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Abstract
Process reliabilist accounts claim that a belief is justified when it is the result of a 
reliable belief-forming process. Yet over what range of possible token processes 
is this reliability calculated? I argue against the idea that all possible token pro-
cesses (in the actual world, or some other subset of possible worlds) are to be 
considered using the case of a user acquiring beliefs based on the output of an 
AI system, which is typically reliable for a substantial local range but unreliable 
when all possible inputs are considered. I show that existing solutions to the gen-
erality problem imply that these cases cannot be solved by a more fine-grained 
typing of the belief-forming process. Instead, I suggest that reliability is evalu-
ated over a range restricted by the content of the actual belief and by the similar-
ity of the input to the actual input.

1 Introduction

Process reliabilists (which I will shorten for convenience to ‘reliabilist’ in this 
paper) hold that a belief is justified when it is the result of a reliable belief-
forming process (Goldman, 1979). In order to evaluate whether a belief is justi-
fied, we thus need to know two things: which process type was used to form the 
belief (a familiar issue known as the Generality Problem) and how reliable that 
process is. My focus here is on the latter question, which in turn can be split into 
two parts. First: what set of token processes needs to be considered to deter-
mine reliability? Is it the entire range of token processes in the actual world? 
(which seems to be the standard assumption, and when I write about all possible 
inputs I intend to index these to the actual world unless otherwise specified). Is 
it instead, as Henderson and Horgan (2006) argue, a range of token processes 
in both the actual world and different possible worlds? Or is it a much smaller 

 * Stefan Buijsman 
 s.n.r.buijsman@tudelft.nl

1 TU Delft, Jaffalaan 5, 2628 BX Delft, The Netherlands

http://crossmark.crossref.org/dialog/?doi=10.1007/s10670-022-00645-4&domain=pdf
http://orcid.org/0000-0002-0004-0681


 S. Buijsman 

1 3

range of token processes? That is the question I will focus on here, looking spe-
cifically at process types for which we have very detailed information about their 
reliability, namely testimony from machine learning algorithms (i.e. AI algo-
rithms). I will leave aside the second question: what calculation is used over the 
set of token processes to score the degree of reliability? Instead of engaging this 
question, which can be found e.g. in the discussion around justified credences 
(Dunn, 2015; Pettigrew, 2021), I will assume for simplicity that the ratio

suffices (e.g. if the process type leads to true beliefs 8 out of 10 times, then 8 out of 
10 token processes produce true beliefs and reliability is 80%).

That leaves the question: which token processes should count as part of this 
ratio? It is rarely discussed, but it seems that the standard assumption is that 
all token processes in the actual world count, though the indexation is some-
times argued to be to the possible world where the process was used, or to a 
more intricate construction of possible worlds. In all these cases, however, every 
token process in the subset of possible worlds is to be considered. Henderson 
and Horgan (2006) explicitly argue against a more local evaluation of reliability 
and Lyons (2019) likewise briefly discusses and rejects the idea that reliability 
might be evaluated over a subset of token processes. Yet I argue in Sect. 2 that, 
based on belief-forming processes where one simply believes what an AI system 
outputs (i.e. testimony from AI systems), there is a case to be made for the need 
to evaluate reliability over a smaller set of token processes, for all process types. 
After presenting my positive argument for this claim, I consider a possible 
objection, namely that the process type in question should be narrower, and that 
the evaluation is still over all tokens, but only those falling under the narrower 
type. To forestall that objection I look at different ways of typing the belief-
forming process (i.e. different answers to the Generality Problem) in Sect. 3 and 
argue that none of the currently acceptable answers fit with the fine-grained typ-
ing approach to the AI testimony cases I present. After that, I consider a few 
other objections and views from the extant literature on the range of evaluation 
in Sect. 4, showing that this literature is largely tangential though there is one 
view (by Graham, 2012) that gets close to covering the AI case by pushing for 
local evaluation under ‘normal circumstances’. That, I argue, is hard to specify 
more precisely in the AI context. I also argue against restricting the evaluation 
to typical inputs; those the process could easily have in nearby possible worlds. 
If these solutions are unavailable, how then should the smaller range I argue 
for be determined? I close by considering possible answers to this question in 
Sect. 5.

token processes producing true beliefs

total token processes
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2  Arguing for Small Ranges of Reliability

The basic format for the cases I discuss here will be that of a user acquiring beliefs 
based on a machine learning system.1 As Wheeler (2020) argues, these cases can be 
understood as testimony that a user receives from the AI system. To really isolate 
this process of testimony, I consider only the case where the user is presented with 
very little information aside from the system output. They were probably notified 
that the system was tested and found to be accurate, but often lack more detailed 
knowledge or the time/opportunity to verify AI outputs for themselves. This is in 
fact quite common in cases where users receive testimony from AI systems [see 
e.g. criticisms of epistemic dependence and the phenomenon of ‘quasi-automation’ 
where there is a human overseeing the outputs of an AI system but merely rubber-
stamping these (van den Hoven, 1998; Wagner, 2019) but also the phenomenon of 
automation bias (Parasuraman and Manzey, 2010)], and thus makes for a realistic 
case study. I focus on these cases for a few reasons: (1) information about reliability 
is readily available and process individuation is comparatively straightforward. (2) 
As opposed to e.g. testimony from humans, there is good reason to think that some 
of these processes are overall unreliable but locally reliable (see below). Yes, people 
will lie some of the time, but probably not more often than speak the truth. (3) AI 
systems are relevant because they conceptually disentangle non-accidental reliabil-
ity from standard notions of normality and typicality, and as such are a good case to 
base the discussion in Sect. 4 on. So, while my aim is to argue that the reliability of 
all belief-forming processes (regardless of whether they involve AI systems) should 
be evaluated on a smaller range, I will do so by focussing on testimony from AI 
systems. This is simply one kind of belief-forming process that people may use, and 
is in my opinion not fundamentally different from other kinds of testimony or belief-
forming processes. Consequently, there does not seem to be a reason to restrict the 
range of evaluation for testimony from AI systems and not for other belief forming 
processes. I hope the reader will therefore bear with me in the discussions of AI 
cases (as opposed to more common cases discussed in the reliabilism literature) as 
they are one of the easiest and most realistic I can think of where we see this issue of 
local reliability without global reliability.

The case I will present first is, however, a somewhat unrealistic one based on 
computer vision algorithms, because it is the simplest case with which to illustrate 
the intricacies around the accuracy of machine learning models. Consider, therefore, 
a case where a user is sitting behind a computer and is told by an AI system what 
objects are present in an image (where the user can’t see the image herself, so there 
is no independent way of verifying the computer output).

1 A machine learning system is one where the algorithm adjusts its parameters based on a set of train-
ing data for which the right output is known. For example, linear regression is a machine learning tool, 
where e.g. parameters a and b in formula y = ax + b are adjusted to minimize the error with respect to 
the training data. The AI systems under discussion are all deep learning systems (neural networks, to be 
precise), which have millions to trillions of parameters all adjusted based on a training set.
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Is someone in this situation justified in believing that e.g. ‘this image contains a 
dog’? The reliabilist will, naturally, answer that this depends on whether the belief-
forming process is reliable. The designer of the machine learning system will then 
likely answer that when the algorithm was tested, on a so-called validation set (a 
portion of data set aside at the beginning to verify, after the training phase where the 
parameters of the model are adjusted, how well it works on new inputs), it had an 
accuracy of x% . For a state-of-the-art system this tends to be high (> 90%), though 
complete accuracy is avoided as this typically means worse performance on new 
inputs (‘overfitting’). In any case, based on that figure it seems that the model is reli-
able and so the belief should be justified. Note, however, that this accuracy score is 
based on a fairly small range of token processes, where a token process is (simplified 
into) an input–output pair for the algorithm and the question is whether the output is 
correct (and so leads to a true belief in the user).

Is this accuracy score the reliability measure that the reliabilist is after? It would 
seem natural to desire a measure based on more than just a small set of possible 
inputs, and so to measure reliability over all possible inputs of the algorithm. That 
would seem to exhaust the possible token processes (if we abstract away from the 
exact time the user sees the output, etc., which is in fact not possible) and so give a 
much better idea if the process leading to ‘this image contains a dog’ is sufficiently 
reliable to lead to a justified belief in the user receiving the testimony. The issue is, 
however, that when considering all possible inputs virtually every machine learning 
algorithm will be unreliable. There are several reasons for this.

First, the input for a computer vision algorithm is a range of values correspond-
ing to the pixels of the image that is analysed. A large number of these possible 
images (e.g. one containing only static) will be nonsensical. While it is possible 
to add an output category ‘nonsense’/‘I don’t know’ to an algorithm, this typically 
doesn’t happen. Even if one were to add one a large number of incorrect outputs is 
likely to slip past for the nonsensical inputs. The simple reason is that it is difficult 
to find a good way to score how confident the model is in a prediction (Guo et al., 
2017; Luppers et al., 2020), and so computer vision models will likely have a hard 
time classifying nonsensical inputs as such. We see this, for example, with adver-
sarial attacks where a normal image is changed slightly [possibly just a single pixel; 
Su et al. (2019)] and the algorithm gives a dramatically different output. For exam-
ple, an image of a yellow bus is recognized as an ostrich after small perturbations, 
or an image containing three dogs leads to the outputs ‘train (0.95), person (0.53)’ 
(Akhtar and Mian, 2018).

Second, even for inputs that correspond to realistic photographs, computer 
models can be seriously wrong. Alcorn et  al. (2019) tested a computer vision 
model on images of vehicles presented both straight on and rotated in different 
poses. For the typical positions the model performed perfectly, recognizing for 
example a school bus and motor scooter with 100% confidence. Yet rotate them 
somewhat, e.g. in a position where the motor scooter makes a wheelie, and the 
model suddenly saw (still with a high confidence) a parachute. Similarly, an over-
turned school bus was classified as a snowplow and an overturned fire truck as a 
bobsled. In fact, 97% of possible poses for these vehicles were incorrectly classi-
fied (Alcorn et al., 2019). Likewise, natural adversarial examples abound, where 
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e.g. a dragonfly resting on a yellow shovel is classified as a banana, or a mush-
room on some wood is classified as a nail (Hendrycks et al., 2021).

Third, there is a general issue about the moment when the model is applied 
(similar to the temporal generality problem noted by Weatherson (2012) and 
the historical v.s. current time-slice measurement of reliability already found in 
Goldman (1979), who opts for a historical theory). It may, namely, be the case 
that an AI system is based on outdated information: the patterns it uses to deter-
mine the output did hold for the training data, but in the meantime the situation 
in the world has changed and so those patterns are no longer a reliable basis for 
the output. Known as concept drift (Žliobaité et al., 2016) this introduces a fur-
ther question regarding the evaluation of reliability: when evaluated historically 
the model may well be reliable, even if it is unreliable in the current time-slice 
(because it becomes unreliable after a while). For example, algorithms predicting 
the demand of products worked reliably before the pandemic, accurately predict-
ing what inventory was required to fill the incoming orders. When the covid-19 
pandemic started, however, purchasing patterns changed drastically (we suddenly 
bought far more hand gel and face masks). The result was AI systems that yielded 
highly inaccurate predictions. The same thing happened for fraud detection algo-
rithms, which normally would flag people suddenly buying garden equipment as 
suspicious behaviour, yet this was no longer a good indicator for fraud in the new 
situation (Heaven, 2020). It is a serious challenge that a model can be reliable for 
a period of time, and should lead to justified beliefs, yet is highly unreliable at a 
later time. One can say, then, that machine learning systems will not be reliable 
when all possible inputs are considered, even though they can be highly reliable 
on a subset of inputs. Furthermore, even restricting it to all possible inputs that 
are also realistic images fails to guarantee reliability of these systems.

So, if it is at all possible to acquire justified beliefs based on these machine learn-
ing systems, then the reliabilist will have to say that the relevant reliability is not 
that of the algorithm over all inputs, but instead the reliability over a smaller set 
of inputs. The question is: can we get justified beliefs from AI testimony? I think 
one has to answer this with a strong yes. The same computer vision models that are 
susceptible to these numerous mistakes power self-driving cars, which though far 
from perfect (particularly in atypical situations) do rather well on highways, and are 
likewise applied in numerous other scenarios. Furthermore, performance of machine 
learning models is often better (in circumscribed domains) than that of humans. For 
example, a simple model to predict house prices can do better than humans on the 
types of houses it was trained on, yet do worse on other types of houses [and users 
unaware of how AI works chose to rely on the model more in the new, out-of-dis-
tribution, cases, see Chiang and Yin (2021) and Poursabzi-Sangdeh et al. (2021)]. 
My point is: although testimony from AI systems will not be reliable when evalu-
ated over all possible/plausible inputs, it can still be highly reliable over the smaller 
range of inputs for which they are actually used. Since we do consider it possible 
to acquire justified beliefs from AI testimony in these situations, it follows that the 
range of evaluation for reliability should be smaller, and not all possible inputs (in 
the actual world, or in a different subset of possible worlds) are used to determine 
reliability.
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That is the basic argument: a process where a user simply believes what the AI 
outputs (i.e. a case of AI testimony) can plausibly lead to justified beliefs in some 
cases. Yet the AI system is not going to be reliable when measured over all possible 
inputs in the actual world/a subset of possible worlds, so unless the process type is 
quite narrow (see the next section) it follows that the reliabilist should evaluate relia-
bility over a subset of token processes falling under the process type. Not just for AI 
testimony, but generally speaking (cf. also some non-AI examples of other locally 
reliable processes in Sect. 5). The question of how this narrower evaluation should 
go (as the relevant subset likely differs per token process) is the subject of Sect. 5. 
First though, there is the question whether I do not type the belief-forming process 
too broadly in my argument.

3  Fine‑Grained Process Typing as an Answer?

One way to deal with the differences in reliability mentioned above is to look at the 
typing of the belief-forming process. While ’believing the output of AI system X’ 
may not be a reliable process, perhaps the more fine-grained ‘believing the output of 
AI system X in circumstances C at times T’ is reliable. For each of the cases where 
I argue that a more local evaluation (i.e. not across all possible token processes) is 
required it is equally possible to say that a more fine-grained process type should 
be named, for which reliability is evaluated globally. Is that a viable response? In 
theory it of course is, but as I argue in this section it doesn’t mesh well with existing 
accounts of process typing, developed in answer to the generality problem. Most of 
these appeal to cognitive factors to determine the right typing, so I start with this 
array of answers. One exception to that rule is Beebe (2004), who looks at all statis-
tically relevant factors. I treat his account last, as it is potentially problematic for my 
view, but argue that precisely that fine-grained typing gets it into trouble. It is there-
fore unlikely that my argument for more local ranges of evaluation can be answered 
by arguing for more fine-grained process typing.

3.1  Cognitive Approaches

Treating them in historical order, Comesaña (2006) has presented a solution to 
the generality problem (i.e. a principled way of typing belief-forming processes) 
using the basing relation, of a belief being based on certain evidence. So, the view 
defended specifically is:

Well-Founded Reliabilism: A belief that p by S is epistemically justified if and 
only if: 

 (i) S has evidence E;
 (ii) the belief that p by S is based on E; and
 (iii) the type producing a belief that p based on evidence E is a reliable type. 

(Comesaña 2006, p. 38)
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Applying this to the case of AI testimony, where a user of an AI system forms 
beliefs by simply believing whatever the model outputs, we get a fairly general type. 
The evidence will be ‘the AI says that p’, and so the process type is producing a 
belief that p based on the AI outputting that p. No distinction can be made here on 
the inputs that are fed into the AI system, as the evidence on the basis for the result-
ing belief is always the same: the AI provides output p. Of course, there might be 
further evidence, e.g. that the specific case is an adversarial case (and so less reli-
able) or that the system has been tested and found reliable for cases such as the one 
in question, but this would be additional information. The simple scenario where the 
user has no information other than that an AI system is provided and gives a certain 
output is certainly possible, happens in practice, and is typed by this account in a 
manner that forces us into the more local evaluation of reliability I argue for.

Essentially the same typing comes out of the cognitive convergence account pre-
sented by Olsson (2016) and Jönsson (2013). They argue that there is a wide-spread 
convergence in the way people type belief-forming processes, something which 
Jönsson (2013) also tests empirically. The idea is that we tend to describe belief-
forming processes using the same verbs, and that the description we choose in this 
way gives the relevant type for the reliabilist. Specifically, (Jönsson 2013, p. 264) 
settles on the following specification:

(JAC ) A believer B is justified in believing p relative an attributor A to the 
degree j iff j = f (rAC(tAC(bfp))) , where bfp is the token-process that led B to 
believe that p, tAC is either the type in terms of which A is actually thinking 
about bfp at the time of attribution ( JACa ), or the type in terms of which A 
is disposed to think about bfp at the time of attribution ( JACb ), and rAC is the 
degree of reliability that A estimates tAC(bfp) to have.

If we again take the bare situation where a user believes what an AI system outputs, 
without further information on the reliability of the output or whether the input is 
similar or not to the training data, then I consider it highly likely that the ascription 
will type the process using the AI as a whole (e.g. ‘B believes that there is a cat on 
the picture because the AI says so’, and not say e.g. ‘B believes that there is a cat on 
the picture based on an AI model operating under circumstances C with output type 
O.’ The typing found by Jönsson (2013) is uniformly of the former kind, with peo-
ple answering that someone is seeing, hearing, speculating, etc. with little mention 
of more specific conditions under which this takes place. So, on this account too, 
it seems that the more coarse-grained typing that I used in my argument for local 
evaluation follows.

Finally, then, there is the solution to the generality problem offered by Lyons 
(2019), in terms of (as it happens) algorithms and parameters. He doesn’t mean 
computer algorithms here, but instead means the algorithms that describe our cogni-
tive processes. As such, it straightforwardly applies to our belief-forming process 
when receiving AI testimony. Lyons’ central claim is that they should be typed as 
follows:

Process tokens Γ and Δ are tokens of the same (relevant) cognitive process 
type iff the complete algorithmic characterization of Γ is the same as the 



 S. Buijsman 

1 3

complete algorithmic characterization of Δ , and Γ and Δ have the same 
parameter values (Lyons, 2019, p. 474).

Basically, if two token processes follow the same steps from input to output and 
have the same parameter values (to which I return in a moment), they belong to 
the same process type. The first question then is: do all token proceses of AI tes-
timony, where the user simply believes the output of an AI system, have the same 
complete algorithmic characterization? Well, to start with the AI system will 
operate in accordance with the exact same algorithm in all these cases, so there 
is no issue there (i.e. no basis for a more fine-grained typing that undermines 
my argument). I also think that it is plausible that the cognitive (i.e. human) pro-
cesses follow the same steps, as in all cases the user simply believes the com-
puter output, without additional information. Perhaps some outputs will be very 
odd (e.g. a natural language system writing about birds with a cleft palate, or 
when the user sees the input picture of a yellow shovel and gets the AI output 
‘banana’) but we know that often users do not spot mistakes made by AI systems 
(Chiang and Yin, 2021; Parasuraman and Manzey, 2010) and can get rid of a 
lot of these cases by obscuring the input, or considering more difficult tasks (for 
humans) than object recognition. On the algorithmic characterization front, then, 
this account too leads to a broad typing that necessitates local evaluation.

The parameters are where it gets interesting, and where the crucial differ-
ence is with the account by Beebe (2004) that I consider in the next subsection. 
Parameters on this account are namely only those factors that cause a systematic 
difference in (human) processing, as opposed to simply any factor that is statis-
tically relevant. For (Lyons, 2019,  p. 489) “[t]ruth, reliability, and the like still 
aren’t parameters because they don’t cause or constitute differences in process-
ing.” So while there certainly are parameters that have a systematic influence on 
the accuracy of AI systems, these parameters are (almost always, to the point 
where it takes serious effort even from the developers to spot biases etc. in a sys-
tem) obscured from the user. So, although they are certainly statistically relevant 
(hence me considering the next account in its own subsection) they are unlikely 
to have any systematic effect on the cognitive processing of a user who is only 
confronted with the output of the AI system. In short, on this end too, the typing 
will be the coarse-grained one I assumed, where all possible token processes of 
AI testimony fall under the relevant type. As a result, these solutions to the gener-
ality problem all fit with my claim that the evaluation of reliability has to be more 
local than simply all possible token processes falling under the type. The excep-
tion is Beebe’s account, up next.

3.2  Statistically Relevant Factors

The final account of process typing I consider is similarly based on algorithms 
(Beebe, 2004, p. 180) gives three different factors that together determine the rel-
evant process type for a given process token. Specifically, he does so via three 
conditions:
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The reliability of a cognitive process type T determines the justification of any 
belief token produced by a cognitive process token t that falls under T only if 
all of the members of T: 

(a) solve the same type of information-processing problem i solved by t;
(b) use the same information-processing procedure or algorithm t used in solving i; 

and
(c) share the same cognitive architecture as t.

So, does an AI system as a whole fit these requirements, or does this condition 
force us into a more fine-grained typing? I think that this first set of conditions still 
maintains the coarse typing I assumed in my argument. For consider: the AI system 
will be explicitly designed to solve an information-processing problem (e.g. com-
puter vision, natural language processing or fraud detection) and will use the same 
algorithm to solve this problem for all possible token processes. Furthermore, as I 
already argued above, it seems likely that a user who is only presented with the out-
put of the AI will exhibit no differences in cognitive processing of this output. If this 
is where the account stops, then it too would be a case where the typing I suggested 
follows.

However, like Lyons (2019) and Beebe (2004) considers that parameters which 
influence the processing procedure are also relevant to the typing of the process. 
His worry is, namely, that there are still a large number of types that all meet the 
three conditions laid out, including ones that are irrelevant. For any process type A 
it is easy to add an irrelevant partition, e.g. A performed on Wednesday v.s. A per-
formed on any day but Wednesday. Both sub-processes match the three conditions 
above and so qualify as viable candidates for the process typing. To avoid those 
cases Beebe invokes statistical relevance, where a factor F is statistically relevant 
for process A under circumstances C iff P(A|C&F) ≠ P(A|C) . The process type that 
is selected, then, is “the broadest homogeneous type (with respect to the produc-
tion of true beliefs) within which t falls” (Beebe, 2004, p. 188), with a homogenous 
type being such that no more subdivisions can be made using statistically relevant 
factors.

This is an issue for my argument, as there are plenty of statistically relevant fac-
tors that partition an AI system, leading to a more fine-grained typing. For exam-
ple, whether something is an adversarial case or not will be statistically relevant: 
AI systems are (by definition) unreliable for adversarial cases and so more relia-
ble for the remaining cases. Furthermore, whether an input is an outlier is a sta-
tistically relevant factor: the AI system is less reliable for outliers than for inputs 
similar to the training data, and so on. There are lots of statistically relevant fac-
tors that partition the general process, and so Beebe’s account leads to very fine-
grained process types. So fine-grained that it becomes problematic. As Dutant and 
Olsson (2013) have argued at length, the process types collapse into ones covering 
only true instances and ones covering only false instances. The example presented 
by Lyons (2019) of forming beliefs about m × n using addition (which only works 
for 2 × 2 ) is a nice example here. If the process type is to ‘do addition to solve m × n 
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with m, n ∈ ℕ ’ then it is highly unreliable (as it is only true for m = n = 2 ). Yet 
the type ‘use addition to solve m × n with m, n ≤ 1,000,000 is already more reli-
able, so P(m × |m, n ∈ ℕ) ≠ P(m × n|m, n ≤ 1,000,000) . And it keeps getting more 
and more reliable the finer we type the process, until we reach ‘do addition to solve 
P(m × n|m = n = 2) ’, which is again a different probability from all other types. 
Vice versa, the same statistical relevance pushes you into typing the remainder of 
the process as P(m × n|m, n ∈ ℕ − 2) , i.e. the process type over all natural numbers 
except 2. In short, by considering all statistically relevant factors the typing col-
lapses into truth or falsity and thus trivializes the epistemology.

It seems then that if we want to type processes relying on cognitive factors alone, 
as the accounts in the previous subsection do, then this leads to a coarse-grained 
typing of processes based on AI testimony. Since the user of these processes reacts 
no different to the different cases considered by the AI (nor, for that matter, does the 
AI system itself as it will follow the exact same steps it does for every input) the typ-
ing is the same. If, on the other hand, we do push for a more fine-grained typing by 
considering all statistically relevant factors—and not just the cognitive factors—then 
this leads to a trivialization of the process typing. This can only be avoided if one 
manages to find a way to select some but not all statistically relevant (non-cognitive) 
factors as being important for process typing. I am doubtful that this is possible, and 
I think we can therefore say that more fine-grained typing is an unlikely answer to 
the cases I’ve presented here. Local evaluation of reliability is the more plausible 
solution. Yet, how does this claim fit in with the existing discussion on the evalua-
tion of reliability? That is what I consider in the following section.

4  Existing Discussion on the Evaluation of Reliability

4.1  Arguments Against Local Evaluation

Now that I’ve argued that the process shouldn’t be given a more fine-grained typ-
ing, I can consider the extant literature on the range of evaluation. As I mentioned 
in the introduction, there are at least two discussions that mention the possibility to 
evaluate reliability more locally and one account (Graham, 2012) that has a kind of 
local evaluation built in. To start with, Henderson and Horgan (2006) present a case 
where Athena and Fortuna are in fake-barn country, with the added feature that all 
yellow buildings happen to be real barns, but that there are plenty of barn facades of 
other colours around. Athena has a belief-forming process based on general experi-
ence with barns, and so believes of many facades in fake-barn country that they are 
barns. Her process is locally unreliable, but her extensive experience with recogniz-
ing barns gives the intuition that her beliefs are justified. Henderson and Horgan 
(2006) proceed from the idea that what we ultimately want for justification is the 
kind of reliability afforded by the refinement of belief-forming processes based on 
their successes and failures. They then argue that the kinds of processes that result 
from this adjustment to the environment will be transglobally (so across a range of 
possible worlds) reliable. Since Athena has had the appropriate kind of training in 
recognizing barns she meets this standard of transglobal reliability.
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On the other hand, Fortuna has no experience with barns and first saw one 
yesterday, which happened to be yellow. Based on that experience she forms the 
belief that the building she sees is a barn every time she sees a yellow building. In 
fake-barn country this process is highly reliable (as all and only yellow buildings 
are real barns), but it is not (trans)globally reliable. So, Henderson and Horgan 
(2006) consider that the test for whether the process results from the right kind 
of adjustment to the environment is to see if it is reliable over a very wide range 
of situations/possible inputs. So how does this argument affect my argument from 
Sect. 2 that we should evaluate reliability more locally?

I follow the response by Graham (2014) to this and a few other cases. He takes 
issue with the difficulty of evaluating reliability globally or even transglobally, 
as well as the fact that perception often isn’t reliable across such a wide range 
of cases (e.g. some birds detect mates simply by the colour of their beaks, which 
is another nice example of a process that is locally reliable but not globally reli-
able). He argues instead that it is sufficient for the overall goal of identifying the 
right kind of reliability to require that a process be non-accidentally reliable to 
solve these cases. The real issue with Fortuna, he claims, is that her belief-form-
ing process is reliable by sheer luck, and that is enough to say that her beliefs are 
unjustified. He furthermore holds that Athena is justified because her belief-form-
ing process is non-accidentally reliable under normal conditions (which I discuss 
below). Henderson and Horgan (2006) can be read as trying to specify such an 
anti-luck requirement through transglobal reliability, but as the bird example and 
my AI examples show, this is too stringent a requirement to capture the anti-luck 
intuition. If we keep it instead to an anti-luck requirement on reliability that does 
not mention the range of evaluation, then issue is solved quite naturally, and it 
also leaves intact my argument based on AI testimony: the situations where this 
is highly reliable are typically similar to the situations on which AI systems were 
trained to be reliable. So it is no accident that AI systems perform well in these 
circumstances. This does mean that one is owed an account of when a process 
is non-accidentally reliable (if it isn’t transglobal reliability), a question that I’ll 
leave for future work. As for the converse (Athena) question, I discuss that more 
fully in Sect. 5.

I turn therefore to the second objection to more local evaluations of reliability, 
by (Lyons, 2019,  p. 488). He discusses the above-mentioned example of forming 
beliefs about m × n via the process m + n . Although this is reliable for m = n = 2 
he consider the process just as unreliable/the output just as unjustified as for other 
inputs. And indeed, I think it would be wrong to reduce the range of evaluation so 
far. That, at least, is one response to this objection: the range of evaluation needs 
to be some minimum size. And, moreover, the selection of the range of evaluation 
shouldn’t be simply based on reliability: just because a process gets some cases cor-
rect shouldn’t imply that it is therefore reliable for those cases. The range of evalua-
tion needs to be determined independently from the question whether the process is 
reliable over that range. I also find it tempting to say that this is a case of luck (that 
the process gets it right for m = n = 2 ), though this is hard to clearly define the idea 
in the case of necessary mathematical truths. I therefore mostly see this example as 
a challenge for any account that aims to specify how the range of evaluation is to be 
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determined. It should rule out the 2 × 2 case, but still allow for justified beliefs based 
on testimony from (locally accurate) AI systems.

4.2  Which Possible World(s) to Evaluate in?

As mentioned, Henderson and Horgan (2006) argue that reliability should be eval-
uated transglobally: in the actual world and over a range of possible worlds. This 
is part of a wider discussion on the appropriate range of evaluation for reliability. 
For example, Goldman (1979) and Lyons (2013) consider that reliability should 
be evaluated in the possible world in which the process is employed (“reliability, 
i.e., reliability in the agent’s world and/or environment” (Lyons 2013, p. 1)), though 
Goldman also mentions the option that reliability is evaluated in the actual world. 
Goldman (1986), on the other hand, holds that reliability should be evaluated in 
‘normal worlds’. Finally, Sosa (1993) and Comesaña (2002) argue for a two-dimen-
sional composite of the possible world where the process is employed and the actual 
world. A large part of this discussion concerns the New Evil Demon problem, and 
the question whether reliabilists can/should say that a person in that possible world 
is justified in his or her beliefs. That issue is tangential to the one under discussion 
here. Whether the local reliability of the process is evaluated in the possible world 
where it is used, or in the actual world, or in some two-dimensional composite, is a 
separate matter. In all these cases we need to figure out which set of cases to look 
at within the possible world(s) in which reliability is evaluated. As such, my argu-
ment here is compatible with most of these views. In fact, one of them, defended by 
Graham (2012), already implies the more local evaluation that I argue for (in the 
possible world where the process is employed, to place it in context of the views 
mentioned in this subsection). I turn to that view next.

4.3  Normal Circumstances: A Possible Local Range

One view in the discussion on where reliability should be evaluated gives a specific 
result on what local circumstances matter. Graham (2012) presents an etiological 
account, on which the circumstances in which the belief-forming process acquired 
its function (of reliably producing true beliefs) is what matters: “It’s reliability in 
normal circumstances that matters, for reliably in normal conditions individuates 
and explains what counts as normal functioning” (Graham, 2012,  p. 456). This 
sounds like a promising way to spell out how AI testimony is to be evaluated, but the 
difficult part here is determining what the normal circumstances are in these cases.

Let me start, however, with the question whether AI testimony is covered by the 
account. I suspect that it is: “my account of entitlement applies to any belief-forming 
process that has reliability as an etiological function, whether the function derives 
from a history of natural selection or from a history of learning through reinforce-
ment or other means.” (Graham, 2012, p. 457) As the AI systems in question (super-
vised machine learning) are explicitly trained to minimise the error of their outputs, 
I think we can say that they have the function of reliably performing the task they 
are designed for. And so the full belief-forming process of AI testimony seems to fit 
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the definition here, as believing the outputs of a system trained to be reliable should 
in turn be a process with the goal of forming reliable beliefs.

The question then is what the normal circumstances will be where the AI is to 
be evaluated. In the cases Graham discusses the normal circumstances are those in 
which the process acquired its function. So, if we apply that to the AI case then it 
seems that the training data is the basis of what counts as normal circumstance for 
AI testimony. It won’t be just the training data, of course, just as the normal circum-
stances for perception aren’t restricted to exactly those in which it first evolved, but 
apply just as well in the somewhat different environment we are currently in. So, 
anything sufficiently similar to the training data will count as normal circumstance. 
Is that a reasonable range to pick? I think there are some difficulties, to do with the 
possibility that the training set isn’t representative.

Take the case of Alcorn et  al. (2019) again, where it turned out that computer 
vision algorithms fail to correctly identify cars, scooters, etc. in a wide range of cir-
cumstances. Similar studies have found that these algorithms don’t recognize stop 
signs if there are a few pieces of black and white tape on it (in fact the AI saw it 
as a sign indicating a higher speed limit (Eykholt et al., 2018)). The training data 
contained none of these circumstances, and by now a whole range of ‘natural adver-
sarial cases’—plausible scenario’s where AIs make serious mistakes—is known 
(Hendrycks et al., 2021). Part of the reason will be that the training and original val-
idation set were insufficient to capture the phenomenon the AI was meant to detect. 
Generally speaking, then, there is no reason why the training set should capture the 
full range of what we consider ‘normal’ cases, because the creators of these datasets 
could easily have overlooked cases that are normal. The environment captured by 
the training data could be said to be normal yet simply different from the environ-
ment in which it is deployed, but I think that it’s a better analysis to hold that the 
data fails to capture the normal environment. There may not be a clear environment 
that matches the exact contours of the training data (e.g. with only white men) and 
we do consider the fault to be with the data and the cases it identifies, rather than 
with the choice of use cases. So what I think is lacking is this initial situation where 
the process is functioning as intended, which we see with young birds in their natu-
ral environment. Graham wants to capture that idea, and focussing on the training 
set won’t do. Nor will it do for calculations of reliability, precisely because these 
datasets need not give an accurate picture of the situations in which they are used in 
practice.

Instead, then, consider the circumstances intended by the designers of the sys-
tem. AI systems, after all, get their function not through a process of selection, but 
by design. Will these do? It does get the self-driving car case right, as the intention 
of the designers is for the algorithm to correctly read stop signs etc. So, going by 
the intention of the designers will lead to the conclusion that this system is unreli-
able if there are too many mistakes (in practice) and won’t provide justification for 
any outputs. Yet designer intentions are also a rather fickle basis for the reliability 
measure. Perhaps they have lofty inspirations, intending the system to be much more 
generally applicable than it actually is. The converse can happen just as well, as 
seems to be the case with the natural language system GPT-3. The designers prob-
ably intended simply to build a larger scale version of the previous language model 
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they developed, and were subsequently surprised by how many language tasks the 
model could tackle. It turned out to be more versatile than expected. Surely that 
shouldn’t imply that we are unjustified to use the system in the cases where it was 
unexpectedly accurate, simply because those circumstances weren’t intended by the 
designers.

I think, then, that the two most natural interpretations of ‘normal circumstances’, 
a historical one (based on the training data) and one based on the designers of the 
system, are unlikely to give the right results. Might other options work? We could 
work with a pre-theoretical notion of normal circumstances and/or normal use, 
avoiding the reductive analyses that I’ve given above. And here we see one reason 
why I picked AI systems as a case, rather than more familiar processes. For the 
non-accidental reliability of AI algorithms needn’t be linked to normality as closely 
as most biological processes are. As an example, in the case of facial recognition 
algorithms there are many faces that would be viewed as normal on a pre-theoretic 
notion—most of them, in fact. If there are no serious birth defects, or scarring from 
accidents etc., we’d quickly regard a face as normal. Yet, notoriously, facial recogni-
tion algorithms were (and to some extent are) biased in terms of their accuracy. Gen-
der classification based on images of faces worked particularly well for white men, 
slightly worse for white women and far worse for other people (Buolamwini and 
Gebru, 2018), with accuracy gaps as high as 34.4 percentage points. That means that 
an algorithm intended for use on the entire population, and in fact used on the entire 
population, was highly reliable for one group (for white males in particular accu-
racy was around 99%) and close to chance for other groups (65.3% accuracy was the 
worst case). So, if we evaluate the algorithm over normal circumstances, both seen 
in terms of circumstances of use [e.g. a range of evaluation defined by what inputs 
the process receives in nearby possible worlds) and in terms of normal faces, it will 
score much worse than when evaluated over a subpopulation. Such cases are easy 
to come by, as object recognition has a similar disparity in accuracy for objects in 
western v.s. objects in other countries (soap being recognized when in a bottle, but 
not when it is a bar of soap, for example; De Vries et al. (2019)].

Are such systems still providing us with justifiable outputs in the subgroups for 
which they are highly reliable? It seems plausible to think that we are justified in 
believing these outputs in those cases, as there is a situation of non-accidental high 
accuracy (the situation is one where the AI was trained primarily on faces of white 
men). In fact, because the AI was trained on this subgroup Graham would likely 
identify the recognition of faces of white men as the function by his etiological defi-
nition. Now, defining normality by the training set isn’t a water-tight move as dis-
cussed above, but it is how algorithms can become non-accidentally reliable and 
that makes for a decent argument that we are justified to believe the outputs of the 
algorithm in those cases (though not for all faces).

In short, the challenge is that what is ‘normal’ pertains to the world, and those 
normal circumstances might not be the ones in which the algorithm is accurate. A 
prominent reason for this is that the training set of the algorithm isn’t necessarily 
representative of the world. That can be a problem for reductive definitions, because 
the training set misses important aspects of a phenomenon that we think should 
count as normal circumstances. But it can also be a problem for fixing the range 
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of evaluation in terms of a pre-theoretic notion of normal circumstances or normal 
use, because that specific range (e.g. normal faces) need not be the one for which the 
algorithm is non-accidentally accurate. It is for that reason that I’m skeptical that 
‘normality’ fully captures what we’re after here, and also why I’ve picked AI as an 
example throughout—as it is easy to find cases of non-accidental reliability without 
lining up with our notion of normal circumstances. Perhaps there is still some way 
to make the idea work with a notion of normality, but I think it helps to broaden the 
scope of possible solutions a bit. Therefore I turn next to a discussion of how this 
range of evaluation may be determined without using normal circumstance as the 
guiding notion.

5  Determining the Range of Evaluation

When we have a belief-forming process that produces a certain output, how reliable 
is the process that produced it? That is the central question I am posing here, and 
where I’ve argued that the answer requires a method of determining the range of 
evaluation over which this reliability is determined. While I have focussed on exam-
ples from AI systems, where accuracy is easy to measure and process individuation 
is fairly straightforward, the question applies generally. I’ll still use AI examples for 
some technical details here and there, but hope to formulate an answer that works in 
other contexts too, and circle back to the examples from other authors at the end of 
this section. So, then, how should we identify the range of evaluation, if not through 
normality?

Two perspectives offer themselves. First, the question is to find a local range of 
evaluation, which means that we want to evaluate the process over all cases that 
are ‘close enough’ to the input–output pair in question. As Graham (2012) already 
notes, a range of circumstances is needed in which the process is reliable. If we look 
at the literature on AI systems, that can translate into a distance measure that deter-
mines which inputs are close to the actual input.2 Note that this is quite different 
from looking at ‘normal circumstances’ as Graham intents, or looking at e.g. those 
inputs which a process might easily get in nearby possible worlds. Those notions 
look at the circumstances in which the process is calibrated or employed, whereas 
the suggestion here is instead to ignore those aspects and look simply at the range of 
cases obtained from making changes to the inputs.

2 Karimi et al. (2020) has a survey on such measures, though they are specifically looking for the nearest 
input with a different output. As a concrete example, (Wachter et al., 2017) uses a weighted Manhattan 
distance over input x made up of dimensions k (e.g. the different pixels, or variables such as age, income, 
etc. found on a loan application):

The lower part of the fraction corrects for the median average deviation found in variable k, to handle the 
fact that e.g. income will vary much stronger than age.
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My suggestion is thus a fairly direct notion of similarity: the range of evaluation 
consists of those cases that don’t differ too much from the actual case for which we 
need to determine if the process is reliable or not. So, if the actual input is the face 
of a white man, then we primarily look at other faces of other white men – faces that 
look broadly similar, and more similar than faces of (say) asian women. The men-
tioned gender classification algorithm will be highly accurate for that group of faces. 
However, if we take another input, and look at the face of an African-american 
woman, then the range of similar faces will be one over which the algorithm isn’t 
all that accurate. Note that we probably need to restrict this range of similar faces to 
ones that are plausible—there might be changes to a face that result in very atypi-
cal images, such as adding a third eye. And this brings us closer to an idea that we 
might be looking at a range of close possible worlds, though it is not quite a range of 
inputs that the process could easily receive (as the similarity metric doesn’t look at 
our use of the belief-forming process). Still, the idea might sound familiar.

For compare my suggestion to one of Williamson’s formulation of the notion of 
safety: “[I]n a case � one is safe from error in believing that [a condition] C obtains 
if and only if there is no case close to � in which one falsely believes that C obtains” 
(Williamson, 2000, pp. 126–127). Of course, that is a rather more stringent require-
ment than my suggestion for the range of evaluation. Understandably so, as I am 
looking at justification rather than knowledge. I also wouldn’t be surprised if we 
prefer to have a wider range of evaluation than the range we’d pick for the safety 
requirement of knowledge. Still, the safety requirement follows the same idea of 
looking at sufficiently close alternative inputs and the comparison may help eluci-
date how my suggestion differs from that of Graham.

However, I don’t want to deviate completely from the account that Graham 
(2012) presents, or from the intention of Henderson and Horgan (2006) in looking 
at appropriately adjusted belief-forming processes. While the range of evaluation is 
fixed in a different manner, I am in favour of thinking that it is non-accidental reli-
ability that matters. This idea of reliability being non-accidental is, I think, plausibly 
spelled out by Graham’s connection to natural selection or reinforcement learning, 
or (in the AI case) the training data and in line with the general aim of Henderson 
and Horgan (2006). It is the calibration of the process, in whichever way that hap-
pens, that makes it non-accidentally reliable for a certain set of inputs (where, again, 
a more developed account of non-accidental reliability is left to future work). If we 
didn’t have that aspect in the mix, then the barn cases from Henderson and Horgan 
(2006) would quickly present a problem again, as they are relying precisely on the 
idea that all similar inputs (the other barns in fake barn country) are ones for which 
the process is reliable. One more remark needs to be made, however, on the restric-
tions to the range of reliability before I go through those examples in more detail.

For there’s a second perspective which I think is important: whether the process 
type reliably produces beliefs with similar contents, as opposed to under similar 
circumstances. To take computer vision as an example again, there is the question 
whether the AI system reliably recognizes e.g. a hammer when it says that there is 
a hammer on the picture. There is nothing in the above distance measure that will 
guarantee that reliability is measured over a large number of hammers (or a large 
number of cases where the AI thinks there is a hammer), so no way to guarantee that 
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the evaluated reliability is that of detecting hammers. Rather, it would be the reli-
ability of detecting objects under circumstances similar to those of the token process 
in question. For other processes we might wonder the same: is the process generally 
reliable, but not for the type of content that it currently produces? Vision in young 
birds might work reliably to determine whether their parents are nearby, but not reli-
ably to spot predators, or cardboard, etc. And so it makes sense to narrow down the 
range of evaluation by the type of content. Now, that doesn’t mean that we should 
restrict the evaluation to cases where the young bird is correctly identifying a parent, 
but instead to narrow it down to the cases where the bird forms the belief that there 
is a parent present, in addition to the cases where there really is a parent present (but 
the bird might not notice). The same process might have very different reliability for 
those different types of content, after all3

And indeed, in the AI case Wong et  al. (2021) find that the accuracy of com-
puter vision models varies widely depending on the output label, i.e. on the type of 
content one looks at. For example, these models are good at recognizing teapots, 
cats and hammers, but particularly bad at recognising screens and printers (meas-
ured over the image dataset which is also used for training the models). That seems 
to be a highly relevant difference in reliability. The fake barn cases, for example, are 
presented as problematic for a local evaluation by Henderson and Horgan (2006) 
because in those circumstances a globally unreliable process for recognizing barns 
happens to be locally reliable. The question is not whether perception is generally 
reliable in fake barn country, but focusses on the content of the belief in question 
(i.e. ‘that is a barn’).4 We want to know whether we are justified to believe the con-
tent, and so what should matter according to a reliabilist is whether the belief-form-
ing process reliably produces beliefs with those kinds of content. The range of eval-
uation for the process relevant to any particular belief can then already be restricted 

3 For AI systems we can define this more formally, e.g. using the method from Wong et al. (2021) that 
starts with a score Q for input x paired with output y given the correct classification z:

Here � and � are different factors rewarding/punishing correct/incorrect outputs. Now, this doesn’t set up 
a local range of evaluation, as it is just for a single input–output pair (so almost a token process). They 
showcase the difference with looking at the output type for the range of evaluation in their computation 
of a combined TrustScore (as they call it) which integrates the different individual scores with respect to 
the output label, e.g. all cases where the model says ‘hammer’, or all cases where it says ‘screen’. For-
mally specified, for some set of input–output pairs x,y (which occur with probability P(x, y)) the aggre-
gated score T is:

By restricting the integral to e.g. those cases where the output y = ‘hammer’ with a minimum confidence 
you get a measure specifically for all cases where the model claims there is a hammer in the picture.

Q(x, y) =

{
(C(y|x)� if y = z

(1 − C(y|x))� if y ≠ z

T =
∫ ∫

P(x, y)Q(x, y)dxdy

4 Of course Henderson and Horgan (2006) do this by giving a fine-grained typing of the processes 
(‘believing a building to be a barn based on its yellow colour’), but I take it that my reconstruction of the 
case with a coarse-grained process is equally problematic and also calls out for the solution that the reli-
ability needs to be non-accidental.
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to situations in which the process produces beliefs with similar contents, but also to 
cases where the correct outcome would be a belief with similar content. It might be 
the case, after all, that there are lots of cases where the process misses e.g. a parent 
that is present, or a barn of a different colour (in the Henderson and Horgan (2006) 
case), and those false negatives should be taken into account when looking at the 
reliability. Similar contents, then, both in the actual resulting beliefs and in what 
would be the correct beliefs.

I thus suggest to have a two-pronged limitation of the range of evaluation: on out-
put (similar contents), and on input (sufficiently similar to the actual input). Reliabil-
ity over this range should be non-accidental, which is nicely covered by Graham’s 
approach. With those restrictions in place, I think the range of examples discussed 
so far can be accommodated quite nicely. I’ve already sketched how this might work 
for the gender classification case, and think we can say something similar for the 
differences in reliability in object detection algorithms (a bottle of soap isn’t all that 
similar to a bar of soap, and the AI is non-accidentally reliable for the first but unre-
liable for the second). The adversarial cases naturally fall in the range of evaluation, 
and if there are too many plausible cases where the algorithm is wrong, it seems fair 
to call it unreliable. That being said, I didn’t want to restrict my focus to AI, so how 
about the other examples from the epistemology literature?

To start with, there are the two fake barn cases of Henderson and Horgan (2006). 
On the one hand there is the locally reliable process (in fake barn country) which 
is not globally reliable. The accidental nature of this reliability is to blame, as I’ve 
discussed above. This is certainly captured by keeping Graham’s appeal to a simpler 
notion of non-accidentality than transglobal reliability. I’ll assume for arguments 
sake that all sufficiently close inputs (or most of them) fall under fake barn coun-
try, but this conclusion isn’t all that obvious: my distance function wasn’t directly 
related to the circumstances of use, and e.g. changing the colour of the barn seems 
to count as a fairly small change to the input conditions. Since I’m not looking at a 
local range in terms of the geographical location, or in terms of the other barns that 
Fortuna might easily see, the outcome is likely to be that she is unjustified because 
her belief-forming process is not widely applicable. Still, I don’t doubt that other 
examples can be found where one is lucky within the local range of evaluation, so 
hence I’ll consider that situation as well.

The converse case of Athena, who has a globally reliable process for determin-
ing whether something is a barn which is locally unreliable, is not as easy to han-
dle. I think that here again it helps to stress that the local range I’m suggesting isn’t 
one particularly bound to the location in which Athena finds herself. Still, if fake 
barn country is large enough, and contains sufficient variety to fit in the full range 
of evaluation, then Athena’s process will be deemed locally unreliable even if it is 
globally reliable. And so she won’t be justified in (notably large) fake barn country, 
even though she is justified in her barn-related beliefs sufficiently far outside of fake 
barn country. Provided that we set the range of evaluation wide enough, I think this 
conclusion isn’t that problematic. In that case there will be some fake barn countries 
(ones small enough to not take up the entire range) that maintain justification, and 
some where it is so systematically different that our belief-forming processes are not 
just wrong due to bad luck but are wrong because they systematically misrepresent 
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the environment. Of course, Athena still might not be to blame for continuing to 
form beliefs using her globally reliable process; as in other examples (young birds in 
lab settings, receiving AI testimony without knowing that the system is unreliable in 
that particular case) that might be the only rational thing to do. Still, a reliabilist will 
have to say that she lacks (externalist) justification. And so ultimately I think this 
ends up with a balancing act between the two cases, where we want ranges of evalu-
ation that are reasonably large, but not too large.

Just by opting for reasonably large ranges of evaluation we avoid the problems 
with cases such as the evaluation of m × n using the operation m + n , presented by 
Lyons (2019). Since the range of evaluation isn’t selected based on differences in 
reliability, but looks at similar inputs, more than just the number two would be part 
of it. Consequently, the suggested belief-forming process will count as unreliable. 
The trick is again, though, to get the balancing right. If the range is set too broadly, 
we might run into difficulties with the perceptual processes in young birds discussed 
by Graham (2014). Take this too broadly, and birds in normal conditions (that is, 
not in a lab but in a nest) might be evaluated partly by the very different conditions 
of looking at cardboard cutouts. If, however, we keep the range of circumstances to 
consider small enough—but still sizeable—then the reliability of their belief-form-
ing process would be tested by whether they’d still spot their parents if the shape of 
their beaks was somewhat different, if the lighting conditions would be changed, 
etc. We shouldn’t, note, look at situations where the spot on their beak isn’t red, 
but some other colour, since it’s precisely the red that the belief-forming process 
uses. Here, again, the plausibility of the changes should help, as it’s plausible for the 
beak to have a slightly different shape, but not for the dot on it to be green. Just as it 
makes sense to change facial features in some ways, but not in others (like adding a 
third eye).

6  Conclusion

Over what range should reliabilists measure reliability? I have argued that it should 
not be that of all possible token processes of the process type. AI systems are a sali-
ent example where the process type is (often) unreliable when measured over all 
possible token processes, but reliable for a substantial more local range of token 
processes. As it seems undesirable to say that no justified beliefs can be formed 
using AI systems, the range of evaluation should be restricted. I have defended that 
argument by looking first at the typing of the process, showing that almost all exist-
ing accounts of process typing entail a coarse-grained typing of the belief-forming 
processes appealed to in my argumentation. Furthermore, the one exception to the 
rule collapses into a trivially narrow typing, precisely because it appeals to all statis-
tically relevant factors rather than only cognitive ones.

A smaller range of evaluation therefore is the better way to handle these cases. I 
suggest that this range is determined first and foremost by the content of the belief 
resulting from the token process, where resulting beliefs that have or should have 
similar contents are what we care about. After that initial selection, the range is 
further restricted by looking only at sufficiently similar inputs for the other token 
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processes. One way to phrase this requirement is to say that the range is restricted 
by a distance function over the input variables of the token process which focusses 
on plausible (/probable) changes to the inputs. Of the options considered here, that 
seems to be the best way of dealing with the scenario where a user forms beliefs 
based on the output of an AI system, as well as other (e.g. perceptual) situations 
where belief-forming processes are locally reliable but globally unreliable. Finally, it 
handles the few objections in the literature on the range of evaluations well, though 
my discussion is largely tangential to that one as I am not concerned with the ques-
tion of what possible world(s) should be picked for the evaluation of reliability. 
Naturally, there are still open issues. We are owed an account of non-accidental reli-
ability. Furthermore, by focussing on the range of evaluation I abstracted from other 
issues such as the time frame, the internal processes of users of AI systems, and the 
way reliability is calculated (e.g. do worse errors count more heavily?). These do 
of course matter for any complete account of the cases I’ve discussed, which have 
hopefully been shown to be fruitful ones for further discussion.
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