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A B S T R A C T   

Dam safety monitoring has become an important topic and is critical for evaluating a dam’s safety status. This 
study focuses on identifying the mechanical properties of a concrete dam from long-term viscoelastic defor-
mation monitoring data. A novel inversion framework is proposed in which a surrogate model, instead of the 
finite element model, is placed inside the optimization loop. First, a multi-output surrogate model based on 
Gaussian process is trained by using data from a finite element simulation in the creep regime. In order to 
efficiently create a high-precision and reliable surrogate model, three test instances are conducted to investigate 
the impact of sample size, parameter range and output quantity on the performance of the surrogate model. 
Subsequently, a meta-heuristic optimization, multi-verse optimizer, is employed to identify the unknown 
viscoelastic parameters. The results illustrate that the identified properties allow predictions on dam displace-
ment which are consistent with the monitoring data. Compared with the traditional inversion method based on 
finite element modelling, the proposed inversion method based on the multi-output surrogate model not only 
achieves accurate estimation of mechanical parameters but also greatly improves computational efficiency.   

1. Introduction 

Concrete dams play important roles in the social and economic fields 
by providing and facilitating flood control, power generation, water 
supply, and irrigation. During their service periods, dams are subjected 
to a variety of operational and environmental loads, and occasionally 
encounter some unconventional events or extreme loads (such as 
excessive flooding, droughts, earthquakes, etc.) [1]. Moreover, the 
overall performance of the concrete structures may decrease over time 
due to age-related deterioration, hydraulic erosion, and other factors. If 
a dam is not well managed and maintained, it may create a potential risk 
to neighbouring populations, property and environment [2]. 

Structural health monitoring (SHM) of concrete dams has become a 
topic of great importance and can help reduce the risk of dam failure 
through early detection of abnormality. Usually, plenty of instruments 
are situated inside and around the dam to monitor the water level, 
ambient temperature, displacement and other characteristics. Since 
significant amounts of data are collected from different instruments, 
interpretation of this data is important in SHM of concrete dams [3,4]. 

Data-based models is a fundamental approach in dam safety systems 
for both daily operation and long-term behaviour evaluation[5,6]. They 
are trained on previous measurements to estimate and predict the 
behaviour of a dam. A typical example is represented by the hydrostatic- 
season-time (HST) models which are widely implemented in 
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engineering practice. The data-based models have advantages of 
simplicity of formulation and efficiency of execution. However, their 
epitaxial prediction capability is poor. For example, it is difficult for 
these models to have an accurate response under conditions such as 
excessive flooding or earthquakes. In addition, the model parameters 
don’t have physical meaning and these models are not able to provide an 
essential explanation to the dam behaviours (e.g. long-term deforma-
tion) [7,8]. 

Physics-based models establish relationships between loads and dam 
responses via structural analysis. This type of model estimates the 
behaviour of a dam based on information concerning material properties 
and physical laws governing the stress–strain relationship. However, 
there are few reports on the application of physics-based models to long- 
term dam monitoring during the operation period. There are two 
possible predicaments: first, the dam response, which is based on 
empirical parameters, results in a low prediction accuracy; second, the 
physics-based model is computationally inefficient because it requires 
an iterative analysis of a computer simulation model. Therefore, the 
parametric identification and further development of physics-based 
models are needed in the domains of dam health monitoring. 

Combined with in-situ monitoring data, inverse analysis is regarded 
as a powerful non-destructive tool not only for identifying the me-
chanical parameters of dam structure [9,10], but also for the calibration 
of physics-based models [11]. Generally, the inverse analysis is per-
formed by minimizing the discrepancies between calculation responses 
(e.g., using FE model) and measured responses, which can be formulated 
as an optimization problem. Due to the complex and nonlinear charac-
teristics, it is very easy to fall into the local optimal for inverse analysis 
optimization problem. In the previous studies, the swarm optimizers, 
such as genetic algorithm [12], particle swarm optimization [13], as 

well as artificial bee colony algorithms [14] have been applied in dam 
inverse analysis, improving the precision and convergence speed of 
optimization. From the existing studies, it is found that most researches 
focused on the identification of Young modulus of the dam and its 
foundation as the Young modulus is a key parameter that could be used 
for health assessment or diagnosing of dam structure [15–18]. In fact, 
the creep characteristics of dam foundation and abutment are also 
essential for analysing dam behaviours (e.g., the long-term deforma-
tion). However, this is usually neglected by researchers. 

In addition, the computational effort excessively increases when 
numerous simulations are required to account for the optimization in 
inverse analysis, especially for the situations of the large-scale numerical 
model and nonlinear computation. Surrogate models are a popular tool 
to approximate the functional relationship of expensive simulation 
models. Common techniques include artificial neural networks (ANNs) 
[19], support vector regression (SVR) [20], Gaussian process (GP) [21], 
polynomial chaos expansion (PCE) [22], etc. In order to address the 
aforementioned challenge, the surrogate models have been utilized for 
the purpose of reducing the computational burden in inverse analysis. 
Fedele et al. [23] adopted ANNs to model the non-linear relationship 
between input and numerical solutions, for the computing time reducing 
in the inversion problem of concrete dams. Dou et al. [24] established 
radial basis function (RBF) combined with hybrid fireworks algorithm 
for identifying dam parameters, verifying its superiority of computa-
tional cost reducing. Sevieri et al. [25] utilized PCE to reduce the 
computational burden of Bayesian updating for concrete dam parame-
ters. Liu et al. [26] applied SVR-based inverse modelling procedure to 
identify the zoned elasticity modulus of an arch dam. Nevertheless, the 
majority of these models are generally limited to linear analysis or one- 
dimension output conditions, which makes applying these approaches to 

Fig. 1. (a) Photograph of the concrete gravity dam; (b) Location of IP5 in dam section #3; (c) FE mesh model of the dam section #3 and the cross section of IP5.  
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nonlinear and multi-output inverse analysis intractable. 
Gaussian process (GP) has emerged as one of the most popular sur-

rogate modelling techniques and powerful approximator [27]. In the 
past, GP was adopted in the field of engineering structure, such as 
structural response prediction [28–31], structural reliability analysis 
[32,33] and model updating [34]. Typical GP is usually designed for 
single-output scenarios wherein the output is a scalar. The extension 
from single- to multi-output Gaussian process (MOGP) model is moti-
vated by the problem of approximating multiple outputs simulta-
neously. MOGP provide a flexible framework for probabilistic regression 
and has been used to solve many high-dimensional, small sample size 
and nonlinear problems [35–37]. In comparison with NNs, SVR and 
other conventional surrogate techniques, MOGP is simple to implement, 
flexible and self-adaptive in the determination of hyperparameters. In 
addition, MOGP is descriptive to incorporate information from learning 
processes and capture complex relationships between multi-input and 
multi-output variables [38]. 

In general, the long-term deformation of concrete dams is a very 
common phenomenon. Some dams exhibit obvious irreversible defor-
mation over the operation period due to the creep of dam bedrock. This 
work aims to solve two issues: (1) establish a surrogate model-based 
inversion framework to identify multiple viscoelastic parameters in an 
accurate and efficient manner, and (2) predict the long-term 

deformation characteristic of the dam using a physics-based model with 
calibrated parameters. The case study is a concrete dam located in 
Cambodia that has been gradually deformed over its operation period 
[39]. The Burgers constitutive model is applied to fit the creep data and 
to describe the viscoelastic properties of the dam foundation. To handle 
the computational burden of inverse analysis, a novel inversion method 
is proposed which incorporate surrogate modelling and meta-heuristic 
optimization techniques. The MOGP model is placed within the search 
loop to approximate parameters of the constitutive model of dam sys-
tem. The performance of the MOGP model is highly dependent on the 
sample size, parameter range and output quantity. In order to improve 
the efficiency of MOGP, a series of test instances are executed and some 
insightful details are provided. Moreover, the research also verifies the 
rationality of the physics-based monitoring model based on calibrated 
parameters. 

The remainder of this article is organized as follows. In Section 2, the 
operation situation of a concrete gravity dam case in Cambodia are 
reviewed, and the numerical model is described. In Section 3, the 
developed inversion method based on the MOGP surrogate model is 
introduced. In Section 4, a series of empirical tests and analyses are 
performed on a dam section to verify the effectiveness of the proposed 
inversion method. Further, this section discusses and highlights the 
advantages of the proposed method, which differ from current inversion 

Table 1 
The mechanical parameters of the bedrock.  

Rock type Young modulus 
(GPa) 

Poisson ratio Shearing strength Compressive strength 
(MPa) 

Bulk density 
(g/cm3) 

Quartz sandstone 5～10 0.15～0.23 c = 4.7～8.4 MPa 
φ= 38.2◦～45.5◦

60～80  2.5 

Fine sandstone 7～8 0.18～0.25 c = 3～5 MPa 
φ= 35◦～45◦

45～55  2.5 

Silty mudstone 2～3 0.28～0.30 c = 0.8～1.0 MPa 
φ = 35◦～38◦

10～20  2.5 

Mudstone 1～2 0.30～0.35 c = 0.6～0.8 MPa 
φ = 30◦～35◦

1～3  2.4  

Fig. 2. Displacement monitored by inverted plumb line IP5 plotted with the reservoir water level and temperature in the dam foundation.  
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methods of concrete dams. Finally, in Section 5, concluding remarks and 
future directions are provided. 

2. Project background 

The case study is a concrete gravity dam located in Cambodia (Fig. 1 
(a)). The elevation of the dam crest is at 153 m asl (above sea level); the 
foundation surface is at 41 m asl, with a maximum dam height of 112 m. 
A monitoring system was installed to monitor the dam status. The 
measured items include reservoir water levels, air temperatures, dis-
placements, seepage and so on. The monitoring data indicate that the 
dam has been gradually deformed over the operation period 
(2011–2019), and the creep effect of the dam bedrock is significant. 

2.1. Hydrological and geological conditions 

The first impoundment of the project was in April 2011. After that, 
the upstream water level rose between 133 m asl and 150 m asl. The 
average monthly temperature in the reservoir area varies between 
25.0℃ and 28.4℃; the mean temperature is 26.9℃. The dam bedrock is 
mainly composed of quartz sandstone and fine sandstone, with silty 
mudstone and mudstone interbeds. The material properties of the 
bedrock were determined by tests. The mechanical parameters with a 
95% confidence interval are presented in Table 1, where c represents the 
cohesion and φ represents the internal friction angle. 

2.2. Data description 

The dam has a total of ten dam sections and is equipped with eight 
inverted plumb lines for monitoring the displacement of the dam 
foundation in the upstream–downstream direction. The inverted plumb 
line (Fig. 1(b)) is installed in the bottom gallery of the dam. The lower 
end of the plumb line is fixed at 58 m asl, and the upper end is linked to a 
float submerged in a water box in the observation area (88 m asl). The 
length of the plumb line is 30 m. 

The observed data of the inverted plumb line show that the defor-
mation of the dam foundation in the upstream–downstream direction 
has an increasing trend during the operation period. We take dam sec-
tion #3 as a representative example in this study. Fig. 2 shows the time 
history curve of environmental variables and corresponding horizontal 
displacement responses of the inverted plumb line IP5 in section #3. The 
temperature curve in Fig. 2 is measured by a representative thermom-
eter situated near the IP5 (65 m asl, 14 m down the dam axis). Obser-
vations are recorded monthly from June 25, 2011, to February 25, 2019, 
for a total of 93 measurements. 

The measured displacement of the dam foundation is composed of 
the reversible component and the irreversible component. It can be seen 
from Fig. 2 that the crests and troughs of the displacement closely 
correlate with the reservoir water level. The temperature in the dam 
foundation is stable according to the measurements of the thermome-
ters. It is deduced that the reservoir water level is the main reason for the 
reversible component. The irreversible component, which is caused by 
time-dependent deformation of the dam foundation, can be separated 
via HST statistical model and multiple least square regression procedure 
[39], and the obtained irreversible component is shown in Fig. 2. During 
the years from 2011 to 2019, the irreversible component is 7 mm to-
wards the downstream direction, accounting for about 80% of the total 
displacement; the irreversible component tends to be stable in recent 
years. 

2.3. Finite element modelling 

To understand the monitoring results and analyse the behaviour of 
the dam foundation, a numerical model is established. Viscoelasticity is 
used to describe the stress–strain-time relation of time-dependent ma-
terials. A widely-used four-parameter Burgers model is adopted in this 

study. The constitutive model can be regarded as the combination of the 
Maxwell model and Kelvin model [40]. The constitutive equations are as 
follows: 
⎧
⎪⎪⎨

⎪⎪⎩

σM = EMεM = ηMε̇M
σK = EKεK + ηKε̇K
σ = σM = σK
ε = εM + εK

(1) 

where σ and ε represent the stress and strain;σM, εM and ε̇M are the 
stress, strain, and strain rate of the Maxwell body, respectively;σK, εK 

and ε̇K are the stress, strain, and strain rate of the Kelvin body, respec-
tively; EM and ηM denote the elastic modulus and viscosity coefficient of 
the Maxwell body; EK and ηK denote the elastic modulus and viscosity 
coefficient of the Kelvin body. 

Using the Laplace transform to solve Eq. (1), the corresponding creep 
constitutive equation can be obtained. Eqs. (2) and (3) show the one- 
dimensional and three-dimensional creep equations of the Burgers 
model, respectively. 

ε =
σ

EM
+

σ
ηM

t+
σ

EK

[

1 − exp
(

−
EK

ηK
t
)]

(2)  

eij =
Sij

2GM
+

Sij

2ηM
t+

Sij

2GK

[

1 − exp
(

−
GK

ηK
t
)]

(3) 

where Sij and eij represent the deviatoric stress and strain, respec-
tively; GM denotes the shear modulus of the Maxwell body; GK denotes 
the shear modulus of the Kelvin body under three-dimensional 
conditions. 

Under the action of loads P, the relationship between the structural 
displacement and mechanical parameters of the Burgers model is the 
following: 

y′

t = f (EM ,EK , ηM , ηK , ν, t,P) (4) 

where y′

t is the displacement response at the timet; and ν denotes the 
Poisson ratio. 

A 3D FE model of the dam section #3 was carried out according to 
the actual situation of the measuring points, as shown in Fig. 1 (c). The 
model simulates a domain of dam foundation with about 2.0 times the 
maximum dam height both upstream and downstream, and about 2.0 
times the maximum dam height beneath the dam bottom. The FE mesh 
includes 9,181 eight-node hexahedral elements and 10,789 nodes. The 
element size was determined via convergence analysis. The lower and 
upper ends of the inverted plumb line IP5 are represented by nodes A 
and B in the cross section of Fig. 1(c), respectively. 

The described model was implemented by GeHoMadrid, a FE pro-
gram that was jointly developed between Technical University of 
Madrid (Spain) and Hohai University (China) [41]. The program is 
developed in Fortran and incorporates the PARDISO package for solving 
highly complicated and sparse equations. It is commonly used to solve 
complex structural, fluid and multi-physics problems in geotechnical 
and hydraulic engineering [42]. 

In FE simulation, the side faces of the dam foundation are subject to 
normal constraints, and the nodes at the bottom boundary are spatially 
fixed. The dam concrete is simulated by the elastic model and the 
bedrock is simulated by the Burgers model. The dam foundation has 
crept under its deadweight for several years. Then the weight of the 
concrete dam body is loaded stepwise and the upstream hydrostatic 
pressure is applied according to water storage conditions. Hence, the 
step analyses start from the initial time (June 25, 2011), and the 
calculation interval is one month. The FE analysis determines the rela-
tive displacement between nodes A and B, which corresponds to the 
measured value of IP5. After deducting the initial displacement, the 
displacement values obtained in the subsequent calculation can be 
compared with the measured displacements. 

C. Lin et al.                                                                                                                                                                                                                                      
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3. Methodology 

In this section, the proposed inversion method of mechanical pa-
rameters is introduced. The approach consists essentially of three parts: 
(1) the construction of the MOGP surrogate model for a fast calculation 
of viscoelastic displacement responses of the dam; (2) the formulation of 
an objective function (or error function) measuring the difference be-
tween model responses and monitoring results; and (3) the selection of 
an optimization strategy to enable the search for the minimum of the 
objective function. 

3.1. Overview of the proposed inversion framework 

Fig. 3 gives a graphical flowchart for the proposed inversion 
framework. Four main steps are summarized as follows: 

Step 1: Data preparation and finite element computation 
In order to extract the maximum amount of information, design of 

experiment (DOE) techniques are employed to determine the input 
samples X ∈ RN×d, where N is the number of design points and d is the 
dimension of the input variables. In this study, the input variables are 
the viscoelastic parameters of the Burgers model to be identified. The 
Latin hypercube sampling (LHS) method [43] is applied to uniformly 
generate N pairs of parameter samples within their ranges. The input 
samples are transferred to the FE program to calculate corresponding 
dam displacement responses at different times, yielding a set of vector 
outputs Y ∈ RN×T, where T is the number of the outputs. Finally, the 
inputs-outputs dataset D = [X,Y] can be obtained. 

Step 2: MOGP model construction 

The initial dataset D = [X,Y] is split into two parts: training set and 
testing set. A MOGP model is constructed to map the relationship be-
tween input parameters and output dam responses. An introduction of 
MOGP modelling is provided in Section 3.2. Section 3.2 also introduces 
the performance criteria on the training/testing set to verify whether the 
trained MOGP model has acceptable prediction accuracy. When the 
MOGP model performs well in the testing set, the trained MOGP model 
can be used as a surrogate model to replace the FE model. 

Step 3: Objective function formulation and parameter 
identification 

The parameter inversion problem is converted into an optimization 
problem of an objective function (Section 3.3). The objective function 
that evaluates the error between the model responses and monitoring 
results is specified and then minimized, in which the viscoelastic pa-
rameters play the role of the variables to be optimized. In particular, we 
adopt the multi-verse optimizer (MVO) to conduct the optimization 
process and identify the unknown parameters (Section 3.3). 

Step 4: Model calibrations 
To verify the reliability of the proposed inversion method, the for-

ward method is used to calculate the displacement of the dam based on 
the identified parameters. The root mean square error (RMSE) is 
employed for evaluating the fitted and predicted performance of the 
dam displacements based on the inversion results. 

3.2. MOGP surrogate model 

The input of the surrogate model is the viscoelastic parameters of the 
Burgers model, and the output is the relative displacement between the 

Fig. 3. Flowchart of the inverse analysis framework.  

C. Lin et al.                                                                                                                                                                                                                                      



Engineering Structures 266 (2022) 114553

6

nodes at the position of the inverted plumb line (Fig. 1(c)), which cor-
responds to the measured value of IP5. It is assumed that a set of 
simulation data D = [X,Y] is collected at N input samples of d- 

dimensional viscoelastic parameters x = [x1,…, xd] from the original FE 
model. Y is an N × T output matrix and the i-th row of the response Y 
contains the quantities ofyi =

[
yi

1,…, yi
T
]
, where T is the number of the 

displacement time-series data. Since all displacement time-series data 
depend on the realization of the viscoelastic parameters x, it is a typical 
multi-input and multi-output problem. The task of GP modelling is the 
establishment of a functional relationship between the parameters X and 
displacement responses Y. 

Y = f (X) (5) 

where X = [x1, x2,…, xN]
T contains n realization of parameters; Y =

[y1, y2,…, yN]
T are corresponding responses. 

Fig. 4. Flowchart of MOGP surrogate model for dam response prediction.  

Table 2 
L9(34) orthogonal test.  

Test number A 
(EM) 

B (EK) C (ηM) D (ηK) Factors and levels of experiment design Results 
EM 

(GPa) 
EK 

(GPa) 
ηM 

(GPa⋅year) 
ηK 

(GPa⋅year) 
F(X)
(mm2) 

1 1 1 1 1 1 1 50 1  307.91 
2 1 2 2 2 1 3 100 3  23.75 
3 1 3 3 3 1 5 150 5  5.72 
4 2 1 2 3 3 1 100 5  36.97 
5 2 2 3 1 3 3 150 1  0.61 
6 2 3 1 2 3 5 50 3  0.96 
7 3 1 3 2 5 1 150 3  65.01 
8 3 2 1 3 5 3 50 5  1.55 
9 3 3 2 1 5 5 100 1  6.41  

Table 3 
Mean value of each factor in correspondence with levels.   

EM EK ηM ηK 

K1  112.46  136.63  103.47  104.98 
K2  12.84  8.64  22.38  29.91 
K3  24.32  4.36  23.78  14.75 
R  99.62  132.27  81.10  90.23  

Table 4 
The average training/testing errors of the MOGP model in ten runs (unit: mm).  

Size Training   Testing  

aRMSE MAXE aMAE aR2 Time(s)  aRMSE MAXE aMAE aR2 Time(s) 

20  0.221  0.824  0.123  0.997  2.4   1.482  4.151  1.066  0.882  0.8 
30  0.175  0.569  0.119  0.998  2.5   1.118  3.375  0.778  0.928  0.8 
40  0.156  0.643  0.081  0.998  2.7   1.084  3.391  0.739  0.934  0.9 
50  0.160  0.861  0.072  0.999  2.8   0.890  3.209  0.606  0.954  0.9 
60  0.264  1.204  0.166  0.996  3.0   0.847  3.578  0.571  0.957  0.9 
70  0.430  1.654  0.301  0.990  3.1   0.789  2.305  0.543  0.964  0.9 
80  0.633  2.242  0.448  0.981  3.1   0.829  3.637  0.561  0.959  1.0 
90  0.723  2.702  0.508  0.970  3.2   1.026  4.413  0.664  0.946  1.0 
100  0.834  3.063  0.584  0.962  3.5   1.101  4.978  0.734  0.934  1.1 
125  1.017  3.780  0.740  0.938  3.8   1.212  5.250  0.837  0.910  1.2 
250  1.457  6.622  1.061  0.880  6.0   1.510  6.774  1.092  0.859  1.6 
500  1.541  7.434  1.099  0.867  31.4   1.539  6.927  1.103  0.862  6.2 
750  1.493  8.468  1.058  0.873  64.3   1.500  8.396  1.062  0.867  13.1 
1000  1.441  7.542  1.025  0.880  116.2   1.501  8.037  1.057  0.877  22.5  
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3.2.1. Multi-output Gaussian process 
An introduction to the MOGP models is provided below [27]. In 

many realistic scenarios, we only have the observation of the exact 
function value as: 

yt(x) = ft(x) + εt, εt ∼ N
(

0, σ2
s,t

)
(6) 

where εt represents the additive white noise assigned to the t-th 
output. It is assumed that εt is independent and subjected to a Gaussian 
distribution with a mean of zero and a variance of σ2

s,t . 
The T target outputs f(x) = {f1(x),…, fT(x)}T are assumed to follow a 

Gaussian process as: 

f (x) ∼ gp(0, kM(x, x’) ) (7) 

where x, x’ ∈ X are d-dimensional input vectors; the multi-output 
covariance kM(x, x’) ∈ RT×T is defined as: 

kM(x, x’) =

⎡

⎣
k11(x, x’) ⋯ k1T(x, x’)

⋮ ⋱ ⋮
kT1(x, x’) ⋯ kTT (x, x’)

⎤

⎦ (8) 

The matrix element ktt’ (x, x’)(t = 1,⋯,T) represent the covariance/ 

Table 5 
The standard deviation of training/testing errors of the MOGP model in ten runs (unit: mm).  

Size Training  Testing 

aRMSE MAXE aMAE aR2  aRMSE MAXE aMAE aR2 

20 0.081 0.376 0.035 0.002  0.297 1.356 0.170 0.049 
30 0.031 0.159 0.018 0.001  0.212 0.919 0.101 0.017 
40 0.063 0.283 0.028 0.002  0.151 0.891 0.062 0.017 
50 0.054 0.370 0.015 0.001  0.107 0.590 0.054 0.013 
60 0.046 0.412 0.019 0.002  0.116 0.904 0.060 0.011 
70 0.042 0.287 0.029 0.002  0.127 0.786 0.081 0.007 
80 0.046 0.399 0.035 0.002  0.134 0.802 0.081 0.008 
90 0.048 0.407 0.036 0.003  0.129 0.922 0.085 0.010 
100 0.031 0.248 0.032 0.003  0.105 0.294 0.045 0.009 
125 0.051 0.415 0.040 0.006  0.131 0.679 0.069 0.011 
250 0.044 0.763 0.032 0.006  0.084 0.925 0.047 0.011 
500 0.034 0.406 0.029 0.004  0.076 0.922 0.040 0.007 
750 0.022 0.546 0.015 0.003  0.048 0.753 0.023 0.006 
1000 0.020 0.969 0.024 0.003  0.051 0.829 0.026 0.005  

Fig. 5. The training/testing errors of the MOGP model under different sample size (the original input parameter range and 93 output observations): (a) Average of 
aRSME; (b) Standard deviation of aRSME. 

Fig. 6. The training/testing errors of the MOGP model under different sample size (the expanded input parameter range and 93 output observations): (a) Average of 
aRSME; (b) Standard deviation of aRSME. 
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correlation between outputs ft(x) andft’ (x). One frequently used example 
of the covariance function is the squared exponential covariance 
function: 

kSE(x, x’) = σ2
f exp

(

−
1

2l2(x − x’)
T
(x − x’)

)

(9) 

where the signal variance σ2
f represents an output scale amplitude; 

the characteristic length scale l represents the correlation size associated 
with the differences among inputs. 

The likelihood function for the T outputs follows: 

p(y|f, x,Σs) = N (f(x),Σs) (10) 

where Σs ∈ RT×T is a diagonal matrix with the element
{

σ2
s,t

}

1⩽t⩽T
. 

Then given the training set D = [X,Y] and testing pointsX*, the joint 
posterior distribution over Y* can be expressed as: 

p(Y*|X,Y,X*) ∼ N(m(Y*), var(Y*) ) (11) 

The mean and covariance of Y* take the following form: 

m(Y*) = KM(X,X*)
T
[KM(X,X) + ΣM ]

− 1Y (12)  

var(Y*) = KM(X*,X*) − KM(X,X*)
T
[KM(X,X) + ΣM ]

− 1KM(X,X*) (13) 

where KM(X,X) ∈ RnT×nT is the symmetric and block partitioned 
matrix with the block Ktt’ (X,X) ∈ Rn×n(t,t’ = 1,⋯,T）; similarly, KM(X,

X*) ∈ RnT×pT has the block Ktt’ (X,X*) ∈ Rn×p and KM(X*,X*) ∈ RpT×pT has 
the block Ktt’ (X*,X*) ∈ Rp×p; ΣM = Σs ⊗ In ∈ RnT×nT is a diagonal noise 
matrix. 

Before using Eq. (12) and (13) to make a prediction, we need to infer 
the hyperparameters θM of the MOGP model. The hyperparameters θM 
include the parameters in the covariance function and the noise process 

(i.e. parameters in {Ktt’}1⩽t,t’⩽T and 
{

σ2
s,t

}

1⩽t⩽T 
for the T outputs), which 

can be learned by minimizing the negative log-likelihood function (NLF) 
based on the training data: 

θopt
M =

{
σopt

f ,t , lopt
t , σopt

s,t
}

1⩽t⩽T = argmin
θM

NLF (14) 

where. 

NLF = − logp(y|X, θ)

=
1
2
yT[K(X,X) + σ2

nIn
]− 1

+
1
2

log
⃒
⃒K(X,X) + σ2

nIn
⃒
⃒+

n
2

log2π (15) 

The optimal hyperparameters θopt
M can be solved by utilizing the 

conjugate gradient algorithm after parameter initialization [44]. 

3.2.2. Performance criteria of the MOGP model 
Fig. 4 gives a graphical flowchart for MOGP modelling. The MOGP 

surrogate model is trained by the input–output samples generated by FE 
experiments. Before using it to make inference on the original simulator 
output, the performance of the trained MOGP model should be evalu-
ated quantitatively. The metrics used in this study include the average 
root mean square error (aRMSE), maximum absolute error (MAXE), 
average mean absolute error (aMAE), and average coefficient of deter-
mination (aR2), which are expressed as follows: 

aRMSE =
1
T

∑T

j=1

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
N

∑N

i=1

(
fij − yij

)2

√
√
√
√ (16)  

MAXE = max
⃒
⃒fij − yij

⃒
⃒ (17)  

aMAE =
1
T
∑T

j=1

1
N

∑N

i=1

⃒
⃒fij − yij

⃒
⃒ (18)  

Fig. 7. The average of aRSME of the MOGP model under different sample size: (a) the original input parameter range and 30 output observations; (b) the expanded 
input parameter range and 30 output observations; (c) the original input parameter range and 60 output observations; (d) the expanded input parameter range and 
60 output observations. 
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aR2 =
1
T
∑T

j=1

[
∑N

i=1(fij − f j)(yij − yj)]
2

∑N
i=1(fij − f j)

2∑N
i=1(yij − yj)

2 (19) 

where N is the number of samples; T is the number of the output data; 
y is observed displacement values of FE simulation; y is the average of 
observed values; f denotes the predicted displacement values; fdenotes 

the average of predicted values. Here, smaller values of aRMSE, MAXE 
and aMAE and a larger value of aR2 reflect better model performance. 

3.3. Optimization procedure 

The parameters to be determined are viscoelastic parameters of the 

Fig. 8. The performance evaluation of the MOGP surrogate model: (a) response surface of FE model; (b) response surface of MOGP model; (c) estimation error 
between FE model and MOGP model. 

Table 6 
Comparison of the optimal objective-function value and the computational time.  

Model Minimum (best) Maximum (worst) Average Standard deviation Computational time (s) 

MOGP model I  3.1580  3.3323  3.2464  0.0710  45.3 
MOGP model II  3.1418  3.4182  3.2693  0.0900  45.2 
FE model  3.3384  3.3963  3.3703  0.0185  82845.7  

Table 7 
Comparison of the results obtained using different simulation models in the parameter identification process.  

Model EM 

(GPa) 
EK 

(GPa) 
ηM 

(GP⋅year) 
ηK (GP⋅year) RMSE_fitted 

(mm) 
RMSE_predicted 
(mm) 

MOGP model I  3.46  3.51  1.75  80.16  0.2331  0.2007 
MOGP model II  3.35  3.52  1.75  88.41  0.2255  0.1780 
FE model  3.42  3.46  1.56  89.37  0.2120  0.1803  
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Burgers model which is employed to describe the constitutive relation-
ship of the dam foundation. For consistency, the parameters of the 
constitutive model are recorded as a variable set X: 

X = [x1, x2,⋯, xd]
T (20) 

where xi (i = 1, 2,⋯, d) represents the unknown parameters. 
The inverse analysis problem can be formulated to find the optimized 

parameters by adjusting the variable set X until the calculated dis-
placements of the surrogate model match the monitoring data in a least- 
squares fashion. The objective function is defined as follows: 

F(X) =
1
T
∑T

t=1
(yt − y’

t)
2 (21) 

where yt and y′

t (t = 1,2, ..,T) represent the monitoring and calcu-
lated displacements, respectively; T is the number of observations. 

Bound constraints are introduced to the variables: 

xli ≤ xi ≤ xui(i = 1, 2,⋯, d) (22) 

wherexli and xui are the lower and upper bounds of the i-th param-
eter, respectively. 

In this study, the multi-verse optimizer (MVO) [45] is used in the 
context of an indirect inverse analysis method for parameter identifi-
cation. A solution (a set of unknown viscoelastic parameters) is repre-
sented by a universe in MVO, a variable/parameter in the solution 
corresponds to an object in the universe, and the fitness value of the 
solution (value of the objective function) is indicated by the inflation 
rate of the universe. 

A brief optimization process of MVO is described in Algorithm 1. The 
universe set U is defined as: 

U =

⎡

⎢
⎢
⎣

U1
U2
⋮

Um

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

x(1)1 x(1)2 ⋯ x(1)d

x(2)1 x(2)2 ⋯ x(2)d

⋮ ⋮ ⋮ ⋮
x(m)

1 x(m)

2 ⋯ x(m)

d

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(23) 

where d is the number of objects (unknown viscoelastic parameters) 
and m is the number of universes (candidate solutions). 

The mathematical model of this algorithm depends on Eqs. and 
which are described as follows: 

x(i)j =

⎧
⎨

⎩

x(k)j , r1 < NI(Ui)

x(k)j , r1⩾NI(Ui)
(24) 

where x(i)
j represents the j-th variable of the i-th universe; x(k)

j 

represents the j-th variable of the k-th universe which selected by a 
roulette wheel selection mechanism; Ui denotes the i-th universe and 
NI(Ui) is the normalized inflation rate (fitness value) of Ui; r1 is a random 
number in the range of [0,1]. 

The evolution of universes also follows: 

x(i)j =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

{
Xj + TDR*

( (
ubj − lbj

)
*r4 + lbj

)
, r3 < 0.5

Xj − TDR*
( (

ubj − lbj
)
*r4 + lbj

)
, r3 ≥ 0.5

r2 < WEP

x(i)j r2 ≥ WEP

(25) 

where Xj denotes the j-th variables of the best universe formed so far; 
lbjand ubj denotes the lower and upper boundaries of the j-th variable; r2,

r4,and r4 are random numbers in the range of [0,1]. 
There are two adaptive coefficients in the MVO: the wormhole ex-

istence probability (WEP) and the travelling distance rate (TDR), which 
are expressed as follows: 

WEP = WEPmin + l*
(

WEPmax − WEPmin

L

)

(26)  

TDR = 1 −
l1/b

L1/b (27) 

where WEPmin is the minimum value which is ordinarily set to 0.2; 
WEPmaxis the maximum value which is ordinarily set to 1; land L 
represent the current iteration number and the maximum iteration 
number, respectively; b indicates the exploitation factor which is ordi-
narily set to 6 [45].  

Algorithm 1 Multi-Verse Optimizer 

Input: Ranges of viscoelastic parameters, Number of Universes, Number of iterations 
Output: Best_Universe 
Function MVO 
1:for each Universe i 
2:Initialize positions for Universe i, coefficients WEP and TDR 
3:Evaluate the inflation rate of Universe i 
4:end for 
5: Record Best_Universe which has the minimum inflation rate 
6: while iteration < max_iteration 
7: for each Universe i 
8: Update the position of Universe i ▸ Apply the Eqs. (25) and (26) 
9: if Inflation_rate(Ui) < Best_Universe_Inflation_rate 
10: Best_Universe = Universe i 
11: end if 
12: end for 
13: Update WEP and TDR ▸ Apply the Eqs. (26) and (27) 
14:end while 
15:return Best_Universe 
end function  

4. Case study 

In this section, a series of tests and analyses are performed on the 
dam section #3 (introduced in Section 2) to verify the feasibility of the 
proposed inversion framework based on the MOGP surrogate model. In 
addition, some suggestions are provided on how to build a surrogate 
model efficiently and accurately in similar projects. 

4.1. Sensitivity analysis 

Before generating FE simulation data based on DOE samples, a sensi-
tivity study of the mechanical parameters is conducted using the orthog-
onal test method [46,47]. The obtained information helps to verify the 
rationality of the selected mechanical parameters and their search ranges in 
the inverse analysis (i.e. the parameters and ranges selected to train a 
surrogate model). The orthogonal test method is a kind of designing 
method based on mathematical statistics and the orthogonality principle. It 
involves selecting representative points from a large number of experi-
mental points and analysing them in multifactor experiments using an 

Fig. 9. Convergence curves recorded in the parameter identification process.  
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orthogonal table [48]. 
In this study, the dam foundation is simulated by the Burgers model and 

four viscoelastic parameters considered in the orthogonal test are taken 
as: EM ∈ [1GPa,5GPa], EK ∈ [1GPa,5GPa], ηM ∈ [50GPa⋅year,150GPa⋅year]
and ηK ∈ [1GPa⋅year, 5GPa⋅year]. The other mechanical parameters are 
taken as constant values and are described below. The dam body was 
constructed of C15 roller compacted concrete and are simulated by the 
elastic model. According to tests, the density, Young’s modulus and Poisson 
ratio of the dam body are taken as 2.4 g/cm3, 23 GPa and 0.167, 
respectively. Moreover, it is already verified that the load–displacement 
response of the concrete dam is not highly influenced by the Poisson ratio 
[14], thus the Poisson ratio of the foundation is taken as 0.25. 

For four factors, where each factor is varied in three levels, the 

orthogonal test table of L9(34) is established (Table 2). A total of nine mixes 
are tested, and the resulting value of the objective function F(X) (Eq. (21)) 
are listed in Table 2, where the observation times of the objective function 
is taken as T = 93 in this case. 

The results of sensitivity analysis are outlined in Table 3, where K1, K2 
and K3 represent mean values of three levels, and R refers to the result of 
the extreme analysis. According to the orthogonal test theory, the factor 
with a larger R is more important than other factors [49]. It is observed that 
the scattered intervals of the four factors are similar in general, although 
there are some differences. The most sensitive factor is EK followed by EM, 
ηK and ηM. The results indicate the selected four parameters and their 
search ranges are rational in the inverse analysis. 

Fig. 10. Fitted and predicted displacements based on the parameters identified via (a) MOGP model I, (b) MOGP model II, and (c) FE model.  

C. Lin et al.                                                                                                                                                                                                                                      



Engineering Structures 266 (2022) 114553

12

4.2. Performance evaluation of the MOGP model 

This work puts emphasis on how to efficiently establish a reliable sur-
rogate model in an accurate and computationally-efficient manner. In this 
subsection, three tests are conducted to investigate the impact of sample 
size, parameter range and output quantity on the performance of the 
MOGP model. 

4.2.1. Impact of the sample size 
In this part, we investigate which size of training data is better for 

establishing the MOGP surrogate model. The Latin hypercube sampling 
(LHS) method is applied to uniformly generate N pairs of viscoelastic 
parameter samples within their ranges. These samples will be trans-
ferred to the FE program to calculate the corresponding displacement 
responses of the measuring point (93 output observations in total). After 
all the samples are calculated, an inputs-outputs dataset D = [X,Y] can 
be obtained, which are assigned as the training set for MOGP training. In 
addition, another N pairs of viscoelastic parameter samples are 
randomly generated within the same ranges, and the obtained dataset 
D* = [X*,Y*] are assigned as the testing set to test the performance of 
trained MOGP. Each test instance is repeated ten times independently, 
and in each test instance, we re-randomise the samples. 

The average and standard deviation of the performance criterion 
values in the training and testing stages, as well as the computational 
time, are listed in Table 4 and Table 5. Typically, the relationship be-
tween the average/standard deviation of aRSME and the sample size is 
plotted in Fig. 5. When the sample size is less than 50, the aRSME in the 
testing stage is more than five times that obtained in the training stage. It 
seems that the model is overfitting when the sample size is too small. As 
presented in Table 4 and Fig. 5(a), with the increase of the sample size, 
the MOGP model can yield better predictions. However, when the 
sample size is more than 80, the aRSME increases again both in the 
testing and training stages. When the sample size is set between 250 and 
1000, aRSME converges to a constant value of 1.5 mm. It seems that a 
large size of samples also causes some learning artefacts. We will 
investigate and explain this phenomenon later. From a comprehensive 
perspective, the training size of 70–100 is suitable for modelling. 
Additionally, it can also be observed in Table 5 and Fig. 5(b) that the 
standard deviation of training/test errors are small when the sample size 
is set to 70–100. 

4.2.2. Impact of the sample parameter ranges 
In this part, we compare the performances of surrogate models based on 

samples generated in different parameter ranges. The parameter range is 
expanded to twice the original range:EM ∈ [1GPa, 10GPa], EK ∈ [1GPa,
10GPa], ηM ∈ [20GPa⋅year,200GPa⋅year], and ηK ∈ [1GPa⋅year,10GPa⋅year]. 
Fig. 6 illustrates the corresponding average and standard deviation of 
aRSME of the newly established MOGP model in ten test instances. It turns 
out that the overall aRSME in this example is slightly larger than that of the 
previous one, which can be considered reasonable since the range of the 
input–output dataset has been expanded. By comparing Fig. 5 and Fig. 6, it 
can be seen that the aRMSE curves of the two cases have similar laws. This 
means that in the case of the expanded parameter range setting, the sample 
size of 70–100 in this case study is sufficient to construct an accurate and 
reliable surrogate model. 

4.2.3. Impact of the output quantity 
In the aforementioned test instances, the output data includes a se-

ries of 93 displacement observations. In this part, the performance of the 
MOGP model with different output quantities is examined. Based on the 
previous cases, the first 1/3 and 2/3 displacement observations are 
selected as the output of the surrogate model (the output quantity is 30 
and 60, respectively), and four additional test instances are added for 
different parameter ranges and output quantities. Fig. 7 shows the 
representative metrics (average of aRSME) of the four instances. It can 
be seen that the law of the aRMSE curve is similar when we set different 

initial conditions. 

4.2.4. Validation and discussion 
To further prove the validity of the MOGP model, as well as to 

interpret the obtained model accuracy curve, some relevant analyses are 
performed. The results of the MOGP model based on 100 training 
samples are taken as an example here. The training samples are gener-
ated from the original parameter range. 

After learning with 100 training samples, the trained MOGP model is 
tested with another 100 testing samples. Since the samples are randomly 
generated, the output data are ordered from minimum to maximum to 
make it more intuitive. Each output sample is a displacement time series 
with 93 observations, thus a matrix with the size of 100 × 93 are 
generated. Fig. 8 shows the response surface of the FE model and MOGP 
model, as well as the estimation error between the FE model and the 
MOGP model. It turns out that the predicted results of the MOGP model 
are close to the FE model, although there are some deviations at the 
boundary. For most points, the error between FE model and MOGP 
model is small, where 60% of the errors are lower than 0.1 mm, and 80% 
of the errors are lower than 0.3 mm. However, the MOGP model has 
poor performance at the edge, and the errors of some points at the 
boundary are up to 4 mm. 

The results of different sample sizes are also analysed. It is found that 
the prediction accuracy of the MOGP model in the main interval is still 
good with the increase of sample size. However, with a larger sample 
size, more points will fall near the edges (close to the boundary), leading 
to a larger overall aRMSE. Since the actual values of measurements fall 
within the main interval of the surrogate model, therefore, the MOGP 
model can replace the FE model in the inverse analysis. 

As a result, it is recommended using 70–100 samples to train a sur-
rogate model for this dam case. The calculation results can meet the 
requirements of prediction accuracy, model reliability and efficiency 
simultaneously. For similar dam cases, we can perform some initial tests 
to find out the lower bound on the sample size suitable for learning. In 
addition, it is recommended performing some preliminary evaluation 
before training the surrogate model, which can avoid the actual moni-
toring data falling near the boundary of the training samples. 

4.3. Parameter identification and physics-based model calibration 

In this subsection, MVO is employed to identify the viscoelastic pa-
rameters of the dam foundation with the use of the surrogate model. 
Two surrogate models are established: MOGP model I adopts the 
training samples generated from the original parameter range 
mentioned in Section 5.1, and MOGP model II adopts the samples 
generated from the extended parameter range mentioned in 5.2.2. The 
output of both models is a series of 75 displacement observations (80% 
of the total observations). The remaining 20% of observations are used 
to calibrate the identified parameters. We adopt 100 samples to train the 
MOGP surrogate models, and we also test the performance of the models 
to ensure that they could meet the accuracy requirements. 

From experience, the population size (the number of universes) is 
set to 20 and the maximum number of iterations is set to 60 in the 
MVO. The search intervals are set as EM ∈ [1GPa, 5GPa], EK ∈ [1GPa,
5GPa], ηM ∈ [50GPa⋅year, 150GPa⋅year] and ηK ∈ [1GPa⋅year,5GPa⋅year]. 
The internal parameter setting of the MVO has been explained and 
described in Section 3.3. 

The optimization is executed in parallel on a machine with 16-core 
2.10 GHz Intel Xeon Silver 4110 CPU and 48G RAM, running Win-
dows 10. We compare the results obtained using two MOGP models and 
the FE model. Each test instance is repeated five times independently, 
and the minimum, maximum, average and standard deviation of the 
objective function (Eq. (21)) are listed in Table 6. As can be seen from 
Table 6, the optimal objective-function value of the MOGP model is 
similar to that in the FE model case, which also reflects the trained 
MOGP model is accurate and reliable. 
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The best results in the identification process of each model are pre-
sented in Table 7 and the corresponding convergence curves recorded 
are shown in Fig. 9. We substitute the identified parameters into the FE 
program for calibration (where the fitted/predicted results have a 
physical meaning). Fig. 10 shows the fitted and predicted displacements 
based on the parameters identified via three different simulation 
models, and the performance evaluation results (RMSE_fitted and 
RMSE_predicted) are given in Table 7. It is observed in Fig. 10 that the 
fitted and predicted process lines of the three models are all close to the 
measured process line. As presented in Table 7, the evaluation results 
obtained based on the two surrogate models are very close to those 
obtained by the FE model, indicating the rationality of the inversion 
results. 

The results presented above prove that the proposed inversion 
method based on the MOGP surrogate model applies to the inverse 
problem dealt with in this case study. It is worth mentioning that the use 
of the surrogate model can significantly reduce the burden of FE cal-
culations (see Table 6). The inverse analysis of long-term viscoelastic 
monitoring data suffers a high computation cost because a great many 
FE iterations are required in the optimization loop. Therefore, it is not 
economical to directly implement the FE model in the optimization 
process, especially for large-scale engineering structures with complex 
constitutive relationships. In the proposed method, we only need to 
calculate a small amount of FE samples in advance to build a surrogate 
model, and the calculation cost of implementing the surrogate model in 
the optimization process is low. As in this case study, we can save about 
90% of the time overall. Moreover, the trained surrogate model is also 
suitable for embedding in online monitoring platforms to provide online 
feedback. 

5. Conclusion 

Inverse analysis is an effective technique to identify mechanical 
parameters of dam system and to calibrate physics-based monitoring 
models. In contrast to traditional inverse analysis methods which place 
the finite element computation inside the optimization loop, this article 
proposes a multi-output surrogate model approach. This approach not 
only achieves accurate estimation of mechanical parameters but also 
greatly improves computational efficiency. 

The proposed inversion method is demonstrated on a gravity dam 
example. The following concluding remarks can be made: 

(1) MOGP modelling technique is used to approximate the 
load–displacement relationship of the finite element model in the creep 
regime. A series of time-dependent viscoelastic displacement responses 
of the dam foundation can be quickly computed with the given intrinsic 
mechanical parameters, which greatly improves the computational ef-
ficiency at a low precision loss. 

(2) The sensitivity of the training sample size, parameter range and 
output quantity of the MOGP model is investigated to establish a pro-
ficient surrogate model with as few samples as possible. It is recom-
mended that 70–100 samples be used to train a surrogate model for this 
dam example. For similar dam projects, it is recommended to perform 
some initial tests to find out the lower bound of a suitable learning 
sample size. 

(3) The viscoelastic parameters of the Burgers model are identified 
using the MOGP surrogate model and a meta-heuristic optimization al-
gorithm called MVO. The results illustrate that the identified properties 
allow predictions on dam displacement to be consistent with the long- 
term monitoring data. It is concluded that the proposed inversion 
method reasonably applies to parameter identification problems of 
concrete dams. 

(4) In this study, the inverse analysis is carried out in a deterministic 
manner. In future work, we plan to investigate a probabilistic inversion 
method based on Bayes’ theorem to estimate the posterior distribution 
of viscoelastic parameters by incorporating the uncertainty of obtained 
information. 
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