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Abstract

[Background] Security risk assessment methods in industry mostly use a tabular notation to
represent the assessment results whilst academic works advocate graphical methods. Experiments
with MSc students showed that the tabular notation is better than an iconic graphical notation for
the comprehension of security risks. [Aim] We investigate whether the availability of textual labels
and terse UML-style notation could improve comprehensibility. [Method] We report the results
of an online comprehensibility experiment involving 61 professionals with an average of 9 years
of working experience, in which we compared the ability to comprehend security risk assessments
represented in tabular, UML-style with textual labels, and iconic graphical modeling notations.
[Results] Tabular notation are still the most comprehensible notion in both recall and precision.
However, the presence of textual labels does improve the precision and recall of participants over
iconic graphical models. [Conclusion] Tabular representation better supports extraction of correct
information of both simple and complex comprehensibility questions about security risks than the
graphical notation but textual labels help.

Keywords: Empirical Study, Security Risk Assessment, Risk Modeling, Comprehensibility,
Cognitive Fit

1. Introduction

Vessey’s paper (Vessey 1991) on how different cognitive tasks can be better achieved by different
visual notations has sparked a long debate on what is a ‘good’ modeling notation. A field in
which such debate is both active and relevant is Security Risk Assessment (SRA). Most academic
approaches suggest a graphical notation, starting from Anti-Goals (Van Lamsweerde 2001) to the
security extension of the i*-graphical requirements language (Giorgini et al. 2005) to highly iconic
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methods (Lund et al. 2011). Industry has adopted essentially tabular notations like OCTAVE, and
the ISO 27005 and NIST 800-30 standards. Microsoft STRIDE (Hernan et al. 2006) is the industry
exception whilst SREP (Mellado et al. 2006) is the academic one.

Such difference may be a mere time-lag (industry might eventually adopt graphical models) or
actually caused by substantially different cognitive objectives (tabular notation works best for the
prevalent cognitive tasks in industry).

In this respect, reported empirical studies have obtained conflicting results when using the
method for producing an SRA. In short experiments, graphical methods fared better (e.g., (Hog-
ganvik and Stølen 2005; St̊alhane and Sindre 2008)). Studies with a full-fledged application for
several days had either mixed results (e.g., (Massacci and Paci 2012; Labunets et al. 2013, 2014))
or concluded that the two notations were equivalent (Labunets et al. 2017).

Yet, producing a risk assessment may be the wrong cognitive task of interest for industry:
security risk models are normally produced by (few) highly skilled experts but are consumed by
(several) other actors, upwards to managers and downward to developers and operational staff.
Hence, the comprehensibility of security risk models may be the key issue.

Previous experiments with MSc students (Labunets et al. 2017) have shown that the tabular
notation from industry outperforms the graphical, highly iconic, notation from academia. Since
there are several shades in graphical notations, we want to investigate whether a mixed notation
combining textual labels with terse UML-style notation can achieve better results than either a
purely tabular or an iconic graphical notation.

An important preliminary observation is that the success of a notation might also depends on
the task’s cognitive complexity as characterized by Wood’s (Wood 1986), and adapted to the field
by Labunets et al. (2017). According to Vessey’s cognitive fit theory (Vessey 1991), by asking
participants simple ’look up’ questions we should favor tabular notations whilst asking them to
identify ’spatially related’ concepts might give graphical notation an advantage. Another issue to
address is whether the answer could change when professionals would be asked to perform the task
as opposed to students.

Hence in this paper we address the following questions for participants with a significant work
experience:
RQ1 Does the task complexity have an impact on the comprehensibility of the models?
RQ2 Does the availability of textual labels improve the participants effectiveness in extracting cor-

rect information about security risks?
The short answer to RQ1 is that according to our experiment complexity has no impact and
neither there is an interaction between notation and complexity. For RQ2, in terms of answer’s
precision the tabular notation is better but essentially equivalent to the UML-style with textual
labels notation (roughly one wrong answer out of seven) and much better than the iconic graphical
notation (approximately three wrong answers). In terms of recall, the tabular notation is definitely
better than both graphical competitors.

2. Related Work

In the literature we found three main streams of works that compares textual and visual nota-
tions: a) studies that proposed cognitive theories to explain the differences between the notations
or to explain their relative strengths (Vessey 1991), b) studies that compared different notations
from a conceptual point of view (Kaczmarek et al. 2015; Saleh and El-Attar 2015), and c) studies

2



that empirically compare graphical and textual representations, e.g., for safety and system require-
ments (Sharafi et al. 2013; St̊alhane and Sindre 2008; St̊alhane et al. 2010; St̊alhane and Sindre
2014; de la Vara et al. 2016), software architectures (Heijstek et al. 2011), and business processes
(Ottensooser et al. 2012). To the best of our knowledge, there are few similar studies that empiri-
cally investigated modeling notations for security risk (Hogganvik and Stølen 2005; Grøndahl et al.
2011) or compared graphical and tabular security methods in full scale application experiments
(Massacci and Paci 2012; Labunets et al. 2013, 2014, 2017).

2.1. Empirical Studies of Software Modeling Notations

Abrahao et al. (2013) conducted a large scale study consisted of 5 controlled experiments with
112 participants with different levels of experience to evaluate the effectiveness of dynamic modeling
in requirements comprehension. They found that requirements specifications supplemented by
dynamic models (sequence diagrams) improves the comprehension of software requirements with
respect to using only specification document. Scanniello et al. (2014) conducted four controlled
experiments with students and professional to investigate the effect of UML analysis models on
comprehensibility and modifiability of source-code. The treatments were providing participants
with source code with and without UML analysis models. The results did not reveal any effect of
using UML analysis models on understanding source code or ability to modify it. Similar to our
paper, Sharafi et al. (2013) investigated three requirements modeling notations w.r.t. requirements
comprehension. They compared Tropos diagrams, structured textual representation and mix of
two. The results showed no differences between models in the accuracy of participants’ responses,
but they revealed that participants spent significantly less time to complete the task with the
mixed model comparing to the textual and graphical models. The authors explained that the later
finding could be due to the learning effect.

2.2. Empirical Studies of Security and Safety Modeling Notations

Regarding the studies on comprehensibility in security domain, a series of controlled experi-
ments were conducted by St̊alhane et al. (St̊alhane and Sindre 2008; St̊alhane et al. 2010; St̊alhane
and Sindre 2014) to compare the effectiveness of textual and graphical notations in identifying
safety hazards during security requirements analysis. They compared textual use cases with sys-
tem sequence diagrams (St̊alhane et al. 2010; St̊alhane and Sindre 2014) and misuse case diagrams
with textual misuse cases (St̊alhane and Sindre 2008). These studies showed that the textual rep-
resentation helps the user to focus in the relevant areas and was more effective in identification
of threats related to functionalities and user behavior, whilst diagrams were more effective for
understanding system’s internal working and identifying related threats.

We found in the literature only three papers that empirically investigated the comprehensibility
of security risk models. Matulevičius (2014) studied the comprehensibility of security risk-oriented
modeling notations based on BPMN, Secure Tropos and misuse cases. These notations were ex-
tended with the concepts from the information security risk management (ISSRM) methodology
(Mayer et al. 2005). The experiment involved 28 graduate students in Computer Science and
showed that BPMN based models were the most comprehensible model over the other two, whilst
Secure Tropos and misuse case models were almost equal. A limitation of the study is that compre-
hension has been measured by simple ‘look up’ questions asking to identify elements of a particular
type in the model (e.g., “what is the security criterion?”). Managers who receive SRA models must
understand not only individual threat actors or vulnerabilities, but also the relationships between
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them. We tried to address this issue in the design of our comprehension questions (see Section 3
on p. 4).

Hogganvik and Stølen (2005) investigated the comprehensibility of UML and CORAS models
in two controlled experiments with students: they found little difference in the correctness of
participants’ responses using CORAS over UML models and it took participants less time to
answer questions with CORAS model than with UML model. However, the average time used to
complete the task was around 5 min per set of questions, while in our study the participants had
40 minutes to answer 12 questions. Further, the study tested at once correctness and execution
time and might be therefore suffer from construct validity. A more recent work (Grøndahl et al.
2011) studied the effect of textual labels and graphical icons (size, color, shape of elements) on the
comprehension of risk models. The study with 57 IT professionals and students revealed that the
participants preferred mixed models that combines textual and graphical representation over the
pure graphical representation. Unfortunately, these two studies are focused only on diagram based
notations. In our study we fixed this gap and compared UML-based and iconic CORAS notations
with tabular representation as this is widely used in security industrial practice (e.g., NIST 800-30,
ISO 27001, SESAR SecRAM, UK HMG IS1).

Our previous work (Labunets et al. 2017) studied the comprehensibility of tabular and graphical
risk modeling notations and the effect of the task complexity on the level of comprehension. In
comparison to this study we had several experiments, involved 152 MSc and BSc students as
participants, and, as in previous studies, only compared tabular and iconic graphical notations.
Tables better supported participants in extracting correct information about security risks than
diagrams. This paper addresses a limitation of that study and other previous studies that might
have played against iconic models: the presence of textual label marking elements (i.e. columns
in tables) might favor the tabular representation when looking for relationship between elements.
To validate whether such possibility is real, in this experiment we assigned a group of participants
to use a UML-like model that provides diagrams with textual labels with elements’ names. Our
findings shows that such phenomenon is present.

3. Study Context and Planning

The goal of our study is to investigate the effect of task complexity (RQ1) and notation (RQ2)
on the level of comprehension of information about security risks.

3.1. Comprehension task

The comprehension task includes questions with different levels of complexity which varies
along Wood’s theory of task complexity (Wood 1986) as adapted to the field by Labunets et al.
(2017).

The comprehension questions were designed taking into account the three main components of
Task complexity:

- Information cues (IC) describe some characteristics that help to identify the desired element
of the model. They are typically identified by a noun.

- Relationships (R) capture relations between a desired element and other elements of the
model that must be identified to find the desired element.

- Judgment acts (A) require selecting a subset of elements meeting some criteria (e.g. “better”).
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Table 1: Comprehension Questions for Graphical Risk Models
This table presents the comprehension questionnaire provided to participants of the study with a graphical risk
model. Questionnaires for Tabular and UML model where identical up to renaming of the elements. The full
permutation of combinations is not possible because one relationship requires at least one information cue to
bind one of the element of the relation (similarly for judgment acts).

Q C=IC+R+A Question statement

1 2=1 + 1 + 0 What are the consequences that can be caused for the asset “Availability of service”? Please specify the
consequences that meet the conditions.

2 2=1 + 1 + 0 Which vulnerabilities can lead to the unwanted incident “Unauthorized transaction via App”? Please
list all vulnerabilities that meet the conditions.

3 3=2 + 1 + 0 Which assets can be impacted by Hacker or System failure? Please list all unique assets that meet the
conditions.

4 3=2 + 1 + 0 Which unwanted incidents can be initiated by Cyber criminal with consequence equal to “severe”? Please
list all unwanted incidents that meet the conditions.

5 4=2 + 2 + 0 Which threat scenarios can be initiated by Cyber criminal to impact the asset “Confidentiality of cus-
tomer data”? Please list all unique threat scenarios that meet the conditions.

6 4=2 + 2 + 0 Which treatments can be used to mitigate attack paths caused by any of the vulnerabilities “Poor security
awareness” or “Lack of mechanisms for authentication of app”? Please list all unique treatments for all
attack paths caused by any of the specified vulnerabilities.

7 3=1 + 1 + 1 What is the lowest consequence that can be caused for the asset “User authenticity”? Please specify the
consequence that meet the conditions.

8 3=1 + 1 + 1 Which threats can impact assets with consequence equal to “severe” or higher? Please list all threats
that meet the conditions.

9 4=2 + 1 + 1 Which unwanted incidents can be initiated by Hacker with likelihood equal to “likely” or higher? Please
list all unwanted incidents that meet the conditions.

10 4=2 + 1 + 1 What is the lowest likelihood of the unwanted incidents that can be caused by any of the vulnerabilities
“Use of web application” or “Poor security awareness”? Please specify the lowest likelihood of the
unwanted incidents that can be initiated using any of the specified vulnerabilities.

11 5=2 + 2 + 1 Which vulnerabilities can be exploited by Hacker to initiate unwanted incidents with likelihood equal to
“likely” or higher? Please list all vulnerabilities that meet the conditions.

12 5=2 + 2 + 1 What is the lowest consequence of the unwanted incidents that can be caused by Hacker and mitigated by
treatment “Regularly inform customers of security best practices”? Please specify the lowest consequence
that meets the conditions.

We adopted Wood’s formulation of the task complexity and calculate the complexity of question
i (QCi) as follows:

QCi = |ICi|+ |Ri|+ |Ai|, (1)

where ICi is the number of information cues presented in question i, Ri is the number of relation-
ships that the participant needs to identify, and Ai is the number of judgments to be performed
over a set of elements.

As an example of computing task complexity, consider one of our comprehension questions:
(Q12) “What is the lowest consequence of the unwanted incidents that can be caused by Hacker and
mitigated by treatment “Regularly inform customers of security best practices”? Please specify the
lowest consequence that meets the conditions.” The question complexity according to formula (1)
is 2 + 2 + 1 = 5 because there are two information cues (“Regularly inform customers of security
best practices” for the element type “treatment”, and “Hacker” for the element type “threat”),
two relationships among them (A “consequence [. . . ] caused by” B and C “mitigated by” D), and
one judgment (“lowest consequence”).

Table 1 presents the comprehension questionnaire that we provided to the participants of the
study with graphical risk models. Questions for the tabular risk model are identical except for the
instantiation of the names of the elements to the textual risk modeling notation.
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Table 2: Experimental Hypotheses

Hyp Null Hypothesis Alternative Hypothesis

H1 No difference between simple and complex questions in
the level of comprehension (as measured by precision
and recall of answers) when answering comprehension
questions for all modeling notations.

The level of comprehensibility when answering simple
comprehension questions is higher than for complex
questions for all modeling notation.

H2 No difference between notations with and without tex-
tual labels in the level of comprehension when answering
comprehension questions.

The level of comprehension when answering compre-
hension questions using notations with textual labels is
higher than using notations without textual labels.

3.2. Research Hypothesis and Data Collection

From our previous study is expected that the level of participants’ comprehension of simple
questions is higher than the comprehension of complex ones and that tabular notation performs
better than the graphical notation. So, we can formulate a set of one sided alternative hypotheses
(see Table 2).

The independent variable of our study is a risk modeling notation which can be either tabular,
CORAS or UML. The dependent variable is the level of participants’ comprehension which we assess
based on participants’ responses to a set of comprehension questions about information presented
in risk models. Since we asked participants to respond questions with a subset of model’s items,
then answerm,s,q is the set of items provided in response to question q by participant s with
modeling representation m and correctq is the set of correct items which are expected for question
q. Thus, to quantitatively evaluate the responses of our participants we can use information
retrieval metrics, namely precision, recall, and their harmonic combination, the F-measure. These
metrics are widely used in the empirical software engineering literature (Agarwal et al. 1999; Hadar
et al. 2013; Scanniello et al. 2014, 2015). As our questionnaire contains more than one question
and we would like to obtain a single value of participant’s level of comprehension, we aggregate all
responses to calculate precision, recall and F-measure at the level of the individual participant:

Pm,s =

∑Nquestions
q=1 |answerm,s,q ∩ correctq|∑Nquestions

q=1 |answerm,s,q|
, (2)

Rm,s =

∑Nquestions
q=1 |answerm,s,q ∩ correctq|∑Nquestions

q=1 |correctq|
, (3)

Fm,s = 2 ∗ Pm,s ×Rm,s

Pm,s +Rm,s
. (4)

3.3. Application Scenarios

We selected the same scenario from (Labunets et al. 2017) to allow the comparison with our
previous study and to avoid introducing confounding factors: an online banking scenario developed
by our industrial partner, a large Italian corporation offering integrated services in finance and
logistics with a turnaround of around 24 billion Euro. The scenario describes the online banking
services provided through a home banking portal, a mobile application and prepaid cards. See
Giacalone et al. (2014) for a discussion of the company’s internal SRA process.

3.4. Selection of Risk Modeling Notations

There are several security risk modeling notations but to make this study fair and generalizable
we need to find tabular and graphical notations that are i) comparable and ii) representative.
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Table 3: Experimental design
Each participant was assigned to one of three groups and used a corresponding model type to complete the
comprehension task on the scenario.

Group Treatment Scenario

Group 1 Tabular Online Banking
Group 2 UML Online Banking
Group 3 CORAS Online Banking

Selected notations should cover the core concepts used by the most common international security
standards (e.g., ISO/IEC 27000 or NIST 800-30). In this regard, we chose CORAS (Lund et al.
2011) as the most comprehensive graphical notation. It provides a good coverage of the core SRA
concepts, namely asset, threat, vulnerability, risk, and security control (Fabian et al. 2010; Mayer
et al. 2005). We also considered graphical SRA methods like ISSRM (Mayer et al. 2005), Secure
Tropos (Mouratidis and Giorgini 2007), si∗ (Giorgini et al. 2005) and others. CORAS is the
only method that has a one-diagram model summarizing the SRA results, the treatment overview
diagram. It is the equivalent to the summary tables by NIST’s or ISO’s standards.

As a tabular notation we selected NIST 800-30 (Stoneburner et al. 2002) table template for
adversarial and non-adversarial risk. NIST template gives an overview of the most important SRA
elements. We consolidated in a single table also the impact, asset and security control concepts
(present in separate NIST tables) to show all relevant information at once as in CORAS.

In this study we also introduced a UML-like modeling notation. This decision is motivated by
RQ2 and aims to investigate the effect of textual labels on the actual comprehension of information
presented in risk models. This experiment was actually suggested by the reviewers of our previous
work (Labunets et al. 2017). Therefore, in collaboration with the designers of the CORAS language,
we developed another version of the graphical risk model. This modeling notation is essentially
the same as a CORAS diagram except that each iconic element of the CORAS language has been
replaced by a uniform UML-style class element and an appropriate textual label.

Figures A.3a–A.3c in the appendix show fragments of CORAS and UML treatment diagrams,
and NIST tables related to the risk of a HCN scenario that we used in previous study. Graphical
models provide a global representation of several attacks by a “threat”. Tabular model reports all
possible attacks at the cost of duplicating information for the similar attacks which differ by one
or two elements. A table only requires a simple navigation and provides look-up possibilities. The
availability of textual labels with element types offer the same look/up benefits in comparison to
having just graphical icons.

3.5. Experimental Design and Participants Recruitment

This experiment has a between-subject design where each participant has been asked to complete
comprehension task using one of three treatments: a tabular, CORAS, or UML model of security
risks. Figure 3 summarizes the experimental design of our study. The participants were randomly
distributed between the three type of treatments and worked individually. We chose this design
type to eliminate possible learning effect between each treatment and because we could not control
our participants as the experiment was conducted online. Also we wanted to limit the time a single
participant would spend on the overall experiment.

After an initial pilot with some PhD students and post-docs at the University of Trento and
the employees of Deep Blue, we sent email invitations across of network of contacts available to our
research group at the University of Trento and Deep Blue. The email explained the high level goal
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of the study, the task that the participants would be asked to do if they decide to participate, and
the reward as a 20 Euro payment via PayPal. The link from the text message led to the web site
with details about the study. Once participants clicked the “Start Experiment” button on the web
site and consented to the experiment, they were randomly redirected by our script to one of three
comprehension exercises implemented on SurveyGizmo, i.e. one task for each risk model type.

We used a three phases experimental protocol by Massacci and Paci (2012):
• Training phase: Participants answer short demographics and background questionnaire and

see a video tutorial on the assigned modeling notation and the application scenario, namely
an Online Banking scenario.
• Application phase: The participants are asked to review the risk model of the application

scenario in the assigned representation and answer 12 comprehension questions. The order
of the questions in the task is randomized for each participant. Participants are instructed
to complete the task in 40 minutes. All necessary materials (e.g., risk model, tutorial slides)
are provided at the beginning of the task. After the task completion, participants are asked
to complete a simple post-task questionnaire.
• Evaluation phase: Researchers independently check the responses of the participants and

code correct and wrong answers to each comprehension question based on the predefined list
of correct responses.

3.6. Data Analysis

To test the hypothesis H1 we can use one-sided paired t-test for normally distributed samples,
or one-sided Wilcoxon test in case our samples are not normally distributed. As we have between-
subject design with one factor and three treatments, we can use ANOVA test to validate the
hypothesis H2. However, the ANOVA test makes assumption regarding normality distribution
(checked by the Shapiro–Wilk test) and homogeneity of variance (checked by the Levene’s test)
of our samples. In case our samples do not meet these requirements we use the Kruskal–Wallis
(KW) test and a post-hoc Mann–Whitney (MW) test (possibly corrected for multiple tests with
Bonferroni method). We adopt 5% as a threshold of α (i.e. the probability of committing Type-I
error).

In case we fail to observe statistically significant difference between treatments we can test
their equivalence with TOST which initially was proposed by Schuirmann (1981) for testing the
equivalence of generic and branded drugs. The problem of the equivalence test can be formulated
as follows:

H01 : µA < µB − δ or H02 : µA > µB + δ
Ha1 : µA ≥ µB − δ and Ha2 : µA ≤ µB + δ,

(5)

where µA and µB are means of methods A and B, and δ corresponds to the range within which
we consider two methods to be equivalent. The p-value is then the maximum among p-values of
the two tests. The underlaying test for each of these two alternative hypothesis can then be any
difference tests (e.g., t-test, Wilcoxon, etc.) as appropriate.

The Food and Drug Administration (2001) recommends to use δ = [80%; 125%]. On our
bounded scale a percentage range could warrant statistical equivalence too easily when the mean
value is close to the upper bound. Therefore, we define δ using an empirical approach. Four papers
(Hadar et al. 2013; Scanniello et al. 2015, 2014; Abrahao et al. 2013) among the works discussed
in Sec. 2 reported statistics for the F-measure and their aggregated variance is σF = 0.23 and we
conservatively adopted δ = 1

2σ = ±0.12. The FDA range for the tabular notation would have been
[−0.18,+0.24] (see further Table 6).
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Table 4: The number of participants reached each experimental phase
Each column is a subset of the previous columns. We discarded one participants from tabular group and one
from CORAS group because they did not understand the task to be done.

Treatment Consented Provided Finished Total
demographics task valid

Tabular 39 30 22 21
UML 30 23 20 20
CORAS 40 29 21 20

Total 109 82 63 61

To control the effect of co-factors (e.g., working experience or level of English) on the actual
comprehension in form of F-measure we use permutation test for two-way ANOVA, which is a
suitable approach in case of violation of ANOVA’s assumptions (Kabacoff 2015) (e.g., data has
ordinal type). The post-task questionnaire is used to control for the effect of the experimental
settings and the documentation materials.

4. Study Execution

The experiment was conducted online in January-February 2016. All phases of experimental
protocol were implemented on the SurveyGizmo platform. The participants were recruited through
the mailing lists. In total, 572 participants accepted the consent form and moved to the actual
comprehension task. Table 4 summarizes the number of participants in each treatment group that
reached each experimental phase.

The completion rate is low (19%) but this is to be expected given that rewards were limited
and subjects were professionals. Indeed, it has a similar rate to another security study where
professionals were requested to code crypto API: 1571 people started the task, 660 dropped without
taking any action, eventually only 337 (21%) arrived at the end (Acar et al. 2017).

Table 5 summarizes the demographic information about our participants that completed the
task. Overall, they reported to have good general knowledge of architectural and system modeling
and competent in the areas related to security, risk assessment, and graphical modeling languages.
They also reported good competence in the application domain.

5. Addressing Threats to Validity

Construct validity. The design of our research instruments (comprehension questions, risk mod-
els) may affect the correctness of measuring the level of comprehension of information represented
in different risk models. To mitigate this threat, these instruments were designed in collaboration
with researchers from SINTEF who are the authors of CORAS notation and checked by five in-
dependent researches. The post-task questionnaire was adopted from the literature (Hadar et al.
2013; Ricca et al. 2007).

The design of comprehension questions may be a subject to bias in favor of tabular model as we
used the names of elements in the questions. To control this threat, we introduced a representation
that mixed tabular and CORAS notations, namely it provides UML-style diagrams with textual
labels for elements’ names (like tabular notation) instead of icons.

A critical problem for this experiment was encountered during its execution. Due to an im-
plementation of the task on SurveyGizmo, the statements of five questions (Q4, Q6, Q8, Q9, and
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Table 5: Demographic statistics
The participants were 61 professionals from 11 different countries with a good knowledge of English and a
significant work experience.

Variable Scale Mean/Med. Distribution

Age Years 35 (mean) 36% were 24–30 yrs old; 41% were 31–40 yrs old; 23%
were 41–62 yrs old

Gender Sex 74% male; 26% female
Education degree BSc, MSc, MBA,

PhD
11% have BSc degree; 36% MSc ; 8% MBA; 44% PhD
degree

English level A1–C2 13% intermed. B1; 20% upper B2; 30% advanced C1;
33% proficient C2; 5% native

Work experience Years 9.6 (mean) 3% did not report; 18% had 1–3 yrs; 43% had 4–7
yrs; 36% had >7 yrs

Expert in architectural and
system specification and mod-
eling

0–4 2 (median) 2% novices; 44% beginners; 23% competent users;
21% proficient users; 8% experts

Expert in sec. architecture and
tech.

0–4 3 (median) 2% novices; 23% beginners; 25% competent users;
23% proficient; 23% expert

Expert in risk assessment 0–4 3 (median) 2% novices; 15% beginners; 30% competent users;
38% proficient; 13% expert

Expert in graph. modeling lan-
guages

0–4 3 (median) 2% novices; 21% beginners; 28% competent users;
26% proficient users; 15% experts

Expert in Online Banking 0–4 3 (median) 3% novices; 21% beginners; 21% competent users;
23% proficient users; 25% experts

Q11) for graphical risk models were incorrect, namely the names of the concept elements were
taken from the tabular notation. Many participants were able to successfully provide the correct
responses to the questions as the names of concepts in tabular and graphical notations are very
close. However, we decided to discard the responses to these question for all groups. All results
and discussions reported in the paper are based on the responses to only seven unaffected questions
(Q1-Q3, Q5-7, Q10, and Q12). This issue does not affect the overall results of the study, as we
still have enough combinations, but barred a more refined analysis on which precise feature of task
complexity (information cues, relationships, and judgment acts) that is most likely to impact the
results.

Conclusion validity. We investigate possible effect of confounding factors on the results in
order to assure that the difference in results is due to the treatment. Possible interaction between
treatment and co-factors were tested by a permutation test for two-way ANOVA (Kabacoff 2015).

Internal validity. The simplicity of risk models might be threats to internal validity. The risk
models for our study were designed by experts in CORAS and represent the realistic models re-
porting SRA results. The results of post-task questionnaire (see Table 9) indicate that participants
well understood the objectives of the study and the tasks.

External validity. To make our findings generalizable we conducted the study with professionals
with an average of 9 years of working experience and built our models based on realistic scenario
provided to us by an industrial partner.

6. Results

6.1. RQ1: Task Complexity

To test our research hypothesis H1 about the effect of task complexity, we aggregate F-measure
by questions’ complexity, e.g., Fm,s,` is the precision value based on equation (4) for participant s
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Table 6: F-measure by task complexity
The difference in F-measure between simple and complex questions is small across all participants (N = 61)
for every notation. For the tabular notation complex and simple questions are statistically equivalent.

Simple Complex W TOSTW
mean med sd mean med sd p pδ=±0.12

Tabular 0.94 1.00 0.15 0.91 1.00 0.16 0.30 0.001
UML 0.84 1.00 0.29 0.78 0.86 0.23 0.18 0.29
CORAS 0.66 0.67 0.31 0.63 0.69 0.31 0.28 0.10

Table 7: Precision and recall by modeling notation
Tabular model showed better precision and recall over both UML and CORAS notation. UML showed better
precision and recall than CORAS.

Precision Recall
mean med sd mean med sd

Tabular 0.92 1.00 0.14 0.92 1.00 0.14
UML 0.83 0.91 0.17 0.77 0.83 0.21
CORAS 0.68 0.75 0.29 0.62 0.71 0.29

using risk model m over all questions q with complexity level `. Since ` = 2 is the lowest possible
level we aggregated questions as ` = 2 and ` > 2 (see complexity levels in Table 1).

Figure 1 compares the distribution of precision and recall for all questions (Figure 1a) and only
complex ones (Figure 1b), i.e. the questions with complexity level greater than two. Table A.11
in the appendix also reports precision and recall of responses for each question. If we consider
the median values of precision and recall as a quality threshold for the level of comprehension,
then 13 out of 21 participants who used tabular model were able to reach the top right corner of
comprehension plot. Most participants who used graphical model instead appears in the lower left
corner.

Table 6 presents the descriptive statistics for F-measure by questions’ complexity. The results
show that simple questions have better F-measure than complex ones. The difference in F-measure
between two complexity levels varies between 3% for CORAS and tabular models and 6% for UML
model.

The results of one-sided Wilcoxon tests did not reveal any statistically significant difference in
F-measure between simple and complex questions for all three models. The results of the TOST
with Wilcoxon test and δ = ±0.12 revealed that for tabular model the level of comprehension of
simple and complex questions is equivalent with statistical significance w.r.t. F-measure. Hence,
we can reject the alternative hypothesis H1a for the tabular notation.

6.2. RQ2: Effect of notation on comprehension

For RQ2 we report precision and recall separate as there is an important difference between
modeling notations that can be flatten once aggregated in F-measure. Table 7 presents the descrip-
tive statistics for precision and recall of responses to comprehension questions. Participants who
used tabular model showed 9% better precision and 15% better recall than participants who used
UML model and 24% better precision and 30% better recall than participants who used CORAS
model. The difference between UML and CORAS results is 15% both for precision and recall in
favor of participant who used UML.

The results of KW tests confirmed a statistically significant effect of risk model type both on
precision (KW p-value = 0.009) and recall (KW p-value = 0.0002) of participants responses. As
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Figure 1: Participants’ precision and recall by modeling notation

12



Table 8: RQ2: Summary of the findings
(a) Precision (b) Recall

Finding Statistical test results

Tabular & UML pTOSTMW
= 0.04

Tabular > CORAS pMW = 0.0009 (pKW = 0.002)

Finding Statistical test results

Tabular > UML pMW = 0.004 (pKW = 0.008)
Tabular > CORAS pMW = 1.4 · 10−5 (pKW = 6.6 · 10−5)
UML > CORAS pMW = 0.04
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Figure 2: Interaction among risk modeling notation and task complexity

MW test assumes equality of variances we used Levene’s test to check this assumption. For precision
and recall of the responses from tabular and CORAS groups and for recall of the responses from
tabular and UML groups the Levene’s test revealed that the samples do not have equal variances
and, therefore, we have to use KW test (we report the results of both MW and KW tests to
provide comparison with other findings). Table 8 summarizes the findings of a post-hoc MW test
with Bonferroni correction (α = 0.05/3 = 0.017) and TOST with MW test and δ = 0.12.

The availability of textual labels helps to give more precise responses as the results showed that
tabular and UML models are equivalent w.r.t. precision of responses whilst tabular model showed
significantly better precision than the graphical model. For recall tabular is significantly better
than the other two notations, but the difference between UML and CORAS is unclear. Thus, we
reject the null hypothesis H20 for precision, whilst the question remains open for the recall.

6.3. Interaction and co-factor analysis

Figure 2 illustrates the lack of interaction between task complexity and modeling notation. It
also illustrates that the difference between simple and complex questions is almost negligible.

We used the permutation test for two-way ANOVA to investigate the possible interaction be-
tween independent and dependent variables with several co-factors: participants’ education degree,
level of English, working experience, the level of participants’ knowledge of architectural and sys-
tem specification and modeling, security architecture and technology, risk assessment, graphical
modeling languages, online banking. There was no statistically significant interaction between risk
modeling type, dependent variables and any co-factor.
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Table 9: Post-task questionnaire results
For all modeling notations participants agreed that settings were clear, tasks were reasonable, and documenta-
tion was appropriate. Participants who used CORAS and UML models experienced problems in understanding
and answering comprehension questions due to the problem discussed in Sec. 4. Scale from 1 (strongly disagree)
to 5 (strongly agree).

Tabular UML CORAS
Q# mean med sd mean med sd mean med sd

Q1 4.48 5.00 0.93 4.20 4.50 0.95 4.15 4.50 1.09
Q2 4.19 4.00 0.81 4.00 4.00 0.65 3.65 4.00 1.18
Q3 4.57 5.00 0.60 4.05 4.00 1.05 3.85 4.00 1.04
Q4 3.90 4.00 1.00 3.35 4.00 1.18 3.30 3.50 1.13
Q5 4.14 4.00 0.85 3.45 4.00 1.10 3.15 3.00 1.04
Q6 4.33 5.00 1.20 3.75 4.00 1.16 3.50 4.00 1.15
Q7 4.33 5.00 1.20 3.75 4.00 1.16 3.50 4.00 1.15
Q8 4.57 5.00 0.81 4.30 4.00 0.57 4.10 4.00 0.72
Q9 Yes (71%) / No (29%) Yes (30%) / No (70%) Yes (70%) / No (30%)
Q10 Yes (95%) / No (5%) Yes (55%) / No (45%) Yes (75%) / No (25%)

6.4. Post-task questionnaire

We asked participants to provide their feedback on experiment execution with post-task ques-
tionnaire. Table 9 presents descriptive statistics of participants’ feedback. Responses are on a
five-item Likert scale from 1 (strongly disagree) to 5 (strongly agree).

For all three risk modeling notations participants concluded that the time allocated to complete
the task was enough (Q1). They agreed that the objectives of the study (Q2) and the task (Q3)
were clear. In general, participants found the comprehension questions to be clear (Q4) and they
did not experience difficulty in answering the comprehension questions (Q5). As expected, the
participants with a lower result comprehension were less confident in their responses to these ques-
tions (see discussion in Sec. 4). Overall, the participants did not experienced significant difficulties
in understanding (Q6) and using electronic versions (Q7) of risk model tables or diagrams. The
online survey tool was also easy to use (Q8).

7. Discussion and Conclusions

We can summarize the finding of our study as follows:
RQ1: What is the effect of task complexity on participants’ actual comprehension of informa-

tion presented in risk models?
The results of our study with professionals showed small difference (3-6%) in the F-measure of

participants’ responses to simple and complex questions with all three risk modeling notations, but
not statistically significant. For the tabular notation we could actually establish statistical equiva-
lence between the performance on complex and simple questions using a proportional equivalence
test.

RQ2: Does the availability of textual labels improve participants’ effectiveness in extracting
correct information about security risks?

Tables better support participants in recalling correct information about security risks in com-
parison to the diagrams with icon-based notation. The UML-like notation seems to be an enhanced
version of CORAS representation that helps participants to find information. Therefore, the avail-
ability of textual labels helps to elicit better responses.
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A possible explanation of the better comprehension with tables could be the ability to perform
computer-aided searches and copy&paste information from the documents to the response form.
We asked our participants whether they used these possibilities. Several participants using tables
used searching/filtering as well as copy&paste. However, most of participants who used CORAS
model also used search and copy&paste. In contrast, a third of the participants using UML model
searched information in PDF and around half of them copy&paste. Therefore, computer aided
searches cannot explain the difference in comprehensibility. A possibility could be that participants
with CORAS might search for the exact titles of elements (i.e. information cues) as they could not
map element types because CORAS used icons. In contrast, the participants with UML had the
textual labels with elements’ types, were able to locate by themselves the elements mentioned in
the question and, thus, did not need to use search. This could be the subject of an eye-tracking
experiment.

Our findings are obviously limited by the set-up of our study and there might be other graphical
notation for risk modeling that support better understanding of security risks. Previous studies
(Grøndahl et al. 2011; Hogganvik and Stølen 2005; Massacci and Paci 2012) give us some confidence
that the selected notations are the best ones available at present.

For example, there might be other feature of graphical notations that our experiment have not
captured yet. The memorization of information about security risks might be such feature: users
might not have models available at all times and it might be differences in outcomes when they
have to answers questions by recalling it from memory.

In spite of such disclaimers, a clear picture emerges from the empirical experiments from our
team and other researchers aiming to determine the empirical difference between tabular and
graphical notations. It is summarized in Table A.10 in the appendix.

At present, and in spite of the large academic research into graphical based notations for
(security, risk, and other kind of) requirements, diagrams do not actually help in term of either
design or comprehension. It is thus likely that industry will continue to use tables and text, and
rightly so.
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Threat Event Threat 
Source Vulnerabilities Impact Asset

Overall 
Likelihoo

d

Level of 
Impact Security Controls

Cyber criminal sends crafted phishing emails to HCN 
users and this leads to sniffing of user credentials.

Cyber 
criminal

1. Lack of security awareness
2. Weak authentication

Unauthorized 
access to HCN

Data 
confidentiality Very likely Severe 1. Improve security training.

2. Strengthen authentication mechanism.
Cyber criminal sends crafted phishing emails to HCN 
users and this leads to sniffing of user credentials.

Cyber 
criminal

1. Lack of security awareness
2. Weak authentication

Unauthorized 
access to HCN Privacy Very likely Severe 1. Improve security training.

2. Strengthen authentication mechanism.
Cyber criminal sends crafted phishing emails to HCN 
users and this leads to that HCN network infected by 
malware.

Cyber 
criminal Lack of security awareness Leakage of 

patient data Privacy Very 
unlikely Critical Improve security training.

Cyber criminal sends crafted phishing emails to HCN 
users and this leads to that HCN network infected by 
malware.

Cyber 
criminal Lack of security awareness Leakage of 

patient data
Data 

confidentiality
Very 

unlikely Severe Improve security training.

HCN user connects private mobile device to the 
network and this leads to that HCN network infected 
by malware.

HCN 
user

1. Insufficient security policy
2. Insufficient malware 
detection

Leakage of 
patient data Privacy Very 

unlikely Critical
1. Impose security policy on the use of mobile 
devices.
2. Implement state-of-the-art malware detection.

HCN user connects private mobile device to the 
network and this leads to that HCN network infected 
by malware.

HCN 
user

1. Insufficient security policy
2. Insufficient malware 
detection

Leakage of 
patient data

Data 
confidentiality

Very 
unlikely Severe

1. Impose security policy on the use of mobile 
devices.
2. Implement state-of-the-art malware detection.

(a) NIST table row entries

Threat
Cyber 

criminal

Threat scenario

Cyber criminal sends 
crafted phishing 

emails to HCN users

Treatment

Improve security 
training

Threat scenario

Sniffing of user 
credentials

Vulnerability

Lack of security 
awareness

Unwanted incident

Unauthorized 
access to HCN

[Likelihood: very likely]

Asset
Data 

confidentiality

Consequence

Severe

Threat

HCN user

Threat scenario Threat scenario

HCN network 
infected by 

malware

Treatment

Impose security 
policy in the use of 

mobile devices

Unwanted incident

Leakage of patient data
[Likelihood: very unlikely]

Asset

Privacy

Asset

Data 
confidentiality

Consequence

Critical

Consequence

Severe

Treatment

Strengthen 
authentication 

mechanism

Vulnerability

Insufficient malware 
detection

Vulnerability

Weak 
authentication

HCN user connects 
private mobile device 

to the network

Vulnerability

Insufficient 
security policy

Treatment

Implement state-of-
the-art malware 

detection

Consequence

Severe

(b) UML diagram

(c) CORAS diagram

Figure A.3: Fragment of a risk model in Tabular, UML-style, and CORAS notations19



Table A.11: Precision and recall by questions
The biggest difference (≥ 0.2) in precision was observed for Q1, Q7 and Q10 and in recall for Q1, Q3, Q5, Q7,
Q10 and Q12 between tabular and CORAS models in favor of the former. Between tabular and UML models
the most significant difference was observed in precision and recall of Q12 in favor of tabular notation. The
missing responses in column “#obs.” can be caused by task termination forced by SurveyGizmo due to time
limit.

Q# Comp- Tabular UML CORAS
lexity #obs. mean med. sd #obs. mean med. sd #obs. mean med. sd

Precision
Q1 2 21 0.95 1.00 0.22 20 0.80 1.00 0.41 20 0.45 0.00 0.51
Q2 4 21 0.95 1.00 0.15 20 0.90 1.00 0.26 19 0.92 1.00 0.25
Q3 2 21 0.95 1.00 0.16 20 0.97 1.00 0.15 20 0.80 1.00 0.41
Q5 6 21 0.93 1.00 0.23 18 0.88 1.00 0.29 19 0.83 1.00 0.37
Q7 4 21 0.88 1.00 0.31 20 0.75 1.00 0.44 20 0.60 1.00 0.50

Q10 4 21 0.81 1.00 0.40 19 0.68 1.00 0.45 19 0.42 0.00 0.51
Q12 6 21 0.90 1.00 0.27 19 0.68 1.00 0.48 19 0.47 0.00 0.51
Overall 147 0.94 1.00 0.22 136 0.80 1.00 0.39 136 0.69 1.00 0.46

Recall
Q1 2 21 0.95 1.00 0.22 20 0.80 1.00 0.41 20 0.45 0.00 0.51
Q2 4 21 0.95 1.00 0.15 20 0.85 1.00 0.29 19 0.79 1.00 0.30
Q3 2 21 0.98 1.00 0.11 20 0.92 1.00 0.18 20 0.75 1.00 0.41
Q5 6 21 0.90 1.00 0.26 18 0.76 1.00 0.34 19 0.67 0.75 0.40
Q7 4 21 0.90 1.00 0.30 20 0.75 1.00 0.44 20 0.60 1.00 0.50

Q10 4 21 0.81 1.00 0.40 19 0.74 1.00 0.45 19 0.42 0.00 0.51
Q12 6 21 0.90 1.00 0.30 19 0.68 1.00 0.48 19 0.47 0.00 0.51
Overall 147 0.89 1.00 0.28 136 0.73 1.00 0.38 136 0.60 0.75 0.44
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