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a b s t r a c t 

Image registration is an important task in medical image analysis. Whereas most methods are designed 

for the registration of two images (pairwise registration), there is an increasing interest in simultaneously 

aligning more than two images using groupwise registration. Multimodal registration in a groupwise set- 

ting remains difficult, due to the lack of generally applicable similarity metrics. In this work, a novel sim- 

ilarity metric for such groupwise registration problems is proposed. The metric calculates the sum of the 

conditional entropy between each image in the group and a representative template image constructed 

iteratively using principal component analysis. The proposed metric is validated in extensive experiments 

on synthetic and intrasubject clinical image data. These experiments showed equivalent or improved reg- 

istration accuracy compared to other state-of-the-art (dis)similarity metrics and improved transformation 

consistency compared to pairwise mutual information. 

© 2018 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Biomedical image registration is the process of spatially align-

ng medical images, allowing for an accurate and quantitative com-

arison. An increasing number of image analysis tasks calls for

he alignment of multiple (more than two) images. Examples in-

lude the joint analysis of tissue properties using multi-parametric

RI ( Huizinga et al., 2016; Wells et al., 2015 ), spatio-temporal mo-

ion estimation from dynamic sequences ( Metz et al., 2011; Van-

emeulebroucke et al., 2011 ), atlas construction ( Fletcher et al.,

0 09; Joshi et al., 20 04; Wu et al., 2011 ) and population analyses

 Geng et al., 2009 ). 

One approach to perform such a registration task would be

o take one image in the group as a reference and register all

ther images to this reference in a pairwise manner. However,

uch an approach has two distinct shortcomings. First, the choice

f the reference image inherently biases the resulting transforma-

ions and subsequent data analysis towards the chosen reference.
∗ Corresponding author. 
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econdly, only a fraction of the total information available within

he group of images is used in each pairwise registration, possibly

eading to sub-optimal results. 

An alternative is to perform a groupwise registration in which

ll transformations are optimized simultaneously. Transforma-

ions are expressed with respect to a common reference space,

hereby removing the need for choosing a particular reference

mage, and the bias associated with that choice. Additionally,

 global cost function simultaneously takes into account all in-

ormation in the group of images. In this work we will ad-

ress such groupwise similarity metrics for multimodal registration

roblems. 

Multimodal intensity-based pairwise registration is commonly 

olved using mutual information (MI) ( Collignon et al., 1995; Viola

nd Wells III, 1995; Wells et al., 1996 ), since it assumes a stochas-

ic relationship between the two images to be registered. Extend-

ng MI to groupwise registration leads to a high-dimensional joint

robability density function with an exponentially increasing num-

er of histogram bins. Sparsity becomes a major concern as the

umber of images grows larger and limits the application to small

roups of images ( Wachinger and Navab, 2013 ). 
nder the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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Fig. 1. Graphical illustration for (a) pairwise registration (b) groupwise registration. 
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A number of alternatives have been proposed to perform mul-

timodal groupwise registration. Orchard and Mann (2010) pro-

posed to use a Gaussian mixture model instead of histograms

to approximate the joint probability density functions and

Spiclin et al. (2012) approximated the joint probability density

functions with a nonparametric approach based on a hierarchical

intensity-space subdivision scheme. However, both approaches re-

main limited by the sparsity in the joint intensity space and per-

form poorly for large groups of images. 

Alternatively, one could represent the intensities as a graph and

relate the length of such a graph to the entropy of the images

( Hero et al., 2002 ). Such an approach requires a computationally

expensive optimization for the construction of the graph and is

not continuously differentiable, making gradient-based optimiza-

tion difficult. 

Zöllei et al. (2005) proposed the use of a voxelwise stack en-

tropy. Herein, the intensities of all separate images in the group

at a given sampled coordinate are grouped into a one-dimensional

probability density distribution. For each sampled coordinate, the

entropy is calculated and summed. However, for a low number of

images in the group, the probability density functions are sparse

which limits its use to larger groups of images. 

Wachinger et al. (2007) proposed to accumulate all pairwise es-

timates of mutual information for all possible pairs of images in

the group under consideration. Such an approach leads to a com-

putation time which is proportional to the square of the number of

images, making its application to larger groups of images increas-

ingly difficult. 

Joshi et al. (2004) developed an interesting metric where the

mean squared differences is used as a pairwise metric to compare

every image in the group to the average image. Herein the aver-

age image is updated in each iteration. They applied the method

to monomodal brain atlas construction and it has also been ap-

plied to thoracic 4D CT data ( Metz et al., 2011 ) and 4D ultrasound

of the liver ( Vijayan et al., 2014 ). The approach carries a number of

advantages, such as the linear scaling of the computational com-

plexity with respect to the number of images in the group and the

possibility to parallelize the algorithm, making it feasible for both

small and large groups of images. Bhatia et al. (2007) proposed to

use the normalized mutual information ( Studholme et al., 1999 ) as

a pairwise similarity metric and the average image as a template

image on monomodal intersubject data. The metric was termed

the average normalized mutual information and has been used (to-

gether with the average mutual information) in subsequent litera-

ture as a metric for multimodal groupwise registrations ( Ceranka

et al., 2017; Hallack et al., 2014; Huizinga et al., 2016; Polfliet et al.,

2016; 2017 ). However, the use of the average image as the template

image might not be appropriate in multimodal data with intensi-

ties of varying scales, ranges and contrast. 

In this work a novel similarity metric, the conditional tem-

plate entropy (CTE), is introduced for multimodal groupwise reg-

istration based on this principle of pairwise similarity with re-

spect to a template image. Following the original formulation by

Joshi et al. (2004) , we first design a suitable pairwise metric to be

used in the comparison of the template image and every image in

the group. Afterwards we investigate the use of a template image

based on principal component analysis. 

Given the linear scaling of the computational complexity, the

metric can be applied to a wide range of intrasubject multimodal

groupwise registration problems, for both small and large groups

of images, and can be used as a general purpose metric. The

proposed metric is validated in extensive experiments on syn-

thetic and intrasubject clinical data, demonstrating equivalent or

improved registration accuracy compared to other state-of-the-art

methods and improved transformation consistency compared to

pairwise MI. 
. Materials and methods 

.1. Pairwise registration 

In pairwise registration, a target (moving, floating) image I T is

egistered to a reference (fixed, source) image I R . The transforma-

ion T θ, parameterized by θ, needs to be determined that maps

oordinates from the reference image domain to the target image

omain ( Fig. 1 (a)). The registration can be defined as an optimiza-

ion problem 

ˆ = arg min 

θ
C ( I R , I T ◦ T θ ) . (1)

Here, C is the cost function or objective value of the registra-

ion problem, which is often represented as a weighted sum of a

issimilarity metric, D, and a regularization term, R , such that 

 = D + λR , (2)

n which λ is the weight for the regularization. 

.2. Mutual information 

In the pairwise approach, mutual information (MI) ( Collignon

t al., 1995; Viola and Wells III, 1995; Wells et al., 1996 ) is defined

s a similarity metric ( S = −D) 

 MI ( I R , I T ◦ T θ ) = H ( I R ) + H ( I T ◦ T θ ) − H ( I R , I T ◦ T θ ) . (3)

Here, H ( · ) and H ( · , · ) refer to, respectively, the marginal and

oint entropy of the marginal and joint intensity distributions, of-

en calculated via normalized histograms. In Eq. (3) , the first term

xpresses the complexity of the reference image and the second

erm is the entropy of the target image mapped onto the refer-

nce, which favors transformations that map onto complex parts

f the target image. The final term expresses the complexity of the

hared or common relationship between the reference and target

mage. It is maximized when the (statistical or stochastic) relation-

hip is stronger and thus less complex ( Wells et al., 1996 ). 
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Following Maes et al. (1997) , MI can be rewritten in terms of

he conditional entropy (CE) 

 MI ( I R , I T ◦ T θ ) = H ( I R ) − H ( I R | I T ◦ T θ ) . (4)

The conditional entropy H ( A | B ) describes the amount of infor-

ation that remains in a random variable A once the random vari-

ble B is known. With the entropy of the reference image being in-

ependent of the transformation parameters, maximization of the

egated conditional entropy and maximization of the mutual in-

ormation lead to equivalent solutions of the registration problem. 

.3. Groupwise registration 

In groupwise registration we consider a group of n images for

hich the transformations to a common reference frame are un-

nown. We can consider the following optimization problem to de-

ermine these transformations: 

ˆ = arg min 

μ
C 
(
I 1 ◦ T μ1 

, . . . , I n ◦ T μn 

)
, (5) 

here T μi 
is the transformation, parameterized by μi , that maps

he coordinates from the common reference domain to the domain

f the i th image ( Fig. 1 (b)). μ is the vector formed by the concate-

ation of all separate transformation parameters μi , and I i is the

ontinuous intensity function of the i th image. 

.4. Template construction 

Joshi et al. (2004) proposed the following formulation for

onomodal groupwise registration, in which both the transforma-

ion parameters and a template image are optimized 

ˆ , ˆ J = arg min 

μ,J 

1 

n | S| 
n ∑ 

i =1 

∑ 

x ∈ S 

(
I i ◦ T μi ( x ) − J ( x ) 

)2 
, (6) 

ith J the continuous intensity function of a template image, x the

oordinate samples drawn from the image and S the set of these

amples. The template image can be interpreted as being the image

hat is most similar to the other images in the group in terms of

he mean squared differences. For a given value of the transform

arameters, the optimization with respect to the template image J

as solved analytically to be the average image 

 ( x ) = I μ( x ) = 

1 

n 

n ∑ 

i =1 

I i ◦ T μi ( x ) . (7)

As such, the registration problem in Joshi et al. (2004) is re-

uced to 

ˆ = arg min 

μ

1 

n | S| 
n ∑ 

i =1 

∑ 

x ∈ S 

(
I i ◦ T μi ( x ) − I μ( x ) 

)2 
. (8) 

.5. The conditional template entropy 

In this work, a novel similarity metric for multimodal group-

ise registration is proposed, based on this paradigm in which

imilarity of the group of images is measured with respect to an

teratively updated template image. Considering the interpretation

f the entropy terms given in Section 2.2 , we propose to measure

imilarity using the negated joint entropy of each image in the

roup with the template image, favoring transformations for which

he template explains the group of images well; and the marginal

ntropies of each image in the group, encouraging transformations

hat map onto complex parts of the images in the group. Note

hat this is equivalent to a formulation based on the conditional

ntropy: 
ˆ , ˆ J = arg max 
μ,J 

1 

n 

n ∑ 

i =1 

H 

(
I i ◦ T μi 

)
− H 

(
J, I i ◦ T μi 

)

= arg max 
μ,J 

− 1 

n 

n ∑ 

i =1 

H 

(
J| I i ◦ T μi 

)
. (9) 

Observing the resulting metric, one can notice the resemblance

ith a formulation based on mutual information. The difference

ies in the absence of the marginal entropy of the template image,

 ( J ). As we will demonstrate, this term counteracts the alignment

f the group of images. A representative template image is likely

o grow sharper when converging towards the optimal registration

olution, leading to a reduced complexity of its intensity distribu-

ion and a decrease in the marginal entropy, which is opposite of

he desired optimization behavior. The proposed method based on

onditional entropy as shown in Eq. (9) eliminates this problem. 

To find the appropriate template image, we revisit Eq. (6) where

he template image could be obtained analytically as the average

mage. Unfortunately, Eq. (9) cannot be solved analytically with re-

pect to the template image, J , for a given set of transformations

f the trivial solution of a constant template image with a sin-

le intensity is excluded. Hypothetically, one could set up an op-

imization scheme where the template image is predefined by a

unctional relationship and weights corresponding to the images in

he group. Herein, the optimization of the transformation parame-

ers could be alternated with the optimization of the weights for

he template image. Such nested optimization is error-prone and

ostly, and undesirable in this context. 

Alternatively, instead of maximizing Eq. (9) , we propose a more

ragmatic approach which maximizes the variance in the template

mage. By defining J as the linear combination of the images in

he group, principal component analysis (PCA) can be used to find

he weights associated to the images. This has previously been

hown to reduce the noise due to motion in the template im-

ge ( Melbourne et al., 2007 ). Additionally, negatively correlated in-

ensities can be accounted for to increase the contrast in the tem-

late image, instead of decreasing the contrast as might be the

ase for simple intensity averaging. 

PCA defines a linear transformation from a given high-

imensional space to a low-dimensional subspace whilst retain-

ng as much variance as possible. In this work, PCA is performed

ith each sampled coordinate as a separate observation and the

ifferent images in the group corresponding to different features.

he transformation to the 1-dimensional subspace along which the

ost variance is observed, is given by the eigenvector associated

ith the largest eigenvalue. As such, the elements of this eigenvec-

or can serve as the weights for the construction of the template

mage. 

 ( x ) = I PCA 
μ ( x ) = 

n ∑ 

i =1 

v i, μ I i ◦ T μi ( x ) . (10)

Here, v μ is the eigenvector associated with the largest eigen-

alue and the subscript μ is added to show its dependence on

he transformation parameters. This template image, based on the

rincipal component of the PCA, will hereafter be referred to as

he principal component image. 

Combining (9) and (10) leads to a novel similarity metric, the

onditional template entropy (CTE), where similarity is expressed

s the sum of the conditional entropy between every image in the

roup and the principal component image: 

 CT E 

(
I 1 ◦ T μ1 

, . . . , I n ◦ T μn 

)
= − 1 

n 

n ∑ 

H 

(
I PCA 
μ | I i ◦ T μi 

)
. (11) 
i =1 
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2.6. Optimization 

The proposed metric was implemented as part of the software

package elastix ( Klein et al., 2010 ) and is publicly available. An

adaptive stochastic gradient descent was employed to minimize

the cost function ( Klein et al., 2009 ). As such, the negated form of

Eq. (11) is used, to allow a minimization to take place. The deriva-

tive of the proposed metric with respect to μ was determined fol-

lowing the approach of Thévenaz and Unser (20 0 0) in which B-

splines were used as a Parzen windowing function such that the

joint probability density functions p i between the template image

and the i th image in the group become 

p i ( ι, κ;μ) = α
∑ 

x 

[
βm 

(
ι

εPCA 
− I PCA 

μ ( x ) 

εPCA 

)
βm 

(
κ
εi 

− I i ( T μi 
( x ) ) 

εi 

)]
. (12)

Here, α is a normalization factor to obtain a density function, ε
is related to the width of the histogram bin and βm is a B-spline

function of the order of m. ι and κ are the discretized intensities

corresponding to the template image and images in the group, re-

spectively. With B-splines fulfilling the partition of unity constraint

( Thévenaz and Unser, 20 0 0 ), we have 

∑ 

ι∈ L PCA 

∑ 

κ∈ L i 

∂ p i ( ι, κ;μ) 

∂μ
= 0 ∀ i, (13)

where L PCA and L i are the discrete sets of intensities associated

with the principal component and the i th image. This leads to 

∂S CTE 

∂μ = − 1 
n 

n ∑ 

i =1 

∑ 

ι∈ L PCA 

∑ 

κ∈ L i 

∂ p i ( ι,κ;μ) 
∂μ log p i ( ι,κ;μ) 

p I i ( κ;μ) (14)

With p I i ( κ;μi ) the probability density function of the i th im-

age. In Appendix A the derivative of the principal component im-

age with respect to the transformation parameters is given. 

2.7. Transformation degeneracy 

Given the degeneracy of estimating n transformations for n im-

ages with an arbitrary global transformation, we chose to constrain

our transformation following Bhatia et al. (2004) with 

1 

n 

n ∑ 

i =1 

T μi 
(x ) = x , ∀ x , (15)

i.e. the sum of all transformations is the identity, effectively regis-

tering the group of images to the mean space. With Rosen’s Gradi-

ent Projection Method ( Luenberger, 1973 ) this is solved by setting

∂C 
∂μi 

′ 
= 

∂C 
∂μi 

− 1 

n 

n ∑ 

j=1 

∂C 
∂μ j 

. (16)

and using this projected gradient in the stochastic gradient descent

optimization. 

2.8. Regularization 

Following Geng et al. (2009) we used a groupwise regulariza-

tion term, the groupwise bending energy (GBE) 

R GBE 

(
T μ1 

, . . . , T μn 

)
= 

1 
| S| 

∑ 

x ∈ S 
1 
n 

n ∑ 

i =1 

d ∑ 

l,m =1 

∣∣∣∣∣∣ ∂ 2 T μi 
(x ) 

∂ x l ∂ x m 

∣∣∣∣∣∣2 

. (17)

Herein, d is the spatial dimension of the images. Regularization

was performed in all clinical experiments with a deformable trans-

formation model. 
. Data and experiments 

A total of six experiments were conducted with two on syn-

hetic data and four on clinical intrasubject data. Herein, the pro-

osed conditional template entropy ( S CT E ) was compared to the

verage mutual information ( S AMI ) 

S AMI 

(
I 1 ◦ T μ1 

, . . . , I n ◦ T μn 

)
= 

1 
n 

n ∑ 

i =1 

[ 
H 

(
I μ

)
+ H 

(
I i ◦ T μi 

)
− H 

(
I μ, I i ◦ T μi 

)] 
. 

(18)

Furthermore, two auxiliary similarity metrics were imple-

ented to investigate complementary advantages of the proposed

ethodology, respectively the advantage of using the conditional

ntropy ( S CE ) and the advantage of using the principal component

mage ( S PC ). 

 CE 

(
I 1 ◦ T μ1 

, . . . , I n ◦ T μn 

)
= −1 

n 

n ∑ 

i =1 

H 

(
I μ| I i ◦ T μi 

)
, (19)

 PC 

(
I 1 ◦ T μ1 

, . . . , I n ◦ T μn 

)
= 

1 

n 

n ∑ 

i =1 

[ 
H 

(
I PCA 
μ

)
+ H 

(
I i ◦ T μi 

)

− H 

(
I PCA 
μ , I i ◦ T μi 

)] 
. (20)

For the clinical data, the four previously discussed groupwise

imilarity metrics were used in addition to the PCA2 metric pro-

osed in Huizinga et al. (2016) and pairwise MI ( Eq. (3) ) as a base-

ine for comparison. PCA2 was proposed for the registration of im-

ges for which the intensity distribution could be represented into

 low-dimensional subspace and is given as 

 PCA 2 

(
I 1 ◦ T μ1 

, . . . , I n ◦ T μn 

)
= 

n ∑ 

i =1 

iλi . (21)

Herein, λi refers to the i th eigenvalue of the correlation ma-

rix of the images in the group. In Huizinga et al. (2016) it was

ubsequently validated on monomodal and quantitative MRI image

ata for which such a low-dimensional subspace exists. PCA2 can

e thus considered as a specialist metric specifically designed to

egister such images. To demonstrate the more generic nature of

he proposed methodology, CTE was compared to PCA2 for both

uantitative MRI and multimodal image data. 

All registrations were performed in an intrasubject manner

nd the images were normalized by z-scoring to allow for a fair

omparison to the similarity metrics employing the average im-

ge. In the pairwise registration of a group of images, one im-

ge (the first in the sequence) was chosen as a reference to

hich all others were mapped. Note that other strategies for

hoosing the reference image in pairwise registrations for a group

xist, such as the pre-contrast image in dynamic contrast en-

anced sequences ( Kim et al., 2011 ), the end-expiration in 4D

T ( Saito et al., 2009 ) or the mid-way image in computational

natomy ( Reuter et al., 2010 ). 

As the optimization strategy, interpolation algorithm, ran-

om sampler and transformation model is equivalent for all

dis)similarity metrics, any difference in results can be solely at-

ributed to the use of a different dissimilarity metric. 

The proposed methods were validated with two validation cri-

eria. First, the groupwise target registration error (gTRE) 

TRE ( μ) = 

1 

n 

n ∑ 

i � = r 

1 

| P i | 
| P i | ∑ 

j 

||T i,r 
(

p i, j 

)
− p r, j || (22)

as used as a measure for the accuracy of the registration with

round truth annotations of certain anatomical landmarks in the
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Fig. 2. Composition of T μr 
and T −1 

μi 
to obtain T i,r . 

Table 1 

The regularization weights used for each metric and clinical 

dataset. 

Thoracic 4D CT Carotid MR Head&Neck RIRE 

PCA2 500 100 2 × 10 6 –

MI 0.02 50 100 –

AMI 0.05 100 20 0 0 –

PC 0.2 100 20 0 0 –

CE 0.01 100 50 0 0 –

CTE 0.2 100 50 0 0 –
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Fig. 3. (a) A single black-and-white image. (b) Average image of the group at their 

maximal misalignment. 
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mages. In Eq. (22) r is the index of the reference image, P i the col-

ection of landmarks in the i th image, T i,r the transformation that

aps the coordinates from the i th image to the reference image

nd p i, j the j th landmark from the i th image. In a groupwise set-

ing T i,r was determined through the composition of the forward

ransformation, that maps the coordinates from the common ref-

rence space to the reference image, with the inverse transforma-

ion, that maps the coordinates from the i th image to the common

eference space: T i,r = T μr ◦ T −1 
μi 

( Fig. 2 ) ( Metz et al., 2011 ). To al-

ow for a fair comparison between pairwise and groupwise regis-

rations, all validation measurements were performed in the same

eference space, i.e. the same image which was chosen as a refer-

nce in the pairwise registrations. 

Secondly, we computed the transitivity error ( Christensen et al.,

006; Metz et al., 2011 ) to assess the quality of the transformation

ra ( μ) = 

1 

| S| 
∑ 

x ∈ S 

n ∑ 

i 

n ∑ 

l � = i 
||T i,r ( x ) − T i,l 

(
T l,r ( x ) 

)|| . (23)

The transitivity error measures the transitive property of the

ransformations in a group of images and can be interpreted as a

easure for the consistency of the transformations in a groupwise

etting. For pairwise registration the use of different reference im-

ges is required to measure the transitivity and the bias associated

ith the choice will influence the results, whereas in groupwise

egistration, all transformations are estimated simultaneously and

re inherently transitive (when the inverse transformation is avail-

ble). As the inverse is approximated iteratively and the source for

he transitivity error in the groupwise methods, no comparisons

re made among the groupwise metrics based on the transitivity

rror. The maximum transitivity error of the groupwise methods

s reported and compared to the transitivity error of the pairwise

ethod. 

The cost function hyperparameters (the number of histogram

ins and regularization weight) were chosen such that they op-

imized the mean gTRE per dataset. The different regularization

eights are reported in Table 1 . Due to the arbitrary sign of the

rojection vector for the principal component image, the number
f histogram bins (used to calculate the entropy) are at least dou-

led compared to the number of histogram bins in registrations

sing the average image. Other optimization hyperparameters such

s the spatial samples in the stochastic optimizer and the number

f iterations were set to their default value. All registration hyper-

arameters in pairwise registrations were kept equal to those in

he groupwise approach. 

Results for the gTRE were compared in a pairwise man-

er among all similarity metrics (totaling 64 comparisons). The

ilcoxon signed-rank test was used for significance testing at a

ignificance level of 0.05 adjusted by the Bonferroni correction for

ultiple comparisons. 

.1. Black&White 

To illustrate the effect the entropy term of the template image

as on the optimization, an experiment was performed on syn-

hetic data. Eleven identical black-and-white images were progres-

ively and simultaneously translated along the horizontal axis and

he similarity metric values were computed. A mask was used to

eep the sampling domain constant. Fig. 3 shows a single black-

nd-white image and the average image of the group of images

hen they are at maximal displacement (15 mm). 

.2. Multimodal Cubes 

To further investigate registration accuracy, 100 registrations

ere performed on a group of six images (256 × 256 × 256 voxels)

ach containing two cubes, one surrounding the other. The inten-

ities of the cubes and the backgrounds were set at random inten-

ities to simulate a multimodal setting ( Fig. 4 ). For each group of

mages a random set of deformable transformations was generated

ith a grid spacing of 8 × 8 × 8 voxels. The gTRE of the corners

f the cubes was used to quantify the registration accuracy. 

.3. Thoracic 4D CT 

Thoracic 4D CT data ( Fig. 5 ) was taken from the publicly avail-

ble POPI and DIR-LAB datasets which include, respectively, 6 and

0 sequences of 10 respiratory phases each ( Castillo et al., 2009;

andemeulebroucke et al., 2011 ). Thoracic 4D CT data is often con-

idered as monomodal data. However, minor intensity changes can

ccur due to changes in the voxel density in the lungs associated

ith the inhalation and exhalation of air ( Sarrut et al., 2006 ) lead-

ng several authors to employ adapted or multimodal metrics for

ung registration ( Murphy et al., 2011 ). 
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Fig. 4. (a)–(f) A single slice of the six cubes used in the Multimodal Cubes experiment. (g) The average image and (h) the principal component image at alignment. 

Fig. 5. (a)–(c) Three of the ten phases used in the Thoracic 4D CT experiment. The images differ mainly in the position of the diaphragm and structures in the lungs due 

to breathing. (d) The average image at misalignment. (e) The principal component at misalignment. (f) Absolute difference image of the average and principal component 

image. Note that the largest differences occur in regions where motion is present (i.e. the diaphragm), indicated by red arrows. The image contrast is optimized for the range 

of intensities present in each individual image. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 6. (a)–(c)Three of the five images used in the Carotid MR experiment. (d) The average image at misalignment. (e) The principal component at misalignment. (f) Absolute 

difference image of the average and principal component image. Note that the largest differences occur either at borders of structures due to motion, indicated by red arrows, 

or in homogeneous regions due to the multimodal nature of the data, indicated by a green arrow. The image contrast is optimized for the range of intensities present in 

each individual image. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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The POPI dataset contains three patients with 100 manually

identified landmarks in the lungs for every breathing phase and

three patients with 100 landmarks in end-inspiration and end-

expiration phases with an inter-rater error of 0.5 ± 0.9 mm. In the

DIR-LAB dataset, all patients have 300 landmarks in the lungs for

the inspiration and expiration phases and 75 in the four phases in

between and an intra-rater error between 0.70 and 1.13 mm. Ac-

curacy of the registration was determined using the gTRE with re-

spect to the inspiration phase, the first image in the dynamic se-

ries. 

A deformable registration was performed using cubic B-splines

with a final grid spacing of 12.0 mm. Lung masks were used and

obtained following Vandemeulebroucke et al. (2012) . For each res-

olution level 20 0 0 iterations were performed, except for the last

resolution where 40 0 0 iterations were allowed. 

3.4. Carotid MR 

MR image sequences were acquired of the carotid artery by

Coolen et al. (2015) . The acquisitions were performed with a gradi-

ent echo MRI sequence for different flip angles and TE preparation

times ( Fig. 6 ). Each sequence consisted of five images and was per-

formed for eight patients. The bifurcation of both carotid arteries

was identified for each patient and consequently used as a land-

mark in the validation of the registration. 

For this data we performed a deformable registration

with cubic B-splines and a final grid spacing of 8.0 mm.

van ’t Klooster et al. (2013) has shown that a deformable registra-

tion is needed in such acquisitions of the carotid arteries. Masks

around the carotid arteries were used as region of interest for

registration. 
.5. Head&Neck 

As part of radiotherapy planning, 22 patients underwent a CT,

R-T1 and MR-T2 imaging protocol of the head and neck region

 Fortunati et al., 2014; 2015; Verhaart et al., 2014 ) ( Fig. 7 ). In each

cquisition between 15 to 21 landmarks were used to quantify the

egistration accuracy in terms of gTRE. The intra-rater variability of

he landmarks was approximately 1 mm. 

Prior to registration, all images were resampled to the small-

st voxel spacing present in the group of images. A deformable

ransformation was used in two resolution levels using cubic

-splines with a final grid spacing of 64.0 mm, as suggested

y Fortunati et al. (2014) . 

.6. RIRE 

The RIRE database ( West et al., 1997 ) includes 18 patients with

p to five different imaging modalities of the brain ( Fig. 8 ). All 18

atients had at least three of the following modalities available:

T, PET, MR-T1, MR-T2, MR-PD. Fiducial markers and a stereotactic

rame were used to determine the ground truth transformations

or CT to MR and PET to MR. Four to ten landmarks were available

or each patient as a ground truth for the registrations and their

arget registration error was computed through the webform of the

IRE project, where rigid displacements between acquisitions were

ssumed. 

To increase the robustness of the optimization, a two-step ap-

roach is used. First, a translation is optimized and used as an ini-

ialization for a second full rigid transformation with three trans-

ational and three rotational degrees of freedom. The registration

as performed with five and two resolution levels, respectively.

imilar to the Head&Neck dataset, preprocessing was performed by

esampling the images in the group to the smallest voxel spacing. 



M. Polfliet et al. / Medical Image Analysis 46 (2018) 15–25 21 

Fig. 7. (a) CT image, (b) MR-T1 image and (c) MR-T2 image used in the Head&Neck experiment. 

Fig. 8. (a) CT image, (b) MR-PD image, (c) MR-T1 image, (d) Mr-T2 image and (e) PET image used in the RIRE experiment. 

Table 2 

Summary of the registration parameters used in the experiments. Two values are reported for the number 

of histogram bins, separated by a forward slash. The first value reflects the number of bins used in pairwise 

registration and groupwise registrations based on the average image. The second value gives the number 

of bins used in groupwise registrations based on the principal component image. Values separated with a 

backward slash indicate multiple settings within the applied optimization strategy. 

Dataset Histogram bins Resolutions Grid spacing Spatial samples Iterations 

Multimodal Cubes 32/96 2 6.0 2048 20 0 0 

Thoracic 4D CT 48/96 4 12.0 2048 20 0 0 \ 40 0 0 

Carotid MR 48/128 2 8.0 2048 20 0 0 

Head&Neck 64/144 2 64.0 2048 20 0 0 

RIRE 48/128 5 \ 2 – 2048 20 0 0 
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Fig. 9. Results for the Black&White experiment where 11 black-and-white images were progressively and simultaneously translated. (a) The metric values. (b) The average 

of the entropies of the images in the group. (c) The entropy of the template image. (d) The average of the joint entropies. 
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The registration hyperparameters for the different experiments

re summarized in Table 2 . 

. Results 

.1. Synthetic data 

The behavior of the metric value and its separate components

n the Black&White experiment are shown in Fig. 9 as a function of
he translation. The Black&White experiment shows that the met-

ic behavior of S AMI and S PC is equal to the behavior of the en-

ropy of the images in the group. The contribution of the entropy

f the template image completely cancels out the contribution of

he joint entropy in S AMI and S PC as can be seen in Fig. 9 (c) and

d). The resulting optimization is only driven by the complexity of

he images in the group and not by their shared relationship. 

The results for the Multimodal Cubes experiment are

hown in Fig. 10 . When comparing the similarity metrics, S CT E 
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Table 3 

Average transitivity errors for the clinical datasets. For the groupwise approaches, the 

maximum average transitivity error among all groupwise methods is reported. The values 

are given in mm. 

Thoracic 4D CT Carotid MR Head&Neck RIRE 

MI 5 . 65 × 10 −1 2 . 68 × 10 −1 2.14 1.47 

Groupwise approaches < 3 . 39 × 10 −2 < 7 . 66 × 10 −3 < 1 . 85 × 10 −2 0 

Fig. 10. Boxplots for the results of the Multimodal Cubes experiment. Significant 

differences between two methods are indicated with black bars below the boxplots. 
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(1.71 ± 0.11 mm) significantly outperformed all other entropy-based

groupwise metrics (2.80 ± 0.32 mm, 2.73 ± 0.34 mm and 1.74 ± 0.11

for S AMI , S PC and S CE respectively). 

4.2. Clinical data 

Results for the gTRE in experiments on clinical data are visual-

ized with boxplots in Figs. 11 and 12 . 

For the experiments on the Thoracic 4D CT and Carotid MR

datasets ( Fig. 11 ), no statistically significant differences were ob-

served in terms of gTRE for the investigated information-based

metrics. 

In the Head&Neck experiment ( Fig. 12 ) the best results are

achieved by S CT E with a gTRE of 2.74 ± 1.17 mm performing sig-

nificantly better compared to S AMI , S PC and D PCA 2 . 

Pairwise S MI performed best in the RIRE experiment ( Fig. 12 )

with a gTRE of 2.29 ± 0.72 mm ( S CT E , 2.33 ± 0.57 mm), but no sig-

nificant differences were found compared to the other entropy-

based metrics. D PCA 2 performs worst, with the differences being

statistically significant. A group of images was found to be misreg-

istered following Tomaževi ̌c et al. (2012) when the gTRE is larger

than the largest voxel spacing in the images. No misregistrations

were obtained for S CT E , S CE and S MI whereas S AMI and S PC misreg-

istered two patients and D PCA 2 misregistered 14 patients. 

In all four experiments on clinical data, pairwise MI performed

worst in terms of transitivity, whereas the transitivity error for

groupwise metrics reduced to (close to) zero ( Table 3 ). 

In Table 4 , the values are given for the average runtime of the

experiments performed in this work. The use of the conditional

entropy does not induce an extra computational burden, whereas

the use of the principal component images does. This discrepancy

originates from an additional loop over the sampled coordinates,
eeded to perform the PCA and determine the weights of the

igenvector. Note that for more complex registrations with a reg-

larizer, the additional computation time is relatively small com-

ared to the total cost. 

. Discussion 

Results on the Thoracic 4D-CT and Carotid MR dataset showed

quivalent performance of the proposed methodology compared to

ther state-of-the-art methods in terms of registration accuracy. 

The results for the Multimodal Cubes, Head&Neck and RIRE re-

ults were consistent. In all three datasets the accuracy improved

or the proposed formulation compared to S AMI , and the improve-

ent was found to be statistically significant in the former two

xperiments. Throughout these experiments the behavior of the

uxiliary metrics S CE and S PC was also consistent. Using the con-

itional entropy instead of mutual information led to a large im-

rovement, while using the principal component image improved

he accuracy modestly. The combination of both contributions led

o the best results in all three experiments compared to other

roupwise metrics. As expected, the PCA2 metric performed poorly

n multimodal registrations where a quantitative model or low-

imensional subspace is not available. 

In all experiments based on clinical data, the transitivity of the

esulting transformations was compared to S MI for groupwise ap-

roaches. These results emphasize the added value of the implicit

eference space in multimodal groupwise registration. Whereas a

airwise approach has to perform two separate registrations with

ifferent reference images to obtain a concatenated transforma-

ion, in a groupwise approach all transformations are evaluated

imultaneously and with a substantially lower transitivity error.

hese results are consistent with previous findings in monomodal

ata ( Geng et al., 2009; Metz et al., 2011 ). 

In summary, for experiments based on images where no or

odest changes in intensity distributions are present (‘Thoracic

D-CT’ and ‘Carotid MR’), CTE showed comparable performance

o previously proposed groupwise methods and pairwise MI. In

xperiments with strongly varying intensity distributions (‘Multi-

odal Cubes’, ‘Head&Neck’ and ‘RIRE’), CTE showed superior per-

ormance to previously proposed groupwise methods and per-

ormed on par to pairwise MI, with little to no transitivity error. 

Figs. 5 (f) and 6 (f) highlight the differences in the average and

rincipal component images. Herein, the absolute difference im-

ge between the average and principal component image is given

n the ‘Thoracic 4D CT’ and ‘Carotid MR’ dataset, respectively, for

 single patient. Herein, the largest differences occur in regions

here the motion is greatest near moving structures or edges. This

s consistent with previous work, where the principal component

mage was used to separate motion present in the images ( Feng

t al., 2016; Hamy et al., 2014; Melbourne et al., 2007 ). For multi-

odal registrations, the benefit of PCA over averaging can be seen

y considering cases in which images with an inverted intensity

rofile are merged into the template image, as shown in Fig. 4 (g)

nd (h) and Fig. 13 . For the ‘Multimodal Cubes’ experiment, PCA

ead to an increase of the contrast-to-noise ratio from 7.4 to 32.5

ompared to simple averaging. Fig. 13 shows the average and prin-

ipal component image when applied to the ventricles for an arbi-
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Fig. 11. Boxplots for the results of the Thoracic 4DCT and Carotid MR experiment. Significant differences between two methods are indicated with black bars below the 

boxplots. 
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100
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Head&Neck RIRE

Fig. 12. Boxplots for the results of the Head&Neck and RIRE experiment. Significant differences between two methods are indicated with black bars above the boxplots. Note 

the logarithmic scale on the y -axis. 

Table 4 

Average runtime for the registrations in the different experiments. The values are given 

in minutes. 

Multimodal Cubes Thoracic 4D CT Carotid MR Head&Neck RIRE 

PCA2 – 212 28 20 4 

AMI 22 238 31 23 7 

CE 22 252 31 23 7 

PC 26 248 36 36 54 

CTE 26 276 36 36 55 

Fig. 13. (a) CT image, (b) MR-PD image, (c) MR-T1 image, (d) MR-T2 image, (e) PET image, (f) average image and (g) principal component image when only the subregion of 

the ventricles is sampled for the RIRE experiment. 
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trary patient in the RIRE dataset. With the T2 modality having an

inverted intensity profile, the principal component image is able to

retain the contrast in the template image. In the average image the

intensities cancel out and the ventricles are poorly visible. 

Two limitations should be stated with respect to current work.

Firstly, only intrasubject data has been employed. Intersubject data

is characterized by greater variability of intensity profiles and mor-

phology, and has been reported to considerably increase the com-

plexity of groupwise registration ( Hamm et al., 2009; Tang et al.,

2009 ). It remains to be verified how CTE would perform when con-

fronted with such data. 

Secondly, in this work a methodology was used where the im-

ages are deformed and compared to the template image in the im-

plicit reference system. However, previous work has shown that

deforming the template image to the images in the group suits

a generative model better ( Allassonnière et al., 2007; Ma et al.,

2008 ). In methodologies where the template is deformed to the

images in the group, no need exists to constrain the transforma-

tions to the average deformation space ( Eq. (16) ). This was shown

to be advantageous, as such constraints could exclude some legit-

imate results ( Aganj et al., 2017 ). We expect the proposed metric

to perform equally well in such frameworks as it is independent of

the transformations that were used. 

6. Conclusion 

In this work we proposed a novel similarity metric for intrasub-

ject multimodal groupwise registration, the conditional template

entropy. The proposed metric was evaluated in experiments based

on synthetic and clinical intrasubject data and showed equiva-

lent or improved registration accuracy compared to other state-of-

the-art (dis)similarity metrics and improved transformation consis-

tency compared to pairwise mutual information. These improve-

ments were achieved mainly by the use of the conditional entropy,

whereas the use of the principal component image contributed

modestly in our experiments. 
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Appendix A. Derivative of principal component image 

We determined the derivative of the principal component im-

age with respect to the transformation parameters. The principal

component image is given by Eq. (10) and repeated here 

I PCA 
μ ( x ) = 

n ∑ 

i =1 

v i, μ I i ◦ T μi ( x ) = v T μI ( x ) . (A.1)

Herein, I ( x ) is the column vector representing all image intensi-

ties across the group for a given sampled coordinate. The derivative

becomes 

∂ I PCA 
μ ( x ) 

∂μ
= 

∂ v T μ
∂μ

I ( x ) + v T μ
∂I ( x ) 

∂μ
, (A.2)

Following de Leeuw (2007) for the derivative of an eigenvector:

∂ v μ
∂μ

= −( C − eI ) 
+ ∂C 

∂μ
v i, μ, (A.3)
ith C the correlation matrix of the intensities, similar to

uizinga et al. (2016) , I the identity matrix, e the eigenvalue asso-

iated with v μ and 

+ the notation for the Moore–Penrose inverse

 de Leeuw, 2007 ). The derivative of the correlation matrix is given

s 

∂C 

∂μ
= 

1 

| S| − 1 

(
∂	−1 

∂μ

(
M − M 

)T (
M − M 

)
	−1 

+ 	−1 ∂M 

T 

∂μ

(
M − M 

)
	−1 + 	−1 

(
M − M 

)T ∂M 

∂μ
	−1 

+ 	−1 
(
M − M 

)T (
M − M 

)∂	−1 

∂μ

)
(A.4)

Herein, M refers to the data matrix with the intensities of the

mages, M is the matrix with the average image intensity repeated

long its columns, 	 is the diagonal matrix with the standard de-

iations of the images intensities as its diagonal elements. All no-

ations correspond to those found in Huizinga et al. (2016) and we

ave ignored the derivative of the average image intensities like-

ise. 
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