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Migration-aware Network Services with Edge
Computing

Atri Mukhopadhyay, George Iosifidis, and Marco Ruffini

Abstract—The development of Multi-access edge computing
(MEC) has resulted from the requirement for supporting next
generation mobile services, which need high capacity, high relia-
bility and low latency. The key issue in such MEC architectures is
to decide which edge nodes will be employed for serving the needs
of the different end users. Here, we take a fresh look into this
problem by focusing on the minimization of migration events
rather than focusing on maximizing usage of resources. This
is important because service migrations can create significant
service downtime to applications that need low latency and high
reliability, in addition to increasing traffic congestion in the
underlying network. This paper introduces a priority induced
service migration minimization (PrISMM) algorithm, which aims
at minimizing service migration for both high and low priority
services, through the use of Markov decision process, learning
automata and combinatorial optimization. We carry out extensive
simulations and produce results showing its effectiveness in
reducing the mean service downtime of lower priority services
and the mean admission time of the higher priority services.

Index Terms—generalized assignment problem, learning au-
tomata, markov decision process, multi-access edge computing,
service migration.

I. INTRODUCTION

In the past few years, the emergence of revolutionary
applications has resulted in an explosive increase in the usage
of hand-held mobile devices like smartphones and tablets. On
the other hand, the unprecedented deployment of resource
constrained nodes in the form of Internet-of-Things (IoT),
have been made in order to penetrate fields like health,
transportation, industry, smart home, smart city, agriculture
and education [1]. Both of these scenarios involve enormous
volumes of raw data transfer with stringent quality of service
(QoS) requirements [2], [3].

Unfortunately, both hand-held and IoT devices have limited
processing, memory and energy resources. Therefore, the
idea of multi-access edge computing (MEC) servers situated
close to the end-users was materialised in order to process
computations and store cached content on behalf of mobile
devices [4]–[6]. MEC allows a user to offload processing tasks
to a computing facility situated at the edge of the network
[7]. The proximity between the user and the server helps
in lowering the delay of communication. Moreover, keeping
the edge servers close to the user also avoids consumption
of networking resources for transmitting the offloaded tasks
over the network [8]. As a result, MEC alleviates network
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Fig. 1: MEC Architecture with localized service area.

congestion. Note that MEC is an improvement over cloud
computing. Cloud computing could provide high performance
in converged fixed/mobile/computing architectures but at the
cost of increased latency as it hosted the server far from the
user [9]. In MEC, a task is forwarded to the remote cloud
server only if the resources available in the MEC server is not
sufficient to process the task. Fig. 1 illustrates a sample MEC
architecture, where the MEC Server is connected to a macro
base-station (BS).

A. Motivation

One of the primary challenges towards implementing an
MEC enabled network is user mobility. Since the MEC
paradigm revolves around the idea of maintaining proximity
between the MEC computing resource and the mobile user,
providing a single MEC server is not sufficient when the users
are mobile. As a result, multiple MEC servers are placed at
different locations. Therefore, when a mobile user moves from
the vicinity of one MEC server to another, the user’s service
instance is “handed-over" to the second MEC server. This
hand-over of the MEC service instance from one MEC server
to another is termed as service migration [10], [11].

In addition to mobility, service migration may also be
triggered when users with different access priority are served
by the same set of MEC servers. For example, if a MEC
server is already operating at full capacity when a high priority
user requests a service, then a lower priority user already in
service will be migrated to another MEC server in order to
accommodate the high priority user.
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Unfortunately, service migration is an expensive process.
Firstly, during service migration, the service must be tem-
porarily stopped, which results in sudden increase in latency
or even temporary suspension of the service [11]. A tempo-
rary downtime heavily degrades the performance of reliable
applications. Moreover, when the service instance is migrated
to the target MEC server, the network links are swamped
with huge volumes of information, thereby hindering other
transmissions over the network. Hence, the number of service
migrations should be minimized for efficient operation of a
network of MEC servers. However, minimizing the number of
service migrations of mobile users is a complex task because
of the randomness in user movements. Incorporating learning
based techniques helps in proactively predicting user mobility.
Nevertheless, a centralized learning approach might have a
long convergence time because of the large state-space. Hence,
distributed learning is an ideal approach in this scenario.

B. Contributions

The focal point of this study is to devise an efficient resource
allocation algorithm such that the frequency and cost of service
migrations can be minimized given an expected traffic arrival
pattern.

To that end, we propose a priority induced service mi-
gration minimization (PrISMM) algorithm where the service
migration of both the higher and lower priority services can
be minimized. In our study, the higher priority service users
are mobile and therefore, need to migrate when they wander
too far from their serving MEC server. Unfortunately, the
migration events of the higher priority services might trigger
migration of the lower priority services as well; even when
the lower priority service users are static.

Therefore, for the evaluation of PrISMM, we consider two
kinds of users; the high priority mobile users and low priority
static users. Such a combination of users/services allows us
to gauge the efficiency of PrISMM as a mobile user with
high priority services requires careful resource provisioning.
On the other hand, a low priority static user provides us
with comparative relaxation to design the system optimally.
Further, the scenario also encompasses two very important
modern day use cases; the mobile ambulance (MA) and the
static opera house (OH) users. These two use cases have
different characteristics. The MA users need to run critical
life saving services, whose functional chains run partly in the
ambulance and partly at MEC nodes. On the other hand, the
OH service is based on the support for multi-media services
running in an Opera House, where, for example, users might
avail instant and synchronised audio translation, subtitle or
other experience enhancing applications. We consider that both
user types have real-time service requirements and therefore,
minimizing service delay is essential.

Please note that, one might consider a dedicated system for
the critical MA users in order to guarantee resource availability
to the MA users. However, as in any operational network
system, the MA users’ service load will exhibit temporal
variation. Therefore, a dedicated system exclusively designed
for the MA users will have low utilisation. Hence, in order

to increase system utilisation, the system resources might be
allotted to multiple classes of users subject to the condition that
the service quality of the MA users is not hampered. In such a
scenario, slicing can be employed. However, even with slicing,
the system eventually has to distribute resources among slices.
Thus, the trade-off of service guarantee and system utilisation
is a major concern that needs to be solved. Hence, we carefully
design the PrISMM algorithm by keeping this delicate balance
in mind.

The contributions of the paper are summarised as follows:
• We have employed a next generation passive optical net-

work (PON) backhaul to provide connectivity among the
MEC servers. Thereafter, we have included the impact of
PON imposed delay in the allocation criteria of PrISMM.

• We have proposed a Markov decision process (MDP) [12]
based resource allocation procedure for the high priority
MA users with the target of minimizing service migration
throughout the journey of the ambulance from its point of
origination to the destination hospital. We utilise the al-
ready available knowledge about the destination hospital
of the MA for designing the MDP parameters.

• We have engineered a learning automata (LA) [13]
module in each of the MEC servers that identifies the fre-
quency and volume of resource requests coming towards
it from the high priority MA users. After identifying the
resource requirements for the MA users, the LA module
optimally reserves sufficient resources for the MA users.

• We have formulated a generalized assignment program
(GAP) [14] based allocation methodology for the low
priority OH users in the available server resources that
are left after proactively reserving enough resources for
the incoming MA users by the LA module.

Thus, PrISMM avoids unnecessary migration of the lower
priority services. It may be noted that reserving resources for
high priority services reduces the utilisation of the system.
However, the LA based determination of reservation strives to
enhance the utilisation of the system by optimally reserving the
resources. Finally, in order to optimize service migration time,
we assume that the system utilises the three-layer framework
augmented service migration flow [10].

The remaining part of the paper is organized as follows.
Section II presents the literature survey. In Section III, the
system model is discussed. Section IV elaborates the proposed
priority induced service migration minimization algorithm. We
provide the simulation setup and the results in Section V,
followed by the conclusion.

II. RELATED WORK

In this section, we briefly report on the existing literature
on service migration in MEC. The authors of [10] provide
an excellent survey on service migration. The main target of
service migration research, according to the majority of the
literature, focuses on the balance between the cost of service
migration and the QoS enhancement achieved after carrying
out the migration procedure. Such a problem can be solved
by formulating a Markov decision process (MDP) [15]–[17].

In [15] and [16], the movement of the user has been modeled
as a one-dimensional MDP where the states of the MDP
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corresponds to the distance of the agents from the serving
MEC servers. The available set of actions in a given state are
to either continue with the same MEC server or else migrate
to one that can offer better performance. However, modeling
the mobility of the user as a one-dimensional MDP requires
making a large amount of simplifying abstractions, making the
model not useful in practical situations.

The problem associated with abstraction in one-dimensional
MDP was addressed by formulation of the user movement as
two-dimensional MDP [18], [19]. However, two-dimensional
MDP suffers from the state explosion problem. This was
addressed through state aggregation by the authors in [20] and
[21]. Unfortunately, a two-dimensional MDP is also compu-
tationally more complex compared to one-dimensional MDP.
However, the authors of [17] provide an analytical model for
one dimensional user mobility and a close approximation for
two dimensional user mobility.

Another approach towards service migration is based on
time windowing [22], where the objective is to minimize the
average cost over a look-ahead time window. Unfortunately,
the predictive look-ahead time-window based approach is
prone to prediction errors if the look-ahead time-window
is large. Conversely, a very small look-ahead time-window
makes the approach ineffective. Therefore, the time-window
approach is sensitive to the determination of the window-
size, which in turn depends on several other factors. Thus,
the time-window based approach can lead to low accuracy.
"Follow me edge" is yet another idea that can initiate service
migrations [6], [23], [24]. It employs a MDP based process
for performing service migrations [15]. On the other hand, we
find a Lyapunov optimization based service migration proposal
in [24]. The authors of [25] propose a learning and Lyapunov
optimization based service migration algorithm with the target
of developing an energy-aware service migration algorithm.
Similarly, [26], discusses a multi-attribute decision making
algorithm that aids mobility based service migration.

Our work differentiates from the literature, where service
migration is caused mostly by user mobility. We target to
minimize service migration induced by both user mobility and
the arrival of higher priority services. The service migration
of lower priority services induced by the arrival of higher
priority services can only be minimized with careful and
proactive reservation of resources for the yet to be arriving
higher priority services. To the best of our knowledge, the
literature deals with mobility based migration of a single type
of service and does not delve into a situation that incorporates
two services of varying priority. Hence, a comprehensive
protocol for performing service migration in a situation where
multiple services with varying priority co-exists is absent in
the literature. We believe that our PrISMM proposal can fill
these gaps.

III. SYSTEM MODEL

In this section, we describe the system model which forms
the premise for our proposal.

Fig. 2: System Model showing multiple MEC systems con-
nected to a controller node with the help of a PON

A. Backhaul Network

The MEC servers are placed in the macro BSs. We consider
multiple passive optical networks (PONs) [27] emanating from
a controller node for providing connection to a city-wide
network of MEC servers, illustrated in Fig. 2. A group of MEC
servers form a MEC system. In Fig. 2, we have shown four
MEC systems. We assume that a controller node is situated
at the center of the city. To be more specific, we use the
10-Gigabit-capable symmetric passive optical network (XGS-
PON) version of PON [28]. XGS-PON provides a data rate of
10 Gbps (with a nominal line rate of 9.95328 Gbps) in both
downlink and uplink. The controller node is assumed to be co-
located with the optical line terminal (OLT) of the PON. On
the other hand, the MEC servers are directly connected with
the optical network units (ONUs) of the PON. The controller
node is responsible for providing allocation information to all
the MEC servers. It also supervises the service migrations.
The MEC servers are interconnected to each other via the
controller node.

It is worth mentioning that a single controller node might
become a bottle-neck. Hence, a second-tier controller node
might be installed in each of the MEC systems. The second-
tier controller would be responsible for the allocations in its re-
spective MEC system, whereas inter-MEC system allocations
will be taken care by the central controller. Unfortunately, such
a design might reduce the optimality of the solution as each
second-tier controller will have the information about its MEC
system only. Further, as we assume that the central controller
node is co-located with the OLT, the controller node has very
high operational capacity. Therefore, for the sake of optimality,
we go ahead with a single central controller node controlling
all the MEC server allocation in a city.

We opt for PONs as they provide a low cost architecture
that can supply ubiquitous connectivity while enabling resilient
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operations [29], [30]. Further, a PON can serve residential
broadband as well as mobile BSs at the same time [31].
Recently, for example, PON virtualisation techniques have
been proposed to support multi-service and multi-tenant op-
erations [32]. Such advantages make PONs an economically
sustainable choice for building the backhaul network for the
MEC servers. As per normal practice, we have connected 16
ONUs per PON [27] and the ONUs support both residential
broadband and mobile BSs. The controller node has multiple
line cards. Every single line card can serve as a OLT.

However, the background traffic present in the PON sig-
nificantly affects the placement and network latencies of the
requested services. The uplink protocol of the PON and
buffer capacities of the ONUs also influence the operational
delays. We need to consider these factors while allocating the
requesting services in the MEC servers.

B. User Traffic Model and User Location

We introduce the MA users into the system with an average
arrival rate of 𝜆𝑀𝐴 users/second and an average holding time
of 𝐻𝑀𝐴 seconds. Similarly for the OH users, we assume
an average arrival rate of 𝜆𝑂𝐻 users/second and an average
call holding time of 𝐻𝑂𝐻 seconds1. Since, the OH users are
associated with an on-going Opera show, we assume OH users
arrive and depart in groups. Therefore, for determining the
group size, we use a Poisson mean of Λ𝑂𝐻 .

The locations of both the MA and the OH users are chosen
randomly in the map by using a uniform distribution. The des-
tination hospital of an incoming MA user is chosen uniformly
from the set of available hospitals. The chosen destination
hospital sets the path taken by the ambulance over the map.
We assume that a straight path is taken from the starting point
to the destination hospital and the time of journey is specified
by the average holding time of the ambulance.

C. Servers

We presume that the servers have equal processing ca-
pabilities in all their processing units, i.e., no service unit
is preferred over another service unit for their processing
capacity. However, we assume the OH user application prefers
the use of servers in its vicinity and such preference decreases
linearly with the increase in communication delay between the
OH user and the MEC server.

D. Transmission Latencies

We derive the average delay suffered by an incoming
service from the delay vs load curve of a XGS-PON (see
Fig. 3). When the new service request arrives, we identify
the average background traffic load on the PON and based
on that, we determine the average traffic transmission delay in
the PON uplink. Thereafter, we calculate the end-to-end delays
after considering the connections from our system topology.
However, if the serving MEC server is directly connected to
the connecting macro BS, then the service connectivity does

1In both the cases, the arrival rate is derived from Poisson distribution and
the holding time is derived from the exponential distribution.
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Fig. 3: GPON Delay

not traverse through the PON and hence, the PON load does
not influence the delay for this kind of connections. On the
other hand, if the serving MEC server is connected to another
macro BS, then the connection path must traverse through the
controller node (which houses the OLTs of the PONs). As a
result, the connection suffers from the delay induced by the
background traffic on the PONs.

• Transmission latency to server 𝑠 ∈ 𝑆 (𝑑𝑡𝑠)
• Transmission latency to server 𝑠 ∈ 𝑆 at journey start

(𝑑𝑠𝑡𝑎𝑟𝑡𝑡𝑠 )
• Transmission latency to server 𝑠 ∈ 𝑆 at journey end

(𝑑𝑒𝑛𝑑𝑡𝑠 )
Please note that we have used the average delay for the end-
to-end delay calculations as the arriving service is expected
to stay in the system for a substantially long interval of time
(tens of seconds to minutes) and therefore, the instantaneous
delay values may become outdated after a short interval (a few
seconds).

E. Service Migration Messages

We adopt the message exchange procedure for service
migration from [33]. Service migration finishes with the actual
exchange of the service instance from the serving MEC
server to the destination MEC server. However, prior to that,
control messages like decision request, decision response,
measurement request, measurement response, service hand
over command are exchanged [33].

Further, in our model, the MEC servers are connected to
the controller node via a PON. Therefore, the MEC servers are
essentially ONUs and the controller node is an OLT. Therefore,
the PON control messages like GRANT and REPORT are also
exchanged between the MEC servers and the controller node
while performing service migration. These messages are used
for dynamic bandwidth allocation in the PON uplink [27].

IV. PRIORITY INDUCED SERVICE MIGRATION
MINIMIZATION

In this section, we describe our proposal, the PrISMM
algorithm. For the MA application, we assume the final desti-
nations of the users to be the hospitals. So, the destinations of
the MA users are precisely known at the time of generation
of their service requests. Hence, it becomes apparent that if
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Fig. 4: A Random MA User MEC Scenario in an Arbitrary
Network Topology where the MA user is allocated to the
optimal MEC server situated in the MA user’s path while
meeting the delay requirements of the services.

we try to serve the MA users by the nearest situated MEC
server, we will finally be migrating to the MEC servers situated
close to the hospitals, when the MA users near their journey
completion. For example, in Fig. 4, the final serving MEC
server for the ambulance will be MEC server 1, near the
hospital. Hence, if we initially allocate the ambulance service
to MEC server 6, there can be a mobility based migration as
the ambulance moves towards the hospital. On the other hand,
a MEC server resource near the destination hospital may be too
far from the ambulance’s current location for meeting the MA
user’s delay requirements; thus making it unsuitable (MEC
server 1 in Fig. 4). Therefore, the best candidate MEC server
will be a server which is located somewhere in the route of
the ambulance so that mobility based service migration can be
minimized (and if possible eliminated) (MEC server 4 in Fig.
4). The allocation must consider the network link and traffic
dynamics in order to be optimal.

Therefore, once we identify the candidate MEC servers
that are suitable for executing the service requests from the
MA users, we can proceed with the allocation of the lower
priority OH users service requests in such a way that enough
MEC server resources are reserved for the MA users. Thus,
the problem of allocating the OH users is equivalent to a
GAP, where we want to allocate the service requests from OH
users to the MEC servers with varying resource availability.
However, we need to keep in mind that we are dealing with
variable service request arrivals from the MA users, both
in terms of arriving instant and origination position. Hence,
the number of server units that need to be reserved for the
MA users is dynamic. Hence, we employ LA to determine
the precise quantity of server resource units that need to be
reserved for the MA users depending upon the load imposed
on the system by the MA user service requests. We proceed to

elaborate on the main components of PrISMM in the following
sub-sections. Finally, we summarize PrISMM in Section IV-D.

A. Markov Decision Process based Allocation of the MA users

Allocating the MA users is of primary importance as it
serves the life critical applications. Therefore, utmost care is
taken to allocate the MA services in such a way that the
network provides optimal service to the MA users and at
the same time provides acceptable services to the other users.
Therefore, we need an optimization technique to come up with
the allocation of the MA users. However, the network intro-
duces variable delays due to background traffic and therefore a
stochastic optimization technique is required for the purpose.
MDP is a stochastic optimization technique that perfectly suits
our purpose [12].

Hence, in this section, we explain the MDP based approach
that is being employed to allocate resources to the MA users.
When an MA user requests a service, we already have the
knowledge of its destination as it will be moving towards a
specific hospital as illustrated in Fig. 4. Once the start and
destination of the MA user is known, an MDP can be designed
after looking into the current link and MEC server occupancies
throughout the network. Please note that a separate MDP is
designed exclusively for a MA user, which means allocation
of one MA user is independent of another MA user. Since
our primary target is to minimize the occurrence of service
migrations, we design the rewards for the MDP by including
the service migration penalty. Thus, we can choose the MEC
servers that are located in places that may reduce the possi-
bility of mobility-based service migration of the MA users.
This approach indirectly reduces the priority induced service
migration of the lower priority services as relocation of MA
users are carried out less frequently.

In the example network, depicted in Fig. 4, the MDP will
choose MEC server 2 or MEC server 4 over the other MEC
servers as the other MEC servers will either fail to meet the
delay requirements or will not be able to support the ambu-
lance throughout its journey. We next describe the different
components of the MDP. Fig. 5 illustrates an example MDP
with two states (servers in the MEC system). Once, a MA user
arrives into the system, the MDP is executed to identify the
optimum MEC server that can host the MA function. In case
that no suitable MEC server is found, the termination state (𝑠𝑡 )
is reached and the MA user exits the system. Whenever a radio
handover between the BSs takes place, the MDP moves to a
new time-step. For greater precision, MDP can be re-evaluated
when a radio hand over is encountered.

1) Inputs: We list the known inputs along with the symbol
used to define them while designing the MDP in Table I.

2) States: In our MDP design, we map the servers to the
states. For example, MEC server 0 is mapped to state 0, MEC
server 1 is mapped to state 1 and so on. Thereafter, since each
MA user has a distinct MDP, we define the current serving
server of the MA user as the current state of the MDP. For
example, if server 𝑠 ∈ 𝑆 is currently serving the MA user,
the process corresponding to MA user 𝑖 is said to be in State
𝑠. We define one initialisation (𝑠𝑜) state and a termination
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TABLE I: Summary of Notations used in MDP

Symbol Input Description
𝐷𝑇ℎ Delay Threshold for service
𝑆 Set of states
𝑑𝑡𝑠 Transmission latency to server 𝑠 ∈ 𝑆

𝑑𝑠𝑡𝑎𝑟𝑡
𝑡𝑠 Transmission latency to server 𝑠 ∈ 𝑆 at journey start

𝑑𝑒𝑛𝑑
𝑡𝑠 Transmission latency to server 𝑠 ∈ 𝑆 at journey end

𝑑𝑝𝑠 Processing latency in server 𝑠 ∈ 𝑆

𝑆𝑐𝑎𝑝,𝑠 Capacity of Server (𝑠 ∈ 𝑆)
𝑆𝑟𝑒𝑚
𝑐𝑎𝑝,𝑠 Remaining Capacity in Server (𝑠 ∈ 𝑆)

𝑀𝑐 Migration Cost for service
𝑎𝑠 The action taken with the intention of reaching

state 𝑠 ∈ 𝑆

𝑇 (𝑠, 𝑎𝑠′ , 𝑠′) Transition probability of reaching state 𝑠′ ∈ 𝑆 from
state 𝑠 ∈ 𝑆 by taking action 𝑎𝑠′

𝑃 (𝑠′ |𝑠, 𝑎𝑠′ ) Same as 𝑇 (𝑠, 𝑎𝑠′ , 𝑠′)
𝑅 (𝑠, 𝑎𝑠′ , 𝑠′) Reward obtained on reaching State 𝑠′ ∈ 𝑆 from state

𝑠 ∈ 𝑆 by taking action 𝑎𝑠′

Fig. 5: An Example MDP with two States (Servers).

state (𝑠𝑡 ) to complete the MDP. The process is in initialisation
state when the MA user initially requests for service from the
MEC system. Similarly, when the MA user leaves the system,
the process corresponding to that specific user reaches the
termination state and the MDP terminates. The termination
state may be reached for the following reasons:

1) The MA user cannot be accommodated in the system.
In this case, the process moves directly from the initial-
isation state (𝑠𝑜) to the termination state (𝑠𝑡 ).

2) The migrated MA user may not be accommodated and
the original servicing MEC server can no longer satisfy
the delay criteria.

3) The MA user has reached its destination.
3) Actions: The actions define the decisions that the system

must take w.r.t a MA user whenever a decision taking instant
(i.e., a radio handover) is encountered. The actions that can
be taken are defined as follows:

1) From the initialisation state – The possible decisions
are allocation of the MA user to a specific MEC server
(𝑠 ∈ 𝑆) or dropping the user. The allocation of the user to
a certain server (𝑠) corresponds to the process reaching
a state (𝑠 ∈ 𝑆) and the action that is responsible for the
allocation is denoted as 𝑎𝑠 . On the other hand, if the

system decides to drop the user, it takes the action 𝑎𝑠𝑡 .
Thus, reaching the termination state (𝑠𝑡 ) means that the
MA user was denied service by the system.

2) From the termination state – The process reaches its end
and is removed.

3) From any other state (𝑠 ∈ 𝑆) – The possible actions
involve performing a service migration or not. If a
service migration is performed from server (𝑠 ∈ 𝑆)
to server (𝑠′ ∈ 𝑆) by taking the action 𝑎𝑠′ , then the
process moves to state (𝑠′ ∈ 𝑆) from state (𝑠 ∈ 𝑆).
However, if service migration is not performed then the
MDP remains in the current state (𝑠). Another instance
may occur when the MA user cannot be migrated to any
server (𝑠′) or the user reaches the destination. In such
a situation, the process moves to the termination state.

In Fig.5, we have illustrated the how MDP moves from one
state to another as and when the appropriate actions are taken.
For example, the MDP proceeds to move from state 𝑠1 to state
𝑠2 when the action 𝑎𝑠2 is taken.

4) Rewards: The rewards (and/or penalties) are always
dependent upon the destination state (𝑠′ ∈ 𝑆). In such a way, it
also corresponds to the action as a certain action (𝑎𝑠′ ∈ 𝐴𝑠) at
state (𝑠 ∈ 𝑆) is mapped to a certain destination state (𝑠′ ∈ 𝑆).

The three different cases of reward calculation are:
1) The delay requirement of a certain MA user can be sat-

isfied by the MEC server (𝑠′ ∈ 𝑆) both at the MA user’s
current and final position - Only the costs pertaining
to network delay and server capacity is considered [see
(1)]. The delay metric is evaluated in order to minimize
the data transmission delay. On the other hand the
service capacity metric employs load balancing as the
lightly loaded MEC servers are given more weightage.
Since, the user can be served by the MEC server 𝑠′

throughout the journey, migration cost is not considered
for MEC server 𝑠′. Both these metrics fall in the interval
[0, 1]. Therefore their sum lies in the interval [0, 2].

2) The MEC server (𝑠′ ∈ 𝑆) can satisfy the delay re-
quirement of the MA user at the MA user’s current
location but not at the final destination - In addition to
the metrics given in the previous case, the cost incurred
due to service migration is also included in the reward
calculation. Here, we include the migration cost in the
reward because if the user is allocated to MEC server
𝑠′, a service migration would become inevitable at some
point of the journey. We have included a fixed Migration
cost (𝑀𝑐 = 1) as all the MEC servers are connected via
the same OLT/controller node. Therefore, the cost of
migration remains same irrespective of the current and
destination MEC server. Since, the other two metrics
normalised to lie within a fixed interval [0, 1], setting a
fixed value of 𝑀𝑐 = 1 gives an equal weightage to the
migration cost as well.

3) The MEC server (𝑠′ ∈ 𝑆) cannot meet the delay
requirement of the MA user at the MA user’s current
location - In this case, the given MEC server 𝑠′ is
not a suitable choice for allocating an user. Therefore,
a large penalty is introduced so that the chances of
allocation to that MEC server can be minimized. Please
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note that we have used -10 in (1); however, any large
value for indicating a large penalty, which is larger than
migration cost, will be sufficient for the algorithm to
operate efficiently.

We present the rewards mathematically in (1). Note that all
the values are normalized.

𝑅(𝑠, 𝑎𝑠′ , 𝑠′) =



(
1 − 𝑑𝑠𝑡𝑎𝑟𝑡

𝑡𝑠′
𝐷𝑇ℎ

)
+ 𝑆𝑟𝑒𝑚

𝑐𝑎𝑝,𝑠

𝑆𝑐𝑎𝑝,𝑠
, if 𝑑𝑠𝑡𝑎𝑟𝑡

𝑡𝑠′ < 𝐷𝑇ℎ

& 𝑑𝑒𝑛𝑑
𝑡𝑠′ < 𝐷𝑇ℎ(

1 − 𝑑𝑠𝑡𝑎𝑟𝑡
𝑡𝑠′
𝐷𝑇ℎ

)
+ 𝑆𝑟𝑒𝑚

𝑐𝑎𝑝,𝑠

𝑆𝑐𝑎𝑝,𝑠
− 𝑀𝑐, if 𝑑𝑠𝑡𝑎𝑟𝑡

𝑡𝑠′ < 𝐷𝑇ℎ

& 𝑑𝑒𝑛𝑑
𝑡𝑠′ > 𝐷𝑇ℎ

−10, otherwise
(1)

It is worth mentioning that another alternative approach for
minimizing overall delay could be reducing the processing
delay by increasing the service capacity of the server in
question. However, even though this can be a temporary
solution, as the MA users moves further and further away from
the current server, the routing delay increases and eventually,
the service migration becomes essential. Further, a service may
not allow multiple threads and as a result, parallel processing
might not be possible. In such a situation, increasing the
service capacity is of no effect. Hence, we design the rewards
in such a way that network delay is considered while assuming
that the service capacity is fixed. However, we also strive to
perform load balancing and therefore, include the remaining
service capacity term in the reward calculations.

5) Transition Probability: The transition probability
𝑇 (𝑠, 𝑎𝑠′ , 𝑠′) [also written as 𝑃(𝑠′ |𝑠, 𝑎𝑠′)] defines the chances
of reaching state 𝑠′ ∈ 𝑆 from state 𝑠 ∈ 𝑆 after taking action
𝑎𝑠′ ∈ 𝐴𝑠 . The transition probabilities are modelled according
to (2) and a pictorial representation of the state transitions
along with the transition probabilities can be seen in Fig. 5,
which models a two MEC server system.

𝑇 (𝑠, 𝑎𝑠 , 𝑠) = 1, 𝑠 ∈ 𝑆 (2a)
𝑇 (𝑠, 𝑎𝑠′ , 𝑠′) = 𝑝, 𝑠 ∉ {𝑠𝑡 }, 𝑠′ ∉ {𝑠𝑜, 𝑠𝑡 } (2b)
𝑇 (𝑠, 𝑎𝑠′ , 𝑠) = (1 − 𝑝), 𝑠 ∉ {𝑠𝑜}, 𝑠′ ∉ {𝑠𝑜, 𝑠𝑡 } (2c)
𝑇 (𝑠, 𝑎𝑠′ , 𝑠𝑡 ) = (1 − 𝑝), 𝑠 ∈ {𝑠𝑜}, 𝑠′ ∉ {𝑠𝑜, 𝑠𝑡 } (2d)
𝑇 (𝑠, 𝑎𝑠′ , 𝑠′) = 1, 𝑠 ∈ 𝑆, 𝑠′ ∈ {𝑠𝑡 } (2e)

The rules have been designed such that an action taken with
the intention of self transition has a probability equal to one
(𝑝 = 1) for all states as shown in (2a). Equation (2b) shows
that there is a probability 𝑝 that a transition from state 𝑠 to
state 𝑠′ may be successful. Otherwise, the transition does not
take place with probability (1−𝑝) and the agent remains in the
same state 𝑠 as illustrated in (2c). However, if the transition
to state 𝑠′ fails from the initialisation state (𝑠𝑜), the MDP
goes to the termination state (𝑠𝑡 ) as depicted by (2d). Finally,
action taken with the desire of going to the termination state
is always successful as per (2e). Thus, 𝑇 (𝑠, 𝑎𝑠′ , 𝑠′) models the
physical phenomenon of uncertainty in service migration.

TABLE II: Summary of Notations used in Learning Automata

Symbol Input Description
𝐶𝑎𝑐𝑡 Actual capacity of the individual servers
𝐶 𝑗 Virtual capacity of server 𝑗

𝐴𝑠 Set of available actions
𝑝𝑠,𝑎 (𝑡) Probability of choosing action 𝑎 while in state 𝑠 at time

instant 𝑡
𝛽 Variable to capture outcome of an action
𝑅 Reward
𝑃 Penalty

6) Solving the MDP – Value Iteration: The optimum so-
lution of the MDP is evaluated using the value iteration
approach. We employ the Bellman Equation shown in (3) for
evaluating the optimum policy 𝜋 [34].

𝑉𝑖+1 (𝑠) = max
𝑎

∑︁
𝑠′

𝑇 (𝑠, 𝑎, 𝑠′) [𝑅(𝑠, 𝑎, 𝑠′) +𝑉𝑖 (𝑠′)] (3)

where, 𝑠 ∈ 𝑆 is the current state (MEC), 𝑠′ ∈ 𝑆 is the target
state, 𝑎 ∈ 𝐴𝑠 is the action that is to be chosen when at state
𝑠, 𝑉𝑖 (𝑠) is the value obtained for state 𝑠 ∈ 𝑆 at iteration 𝑖,
𝑇 (𝑠, 𝑎, 𝑠′) is the transition probability from state 𝑠 ∈ 𝑆 to state
𝑠′ ∈ 𝑆 by taking action 𝑎, and 𝑅(𝑠, 𝑎, 𝑠′) denotes the reward
obtained by moving from state 𝑠 ∈ 𝑆 to state 𝑠′ ∈ 𝑆 by taking
action 𝑎. During initialisation of the algorithm, the values are
set to zero [𝑉0 (𝑠) = 0, ∀ 𝑠 ∈ 𝑆]. Here “Iteration” denotes
the steps of optimum policy calculation with the available
information.

B. Learning Automata (LA) based Virtual Capacity Determi-
nation

In this sub-section, we explain the learning algorithm em-
ployed to reserve service units for the MA users. The actions
taken by the learning algorithm is equated to the “virtual
capacities” (𝐶 𝑗 ) for MEC server 𝑗 that will be described in
Section IV-C. In our scenario, the arrivals rates of both the MA
and the OH users are derived from the Poisson distribution
as we have described in Section III-B. Similarly, the holding
times of both the MA and the OH users are derived from
the exponential distribution. Therefore, a stochastic learning
technique is desirable in such a situation. LA, which learns
the optimal action through repeated interactions with its envi-
ronment, is a perfect candidate for our algorithm design [13],
[35]. Further, LA being a distributed learning algorithm, it
can be independently executed in each MEC server. Thus, the
work-load on the central node can also be reduced in such a
manner.

The objective of LA is to find the optimum action that
needs to be taken when the learning entity (MEC server in
our case) is in a particular state. We have defined a single
state because the current server occupancy does not alter the
requirement of the number of server units that need to be
reserved for the MA services. The algorithm is initiated by
giving equal probabilities for choosing all the available actions
in a particular state as shown in (4).

𝑝𝑠,𝑎 =
1

|𝐴𝑠 |
,∀𝑎 ∈ 𝐴𝑠 , 𝑠 ∈ 𝑆 (4)
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where, 𝑝𝑠,𝑎 is the probability of choosing action 𝑎 while being
in state 𝑠. |𝐴𝑠 | is the number of available actions in the state
𝑠.

During the learning procedure, the learning agent observes
the outcome of the chosen action and updates 𝑝𝑠,𝑎 accordingly.
If the outcome (𝛽) of the action (𝑎) chosen at time instant (𝑡)
is beneficial (i.e., 𝛽 = 0) to the learning agent, the probability
of choosing action (𝑎) at time instant (𝑡+1) is increased, while
the probabilities of choosing all other actions are reduced
(since, we want to repeat this beneficial action in the future).
If the outcome is detrimental (i.e., 𝛽 = 1), then the probability
of choosing action (𝑎) is reduced while the probabilities of
choosing all other actions are enhanced (since, we want to
avoid this detrimental action in the future). The probability
updates are summarized in (5).

If 𝛽 = 0:
𝑝𝑠,𝑎 (𝑡 + 1) = 𝑝𝑠,𝑎 (𝑡) + 𝑅[1 − 𝑝𝑠,𝑎 (𝑡)],
𝑝𝑠, 𝑗 (𝑡 + 1) = (1 − 𝑅)𝑝𝑠, 𝑗 (𝑡),∀ 𝑗 ≠ 𝑎

If 𝛽 = 1:
𝑝𝑠,𝑎 (𝑡 + 1) = (1 − 𝑃)𝑝𝑠,𝑎 (𝑡),

𝑝𝑠, 𝑗 (𝑡 + 1) = 𝑃

1 − |𝐴𝑠 |
+ (1 − 𝑃)𝑝𝑠, 𝑗 (𝑡),∀ 𝑗 ≠ 𝑎

(5)

where, 𝑝𝑠,𝑎 (𝑡) is the probability of choosing action (𝑎) at time
instant (𝑡) while being in state (𝑠), 𝑅 is the reward and 𝑃 is
the penalty. Note that the reward mentioned for the MDP in
Section IV-A is not related to the reward mentioned in this
section.

The set of available actions is given by the set
{0, 1, 2, ..., 𝐶𝑎𝑐𝑡 }, where 𝐶𝑎𝑐𝑡 is the actual service capacity of
the MEC server. The chosen action is the “virtual capacity”
value that is fed to the GAP module described in Section IV-C.

1) Calculation of Rewards: In PrISMM, the chosen ac-
tion (𝑎) is considered beneficial if all the services that are
requesting server resources are successfully allocated (both
MA and OH services). Further, PrISMM also strives for
the maximum utilisation of resources. Therefore, whenever a
certain action (𝑎), i.e., the chosen virtual capacity, provides
beneficial results, the reward 𝑅 is made equal to the virtual
capacity chosen. As an example, if the virtual capacity (action)
was chosen to be 20 and all the services were allocated, then
the reward is also set to be 20. Setting such a reward criteria
makes PrISMM inclined towards choosing the highest virtual
capacity values that provide successful allocation. However,
as we are dealing with probability values, for the reward to
be usable in (5), we need to normalize the value of 𝑅. The
minimum and maximum values that 𝑅 can achieve are 0 and
𝐶𝑎𝑐𝑡 respectively. Therefore, we normalize 𝑅 by (6).

𝑅𝑛𝑜𝑟𝑚 =
𝑅 − 𝑅𝑚𝑖𝑛

𝑅𝑚𝑎𝑥 − 𝑅𝑚𝑖𝑛

(6)

where, 𝑅𝑛𝑜𝑟𝑚 is the normalized value of 𝑅, 𝑅𝑚𝑖𝑛 and 𝑅𝑚𝑎𝑥

are the minimum and maximum values that 𝑅 can attain
respectively.

2) Calculation of Penalties: Similar to the method used
for calculation of rewards for favoring higher virtual capacity
values, PrISMM generates a penalty 𝑃 when the chosen virtual

capacity forces dropping of service requests or priority induced
service migrations. Again, higher virtual capacity selection is
always favored in order to maximize the utilisation of the
system. We design the penalty by setting (𝑃 = 𝑎 − 𝐶𝑎𝑐𝑡 ),
where 𝑎 was the last virtual capacity (action) chosen and 𝐶𝑎𝑐𝑡

is the service capacity of the server. For example, if the virtual
capacity (action) was chosen to be 20 and the service capacity
is equal to 50, then the penalty will be set to (𝑃 = 20 − 50).
Thus, the lower the value of the chosen action, the higher will
be the penalty in case of a failure. Similar to the normalization
of the reward 𝑅, the penalty 𝑃 also needs to be normalized.
The minimum and maximum values that 𝑃 can achieve are
−𝐶𝑎𝑐𝑡 and 0 respectively.

C. Generalized Assignment based Allocation of the Lower
Priority Services

In this sub-section, we formulate an integer linear program-
ming (ILP) based approach for allocating the service requests
arriving from the OH users. If there are 𝑀 servers and 𝑁

services are to be allocated at a time instant, the ILP can be
formulated as -

maximize
𝑁∑︁
𝑖=1

𝑀∑︁
𝑗=1

𝛼𝑖, 𝑗 𝜌𝑖, 𝑗 (7a)

subject to
𝑁∑︁
𝑖=1

𝛼𝑖, 𝑗𝑤𝑖 ⩽ 𝐶 𝑗 , 𝑗 = 1, ..., 𝑀 (7b)

𝑀∑︁
𝑗=1

𝛼𝑖, 𝑗 ⩽ 1, 𝑖 = 1, ..., 𝑁 (7c)

𝛼𝑖, 𝑗 ∈ {0, 1}, 𝑖 = 1, ..., 𝑁, 𝑗 = 1, ..., 𝑀 (7d)

where, 𝛼𝑖, 𝑗 is a binary variable which is equal to 1 if service
𝑖 is allocated to server 𝑗 . Otherwise 𝛼𝑖, 𝑗 = 0. 𝜌𝑖, 𝑗 is the profit
associated with allocation of service 𝑖 to server 𝑗 . 𝑤𝑖, 𝑗 is
the number of service units consumed by service 𝑖. 𝐶 𝑗 is the
virtual capacity of server 𝑗 . (7b) denotes that a server cannot
accommodate services more than its processing capacity. (7c)
denotes that a service cannot be allocated to more than one
server. Finally, (7d) indicates that a service may be either fully
allocated to a server or may not be allocated at all.

Please note, we have introduced the term “virtual capacity”,
which is obtained from the learning algorithm that has been
described in Section IV-B. The virtual capacity is always less
than or equal to the current actual capacity of the server. The
difference between the virtual and actual capacities determines
the service units that are reserved for the MA services so that
OH services can avoid the migration caused by the service
requests generated by high priority services.

Finally, GAP is np-hard [36]. Therefore, solving the ILP in
(7) is not practical for real-time allocations. Hence, we employ
an approximation algorithm introduced in [14] to solve the
GAP 2.

2Since, GAP is a combination of the Assignment Problem and the Knapsack
problem, GAP does not have the Total Unimodularity property. As a result,
GAP cannot be solved by an equivalent linear program.
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TABLE III: Summary of PrISMM

Markov Decision Process based Allocation of the high priority MA
users
Inputs:
System information and ambulance path
Objective:
Choosing the optimal MEC server for MA users with the target of
minimizing mobility-based service migration.
Reason:
Priority services should be given unhindered service while meeting QoS
requirements.
Time of Execution:
On arrival of a MA user. Also on MA user migration.

Learning Automata (LA) based Virtual Capacity Determination
Inputs:
Allocation details of MA users from MDP framework described Section
IV-A.
Objective:
Identifying the MEC servers that are more frequently used by MA users
and reserving resources for them.
Reason:
Minimizing priority induced service migration of the lower priority OH
users and lowering admission time of the higher priority MA users.
Time of Execution:
On MA and OH user allocation (both arrival and migration induced
allocation).

Generalized Assignment Programming (GAP) based Allocation of the
Lower Priority Services
Inputs:
System information and Virtual capacity from LA based framework
described in Section IV-B.
Objective:
Optimally mapping the lower priority OH users to the best candidate MEC
Server.
Reason:
Finding the best combination (MEC-OH user) for meeting SLA of the
OH users and maximizing network performance.
Time of Execution:
On arrival of a OH user. Also on OH user migration.

1) Profits: In the allocation procedure of the OH users,
we assume they have a preference for the MEC server that
has lowest communication delay. In order to integrate that
into the optimization, we sort the MEC servers by increasing
communication delays. Allocation to the nearest MEC server
fetches the highest reward and the allocation to the most
distant MEC server produces the lowest reward. The reward
can be designed in any manner as long as the ranking order
is maintained. For simplicity, we use (𝑀 − 𝑟𝑎𝑛𝑘) as the profit
associated to a certain server. Therefore, the MEC server with
least communication delay is ranked 0 and hence, the profit
associated to it is equal to 𝑀 , while the MEC server having
highest communication delay is ranked (𝑀−1) and as a result,
the profit associated to it is 1.

2) Weights: We assume that each OH service consumes
a single server processing unit. However, the formulation is
perfectly valid for a situation where a single OH service can
consume multiple processing units.

D. Summary of PrISMM

In this sub-section, we summarize the operation of PrISMM
and provide the relations between the three components of
PrISMM, i.e., the MDP Framework, the LA framework and
the GAP framework in Table III.

TABLE IV: Simulation Parameters

Parameter Values
No. of MEC Servers 10
No. of Hospitals 10
No. of Base Stations 300
No. of Service units in each MEC Server (𝑀) 10
OH Average Arrival Rate (𝜆𝑂𝐻 ) 0.01𝑠−1

OH Average Holding Time (𝐻𝑂𝐻 ) 1000𝑠
OH Average Bulk Size (Λ𝑂𝐻 ) variable
MA Average Arrival Rate (𝜆𝑀𝐴) variable
MA Average Holding Time (𝐻𝑀𝐴) 500𝑠
OH Service Migration Time [37] 3.3 s
OH Service Migration File Size [37] 184.6 MB
MA Data Rate 5 Mbps
OH Data Rate 2 Mbps
ONU Buffer-Size [27] 9.95328 Mb
GPON Upstream Link Rate [27] 9.95328 Gbps
GPON Downstream Link Rate [27] 9.95328 Gbps
No. of PONs 5
No. of ONUs per PON 64

V. EVALUATION

In this section, we provide the simulation set up, the
metrics, the baseline cases that were used to evaluate the
performance of PrISMM and the comparative performance
results of PrISMM against the four baseline cases (please see
Section V-A2).

A. Simulation Setup

The simulation environment was developed using the OM-
NeT++ network simulator. The average arrival rate and the
average holding time for the OH users were fixed. We varied
the average bulk size of the OH users to alter the system load.
On the other hand, average holding time of the MA users was
fixed. The average arrival rate was varied in order to change
the system load. The scenario was developed by using the
geographical details of the city of Milan, with real location
of mobile BSs and hospitals. Thereafter, we randomly placed
the MEC servers. We maintained the same positions of the
MEC servers for the entire simulation study. The OH and the
MA users were also placed at random locations. The central
node was placed approximately at the centre of the city. The
parameters used in the simulations are summarized in Table
IV.

1) Metrics: We have evaluated the performance of PrISMM
against the baseline approaches using five metrics:

1) Average number of relocations per OH User – This
metric represents the average number of relocations
experienced by the OH users that are already in service.
In other words, the metric measures the average number
of service migrations experienced by OH users. These
relocation take place in order to accommodate the MA
user requesting for service.

2) Overall drop ratio of the OH users – This metric gives
a measurement of the overall percentage of OH users
that are denied service by the system.
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Fig. 6: Average Number of Relocations per OH User and OH Drop Ratio. (a) Average Number of Relocations per OH User
with no Background Traffic. (b) Average Number of Relocations per OH User in the presence of Background Traffic (MA
User Traffic Intensity = 16.67 E). (c) Overall Drop Ratio of the OH Users (d) Overall Drop Ratio of the OH Users resulting
from Service Migrations.

3) Mean admission delay for the MA users – This metric
captures the time for which the MA user must wait
before it is granted service by the MEC system.

4) Overall drop ratio of the MA users - This metric provides
a measurement of the overall percentage of MA users
that are dropped by the system.

5) Average Number of Relocations per MA user Radio
Handover - This metric represents a measure of the
mobility based service migrations of the MA users.

2) Baseline Cases: In this sub-section, we describe the
baseline cases against which the performance of PrISMM was
evaluated.

1) In the first baseline case, the OH user services are
allocated with preference to the nearest geographically
located MEC server, whenever they arrive, and the MA
users are allocated in the MEC server that is located
nearest to the destination hospital. We call this baseline
method as Never-Migrate in the comparative graphs.

2) The second baseline case is similar to the first baseline
case, but the MA users are allocated to their nearest
MEC server. Service migration of the MEC servers are
also performed whenever the delay of communication
between the MA user and the MEC server exceeds the
delay threshold. We call this method as Always-Migrate
in the comparative graphs.

3) The third baseline case utilizes Learning Automata

(mentioned in Section IV-B) along with GAP (men-
tioned in Section IV-C) based assignment for the OH
user allocation. However, the MA users are always
allocated to the MEC server that are located nearest
to the hospital [38]. We call this method as PrISMM-
noMDP in the comparative graphs.

4) The fourth baseline case uses MDP to allocate and
perform service migration of the MA users as discussed
in [17]. However, for the OH users, the nearest ge-
ographically located MEC server is chosen. We have
named this baseline as only-MDP.

B. Results

In this sub-section, we discuss the results of the evaluation
of PrISMM.

1) Average number of Relocations per OH User: In Fig.
6a, we can see that PrISMM reduces the average number of
service migrations of the lower priority OH users, induced by
high priority users (MA). We observe such a marked fall in
the average number of relocation because PrISMM proactively
reserves MEC server units for the higher priority MA users
on one hand while optimally allocating the MA users by
exploiting a MDP. Therefore, whenever a MA user requests
service from the MEC servers, it is more likely to get access
without triggering a lower priority service migration. Further,
the service migration of the MA user is performed using MDP
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Fig. 7: MA Admission delay. (a) Mean Admission Delay for MA Users with no Background Traffic. (b) Mean Admission
Delay (only Network Delay) for MA Users in the presence of Background Traffic (MA User Traffic Intensity = 16.67 E). (c)
Mean Admission Delay for MA Users in the presence of Background Traffic (MA User Traffic Intensity = 16.67 E).

and as a result, the mobility induced service migration of the
MA users are minimized. Consequently, the priority induced
service migration of the OH users are also minimized in this
case.

Always-Migrate results in the highest number of OH user
relocation as the MA users are always allocated to the nearest
MEC server to the MA user. Therefore, with the movement of
the MA users, service migrations are performed. As a result,
further priority (MA user) induced OH service migrations take
place. Never-Migrate performs slightly better than Always-
Migrate because Never-Migrate eliminates MA user service
migration. Only-MDP, on the other hand, performs better at
low OH user load as the lower OH load leaves sufficient
resources for the MA users. As a result, MA users can be
accommodated without OH service migration. However, the
non-proactive allocation of OH services increases the number
of priority induced service migrations with the increase in
OH load. Finally, PrISMM-noMDP does not support MA user
service migration. At the same time, it proactively reserves
resources for the MA users while allocating the OH user. As
a result, it performs better than the other baselines, especially
at higher OH user load. However, the overall optimal and
proactive allocation procedure of PrISMM allows it to stand
out from the rest of the allocation mechanisms.

Thereafter, the effect of background traffic on the average
number of OH user service migration is studied in Fig. 6b.
For this purpose, we have fixed the MA user traffic intensity

at a high value of 16.67 Erlangs and observed the effect of
background traffic on different OH user load. We can observe
that the average number of OH service migrations remains
more or less unaffected by the change in network background
traffic load. Slight increase in the OH service migration can
be observed in case of Only-MDP at higher OH user load as
the background traffic induces more latency in the MA ser-
vices, thereby inducing more frequent MA service migration,
which in turn forces priority induced service migration of the
OH users. However, the optimal allocation of PrISMM, still
performs better than the other baseline algorithms in variable
network loads.

2) Overall drop ratio of the OH users: Fig. 6c shows that
PrISMM slightly increases the overall drop ratio (blocking
probability) of the lower priority OH users. The observation
is in line with the blocking probability increase in the Erlang-
B (M/M/S/S) queuing model [39]. Since, we are effectively
decreasing the number of service units available to the OH
users, their blocking probability increases and hence we get the
higher blocking characteristic observed in Fig. 6c. Even though
PrISMM introduces a small increase in service blocking, it
provides a much higher quality of service by reducing the
service interruptions for the active users.

On the other hand, Fig. 6d suggests that the OH drop re-
sulting from OH service migrations is minimized by PrISMM
and PrISMM-noMDP. This happens because both PrISMM
and PriSMM-noMDP reduces the overall probability of service
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Fig. 8: (a) Overall Drop Ratio of the MA Users. (b) Average Number of Relocations per MA User Radio Handover.

migrations and therefore, the chances of a failed service
migration is also reduced. We have not shown results with
lower OH user traffic intensity as there are negligible OH drops
during service migrations at lower OH traffic intensity.

3) Mean admission delay for the MA users: PrISMM
lowers the admission time of the higher priority service into
the MEC server as the high priority service does not have
to wait for the migration of the lower priority service before
getting access to the server. Similarly, the lower priority users
already in service have a much lower chance of facing service
downtime that arises due to service migration. Hence, PrISMM
reduces the chances of facing a service down time that can be
as high as 3.3s for a simple video streaming application [37].
Fig. 7a, illustrates the lowering of average admission time (and
also lower priority service downtime) by PrISMM. It can be
seen that PrISMM provides the lowest MA admission delay
as the MDP along with the GAP and LA based placement of
the OH users ultimately provide the best possible allocation
for the MA users. Never-Migrate provides the highest average
waiting time for MA admission as it allocates the MA users
in a limited set of MEC servers while allocating the OH users
in a sub-optimal manner. Consequently, huge number of OH
service migrations take place during the operation time.

When looked into the admission delay with the changing
network load, PrISMM performs better than the baselines
(especially at higher OH loads) [see Fig. 7b and Fig. 7c].
The primary reason for this better performance results from
lower number of service migrations of the OH users due to
the overall optimal allocation methodology used in PrISMM.

4) Overall drop ratio of the MA users: Thereafter, we
compare the performance of the algorithms in terms of the
ratio of MA users that are dropped. From Fig. 8a, we can

clearly see that Never-Migrate and PrISMM-noMDP, which
do not provision any mobility based service migration of the
MA users, lead to high MA user drop. The reason for such
a behaviour can be attributed to the fact that when a MEC
server is situated far away from the user, the server can no
longer return the processed information back the user within
the prescribed delay deadlines. As the load on the network
increases, the drop ratio shoots up due to the increase in
network delay. On the other hand, Always-Migrate performs
frequent service migrations and may not find vacant service
units in nearby servers and hence, leads to higher MA user
drops. This problem aggravates with increase in MA user
load. Finally, the algorithms which support migration but with
optimal MA function placement (only-MDP and PrISMM)
lead to negligible MA user drop owing to their tendency to
allocate the servers optimally.

5) Average Number of Relocations per MA user Radio Han-
dover: Finally, we compare the average number of mobility
based service migrations experienced by the MA users. In Fig.
8b, we observe that Always-Migrate suffers from the highest
number of mobility based relocations of the MA users as it
always allocates the user to the MEC server situated nearest
to the serving BS. Hence, whenever a radio handover takes
place, the proximity of the serving MEC server is checked
against the other candidate MEC servers. Service migration is
performed if one of the candidate MEC server is closer to the
BS than the serving MEC server. On the other hand, due to
the MDP based optimal allocation of the MA users, only-MDP
and PrISMM influences much lesser mobility based service
migration of the MA users. We do not include Never-Migrate
and PrISMM-noMDP in Fig. 8b as they do not support any
mobility based service migration of the MA users. Please note
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that due to the absence of mobility based service migration
of the MA users, Never-Migrate and PrISMM-noMDP suffer
from higher drop of MA users (see Fig. 8a).

VI. CONCLUSION

MEC is a recent paradigm that was developed to enable
offload of processing tasks to nodes located close to end
users, in order to support high reliability, high capacity and
low latency applications. In this paper, we presented a novel
approach to the service allocation problem, by focusing on
the minimization of migrations, when services with different
priorities, but with similar low latency and high capacity
constraints, share the same network. The simulation results
showed that our priority induced service migration mini-
mization algorithm (PrISMM), considerably reduces the cost
associated with service migrations. Consequently, PrISMM
reduces the service downtime for both the higher and lower
priority users resulting from service migrations and also re-
duces the expected admission time and drop percentage for the
new higher priority users. PrISMM also reduces the overall
drop of OH users that result from service migrations. This
can be of great advantage in MEC systems aiming to support
reliable and low-latency services.
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