
   
Target – all (ground truth)  Target – train Target – test 

   
MLP output – all  MLP output – train MLP output – test 

   
MLP-U-Net output – all MLP-U-Net output – train MLP-U-Net output – test 

   
TSR PPT – amplitude PPT – phase 

   
PCT – PC1 PCT – PC2 PCT – PC3 

 Figure 3. Results of MLP based on only temporal information (the 2nd row), MLP-U-Net

based on temporal-spatial information (the 3rd row), the well-known algorithms of TSR, PPT,

and PCT (the 4th and 5th rows) compared to the ground truth image (the 1st row) for the first

dataset. The red color for the first three rows represents the unused pixels for training or test.

Assessment of cultural heritage assets is now extremely important all around the world. The 

use of Infrared Thermography (IRT) is an interesting concept since surface and subsurface 

faults can be discovered by utilizing the 3D diffusion inside the object caused by external 

heat. The primary goal of this research is to detect defects in artworks, which is one of the 

most important tasks in the restoration of mural paintings. To this end, a spatiotemporal deep 

neural network is utilized for defect identification in a mock-up reproducing an artwork, 

taking into account both the temporal and spatial perspectives of step-heating thermography.

ABSTRACT

EXPERIMENTAL SETUP

RESULTS AND DISCUSSION

The dataset, including 529 (23×23) patches, is randomly divided into training and test datasets 

with a ratio of 7:3 and repeated ten times to investigate the model's stability. As a result, the 

training and test datasets are composed of 370 and 159 patches, respectively, with each patch 

size of 10×10×434. Since this is a Class-Imbalanced problem, the AUC value is provided to 

analyze the performance of the sub-models. The AUC averaged over ten repeats across ten 

datasets of the MLP is presented in table 2. The results on the test set demonstrates the 

stability and high performance of MLP sub-model in classifying the pixels. 

CONCLUSIONS

Initial results indicated that the mean F1-score evaluation metric is acceptable with a low 

standard deviation, which can be considered an outstanding performance despite the fact that 

there is a class-imbalance problem in the data. These results were supported by the AUC 

scores verifying that the model's performance was excellent and, more interestingly, stable. It 

was found that their results cannot be considered comparable to the MLP-U-Net's; for 

example, the effect and reflection of the drawing on the surface are still evident.

The IRT-inspected artwork is a replica of Giotto's "Meeting at the Golden Gate" (a mural 

painting) that is preserved in Padua's Scrovegni Chapel (Italy).
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 Figure 1. (a) Photograph of the mock-up, (b) defects map, and (c) sketch of the experimental IRT setup.

Figure 2. The proposed spatiotemporal deep neural network (STDNN).

Table 1. The U-Net (spatial sub-model) model's architecture. 

Layer 

Number 
Layer Type Input of Layer 

1 Conv2D (Filters: 128, (3 × 3), Activation: Exponential Linear Unit (ELU)), 

Kernel_Initializer: he_normal 

MLP’s output 

2 Batch Normalization Layer 1 

3 Conv2D (Filters: 128, (3 × 3), Activation Function: ELU), Kernel_Initializer: he_normal Layer 2 

4 Max-Pooling (Size:(2 × 2)) Layer 3 

5 Conv2D (Filters: 128, (3 × 3), Activation Function: ELU), Kernel_Initializer: he_normal Layer 4 

6 Batch Normalization Layer 5 

7 Conv2D (Filters: 128, (3 × 3), Activation Function: ELU), Kernel_Initializer: he_normal Layer 6 

8 Conv2D-Transpose (Filters: 128,  (3 × 3), Strides = (2 × 2),   Activation Function: ELU) Layer 7 

9 Conv2D (Filters: 128, (3 × 3), Activation Function: ELU), Kernel_Initializer: he_normal Concatenation of 

Layers 3 and 8 

10 Batch Normalization Layer 9 

11 Conv2D (Filters: 128,  (3 × 3), Activation Function: ELU), Kernel_Initializer: he_normal Layer 10 

12 Dropout (0.3) Layer 11 

Final Layer Conv2D (Filters: 1, (1 × 1), Activation: Sigmoid) Layer 12 

 

Table 2. AUC calculated from the (temporal sub-model) MLP’s results for the ten generated datasets. 

Dataset 1 2 3 4 5 6 7 8 9 10 
Mean ± 

Pop std 

Training 0.96±0.01 0.96±0.01 0.96±0.01 0.96±0.01 0.97±0.01 0.97±0.00 0.97±0.00 0.96±0.00 0.96±0.01 0.96±0.01 0.96±0.00 

Test 0.86±0.01 0.89±0.01 0.87±0.01 0.88±0.01 0.88±0.00 0.87±0.01 0.89±0.01 0.87±0.01 0.89±0.01 0.86±0.01 0.88±0.01 

 

Table 3. AUC, Precision, Recall, and F1-Score calculated from the (spatial sub-model) U-Net’s results 

for the ten generated datasets. 

Dataset 

AUC 
Precision 

(Specificity) 

Recall 

(Sensitivity) 
F1-Score 

Train Test Train Test Train Test Train Test 

1  1.00 ± 0.00 0.94 ± 0.00 0.97 ± 0.01 0.82 ± 0.03 0.96 ± 0.02 0.75 ± 0.03 0.96 ± 0.01 0.78 ± 0.01 

2 1.00 ± 0.00 0.95 ± 0.01 0.91 ± 0.02 0.88 ± 0.02 0.97 ± 0.01 0.85 ± 0.02 0.93 ± 0.01 0.86 ± 0.01 

3 1.00 ± 0.00 0.94 ± 0.00 0.95 ± 0.02 0.83 ± 0.04 0.94 ± 0.01 0.78 ± 0.03 0.95 ± 0.01 0.80 ± 0.01 

4 0.99 ± 0.00 0.93 ± 0.01 0.92 ± 0.02 0.83 ± 0.01 0.95 ± 0.01 0.79 ± 0.03 0.93 ± 0.01 0.80 ± 0.02 

5 0.99 ± 0.00 0.95 ± 0.00 0.95 ± 0.01 0.85 ± 0.02 0.94 ± 0.02  0.81 ± 0.02 0.94 ± 0.01 0.82 ± 0.01 

6 1.00 ± 0.00 0.94 ± 0.00 0.89 ± 0.03 0.83 ± 0.02 0.97 ± 0.01 0.81 ± 0.02 0.93 ± 0.02 0.82 ± 0.01 

7 1.00 ± 0.00 0.95 ± 0.00 0.96 ± 0.02 0.89 ± 0.03 0.96 ± 0.01 0.83 ± 0.03 0.96 ± 0.01 0.85 ± 0.01 

8 0.99 ± 0.00 0.93 ± 0.00 0.92 ± 0.01 0.83 ± 0.02 0.90 ± 0.04 0.74 ± 0.05 0.91 ± 0.02 0.77 ± 0.03 

9 1.00 ± 0.00 0.95 ± 0.00 0.96 ± 0.01 0.87 ± 0.02 0.94 ± 0.02 0.81 ± 0.01 0.95 ± 0.01 0.84 ± 0.01 

10 1.00 ± 0.00 0.93 ± 0.00 0.92 ± 0.02 0.81 ± 0.02 0.95 ± 0.02 0.78 ± 0.03 0.94 ± 0.01 0.79 ± 0.01 

Mean ± 

Pop std 
1.00 ± 0.00 0.94 ± 0.01 0.94 ± 0.02 0.84 ± 0.03 0.95 ± 0.02  0.80 ± 0.03 0.94 ± 0.01 0.81 ± 0.03 

 

METHODLOGY
1) Temporal network: A multilayer perceptron (MLP) is used to classify the temporal 

signals related to the pixels into healthy or defective. The temporal sub-model comprises 

three hidden layers, respectively containing 20, 10, and 5 neurons with hyperbolic tangent 

as the activation function, whereas the logistic function is used in the output layer. 

2) Spatial network: A U-Net is employed to segment images into healthy and faulty 

regions. The U-Net model's architecture is presented in detail in table 1.

The first repeat of the MLP's outputs from each dataset is selected as the input of U-Net 

model. To reduce the uncertainty in performance of U-Net model, this model is implemented 

ten different times on each of these datasets, and mean performances with their deviations are 

presented. Table 3 shows the U-Net model's performance across all ten datasets. 
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