across different stress ratios. Fur-
ther refinement may be needed, possibly by exploring alternative terms or constraining the
model to reduce overfitting, to achieve a balance between accuracy and generalization.

The next approach involved manually enforcing a plane through the data, as the automated
plane fitting had been unsuccessful in capturing the trend in the data points. This method
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began with an initial line fit along the plane in which each specific data set lies. These line fits
were then used to guide the fitting of a plane through the data. The resulting plane fit is shown
in Figure 5.20 and Figure 5.21.

Although this approach produced a slightly better fit, it still fails to accurately capture the be-
haviour at the higher stress ratio of 0.7. This limitation suggests that the model may need
further adjustments or additional parameters to better account for variations at higher stress
ratios.

Figure 5.20: Forced Curve Fit

Figure 5.21: Forced Curve Fit
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Subsequent attempts involved adopting a similar format to two-parameter models, with three
specific formulations chosen and using translated parameters obtained from regression. The
equations tested were as follows:

da

dN
= B(∆G(1−γ)Gγ

mean)
m (5.4)

da

dN
= c(

√
Gmax −

√
Gmin)

2(1−γ)Gγn
max (5.5)

da

dN
= A(Gmax)

m +B(∆G)n (5.6)

However, a plane fit using these equations was also unsuccessful, as none of the fitted planes
were able to capture the observed trend in the data. This was followed by an overall regres-
sion approach, where all data points were combined, and linear regression was performed to
determine the coefficients for a plane fit. Unfortunately, this approach was also ineffective. All
plots from these unsuccessful attempts are included in Appendix A.

5.2. Validation of the Regression Model Proposed
In this section, the accuracy and robustness of the proposed regression model are evaluated
using two complementary validation methods. The first method involves translating the re-
gression curve based on pre-crack lengths and comparing it with experimental results. This
ensures that the experimental data consistently falls within the specified limits, thereby con-
firming the correct implementation of the model. The second validation assesses the influence
of the data set size on the model’s performance, providing insight into how the model responds
to varying data volumes.

5.2.1. Comparison of Translated Regression Limits with Experimental Data

This validation step serves as a check to confirm the correct implementation of the method.
The underlying concept is that if the translated zero-bridging curve is shifted back to match the
specific pre-crack lengths of each specimen, the experimental data for that specimen should
fall within the outer limits of the translated regression data. This ensures that the model has
been implemented accurately in relation to the different pre-crack lengths.

This verification was done for Specimen 7 with the stress ratio of 0.1 and Specimen 12 with a
stress ratio of 0.5 and is shown in Figure 5.22 and Figure 5.23 respectively.
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Figure 5.22: Prediction vs Experimental Data for Specimen 7
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Figure 5.23: Prediction vs Experimental Data for Specimen 12

The translation plots above exhibit expected behaviour, with the predicted data points gener-
ally falling within the confidence intervals of the experimental data. This trend is consistently
observed for both stress ratios, 0.1 and 0.5, demonstrating the validity of the methodology.
However, an interesting anomaly arises in the earlier sequences—specifically, sequences 1
and 2 for specimen 7, and sequences 1, 2, and 3 for specimen 12—where the predicted curves
fall outside the bounds of the confidence intervals. This deviation is not isolated, as a similar
pattern was observed in other specimens analyzed in this study.

It is important to note that this behaviour is not indicative of an issue with the method’s im-
plementation. Instead, it reflects the inherent characteristics of the data translation process.
The translation method relies on aligning the data across different sequences to ensure con-
sistency, but in the earlier sequences, variations in the experimental data can amplify discrep-
ancies.

As subsequent sequences align more closely with the predicted curves and conform to the
confidence interval bounds, it becomes evident that this anomaly is restricted to the initial se-
quences. This suggests that the observed behaviour is a consequence of the data translation
approach and its interaction with the natural variability in experimental data during the early
stages of testing. Understanding and accounting for such trends can help refine future anal-
yses, ensuring that early-sequence deviations do not undermine the overall reliability of the
method.

5.2.2. Influence of Data Set Size on Model Performance

The plots generated in section 5.1 were developed using a regression method that incorpo-
rated both ∆

√
G and Gmax. Alderliesten [42] established this regression methodology based

on data from Specimen 7 and Specimen 11. Notably, these same specimens were also uti-
lized by Yao et al. [40] in his exploration of the modified Paris relation. Alderliesten’s analysis
demonstrated an excellent correlation between the two specimens, which he further verified



5.2. Validation of the Regression Model Proposed 52

through a comparison of their cumulative distribution functions. He observed that, apart from
lower values of ∆

√
G, there was strong agreement between the data from the two specimens.

(a) Comparison between the cumulative density functions for
specimen 7 and 11 by Alderliesten[42]
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(b) Comparison between the cumulative density functions for
specimen 7 and 11 using Python

Figure 5.24: Comparison between the cumulative density functions for specimens 7 and 11

However, this trend was not replicated in the analysis conducted using the code developed
for this study. As illustrated in Figure 5.24, there is a significant difference between the two
CDF plots. Upon further examination of the data components, a key distinction emerged be-
tween Alderliesten’s analysis and the current study: the number of data points utilized for each
specimen. In Alderliesten’s work, Specimen 7 and Specimen 11 had 233 and 347 data points,
respectively. In contrast, the present study increased the number of data points for these
specimens to 269 and 391, respectively. This variation in dataset size may have contributed
to the observed differences in the cumulative distribution functions, potentially impacting the
accuracy and correlation of the results.

This dependence on the number of data points was also evident in the early stages of this
study when the analysis was conducted manually in Excel, without the benefit of automation.
During that phase, significant gaps in the data emerged, primarily due to the calculation of the
crack growth rate, da/dN , using the 7-point polynomial method. These gaps were addressed
by omitting the corresponding values from the dataset, resulting in a curve fitted through the
remaining data points.

Interestingly, the correlation achieved in these early Excel-based analyses was significantly
better, with the plots nearly overlapping. The curve derived from this manual process exhibited
superior correlation compared to the plots published by Alderliesten. This improvement can be
attributed to the number of data points used: in the manual analysis, Specimen 7 maintained
the same 233 data points as in Alderliesten’s published dataset, while Specimen 11 had only
307 data points, compared to Alderliesten’s 347. This reduction in data points explains the
enhanced correlation observed, even at lower ∆

√
G values.
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(a) Comparison of Zero-bridging between Specimen 7 and 11
using Excel (b) Cumulative Distribution Function in Excel

Figure 5.25: Comparison of Zero-bridging and CDF plots using Excel

A similar cumulative distribution function was applied to the other data with different stress
ratio and a similar trend was observed. The trend followed is similar to the one that is seen in
Figure 5.24a with better correlation at lower ∆

√
G values.

Understanding the specific characteristics of the data being analyzed is fundamental, as this
understanding directly influences the results obtained. Each software program has its own
methodology for data analysis and approaches for handling exceptions or anomalies within the
dataset. As illustrated in the preceding analysis, even when using the same dataset, different
software can produce varied results due to these differing approaches.

For instance, variations in data pre-processing techniques, statistical algorithms, and the way
each software interprets outliers or missing values can significantly affect the final outcomes.
Ultimately, recognizing the nuances of data handling is essential for enhancing the reliability
and validity of the results, enabling more effective comparisons across studies and promoting
a deeper understanding of the underlying phenomena.

5.3. Comparison between Regression Method and Modified Paris
Relation

In this study, the modified Paris relation proposed by Yao in [40] is plotted for comparison
with the regression method developed. Yao applied a bi-linear fit to the combined data points
from Specimen 7 and Specimen 11 to calculate GIC . In an attempt to replicate Yao’s ap-
proach, constraints were imposed on the curve to ensure that it passed through specified
data points. However, despite these efforts, an exact replication of Yao’s results was not
achieved. Minor discrepancies were observed between the calculated values and those re-
ported by Yao. These inconsistencies can be attributed to the inherent variability in applying
bi-linear fits, which are highly sensitive to the choice of plotting methods or software.

This variability presents a significant challenge when trying to obtain consistent results. To mit-
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igate these inconsistencies, polynomial fit methodology is explored, which offers more reliable
and stable outcomes across different software and plotting techniques. Furthermore, since
Yao’s study used a combined dataset from both specimens for curve fitting, it is hypothesized
that a more robust approach would involve fitting curves to each specimen’s data individu-
ally. By following these guidelines, several fitting methodologies were implemented, and their
results compared:

• Bi-Linear Fit by Yao

• Fitted Bi-Linear Model

• Individual Polynomial Fit for Specimen 7

• Individual Polynomial Fit for Specimen 11

• Combined Data Polynomial Fit

The aim of these methodologies was to ensure repeatability and consistent results across
the different specimen analyses. A detailed comparison of the results from these various
implementations is provided in Table 5.2, which lists key parameters, such as the length of the
process zone, total strain energy release rate (SERR), and SERR at the crack tip.

Length of Process Zone Total SERR SERR Tip

Bi-Linear Fit by Yao 62.980 631.150 162.760

Fitted Bi-Linear Model 71.577 584.434 166.217

Individual Polynomial Fit for Specimen 7 68.635 542.098 142.320

Individual Polynomial Fit for Specimen 11 100.848 614.123 128.000

Combined Data Polynomial Fit 100.848 611.982 135.155

Table 5.2: Comparison of Length of Process Zone, Total SERR, and SERR Tip across different fitting methods

5.3.1. Analysis of the Bi-Linear Fit by Yao

Yao’s original approach utilized a bi-linear fit for the combined data of Specimen 7 and Spec-
imen 11, resulting in a length of the process zone of 62.980 mm, a total SERR of 631.150
J/m2 , and a crack tip SERR of 162.760 J/m2. This approach provided a reasonable approx-
imation of the material’s fracture behaviour, but the methodology raises concerns regarding
reproducibility due to its sensitivity to variations in curve fitting techniques and plotting soft-
ware.

A re-implementation of the bi-linear model, with the addition of constraints to mimic the existing
curve, yielded slightly different results, with a length of the process zone of 71.577 mm, a total
SERR of 584.434 J/m2, and a crack tip SERR of 166.217 J/m2. The observed differences
may be attributable to slight variations in the interpretation of the bi-linear segments or the
method of data processing used in the re-implementation.
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Figure 5.26: Bi-Linear Fit for R Curve

5.3.2. Polynomial Fit for Individual Specimens

Recognizing the limitations of the bi-linear fit, individual polynomial fits were applied to the data
for each specimen. This method resulted in more consistent values for both Specimen 7 and
Specimen 11. For Specimen 7, the polynomial fit produced a process zone length of 68.635
mm, a total SERR of 542.098 J/m2, and a crack tip SERR of 142.320 J/m2. For Specimen
11, the polynomial fit showed a process zone length of 100.848 mm, a total SERR of 614.123
J/m2, and a crack tip SERR of 128.000 J/m2. These values are more stable and reproducible
as compared to the bi-linear fit.

The corresponding R-curves for the individual polynomial fits are shown in Figure 5.27. It can
be observed that the polynomial fit provides a smoother and more continuous representation
of the fracture process compared to the abrupt transitions seen in the bi-linear fits.
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(a) Polynomial R Curve for Specimen 7
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(b) Polynomial R Curve for Specimen 11

Figure 5.27: Individual Polynomial R Curve fits for Specimen 7 and Specimen 11

5.3.3. Polynomial Fit for Combined Data

A polynomial fit was also applied to the combined data from Specimen 7 and Specimen 11 to
assess the impact of using aggregate data as seen in Figure 5.28. The results of this fit, as
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shown in Table 5.2, reveal a process zone length of 100.848 mm, a total SERR of 611.982
J/m2, and a crack tip SERR of 135.155 J/m2. While this combined fit closely matches the
polynomial fit for Specimen 11, it significantly diverges from the polynomial fit for Specimen 7.
This discrepancy suggests that combining data from different specimens into a single fit may
obscure important specimen-specific fracture behaviour, leading to skewed results.
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Figure 5.28: Polynomial R Curve fit for Specimen 7 and 11 combined

5.3.4. Comparison of Fitting Methods

The results of the different fitting methods are visually compared in the R-curve plots for Spec-
imen 7 and Specimen 11. Figures 5.29, 5.30, and 5.32 show the comparison between Yao’s
modified Paris relation using the different fitting approaches applied in this study and the re-
gression method used in this study. The differences in the R-curves from the regression
method which is taken as the benchmark highlights the inconsistencies introduced by the
bi-linear fit, particularly for Specimen 7.
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Figure 5.29: Regression and Modified Paris Relation Comparison for Specimen 7 and Specimen 11 from Paper

A more substantial difference was observed when the bi-linear fit implemented in this study
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was compared with the regression method, as shown in Figure 5.30. For Specimen 7, the
difference between the two methods is particularly pronounced, with significant variation in
the SERR values, highlighting the limitations of the bi-linear approach in capturing the detailed
fracture process.
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Figure 5.30: Regression and Modified Paris Relation Comparison for Specimen 7 and Specimen 11 using
Bi-Linear Fit

Conversely, using the polynomial fit on individual specimen data, as shown in Figure 5.32,
resulted in better agreement between the Zero Bridging method and the polynomial fit for both
specimens, with only minor differences observed for Specimen 7 along the x-axis.
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Figure 5.31: Regression and Modified Paris Relation Comparison for Specimen 7 and Specimen 11 using
Combined Polynomial Fit
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(a) Regression and Modified Paris Relation Comparison for
Specimen 7 using Individual Polynomial Fit

60 80 100 120 14070 90

Δ√G

10Δ8

10Δ7

10Δ6

da dN

Regression Method
Modified Paris Relation

(b) Regression and Modified Paris Relation Comparison for
Specimen 11 using Individual Polynomial Fit

Figure 5.32: Regression and Modified Paris Relation Comparison for Specimen 7 and Specimen 11 using
Individual Polynomial Fit

5.3.5. Analysis and Recommendations

The results of this study demonstrate that the use of a bi-linear fit, as employed by Yao, in-
troduces significant variability and inconsistency in the analysis of delamination crack growth.
This variability stems from the sensitivity of the bi-linear fit to the specific plotting methods used,
as well as the choice of data points for the bi-linear segments. Though the values proposed by
Yao provided a good correlation between the regression data and the modified Paris relation
the inability to reproduce those values makes the methodology difficult to standardize.

In contrast, polynomial fits offer a more robust and reliable approach for analyzing individual
specimens. The polynomial fit provides a smoother and more continuous representation of
the R-curve, better capturing the gradual changes in energy release rate and crack growth.
Moreover, applying polynomial fits to individual specimens avoids the pitfalls of combining
data from multiple specimens, which can obscure important specimen-specific behaviour.

Based on the analysis presented in this study, it is recommended that future studies avoid using
bi-linear fits and instead adopt second degree polynomial fits for analyzing fracture processes.
Furthermore, each specimen’s data should be analyzed independently, as combining data
from different specimens can lead to unrepresentative results.
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Conclusion

Composites have become integral to aircraft primary structures, but as design and testing
methodologies advance, the current certification processes have grown increasingly complex
and costly. Transitioning to a simpler and more efficient certification framework requires adapt-
ing testing methods to make themmore representative of real-life conditions. A prime example
is fatigue delamination testing for fibre-reinforced composites, where a standardized testing
protocol is lacking. The absence of consensus on an appropriate similitude parameter for char-
acterizing fatigue delamination growth presents a significant obstacle. This issue is largely
attributed to fibre bridging, a phenomenon that introduces variability in test data, making it
difficult to establish a standardized approach. This presents a significant issue, as fibre bridg-
ing is a phenomenon that primarily occurs during testing and very rarely extend to real-world
structural applications. Consequently, reliance on fibre bridging effects in testing could lead
to underdesign, as fibre bridging is known to enhance the toughness of composites and sig-
nificantly slow down the delamination process.

The aim of this thesis was to develop an ISO standard for Mode I fatigue delamination testing
in fibre-reinforced polymer composites. This included determining the most suitable simili-
tude parameter to characterize delamination growth while accounting for fibre bridging effects.
Through this work, various potential parameters were evaluated to identify the one that best
represents delamination growth. For addressing fibre bridging, existing methods—such as the
modified Paris relation and regression techniques—were analyzed to determine their advan-
tages and limitations, ultimately aiming to select the most reliable data processing method. A
Python code was developed to analyze raw test data and perform calculations for both meth-
ods. Given Python’s limitations in 3D plot visualization, a MATLAB version of the code was
also created to facilitate improved viewing of generated plots.

The thesis initially implements the zero-bridging method, as this approach shows promise for
use in standardization. Analyses were conducted separately for the two parameters, ∆

√
G
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and Gmax, applying the regression equation individually to each and generating respective
plots. Observations from these plots, combined with insights from literature, highlighted the
importance of accurately characterizing both monotonic and cyclic load components for a
comprehensive understanding of delamination growth behaviour. Here, Gmax represents the
monotonic load component, while ∆

√
G captures the cyclic component. These findings led

to the conclusion that 3D plots incorporating both parameters and the delamination growth
rate (da/dN ) provide the most complete perspective. These 3D plots revealed that, for a con-
stant stress ratio, the translated data points lie on the same plane, while variations in stress
ratio result in shifts to different planes. Traditional models that focus solely on either cyclic or
monotonic loading often overlook the complex interplay between these components, which is
crucial for describing delamination behaviour in FRPs. This study demonstrates that incorpo-
rating both components in predictive equations is essential to capture their combined influence
on crack growth rates, especially in cases with significant fibre bridging. These curves allow
for a clear representation of delamination progression without the confounding effects of fibre
bridging, thereby providing a reliable methodology for analyzing fatigue delamination growth.

An additional aspect of the zero-bridging curve that remained largely unexplored using the
regression method was the influence of varying fibre orientations on its behaviour. Although
data on this was limited, three orientations— 0//0, 45//45, and 45//-45 —were analyzed. In the
resulting 3D plot, similar to previous cases, it was observed that orientation did not affect the
plane in which data points lay, as long as the stress ratio remained constant. However, it was
noted that the data points for 45//45 and 45//-45 orientations were closer to each other than
to the 0//0 orientation, though they did not overlap. This suggests that similar orientations ex-
hibit comparable delamination behaviour, indicating that orientation plays a role in influencing
delamination patterns without altering the stress ratio-dependent plane.

A key drawback, highlighted in the literature and observed in this thesis, is the need for multiple
delamination resistance curves per specimen to effectively apply this method. This require-
ment poses a challenge for existing datasets, where most specimens have only a single de-
lamination resistance curve, making it difficult to implement this methodology. As discussed by
Alderliesten[42], this limitation can be addressed using an alternative approach—the modified
Paris relation proposed by Yao et al. [40]. Both the literature and this thesis confirm that the
curve generated by the modified Paris relation closely resembles the one produced through
the regression method. However, a significant drawback of the modified Paris relation is the
bi-linear fit proposed in Yao’s initial work [40]. This thesis examines the limitations of this ap-
proach and suggests a polynomial fit through individual data points as a more consistent and
reproducible alternative. This alternative approach, along with the automation of zero-bridging
curve plotting using the modified Paris relation, is implemented in the Python code developed
for this study.



7
Recommendation for Future Work

This chapter outlines key recommendations for future work based on the methodology de-
veloped in this thesis. A code was developed in both Python and MATLAB to automate the
implementation of the regression method and the modified Paris relation for analyzing fatigue
delamination behaviour. While the current version of the code is detailed and comprehen-
sive, future improvements could focus on enhancing coding practices and simplifying function
structures. Refining these aspects would improve the code’s readability, maintainability, and
efficiency, making it more accessible for further research and practical applications in fatigue
analysis of fibre-reinforced composites.

A significant challenge that remained unresolved was the development of an equation capable
of accounting for the effect of stress ratio on delamination behaviour. As outlined in chapter 5,
various attempts were made to identify a plane that could accurately capture the observed
trends when plotting data for different stress ratios. The approaches explored and their corre-
sponding results are presented in chapter 5 and Appendix A.

Given these challenges, the next course of action could focus on identifying an equation that
defines a plane capable of fitting data across the different stress ratios, thereby accounting
for the stress ratio effect and enabling the development of a unified predictive model. This
approach could involve exploring alternative fitting techniques or adjustments to existing two-
parameter models to achieve a more accurate representation. Developing such a combined
equation would be a significant step toward a more comprehensive understanding of the influ-
ence of stress ratio on delamination behaviour.
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A
Unsuccessful Plane Fits

Figure A.1: Plane Fit using Hojo’s two parameter model
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Figure A.2: Plane Fit using Jia’s two parameter model

Figure A.3: Plane Fit using Khan’s two parameter model
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Figure A.4: Plane Fit using Regression of all the combined data
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