Design of a Quantum
Microarchitecture Integrated Circuit

For Deep Cryogenic Operation

by

Elizabeth K. Hatfield

in partial fulfillment of the requirements for the degree of

Master of Science
in Computer Engineering

at the Delft University of Technology,
to be defended publicly on Monday December 17, 2018 at 2:00 PM.

Supervisor: Prof. dr. E. Charbon

Thesis committee: Prof. dr. K. L. M. Bertels, TU Delft
Prof. dr. R. Ishihara, TU Delft
Dr. C. G. Aimudever, TU Delft
Dr. F. Sebastiano, TU Delft

This thesis is confidential and cannot be made public until December 17, 2019.

An electronic version of this thesis is available at http://repository.tudelft.nl/.

Delft
e t University of
Technology

http://repository.tudelft.nl/

Preface

If a practical quantum computer is to be built, it will not only need quantum programming lan-
guages and qubits, but hardware-software interfaces as well. These interfaces, also known as com-
puter (micro)architectures are the key to creating a ‘quantum stack’, where a programmer can directly
execute programs onto quantum hardware. A functional quantum computer microarchitecture, the
Central Controller-Light (CCLight), has been designed, implemented on a Field Programmable Gate
Array (FPGA), and verified to control superconducting qubits successfully. The next logical step, in
hopes of creating a more scalable quantum computing system, is to take the CCLight and implement it
as an Application-Specific Integrated Circuit (ASIC). In this thesis, the CCLight was built into an ASIC.
It was shown that this approach yields the potential for higher performance and lower power for the
microarchitecture core, and the groundwork for more robust and automatic testing of similar microar-
chitectures was laid out. Lastly, the lack of scalability in the original approach, wherein the processor
transmits multi-byte codewords to the analog/RF hardware controlling the qubits, was revealed.

Elizabeth K. Hatfield
Delft, December 2018

iii

Contents

1 Introduction 1
1.1 Development of Quantum Computing 1
1.2 The Quantum Computing ‘Stack’™ 1
1.3 Need for Scalable Electronic Control 1
1.4 Objectives and Contributions of This Thesis. 2

2 The CCLight Processor 3
2.1 The CBOXt v vttt i e e e e e e e e e e e e 3
2.2 Computer Architecture for Quantum Computing. 3
2.3 eQASM: the Executable Quantum Instruction Set Architecture 4

2.3.1 Innovations of eQASM i e e e e e e e e e e e 4
2.3.2 Instructions of the ISA. e 4
2.4 The CCLight Processor Microarchitecture 5
2.4.1 The Classical Pipeline i i ittt e e)
2.4.2 The Quantum Pipeline - Processing Side 6
2.4.3 The Quantum Pipeline - Issue Side 6
2.4.4 Communication Handlers. e 6
2.5 The Development Environment 6
2.5.1 HDL DeSigner. v o v v i i e i e e e e e e e e et e e e 7
2.5.2 QuestaSim. e 7
2.5.3 Python Assembly Script. L o 7
2.6 Description of FPGA Operation. o it v i 7
2.6.1 Initialization and Run Stage 7
2.6.2 Processing Stage e e e e e 8
2.6.3 Output Management and Execution 8
2.6.4 Feedback and Other Peripherals., 8

3 Development of the CCLight for an ASIC Implementation 9

3.1 IP Block Replacement in the CCLight Core. 9
3.1.1 IPBlockstobeReplaced, 9
3.1.2 Replacement Methodology 10
3.1.3 Replacement Verification 10

3.2 Pin-outRedesign e e 11
3.2.1 Clock Reduction ittt it e 12
3.2.2 Programming Interface Replacement 12
3.2.3 Input/Output Reduction and Serialization. 13
3.2.4 Result . . . o o e e e e e e 14

3.3 Functional Verification e 14
3.3.1 Requirements for Functional Verification of the Design 14
3.3.2 Creation of the Benchmarks, 14
3.3.3 Running VerificationontheDesign. 16

3.4 Synthesis e e e e e e e 16
3.4.1 TheGenusTool. i it 16
3.4.2 Genus Workflow oL e 17
3.4.3 Netlist Verification o e 19

3.5 Placeand Route e 19
3.5.1 Thelnnovus Tool. i ittt e 19
3.5.2 Innovus Workflow e 19
3.5.3 Verification e e e 20
3.5.4 Results. . . . o e e e e e e e e e 20

vi Contents

3.6 Layout/Physical Design. o v i i i i it e e e e e e e e e e e 21
3.6.1 The Virtuoso and Calibre Tools 22

3.6.2 Passing DRC e 22

3.6.3 Passing LVS e e e 22

4 Testing 25
4.1 Testing Considerations i i i v i i ittt e e e e e 25
4.2 Proposed Room Temperature Tests 26
4.3 Proposed Low Temperature Tests 26

5 Conclusions and Future Work 29
5.1 Summary of Workand Results. oo oo, 29
5.2 ConclUusions v i i e e e e e e e e e e e e e 29
5.3 Future Work. o . e e e e e e e e e e e e 29
Bibliography 31
Acronyms 33
Glossary 35
List of Code Blocks 37
A Excerpts From the Thesis 39
A.1 eQASM Generator o i i i e e e e e e e e e e e e e e e e e e 39
A.2 MjuOpAlign Original Firmware. i, 42
A.3 MjuOpAlign Synthesis Compatible Firmware 46
A.4 Genus CCLight Synthesis Script. i 50

B Miscellaneous Toolchain Scripts 57
B.1 Netlist to Schematic Script o e 57
B.2 SPICE Netlist Script 0 o i e e e e e e e 58

C Newsletter Software 79

D Digital Flow Handbook 105

Introduction

1.1. Development of Quantum Computing

The idea of the ‘quantum computer’, which exploits quantum phenomena to perform computations, was
first proposed by Dr. Richard Feynman of Caltech. He proposed that a quantum computer with quantum
mechanical elements could feasibly simulate quantum systems, meaning a portion of the universe.
Moreover, this quantum mechanical computer could be used to handle the probabilities of large classical
systems, which become larger computationally with size [1]. The next major milestone for quantum
computing was the birth of Shor’s algorithm in 1994. Shor’s algorithm, created by mathematician
Peter Shor at Bell Labs, is an integer factorization algorithm that incorporates classical and quantum
operations, leading to a much faster result than the best classical-only algorithms [2]. This sparked
a wave of academic research interest not only in developing further quantum algorithms, but the
hardware (qubits) needed to execute them. This spark later caught on with industry as well; companies
such as D-Wave in Canada and Rigetti Computing in California were established hoping to build quantum
computing devices. Even big name technology companies like IBM, Intel, and Google joined the race
for ‘quantum supremacy’, meaning the point where quantum computers overtake classical computers
in terms of computational power [3]. Today, qubit chips are still limited to 50-75 qubits, far less than
the hundreds of thousands or millions needed for big speedups over classical computing systems. It
remains to be seen who will win the ‘race’, what qubit technology will prevail, and what system approach
will win out.

1.2. The Quantum Computing ‘Stack’

In a classical computing system, there is a ‘stack’ of elements, of increasing levels of abstraction from
the silicon its built out of. At the highest level, there are software applications described by high
level languages. These are then compiled to low level assembly languages, and finally assembled
to opcodes that correspond to the computers processor’s specific Instruction Set Architecture (ISA)
and microarchitecture. The processor’s microarchitecture is made up of digital circuits and ultimately
transistors. All of these levels together make the computer a complete system.

Quantum computers too need to be built into a stack to constitute a fully-fledged and practical
system [4].To make a full quantum computing system, quantum algorithms, high level languages,
compilers, and microarchitectures will all be needed, just as in classical systems. On top of that - or in
light of the stack, below that - lies error correction for the qubits, analog/RF control and readout, and
finally the qubit chip itself, as shown in Figure 1.1. Indeed, there is much more to building working
quantum computers than qubits and quantum algorithms.

1.3. Need for Scalable Electronic Control

With today’s qubit chips, which have a few up to tens of qubits, there is no problem driving these qubits
with off-the-shelf electronics. Furthermore, the design of these qubits, often in a planar scheme, call
for multiple wires per qubit. This setup usually entails a full stack of control and readout hardware,
such as Arbitrary Waveform Generator (AWG)s, Vector Switch Matrix (VSM)s, and Ultra High Frequency

1

1. Introduction

Figure 1.1: The Quantum Stack, Image © Harald Homulle

7
4

S
0
3
1%
8
N
A\
) 19

Color codes
4 Surface code

Quantum Analyzer (UHFQA)s. As the number of qubits scales up, so too does the number of wires,
AWGSs, and UHFQAs. If a practical quantum computer is to be built, one that can run quantum algo-
rithms with meaningful speedups over classical computing systems, it will need hundreds of thousands
or even millions of qubits. This system would then need, if current approaches are to be used, tens of

millions of wires and thousands of stacks full of quantum control and readout hardware. This simply is
not feasible. Instead, a better approach would be to take advantage of:

« the guiding philosophy of CMOS VLSI by integrating the electronics from stack systems down to
chips

¢ the cryogenic setup of the qubits by placing electronics physically closer to the qubits at a lower
temperature

Both bring advantages and disadvantages, but the approach promises to help make practical quan-
tum computing possible [5].

1.4. Objectives and Contributions of This Thesis

The objective of this thesis is to take the specification and implementation of the Central Controller-
Light (CCLight) quantum microarchitecture processor on a Field Programmable Gate Array (FPGA), laid
out in [6] and [7], and convert the design to an Application-Specific Integrated Circuit (ASIC), which

can then be fabricated and operated not only at room temperature, but also at cryogenic temperatures.
The contributions of this thesis are as follows:

¢ Creation of an ASIC from the CCLight FPGA Firmware (and thereby making the firmware ASIC-
compatible)

« Increased the fault coverage potential of eQASM-based designs by creation of a script to generate
randomized eQASM programs for benchmarking

« Realization of the trade-off between the desire for system flexibility and scalability

The CCLight Processor

In order to tie together quantum hardware (qubits, analog/RF electronics), and software (quantum al-
gorithms, high level languages), and to define another layer in the quantum stack, a software-hardware
interface needs to be built. This means defining the lowest level of programming a programmer will
see, called an Instruction Set Architecture (ISA). This ISA is then implemented with a microarchitecture,
the highest level of abstraction in the digital hardware design from the transistors it is ultimately built
from. The circuit defined by the microarchitecture will eventually push instructions to the analog/RF
electronics that control the qubits. With this need in mind, the Central Controller-Light (CCLight), a
guantum microarchitecture processor, was created.

2.1. The CBox

The precursor to the Central Controller-Light (CCLight) was the Control Box (CBox). The CBox was a
system designed to control a 3-qubit chip with feedback. The innovation in the CBox was that all of the
control electronics were integrated into a single ‘box’ (hence the name). Furthermore, the controller of
the design was implemented on an Field Programmable Gate Array (FPGA), meaning that the control
and management of the hardware interfacing to and from the CBox, as well as the other hardware
components inside the CBox, are described with digital circuits. This is in contrast to a microcontroller
(or microprocessor) implementation, which would simply be configured with a program written in C or
assembly. This choice gives the design potentially enhanced functionality (i.e. the FPGA can do things
the microcontroller cannot), as well as improved speed, at the cost of higher power consumption. The
choice also paves the way for a future processor/microarchitecture controller, which can be implemented
on an FPGA. This FPGA in turn controlled daughter FPGAs controlling Arbitrary Waveform Generator
(AWG) boards within the CBox, a USB interface for communication to and from a user PC, and qubit
control and readout. The CBox ultimately achieved its goal of controlling and reading out a 3-qubit
system as an interface between user PC and quantum hardware [8].

Inside the CBox, there was one main FPGA, 3 AWG subsystems with daughter FPGAs and 6 DACs for
IQ modulation, and 2 ADCs for readout, plus some power regulators. Inside of the main FPGA, there
are 9 functional modules. These functions include communication (USB and SPI), error correction,
and feedback signal processing. Furthermore, the software front-end of the CBox for the user PC was
provided in the form of two Matlab® programs. One was written to create the waveforms for the
DACs to send to the qubits, program the DACs with the waveform, and associate the waveform with a
particular command operation to the AWG. The second program allows the user to configure the ADCs
into different operational modes and ADC parameters like ‘delay to integration’ and ‘integration length’

[8].

2.2. Computer Architecture for Quantum Computing

Computer architecture is often defined simply as an Instruction Set Architecture. An ISA is a specifica-
tion of instructions that would be executed by a processor, which itself is in many ways described by
the ISA. Some details of the implementation of that processor, such as pipelining and memory sizes,

3

4 2. The CCLight Processor

are not a part of that definition however. Sometimes the implementation details are considered the
'microarchitecture’ of a computer. These two elements, plus other ‘hardware’ details like clock speed
make up the description and design of all processors [9]. Ultimately, both the ISA and microarchitec-
ture are of importance in the design of a processor for controlling qubits, as they control the usability
and performance of a system built from it.

To date, little research attention (relative to the top and bottom of the stack) has been made to
the topic of computer architecture for quantum computers. Indeed, far more focus is placed on the
topics at the top of the stack, nhamely quantum algorithms [2] [10] and high-level languages [11] [12]
[13], and at the bottom of the stack, such as the design and manufacture of physical qubits [14] [15]
[16]. This may be due to any number of reasons, such as researchers not being concerned with the
systems approach, only the highest/lowest level of the quantum computer. However, in order to build
a true full-stack, fully-fledged quantum computer, a hardware-software interface is needed; a direct
execution of quantum algorithms onto qubits is needed.

Some previous work has been done to build these interfaces, in the form of ISAs. These include
Open QASM, cQASM, and QuMIS. Open QASM was designed as an open-source quantum assembly
language in conjunction with IBM. This language can do fundamental single and two qubit gates, allows
for user definition of custom gates as subroutines, resembles C-family syntax, but lacks a feedback
mechanism from the qubits within itself [17]. cQASM was created in hopes of a common quantum
assembly language syntax so that QASM programs for various hardware systems, applications, and in
different languages or “dialects” can be translated to different languages and quantum hardware [18].
Lastly, QuMIS, the precursor to eQASM, which aimed to be a flexible implementation in a practical
microarchitecture and capable of controlling real experiments on superconducting qubits [6]. QuMIS
failed however to provide a few key elements to its specification, most notably feedback from the
qubits, which is imperative to executing quantum algorithms [7].

2.3. eQASM: the Executable Quantum Instruction Set Architec-

ture

The executable Quantum Assembly (eQASM) is a quantum Instruction Set Architecture (ISA) that can
be directly implemented as a physical microarchitecture. In other words, the ISA can be implemented
in digital hardware with pipelines, memory elements, arithmetic blocks, which then interfaces with
analog/RF hardware that controls and reads out qubits.

2.3.1. Innovations of eQASM

Unlike other quantum ISAs, the eQASM specification provides instructions allowing feedback from the
qubits. The specification also alleviates the “quantum operation issue rate problem” [7] with the use
of a Very Long Instruction Word (VLIW) architecture and Single Operation Multiple Qubit (SOMQ)
execution. The first, VLIW, means that a single instruction in the instruction memory can correspond
to two operations which can then be executed in parallel, increasing execution rate. The second,
SOMQ, means that a qubit gate (single ot two-qubit) can be applied to multiple qubits at once. This is
achieved with masks that contain multiple single qubits or multiple qubit pairs. Solving the “quantum
operation issue rate problem” means that the ISA is feasible for a practical implementation operating
a real qubit chip.

2.3.2. Instructions of the ISA

In the specification for eQASM, there are two classes of instructions: classical, and quantum. The
classical instructions are mainly standard instructions, like logical and arithmetic instructions, whereas
the quantum instructions are concerned with the execution of operations on the physical qubits. In total,
there are 14 classical instructions, including 2 program control (branching) instructions, 6 data transfer
instructions, 4 logical instructions, and two arithmetic instructions. This also includes the instruction
FMR, fetch my result, which reads qubit measurement results into a general purpose register. This
is considered as a classical instruction as the destination is a general purpose register, whose data
is available to classical instructions, not quantum instructions. For the quantum instructions, there
are only 4 explicitly defined, 2 for defining the target qubits, and 2 for specifying wait times between
operations. However, the eQASM definition leaves a footprint for any nhumber of quantum operations;
this number is only limited by the bit size chosen for the microarchitecture implementation. These

2.4. The CCLight Processor Microarchitecture 5

are the operations that are performed on the qubits. The quantum operations can be user defined,
as the target microarchitecture and system implementation is codeword controlled quantum hardware
(AWGS, VSM) based.

2.4. The CCLight Processor Microarchitecture

The Central Controller-Light (CCLight) microarchitecture is a practical validation of the eQASM spec-
ification. The CCLight uses 32-bit instructions, a 100 MHz core clock frequency and 50 MHz output
frequency, and was implemented on an Altera® Cyclone V FPGA. The design leaves room for 37 single
qubit operations, 7 flux operations, and 17 two qubit operations to be defined by the user. A mi-
crocode unit stores the information about each of these instructions, so that the processor knows the
right codeword(s) to output for the quantum hardware and the desired operation.

Figure 2.1: The CCLight Microarchitecture, from [7]

Non-deterministic Timing Domain

Deterministic Timing Domain

- ADI
o Qubit Measurement Result Register —
£ = c
2 |- Timing Control Unit g2
= Timestamp Manager " g E
s | (s cuon () -~ 2E |
S| |E|)s — ghe | M 23
8_ 2 VLIW pipelane 5 5 5 @ _ = N ==
a |2 i HIE S [& f= 2
= 5 Target S 4 K 2 <] w o)
= i 5 £ [a] — €]
g % S FeE 5 3 = H H é E = =
£] 7 4] c E — o :5 £5 | o
o s (I € . S = £ T 2t &% | |
= Q £ Microcode o © 2 o E < Rzl
= £ Unit S g =) E 2 =2 |
- E H H e S S5 |
i © E) (0]
3 & B[o comar [15 s O M8 5
3 = < '8 o %] 3
s Store @ : 25 :
5 g eonromen () ik
= B L=

Synchronization Clock

The CCLight microarchitecture was implemented with over 100 modules and submodules. Hence,
it is easier to analyze the microarchitecture, as visualized in Figure 2.1 by dividing it into the following
regions:

e Classical pipeline
¢ Quantum pipeline - processing side
¢ Quantum pipeline - issue side

e Communication handlers

2.4.1. The Classical Pipeline

In the classical pipeline region there are three major elements: the instruction cache, the measurement
result register file, and the classical pipeline itself. The instruction cache holds each 32-bit instruction,
up to 32768 (32 K) individual instructions. The measurement result register file holds the results of the
qubit measurements read back to the processor. It can hold 7 results (equal to the number of qubits),
each consisting of a single bit. Lastly, there is a classical pipeline. It is named this way not only because
it executes the classical instructions, but because it has the standard 5-stage design. That is, every
classical instruction is executed in the following steps: instruction fetch, decode, execute, memory,
write-back [19]. For the FPGA to operate the classical pipeline at 100 MHz, the pipeline had to be
primarily implemented by direct instantiation of hardware blocks within the FPGA, namely flip-flops
for inter-stage memory, and Look-Up Table (LUT)s for logical or arithmetic operations, as opposed

6 2. The CCLight Processor

to writing these parts behaviorally. There are two register files in the memory stage, for single and
two-qubit mask specifications, each holds 32 masks of 32 bits. These register files were also direct
instantiations of Altera® IP.

2.4.2. The Quantum Pipeline - Processing Side

In the quantum pipeline - even just the processing side of it - there are a great nhumber of modules.
The most important are the quantum decoder, the items of the VLIW pipelanes, the instruction joiner,
and the timestamp manager. In the definition of eQASM, each quantum operation is given in a bundle,
so that two operations can be processed by the microarchitecture at once. It is the job of the decoder
to split the instruction into the two operations, which are then fed to the two pipelanes for parallel pro-
cessing. In the pipelanes, the operation is translated to the corresponding microwave, measurement,
and/or flux codewords by way of a module called the microcode unit. This is a programmable memory
so that the user can define each of the operations and the codewords that go to the quantum hardware,
which need to be configured so the codewords generate the right waveform. The two microcode units
store words of 22 bits and have a capacity of 256 words. Next the instruction joiner takes the outputs
from the pipelanes and puts them back into one word for singular processing into the issue side of
the quantum pipeline. Lastly the timestamp manager creates a timestamp or issue trigger for each
quantum instruction from the wait interval specified from QWAITR or the pre-interval (prefix bs).

2.4.3. The Quantum Pipeline - Issue Side

The issue side of the quantum pipeline is mainly concerned with the execution of quantum operations
at precise timing points. Hence it is built of 7 FIFOs, in addition to an operation distributor and a
timing controller. Most of these make up a unit aptly named the timing control unit, which assures the
timing of quantum operations. Everything in this part of the processor is concerned with placing the
codewords into the respective FIFOs - one for flux, two for measurement, two for microwave, one for
VSM, and one for timing points - and requesting them at just the right time. Each FIFO has separate
read and write clocks, along with status signals for the occupancy of them, which are used by dedicated
finite state machines that control reading and writing to the FIFOs. At the end of the quantum pipeline,
before the signals go to the final outputs, they are bit mapped to the codeword form expected by the
quantum hardware. In addition, the VSM signal goes through a Double Data Rate (DDR) module.
Lastly, the DDR module was implemented in order to give the VSM control signal a sharp rising and
falling edge, by pushing it as close to the 1 ns resolution (1 GS/s) VSM module specification as possible.

2.4.4. Communication Handlers

To handle the programming of the processor, two separate Advanced Extensible Interface (AXI) buses
are used. AXI is an interface protocol released by ARM for communications between processors [20].
This interface was chosen primarily for ease of use with the ARM cores within the host FPGA. One is for
programming to the instruction memory and the microcode units, and the other to registers to enable
and start the processor. the ‘memory’ AXI uses a data length of 64 and an address length of 24, while
the "register’ AXI uses 32 and 16 respectively. On the back-end of the AXI buses (and the front-end of
the processor) there are translation modules that simply pull out the data and address information from
the transmitted word coming from the AXI buses. The ‘register’ translation module is also in control of
the main reset signal across the processor.

2.5. The Development Environment

The source firmware for the CCLight is a complex one, hence its management primarily from a GitHub
repository. GitHub is a platform for managing software projects, focusing heavily on the version man-
agement aspects with constructs like branches and forks for projects. These functions lend themselves
equally to firmware projects like the CCLight, and the software packages made to facilitate its devel-
opment. Among many other pieces to the CCLight development environment the most notable items
include:

1. HDL Designer - for building and editing the CCLight firmware

2. QuestaSim - a simulation tool which has a plug-in to interface with HDL Designer directly

2.6. Description of FPGA Operation 7

3. Python Assembly Script - a tool that assembles a QISA file into binary and loads it to the testbench
for simulation in QuestaSim

2.5.1. HDL Designer

HDL Designer is a firmware design suite from Mentor Graphics. HDL Designer is different from most
other firmware development tools in that it is graphically based. The intent is that the fundamental
blocks of an HDL design will be correlated to physical blocks in a graphical view, with the interconnect
and generics/parameters defined similarly. Changes made in the graphical view are automatically
changed in the generated HDL for the modules. This is a very useful and powerful functionality for
designs with many smaller submodules, as many complex designs like the CCLight are.

2.5.2. QuestaSim

QuestaSim is an HDL simulation tool from Mentor Graphics which allows simulation of designs via
waveform, or visualizing the values of signals within the design over time. These waveforms can be
analyzed at key time points for accuracy, or saved into a waveform file (.wlIf) and then compared to
another waveform file or new simulation. Both techniques can be very useful for debugging designs,
and the latter for verifying correctness of a design. Additionally, the QuestaSim tool has an integrated
console which takes TCL commands natively, so the entire simulation process can be easily scripted,
which speeds up the process significantly. The most important reason this software was used is the
native plug-in from HDL Designer, which allows a design to be loaded from HDL Designer to QuestaSim
for simulation without rebuilding the project within QuestaSim itself. This keeps coherence between
the design under development in HDL Designer and the design under test in QuestaSim.

2.5.3. Python Assembly Script

To allow for the assembly of any quantum program described in eQASM to executable binary for the
CCLight, an assembly script in Python was provided. The script works by attempting to parse the
eQASM (QISA file) into defined quantum instructions, which are read from a definition file called a
QMAP file. The QMAP file defines by name all of the instructions in the CCLight, from the classical
instructions to single-qubit instructions to flux instructions to two-qubit instructions. It also gives the
corresponding binary opcode, which is what the processor receives and executes with in the output
binary file. If an instruction is given in the QISA file that is not in the QMAP file, the script gives an
error. Furthermore, the script checks the general syntax of the QISA file and assures that is correct
before assembly. Then, once the QISA file is correctly parsed, the script creates two binary files: one
with the original eQASM instructions as comments on the corresponding opcodes, and one with only
opcodes. Both are actually written in hexadecimal notation to conserve length in character count and
file size (and increase human readability). Lastly, the assembler rewrites the input file for the CCLight
testbench to feed the instruction cache with the opcodes, so that on the next QuestaSim simulation
launch, this new program is executed.

2.6. Description of FPGA Operation

The CCLight as it was implemented on an Altera® FPGA operates with a few distinct stages. First, the
instructions and microcode are loaded to the respective memory elements, and some enable registers
are written to. Next, the processor begins executing the instructions in the cache, either in the classical
or quantum pipeline. This builds up codewords in the appropriate output FIFOs. At the timing points
specified in the instructions, independently of the instructions running in the pipelines, the processor
issues the codewords from the FIFOs. Lastly, the processor reads input from the qubit readout to some
measurement result FIFOs, allowing the processor to fetch that data when the Fetch Measurement
instructions are to be executed. There are some extra peripherals on the top level of the design that
will help control the accuracy of the timing of the processor.

2.6.1. Initialization and Run Stage

The first stage of the processor operation is initialization. This means programming everything the
processor needs to execute a program through the AXI interfaces. This is a standard procedure, with
the following items in order:

8 2. The CCLight Processor

Write the instructions to the instruction cache
Write the codewords to the microcode unit

Configure delays on output signals (if needed)

H W N

Write to the enable register
5. Write to the run register

First, the opcodes from an eQASM program are uploaded to the instruction cache via the ‘memory’
AXI buses. each opcode with target address is sent over the parallel interface to the ‘memory’ AXI
communication module. This module translates the target address to the instruction cache, and pushes
the opcode with address and write enabling signals to the instruction cache. This is done one by one
for each opcode in the program. After this is complete, the microcode unit is written in an identical
fashion. Next, the ‘register’ AXI becomes the target. If the user desires delay on certain output signals,
such as microwave0 or flux, this can be configured by writing the desired value to the corresponding
register, with the data and register address packaged in the same way as the memory writing. Next,
the enable register is written to with a 1. This means in terms of the design the reset signal across
all regions of the design is lowered, so all of the internal modules of the design can have their initial
values, but are now ready to change. Lastly the run register is written in the same way as the enable
register, meaning the the program counter of the classical pipeline can start, and the instructions inside
executed.

2.6.2. Processing Stage

With the run register written, the processor starts executing its instructions. This means classical
instruction go to the classical pipeline, and quantum instructions go to the quantum pipeline. The
classical pipeline has the standard five-stage pipeline setup (fetch, decode, memory, execute, write-
back), whereas the quantum pipeline essentially grabs quantum instructions, and in two pipelanes
decodes the instruction to its corresponding codeword, and places it into the corresponding FIFO along
with the timing info specifying when the codeword should be executed into the timing FIFO. This
process continues for as long as the program goes, which could have loops extending this time past
the physical length of the program.

2.6.3. Output Management and Execution

Once there are codewords in the output FIFOs, and the time comes to send some, the timing control
unit pushes out the items corresponding to the current timestamp. This happens asynchronously with
respect to the classical pipeline and processing side of the quantum pipeline. In this way it can be
assured that the codewords are issued at precise timing points, regardless of the execution happening
within the pipelines e.g. arithmetic instructions, NOPs, and branches. These codewords are sent out
for measurement, microwave, flux, etc., and then translated to the codeword structure expected by
the quantum hardware, before finally being outputted.

2.6.4. Feedback and Other Peripherals

After initialization, the processor is able to read in measurement results. The processor continuously
reads the result input buses and stores any received data words in some measurement result FIFOs.
These FIFOs then store the data until they are pushed out and into the classical pipeline when a fetch
measurement instruction is executed. In addition, there are some phase-detecting modules that check
the main clock frequency for drift or inaccuracy with respect to an external PLL signal. If the module
detects too great a shift in the clock from the desired frequency, the processor is reset. This is due
to the necessity for precise timing on output codewords, which is always defined by the main clock
frequency.

Development of the CCLight for an
ASIC Implementation

While a Field Programmable Gate Array (FPGA) implementation provides such advantages as faster
development time, lower cost of entry, and design flexibility, an Application-Specific Integrated Circuit
(ASIC) has three main advantages:

o Better Performance
e Lower Power
e Smaller Size

All of these advantages are highly suited for scalability, as well as cryogenic operation, over an FPGA.
Hence, an ASIC implementation of the quantum Instruction Set Architecture (ISA) executable Quantum
Assembly (eQASM) is the desired approach for cryogenic control of qubits.

In this chapter, the details of implementing the CCLight design as an ASIC in TSMC 40 nm technology
are discussed.

3.1. IP Block Replacement in the CCLight Core

The first step in implementing the Central Controller-Light (CCLight) as an ASIC was to replace all of the
Altera® IP blocks within the CCLight design with open-source blocks that could be legally implemented
in the hard chip.

3.1.1. IP Blocks to be Replaced
First, an analysis of the existing CCLight HDL code was done. The following Altera® blocks were
identified in the design:

1. DPRAM module, for the instruction cache, one instance

2. Register file, for the classical pipeline, 2 instances

3. FIFO module, for the codeword output and measurement fetch, 9 instances
4. Flip-flop module, for the classical pipeline, 30 instances

5. Look-up table (LUT), for the classical pipeline, 5 instances

6. Double Data Rate (DDR) output module, for the VSM output, one instance

Most of these modules were implemented in the design to meet the tight timing constraints on the
target FPGA, as discussed in section 2.4. Especially the flip-flops and LUTs were crucial in making the
classical pipeline meet the 100 MHz frequency requirement when synthesized on the physical FPGA.
Likewise the utilization of the DPRAM, FIFOs, and register files allow for quicker memory access. This

9

10 3. Development of the CCLight for an ASIC Implementation

is especially critical for the FIFOs on the output of the CCLight, which need to have fast responsiveness
to keep operation issue latency low. Lastly the DDR output module was implemented in order to bring
the VSM control signal as close to the 1 ns resolution (1 GS/s) specification as possible.

3.1.2. Replacement Methodology

To replace each component, a ‘black-box’ approach was taken. That is, the individual component was
considered as an arbitrary sub-module with some known inputs and known outputs within a larger
design element. This approach was chosen because A) the components needing replacement did not
have readily available testbenches (exclusive for the component) and B) none of the components in
question had readable behavioral source code available, and only two (the FIFOs [21] and the DDR
output [22]) had documentation available.

Conveniently, a replacement for the LUTs and flip flops was already in place in the design. The mod-
ule encompassing the classical pipeline core was given a boolean generic value, gBehavioralImpl,
which would switch the logic of the core from instantiations of the Altera® blocks to a simple behavioral
description. Changing this value from ‘False’ to ‘True’ removed two of the Altera® components from
the design completely.

For the rest of the Altera® components, the same testbench and benchmark program was used
to make a replacement component. The waveform window was altered to focus on the inputs and
outputs of the component in question, as well as other signals of interest within the larger module the
component exists in. Based on the visible ports, the input/output response of the component, and
known general functionality of the component, a rough behavioral HDL description was made. This
description was swapped into the design in place of the original Altera® component, and then the
testbench and benchmark were run on the whole CCLight with the replacement module in place. One
by one, with some iterative debugging, most components were replaced within a day or two. The FIFO
module proved the biggest challenge by far; it required two weeks of writing, testing, debugging, and
rewriting to get it working.

3.1.3. Replacement Verification

Lastly, with all replacement components in place, all benchmarks were swept, to confirm the new
implementation of the CCLight meets the original specification. First however a change was made
to the architecture of the entire design. A boolean generic value was added to the top-level module
of the design, QuMATop, and all of the submodules descending to the submodules implementing the
replacement modules. Then with the Altera® modules back in place, and the replacement modules
still in place, both units were placed into a switching (generate statements) architecture. This HDL
architecture allows for either the Altera® module or the replacement module to be instantiated at
compile/simulation time with a simple switch of the generic value. A similar approach was done in the
original classical pipeline HDL code. This made running the benchmarks on the original implementation
versus the new implementation much more convenient.

Next, the benchmarks needed to be swept. The CCLight design was verified with 10 benchmarks,
especially testing key parts of the design including branching and the VSM trigger ouput timing. Ad-
ditionally, 15 more benchmarks designed to test the timing and latency of the design were collected.
Each of these benchmarks, all written in eQASM, were individually assembled to executable binary
with an assembler provided with the CCLight development environment. The given testbench for the
CCLight was altered to show results for the primary outputs to the AWGs and VSM, signals B Trigger,
and D101-5. Furthermore, the provided testbench was modified to save the waveform file (.wlif) after
the benchmark and the implementation (Altera® or not). First, this procedure was performed for every
benchmark on the original FPGA implementation. Then the design was switched to the new Altera®
IP-free implementation, and the testbench was again modified to automatically run the QuestaSim
comparison tool with the Altera® implementation result of the same benchmark used as a reference.
The testbench was also modified to print any discrepancies reported to the QuestaSim console to a
text file named after the benchmark being performed. Lastly the benchmarks were all swept again on
the new implementation and the comparisons to the original design’s responses were made.

This revealed two small bugs. One in the FIFOs where they were too fast in the case of the
measurement result FIFOs, which was easily remedied by delaying the output of the delinquent signals
(wrregand data). The second bug wasn't as clear in its origin. On some of the benchmarks, incorrect
outputs were observed on the microwave FIFOs exclusively. After swapping out each replacement

3.2. Pin-out Redesign 11

component individually, the issue was isolated to the classical pipeline. Then a comparison was made
on a faulting benchmark between the response of the Altera® module and the replacement module.
This allowed the error to be traced back to its origin in time, which was revealed to be three branching
signals, BrXReg, BrYReg, and BrZReg, which were not reset properly. This error was then fixed
easily. Once both were remedied on the first benchmarks where they gave errors, the benchmarks
were swept again, this time without any discrepancies with respect to the design utilizing Altera®
components.

At this point, the Altera® IP-free design was ready to be altered for ASIC implementation. More
specifically, the CCLight was ready for Input/Output (I0) redesign.

3.2. Pin-out Redesign

The original CCLight design had a few luxuries. One of the main ones was its host FPGA, the Altera®
Cyclone V SOC 5CSTFD6D5F31I7N. This FPGA has over 200 pins at the designer’s disposal for general
IO, and 896 on the package [23]. For the original CCLight design, this was greatly utilized; in the
end the CCLight FPGA design had a total of 625 pins for programming the chip, communicating to the
quantum hardware, and other I0s.

In principle, any number of pins can be implemented in an ASIC implementation of the CCLight.
This number is only limited by the physical number of bond pads (meaning the structure in silicon that
is connected electrically to the package it is enclosed within) that can be placed within the allotted
silicon area. Ideally a BGA or similar technique would be used to allow for much larger pinouts, but this
technique is too complex to implement for the design. This leaves the classic bond pad ring technique
for the ASIC. While the area of the ASIC could be increased to accommodate any number of bond pads
on the ring, there are two costs:

1. The price of the chip increases per mm?

2. Bond pads are only placed around the circumference of a chip, so most of the extra silicon area
will go un-utilized in the core of the chip

With these considerations in mind, a trade-off for this ASIC design was made. An area constraint was
set at 1.5mm?, as the CCLight design plus memory macros should fit within this area in the TSMC
40 nm technology targeted for the implementation. Memory macros can become very large with
larger capacities (doubling from 4K to 8K addresses, etc), but the core of the design, even with some
significant memory (28) elements that must be synthesized in the design, should fit within 1.0mm?
with TSMC 40 nm technology. The instruction cache must be an SRAM macro block (originally 2> or
32K in size) as it is too large for standard synthesis tools (the results would be worse as well [24]).
However, for the TSMC 40 nm technology, a 32K SRAM is not available. The closest available is (213),
which needs a physical size of 0.265mm?. Since most eQASM programs provided for testing (and hence
were written as real experiments) were well under 100 lines, this reduction was not considered fatal
to the design and could be easily accommodated. With the lack of necessity for a higher capacity in
the SRAM, and the desire for low power in mind, the 4K (212) SRAM block was chosen. This choice
also gives a performance bonus; the 8K SRAM has a nominal cycle time just above 1 ns (1 GHz clock
speed) while the 4K SRAM has one just below 1 ns, meaning this SRAM could be used theoretically at
1 GHz speed. The area of the 4K SRAM is 0.15mm?, pushing the upper limit of the total chip size to
the next size bracket, 1.5mm?.

Given an area of 1.5mm? and an aspect ratio of 0.5 (aspect ratio = width of die / height of die) the
circumference of the chip will be 5,000um. Each corner of the chip will be occupied by a corner cell
which is a square cell with a pitch of 120um, leaving 1260um on the left and right side, and 760um
on the top and bottom sides of the chip. If the bond pads are placed in a linear ring around the core,
then only one bond pad can be placed every 110um, which means there could only be 36 pins on the
final chip. However, if a staggered bond pad placement is used, then an average of one bond pad per
55um can be achieved. Thus, a maximum of 72 bond pads can be placed on the chip.

Therefore, the number of pins in the CCLight needs to be decreased from 625 pins down to 72 or
less in order to be implemented as an ASIC economically. In order to do this, the pins were organized
into the following categories: clocks, programming interface, and input/output pins. Each pin group
was reduced with its own criteria and constraints.

12 3. Development of the CCLight for an ASIC Implementation

3.2.1. Clock Reduction
The original CCLight design employed six separate clock signals:

1. Clock _200MHz - a 200 MHz reference clock

2. clock_100MHz - 100 MHz clock used for the classical pipeline and most of the logic of the archi-
tecture

clock_50MHz - a 50 MHz reference clock

3.
4. clock_50MHz_pi_shift - another 50 MHz reference clock, 180° phase shifted from clock_50MHz
5. pll_locked - a 100 MHz reference from an on-FPGA PLL (phase locked loop)

6.

pll_50MHz_Locked - a 50 MHz PLL reference

To reduce the clocks that need to be fed to the chip, multiple clocks can be generated from a sin-
gle source clock. This is done by employing a simple frequency divider, which cuts the output clock
frequency by half from the input clock.

Figure 3.1: Simple Frequency Divider

INVERTER

FLIP-FLOP

Toer-fi2

A flip flop with its QBAR output tied to the D input, and the input clock fed as the flip flip clock, as
shown in Figure 3.1 works by changing the output of QBAR only at the rising edge of the input clock
(one clock period), meaning that the output clock at Q only returns to its original value (one period)
after two rising edges of the input clock (two periods). Hence the input clock is halved for the output
clock. Only one of these units is heeded to make a 100 MHz clock from the 200 MHz clock, and two
can be daisy-chained (or connected in tandem) to make a division by four, creating the 50 MHz clock
and the phase shifted 50 MHz clock (from the QBAR output). This is employed to produce the 50 MHz
PLL reference from the 100 MHz PLL reference as well. In the end, six input clocks are reduced to two.

3.2.2. Programming Interface Replacement

The largest pin users in the original CCLight design are the two Advanced Extensible Interface (AXI)
modules. These interfaces were used to program to two separate parts of the architecture: one for
the instruction cache and the microcode unit, and the other to control registers of the CCLight. Each
of these uses about 40 signals, but some are parallel and can be expanded to cover any address or
data size. This stacks up to 480 pins for both AXIs.

To reduce the pins further, the obvious solution is to replace the AXIs entirely in favor of a completely
different communication scheme. There are many protocols available, but to decrease the number of
pins the most a serial communication protocols must be chosen. The most popular serial communication
protocols are:

o 12C (Inter-Integrated Circuit)
¢ SPI (Serial Peripheral Interface)
e USART (Universal Synchronous and Asynchronous Receiver-Transmitter)

e SSI (Synchronous Serial Interface)

3.2. Pin-out Redesign 13

In the end, the SPI protocol was chosen for its versatility, low number of required pins, and simplicity.
The interface uses 4 pins, which brings the new total for programming the CCLight to 8 pins, a reduction
of 472 pins.

However, this pin reduction comes at the cost of programming speed and reliability. The AXI protocol
uses parallel channels to communicate multiple pieces of data on parallel buses at once, such as the
address and the value for an instruction in the instruction cache. Furthermore, the interface has
reciprocated read channels so that the parent programming device can read what the child device
(CCLight in this case) received, meaning that an error in sent data can be realized and corrected
quickly. On the other hand, SPI has to communicate all data as one word on a single bit channel,
which means the word is sent one bit at a time. SPI does have a channel for communication from child
to parent, but this is also a single-bit channel, so error detection is possible, but slower than for AXI.
Since the CCLight executes the program loaded to it in an autonomous fashion, in principle it doesn’t
matter how long it takes to load the program - only the speed of the outputs to the quantum hardware
and reading in the measurement results are critical in speed and latency. This time only affects the
user’s wait time for the start and result of an experiment. Even with SPI the load up time will still be
in the order of hundreds microseconds or tens of milliseconds, which is still not humanly perceptible.

3.2.3. Input/Output Reduction and Serialization
The other large pin user is the outputs that interface to the AWGs and VSM. This includes 16 pins to
the VSM, 1 pin to toggle an LED, and 109 pins to control the AWGs.

Not all of these pins were being utilized in the design however. Specifically, the D10 (3-5) DIR
pins (12 total), and DIO (3-5) DOL pins (3 total) were not actually loaded to anything within the
CCLight design; thus they were discarded from the ASIC design. Furthermore, the LED toggle pin was
removed from the design.

Next, a reduction of the remaining parallel output signals to the AWGs and VSM were considered.
These signals on the original design were: B Trigger (16 bits), DIO1 out (7 bits), D102 out (7
bits), D103 (32 bits), p104 (32 bits), and D105 (16 bits). The DIO signals were all pushed at a
frequency of 50 MHz, and the B Trigger, clocked at 200 MHz, went through the DDR output module
for a final frequency of 400 MHz. This means the CCLight was designed to push out 7.9 GBit/sec - a
huge amount of data - to drive 7 qubits.

Clearly the specification for 110 parallel pins to push these signals cannot be achieved in the ASIC
design, so another pin reduction scheme needs to be employed. The only viable option here is to
serialize these outputs; in other words, push the bits of the output codewords sequentially on common
pins instead of at once on unique pins. Of course, these bits must then be pushed at a higher frequency
so that the resulting word still comes at the specified rate (50 MHz). The CCLight design provides a
unique opportunity to achieve this, as it provides a 100 MHz and a 200 MHz clock that could be utilized
for serialization. In this way, sending half the bits at twice the frequency or a quarter of the bits at four
times the frequency is possible. The first option would need 56 pins, while the second option would
need 28. With the very tight pin number constraint on this design, the latter option was taken for the
design. This, along with the two output toggle pins, adds up to 30 pins needed for the output signals.

The cost of this choice is the need for an off-chip deserializer. There are some off-the-shelf shift
registers available that meet the requirement for parallelizing 4 bits of data at 200 MHz. Furthermore,
an FPGA can also be used to translate the codewords into the form they are needed in. Either of these
options however add some latency to the execution of a quantum instruction from the CCLight to the
AWG; for the shift register option, this number is usually around 10 ns or less.

Lastly, the input pins were considered. These are pins that give the measurement data from the
qubits via Ultra High Frequency Quantum Analyzer (UHFQA). These pins include D101 in (7 bits),
DIO2 in (7 bits), DIO1 Toggle in(1bit), and DIO2 Toggle in (1 bit). Additionally, some inputs
corresponding to the output AWGs were considered, namely DIO (3-5) CLKI (1 bit each). It was
found that the signals DI01 Toggle in, DIO2 Toggle in,and DIO(3-5) CLKI were notactually
loaded to anything within the CCLight design, so they were simply discarded. The D10 in signals could
have been further reduced in the same way the DIO outputs were reduced, i.e. serialized, but this
choice would force the use of even more external shift registers (parallel-in, serial-out this time), and
possible complications interpreting the data internally. Besides, at most the pins could be decreased
from 14 to 4. Hence, these signals were left in their original parallel configuration. This results in a
small overall reduction for this group of signals, from 19 pins to 14.

14 3. Development of the CCLight for an ASIC Implementation

3.2.4. Result

Ultimately, the goal of reducing the 625 pins to less than 72 pins was achieved. First the 6 clocks were
reduced to 2. Next, the programming pins were reduced from 480 to 8. Then the output pins were
reduced from 126 pins to 30. Finally the inputs were reduced from 19 pins down to 14 pins. This
adds up to 54 pins in the design, which leaves a maximum of 18 pins for power and ground and any
debugging pins that may be desired.

3.3. Functional Verification

The initial design and the redesign were both verified using a total of 35 benchmarks. These bench-
marks were all written by hand in eQASM and designed to test various functions of the CCLight. While
this number is acceptable for an FPGA design, it is not sufficient for an ASIC. With an FPGA design,
if there is a flaw in the design, the design can simply be redone, tested, and reloaded to the FPGA.
There is no major cost when the design doesn’t work, only a loss in time to fix and redeploy it. On
the other hand, the ASIC cannot be changed after being manufactured — the design must be right.
Otherwise, the process of taping out and manufacturing a new design must be redone, costing months
and thousands of dollars. Thus, there is a need for more robust testing of the design before tape-out.
Typically, a processor would be tested by running a program on it, then checking the data memory
and comparing that to the expected data. However, the CCLight processor is a unique case. The
fundamental principle of the CCLight architecture is to issue specific codewords at very precise timing
points. Thus, the verification of the ASIC design must be done by comparing these outputs to the
expected values with respect to time. In this case, the ASIC outputs can be compared to the outputs
of the original design via waveform comparison in the QuestaSim® tool to verify the correctness of the
design, as done in section 3.1. In this way, it is assumed that the original design is completely correct.
Since the design was already validated in the field with actual qubits [6], this assumption is valid.

3.3.1. Requirements for Functional Verification of the Design

Before any new benchmarks can be made, some requirements need to be defined. In other words,
some goals for the benchmarks need to bet set. For the CCLight ASIC, it is already assumed that the
original design is functionally correct. However, it needs to be verified that what is in the ASIC corre-
sponds to the specification of the FPGA design. This means not only verifying execution of instructions,
but assuring that key elements that were changed for the ASIC, especially macro blocks, function as
expected. The requirements for the benchmarks are defined as follows:

¢ Test every instruction (classical and quantum)

e Sweep as many qubit masks as possible

e Use each register slot within the classical pipeline
e Test maximum and minimum program size

With these goals, the benchmarks can be formulated.

In the CCLight, there are two kinds of instructions: classical and quantum. The difference between
these two categories is primarily in which pipeline of the CCLight it is executed. This difference is very
important when verifying the CCLight, as only the quantum instructions can be seen directly on the
outputs. This means that any benchmarks made to test the classical instructions, if it is intended to be
seen on the outputs, must be augmented with quantum instructions. Hence, these benchmarks will
be far more complex to make. Therefore, it was decided that the classical instruction benchmarks and
the quantum instruction benchmarks would be made separately.

3.3.2. Creation of the Benchmarks

Classical Benchmarks

Due to the complexity of making classical benchmarks, meaning they must be made by hand, the
task of making them was shelved in favor of building the testing infrastructure and the more critical
quantum benchmark set. The benchmarks will be based off the architecture of one of the original
35 benchmarks, msmt _loop trigger. Each one will be varied in the qubit masks declared, and the
carrier quantum instruction(s), but kept the same basic architecture, most importantly that the classical

3.3. Functional Verification 15

instruction under test will set a delay interval for the quantum instructions being executed. In this way,
the result of the classical instruction can be seen on the CCLight outputs.

Quantum Benchmarks

Unlike the classical benchmarks, the quantum benchmarks can be more straightforward to create.
Again, the architecture of these benchmarks were based on that of one of the original benchmarks,
msmt_trigger. However, in this case, the nature of the quantum instructions provide a unique op-
portunity to create the contents of the benchmarks randomly. That is, the instructions all either want to
operate on single qubit masks, or two qubit masks. In addition, the result of every quantum instruction
is a codeword and timing point going to the respective FIFOs, to be outputted at the appropriate time;
there is no internal feedback to worry about in this case. This means no special consideration needs to
be taken to choose masks with respect to the chosen quantum instruction, except that it needs single
qubit masks or two qubit masks (and if two instructions are to happen at the same time, that they
don't both issue to the same qubit). Therefore, a program can be readily made to write benchmarks
with randomly selected qubit masks and quantum instructions to execute on them. In this way, a huge
number of quantum instruction benchmarks can be made quickly, and more importantly more potential
discrepancies between the FPGA and ASIC designs can be caught. Ultimately, most of the goals for
the verification of the ASIC design are achieved through the quantum benchmarks and the generator
used to create them.

To make all of the quantum benchmarks, a Python 3 script was written to automatically generate
guantum benchmarks with the same fundamental architecture, but different qubit masks, time intervals,
quantum instructions, and lengths. Each of these parameters is created using the native python random
number generator (and the related shuffle function). These randomization functions yield a uniform
distribution by default [25]. The benchmark generator script, given in section A.1 works in the following
steps. It stores the information about the possible quantum instructions, qubits, and qubit pairs in
lists, which are then randomly plucked from later. First the script decides how many single qubits the
benchmark will have. If there is enough to make a valid pair of qubits (3 qubits) then it will decide how
many qubit pairs it will have. It then selects from the possible qubit pairs which is determined by the
qubits chosen in the first step. It also makes masks of multiple single qubits based on the number of
single qubits by taking the full list of available qubits in the benchmark, taking a subset of the list of a
random length, then shuffling that list. Next the script decides how many wait intervals it will keep, and
lastly how many quantum operations it will have, which is randomized between 1 and the maximum
number of operations that can be placed into the benchmark. The benchmark must be bounded up to
4096 lines, so that makes the maximum number of operations equal to:

4096 — numSMasks — numTMasks — numiIntervals — 3
2

Where the 3 comes from the branching instruction and two NOPs at the end of every bench-
mark. Due to the unusual behavior of the rounding function within Python, this is approximated with
max0Ps = 2048 —numSMasks —numTMasks —numlIntervals — 3. Finally the script can begin writing
the benchmark file. First it declares all of the masks it chose previously, and assigns random values
within the valid range to the chosen set of interval registers. Next it begins the loop that will contain
the quantum instructions and intervals. On each loop of this sub-routine, first it writes a QWAITR in-
struction with random interval register selection, then decides the quantum instruction(s) for this line.
First it must decide if it will do one quantum instruction this line or two. If only one, then it merely
decides (when there are qubit pair masks) if it will pick a single or two qubit instruction, which is then
selected from the appropriate list at random, then assigned to an appropriate mask at random. In the
case of two quantum instructions on a line, the same decisions must be made except now the script
must choose (when possible) if the first, second, or both instructions will be a two qubit instruction.
It also has to take care that the qubits chosen in both instructions in the line are to exclusive qubits;
the script will pick one mask and then iterate until it chooses one that does not match the first. This
sub-routine is repeated until all quantum operations are written. Finally it writes the branch and two
NOP instructions, completing the benchmark.

This entire process is computationally short; the script can make roughly 1,000 benchmarks per
minute. For most of the parameters the script randomizes, number of single qubit masks, number
of interval registers, and number of quantum operations, a uniform distribution can be observed on

max0OPs =

16 3. Development of the CCLight for an ASIC Implementation

large samples (thousands) of benchmarks. For the number of two qubit masks and number of multiple
single qubit masks, a decaying distribution to higher values (like a geometric distribution) is observed,
due to the random number within a random number which generates these values. Ideally the tests
would have a Gaussian distribution centered around the expected range of values (similar to Monte
Carlo analysis) but since not enough is known about the real experiments performed with the CCLight,
a uniform distribution to the created benchmarks will give the best fault coverage.

3.3.3. Running Verification on the Design

To perform the testing, 1,000 eQASM programs were created from the generator. These benchmarks
were placed into a single folder. Next a simulation script was made to set the simulation time to
always be 10 ms. This is a long time interval, but is approximately equal to the longest allowed wait
interval allowed in the QWAITR instruction ([2!° — 1] * 20ns = 10.5ms), thus guaranteeing that most
of the benchmarks created will produce outputs within the simulation timeframe. The simulation script
also made a generic rename of the resulting waveform (.wif) file, from vsim.wif to result.wlf, so that
the script made for automating the benchmark execution process could know when the simulation
was finished. The automation script, written in PowerShell, went through each item in the generated
benchmark directory, called the assembly script on it, then launched the simulation with scripted mouse
clicks. The script then waits for the creation of the file result.wlf, at which point it can rename the file
to indicate the benchmark that was tested, close the simulation window with a keystroke, and repeat
the full procedure for the next program in the directory.

Ultimately, the task of running 1,000 eQASM programs on the CCLight FPGA design in HDL De-
signer/QuestaSim for the time interval of 10 ms proved a huge computational task for the hardware
platform. In the end it took 9 days (twice the ideal run-time which assumed 7 minutes per benchmark,
giving 5 days of run-time) to produce the results. Hence the same procedure has not been done for the
CCLight ASIC design, which will also need to have the comparison done in the same time, increasing
computation time still. First, the procedure will need to be redesigned to run on the platform hosting
the CCLight ASIC design, namely UNIX and QuestaSim. The procedure of assembling the script in
each iteration will have to be skipped; the assembly script is not compatible with UNIX. Instead, the
assembled binary files created during the FPGA runs, which will be compatible to the ASIC design,
will be used. Then after the simulation runs for 10 ms or perhaps longer, the result will need to be
compared to the right FPGA result or reference waveform file. One major hurdle to this will be taking
into account the difference in start time between the FPGA and the ASIC, since the SPI programming
takes approximately 10 times less. Other than this delay in the start, the waveforms should look iden-
tical. Until these problems are solved, a preliminary chip will have to be verified by ‘eyeballing’ the two
waveforms to confirm the same output codewords at the same intervals.

3.4. Synthesis

With the CCLight HDL design for the ASIC implementation functionally verified, the process of building
the actual ASIC can begin. The first step in the process of converting an HDL behavioral description of
a design into an ASIC is called synthesis. In this step, all of the constructs of the HDL code, such as
if statements, case statements, and arithmetic operations are converted into a circuit described with
standard cells, such as logic gates, flip flops, and multiplexers. The input to this step is a behavioral
HDL description, a set of timing constraints (i.e. the target clock frequency), and the output is a netlist
of standard cells. In later steps this netlist will be placed into a physical layout of a chip, which is what
is ultimately sent for manufacturing. At this point in the design process, the clock frequency can be
extracted, as this is directly related to the performance of the standard cells that make up the resulting
circuit.

3.4.1. The Genus Tool

The tool used to synthesize the CCLight ASIC design to the target TSMC 40 nm standard cell library was
Genus®. Genus® is the most recent branding of the Cadence flagship synthesis tool, as part of their
EDA suite including the other tools used in creating the CCLight ASIC (Innovus®, Virtuoso®). Until
recently this tool was branded as RTL Compiler®, meaning that a lot of information about the tool from
forums comes from discussions about the previous branding, although there are some discrepancies
between the two tools. A significant amount of time was spent merely learning how to use the tools

3.4. Synthesis 17

to build the ASIC, just as was done with the CCLight development environment.

Genus® is a console-based tool, meaning that it is best used with scripts. It runs mainly proprietary
commands that perform the most important functions such as compiling the behavioral code, synthesiz-
ing the HDL to generic cells, and retiming, as well as TCL, shell, and SDC commands. Information about
the proprietary commands is given in a command reference with the tool’s documentation. Genus®
also has a GUI for schematic viewing, which is very convenient for verifying correct synthesis of the
blocks within the design to standard cells, as well as the interconnect between them.

3.4.2. Genus Workflow

Although the use of a synthesis tool may seem linear, i.e. an HDL design and some timing constraints
are entered into it, and the tool produces a netlist which can be verified and then used within further
ASIC development tools, it is actually a feedback loop and an iterative process. These inputs are
given, the netlist and timing reports are produced, but then the report must be analyzed, and the
netlist verified to match the input HDL behavioral description. Hence the HDL design and/or the timing
constraints must be altered, and the process repeated until a working result is achieved.

The CCLight HDL design has an initial set of timing constraints, meaning the clock frequency used
in the FPGA design. Due to the direct mapping of the logic to the corresponding hardware blocks in
the ASIC design, and the control to place these blocks suitably close to each other, the ASIC design is
virtually guaranteed to meet the timing constraints from the FPGA, and even exceed them. However,
there is no guarantee that the behavioral description will be compiled and synthesized correctly. The
Altera® tools used to compile and load the original design may be more forgiving than Genus®), i.e.
the latter may not allow some HDL constructs present in the CCLight design. For example, the Genus®
tool will not compile VHDL process statements that are sensitive to multiple clocks.

HDL Synthesis Issues

Unfortunately there were many problems found within the CCLight HDL during the synthesis process.
First, many modules within the CCLight FPGA design were given ‘initial values’ for some signals. This
means that at start up, these signals would start with the specified value, instead of being undefined.
This is valid for an FPGA, as they typically employ some hardware that allows blocks within the design
to be initialized in this way. However, this is not available in the ASIC design. Instead, the signals must
be reset with a reset signal at start up. For the most part, the initial values weren't needed, especially
in the modules within the classical and quantum pipelines, as the initial undefined values are flushed
out as valid data propagates through the pipelines. However, the main reset signal to the pipelines
was not defined at start up nor until it was explicitly dropped by a register write, as the block defining
that signal from the external inputs, QuMALwAXIComMan, too had initial values within its design. This
reset signal was defined with a delay chain connected to the ‘enable’ register as an active-low reset,
meaning that pulling the reset signal to a logic low or zero value enables the CCLight. The same issue
and architecture was present for the 'run’ register. After changing the sensitivity lists of the module’s
processes to be sensitive to the external reset, and changing the clock from the SPI clock to the pipeline
clock, the internal reset signal was finally defined from start up, allowing the majority of the internal
modules to start up properly. This change allowed the delay chains in the processes to be reset from
the external reset, instead of propagating undefined values constantly, and to have a more continuous
sensitivity as the SPI clocks are by definition turned off (not switching) between transmissions, which
allows for data delay from the SPI modules (re-parallelization) and is more in line with the original
design with the always-on AXI clocks.

Second, some of the modules in the CCLight design were missing resets on internal signals. This
was a particularly difficult bug to fix, as the only apparent issue is that valid signals are sent to the
module, but the outputs remain undefined. Under further inspection of the modules from the netlist
in the QuestaSim® simulation tool, none of these internal signals are ever defined. When the HDL is
simulated behaviorally, the QuestaSim® tool compiles these signals to be initialized, even when initial
statements aren’t used, so these flaws in the HDL architecture are hard to catch beforehand. In all
cases, the modules had to be carefully rewritten so that these internal signals would have a reset,
without changing the fundamental logic.

One example of a module with this issue is the unit MjuoOpaAlign (within MicroOperationJoin).
The original firmware is given in section A.2. Compare to the synthesis-compatible version of the
firmware given in section A.3. The first thing that is different is the lack of initial values on the syn-

18 3. Development of the CCLight for an ASIC Implementation

thesis compatible version (lines 53-59 in both versions). These assignments have simply been com-
mented out. The critical difference however is on line 78. The output signal MJ MajorTimestamp
could perhaps go without being reset, but i MajorTimestamp must have a reset, because it ap-
pears in the conditional expression of a concurrent assignment. The result of any conditional expres-
sion with at least one undefined value is an undefined output. This undefined signal in turn propagates
the undefined valueto i vec VerConf,i vec MicroOperation qubit,MJ MajorTimestamp,
QMB vec MicroOperation qubit,and QMB VerConf - nearly every output signal from the mod-
ule. This is why this module and some others gave constantly undefined outputs. In each case the
issue had to be fixed carefully so as to not reset the signals to the wrong value or change the logic of
the module.

Third, the FIFO module was not functioning after synthesis. After some inspection in the Ques-
taSim® tool, it was determined that the issue was due to the way the internal memory was handled
within the FIFO. More specifically, the writing to the memory was controlled with an arithmetic loop
and exit statement to determine the position of the input data in the queue. This block did not function
at all, as all outputs were always unchanged from the value after reset regardless of any input, along
with other indication signals in the design such as wrused, which indicates the number of occupied
slots in the queue with respect to the write clock. Therefore the entire process was rewritten with a
counter, and ultimately the entire module as changing this functional block had ramifications on the
logic of some indicator signals — mainly how complex or simple their logical blocks needed to be.

Fourth, there were timing issues in the design. There was negative slack on one particular path,
specifically within the DDR output module. The DDR output module was put into the design to give
the CCLight FPGA design a 2.5 ns resolution signal to the VSM, on hopes of achieving a signal with a
sharper rising and falling edge. This negative slack means that the data from one register doesn't have
enough time to go through the logical path (combinational circuit path) and become valid on the next
register within the clock period. However, the implementation of the DDR output within the CCLight
ASIC design will have no effect on the precision on the final output signal. This will be dictated by the
performance of the pad cells driving the signal off the chip. Hence the module was removed from the
design, eliminating all remaining timing issues.

Final Script

Ultimately, the CCLight design was successfully synthesized after many iterations using the script given
in section A.4. The script is long as it has to pluck every necessary file from the source directories,
since they also contain other files that are not used in the design. The first section sets attributes (or
settings) for the synthesis tool. For example set db auto ungroup none forces the tool to keep
the abstracts of modules within the design, instead of completely decomposing them to standard cells
where possible. This is useful for debugging purposes. The next section loads all of the CCLight source
files into the program and compiles them. Next all of the clocks within the design are declared, then
some pre-synthesis reports on the design are created. Finally the design can be synthesized first to
generic gates, then the standard cells of the TSMC 40 nm library. Lastly post synthesis reports are
written, and the resulting netlist and constraint files can be created.

Results
The resulting netlist has the characteristics shown in Table 3.1:

CCLight Post Synthesis Report
Item Value Units
Standard Cells 53,782 integer
Cell Area 156,268.526 um?
Total Area (Cell + SRAM) | 303,131.730 um?
Slack, 200 MHz Clock 3,461.2 picoseconds
Slack, 100 MHz Clock 2,570.8 picoseconds
Leakage Power 566.688 uw

Table 3.1: Excerpts from the CCLight Post-Synthesis Reports

The fist value shows the number of standard cells that CClight design was synthesized to. This
includes logic elements like XOR gates and sequential elements like flip flops. The next number gives

3.5. Place and Route 19

an area estimation for these cells. This number could be considered as a minimum area, as routing
signals and clocks properly in the real chip core may take more area than this. The third number is
simply the second plus the area of the SRAM, which as a macro is fixed in size. The SRAM will also need
a halo around it for its own power routing, which will add to the occupied area in the chip core. The
next two numbers indicate the slack for the source 200 MHz clock, and the pipelines’ 100 MHz clock.
The slack of the 200 MHz clock indicates that it could actually be doubled (period of 5,000 ps but only
1,539 ps needed), but the 100 MHz cannot be reduced in the same way. Analyzing the reports further
shows that the critical path(s) happen on certain pins to the instruction cache/SRAM. If the design is
to have the clocks increased, these paths will need to be redesigned. This amount of slack is very
generous for routing purposes. Lastly the leakage power figure, which again is a minimum estimate,
and not the complete picture. This number is heavily dominated (84%) by the SRAM. The core power
will certainly be much higher when the power routing and design placement are done in the chip and
these factors taken into account.

3.4.3. Netlist Verification

To test the synthesized netlist, a testbench was developed to load the benchmarks to the instruction
cache, execute the benchmarks, then compare those results to the verified results of the pre-synthesis
CCLight design. This testbench is virtually the same as that for the pre-synthesis CClight design.
The testbenches were derived from the original one used for the FPGA testing, replacing AXI writing
protocols with SPI, and generating source clocks and other input signals from within the single testbench
file.

Without the availability of the increased benchmark files and an automated comparison tool for more
comprehensive verification of the design, as described in section 3.3, a few of the original benchmarks
(br test, flux trigger, and msmt trigger) were tested on the post synthesis netlist. The
results of them, inspected visually, showed that the core of the CCLight ASIC design gave the same
outputs as the CCLight FPGA design. This result is promising enough to proceed with building a
preliminary chip out of the netlist.

3.5. Place and Route

With a verified netlist, the chip can finally be built. This means the standard cells in the netlist can be
placed into the core of a chip, power routed to it, clock tree synthesized, pad ring built around it, etc.
Once these steps are complete, a layout design is the resulting output. Although it won't be quite ready
for manufacturing, this is the basis for what is ultimately sent to the TSMC foundry for fabrication.

3.5.1. The Innovus Tool

Like Genus®, the Innovus® tool is a re-branding from an older tool, in this case the place and route
tool SOC Encounter®. Unlike Genus®, Innovus® has a GUI that is meant to be used in the standard
workflow. This workflow involves importing the design and any macros desired for the chip, and
assembling them into a floorplan within the chip core using the GUI. This is also where power routing
and pad ring assembly can be conveniently done. After this is successfully done, the chip design data
can be saved for future loading so that these steps do not have to be repeated each time (optionally the
exact commands to perform these tasks can be extracted from the Innovus® logs). Next, the console-
side of the tool can be used to place and route the actual design within this chip footprint. Namely,
loading the design and process/standard cell/macro information, then placing the design, synthesizing
the clock tree, and routing the design. Before extracting the Netlist for functional verification and GDS
for DRC/LVS checking, the design can be tested in-tool for meeting timing constraints and passing DRC
(albeit an abridged check; this will come in section 3.6).

3.5.2. Innovus Workflow

Setup
In order to load the CClight netlist into the place and route tool, two files need to be created. The
first is a Multi-Mode, Multi-Corner (MMMC) file (for physical verification of the chip design) and a pin
assignment file (to declare where the pad cells will be placed around the edges of the chip.

The MMMC file can be easily made in a prompt from within the prompt to initially open a design in
Innovus®. This simply involves linking together the standard cell library data about the RC corners,

20 3. Development of the CCLight for an ASIC Implementation

Process, Voltage, Temperature (PVT) variations, and timing for best, worst, and typical cases. Then
when the chip is physically verified, these values are swept multi-dimensionally to give a more accurate
estimation on the real performance of the chip post fabrication.

The pad cells must be given an assignment around the edges of the chip in a .io file, which can be
created using the GUI, or can be arranged by manual pin management and file manipulation; the latter
method was used. 54 pins were needed in the design for various I/O and signals, and 14 pins were
given for chip power, in order to get as close to the 1 power/ground pair per 8 I/O pins rule-of-thumb
as possible. This totals to 68 pins. With 68 pins, and an aspect ratio of 0.5, the top and bottom sides
will get 12 pins, and the left and right sides will get 22 pins to keep the pin distribution even on all
sides.

Floorplanning

Now the floorplan can be built in the GUI. First, the chip must be sized - 1000um by 1500um. Then,
some space for the power routing needs to be given between the core and the pad ring. Since this
design has an SRAM macro block, a slightly larger than typical power routing gap is given, 25um.
Next, the macro block must be placed within the core of the chip. In principle the macro can be placed
anywhere within the core, but it is ideal to place it in such a way that not many signals need to be
routed around the block to reach pins on the far side. Since all of the pins on this particular SRAM
macro appear on the bottom and left side, and the CCLight netlist cells will be placed around the center
of the core (by default of the tool), the bottom left corner of the macro block is placed at the center of
the core. Then power rings can be built into the gap, and power stripes placed within the core. The
rings are made in metals 5 and 6 with 4um width, and the cell power stripes are made in metal 1.
Finally the power routing for the SRAM can be done. This is done as a halo around the SRAM in metals
4 and 5, with metal 4 stripes placed vertically and metal 5 stripes placed horizontally over the SRAM
block (as specified in the SRAM datasheets). With the power rings and stripes in place, the routing
from the rails to the pad cells is done. To complete the floorplanning, 1O fillers are added, and well
taps are placed in the design at intervals of 32um, which is a rule-of-thumb figure.

Netlist Placement, Clock Tree Synthesis, and Routing

For this stage of the chip development, the chip is built using a script. The result from the floorplanning
stage is loaded, then the remaining steps to build the chip within the Innovus® tool are performed,
with the design saved at intermediate points along the way. First the chip footprint is loaded and the
CCLight netlist is loaded into the tool. Then the power domains are set using a CPF file. Next the
design is placed within the core. At this point, the physical cells are visible within the core of the
chip. Afterwards some optimization is performed on the placement of those cells. Then the clock trees
are synthesized, which means that the clock net is routed and given enough repeaters that the clock
maintains its integrity through every module it is routed to. Even with the large slack reported from
Genus®, the time constraints of 200 ps for setup and 100 ps for hold time were added to keep the
clock tree synthesis conservative. Again, some optimization on the placement of the cells in the design
were performed, then tie high and low cells were placed, which add the constant logic level signals
where needed. Next, the design is routed, which means the interconnect between cells is finally added,
and once more placement optimizations are performed. Once the filler cells are placed into the core,
the design is fully constructed (aside from bond pad placement, which must be done in section 3.6
because those models don't exist for Innovus®). Finally, the CCLight ASIC layout has been built, as
seen in Figure 3.2.

3.5.3. Verification

First some in-tool verification is done to assure the timing constraints are met after place and route
operations. Next, in-tool DRC is done to assure the design can even pass a basic set of design rules
before going through more rigorous testing in section 3.6. Functional verification would happen in the
RC extraction phase, which goes along with the DRC/LVS steps. Since this is only a preliminary chip,
and this is a complex and time consuming process, it has not yet been done for a CCLight ASIC. This
step must be saved for when a fully verified netlist can be created and used in the chip design.

3.5.4. Results
The resulting chip has the characteristics shown in Table 3.2:

3.6. Layout/Physical Design 21

Figure 3.2: The CCLight ASIC Post Place and Route

ghtcories

JLaftEGrRaE Fteorihar

For typical digital chip designs, a core utilization of about 70% is desired. In this way, the chip
core can be filled with cells, macros, etc while giving enough room for routing, and not leaving much
effectively to waste. In this case, the design size is dictated by the pins, which makes it a ‘pad-limited’
design. Although a core utilization of 36.8% is not ideal, it is the only option without adding things like
decoupling capacitors, JTAG, etc to the chip. With the 54 pins on the design, and 14 power/ground
pins added, the grand total pins for the CCLight ASIC is 68. 6 power pins were given to power the cells
and the SRAM, and 8 were given to power the 54 pins on the design. Ideally there would be 12 such
pins, to keep the to 1 power/ground pair per 8 10 pins rule-of-thumb, but the pin limit of the package
(CLCC 68; the CLCC has been verified at cryogenic operation, hence its choice here) has been reached,
and the absolute pin limit of the die nearly has too. Furthermore, if it is assumed that the 8 SPI pins will
not be active when the DIO etc outputs are, which is true, and neither will the DIO inputs, which may
or may not be true based on testing conditions, the 8 IO power pins will indeed be sufficient. Power
analysis was run for this report with input activity and sequential activity both set to 0.5 (from 0 to
1).The power consumed by the chip is mostly internal, with 75.74% of the total power usage from the
IO. Lastly the timing of the chip on the 100 MHz clock, which had the least slack in the post-synthesis
report, was verified and even shown to have more slack in layout than before (now 3,920 ps).

3.6. Layout/Physical Design

The last step in creating an ASIC out of the CCLight design is finalizing the physical layout, and then
verifying that the design can be fabricated, or design rule checking (DRC), that the physical design
matches the post-synthesis netlist, or layout versus schematic (LVS), and that the final circuit meets
specification. Once these tests are passed, the chip is ready to be sent to the TSMC foundry for
fabrication.

22 3. Development of the CCLight for an ASIC Implementation

CCLight Post Place and Route Report
Item Value Units
Die Area 1.5 mm?
Core Utilization 36.8% percentage
Total Pins 68 integer
Core Power Pins | 6 (3 VDD/VSS pairs) integer
10 Power Pins 8 (4 VDD/VSS pairs) integer
Power Dissipation 129.5 mwW
Timing Closure Passed —

Table 3.2: Chip Layout Data

3.6.1. The Virtuoso and Calibre Tools

The last step to complete the building of the CCLight ASIC will be to add the bond pads. The bond
pads are the metal contacts that are bond wired to the epoxy package containing the silicon chip, and
electrically connected to the pad cells inside the silicon. As determined in section 3.2 the bond pads
must be placed in a staggered arrangement in order to fit all of the needed pins in the limited silicon
area provided. Hence every other bond pad will be placed a full bond pad length, 55um from the pad
ring (and slightly farther than that to pass DRC) while the other half are to be placed directly over the
pad cells they are connected to on the pad ring. Each bond pad will need to be carefully aligned to its
corresponding pad cell; a resolution of 0.01um is necessary for the grid of the Virtuoso® layout editor.
All bond pads need to be connected with metal 6 wires and layer 5 vias. The cost of staggered bond
pads becomes apparent at this point, as the bond pads left ‘dangling’ over the pad ring add area to
the final chip — increasing the total die size to about 1.6um?.

3.6.2. Passing DRC

Running design rule checks (DRC) verifies that the layout designed can be fabricated by the foundry.
Hence it is imperative to have the most up to date DRC file (file that contains the information about
what violates the fabrication rules) for the process, as the foundry constantly updates this information.
Some DRC errors can be ignored, as they cannot be fixed by the designer anyway, such as the ESD
errors often found on the pad cells. However, many of them reveal flaws in the layout design. In
the case of a previous preliminary CClight ASIC, two meaningful errors were found. The first was
a multitude of metal and metal density errors. Upon inspection, it was found that these errors only
popped up around the bond pads. Unfortunately the wrong bond pads had been used for the ‘hanging’
bond pads in the design. With even more meticulous inspection, it was revealed that the bond pads
were all slightly misaligned to their respective pad cells, as the layout editor did not have fine enough
grid precision set. Both of these issues were quickly resolved, removing all related DRC errors. The
second flaw was again related to metal geometry errors. This time the errors appeared on two power
pad cells, and on visual inspection it was quickly realized that the pads were simply not able to connect
to the power rails correctly because the two pads connections were crossing each other. So the simple
solution was to flip the positions of the two pads in Innovus® and then bring the design back through
the relevant steps. Ultimately this solution resolved all of the related DRC errors. In the end, the older
CClLight ASIC was brought to the point of having ho meaningful errors on the most up-to-date DRC
file available. This paved the way for the CCLight ASIC presented in this thesis, shown in Figure 3.3,
which managed to yield the same result on the first DRC attempt.

3.6.3. Passing LVS

After passing DRC, the next test for the chip is layout versus schematic (LVS). This means comparing
the GDS layout to the schematic, which is converted from the netlist exported from Innovus® by
the Virtuoso® tool. This step was performed on a previous preliminary CCLight ASIC. Converting the
netlist to a schematic is typically a straightforward task. However, in the case of some of the pad cells,
namely the digital power, ground, and IO pads, some of the power/ground ports are missing from
the cell models when they are extracted from Innovus®. This causes errors for LVS that don't really
exist in the design, as the ports and connections exist as they should in the GDS. To fix this problem,
a small script was made to edit the netlist before schematic conversion by finding every instance of

3.6. Layout/Physical Design 23

Figure 3.3: The DRC-Clean CCLight ASIC in Virtuoso

] |,1:v||

the problematic pad cells in the netlist, and adding the missing ports to them. This solution fixed the
problem and made the schematic import correctly, which could be seen in the schematic viewer, and
from the LVS report. A copy of this script is given in Appendix B.

The next step in LVS cleaning was the the comparison results. Here, the CCLight gave three kinds
of errors:

1. Incorrect Nets
2. Incorrect Instances
3. Property Errors

The first two are a result of the SRAM macro not being truly present in the layout; only the footprint
from the metal layers is given by the foundry. This is done to protect the IP of the SRAM design. The
information about the physical size and the ports is generally sufficient to design with at the layout
level. Some information was given in the PDK to mitigate some of these false errors by editing the LVS
rule file to treat the SRAM as a block box. Unfortunately, this only served to change what errors were
showing up; the false errors were still there. In the end, this technique was not used, and the original
false errors were waived. The last type of error, the property errors, gave the largest number of errors
by far - 4,579. Upon visual inspection, these errors were all appearing on the pad cells only. With more
investigation, it became clear that the issue was the schematic extraction having incorrectly parsed the
transistors and even resistors’ values incorrectly, even though the actual values present in the layout
and the schematic being the same. This is a problem for all users of the PDK and pad cells, and not an
isolated issue. To clean these false errors, another script was developed to take the extracted SPICE
netlist from the schematic, and replace the incorrect definitions with the correct ones. The result was
the removal of all false property errors, which left zero real property errors in the LVS report. A copy
of this script is given in Appendix B

Testing

The goal in this project is to replace the original CCLight FPGA implementation with the CCLight ASIC
in place to show that a smaller and more power efficient custom chip can take the place in the Quan-
tum Stack, and to run the Surface-7 qubits. Furthermore, the chip should operate at deep cryogenic
temperatures, namely 4 Kelvin in order to show that this part of the Quantum Stack can not only be
scaled down, but also brought closer to the qubits themselves, which typically operate in the milliKelvin
temperature range [14] [15]. Since the CCLight drives complex hardware that cannot be brought down
to cryogenic temperatures, there will need to be two distinct tests on the CCLight ASIC:

1. Room temperature tests — to prove that the ASIC can fit into the operating conditions and speci-
fications of the FPGA

2. Cryogenic tests — to prove that the ASIC will still work under this condition and could drive the
target hardware at cryogenic temperatures in principle

4.1. Testing Considerations

Due to design decisions for the ASIC made in section 3.2, some extra hardware is needed to translate
the CCLight ASIC outputs to the form needed by the target hardware. Furthermore, the original CCLight
FPGA needed some extra hardware to interface some target hardware units which the CCLight ASIC
will need as well. More specifically, the CCLight ASIC needs 4-bit (or higher) deserializers operating at
200 MHz on each D10 (1-5) output, which was not needed for the FPGA, and a 2.5 V to 5 V voltage
level shifter on the the B Trigger output, which was needed for the FPGA. In total, 28 74LVC595A
shift registers and 2 74LVC8T245 level shifters are needed for the CCLight ASIC to operate the target
quantum hardware. Depending on the quality of the source clock and the requirements of the testing,
one reference PLL 100MHz clock can be used, such as the CDCEL913.

In total, to run the tests on the CCLight ASIC with the target hardware (AWGs, VSM) a schematic and
PCB with the ASIC, a control FPGA to program the chip (or an USB-to-SPI module), the shift registers,
the level shifters, some single-ended to LVDS converters, voltage regulators, and break-outs to the
AWGs and VSM needs to be designed and assembled. Furthermore, with the scale and complexity
of this test system, some additional hardware may be needed to drive critical signals, such as clock
generators and buffers. Ultimately the goal is to replace the CCLight FPGA within the larger system
effectively, and the most critical aspect of the CCLight system design to consider is the timing of the
signals to the quantum hardware, in terms of delay, integrity, and resolution. The CCLight ASIC and the
quantum hardware need to communicate properly in order to perform experiments on the Surface-7
chip, which is the ultimate purpose of the CCLight project.

However, at cryogenic temperatures, some of these modules may not work. Neither will the quan-
tum hardware (AWGs, VSM). Furthermore, the physical space allowed for the electronics is very limited
[26] [27]. Therefore, it makes the most sense to design the cryogenic test system to be a bare-bones
PCB, one that only contains the essential components, namely the ASIC, programming FPGA/module,
and voltage regulator. In this way, it can be shown that the ASIC itself still functions at cryogenic

25

26 4. Testing

temperatures, regardless of whether or not the peripheral modules can. Measuring the raw outputs of
the ASIC with respect to time would be sufficient to prove this.

Since what is needed for the cryogenic tests is a subset of what is needed for room temperature
tests, it could be possible to design a PCB system in which the modules necessary for cryogenic testing
are lumped onto a daughterboard. This daughterboard could then be plugged into a motherboard
containing the modules necessary for room temperature tests. In this way the design challenges from
designing two PCBs can be condensed to one PCB system. However, a system like this may prove to
be more complex than what its worth.

4.2, Proposed Room Temperature Tests

The first thing to test on the CCLight ASIC when it is returned from manufacturing is that it works
electrically. This will mean powering it on and looking for some expected outputs even with nothing
being programmed to the chip, in this case looking for a toggle signal from DIO (1-2) Toggle out.
Once it is confirmed that the chip powers up correctly, the next thing to test is the SPI modules for
programming the chip. The SPI module can be configured to repeat what words it reads on input to its
output. In this way it can be verified that the SPI modules of the CCLight ASIC function as expected
and the chip is ready to be tested functionally.

Ideally, the room temperature tests will go so far as physically interfacing with the target quantum
hardware (AWGs, VSM). First, the CCLight ASIC needs to be verified to work with the full room temper-
ature PCB system designed for it. This means verifying that the output signals of the CCLight ASIC can
be distributed across the PCB correctly and interpreted by the shift registers, level shifters, etc correctly
so that a target signal and timing specification can be met at the breakout points for the quantum hard-
ware. To run these tests, some benchmarks with meaningful outputs and experiments that are easily
understood will be chosen from the original set of 35 benchmarks, so that specifications for the PCB
level can be derived from them. In total, 31 of the 35 original benchmarks can be potentially used for
this testing (i.e. they have outputs to the quantum hardware). If the timing specification isn't met, it
is possible to add buffers to signals that are too fast. This means adding a delay in the 1-10 ns regime,
as many commercial modules are specified, which matches the resolution of the CCLight ASIC, which is
the output signal period, 5 ns. Other signal issues can be resolved similarly (if not with the configurable
delay within the CCLight design), the costs being physical area, execution latency, and redesign price
and time. The critical point at this stage is getting the signals from the CCLight ASIC to be shifted
to the needed parallel signals correctly. The challenge here is a lack of shift registers/deserializers that
operate at 200 MHz, near the 2.5 voltage level of the chip IO, and take single-ended input. Especially
the 200 MHz speed is a difficult specification to meet with off-the-shelf components.

The goal then for this functional system would be to hook it up to the quantum hardware, which
is in turn running the Surface-7 chip. This would be the ultimate test for the CCLight ASIC, as the
purpose of the CCLight is to control the qubits of the Surface-7. If the CCLight ASIC can successfully
execute on the qubits and read measurement results into its memory, and respond to that input in a
timely and correct fashion, the CCLight FPGA has been completely and successfully replaced by the
CClLight ASIC.

4.3. Proposed Low Temperature Tests

The goal for cryogenic testing of the CCLight ASIC is to verify that it still works under the low tem-
perature condition. As discussed in section 4.1, this is mainly due to the peripheral modules likely not
working at cryogenic temperatures, the quantum hardware not working at cryogenic temperatures, and
the whole system not fitting in the small physical testing space available for the experiment. The cryo-
genic test setup will then be a PCB with the minimum components: the CCLight ASIC, a driver/readout
FPGA, and voltage regulator. The FPGA and voltage regulator must be chosen from what components
have previously shown to work under these conditions, specifically the Xilinx® Artix-7 [28] and a hand-
ful of op-amps and discrete components to build a voltage regulator [29]. Due to the large cost in time
to cool down and reheat the experiment, the FPGA will have to be programmed to test a burst of
benchmarks at once, as well as collecting the data and communicating it back outside of the dilution
(cryogenic) fridge.

For cryogenic testing of the CCLight ASIC, the key question is whether or not the SRAM for the
instruction cache will work. SRAM is inherently sensitive to PVT/mismatch, especially at smaller tech-

4.3. Proposed Low Temperature Tests 27

nology nodes, due to its transistor density and leakage power [30] and the importance of V- in SRAM
operation and the higher sensitivity of the minimally sized SRAM cells to changes in V- [31] [32]. Fur-
thermore, mismatch is known to be an exacerbated issue at cryogenic temperatures [33] [34]; this
adds up to a highly critical component at cryogenic temperatures. Ideally this component would be
tested by sending instructions for it to store, then fetching them back to the FPGA to see if the data
is unchanged. Since no structure in the design of the CCLight ASIC exists for this, a modified testing
scheme will be performed. First, the SPI modules will be verified in the same way as in the room
temperature testing. Then, some of the 31 viable benchmarks will be sent to the CCLight ASIC with
the SPI configured to repeat the input back to the FPGA immediately. In this case, the benchmarks
containing infinite branching loops will be the most revealing of the SRAM’s performance. If the out-
puts are measured over a long enough period of time to see multiple loops though the benchmark, it
can be seen on the outputs if incorrect instructions start to be executed, as the instructions coming
out of the SRAM are no longer the same, and hence the outputs from the CCLight ASIC will change
over time. This does not isolate the testing on the SRAM however; the core of the CCLight ASIC could
cause a fault as well. However, the CCLight ASIC core is expected to be more robust to the cryogenic
environment as CMOS logic cells are more robust to PVT [24], and the timing slack in the design with
the nominal clock speeds was high, which gives a lot of room for reduced performance in the core.

Lastly, if the SRAM can be shown to work at cryogenic temperatures, verifying the functionality of
the CCLight ASIC will not require much further testing complexity. This will involve again running the
31 benchmarks, SPI readout configuration not needed, and reading the outputs to the FPGA. The time
length can be reduced to what is needed for one loop where branching is used or a standard time
interval that is long enough for some outputs intended for the quantum hardware to be collected by
the FPGA for all benchmarks. Then the FPGA can attempt to put the (what should be correct) serialized
codewords back into their original parallel scheme as the shift registers would do at room temperature,
and transmit them back to room temperature. If it can do that, the CCLight ASIC works at cryogenic
temperatures.

Conclusions and Future Work

5.1. Summary of Work and Results

In this thesis, the Central Controller-Light (CCLight) was converted from an FPGA to an ASIC. First, the
CCLight development environment was learned. Then the firmware of the CCLight was analyzed and
the components needing replacement due to IP restrictions were identified. These components were
replaced and verified within the design. Next the number of pins in the design was reduced by a factor
of 10. A lack of sufficient benchmarks (QISA files) from the original set for verifying the ASIC design was
identified, and a Python script to write 1,000 randomized benchmarks was created. Then the synthesis,
place and route, and chip sign-off tools were learned. The CCLight firmware was synthesized to the
TSMC 40 nm standard cell library, and the firmware debugged until the resulting synthesized netlist
passed a set of benchmarks. Then the netlist was placed and routed into a chip layout, with timing [and
power, functionality] verified. Some issues in the final chip verification processes (LVS) were identified
and scripts were created to provide a fix. Lastly, DRC and LVS checks were performed and the layout
design altered until all meaningful DRC/LVS errors were eliminated.

5.2. Conclusions
The conclusions of this thesis work are as follows:

e eQASM-based microarchitectures can be implemented on ASICs to increase performance and
reduce core power consumption

¢ ASICs are the necessary implementation for digital control at cryogenic temperatures due to strict
cooling power constraints

* The codeword-controlled quantum hardware approach in its current form, with tens of pins on
the digital controller per qubit, is not scalable

5.3. Future Work

First, the chip built in this thesis needs to be finalized, fabricated, and tested. There is still need for
further benchmarking of the ASIC design with respect to the FPGA design. The work for creating the
randomized benchmarks for completing this task has already been done in this thesis; the setback is the
large computational time needed to run the benchmarks on both the FPGA design and the ASIC design.
Once this is completed, and any discovered bugs fixed, the process of getting the chip fabricated can
be done. This mainly involves getting the chip DRC/LVS “clean” i.e. there are no critical errors from
either test. The chip as presented here is already “clean” but any further changes from continued post-
verification debugging may change this. Additionally there may be an updated DRC/LVS file provided
by the foundry at time of final testing, which could potentially reveal more errors. After the chip comes
back from the foundry it will need to be tested; the guidelines for doing so are discussed in chapter 4.

Second, further development to test the CCLight and other eQASM-based processors in a formalized
manner needs to be done. One of the biggest gaps in the procedure for building an ASIC out of the

29

30 5. Conclusions and Future Work

CCLight was the lack of robust tests for the complete picture of the design: the feedback, the PLLs,
the programming mechanism(s), and of course the timing accuracy of the outputs to the quantum
hardware. Ideally a tool or software package for an existing tool like QuestaSim® would be created
providing robust testing and verification of all these aspects of the CCLight and future eQASM-based
microarchitectures. This tool could easily incorporate the quantum benchmark generator created in
section 3.3, and see it expanded to create benchmarks with different/more complex structures such as
making the classical benchmarks too.

Third, a new eQASM-based processor could be designed and built for a spin qubit system. The
specification of eQASM gives enough flexibility to create a design for spin qubits instead of the super-
conducting qubits targeted for the CCLight. The main difference would be the timing resolution needed.
This could at the very least be achieved by an ASIC, if not an FPGA. The other issue is whether or not
there are codeword-based control electronics available that can run spin qubits (superconducting and
spin qubits have different fundamental frequencies for operation).

Fourth, an eQASM-based microarchitecture could be integrated onto a single chip with integrated
AWGs/transmitters, along with other peripherals like the PLL and voltage regulator, in order to create
a "Qubit Control System-on-Chip”. In this scheme, a single chip would be able to do all of the control
for a qubit chip. This would eliminate the issues encountered in section 3.2 as the interconnect is
now within the chip and doesn’t need the same care as when transmitted off-chip. Each final output
becomes an IQ pair instead of 32 bits. This would also alleviate the issues with the timing of output
signals between AWG and VSM outputs, since this issue was governed by the long physical distance
between the VSM and the AWGs/CCLight. The only drawback would be that this resulting chip would
have a fixed maximum number of qubits it could drive; this is the same for any eQASM microarchitecture
however.

Bibliography

[1] R. P. Feynman, Simulating physics with computers, International journal of theoretical physics 21,
467 (1982).

[2] P. W. Shor, Algorithms for quantum computation: Discrete logarithms and factoring, in Foundations
of Computer Science, 1994 Proceedings., 35th Annual Symposium on (Ieee, 1994) pp. 124-134.

[3] J. Preskill, Quantum computing and the entanglement frontier, arXiv preprint arXiv:1203.5813
(2012).

[4] X. Fu, L. Riesebos, L. Lao, C. G. Almudever, F. Sebastiano, R. Versluis, E. Charbon, and K. Ber-
tels, A heterogeneous quantum computer architecture, in Proceedings of the ACM International
Conference on Computing Frontiers (ACM, 2016) pp. 323-330.

[5] E. Charbon, F. Sebastiano, M. Babaie, A. Vladimirescu, M. Shahmohammadi, R. B. Staszewski,
H. A. Homulle, B. Patra, J. P. Van Dijk, R. M. Incandela, et al., Cryo-cmos circuits and systems for
scalable quantum computing, in Proc. 2017 International Solid-State Circuits Conference (2017).

[6] X. Fu, M. Rol, C. Bultink, J. Van Someren, N. Khammassi, I. Ashraf, R. Vermeulen, J. De Sterke,
W. Vlothuizen, R. Schouten, et al., An experimental microarchitecture for a superconducting quan-
tum processor, in Proceedings of the 50th Annual IEEE/ACM International Symposium on Microar-
chitecture (ACM, 2017) pp. 813-825.

[7]1 X. Fu, L. Riesebos, M. Rol, J. van Straten, J. van Someren, N. Khammassi, I. Ashraf, R. Vermeulen,
V. Newsum, K. Loh, et al., egasm: An executable quantum instruction set architecture, arXiv
preprint arXiv:1808.02449 (2018).

[8] E. Garrido, L. Riesebos, J. Somers, and S. Visser, User's Manual Feedback system for 3 Qubit bit
flip code (2014), cBox User’s Manual.

[9] J. L. Hennessy and D. A. Patterson, Computer architecture: a quantitative approach (Elsevier,
2011).

[10] L. K. Grover, A fast quantum mechanical algorithm for database search, in Proceedings of the
twenty-eighth annual ACM symposium on Theory of computing (ACM, 1996) pp. 212-219.

[11] P. Selinger, Towards a quantum programming language, Mathematical Structures in Computer
Science 14, 527 (2004).

[12] B. Omer, A procedural formalism for quantum computing, (1998).

[13] S. Liu, X. Wang, L. Zhou, J. Guan, Y. Li, Y. He, R. Duan, and M. Ying, q|si): A quantum pro-
gramming environment, in Symposium on Real-Time and Hybrid Systems (Springer, 2018) pp.
133-164.

[14] D. Riste, S. Poletto, M.-Z. Huang, A. Bruno, V. Vesterinen, O.-P. Saira, and L. DiCarlo, Detecting
bit-flip errors in a logical qubit using stabilizer measurements, Nature communications 6, 6983
(2015).

[15] U. Mukhopadhyay, J. P. Dehollain, C. Reichl, W. Wegscheider, and L. M. Vandersypen, A 2x
2 quantum dot array with controllable inter-dot tunnel couplings, Applied Physics Letters 112,
183505 (2018).

[16] E. Lucero, R. Barends, Y. Chen, J. Kelly, M. Mariantoni, A. Megrant, P. O'Malley, D. Sank,
A. Vainsencher, J. Wenner, et al., Computing prime factors with a josephson phase qubit quantum
processor, Nature Physics 8, 719 (2012).

31

32 Bibliography

[17] A. W. Cross, L. S. Bishop, J. A. Smolin, and J. M. Gambetta, Open quantum assembly language,
arXiv preprint arXiv:1707.03429 (2017).

[18] N. Khammassi, G. Guerreschi, I. Ashraf, J. Hogaboam, C. Almudever, and K. Bertels, cqasm v1.
0: Towards a common quantum assembly language, arXiv preprint arXiv:1805.09607 (2018).

[19] D. Harris and S. Harris, Digital design and computer architecture (Morgan Kaufmann, 2010).
[20] AMBA and AXI, Protocol specification, ARM, June (2003).

[21] Intel, Fifo intel fpga ip user guide, https://www.intel.com/content/www/us/en/
programmable/documentation/eisl1414462767872.html (2018), accessed: 2018-12-
01.

[22] Intel, Double data rate i/o ip cores user guide, https://www.intel.com/content/
altera-www/global/en us/index/documentation/eis1415168884929.html

(2018), accessed: 2018-12-01.

[23] Intel, Cyclone v datasheet, https://www.intel.com/content/dam/www/programmable/
us/en/pdfs/literature/hb/cyclone-v/cv 51002.pdf (2018), accessed: 2018-12-01.

[24] N. H. Weste and D. Harris, CMOS VLSI design: a circuits and systems perspective (Pearson
Education, 2011).

[25] P. S. Foundation, Python 3 pseudo-random number generator function documentation, https:
//docs.python.org/2/library/random.html (2018), accessed: 2018-12-01.

[26] H. Homulle, S. Visser, B. Patra, G. Ferrari, E. Prati, F. Sebastiano, and E. Charbon, A reconfig-
urable cryogenic platform for the classical control of quantum processors, Review of Scientific
Instruments 88, 045103 (2017).

[27] B. Patra, R. M. Incandela, J. P. Van Dijk, H. A. Homulle, L. Song, M. Shahmohammadi, R. B.
Staszewski, A. Vladimirescu, M. Babaie, F. Sebastiano, et al., Cryo-cmos circuits and systems for
quantum computing applications, IEEE Journal of Solid-State Circuits 53, 309 (2018).

[28] H. Homulle and E. Charbon, Performance characterization of altera and xilinx 28 nm fpgas at cryo-
genic temperatures, in Field Programmable Technology (ICFPT), 2017 International Conference
on (IEEE, 2017) pp. 25-31.

[29] H. Homulle and E. Charbon, Cryogenic low-dropout voltage regulators for stable low-temperature
electronics, Cryogenics 95, 11 (2018).

[30] S. Lin, Y.-B. Kim, and F. Lombardi, Design and analysis of a 32 nm pvt tolerant cmos sram cell
for low leakage and high stability, Integration, the VLSI journal 43, 176 (2010).

[31] S. Mukhopadhyay, H. Mahmoodi-Meimand, and K. Roy, Modeling and estimation of failure prob-
ability due to parameter variations in nano-scale srams for yield enhancement, in VLSI Circuits,
2004. Digest of Technical Papers. 2004 Symposium on (IEEE, 2004) pp. 64-67.

[32] B. H. Calhoun and A. P. Chandrakasan, Static noise margin variation for sub-threshold sram in
65-nm cmos, IEEE Journal of solid-state circuits 41, 1673 (2006).

[33] K. Das and T. Lehmann, Sos current mirror matching at 4k: A brief study, in Circuits and Systems
(ISCAS), Proceedings of 2010 IEEE International Symposium on (1EEE, 2010) pp. 3405-3408.

[34] P. 't Hart, J. van Dijk, M. Babaie, E. Charbon, A. Vladimircscu, and F. Sebastiano, Characterization
and model validation of mismatch in nanometer cmos at cryogenic temperatures, in 2018 48th
European Solid-State Device Research Conference (ESSDERC) (IEEE, 2018) pp. 246—249.

https://www.intel.com/content/www/us/en/programmable/documentation/eis1414462767872.html
https://www.intel.com/content/www/us/en/programmable/documentation/eis1414462767872.html
https://www.intel.com/content/altera-www/global/en_us/index/documentation/eis1415168884929.html
https://www.intel.com/content/altera-www/global/en_us/index/documentation/eis1415168884929.html
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/cyclone-v/cv_51002.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/cyclone-v/cv_51002.pdf
https://docs.python.org/2/library/random.html
https://docs.python.org/2/library/random.html

ASIC Application-Specific Integrated Circuit. iii, 2, 9
AWG Arbitrary Waveform Generator. 1, 3
AXI Advanced Extensible Interface. 6, 7, 12, 19

CBox Control Box. 3
CCLight Central Controller-Light. iii, 2, 3, 5, 9, 29

DDR Double Data Rate. 6
DRC Design Rule Check. 19

e€QASM executable Quantum Assembly. 4-6, 9
FPGA Field Programmable Gate Array. iii, 2, 3, 9
ISA Instruction Set Architecture. 1, 3, 4, 9

LUT Look-Up Table. 5
LVS Layout Versus Schematic. 19

MMMC Multi-Mode, Multi-Corner. 19
PVT Process, Voltage, Temperature. 20

SOMQ Single Operation Multiple Qubit. 4
SPI Serial Peripheral Interface. 3, 19

UHFQA Ultra High Frequency Quantum Analyzer. 1, 2, 13

VLIW Very Long Instruction Word. 4, 6
VSM Vector Switch Matrix. 1

33

Acronyms

Glossary

Firmware A common term for an hardware description language design, as this is written like ‘soft-
ware’ but describes ‘hardware’, putting firmware’ somewhere in the middle. 2

GDS Stands for Graphic Database System, is the standard format that stores information about a
layout design. 19

Netlist A (Verilog) module described using only generic gates or standard cells. 19

35

Al
A.2
A3
A4
B.1
B.2
C.1
C.2

List of Code Blocks

€QASM Generator . . . v v i i e 39
MjuOpAlign Original Firmware i i i e e e e s e e e e e e 42
MjuOpAlign Synthesis Compatible Firmware 46
Genus CCLight Synthesis Script i i i i it e e e e e e e e e e 50
Netlist to Schematic Script o e e e e e 57
SPICE Netlist Script ¢ i i it i e e e e e e e e e e e e e e e e 58
Newsletter Software HTML Source Code v v v i i v e e e e e e e e e 79
Newsletter Software JavaScript SourceCode 84

37

Excerpts From the Thesis

A.1. eQASM Generator

39

A. Excerpts From the Thesis

A.1. eQASM Generator

A. Excerpts From the Thesis

Code Block A.1: eQASM Generator

A.2. MjuOpAlign Original Firmware

A.2. MjuOpAlign Original Firmware

A. Excerpts From the Thesis

A.2. MjuOpAlign Original Firmware

A. Excerpts From the Thesis

Code Block A.2: MjuOpAlign Original Firmware

A.3. MjuOpAlign Synthesis Compatible Firmware

A.3. MjuOpAlign Synthesis Compatible Firmware

A. Excerpts From the Thesis

A.3. MjuOpAlign Synthesis Compatible Firmware

A. Excerpts From the Thesis

Code Block A.3: MjuOpAlign Synthesis Compatible Firmware

A.4. Genus CCLight Synthesis Script

1
2
3
4
5
6
7
8
9

A.4. Genus CCLight Synthesis Script

A. Excerpts From the Thesis

A.4. Genus CCLight Synthesis Script

A. Excerpts From the Thesis

A.4. Genus CCLight Synthesis Script

Code Block A.4: Genus CCLight Synthesis Script

NOUTDS WN =

O 0

10
11

12
13

14
15

Miscellaneous Toolchain Scripts

B.1. Netlist to Schematic Script

To solve the issue with Innovus® exporting some digital pad cells without all of the needed ports,
a script was created to fix the exported netlist. The script simply runs a regex command for each
delinquent pad cell, finding it in the netlist (possibly multiple times) and cutting its port declarations
from the netlist, then adding them back in (see the \ 1), then appending the missing ports to the end
of the declarations. This script is written in sh/csh, and the code is given below:

#!/bin/sh

#made by lizzy hatfield 8-6-18

#call with ”source netlist-import-prep.sh <name-of-source-netlist-file.v>"
#fixes PDDW04DGZ G

sed -i -r ’s/PDDW04DGZ G (.*) \(/PDDW04DGZ G \1 (\n.POC(POC), \n.VDD (VDD),

\n.VDDPST (VDDPST), \n.VSS(VSS), \n.VSSPST (VSSPST), /’/ $1

#fixes PDDW04SDGZ_G

sed -1 -r ’s/PDDW04SDGZ G (.*) \(/PDDW04SDGZ G \1 (\n.POC(POC), \n.VDD (VDD
), \n.VDDPST (VDDPST), \n.VSS(VSS), \n.VSSPST(VSSPST), /'’ $1

#fixes PVDD2POC G

sed -1 -r ’s/PVDD2POC G (.*) \(/PVDD2POC G \1 (\n.POC(POC), \n.VDD(VDD), \
n.VDDPST (VDDPST), \n.VSS(VSS), \n.VSSPST(VSSPST) /’/ S1

#fixes PVDD2DGZ G

sed -1 -r ’s/PVDD2DGZ G (.*) \(/PVDD2DGZ G \1 (\n.VDDPST (VDDPST), \n.VSS
VSS), \n.VSSPST (VSSPST) /'’ sl

#fixes PVSS2DGZ G

sed -1 -r ’s/PVSS2DGZ G (.*) \(/PVSS2DGZ G \1 (\n.VDD(VDD), \n.VDDPST (
VDDPST), \n.VSS(VSS), \n.VSSPST (VSSPST) /'’ $1

57

38 B. Miscellaneous Toolchain Scripts

Code Block B.1: Netlist to Schematic Script

B.2. SPICE Netlist Script

In order to solve the bug in the TSMC 40 nm PDK where the pad cells are not correctly parsed from
schematic to SPICE netlist (for LVS), a script was developed to fix the SPICE netlist before running LVS.
This script works by traversing the SPICE netlist and searching for the incorrect definition of each pad
cell one at a time, and replacing it entirely with the correct one (a regex operation). This script was
made initially to cover all digital pad cells from the TSMC 40 nm IO PDK, but was later expanded to
cover all of the pad cells, including the analog ones. The code is written for Python 2.6.6, the version
installed on the CoolGroup server. Note that the details on the parameters of the transistors in the pad
cells, while the most important part of the actual script, are not given here as they are proprietary to
TSMC. They are replaced here with Xes. The code is given below:

B.2. SPICE Netlist Script

B. Miscellaneous Toolchain Scripts

B.2. SPICE Netlist Script

B. Miscellaneous Toolchain Scripts

B.2. SPICE Netlist Script

B. Miscellaneous Toolchain Scripts

B.2. SPICE Netlist Script

B. Miscellaneous Toolchain Scripts

B.2. SPICE Netlist Script

B. Miscellaneous Toolchain Scripts

B.2. SPICE Netlist Script

B. Miscellaneous Toolchain Scripts

B.2. SPICE Netlist Script

B. Miscellaneous Toolchain Scripts

B.2. SPICE Netlist Script

B. Miscellaneous Toolchain Scripts

B.2. SPICE Netlist Script

B. Miscellaneous Toolchain Scripts

B.2. SPICE Netlist Script

78 B. Miscellaneous Toolchain Scripts

Code Block B.2: SPICE Netlist Script

w N

O OO UL DA

10
11
12
13
14

Newsletter Software

To increase the communication within the CoolGroup, the weekly newsletter was started. The idea is
that every student in the lab reports on what they’ve been working on in the past week, any problems
they've come across, and what they plan to do in the next week. In this way everyone knows what
everyone else is doing, and the progress of the various projects can be tracked. However, the process
of collecting and formulating this data into a newsletter email each week was a lengthy process, and
often resulted in an email with inconsistent formatting, as each person’s submission was copied from
their email responses. Of course, this problem was solved with automation. A JavaScript (Google Script
API) software was created to collect this data through Google Forms and Sheets, and then place the
data into an HTML formatted string which can then be emailed to everyone.

The newsletter software can be very briefly described in the following manner. The members of the
lab receive weekly email reminders sent from the software at the user’s discretion. The email contents
are dictated by a Google Doc which is parsed to HTML by the JS back-end. The lab submits their weekly
reports and optionally comics to Google Forms which store this data in Google Sheets. When the user
wants to send the email, they press a button on the ‘GUI". This triggers the back-end to build an HTML
template which is pre-defined, then parse the lab reports Google Sheets and place the items in that
template. In this process it also checks the items for the HTML tags that would ‘break’ the template. It
also adds a comic from the respective Google Sheet. Finally once the full template has been assembled
with the desired data, it send the email to the lab. The user also has the option to send themselves a
test email first, which makes the same email sent to the lab otherwise, but without cleaning the data
from the Google Sheets. Other options include turning on and off name sorting, announcements, and
comics within the newsletters.

Examples of the GUI with success/error messages on sending the newsletter are given below in
Figure C.1 and Figure C.2.

The front-end HTML ‘GUI’ code is given below:

Ll ==

-if you dont have a div inside a div the whole table will disappear after
a click

—-delete handlers after 1 use?

-—>
<!DOCTYPE html>
<html>
<head>

<base target="_ top”>
<style>
table {

width: 600px;

79

80 C. Newsletter Software

Figure C.1: Newsletter GUI, Email Success Handler

Email Sent Successfully!

CoolGroup Newsletter Generator Version 3:
The Return Of The GUI

Send Reminder Email

Sort Names?

Add Announcement?

Add Comic? 4

Software Copyright ®@ Lizzy Hatfield 2018

Figure C.2: Newsletter GUI, Email Failure Handler

Failed to send the Email!

Error Report: Errorl Comic URL does not
contain an image file. Please fix this URL
or pick another comic.

CoolGroup Newsletter Generator Version 3:
The Return Of The GUI

Send Reminder Email

Sort Names?

Add Announcement?

Add Comic? 6
Pick a New Comic
Send Test Email

Send Newsletter

Software Copyright @ Lizzy Hatfield 2018

15 /*height: 400px;*/

16 margin: 0;

17 border-collapse: collapse;
18 font-family: arial;

19 table-layout: fixed;

20|}

C. Newsletter Software

C. Newsletter Software

Code Block C.1: Newsletter Software HTML Source Code

The back-end JavaScript is given below:

KAk kA Ak A A

Ak ok ok ok ok ok ok ok ko ok kA

C. Newsletter Software

C. Newsletter Software

C. Newsletter Software

C. Newsletter Software

C. Newsletter Software

C. Newsletter Software

C. Newsletter Software

C. Newsletter Software

C. Newsletter Software

104 C. Newsletter Software

Code Block C.2: Newsletter Software JavaScript Source Code

Digital Flow Handbook

In order to help future digital designers working on the tools used by the CoolGroup (Genus, Innovus,
etc). A handbook was started to compile all of the knowledge and helpful tips about these tools. It was
created in hopes that continued documentation of engineering tools could help future designers learn
faster, and make their designs better and more efficiently. What is complete from this work-in-progress
is given in the following pages.

105

Digital |C Design
Handbook

E. K. Hatfield

A Guide
to help you implement your digital crap in silicon

Acknowledgements and Preface

This guide was made in collaboration with and with contributions by Gerd Kiene, Augusto Carimatto. ..
This document was last updated December 2, 2018 and may be out of date...

Questions or comments may be emailed to: e .k .hatfield@student .tudelft .nl

iii

Contents

Introduction 1
1.1 AboutthisGuide e 1
1.2 Getting Set Up with the ToolsinthisGuide 1
121 GeNUS . . . o v o e e e e e e e e e e e e e e 1

122 InnovuS L L e e e e e e e e e e 1

1.2.3 Virtuoso&Calibre Lo 1
Design Synthesis with Genus 5
2.1 Introduction L e e e e e e e e e e 5
2.2 BuildingYourScript. L L e e 5
221 Introduction. e e e e 5
2.2.2 Basic Structure of a Genus Synthesis Script 0oL 5
2.2.3 ABasicScriptExample. oL e 6
224 MoreGenusTricks. L L 7

23 Usingthe GUI. L e e e 7
Place and Route with Innovus 9
3.1 Introduction L e e 9
3.2 ImportingYourDesign L e 9
3.3 FloorplanningYourDesign L. Lo L e 9
34 MakingYourPadRing. L e 9
3.5 Building Your Design witha Script L L 9
3.6 Verificationl 9
3.7 ExportingYour GDSandNetlist. L L oo 9
3.7.1 Netlist EXport o e e e e e e e e e e 9
Verification with Virtuoso and Calibre 11
4.1 Introduction L e e e e e e e e e 11
4.2 Importing Your GDS and Netlistinto Virtuoso 11
4.3 RunningDRCwithCalibre oo 11
44 RunningVSwith Calibre. L 11
4.5 Final RCExtractionwithInnovus 0 0 e 11
UNIX, Scripting, and QuestaSim 13
Al UNIXTips & Tricks o o e e e e e e e e e 13
A.1.1 Introduction to fernet.ewi.tudelftnl oo oL 13
A12 CommandLineTips. o o e 13
A.1.3 Listof Useful UNIXCommands o v v v i i v v v e 14

A2 ShellScripting L e e 15
A2.1 BasicConcepts. o v v i i e e e e e e e e e e e e e e e e 15
A2.2 TheDifferentShells e 15
A23 HowtoMakeaBasicScript Lo 15
A.2.4 MoreAdvanced Scripting Tips L. Lo 16

A.3 Digital Design withQuestaSim L 16
A.3.1 Making and Simulating a Project Usingthe GUI 16
A3.2 HowtoUsetheCompareTool 17
A3.3 UsingtheQuestaSimConsole L o oo 17

List of Code Snippets 19
Bibliography 21

Introduction

1.1. About this Guide

The purpose of this handbook is to help students through the process of implementing a digital design as
an ASIC using the tools available for the CoolGroup at TU Delft, specifically targeting a 40nm TSMC process.
This guide was written on December 2, 2018 and may be out of date with the server and/or tools. If you think
that something is missing/incorrect/needs to be updated, then update this guide!

This guide assumes that you are familiar with the UNIX server environment, shell scripting, and are start-
ing with a digital design that you are ready to synthesize etc, but some helpful hints and tips will be provided
for these topics in the appendices.

1.2. Getting Set Up with the Tools in this Guide

1.2.1. Genus
To setup Genus in your fernet account, you only need to execute a few commands:

cd ~

mkdir <name-of-genus-run-directory>

cp /eda/cadence/2017-18/scripts/GENUS_17.11.000_RHELx86.csh ./<name-of-—
genus-run—-directory>/

DN

1%
w

Code Snippet 1.1: Genus Setup

Then you can simply source the Genus sourceme (after sourcing the Virtuoso sourceme) and run the program
with the comamnd "genus’.

1.2.2. Innovus
Likewise for Innovus, you only need to run a few commands:

cd ~

mkdir <name-of-innovus-run-directory>

cp /eda/cadence/2017-18/scripts/INNOVUS_17.11.000_RHELx86.csh ./<name-of-
innovus-run-directory>/

DN =

w

Code Snippet 1.2: Innovus Setup

The same goes for launching Innovus as it does with Genus.

1.2.3. Virtuoso & Calibre
To set up Virtuoso is simple enough. First you need to create a working directory for Virtuoso, as done for the
other tools. Next you need to create a sourceme file inside that directory that has the following contents:

1| source /eda/scripts/flexlm.csh
2| source /eda/cadence/2016-17/scripts/IC_6.1.7.704_RHELx86.csh

1. Introduction

Code Snippet 1.3: Virtuoso sourceme

Second, you need to create a file in the same place called "cds.lib" with the following contents:

Code Snippet 1.4: Virtuoso cds.lib

You can create these with emacs/gedit/vi/etc. The first is a script to prepare the shell for launching Virtuoso,
and the second is a file Virtuoso relies on to manage cell libraries. Next, to set up the Calibre environment

1.2. Getting Set Up with the Tools in this Guide 3

inside Virtuoso, you need to do the following [inside the CIW window once you launch Virtuoso]: [this is the
current ad-hoc solution, please update with the robust solution later]

setenv MGC_HOME /u/55/55/mentor/Calibre/ixl_cal_2009.3_32.24
load (strcat ("/u/55/55/mentor/Calibre/ix1_cal_2009.3_32.24/shared/pkgs/
icv.ixl/tools/queryskl/calibre.skl"))

Code Snippet 1.5: Calibre Setup

Now when you open an item in the Layout Viewer in Virtuoso, you should be able to see a Calibre tab on the
toolbar with options like Run nmDRC, Run nmLVS, etc. If that is the case, then you are ready to begin building
your digital chip!

Design Synthesis with Genus

2.1. Introduction

The first step in taking a digital design from HDL behavioral description to chip is automatic synthesis. This
means translating all of the constructs withing the HDL code such as case statements, if statements, arith-
metic operations, and more into basic digital components like AND gates and flip flops from a standard cell
library.

This guide is written for Genus version 17.11.000, and may become out of date. Genus is the successor
of the Cadence tool RTL Compiler, and much of the information about RTL Compiler is relevant to Genus.
Useful documents and references for Genus can be found on fernet; see Appendix B for a listing of these
documents.

2.2. Building Your Script

2.2.1. Introduction

The Genus environment is built out of a console and this the the primary way to use it. Just like a UNIX shell,
you can get an auto-complete/auto-suggest from the TAB key. Additionally, you can access help or man pages
by using 'help and man with the name of the command. To get information about a Genus attribute, use

help root: plus the name of the attribute.
Since Genus has mainly a console interface, it is best to run it by way of TCL scripts. The next sections will
discuss the structure of these scripts.

2.2.2. Basic Structure of a Genus Synthesis Script
Within the Genus script, there are a few steps that are always performed in order to synthesize the HDL code
to a netlist. These steps are as follows:

1. Load technology libraries

2. Load HDL code

3. Set constraints

4. Synthesize

5. Export netlist and constraints

The first step loads the technology files that describe the function and performance of the standard cells
that the design will be synthesized into. The second step loads the behavioral HDL code that needs to be
replicated as a netlist of standard cells. The third step sets synthesis constraints on timing and/or area for
the final netlist. The fourth step performs the actual of the HDL to standard cells while trying to meet the
constrains set in step three. Lastly step five extracts the Verilog netlist of standard cells and corresponding
timing constraint file.

w

[$2 =N

~N O

(oe]

10
11
12
13
14
15
16
17
18
19
20

6 2. Design Synthesis with Genus

2.2.3. A Basic Script Example
These five basic steps can be implemented with the following script:

###Step 1: load technology libraries and files

set_db lib_search_path {/data/cad/DesignKits/TSMC/tsmcN40/tsmc_401p_std/
tcbnd0lpbwp_v120c/TSMCHOME/digital/Front_End/timing_power_noise/ECSM/
tcbn40lpbwp_120b/}

set_db library {tcbn40lpbwpwc_ecsm.lib}

set_db design_process_node 40

set_db init_hdl_search_path {HDLSourceDir/}

###Step 2: load HDL code
read_hdl -language vhdl HDLSourceDir/Behavioral.vhd
elaborate

###Step 3: set constraints

set_top_module Behav

create_clock -name Clk -period 10 [get_ports Clk]
set_dont_touch_network [all clocks]

###Step 4: synthesis
syn_generic

syn_map

syn_opt

###Step 5: export netlist and constraints

write_hdl Behav > ResultsDir/Behav_mapped.v

write_sdf -design Behav > ResultsDir/Behav_mapped.sdf
write_sdc Behav > ResultsDir/Behav_mapped.sdc

Code Snippet 2.1: Basic Synthesis Script

This script can be analyzed step-by-step:

Step 1 In this step, the tool is configured to target the desired standard cell library and technology node.
In line 2, the tool is pointed towards the path of the standard cell library models, and in line 3 it is pointed
towards the models themselves. Line 4 designates the process node (in nm), and line 5 sets the path of the
HDL file(s).

Step 2 This step is straightforward; line 8 reads the source HDL file, and line 9 ’elaborates’ it. The process
of reading in the HDL file and elaborating it syntax checks the HDL in a basic sense and also to verify that the
constructs in the HDL are synthesizable/compatible with the tool.

Step 3 This step sets the clock frequency and optionally the setup and hold times [rise/fall?] of the clock(s).
First, line 12 asserts the top module of the design, which is important if multiple designs are loaded (separate
designs, not necessarily separate HDL files). Line 13 defines a clock in the design named 'Clk’ and gives it a
period of 10 ns (or a frequency of 100 MHz). The portion in the square brackets is an inline command which
returns the ports connected to 'Clk’ as an argument to this command (create_clock). This is the standard
syntax for this operation. Lastly line 14 adds a protection to the clocks defined for this design that they should
not be altered by the synthesis tool.

Step 4 Step 4 performs the synthesis of the design to a netlist of standard cells. Line 17 translates the HDL
constructs into generic components (gates, flip flops, etc). Then line 18 translates those generic components
to components in the loaded standard cell library while trying to meet the timing constraints set in step 3.
Finally line 19 tries to optimize the final netlist of standard cells further.

2.3. Using the GUI 7

Step5 Thelaststep in the scriptis very straightforward; it exports the netlist and corresponding constraints.
Line 22 exports the netlist, line 23 exports the SDC (timing constraints) file, and line 24 exports the SDF
(timing data) file.

2.2.4. More Genus Tricks
Although the script given in 2.2.3 will completely synthesize a design to the TSMC 40nm Standard Cell Library,
there is still more that can be achieved with a synthesis script.

Lastly, consulting the PDFs/documentation for Genus will give the best information about the tool. See
the relevant appendix for a listing of the most useful documentation on the fernet server.

2.3. Using the GUI

Place and Route with Innovus

3.1. Introduction

The second step in implementing a digital design is called 'place and route’. In this step, the standard cells
instantiated in the netlist generated by the synthesis tool are placed within a floorplan of a chip and routed
in a way that meets the timing constraints of the design.

3.2. Importing Your Design

3.3. Floorplanning Your Design

3.4. Making Your Pad Ring

3.5. Building Your Design with a Script
3.6. Verification

3.7. Exporting Your GDS and Netlist
3.7.1. Netlist Export

Verification with Virtuoso and Calibre

4.1. Introduction

4.2. Importing Your GDS and Netlist into Virtuoso
4.3. Running DRC with Calibre

4.4. Running LVS with Calibre

4.5. Final RC Extraction with Innovus

11

UNIX, Scripting, and QuestaSim

A.1. UNIX Tips & Tricks

In this section, some helpful UNIX tip and tricks will be presented. First, the host server for the CoolGroup
will be discussed. Second, some helpful tips for using the command line will be presented. Lastly, a few of
the most common UNIX commands will be explained.

A.1.1. Introduction to fernet.ewi.tudelft.nl

All of the data, software, and documentation regarding the TSMC 40nm process for the CoolGroup is on
a server called fernet.ewi.tudelft.nl. The fernet server launches with the tcsh shell by default, and runs on
the CentOS operating system, version 6.7. The server can be accessed with any SSH tool such as putty or
MobaXterm. If you do not already have an account on this server, please speak with the server admin, An-
toon Frehe. On this server, all of the CoolGroupers have accounts under the directory /users/, which is one
among many other top level directories. The folders of interest are the /data/ and /eda/ folders. These folders
are mentioned elsewhere in this guide. Lastly, any submissions of GDS etc files to IMEC will happen in the
lusers/qegds2/ directory. Note that this folder is always accessible via an explicit change directory call, but
may become invisible after a period of inactivity.

A.1.2. Command Line Tips
When running in the command line, you can do a few things that will make your life easier:

* The TAB Key - the shell will list all of the possible items, like an auto complete function. Works for file
names and commands.

¢ The Up and Down Arrow Keys - the shell will log all of the commands you run, so you can easily rerun
an old command by ’scrolling up’ in the log with the Up Arrow Key.

¢ The. - in ever directory file, there are two entries. One of them is the ., which indicates the location of
the directory. You can think of it as "here’. For example cp /users/example/file.txt . will
copy the file file.txt to 'here’, which is your current directory.

e The .. - the other entry in every folder is the .. entry. This simply indicates the location of the parent
directory. For example, (cd .. will move you to the parent directory of your current directory.

¢ The Wildcard Character, * - the wildcard character can be used in place of a character or string you
don’t know or don’t care about. For example, if you have a bunch of files named 'sample’ with different
extensions like .txt, .tcl, .png, and you want to remove them all, you can simply run rm sample. *

¢ Input Redirect, < - the input redirect character will allow you to redirect the input to a program or com-
mand to a file you explicitly choose. For example, sort < new.txt will sortthe items in new.txt.

¢ Output Redirect, > - the output redirect character will allow you to redirect the output from a program
or command to a file you explicitly choose. For example, echo "Hello World!" > new-file.txt
writes the line "Hello World!" to the file new-file.txt, overwriting any previous contents of the file.

13

14

A. UNIX, Scripting, and QuestaSim

Output Append, >> - similar to redirect, except this one will append the output to the end of the desti-
nation file without overwriting the previous contents.

Pipelining with | - the 'pipe’ character allows you to directly feed the output of one program to another.
For example, 1s | grep example | less will take all of the files in the current directory from

Is, feed it to grep, which then searches those files for the string "example", and finally sends those results
to less to print out as a scrolling page.

Run in Background with & - a useful command for any program that is run purely from a GUI, running
a program such as ‘virtuoso & will launch an instance of Virtuoso, but leave the shell open for
further commands.

Multiple Commands at Once with ; - you can send multiple commands to the shell at once if you
separate them with a semicolon (;). The commands will be executed from left to right, and any invalid
commands will print an error as normal, but not stop the execution of the following command(s).

The Escape Character, \ - whenever you want the shell or program to take a character as a literal instead
of as a command, such as the wildcard character *, you must 'escape’ the character command using *
so that the shell knows to take the character as its own character and not as a wildcard indicator.

A.1.3. List of Useful UNIX Commands

Some of the most common UNIX commands are explained below:

cd - change directory. Will change your current working directory to the specified destination folder,
or the home directory if none is given. Example: c¢d ~/example/some-folder/

man - manual. Will open the manual page for a given command, listing all of the options and functions
of the command. Example: man grep

1s - list. Will list every file in your current working directory.

11 - list long. Will list every file in your current working directory, along with basic information about
each file including size, read-write permissions, ownership, etc.

cat - concatenate. Will print out the contents of a text/ASCII file to the command prompt. Example:
cat textfile.txt

tar - tape archive. Will compress or decompress .tar or .tar.gz files.
Compress example: tar —czf dest-file.tar.gz source-folder Decompress example:

tar —-zxvf compressed.tar.gz

v1i - visual. In-shell text editor. Has a ’command’ mode and an ’edit’ mode. There is a similar program
called 'vim'. Example: vi new.txt

emacs - A GUI-based text editor. Has plug-ins for various programming languages such as csh, tcl, and
VHDL. The similar 'gedit’ is also available.

find - find. Traverses through the current working current and though child directories for the file
specified. Example: find . —-name "x.tcl" -print

pwd - print working directory. Will print the full path name of your current working directory.

diff - difference. Will print the differences between two files, if any exist.
Example: diff file.txt similar.txt

cp - copy. Will copy a specified file or directory to a specified location.
mv - move. Will move a specified file or directory to a specified location.
rm - remove. Will delete a specified file or directory.

mkdir - make directory. Will create a directory with the given name in the current working directory.

w

A.2. Shell Scripting 15

* grep - global regular expression print. Searches through a specified file for a given string. Example:
grep string file.txt

* ps - process status. Lists all running processes (or programs) with process ID on the server. Example:
ps —-u aUserName

* kill - Ends a process by ID. Used in conjunction with ps. Example: kill -9 1337

* sed - stream editor. Can perform regex operations on files.
Examples: sed —n ' /~.u.an$/p’ words.txt and sed ’'s/old thing/new thing/’

A.2. Shell Scripting

This section will cover basic scripting concepts, the different kinds of shells, how to launch a script, how to
make a file executable, how to make a basic script, and some extra useful tips.

A.2.1. Basic Concepts

The main goal of scripting is to automate your workflow in the shell environment. Anything you can do in the
command prompt, you can do in a script (and more, even). So really the trick is to know what'’s possible, what
you want to accomplish, and make a solution out of these two things. As with any programming problem,
Google is your best friend, and as time goes on your scripts will get more powerful and sophisticated. Happy
scripting!

A.2.2. The Different Shells

Although all the UNIX command prompts might look the same, there are actually many different shells avail-
able, each with different features and syntax w.r.t. scripting. The two main kinds of shells are Bourne shells
and C shells. The former include the sh and bash shells, while the latter includes csh, and tcsh, which is the
default shell for the fernet server. On the fernet server, the following shells are available: sh, bash, nologin,
dash, tcsh, csh, ksh, zsh. The main difference between these two families of shells is that the C shells have a C
language-like syntax. Many guides on the internet suggest to start with the Bourne shells if you are unfamiliar
with shell scripting, but if you are reading this guide then you are certainly familiar with C and programming
in general, meaning tcsh and the other C shells will work fine for you. All of the examples in this guide will be
in tcsh syntax, but could be readily converted to Bourne syntax.

A.2.3. How to Make a Basic Script

Example of something to be scripted: Every time you want to run Genus or Innovus, you need to first source
the sourceme file for Virtuoso, and then go to your Genus/Innovus working directory and source the sourceme
file for Genus/Innovus, and finally run the program. Instead of typing these commands every time you want
to run one of these programs, you can make a script that will do this all in one go.

In this case, the contents of the script is very clear — it will just have the five commands it takes to start
Genus in this example. Next, a reference to the intended shell is needed on the first line of the file. In this
case, the desired shell is tcsh, so that makes the first line #!/bin/tcsh . Lastly, we put all of these items
together in a file using a text editor like vim, emacs, or nano, and save it with the extension [.csh]. The full
example file is given below:

#!/bin/tcsh
#GenusStartScript.csh

cd ~/CadenceRunDir

source sourceme

cd ~/GenusRunDir

source /eda/cadence/2017-18/scripts/GENUS_17.11.000_RHELx86.csh
genus

Code Snippet A.1: Basic Script Example

The first line is a comment, but tells the shell that the tcsh shell is intended for this script, and hence is
necessary. The second line is a comment that can be ignored. Lines 4 and 5 move the shell to the Cadence

DN =

gl = W

=)

16 A. UNIX, Scripting, and QuestaSim

run directory which contains a copy of the Cadence sourceme file and sources it, which configures the shell
to run Virtuoso. This is also necessary for running Genus (and Innovus) which are also Cadence tools. Lines
6 and 7 move the shell to the Genus run directory and sources the Genus sourceme file and sources it. Lastly
line 8 starts Genus.

It is also possible to make a script executable using chmod . However, for this particular script it would

not be useful to run it as an executable, i.e. with . /GenusStartScript .csh , because then youwould be

sourcing sourceme and .../GENUS_17.11.000_RHELx86.csh (which setsome global variables to
run the programs) to a child shell, but these effects are not seen in the parent shell that the call is made from.
Hence you will not be able to run Genus if you run the script in that way.

A.2.4. More Advanced Scripting Tips

Example of something more complicated to be scripted: imagine that you are running Genus in a directory
called 'GenusRunDir’, but don't yet know how to log the automatically generated ’cmd’ and ’log’ files in a
user-specified location. Now you've got about 50 cmd files and 50 log files bogging down your directory, and
you want to clean it up so you can find the things you are looking for. You know the commands to do this, but
since this is happening every time you run Genus, you know it’s wise to make it as a script so you can simply
run the script each time you want to clean out the genus directory.

The first thing to do is to decide what exactly you want the script to do. In this case, you want to move the
files to another folder with the name "logs-up-to-" plus the date in the format "ddMonyy". Then you want to
move these files to that folder so that the creation date information is retained and more importantly these
files are removed from the Genus run directory.The full example file is given below:

#!/bin/tsch
#script to clean up log and command files from genus

set d=‘date +%d%b%y"’
mkdir ~/GenusRunDir/logs-up-to-$d
mv ~/GenusRunDir/genus.* ~/GenusRunDir/logs-up-to-5$d

Code Snippet A.2: More Advanced Script Example

The first line is the usual comment to designate this file as a tcsh script. The second line is just a normal com-
ment. Line 4 sets a variable called "d" using the command date as an argument. It is very important that
the back tick| ' is used as quotes for this command so that the shell knows this is not a string but a command
and that the output of this command should go to the variable "d". Line 5 creates the sub-directory we want
with the name "logs-up-to-ddMonyy" in the Genus run directory. The '$d’ places the value of the variable
'd’ at that place in the string. Lastly line 6 moves all of the files starting with the name "genus." to the sub-
directory made from line 5. This affects the Genus log files which have the name pattern "genus.log<num>",
and the cmd log files which have the name pattern "genus.cmd<nums>".

A.3. Digital Design with QuestaSim

There are a number of tools for simulating and verifying digital designs, mainly Xilinx and Altera/Mentor
Graphics tools. In this section some tips for using the QuestaSim tool from Mentor Graphics will be pre-
sented. This information is based on software version 10.5c and may become out of date with newer software
versions.

A.3.1. Making and Simulating a Project Using the GUI

The best way to start with QuestaSim is to build a project. A project construct in QuestaSim is really just a
collection of source files (and configurations) which don't all necessarily fall into the same library. A library
is a folder with some special QuestaSim files that should correspond to libraries defined in your HDL design.
HDL files are always compiled with respect to a particular library, be it defined in the HDL design or the
‘default’ library called 'work.

First, start up QuestaSim by sourcing the Cadence sourceme file, then the QuestaSim sourceme file, and
lastly running the command vsim . Here you will see a 'Library’ window, a 'Transcript’ window, and a tool-
bar at the top. To make a project, go to the toolbar and click on "File > New > Project". A pop-up will appear.
Choose your project’s name, directory, and default library. Now a 'Project’ window will appear, displaying the

A.3. Digital Design with QuestaSim 17

files within the project, so for now it is empty. There will also be a new pop-up, which asks to add new items
to the project. Add any existing VHDL/Verilog/etc files you like by clicking "Add Existing File" then specify-
ing the path to the file in the "File Name" prompt, and finally clicking "OK". Creating a new source file is a
similar procedure: click "Create New File" then specifying the path and filename in the "File Name" prompt,
selecting the file type under "Add file as type" and lastly clicking "OK". After this pop-up disappears, these
prompts can be found again by right-clicking the "Project” window.

Once all of the files of the project are ready, they can be compiled by going to the toolbar, and clicking
"Compile > Compile All". This is compatible for mixed language designs. Additionally right-clicking the
"Project" window and selecting "Compile > Compile All" will compile all of the source files of the project. If
the compile order matters, which it usually does, go to the toolbar, and click "Compile > Compile Order...".
This brings up a prompt where the order of compile can be manually altered or automatically generated via
the "Auto Generate" button. Again, this option can be accessed via right-clicking the "Project" window.

When the entire design has been compiled, it can finally be simulated. First, the simulation environment
needs to be launched by going to the toolbar and clicking "Simulation > Start Simulation...". A pop-up ap-
pears, and the 'Design Unit’ needs to be selected. This means the testbench entity name, which will be found
within the library it was compiled into, as 1ibName . TBEnt it yName . With the design unit selected, press
"OK" and the simulation environment will launch. To be able to see any signals during the simulation, they
need to be added to the waveform viewer. In the "sim" window of the simulation environment, a hierarchy of
the entire design is visible to the left, and on the right the available signals can be seen (in the "Objects" sub-
window). Signals can be dragged from the "Objects" window to the waveform viewer (window titled "Wave -
Default"), or selected and added with a right-click and selecting "Add Wave". When all of the desired signals
are on the waveform viewer, the column widths of the signal name, value, and waveform columns can be
adjusted as desired. Once the waveform viewer is configured as desired, the simulation can be done. Under
the toolbar the "Run Length" sets the run time length, either by the arrows or by manual type-in. Lastly press
the "Run" button (next to the "Run Length" toggle) and the design will be simulated for the specified length
of time. Press the "Zoom Full" button (or the 'F’ key) to see the full waveform.

To save time and frustration, all of the commands corresponding to the configurations made to the wave-
form viewer, including the signals added, color settings, columns widths, etc., click the "Save Format..." but-
ton under the toolbar and press "OK". This file can be executed after launching the simulation environment
using do wave.do inthe QuestaSim console (window name "Transcript").

A.3.2. How to Use the Compare Tool
A very useful tool in QuestaSim for verifying your design is the comparison tool. This tool will sweep the
signals between two waveform files and highlight any differences through time.

The first step is to save a reference waveform file. With all of the signals from a reference design point
present on the waveform for the desired time period of evaluation, save the waveform file by clicking on "File
> Save Dataset..." on the toolbar.

Next, click on "Tools > Waveform Compare > Comparison Wizard". Click on "Browse..." and choose the
waveform that you previously saved, then click on "Next >". Select "Compare All Signals" (or another if you
prefer) then click "Next >" again. Click "Next >" one more time, then finally "Compare Differences Now" and
"Finish".

On the waveform viewer under any signals that were already present, new signals labeled "compare:"
will now be visible. Any signals that have no differences will appear with a yellow triangle, while those with
differences will have a red X over the triangle. To see where the differences are in time, look for red highlighting
on the signal in the waveform. To see the differences in the values, expand the "compare:" signal and the two
compared base signals will appear below. Highlighting is preserved on these signals too.

Note that the comparison wizard will stop comparing in time once a maximum number of differences
has been found. This setting can be changed at "Tools > Waveform Compare > Options... > Comparison Limit
Count" on the toolbar.

Note that this method requires the signals to have the same name and same timing to work.

Note that this procedure will print the respective commands to the console, which can be saved into a
TCL script to make the comparison easily repeatable.

A.3.3. Using the QuestaSim Console
The best way to use QuestaSim efficiently is to make use of scripts and the console. It is possible to run
commands from a TCL script in the QuestaSim console; it is even possible to execute a python script from it.

18 A. UNIX, Scripting, and QuestaSim

In general, the QuestaSim console works like a UNIX/Linux console: you can scroll through a log of previ-
ous commands, there is an auto-complete function, etc. In addition, QuestaSim has its own set of commands,
mainly relating to the simulation environment, which can be executed. Below is a listing of some useful Ques-
taSim commands:

* quit <option> - quits the QuestaSim tool. Using the -f option forces the exit without any pop ups.
Using the -sim option only quits the simulation environment

* help - acts like the command man from UNIX; gives information about a command or item
e source - [shell command] executes a script file
¢ do - executes a DO file (similar to source)

e vsim -launches specified design into the simulation environment.
Example: vsim -t ps work.hdlDesign (arch) launches the ’arch’ architecture of the entity
’hdl-design’ of the library work with the timescale of picoseconds. Specifying the timescale is always
necessary for a mixed-language design/project, and specifying the architecture is only necessary when
multiple architectures for the design under test are defined.

e run - runs the simulation for the specified time e.g. 'run 400 us or run -all (the latter runs
the simulation until a breakpoint is reached)

e restart <option> -restarts the simulation back to time zero. Signals, waveform/window settings
are preserved (unless certain options are used). Example: restart —f

e file <option> - [TCL command] allows for the manipulation of files.
Examples: file copy vsim.wlf newFile.wlf and file delete oldFile.wlf

* log -r /= -logs all of the signals in the design loaded into the simulation environment and saves
them to the default waveform file (vsim.wlf)

e vcomand vlog
e v1ib - creates a library with the specified name. Example: vl1ib work
¢ vdel - deletes QuestaSim files. Example: vdel -all -1lib work

Happy scripting!

1.1
1.2
1.3
1.4
1.5
2.1
Al
A2

List of Code Snippets

GenUS SETUP o o e e e e e e e e e e 1
Innovus Setup e e e e e e 1
VIrtUOSO SOUTICEIME o v it ittt e e et e 1
Virtuosocds.lib 2
Calibre SEtUP o e e e e 3
Basic Synthesis Script e 6
Basic Script Example e e e e 15
More Advanced Script Example L L 16

19

	Introduction
	Development of Quantum Computing
	The Quantum Computing `Stack'
	Need for Scalable Electronic Control
	Objectives and Contributions of This Thesis

	The CCLight Processor
	The CBox
	Computer Architecture for Quantum Computing
	eQASM: the Executable Quantum Instruction Set Architecture
	Innovations of eQASM
	Instructions of the ISA

	The CCLight Processor Microarchitecture
	The Classical Pipeline
	The Quantum Pipeline - Processing Side
	The Quantum Pipeline - Issue Side
	Communication Handlers

	The Development Environment
	HDL Designer
	QuestaSim
	Python Assembly Script

	Description of FPGA Operation
	Initialization and Run Stage
	Processing Stage
	Output Management and Execution
	Feedback and Other Peripherals

	Development of the CCLight for an ASIC Implementation
	IP Block Replacement in the CCLight Core
	IP Blocks to be Replaced
	Replacement Methodology
	Replacement Verification

	Pin-out Redesign
	Clock Reduction
	Programming Interface Replacement
	Input/Output Reduction and Serialization
	Result

	Functional Verification
	Requirements for Functional Verification of the Design
	Creation of the Benchmarks
	Running Verification on the Design

	Synthesis
	The Genus Tool
	Genus Workflow
	Netlist Verification

	Place and Route
	The Innovus Tool
	Innovus Workflow
	Verification
	Results

	Layout/Physical Design
	The Virtuoso and Calibre Tools
	Passing DRC
	Passing LVS

	Testing
	Testing Considerations
	Proposed Room Temperature Tests
	Proposed Low Temperature Tests

	Conclusions and Future Work
	Summary of Work and Results
	Conclusions
	Future Work

	Bibliography
	Acronyms
	Glossary
	List of Code Blocks
	Excerpts From the Thesis
	eQASM Generator
	MjuOpAlign Original Firmware
	MjuOpAlign Synthesis Compatible Firmware
	Genus CCLight Synthesis Script

	Miscellaneous Toolchain Scripts
	Netlist to Schematic Script
	SPICE Netlist Script

	Newsletter Software
	Digital Flow Handbook

