
Classes of Semi-binary Phylogenetic
Networks encoded by µ-representations

Classes of Semi-binary Phylogenetic
Networks encoded by µ-representations

Thesis

to obtain the degree of Master of Science,
as part of the master program Applied Mathematics

specializing in Discrete Mathematics and Optimization
at the faculty of Electrical Engineering, Mathematics, and Computer Science

(EEMCS),
at Delft University of Technology,

to be publicly defended on Thursday, September 14, 2023, at 14:00

by

Christopher Reichling

Student number: 4153685
Thesis Committee:

Dr. ir. L.J.J. van Iersel, Technische Universiteit Delft
Dr. Y. Murakami, Technische Universiteit Delft
Dr. A. Heinlein, Technische Universiteit Delft

Contents

Summary iii

Acknowledgements iv

1 Introduction 1
1.1 Phylogenetic trees . 1
1.2 Phylogenetic networks . 1
1.3 Metrics and encodings . 3
1.4 The µ-representation for encoding phylogenetic networks, to ap-

ply the symmetric difference as a metric 4
1.5 Contributions . 5
1.6 Overview of the thesis . 5

2 Preliminaries 6
2.1 Rooted directed acyclic graphs on a leaf set X 6
2.2 The µ-representation . 7
2.3 Phylogenetic networks . 9
2.4 The symmetric difference . 10

3 Encoding results for stack-free orchard networks by modified
µ-representations 12
3.1 Introduction . 12
3.2 Why µ-representations do not encode semi-binary stack-free or-

chard networks in the space of semi-binary stack-free phylogenetic
networks . 12

3.3 Preliminary lemmas . 13
3.4 Reconstructing orchard networks 17
3.5 The µ̄-distance as a metric . 20
3.6 Non-binary stack-free orchard networks 20

4 Determining the in-degrees of reticulations from µ-representations 22
4.1 Introduction . 22
4.2 Identifying the parents of a node 22
4.3 Preliminary lemmas . 25

i

4.4 An equation relating the in-degrees of reticulations and µ-vectors 26
4.5 In-degrees of stable reticulations 29

5 Determining stable nodes from µ-representations 32
5.1 Introduction . 32
5.2 Preliminary lemmas . 32
5.3 Strongly reticulation-visible networks 36

6 Conclusions and Discussion 44
6.1 Main results . 44
6.2 Discussion . 45

Bibliography 50

ii

Summary

This thesis is on the subject of phylogenetic networks. These are schematic
visualisations used mainly to investigate the evolutionary history of species,
but which can be used for any set of distinguishable elements which have di-
verged from a common ancestor through some evolutionary process. The re-
search specifically focuses on a way to encode these phylogenetic networks, called
µ-representation, which enables researchers to efficiently compare networks in
polynomial time.

The main contribution of this thesis lies in demonstrating that there are
certain classes of phylogenetic networks for which the µ-representation or a
modified version thereof serves as a unique encoding and can therefore be used to
generate a metric for comparison. Additionally, it is shown that these results do
not extend to some other classes of networks. Furthermore, this research shows
that certain other information can be gained from analysing the µ-representation
of a network, such as which nodes are adjacent to so-called bridges or cut-edges,
and what the in-degrees of the nodes in the network are.

iii

Acknowledgements

After completing my bachelor’s degree in Applied Physics, I had decided not
to continue my studies in that direction, and for a while, I felt somewhat lost.
The last few years of studying Applied Mathematics have shown me that this is
a scientific field I genuinely love. However, it was only when I started working
on this thesis, that I realized how much I truly enjoy doing theoretical research
and abstract mathematics (and that maybe I am also actually pretty good at
it). This was in no small part due to the wonderful supervision I got from both
Yuki and Leo. The enthusiasm with which they met all of my ideas and work
(even when I was wrong) and the dedication they showed in collaborating with
me on finding new results or solutions to problems was an endless source of
motivation and joy for me. I am forever grateful to them for instilling so much
confidence and pride in me at a time when I was still quite unsure of myself.
I also really want to thank my wonderful girlfriend Eva for always supporting
me and listening to all my ramblings and having so much patience, even though
the subject is so far from her expertise. I want to thank my friend Wolf for
our great discussions, helping me think through my problems and helping me
stay disciplined by our weekly study sessions. And finally, I want to thank my
parents Jantje and Antonie, for supporting me all the way through my academic
journey and with each of the choices I made. I am very happy with what I’ve
managed to accomplish and the way that this thesis has turned out. I hope that
I’ve been able to make a meaningful contribution to the field. In any case this
experience has inspired me to keep looking for interesting discoveries as I move
forward on this journey.

Christopher Reichling
The Hague, August 2023

iv

1 Introduction
1.1 Phylogenetic trees

Ever since Charles Darwin proposed the theory of evolution [7], phylogenetic
trees have been used to represent the evolutionary history of a set of species.
These phylogenetic trees are schematic visualisations of the paths via which
species have evolved away from some common ancestor [2]. A phylogenetic tree
is a connected directed acyclic graph. See Figure 1.1 for an example of a phy-
logenetic tree. At the root of the graph is the common ancestor. From this
root, edges are directed outward, indicating genetic lineages. The paths branch
at tree-nodes which correspond to speciation events. A speciation event is an
evolutionary occurence at a point in time, when a group in a population has
become so genetically isolated through mutation that it can be identified as a
new species. At the furthest point from the root are the leaves. These are nodes
which only have a single incoming edge and no outgoing edges and they repre-
sent the extant species, whose evolutionary history the tree is meant to depict.
These phylogenetic trees can in fact be used to visualize the evolutionary history
of any set of taxa, a set of distinguishable elements which have diverged from
some common ancestor through a process of mutation. An interesting example
is the history of words and languages.

These phylogenetic trees have aided in the classification and identification
of species, and they have helped researchers investigate patterns of adaptation,
evolutionary innovations, and the processes that drive speciation [6]. They
contribute to understanding the origins and spread of infectious diseases, guiding
efforts in disease surveillance, treatment, and prevention. They also inform
conservation efforts by identifying genetically distinct populations and guiding
the development of conservation strategies.

1.2 Phylogenetic networks

As useful as phylogenetic trees have been, in recent decades it has become
clear that not all evolutionary histories can be accurately represented by a tree
structure [8]. Whenever, the evolutionary history of a set of species involve
reticulation events such as hybridization, horizontal gene transfer, and recombi-
nation, it is more accurately represented by a network. Such networks contain
a different kind of node, called a reticulation, which has two or more edges
directed into it, indicating an evolutionary event in which a new species was
formed from the combination of two or more species. Reticulations therefore
have in-degree at least 2 and out-degree 1. There are various ways to classify

1

Figure 1.1: A phylogenetic tree showing the three life domains: bacteria, ar-
chaea, and eukaryota. The black branch at the bottom of the phylogenetic tree
connects the three branches of living organisms to the last universal common
ancestor.

phylogenetic networks. A network whose tree-nodes all have out-degree at most
2 and whose reticulations all have in-degree exactly 2 is called binary, while a
network where tree-nodes have out-degree at most 2 and where reticulations
can have in-degree greater than 2 is called semi-binary, a network without any
restrictions on the out-degree of tree-nodes or the in-degree of reticulations is
usually referred to as being non-binary. A reticulation with in-degree larger
than 2 may indicate uncertainty in the order in which species have hybridized,
or it may indicate that more than two species hybridized at the same time.

For most mathematical and algorithmic techniques, the full class of phyloge-
netic networks is too large. Therefore, several restricted classes of phylogenetic
networks have been defined and studied. A network is called tree-child if none
of its nodes have only reticulation children and a network is stack-free if no two
reticulations are adjacent. A network is reticulation-visible if for each reticu-
lation there exists a leaf such that all paths to this leaf visit the reticulation.
These classes have mainly been defined for their nice properties, however, an
intuitive biological argument can be made for tree-child networks as well. As
long as a species does not go extinct it is highly unlikely that all of its surviving
offspring is the result of hybridization. Tree-child networks are automatically
stack-free, because if two reticulations are adjacent then one of them must have
the other one as their only child. Reticulation-visible networks are stack-free as
well. Moreover, any phylogenetic network can be made stack-free by iteratively
identifying any two adjacent reticulations. More recently the class of orchard
networks was introduced as a superclass of the class of tree-child networks with
nice characteristics. A natural justification for this class is that orchard networks
can be interpreted as trees with additional horizontal edges which correspond
to hybridizations [10]. An example of a phylogenetic network can be seen in
Figure 1.2.

2

Figure 1.2: A phylogenetic network depicting a hypothetical evolutionary his-
tory of a set of corona-viruses from [12].

1.3 Metrics and encodings

Research has shown the scientific value and practical applications of phyloge-
netic networks [12]. As stated by Cardona et al. in [4], there are numerous
practical algorithms for constructing phylogenetic networks from genetic data,
yet there are few proposed metrics. A metric serves to quantify the dissimilarity
between networks. Finding a metric for phylogenetic networks is necessary to
be able to accurately compare and cluster phylogenetic networks. For instance,
different reconstruction methods applied to the same genetic sequences, or a
single method applied to different sequences, may yield different phylogenetic
networks for a given set of species. Therefore, being able to compare the out-
comes and determine whether they lie within some reasonable variation of the
same network, becomes relevant, as mentioned by Cardona et al. in [4]. To find
such a metric, it may be sufficient to find a suitable encoding. An encoding of a
phylogenetic network is a way to represent a network by using a certain building
block, as mentioned by Murakami in [11]. If no two networks within a certain
class share the same set of a type of building blocks then that type of building
blocks is called an encoding for networks in that class. In this case the networks
in this class are uniquely determined by their building blocks. These encodings
can then be used to compare networks within this class. Encodings can also
serve as inspiration which may lead to algorithms for inferring networks in the
specific class, if the building blocks can be generated from data. Moreover, en-
codings may give deeper insight into the structure and patterns of phylogenetic
networks, ultimately deepening our understanding.

3

1.4 The µ-representation for encoding
phylogenetic networks, to apply the
symmetric difference as a metric

The µ-representation of a network contains the path-multiplicity vectors of its
nodes, indicating how many paths there are from each node to each leaf. The
µ-representation was originally proposed by Cardona et al. in [4], to serve as
an encoding for tree-child networks. With this encoding it is possible to use
the cardinality of the symmetric difference of the µ-representations of two net-
works in the class as a metric. The cardinality of the symmetric difference is
per definition symmetric and non-negative, and it satisfies the triangle inequal-
ity. Furthermore the symmetric difference of a set with itself is the empty set,
which has cardinality zero. However, for the positivity axiom for metrics to
hold, namely that the distance between two distinct elements is always positive,
we need an encoding result. It is necessary to show that, if two networks have
the same µ-representation, then they are the same network.

Cardona et al. showed that encoding holds for tree-child networks. Building
upon their work, Erdős, Semple and Steel sought to extend the application of
µ-representations to a larger class of phylogenetic networks in [9], which they
dubbed orchard networks. They proposed that it was possible to determine cer-
tain subgraphs called cherries and reticulated cherries by the µ-representation.
Then, by a process of iteratively simplifying the network, they proposed it would
be possible to find a sequence of these (reticulated) cherries from which one could
uniquely reconstruct the network. It is important to note that they considered
only binary networks. However, some of their findings were later refuted by Bai,
Semple and Steel, in [1]. They showed that it is not possible to determine retic-
ulated cherries by the µ-representation for general binary orchard networks. In
that paper, Bai, Semple and Steel proposed a stack-freeness constraint within
the class of orchard networks to establish the encoding result. While they aimed
to show encoding holds for semi-binary stack-free orchard networks, their proof
only works for networks which are binary, as Murakami showed in [11], by means
of a counterexample for semi-binary networks. In [3], Cardona et al. proposed
an extended µ-representation, which also takes into consideration the number
of paths to reticulations from each node. In the paper they showed that this
extended µ-representation is an encoding for binary orchard networks, lifting
the stack-free condition. This modification however does not show encoding for
semi-binary networks as originally proposed in [1], as the proof is restricted to
networks which are binary. It is the aim of this thesis to find the correct restric-
tions such that encoding holds for the µ-representation on semi-binary orchard
networks.

4

1.5 Contributions

In this thesis we show seven main results. First, we propose a modified µ-
representation including the in-degrees of nodes, which is different from the
extended µ-representation proposed by Cardona et al. in [3]. Theorem 1 states
that this modified µ-representation encodes semi-binary stack-free orchard net-
works. With this theorem, we can define a metric given by the cardinality of
the symmetric difference of the modified µ-representations. We also show that
encoding does not hold for non-binary stack-free orchard networks even if the
out-degrees are also fixed (Theorem 2).

Furthermore, we present a fundamental equation which governs the rela-
tionship between the in-degrees of reticulations and the µ-representation of a
network. We prove that such an equation exists (Theorem 3), and show how
this gives rise to a system of equations on the µ-vector of the root and the
µ-vectors and in-degrees of reticulations. We furthermore show (Theorem 4),
that for reticulation-visible networks with fixed reticulation set, the system of
equations generated by Theorem 3 has a unique solution.

Then, we define a new class of networks called strongly reticulation visi-
ble networks, for which there is a tree-path (a path containing only tree-nodes
including the trivial path for a tree-node) to a bridge from each child of a retic-
ulation. A bridge is an edge which disconnects the network if cut. We show that
a bridge and the lowest reticulation ancestor of that bridge in any network is
uniquely determined by the µ-representation (Theorem 5 and Lemma 24). We
shortly mention that this shows that strongly reticulation visible networks with
the same µ-representations have nodes with the same in-degrees (Theorem 6).
Finally we conclude (Theorem 7), that strongly reticulation visible semi-binary
stack-free orchard networks are encoded in the space of semi-binary stack-free
networks by the µ-representation. This means that the cardinality of the sym-
metric difference of the µ-representations gives a metric between these networks.

1.6 Overview of the thesis

In Section 2, we will go over all the necessary definitions, terms and concepts for
understanding the results and the arguments put forth in the rest of the thesis.
In the next section, Section 3, we propose our modified µ-representation, which
includes the in-degrees and we will prove the first main result of this thesis.
In Section 4, we discuss the difficulties in finding the in-degrees of reticula-
tions. Then, we present a fundamental equation which governs the relationship
between the in-degrees of reticulations and the µ-representation of a network.
In Section 5, we show how the stability of a node is determined by the µ-
representation under certain conditions and how this leads to the other main
results of this thesis. In Section 6, we summarise the results of the thesis and
discuss some further research questions.

5

2 Preliminaries
All of the results in this thesis relate to directed acyclic graphs (DAGs). A

DAG is said to be rooted when it contains only a single root node of in-degree
zero. A rooted DAG whose leaves are bijectively labeled by the elements of a
finite set X, we will name an X-DAG. All phylogenetic networks are X-DAGs.
From here on out we will identify the leaf nodes with the elements of the set X
and no longer make a distinction between the two. Furthermore, we will assume
edges are directed unless otherwise mentioned, and from now on, in all figures
in this thesis, edges will be directed downward, such that the root is at the top
and the leaves are at the bottom

2.1 Rooted directed acyclic graphs on a leaf
set X

Let N = (V,E) be an X-DAG. The in-degree of a node v ∈ V which we will
denote δ−(v) is equal to the number of edges which end in v. The out-degree of a
node v ∈ V which we will denote δ+(v) is equal to the number of edges starting
in v. The degree of a node is the sum of the in-degree and the out-degree. An
X-DAG can contain several different types of nodes:

1. A single root ρ with in-degree δ−(ρ) = 0

2. tree-nodes v with in-degree δ−(v) ≤ 1

3. reticulations r with in-degree δ−(r) ≥ 2

4. and leaves a with out-degree δ+(a) = 0

Note that the root is a tree-node and leaves can be either tree-nodes or reticula-
tions. Nodes which are not leaves are sometimes called internal nodes. The set
of all reticulations contained in a given X-DAG N we will denote R(N) or sim-
ply R when the X-DAG is obvious from the context. The hybridization number
h(N) =

∑
ri∈R(δ

−(ri)− 1) of an X-DAG N is the number of reticulation edges
minus the number of reticulations. This can be used as an indicator for how
much an X-DAG deviates from a tree.

A path v0 ⇝ vk between two nodes v0, vk ∈ V is a sequence of edges
v0v1, v1v2, ..., vk−1vk such that vivi+1 ∈ E for i ∈ {0, 1, . . . , k − 1}. We say
the path starts in v0, ends or terminates in vk and visits or passes through each
node vi. We assume all paths are directed unless otherwise specified. The trivial
path, is the path from a node to itself, which contains no edges. We say a node

6

v1 is an ancestor of another node v2 if there is a path from v1 to v2, in this case
v2 is a descendant of v1. In this case we may also say v1 is above v2 and v2 is
below v1. If the path consists of a single edge, then we say v1 is the parent of
v2, usually denoted pv2 and v2 is the child of v1. We also consider the trivial
path, therefore each node is both an ancestor and a descendant of itself. The
number of paths from v1 to v2 we will denote Pv1v2 .

Given a directed edge e = v1v2 we call v2 the head of e and v1 the tail of e.
We say a node is below e if it is a descendant of v1 and we say it is above e if it
is an ancestor of v2. We say two nodes are connected if there is an undirected
path between them. We say a set of nodes is connected if every pair of nodes
in the set is connected. We say a graph is connected if the set of its vertices is
connected. An X-DAG is a connected graph.

A tree-path is a directed path v0 ⇝ vk, such that vi is a tree-node for each
i ∈ {0, 1, . . . , k}. A tree-node v which has out-degree δ+(v) = 1 we shall call an
elementary node. A path for which all but the start and end nodes are elemen-
tary nodes, we shall call an elementary path. The height of a node is the length
of the longest path from the node to a leaf.

Two X-DAGs N = (V,E) and N ′ = (V ′, E′) are said to be isomorphic, de-
noted by N ∼= N ′, when there exists a bijective function f : V → V ′ such that
f(a) = a for all a ∈ X and v1v2 ∈ E ⇐⇒ f(v1)f(v2) ∈ E′ for all v1, v2 ∈ V .

2.2 The µ-representation

Given an X-DAG N = (V,E), the µ-vector of any node v ∈ V is defined as
follows: let µ(v) ∈ ZX be a vector such that the element indexed by leaf a,
denoted µa(v), is equal to the number of paths from v to a. Note that µ(v) only
contains non-negative integer elements and is never equal to the zero vector.
Furthermore, as for each leaf there is only the trivial path from that leaf to
itself, the µ-vectors of leaves are unit-vectors. With the exception of leaf nodes,
the µ-vector of a node is always the sum of the µ-vectors of its children. The µ-
representation of N , denoted µ(N), is the multiset of all µ-vectors of nodes in V .

The main difference between a multiset and a set, is that a multiset can
contain multiple instances of the same element. The number of instances of
an element in a given multiset is called the multiplicity of that element in that
multiset. For example, if the µ-representation µ(N) contains two instances of
a vector µ(v), then we say µ(v) has multiplicity 2 in µ(N). We may shorten
this to #µ(v) = 2, whenever the multiset containing µ(v) is implied. Usually
the implied multiset is µ(N). Then, #µ(v) denotes the multiplicity of µ(v) in
µ(N).

7

Figure 2.1: An example network N , on leaves a, b and c, with µ-representation
µ(N) = {(100, 2), (010, 2), (001, 1), (110, 2), (011, 1), (111, 1), (221, 1), (331, 1)}.
Edges are directed downward. Nodes u and v have vectors µ(u) = 110 with
multiplicity 2 and µ(v) = 221 with multiplicity 1.

In this thesis, the multisets considered will always be taken in the set of µ-
vectors. If a given µ-vector µ(v) is not contained in a multiset µ(N), we may
say µ(v) has multiplicity 0 in µ(N). The operation of removing a µ-vector µ(v)
from µ(N) is then equivalent to lowering the multiplicity of µ(v) in µ(N) by
1. Clearly, the multiplicity of a µ-vector cannot be negative and a µ-vector
which has multiplicity 0 in µ(N) cannot be removed from µ(N). The opera-
tion of adding a µ-vector µ(v) to a multiset µ(N) is equivalent to increasing
the multiplicity of µ(v) in µ(N) by 1. We can say that µ(N) is generated by
adding µ(v) for each node v ∈ V . Therefore, the multiplicity of a vector µ(v) in
µ(N) is equal to the number of nodes in N with µ-vector equal to µ(v). We do
not equate the nodes v ∈ V with their µ-vectors because multiple nodes may
have the same µ-vector. A set of at least two tree-nodes which have the same
µ-vector we shall call tree-clones. A node which is part of a set of tree-clones,
we shall call a tree-clone.

For example, the node u in Figure 2.1 has µ-vector 110, because there is
exactly one path to leaf a, one path to leaf b, and there are no paths to leaf
c starting in u. There are two instances of nodes with µ-vector 110, because
the paths starting in the reticulation are in bijection with the paths starting
in its child, by adding or deleting the edge between them. Therefore, µ(u) has
multiplicity 2 in µ(N). The node v in Figure 2.1 has µ-vector 221, because
there are 2 paths to leaf a, one via node u and one via the other child of v,
and 2 paths to b and one path to c, starting in v. It should be clear from these
examples why, with the exception of leaf nodes, the µ-vector of a node is always
the sum of the µ-vectors of its children.

8

Figure 2.2: A binary phylogenetic tree, a binary phylogenetic network and a
semi-binary phylogenetic network

2.3 Phylogenetic networks

A phylogenetic network is defined as an X-DAG without parallel arcs or ele-
mentary nodes, where the root must be a leaf or have out-degree greater than
or equal to 2, reticulations have out-degree 1 and leaves are tree-nodes. A phy-
logenetic network in which all nodes except the root or the leaves have degree
3 is called binary. A phylogenetic network in which all tree-nodes except the
root or the leaves have degree 3 but reticulations can have degree ≥ 3 is called
semi-binary. We say a phylogenetic network is non-binary when there are no
such added restrictions on the degrees of the nodes. A phylogenetic network
which does not contain any reticulations is called a phylogenetic tree. See Fig-
ure 2.2 for some examples. A phylogenetic network N is said to be stack-free if
no reticulation in N is the child of another reticulation. A phylogenetic network
such that for each reticulation there is a leaf for which all paths from the root to
this leaf pass through the reticulation is called reticulation-visible. The network
in Figure 2.1 is binary and stack-free. However, it is not reticulation visible,
because there are no leaves such that all paths from the root pass through u.
All networks in Figure 2.2 are stack-free and reticulation visible. In Section 5,
we will introduce the class of strongly reticulation-visible networks as the class
of phylogenetic networks, in which there is a tree-path to a bridge from the child
of each reticulation.

A cherry is an ordered pair of leaves (b, a) which have the same parent. A
reticulated cherry is an ordered pair of leaves (b, a) such that the parent pb of b
is a reticulation and the parent of a is a tree-node pa which is also the parent
of pb. A pair (b, a) which is either a cherry or a reticulated cherry is also called
a reducible pair. Suppressing an elementary node is the action of deleting the
node and adding an edge between the parent and the child of the node. To
reduce a cherry in a network N , we delete the leaf b and suppress its parent
pb if it has become elementary. To reduce a reticulated cherry in N we delete
the edge papb and suppress any nodes which have become elementary. In this
way one always obtains another phylogenetic network as the result of reducing
a reducible pair in a phylogenetic network.

9

Figure 2.3: A venn diagram showing the relations between several different
classes of phylogenetic networks

A network is called orchard if there exists a sequence s1s2s3 . . . si . . . sn, of
ordered pairs, such that si is a reducible pair in the network after reducing each
pair in the sequence up to si−1 and the entire sequence reduces the network to
a network on a single leaf. Note that in that case, each network generated by
performing reductions s1 up to si, is orchard with sequence si+1, si+2, . . . , sn,
see Corollary 4.2 in [9]. The network in Figure 2.1 is orchard with sequence
(b, c)(a, c)(b, a)(a, c)(c, a). It contains the reticulated cherry (b, c). The net-
works in Figure 2.1 are all orchard and contain the reducible pair (b, a). In
the phylogenetic tree (b, a) is a cherry, while in the other networks (b, a) is a
reticulated cherry. Bai, Semple and Steel showed in [1] Lemma 4.4, that orchard
networks do not contain tree-clones. See Figure 2.3 for a visualization of the
way the different classes of phylogenetic networks discussed in this thesis are
related.

2.4 The symmetric difference

The symmetric difference between two sets S1, S2 is the set of elements from S1

and S2, which are not contained in both sets.

S1△S2 = (S1 ∪ S2) \ (S1 ∩ S2) (2.1)

10

The cardinality of the symmetric difference, or the number of elements that
are unique to either set, can be used as a measure for the difference between
these two sets. For multisets the symmetric difference is defined somewhat
differently. For instance, if we consider the µ-representations µ(N1) and µ(N2)
of two networks N1 and N2, any µ-vector which has multiplicity i in µ(N1) and
j in µ(N2), belongs to µ(N1)△µ(N2) with multiplicity |i − j|. The symmetric
difference for multisets contains as many instances of a given element as how
many more instances of that element are in one set when compared to the other.
For the cardinality of the symmetric difference the following hold:

• |µ(N1)△µ(N2)| ≥ 0,

• |µ(N1)△µ(N2)| = 0 if, and only if µ(N1) = µ(N2),

• |µ(N1)△µ(N2)| = |µ(N2)△µ(N1)|, and

• |µ(N1)△µ(N3)| ≤ |µ(N1)△µ(N2)|+ |µ(N2)△µ(N3)|.

The second condition is true, because a multiset can be uniquely represented
by its multiplicity function, therefore if two multisets have equal multiplicity
functions then they are the same multiset. This makes the cardinality of the
symmetric difference a distance function or metric on multisets. For it to be
a metric on phylogenetic networks however, we need a modified version of the
second condition to hold:

• |µ(N1)△µ(N2)| = 0 if, and only if N1
∼= N2.

Therefore, in this thesis we will be focusing on determining the conditions on
N1 and N2 or on µ such that the following holds:

• µ(N1) = µ(N2) if, and only if N1
∼= N2.

It is important to note here that there is always only one µ-representation
belonging to a given network.

11

3 Encoding results for stack-free
orchard networks by modified

µ-representations
3.1 Introduction

In [1], Bai et al. propose ancestral profiles (which are equivalent to µ-representations)
as an encoding for semi-binary stack-free orchard networks in the space of semi-
binary stack-free networks. However, in [11] Murakami has shown by means
of a counterexample, that µ-representations do not encode semi-binary stack-
free orchard networks in the larger class. The question remains whether semi-
binary stack-free orchard networks are encoded in their own class by their µ-
representations. Bai et al. showed there are equivalent operations on µ-vectors
for each type of cherry-reduction, Lemma 4.3 of [1]. Furthermore, it is possible
to detect both regular and reticulated cherries by the corresponding µ-vectors,
as shown by Erdhős et al. in [9] Corollary 3.2 and Bai et al. Lemma A.1 in [1].
However, while Erdhős assumed binary orchard networks, Bai et al. considered
semi-binary stack-free orchard networks, but failed to mention how to determine
which cutting method in Lemma 4.3 of [1] to use, which requires knowledge of
the in-degree of the reticulation. Despite this, the rest of the arguments set out
in [1] still hold. We propose that finding the in-degree of the reticulation which
is part of a reticulated cherry would thus be sufficient to show encoding.

3.2 Why µ-representations do not encode
semi-binary stack-free orchard networks in
the space of semi-binary stack-free
phylogenetic networks

In [1] it is proposed that semi-binary stack-free orchard networks are encoded by
their µ-representation in the larger class of semi-binary stack-free networks. The
proposition is supported by the following arguments: (reticulated) cherries are
identifiable by the µ-representation of any semi-binary stack-free phylogenetic
network and it is possible to compute the µ-representation of a network obtained
by reducing (reticulated) cherries. However, the proof hinges on the claim that
if the µ-representations of two networks are the same, then after reducing the
same cherry in both networks the µ-representations of the resulting networks
will also be the same. Murakami has shown in [11] by a counterexample that this
is not true, see Figure 3.1. The two networks N and N ′ in his counterexample

12

Figure 3.1: Two semi-binary stack-free phylogenetic networks N and N ′ with
the same µ-representation, which are not isomorphic. A counterexample to
Theorem 3.1 in [1] by Bai et al. put forth by Murakami in their thesis [11].

are both semi-binary stack-free and have the same µ-representation, therefore
they both contain the same reticulated cherry (b, c). However, because the in-
degrees of the reticulations above leaf b differ, the networks will not have the
same µ-representation after reducing (b, c), which implies they are not isomor-
phic. To be precise, in N the reticulation above b should be suppressed after
cutting, while in N ′ it should not be, which means the multiplicity of µ(b) after
cutting will be 1 in N , but it will remain 2 in N ′.

3.3 Preliminary lemmas

In this section we will show one of the main results of this thesis. This result is
in a way a continuation and modification of previous propositions by Bai et al.
[1] and Erdős et al. [9].

We will make use of a modified µ-representation. Let N = (V,E) be a
semi-binary stack-free phylogenetic network.

Definition 1 Given a µ-vector µ(v) of a node v ∈ V , the modified µ-vector is

µ̄(v) = µ0(v)⊕ µ(v)

where µ0(v) is the in-degree of v, µ0(v) = δ−(v). The modified µ-representation
of a network N , is the multiset µ̄(N) of modified µ-vectors of nodes in N .

We will also define two types of reticulated cherries:

13

Figure 3.2: A cherry, a simple reticulated cherry and a complex reticulated
cherry on the leaves a and b.

Definition 2

• If (b, a) is a reticulated cherry such that the parent pb of b is a reticulation
with in-degree 2, then (b, a) is a simple reticulated cherry.

• If (b, a) is a reticulated cherry such that the parent pb of b is a reticulation
with in-degree greater than 2, then (b, a) is a complex reticulated cherry.

See Figure 3.2, for examples of a cherry, a simple reticulated cherry and a
complex reticulated cherry.

In this entire section, let a, b ∈ X be leaves of N . We will state some
lemmas which will be used to prove the theorem about encoding by the modified
µ-representation µ̄(N).

Lemma 1 Let a be a leaf. Then, µ(a) has multiplicity 1 or 2 in µ(N). If
#µ(a) = 1, then its parent pa is a tree-node with µ(pa) > µ(a), otherwise its
parent is a reticulation with µ(pa) = µ(a).

Proof: There can be no other tree-node v with µ(v) = µ(a), because this tree-
node would also be a leaf and the leaves are uniquely labeled by X. Therefore,
if there is another node u with µ(u) = µ(a) it must be a reticulation. A retic-
ulation has the same µ-vector as its child and in a stack-free network the child
of a reticulation is a tree-node, therefore the child of u must be a. A leaf has
only a single parent, so there can be only one such reticulation. In conclusion,
the number of nodes with the µ-vector µ(a) is either 1, if the parent of a is a
tree-node or 2 if the parent of a is a reticulation. □

Lemma 2 If #µ(a) = 1, then the parent of a is a tree-node and its µ-vector is
minimal in the set {µ(v) : µ(v) > µ(a), v ∈ V }.

Proof: If #µ(a) = 1, then by Lemma 1, the parent of a must be a tree-
node pa with µ(pa) > µ(v). Furthermore, for any node v with µ(v) > µ(a) there
must be a path from v to a. Since a has a single parent, all paths to a from
any node other than a must visit pa. Therefore, each v with µ(v) > µ(a) which

14

Figure 3.3: Two networks which are not stack-free. Although they have the
same µ-representation, they are not isomorphic. In the first network (b, a) is a
reticulated cherry while in the second network it is not. The first network is
orchard, while the second network is not.

is not pa must be an ancestor of pa. This means that, µ(v) ≥ µ(pa) for each
such node v. In conclusion, the set {µ(v) : µ(v) > µ(a)} has a single minimal
element, which is µ(pa).

Now we will show that cherries and reticulated cherries are uniquely deter-
mined by µ(N).

Lemma 3 The pair (b, a) is a cherry in N if, and only if, µa(v) = µb(v) for
each µ(v) ∈ µ(N) \ {µ(a), µ(b)}.

Note that the condition on the µ-vectors implies that µ(a) and µ(b) have mul-
tiplicity 1 in µ(N), because if for instance µ(b) has multiplicity greater than 1
in µ(N), then µ(N) \ {µ(a), µ(b)} would still contain a vector µ(b), for which
µa(b) = 0 ̸= 1 = µb(b).

Proof: For the first direction, let us assume the pair (b, a) is a cherry in N with
parent node p. Then, for each node v ∈ V \{a, b} the number of paths from v to
either a or b is equal to the number of paths from v to p, so µa(v) = Pvp = µb(v).

For the other direction, we will use a proof by contradiction. Assume
µa(v) = µb(v) for each µ(v) ∈ µ(N) \ {µ(a), µ(b)}. Now assume the pair (b, a)
is not a cherry in N . This means a and b must have different parents pa ̸= pb.
However, because µa(v) = µb(v) for each µ(v) ∈ µ(N) \ {µ(a), µ(b)}, we have
that µb(pa) = µa(pa) = 1, therefore there is a path from pa to b. This means pa
must be an ancestor of pb. But also µa(pb) = µb(pb) = 1, therefore pb must also
be an ancestor of pa. In acyclic graphs two nodes cannot be ancestors of each
other unless they are the same node, therefore pa = pb, but this contradicts our
assumption that (b, a) is not a cherry. □

15

Lemma 4 The pair (b, a) is a reticulated cherry in N with b the reticulation
leaf if, and only if, #µ(a) = 1, #µ(b) = 2, µb(v) ≥ µa(v) for each µ(v) ∈
µ(N) \ {µ(a), µ(b)} and µ(N) contains a vector µ(pa) = µ(a) + µ(b).

Proof: First let us assume (b, a) is a reticulated cherry in N with b the retic-
ulation leaf. Then the parent of a is a tree node pa and, by Lemma 1, µ(a)
has multiplicity 1 in the multiset. Also, the parent of b is a reticulation pb,
therefore by Lemma 1, µ(b) has multiplicity 2 in the multiset. Furthermore, pa
is the parent of pb and thus an ancestor of b. Therefore, for each path v ⇝ pa
with v ∈ V \ {a, b}, there is at least one path v ⇝ b via pa. Furthermore, the
number of paths from v to a equals the number of paths from v to pa. This
means that µb(v) ≥ Pvpa

= µa(v) for any node v ∈ V \{a, b}. Finally, note that
µ(pa) = µ(a) + µ(pb) = µ(a) + µ(b). This proves the first direction.

For the second direction, we will use proof by contradiction. Let us as-
sume, µ(a) has multiplicity 1 in the multiset, µ(b) has multiplicity 2 in the
multiset, µb(v) ≥ µa(v) for each µ(v) ∈ µ(N) \ {µ(a), µ(b)} and µ(N) con-
tains µ(pa) = µ(a) + µ(b). Now assume (b, a) is not a reticulated cherry. Note
µ(pa) > µ(a) and the only µ-vectors µ(v) with µ(v) < µ(pa) are µ(a) and µ(b),
thus µ(pa) is minimal in {µ(v) : µ(v) > µ(a), v ∈ V }. Then, by Lemma 2, µ(pa)
belongs to the parent of a. Furthermore, by Lemma 1, we know b has a reticu-
lation parent pb. Therefore the parent pa of a is not a parent of pb the parent
of b, because otherwise (b, a) would be a reticulated cherry. But there must
be a path from pa to b because µb(pa) ≥ µa(pa) = 1. This means there must
be other nodes on the path from pa to pb. Let c then be the child of pa, then
µ(pa) = µ(a) + µ(c) = µ(a) + µ(b). Subtracting µ(a) gives µ(c) = µ(b). This
means c is either the leaf b, which is not possible, or it is pb, which we assumed
it was not, or it is some other reticulation which has a child with the same
µ-vector equal to µ(b). Its child cannot be the leaf b, because by assumption c
is not pb and its child cannot be pb because the network is stack-free. There-
fore, its child must be a tree-node with the same µ-vector as the leaf b, which is
not itself leaf b or pb. But, then #µ(b) = 3, which contradicts our assumption. □

Note that if (b, a) is a cherry or a reticulated cherry in N , we say it is a
cherry or reticulated cherry in µ(N) and µ̄(N). Furthermore, if (b, a) is a retic-
ulated cherry, it is simple if, and only if, µ̄(N) contains µ̄(pb) = {2} ⊕ µ(b)
(µ̄0(pb) = 2, for pb the parent of b). Otherwise, it is complex. If (b, a) is a
cherry or a reticulated cherry in N we say that (b, a) is a reducible pair in N ,
in µ(N) and in µ̄(N).

It is important to mention here that being able to identify reticulated cher-
ries in the µ-representation is the reason for the stack-free restriction on the
networks. The conditions in Lemma 4 are not sufficient to determine whether
(b, a) is a reticulated cherry in general. In Figure 3.3 two networks are displayed
which have the same µ-representation but are not isomorphic. One contains a

16

reticulated cherry while the other one does not. In [3], Cardona et al. propose a
different extended µ-representation which solves this issue of determining retic-
ulated cherries in networks which contain stacks, thereby lifting the stack-free
condition from the reticulated cherry lemma. While this works to prove encoding
of binary orchard networks, it does not fix the issues with encoding semi-binary
orchard networks. The networks in Figure 3.1 form a counterexample, they have
the same extended µ-representation, while they are not isomorphic.

3.4 Reconstructing orchard networks

Now let us define cherry and reticulated cherry reductions in µ̄(N). Recall that
to remove a vector from a multiset means to lower the multiplicity by 1 to a
minimum of 0. If a vector has multiplicity 0 in a multiset we say the multiset
does not contain the vector. By removing element µ̄b(v) from µ̄(v) we mean to
change µ̄(v) to (µ̄i(v))i∈{0}∪X\{b}, which means to project µ̄(v) on Z{0}∪X\{b}.
By subtracting µ̄a(v) from µ̄b(v), we mean the operation of changing µ̄(v) to
[µ̄0(v), µ̄a(v), µ̄b(v)− µ̄a(v), µc(v), . . .].

Let (b, a) be a cherry in N . We define the cherry reduction of (b, a) in µ̄(N)
as the following operations:

1. Remove µ̄(b) from µ̄(N).

2. Remove µ̄(pab) = {1} ⊕ (µ(a) + µ(b)) from µ̄(N).

3. For each µ̄(v) ∈ µ̄(N), remove µ̄b(v) from µ̄(v).

Note, that because (b, a) is a cherry, the parent pab of a and b will have µ̄-vector
{1} ⊕ (µ(a) + µ(b)) before reduction. Note also that none of the in-degrees
of any nodes have changed. Now let (b, a) be a simple reticulated cherry in
µ̄(N) we define the simple reticulated cherry reduction of (b, a) as the following
operations:

1. Remove µ̄(pa) = {1} ⊕ (µ(a) + µ(b)) from µ̄(N).

2. Remove µ̄(pb) = {2} ⊕ µ(b) from µ̄(N).

3. For each µ̄(v) ∈ µ̄(N) subtract µ̄a(v) from µ̄b(v).

Note that tree-nodes have in-degree 1 and so, by Lemma 4, µ̄(pa) is the µ̄-
vector of the parent of a, which should be suppressed when reducing (b, a).
Furthermore, because (b, a) is a simple reticulated cherry, the parent pb of b has
in-degree 2 before reducing and should be suppressed as well. Note that the
in-degrees of any nodes that are not suppressed have not changed. Finally, we
define the complex reticulated cherry reduction as follows:

1. Remove µ̄(pa) = {1} ⊕ (µ(a) + µ(b)) from µ̄(N).

17

2. Let µ̄(pb) ∈ µ̄(N) be the vector with µ̄0(pb) > 1 and µ̄(pb) = µ̄0(pb)⊕µ(b)
and lower µ̄0(pb) by 1.

3. For each µ̄(v) ∈ µ̄(N) subtract µ̄a(v) from µ̄b(v).

For this reduction we keep the µ̄-vector of the parent pb of b, because it is not
suppressed when (b, a) is reduced in N , because it has in-degree greater than
1 after reduction, but we do lower its in-degree by 1. Note that, by Lemma 1,
in stack-free networks there can only be one non-leaf node with µ-vector equal
to µ(b) and therefore µ̄(pb) has multiplicity 1 in µ̄(N). Finally note that the
in-degrees of any other nodes, besides pb have not changed.

Lemma 5 Let (b, a) be a reducible pair in µ̄(N), the multiset generated by
reducing (b, a) in µ̄(N) is the µ̄-representation of the network generated by re-
ducing (b, a) in N .

Proof: Let N ′ = (V ′, E′) be the network generated from N by reducing (b, a)
and let µ̄′(N) be the multiset generated from µ̄(N) by reducing (b, a). We will
show that µ̄(N ′) = µ̄′(N).

First let us assume that (b, a) is a cherry in N . Let pab be the parent of
a and b in N . Note that because b is deleted when reducing (b, a) in N , the
leaf set of N ′ is X ′ = X \ {b}, therefore the elements of µ̄(N ′) are elements
of the space Z{0}∪X\{b}, as are the elements of µ̄′(N). Furthermore, because
b /∈ X ′, µ̄(b) is not an element of µ̄(N ′) nor is it an element of µ̄′(N) because the
multiplicity of µ̄(b) was 1 in µ̄(N) before reduction. Moreover, the parent pab is
suppressed, therefore µ̄(N ′) contains one less instance of µ̄(pab) as does µ̄

′(N).
Also note that the in-degrees of all nodes in N ′ are equal to the in-degrees of
the corresponding nodes in N . Finally, for any nodes v ∈ V ′, the number of
paths to any leaves other than b is not changed by reducing (b, a). So given any
leaf c ̸= b, µ̄c(v) in µ̄(N) is equal to µ̄c(v) in µ̄(N ′) and also µ̄c(v) = µ̄′

c(v).
Therefore µ̄(N ′) = µ̄′(N).

Now let us assume that (b, a) is a simple reticulated cherry in N , where b
has a reticulation parent pb. Note that pa and pb are suppressed when reducing
(b, a) in N , therefore µ̄(N ′) will contain one less instance of µ̄(pa) and of µ̄(pb)
as does µ̄′(N). Furthermore, because edge (pa, pb) is deleted when reducing
(b, a) in N , for any node v ∈ V ′ the set of paths starting from v and ending in b
will be the set of paths starting in v and ending in b in N minus the paths which
visit pa. Note that there is only one path from pa to b, therefore the number
of paths from v to b which visit pa is equal to the number of paths from v to
pa, which is equal to µ̄a(v). Therefore µ̄b(v) in N ′ equals µ̄b(v) − µ̄a(v) in N .
As the paths to other leaves remain unchanged by reducing (b, a) in N and no
other elements of vectors have been changed by reducing (b, a) in µ̄(N), we can
conclude that µ̄(N ′) = µ̄′(N).

18

Finally, let us assume that (b, a) is a complex reticulated cherry in N . The
only difference as compared to the case where (b, a) was a simple reticulated
cherry is the fact that when reducing (b, a) in N the parent pb of b is not sup-
pressed but its in-degree is lowered by 1. Therefore, µ̄(pb) is not removed from
µ̄(N) but µ̄0(pb) is lowered by 1. All other arguments still hold, thus also in
this case µ̄(N ′) = µ̄′(N). □

With these lemma’s we have the following result for any two phylogenetic
networks N1 = (V1, E1) and N2 = (V2, E2).

Theorem 1 Let N1 be semi-binary stack-free orchard and let N2 be semi-binary
stack-free. Then,

µ̄(N1) = µ̄(N2) ⇐⇒ N1
∼= N2 (3.1)

Note that this means that semi-binary stack-free orchard networks are encoded
by their modified µ-representation in the class of semi-binary stack-free net-
works.

Proof: Suppose we are given a semi-binary stack-free orchard network N1,
and a semi-binary stack-free network N2 with µ̄(N1) = µ̄(N2). Note that
µ̄(N1) = µ̄(N2) implies that also µ(N1) = µ(N2). Then, because N1 is orchard
it must contain a reducible pair of leaves (b, a). If the pair (b, a) is a cherry,
then by Lemma 3 it must be a cherry in µ(N1). Therefore, it is also a cherry in
µ(N2) and thus again by Lemma 3 it is a cherry in N2. In this case, if N ′

1 is the
network generated by reducing (b, a) in N1, and µ̄(N ′

1) is the µ-representation of
this network, then by Lemma 5, µ̄′(N1) = µ̄(N ′

1), where µ̄′(N1) is the multiset
generated by reducing (b, a) in µ̄(N1). Thus, because there is only a single way
of reducing a cherry in the µ̄-representation, we have that µ̄′(N1) = µ̄′(N2) and
by Lemma 5, µ̄′(N2) is the µ̄-representation µ̄(N ′

2) of the network generated by
reducing (b, a) in N2. To conclude, after reducing the cherry (b, a) in both N1

and N2, the two networks still have the same µ̄-representation.

Alternatively, if (b, a) is a reticulated cherry in N1 then by Lemma 4, it is a
reticulated cherry in µ(N1). Therefore, by the same argument as before, it is a
reticulated cherry in N2. Furthermore, because µ̄(N1) = µ̄(N2), if (b, a) is sim-
ple in N1 then it is simple in N2 and otherwise it is complex in both networks.
As for each type of reticulated cherry there is a single way of reducing it in the
µ̄-representation, we again end up with two networks with the same modified
µ̄-representation.

Moreover, because N1 is orchard, the network will still be orchard after re-
ducing the pair (b, a). Therefore, it will again contain a reducible pair which is
also a reducible pair in N2. It follows, that any sequence S = s1, s2, . . . , sn of
reducible pairs si, which reduces N1 (to a network on a single leaf), will also
be a sequence of reducible pairs for N2. Furthermore, because N1 and N2 start
out with the same set of leaves and each cherry reduction removes the same leaf
from both networks, S will also reduce N2 to a network on a single leaf, and it

19

will be the same leaf. We will show that N1 and N2 are isomorphic by an in-

ductive proof. Let N (i)
1 and N (i)

2 be the networks generated from N1 and N2 by

performing reductions s1 up to si, and let N (0)
1 = N1 and N (0)

2 = N2. And let

us assume that the networks N (i)
1 and N (i)

2 are isomorphic. This is true for the
base case where i = n, such that N1 and N2 are both reduced to a network on a

single leaf by the entire sequence s1, s2, . . . , sn. Now take the networks N (i−1)
1

and N (i−1)
2 generated by performing reductions s1, s2, . . . , si−1. By Corollary 3

in [11], there is exactly one way to generate N (i−1)
1 and N (i−1)

2 from N (i)
1 and

N (i)
2 , respectively (1a if si is a cherry and 2b if it is a reticulated cherry). From

this it follows that, because N (i)
1 and N (i)

2 are isomorphic, we also have that

N (i−1)
1 and N (i−1)

2 are isomorphic. Finally, because we have shown that the
networks are isomorphic for i = n and that they are isomorphic for i = j − 1
if they are isomorphic for i = j, we can conclude that they are isomorphic for
i = 0. This means N1 and N2 are isomorphic. □

3.5 The µ̄-distance as a metric

By the definition as set out in chapter 2, the symmetric difference between two
multisets is empty, if, and only if, they are the same multiset. Furthermore,
because the µ-representation of a network is well-defined, if two networks are
isomorphic their µ-representations are equal. If however, two networks have
equal µ-representation, this does not necessarily mean they are isomorphic, see
the examples in Figure 3.1 and Figure 3.3. Theorem 1 shows that given two
semi-binary stack-free networks with equal modified µ-representations, if one of
them is orchard, then they are isomorphic. This means that, in a sample of
semi-binary stack-free networks, any orchard network can be compared to every
other network in the sample using the cardinality of the symmetric difference
of the modified µ-representations as a distance metric. So if we define the µ̄-
distance dµ̄(N1,N2) = |µ̄(N1)△µ̄(N2)|, for N1,N2 semi-binary stack-free and
N2 orchard, then dµ̄ is a metric.

3.6 Non-binary stack-free orchard networks

In this section we will discuss whether our encoding results for the modified
µ-representation extend to non-binary orchard networks. First, we suppose
Lemma 1 regarding the parents of leaf nodes and the multiplicity of the µ-vectors
of leaf nodes, and Lemma 2 regarding the µ-vector of the tree-node parent of a
leaf node, hold for non-binary stack-free networks without any further modifi-
cation. Similarly, we suggest Lemma 3 holds for non-binary stack-free networks
and therefore cherries are uniquely determined by the µ-representation for non-
binary stack-free networks.

20

Figure 3.4: The networks N1 and N2 are both non-binary stack-free orchard
with the same µ̄-representation and equal out-degrees, however they are non-
isomorphic. In N1, (b, a) is a reticulated cherry, while in N2 it is not. Similarly
in N2, (d, a) is a reticulated cherry, while in N1 it is not. This situation arises
because the parent pa of leaf a has out-degree 3. Notably pa is the only node
with degree greater than 3.

When trying to modify Lemma 4 for non-binary networks, we run into prob-
lems. When considering whether the leaf pair (b, a) is a reticulated cherry, we
can no longer require the existence of µ(pa) = µ(a) + µ(b), because the parent
of a may have more children than just a and pb. By Lemma 2 we can find the
µ-vector of the parent of a, but if it is not equal to µ(a) + µ(b), then it is im-
possible to determine whether there are any other nodes on the path pa ⇝ pb.
Figure 3.4 displays two non-binary stack-free orchard networks with the same
µ̄-representation, which are not isomorphic. Because the parent pa of a has
three children and its µ-vector µ(pa) is equal to the sums of the µ-vectors of 2
different sets of 3 nodes (1111 = 1000 + 0100 + 0011 = 1000 + 0110 + 0001) of
which all those that differ belong to reticulations, it is impossible to tell which
set belongs to the children of pa and therefore whether (b, a) is a reticulated
cherry or not. As a consequence of the example given in Figure 3.4 we obtain
the following:

Theorem 2 Non-binary stack-free orchard networks are not encoded by their
µ̄-representation.

Note that nodes with the same µ̄-vectors in N1 and N2 also have the same
out-degrees. This means that the logical extension of the modified µ-representation
by adding the out-degrees of nodes does not lead to an encoding result for the
class of non-binary stack-free orchard networks.

21

4 Determining the in-degrees of
reticulations from
µ-representations

4.1 Introduction

In [4], Cardona et al. showed that the µ-representation serves as an encoding
for non-binary tree-child phylogenetic networks. However, we’ve shown that
for more general networks, even if they are stack-free semi-binary, two non-
isomorphic networks may have the same µ-representation. See Figure 3.1 for
an example. We’ve also shown that two semi-binary stack-free networks which
have the same µ-representation are isomorphic, as long as one is orchard and
their nodes have the same in-degrees. We therefore wish to determine under
which conditions the in-degrees are determined by the µ-representation. In the
following sections we will first consider the lemmas which hold for tree-child
networks, and show why they don’t necessarily hold in the context of semi-
binary stack-free orchard networks. We will then consider some new lemmas
which do hold in the context of semi-binary stack-free orchard networks. Finally,
we will propose an equation for the in-degrees in terms of the µ-representation
of non-binary X-DAGs.

4.2 Identifying the parents of a node

One way we could try to determine the in-degree of a reticulation is to determine
which nodes are parents. In [4] Cardona et al. showed that for tree-child
networks it is possible to identify the children of any node by their µ-vectors.
However for more general orchard networks part b of Lemma 5 does not hold.
See the orchard network in Figure 4.1 for a counterexample. Note that the
network in Figure 4.1 is stack-free, so adding this restriction does not make the
lemma true. Note also that this network contains a node z such that µ(z) =
µ(y)+µ(b) = µ(x)+µ(c). The issue in identifying the parents of the reticulation
above b, is that it is not immediately evident from the µ-vectors which nodes
are the children of z. However, in this particular case the issue is easily solved,
because c is a leaf, we can find their parent. To show that this is true, we first
define a partial order ⪰ on Vµ as in [4], such that µ̂(x) = (µ(x), ix):

(µ(x), ix) ⪰ (µ(y), iy) ⇐⇒
µ(x) > µ(y) with respect to the product partial order, or µ(x) = µ(y) and ix < iy

(4.1)

22

Figure 4.1: A semi-binary stack-free orchard network, which shows Lemma 5b
of [4] does not hold in general for networks in this class.

Where we let iv be the position of node v in the elementary path of all nodes
with µ-vector µ(v). For stack-free networks in particular, such a path can only
be two nodes long and as Murakami showed in [11], the multiplicity of any µ-
vector in µ(N) for a semi-binary stack-free orchard network N is at most 2. So
in this case if µ(u) = µ(v) and iu < iv, then u is a reticulation whose only child
is v. Let N = (V,E) be a stack-free semi-binary phylogenetic network. Then,
we have the following lemma.

Lemma 6 Let a be a leaf node, for any node x ∈ V if µ̂(x) ≻ µ̂(a) and for all
v ∈ V , µ̂(v) ⊁ µ̂(a) or µ̂(v) ⪰ µ̂(x), then x is the parent of a.

Proof: Take a node x which is not the parent of leaf node a. Assume µ̂(x) ≻
µ̂(a) and for all v ∈ V , µ̂(v) ⊁ µ̂(a) ∨ µ̂(v) ⪰ µ̂(x). First note, µ̂(x) ≻ µ̂(a)
implies µa(x) > 0, therefore there is a path from x to a. Furthermore, because
x is not a parent of a, the length of the path from x to a must be greater than
1. This means there must be a different node c on the path from x to a. Then,
because c lies on a path to a, we must have that µ̂(c) ≻ µ̂(a). And because c is a
descendant of x we have that µ̂(c) ⪰̸ µ̂(x). Which contradicts our assumptions.
□

The previous lemma can be read as a modified version of Lemma 6 from
[4]. While Lemma 6 in [4] considered all children of internal nodes, Lemma 6
above only considers parents of leaf nodes. We can extend Lemma 6 to include
parents of reticulations with a leaf child.

Lemma 7 Let a be a leaf and ra its reticulation parent, such that µ(ra) = µ(a)
and µ̂(ra) ≻ µ̂(a). For any node x ∈ V , if µ̂(x) ≻ µ̂(ra) and for all nodes v ∈ V ,
µ̂(v) ⊁ µ̂(a) or µ̂(v) ⪰ µ̂(x). Then, x is a parent of ra.

Proof: Let x be any node which is not a parent of ra and assume that
µ̂(x) ≻ µ̂(ra) and for all nodes v ∈ V , µ̂(v) ⊁ µ̂(a) or µ̂(v) ⪰ µ̂(x). The
first assumption, µ̂(x) ≻ µ̂(ra) implies that µ(x) ≥ µ(ra) and as µ(ra) = µ(a),
this implies µa(x) > 0. Therefore, there is a path from x to the leaf a. And as

23

Figure 4.2: A semi-binary stack-free orchard network containing a triangle

ra is the only parent of a this means that the path from x to a must go through
ra and therefore there is also a path from x to ra. However, because x is not a
parent of ra, this means there must exist a different node c on the path from x
to ra. As c is therefore an ancestor of ra we have µ̂(c) ≻ µ̂(ra) and by extension
µ̂(c) ≻ µ̂(a). However, because c is a descendant of x we also have µ̂(c) ⪰̸ µ̂(x),
which leads to a contradiction. □

From Lemma 7 we can draw the following conclusion:

For every reticulation r with a leaf child, the set:

Mr = {x : µ̂(x) ≻ µ̂(r)} has minimal elements and all of them are parents of r.

Our example in Figure 4.1, shows that the set of minimal elements of Mr

does not necessarily contain all parents of r. Take the reticulation above the
leaf b (let’s call it rb). The node x is a minimal element of the set Mrb but not z,
because µ(z) ≻ µ(x), even though z is a parent of the reticulation. The number
of minimal elements of Mr therefore gives a lower bound on the in-degree of
reticulation r. Another example for which it is not satisfied with equality, is
when we have a so-called triangle as in Figure 4.2. In this example the root is a
parent of rb the reticulation parent of leaf b, but it is not a minimal element of
Mrb . Clearly, for any reticulation r with a leaf child, the set Mr does contain
all ancestors of r and in a semi-binary orchard network a tree-node can only
have two children. Therefore, the reticulations for which this lower bound is
not tight are summed up by these two cases:

• There exists a node x ∈ Mr which has children r and y, where y is an
ancestor of r.

• or, there exists a node x ∈ Mr which has children y and z such that
µ(y) + µ(z) = µ(r) + µ(w) for some other node w in the network.

The node x in the second case we shall call an ambiguous node. The first
case is easily solved, as long as the second one does not also hold for x. If for a
node x, there exists exactly one node y such that µ(x) = µ(r)+µ(y). Then, we
know x must be the parent of r and y, because if x is a tree-node and there are

24

exactly two µ-vectors in the multiset whose sum is equal to µ(x) then x must
be the parent of the corresponding nodes.

4.3 Preliminary lemmas

As we have shown in the last section, determining the parents of a reticula-
tion is difficult. However, to show encoding for orchard networks we just need
to determine the in-degree. Because the in-degree of a reticulation equals the
number of paths from parents of a reticulation to that reticulation, the number
of paths from the root could give us information. To show how this information
can be used, we start first with a few lemmas for rooted directed acyclic graphs
on a leaf set X (X-DAG).

In this section, we will state a few lemmas we will use to prove Theorem 3.
Let N = (V,E) be a non-binary X-DAG and let all nodes be elements of V .
From [5] we recall the following lemma.

Lemma 8 Let there be a path u ⇝ v from a node u to a node v. If u ⇝ v is
a tree-path, then every path w ⇝ v ending in v is either contained in u⇝ v or
contains u⇝ v.

Proof: First, let us assume there is a tree-path u ⇝ v such that u, v and
all other nodes on this path are tree-nodes. Now assume there is another path
w ⇝ v ending in v. Let wi be the first node on the path w ⇝ v, such that all
nodes wi, wi+1, . . . , v on the path w ⇝ v are contained in u⇝ v. Then wi is a
tree-node, which has only a single edge directed to it. Therefore, either wi = w,
in which case w ⇝ v is contained in u ⇝ v, or wi = u in which case u ⇝ v is
contained in w ⇝ v. Otherwise, the parent of wi is also in both paths, which
contradicts our assumption on wi. □

Lemma 9 For any node v, there is either a tree-path from the root ρ to v or
there is a lowest reticulation r, such that all paths ρ⇝ v pass through r.

Proof: First note, if there is a tree-path from ρ to v, then by Lemma 8 there
can be no other path ρ⇝ v and therefore v has no reticulation ancestors. Now
assume there does not exist a tree-path from ρ to v. Then v has at least a single
reticulation ancestor. Let rl be the lowest reticulation ancestor above v, such
that rl has no other reticulation descendants which are ancestors of v. This rl
exists as we only consider finite graphs. Then either rl is equal to v, in which
case it is clear that all paths from ρ to v visit rl, or there is a tree-path from the
child cl of rl to v. Therefore, by Lemma 8, all paths from ancestors of cl to v
must contain cl ⇝ v. Furthermore, cl is a tree-node, therefore r must be its only
parent and therefore all paths from ancestors of r to v which contain cl must also
contain r. The root is an ancestor of r. Thus, all paths ρ⇝ v pass through r. □

25

Corollary 1 If there is a tree-path from the child of a reticulation r to a node
v, then all reticulation ancestors of v are ancestors of r.

Lemma 10 Given a reticulation r with no reticulation ancestor, the number of
paths from the root to r is equal to the the in-degree of r.

Pρr = δ−(r) (4.2)

Proof: Because r has no reticulation ancestor, for each parent of r there must
be a tree-path from the root to the parent and so by Lemma 8, there is exactly
one path from the root to each parent. The number of paths from the root to
the reticulation r via a parent pr is thus equal to the number of paths from the
parent to r. Therefore, the total number of paths from the root to r is equal to
the sum of paths from parents of r to r, which is precisely the in-degree of r. □

Lemma 11 Given a leaf a, whose set of ancestors contains exactly one retic-
ulation r, the in-degree of r is equal to the number of paths from the root to
a.

µa(ρ) = δ−(r) (4.3)

Proof: Because a has no other reticulation ancestor, either r is equal to a, or
there must be a tree-path between the child of r and a, so by Lemma 8, there
is exactly one path from r to a. Also note that by Lemma 9 there can be no
path from the root to the leaf a which does not pass through the reticulation r.
Furthermore, by Lemma 10 the number of paths from the root to r is equal to
the in-degree of r. Therefore, the number of paths from the root to a, equals
the number of paths from the root to r, which is exactly the in-degree of r. □

4.4 An equation relating the in-degrees of
reticulations and µ-vectors

As we have seen in the previous section, when there is exactly one reticulation
r above a certain leaf a, then we have µa(ρ) = δ−(r). The following theorem
expands this to any number of reticulations and is one of the main results of
this thesis.

Theorem 3 Let N be a rooted directed acyclic graph on a leaf set X and let a
be an element of X. Let R be the set of reticulations in V . Then,

µa(ρ) =
∑
ri∈R

(δ−(ri)− 1)µa(ri) + 1.

Note, µa(rj) = 1 whenever rj is the lowest reticulation above a. Also note that
µa(ri) = 0 for any reticulation ri which is not an ancestor of a, therefore these
don’t contribute to the sum.

26

Proof: We prove the theorem by induction on the hybridization number,
k = h(N). We start by considering the base case, k = 0.

Let us consider an X-DAG with k = 0. If the hybridization number is zero
then the graph contains no reticulations. This means there is a tree-path from
the root to each leaf and by Lemma 8 there is exactly one path from the root
to each leaf, and thus µa(ρ) = 1. This shows the equation holds for each leaf.

Now suppose the equation holds for each leaf of any X-DAG with hybridiza-
tion number lower than k. Let N be an X-DAG with reticulation set R such
that h(N) = k. Without loss of generality let rj be a highest reticulation in N ,
which means rj has no reticulation ancestors. We can decrease the in-degree
of rj by deleting an incoming edge urj . If u is an elementary node we delete
all edges on the maximal elementary path which visits u, including the nodes
which become isolated by doing so. When we delete any of the incoming edges
urj in this way the resulting network N ′ is still an X-DAG. Furthermore, the
in-degrees of any other reticulations in the network have not decreased, which
means δ−N ′(ri) = δ−N (ri) for any i ̸= j. And also the number of paths from
any reticulation r to any leaf a has not changed so µ′

a(r) = µa(r). Finally, the
hybridization number of N ′ is equal to k − 1 and by the induction hypothesis
we have,

µ′
a(ρ) =

∑
ri∈R′

(δ−N ′(ri)− 1)µa(ri) + 1.

Now there are two cases to consider:

1. δ−N (rj) = 2

2. δ−N (rj) > 2.

In the first case, the in-degree of rj after deleting an incoming edge becomes
one, which means rj /∈ R′. In this case δ−N (rj)− 2 = 0. Which gives us:

µ′
a(ρ) =

∑
ri∈R′

(δ−N ′(ri)− 1)µa(ri) + 1

=
∑

ri∈R\{rj}

(δ−N (ri)− 1)µa(ri) + (δ−N (rj)− 2)µa(rj) + 1

In the second case rj ∈ R′ and, because we did not decrease the in-degree of
any other reticulations, R = R′. The only difference is, δ−N ′(rj) = δ−N (rj) − 1.

27

Therefore, we have:

µ′
a(ρ) =

∑
ri∈R′

((δ−N ′(ri)− 1)µa(ri) + 1

=
∑
ri∈R

((δ−N ′(ri)− 1)µa(ri) + 1

=
∑

ri∈R\{rj}

(δ−N (ri)− 1)µa(ri) + (δ−N ′(rj)− 1)µa(rj) + 1

=
∑

ri∈R\{rj}

(δ−N (ri)− 1)µa(ri) + (δ−N (rj)− 2)µa(rj) + 1.

Note that after simplification the equation is the same for both cases. When we
add the edge urj (or the maximal elementary path which visits u and ends in
rj) back to the network, we generate N from N ′. In doing so we increase µ′

a(ρ)
by µa(rj) for any leaf a. It is easy to see this is true, because rj is chosen to
be a highest reticulation in N and by Lemma 8 there is a single path from the
root to rj which uses the edge (u, rj) and by definition there are µa(rj) paths
from rj to any leaf a. This means that, for any leaf a

µa(ρ) = µ′
a(ρ) + µa(rj)

=
∑

ri∈R\{rj}

(δ−(ri)N − 1)µa(ri) + (δ−(rj)N − 2)µa(rj) + 1 + µa(rj)

=
∑

ri∈R\{rj}

(δ−(ri)N − 1)µa(ri) + (δ−(rj)N − 1)µa(rj) + 1

=
∑
ri∈R

(δ−(ri)N − 1)µa(ri) + 1,

which means the equation in the theorem holds for any leaf of N . Thus, we
have shown that if the equation holds for any leaf of an X-DAG with hybridiza-
tion number k − 1, then it holds for any leaf of an X-DAG with hybridization
number k. We had already shown the equation holds for any leaf for the base
case k = 0. Therefore, we can conclude the equation holds for any leaf of any
X-DAG, which proves the theorem. □

Note that this theorem holds for non-binary X-DAGs, as we never assumed
a limit on the in-degree of reticulations or the out-degree of tree-nodes. Further-
more, the theorem does not have to be stated in terms of leaves or reticulations,
but can be stated more directly as:

µ(ρ) =
∑

vi∈V \{ρ}

(δ−(vi)− 1)µ(vi) + 1,

or,

0 =
∑
vi∈V

(δ−(vi)− 1)µ(vi) + 1.

28

Figure 4.3: A semi-binary stack-free orchard network for which the system of
equations generated by applying Theorem 3 to each leaf does not have a unique
solution. However, the solution (δ−(r1), δ

−(r2), δ
−(r3)) = (3, 3, 2) is the unique

one that belongs to this network.

Theorem 3 provides us with a system of linear equations that govern the
in-degrees of reticulations as a function of µ-vectors. We know this system of
equations must have a solution as long as it belongs to a valid phylogenetic
network. However, there are no guarantees yet that it has a unique solution.
A network may contain more reticulations than there are linearly independent
equations in the system. The network displayed in Figure 4.3 is semi-binary
stack-free orchard, yet the system of equations generated by applying Theorem 3
to each leaf does not have a unique solution. Note that leaf c has no reticulation
ancestors and therefore the equation for leaf c (1 = 1) does not contribute. This
means there is one equation for leaf a and one for leaf b, but three variables,
the in-degrees of reticulations r1, r2 and r3. Note that the lower bound for the
in-degree of reticulations is 2, and therefore, there are only a finite number of
solutions. In this case there are two solutions to the system of equations and
Figure 4.3 shows (δ−(r1), δ

−(r2), δ
−(r3)) = (3, 3, 2) is the one belonging to this

network.

4.5 In-degrees of stable reticulations

In the last section we presented a theorem which allows us to derive a system
of equations which govern the in-degrees of reticulations as a function of the
µ-vectors. This system of equations applies to every network with the same
µ-representation and set of reticulations R. However, it is important to note
the system of equations does not always have a unique solution. In this section
we will introduce specific conditions under which it does have a unique solu-
tion. We can extend the results of the previous section to the class of networks
called reticulation-visible. Recall the definition of a reticulation-visible network:

29

Definition 3 An X-DAG with reticulation set R is called reticulation-visible if
each reticulation r ∈ R is stable, that is there exists a leaf a ∈ X such that all
paths from the root to a visit r.

If we let N be a reticulation-visible X-DAG with reticulation set R the following
is true. For r ∈ R, with leaf a below r such that all paths from the root to a
visit r, and v any ancestor of r,

µa(v) = Pvrµa(r), (4.4)

where Pvr is the number of paths from v to r. This is easy to see, as every path
from v to a must be the product of a path from v to r and a path from r to a.
With this we gain the following lemma.

Lemma 12 Let N be a reticulation-visible X-DAG with reticulation set R. Let
rℓ be any reticulation in R and let A be the set of ancestors of rℓ. Finally let
a ∈ X be a leaf such that all paths from the root to a visit rℓ. Then,

µa(ρ)

µa(rℓ)
=

∑
r∈A

(δ−(r)− 1)
µa(r)

µa(rℓ)
+ 1 (4.5)

Proof: Let us generate N ′ from N by first attaching a new leaf a′ to rℓ, by
adding the edge (rℓ, a

′), and then adjusting the µ-representation by adding a
column for a′, such that µ′(v) = µ(v) ⊕ µa′(v). Note that this network is now
an X ′-DAG, where X ′ = X ∪ {a′}. Then by Theorem 3 we have:

µ′
a′(ρ) =

∑
r∈R

(δ−(r)− 1)µ′
a′(r) + 1. (4.6)

Now note that rℓ is the lowest reticulation above a′ by construction and there-
fore the only reticulations that contribute to the sum in Equation 4.6 are the
reticulations in A. Furthermore, the number of paths from any ancestor v of a′,
which is not a′, to a′ are equal to the number of paths from v to rℓ, which is
the same in N and N ′, which means by Equation 4.4,

µ′
a′(v) = Pvrℓ =

µa(v)

µa(rℓ)
. (4.7)

Because ρ is an ancestor of a′, as are the elements of A, we can substitute
Equation 4.7 in Equation 4.6 to get:

µa(ρ)

µa(rℓ)
=

∑
r∈A

(δ−(r)− 1)
µa(r)

µa(rℓ)
+ 1.

□

For the following lemmas, let N1 and N2 be two reticulation-visible X-DAG’s
with µ(N1) = µ(N2). Let both networks have the same reticulation set R and
the same leaf set X. Finally, assume that for each reticulation r ∈ R, there
exists a leaf a ∈ X such that r is stable with respect to a in both networks.

30

Lemma 13 Each reticulation r ∈ R has the same reticulation descendants and
the same reticulation ancestors in N1 and N2.

Proof: Let r ∈ R be stable for leaf a in both networks. Then all paths from
the root to a visit r in both networks. Therefore, all reticulations ri ∈ R, with
µ(ri) ≥ µ(a) must be on a path from the root to a which also visits r in both
networks. Therefore, each ri ∈ R, with µ(ri) ≥ µ(a) must be either a descen-
dant or an ancestor of r. If µ(ri) ≥ µ(r) then it must be an ancestor in both
networks, and if µ(ri) ≤ µ(r) it must be a descendant in both networks. □

Lemma 14 Let H ⊆ R be the subset of R which contains only reticulations
without other reticulation ancestors in either network. Then the reticulations in
H have the same in-degrees in both networks.

Proof: For any reticulation r ∈ H the set A in Lemma 12 contains only r and
therefore the in-degree of r is given directly by Equation 4.5, applied to the leaf
for which the reticulation is stable in both networks. □

By a similar reasoning we obtain the following:

Lemma 15 Let rℓ in R and let the in-degrees of the other ancestors of rℓ be
the same in N1 and N2. Then the in-degree of rℓ is the same in N1 and N2.

Proof: Given a reticulation rℓ ∈ R, the set A in Equation 4.5 contains only
rℓ and its other ancestors, which are the same in both networks. Now assume
the in-degrees of the ancestors of rℓ are fixed, then the in-degree of rℓ is given
by Equation 4.5, applied to the leaf for which the reticulation is stable in both
networks. □

This leads to the following conclusion:

Theorem 4 Let N1 and N2 be two reticulation-visible X-DAG’s with µ(N1) =
µ(N2). Let both networks have the same reticulation set R and the same leaf set
X. Finally, assume that for each reticulation r ∈ R, there exists a leaf a ∈ X
such that r is stable with respect to a in both networks. Then the in-degrees of
the reticulations are the same in both networks.

Proof: Let H be the set of highest reticulations in R, which is the same set
for N1 and N2, by Lemma 13. By Lemma 14 the in-degrees of the reticulations
in H are the same in both networks. Let S be the set of second highest retic-
ulations in R, such that each reticulation r ∈ S only has ancestors in H. By
applying Lemma 15 the in-degrees of the reticulations in S are also the same
in both networks. Now, in the same way, the in-degrees of the third highest
reticulations are equal and so on and so forth. This process must terminate as
we only consider finite graphs. Thus, by repeated application of Lemma 15, we
see that the in-degrees of all reticulations in R are the same in both networks. □

31

5 Determining stable nodes
from µ-representations

5.1 Introduction

Theorem 4 shows that if two reticulation-visible networks have equal µ-representations,
identical reticulation sets, and every reticulation is stable for at least one com-
mon leaf in both networks, then the in-degrees of the reticulations are guar-
anteed to be equal in both networks. These conditions ensure that the same
system of equations that govern the in-degrees of reticulations holds for both
networks and it has a unique solution.

Therefore, to find the conditions under which the in-degrees of two networks
with the same µ-representation are the same. We need to determine under
which conditions the reticulation sets are equal and the reticulations are stable
for common leaves. In the case of stack-free orchard networks the reticula-
tions correspond to µ-vectors with multiplicity 2. However, even if they share
the same µ-representation, the stability of reticulations with respect to specific
leaves may still differ between the networks. Therefore, our focus will be on
demonstrating the conditions under which the stability of a node with respect
to a leaf a is determined by the µ-representation.

5.2 Preliminary lemmas

Let N = (V,E) be a phylogenetic network. Let all nodes be elements of V .
Recall that a tree-clone is a tree-node for which there exists another tree-node
with the same µ-vector.

Lemma 16 Tree-clones are not stable.

Proof: Let u, v be distinct tree-clones. Recall that for tree-nodes we have
µ(u) > µ(v) whenever u ̸= v and u is an ancestor of v. Therefore, because
µ(u) = µ(v), it is clear that u, v are neither ancestors or descendants of each
other. This means a path never visits both u and v. Furthermore, because the
µ-vectors are equal, we know that for each leaf, such that u is on a path to that
leaf, v is also on a path to that leaf. By our previous statement these paths
must be distinct and neither contains both nodes. Therefore, there are no leaves
such that all paths to that leaf contain u, nor are there any leaves such that all
paths to that leaf contain v. □

32

Lemma 17 A reticulation is stable with respect to a leaf if, and only if, its child
is stable with respect to that leaf.

Proof: In phylogenetic networks, all paths from the root to a leaf which visit
a reticulation must also visit its child, as there is a single edge leaving a reticu-
lation and a reticulation is not a leaf. □

Corollary 2 Nodes with the same µ-vector as tree-clones are not stable.

Either they are themselves tree-clones, or they are the reticulation parent of
a tree-clone.

Lemma 18 Let µ(N) be the µ-representation of a stack-free network and let
µ(v) ∈ µ(N) be a µ-vector, such that there does not exist a pair of tree-clones
whose µ-vectors are equal to µ(v). Then µ(v) has multiplicity at most 2 in
µ(N).

Proof: Assume there are no tree-clones with µ-vectors equal to µ(v), but as-
sume µ(v) has multiplicity more than 2. Then there must be at least 2 distinct
reticulations r1, r2 ∈ R with the same µ-vector µ(r1) = µ(r2) = µ(v). As reticu-
lations have the same µ-vectors as their children and in a stack-free network the
children of reticulations are tree-nodes, this means there exist two tree-nodes
with µ-vectors equal to µ(v). However, as we assumed there are no tree-clones
with µ-vectors equal to µ(v), we’ve reached a contradiction. □

Corollary 3 Given a stack-free network N , with µ-representation µ(N). If
µ(v) has a multiplicity greater than 2 in µ(N) then all nodes v ∈ V with µ-
vector equal to µ(v) are not stable.

Instead of showing directly when the µ-representation determines whether
a µ-vector belongs to a stable node, we will first show some other results. A
bridge or a cut-edge is an edge, for which it holds that if the edge would be
deleted the number of connected components of the graph goes up. In the case
of phylogenetic networks deleting a bridge makes the graph no longer connected.

Lemma 19 An edge directed to a reticulation is never a bridge.

Proof: There is a path from the root to any parent of a reticulation. A
reticulation has at least two parents. If the edge from one of the parents to a
reticulation is deleted, then there is still a path from the root to the reticulation
via another parent. Therefore the reticulation and all its descendants are still
connected to the root. All other nodes are still connected to the root as well,
therefore the graph is still connected. □

Let the head of a bridge be called a bridge-node. Then, by the lemma above,
bridge-nodes are tree-nodes. All leaves are automatically bridge-nodes, as they
become isolated whenever the edge directed into them is deleted. The root is
not a bridge-node because it has zero in-degree.

33

Lemma 20 Let vb be a tree-node other than the root. Then, vb is a bridge-node
if, and only if, all paths from ancestors of vb to leaves below vb pass through vb.

This lemma states, in other words, that a bridge-node is stable for all leaves
below it. This implies that if vb is a bridge-node, then nodes which lie on a path
to a leaf below vb are either ancestors or descendants of vb.

Proof: Let us first assume that vb is a bridge-node and there is a path
u⇝ a from an ancestor u of vb to a leaf a below vb which does not pass through
vb. Then, after deleting the edge from the parent of vb to vb, there are still
paths from vb to all descendants of vb, so all descendants of vb are connected.
Furthermore, there is still a path from the root to a, which is the product of a
path from the root to u and the path u⇝ a which does not visit vb. Therefore,
a is still connected to the root and as all descendants of vb are still connected
to each other, this means all descendants are still connected to the root as well.
Therefore, the graph is still connected. However, this contradicts our assump-
tion that vb is a bridge-node. Therefore, such a path cannot exist.

Now let us assume all paths from ancestors of vb to leaves below vb pass
through vb. As vb is a tree-node, there is a single edge directed to vb. There-
fore, if the edge directed to vb is deleted, there are no longer any paths from
ancestors of vb to leaves below vb, except those that start in vb. The root is an
ancestor of vb other than vb. Therefore, if the edge directed to vb is deleted,
there are no longer any paths from the root to leaves below vb, thus the graph
is disconnected. This means vb is a bridge-node. □

Corollary 4 Let vb be a bridge-node. Then, for u ∈ V

• µ(u) ≥ µ(vb) ⇐⇒ µ(u) belongs only to ancestors of v

• µ(u) < µ(vb) ⇐⇒ µ(u) belongs only to descendants of v

Previously these implications only held in one direction.

Lemma 21 If there is a tree-path from a node v to a bridge-node vb, then v is
stable with respect to all leaves below vb.

Proof: Let there be a tree-path from a node v to a bridge node vb. Then, by
Lemma 8 all paths from ancestors of v to vb pass through v. By Lemma 20, all
paths from the root to leaves below vb pass through vb. This means that all paths
from the root to leaves below vb are a composition of a path from the root to vb
and a path from vb to leaf below it. The root is an ancestor of v, therefore all
paths from the root to vb are a composition of a path from the root to v and the
tree-path from v to vb. Therefore all paths from the root to leaves below vb are a
composition of a path from the root to v, the tree-path from v to vb and a path
from vb to a leaf below it. In conclusion all paths from the root to leaves below
vb pass through v, and therefore v is stable with respect to all leaves below vb. □

34

Lemma 22 If there is a tree-path from the child cr of a reticulation r to a
bridge-node vb, then r is stable with respect to all leaves below vb.

Proof: Let us assume there is a tree-path from the child cr of a reticulation r
to a bridge-node vb. By Lemma 21, cr is stable with respect to all leaves below
vb. Then, by Lemma 17, r is stable with respect to all leaves below vb. □

Let us define the set Ab as the subset of the ancestors of a bridge node
vb, whose µ-vectors have multiplicity 2 in µ(N). For any set S ⊆ V let µ(S)
be the multiset of µ-vectors of the nodes in S. Then µ(Ab) is exactly the set
{µ(v) : µ(v) ≥ µ(vb),#µ(v) = 2} and by Corollary 4, each vector in µ(Ab) only
belongs to ancestors of vb.

Lemma 23 If µ(v) minimal in µ(Ab), then it belongs to a reticulation and to
the child of that reticulation.

Proof: A µ-vector with multiplicity 2 either belongs to a pair of tree-
clones or to a reticulation and its child. Now, if µ(v1) ∈ µ(Ab) belongs to a
pair of tree-clones v1, v2 with µ(v1) = µ(v2), then there cannot be a tree-path
from either of them to a bridge node vb, because by Lemma 16, tree-clones are
not stable. Therefore, v1 and v2 must have reticulation descendants r1, r2, who
are ancestors of vb. Note that r1 could be equal to r2. If the multiplicity of
either r1 or r2 is greater than 2, then their child must be a tree-clone, by the
contrapositive of Lemma 18. By the same argument there must then be other
reticulation descendants of v1 and v2 above vb. We only consider finite graphs,
and therefore, w.l.o.g. we can assume µ(r1) and µ(r2) have multiplicity 2 in
µ(N). Then, r1, r2 ∈ Ab, with µ(r1) < µ(v1) and µ(r2) < µ(v2). Therefore,
µ(v1) is not minimal in Ab. We can conclude that if µ(r) is minimal in Ab, then
r is a reticulation. □

Lemma 24 There is a tree-path from the child of a reticulation r to a bridge-
node vb if, and only if, µ(r) is minimal in the set µ(Ab).

Proof: For the first direction, assume there is a tree-path from the child
of a reticulation r to a bridge vb. Then, by Lemma 22, r is stable. Therefore,
by Corollary 3, µ(r) has multiplicity 2 in µ(N). Furthermore, r is an ancestor
of vb, therefore r ∈ Ab. Also note, that by Lemma 8 and Lemma 9, r is the
lowest reticulation above vb. Then, by combining Lemma 9 and Lemma 23,
all ancestors of vb, with µ-vectors which have multiplicity 2, are ancestors of r.
Thus, we have µ(v) ≥ µ(r), for µ(v) ∈ µ(Ab). Therefore, µ(r) is minimal in Ab.
This proves the first direction.

Now assume µ(r) is minimal in µ(Ab). By Lemma 23, µ(r) belongs to a
reticulation r and its child cr. Furthermore, because µ(cr) = µ(r) ∈ µ(Ab),
both r and cr are ancestors of vb. Therefore, there is a path from cr to vb. If
the path from cr to vb is not a tree-path, then r is not the lowest reticulation

35

Figure 5.1: A phylogenetic network which is reticulation-visible but not strongly
reticulation-visible. Reticulation r is stable with respect to leaf b, but there is
no tree-path from the child of r to a bridge. The only bridges are the edges
ending in a and b.

above vb. Let rℓ be the lowest reticulation above vb, then by Lemma 9, rℓ
is a descendant of r. By Lemma 24, rℓ is stable. Therefore, by Corollary 3,
#µ(rl) ≤ 2. The child of rℓ has the same µ-vector, therefore #µ(rl) = 2. This
means that µ(rℓ) ∈ µ(Ab) and because rℓ is a descendant of r, also µ(r) > µ(rℓ).
This contradicts our assumption that µ(r) is minimal in µ(Ab). Therefore, r is
the lowest reticulation above vb, and the path from cr to vb is a tree-path. □

5.3 Strongly reticulation-visible networks

The lemmas in the previous section show that if we know that a given µ-vector
belongs to a bridge-node, then we can find the µ-vector of the lowest reticulation
above this bridge-node and the reticulation will be stable for all leaves below
the bridge node. We therefore propose to consider the class of networks such
that for each reticulation there is a tree-path from its child to a bridge. We will
call this the class of strongly reticulation-visible networks. Note that all strongly
reticulation-visible networks are reticulation-visible. But there are reticulation-
visible networks which are not strongly reticulation-visible. See Figure 5.1 for
an example. What remains to be shown is whether it is possible to know if a
given µ-vector belongs to a bridge-node.

By Lemma 20, bridge-nodes are stable. Therefore, if vb is a bridge-node,
then by Corollary 3, µ(vb) ≤ 2. Furthermore, by Lemma 16, µ(vb) does not
belong to a pair of tree-clones. All leaves are bridge-nodes, therefore all unit
vectors in µ(N) belong to some bridge-nodes. Now let N = (V,E) be a semi-
binary stack-free network such that all tree-nodes in V have at most 2 children.

36

Lemma 25 If vb is a bridge-node and c1 and c2 are its children, then either
the µ-vectors of c1 and c2 are distinct and at most one has multiplicity greater
than 1 in µ(N) or they are equal with multiplicity exactly 2.

Proof: We will show the lemma holds by proving the contrapositive: if
the µ-vectors of the two children of a tree node are distinct with multiplicity
greater than 1 or are equal with multiplicity greater than 2, then their parent
is not a bridge node. If the µ-vectors of two nodes c1, c2, who are children of
the same node, are distinct with multiplicity greater than 1, then one of the
following holds:

• c1 and c2 are reticulations,

• c1 and c2 are tree-clones with different µ-vectors,

• c1 is a reticulation and c2 is a tree-clone with a different µ-vector.

If their µ-vectors are equal with multiplicity greater than 2, one of these must
hold:

• c1 and c2 are reticulations,

• c1 and c2 are tree-clones with the same µ-vector and there exists a third
tree-clone c3 with the same µ-vector as c1 and c2,

• c1 is a tree-clone and c2 is a reticulation with the same µ-vector.

Given a tree-node vb, let us first assume vb has two children c1 and c2 which
are reticulations. Because c1 and c2 are reticulations they must have at least
one other parent besides vb. Neither c1 is the parent of c2 nor is c2 the parent
of c1 because the network is stack-free. Note that, not both c1 and c2 can have
a parent which is a descendant of the other one, because in that case there
would be a cycle, from c1 to the parent of c2 to c2 to the parent of c1 to c1.
Furthermore, all descendants of vb except vb itself are descendants of c1 or c2.
Therefore, either c1 or c2 has a parent which is not a descendant of vb. But then
there would be a path from the root to a leaf below vb via this parent, which
does not pass through vb. Thus, by Lemma 20, this means vb is not a bridge
node.

For the second case let us assume vb has two children c1 and c2 which are
tree-clones, with different µ-vectors. In this case there exists a tree-clone c′1 with
µ(c′1) = µ(c1) which has a parent which is not vb. And there must be a tree-clone
c′2 with µ(c′2) = µ(c2), which has a parent which is not vb. It cannot be the case
that the parent of c′1 is a descendant of c2 and the parent of c′2 is a descendant
of c1. Because in that case, µ(c1) = µ(c′1) ≤ µ(c2) and µ(c2) = µ(c′2) ≤ µ(c1).
Which means µ(c1) = µ(c2) which contradicts our assumption. Nor can the par-
ent of c′1 be a descendant of c1, because then µ(c′1) < µ(c1), which contradicts

37

our assumption. The same holds for c′2 and c2. This means that either, c′1 or
c′2 must have a parent which is not a descendant of vb. W.l.o.g. we can assume
c′1 has a parent which is not a descendant of vb. Note that, µ(c′1) < µ(vb) so
there must be paths from c′1 to leaves below vb. This means that there is a path
from the root to a leaf below vb via c′1 which does not visit vb. Thus, vb is not
a bridge-node.

Third, let us assume vb has one child c1 which is a reticulation and a child
c2 which is a tree-clone, such that µ(c1) ≥ 2, µ(c2) ≥ 2 and µ(c1) ̸= µ(c2). If c1
is not a descendant of c2 then c1 has another parent which is not a descendant
of vb. This means there must be a path from the root to a leaf below vb via this
parent, which does not pass through vb. In this case vb is not a bridge node.
Alternatively, let us assume c1 is a descendant of c2. Then there must exist
tree-clone v with µ(c2) = µ(v) and µ(v) > µ(c1), with a parent which is not a
descendant of vb. Because µ(vb) > µ(c2) = µ(v) there must be a path from v to
a leaf below vb and therefore, there must be a path from the root to a leaf be-
low vb via v, which does not pass through vb. This means vb is not a bridge node.

Fourth, let us assume that vb has two children c1 and c2, which are tree-
clones with µ(c1) = µ(c2) and there exists another tree-clone c3 with µ(c3) =
µ(c1) = µ(c2). Note that the parent of c3 cannot be a descendant of c1 or c2,
because c1 and c2 are tree-nodes and this would mean either µ(c3) < µ(c1) or
µ(c3) < µ(c2), which we have assumed is not the case. Nor can the parent of c3
be vb, because vb already has 2 children. Therefore, c3 must have a parent which
is not a descendant of vb and, by the same argument as before, this implies vb
is not a bridge-node.

Finally, let us assume vb has two children, c1 which is a tree-node and c2
which is a reticulation, with µ(c2) = µ(c1). Then, c2 must have at least one
other parent, which is not vb. This parent cannot be a descendant of c1, be-
cause c1 is a tree-node and therefore this would imply that µ(c2) < µ(c1), which
contradicts our assumption. Therefore, we can assume c2 has a parent which is
not a descendant of vb. Which again implies that vb is not a bridge-node. □

Lemma 26 If µ(vb) belongs to a bridge-node which is not a leaf then µ(N)
contains exactly one pair of vectors µ(x), µ(y) such that µ(vb) = µ(x) + µ(y).

Proof: We will show the lemma is true with a proof by contradiction, by
showing that there cannot even be a second pair. Assume µ(vb) is a bridge-
node which is not a leaf and µ(N) contains at least two pairs µ(x), µ(y) and
µ(k), µ(ℓ) such that µ(vb) = µ(x)+µ(y) = µ(k)+µ(ℓ). W.l.o.g. we can assume
µ(x) and µ(y) belong to the children x, y of vb. By Lemma 25, we know that
µ(k) ̸= µ(x), because otherwise µ(ℓ) = µ(y), in which case both #µ(x) ≥ 2 and
#µ(y) ≥ 2, and if µ(x) = µ(y) then #µ(x) ≥ 4. The same goes for µ(k) ̸= µ(y),
µ(ℓ) ̸= µ(x) and µ(ℓ) ̸= µ(y). Note also that none of x, y, k, ℓ are ancestors

38

of vb because their µ-vectors are each lower than µ(vb). Now note that, by
Corollary 4, µ(vb) > µ(k) and µ(vb) > µ(ℓ) implies they are descendants of
vb. However, as we mentioned x, y are the children of vb. This means k, ℓ
must be descendants of x, y, which are not equal to x, y, because their µ-vectors
differ. From this it follows that µ(x)+µ(y) > µ(k)+µ(ℓ). This contradicts our
assumption that the sums were equal. □

Lemma 27 If µ(vt) ∈ µ(N) belongs to a tree-clone, then one of the following
is true:

• µ(N) contains exactly one pair µ(x), µ(y) with µ(x) ̸= µ(y), such that
µ(vt) = µ(x) + µ(y). In which case #µ(x) ≥ 2 and #µ(y) ≥ 2, and if
µ(x) = µ(y), then #µ(x) ≥ 4.

• µ(N) contains at least one more pair µ(k), µ(ℓ) which is distinct from
µ(x), µ(y), such that µ(vt) = µ(k) + µ(ℓ).

Proof: If µ(vt) ∈ µ(N) belongs to a tree-clone, then there are at least two
tree-nodes v1 and v2 with µ-vector equal to µ(v1). By Lemma 1, unit-vectors
do not belong to tree-clones, therefore v1 and v2 are not leaves. This means
v1 and v2 each have two children. Let c1 and c2 be the children of v1, and let
c3 and c4 be the children of v2. Note that c1 must be distinct from c2, and c3
must be distinct from c4, because phylogenetic networks do not contain parallel
edges. We then have: µ(c1) + µ(c2) = µ(v1) = µ(v2) = µ(c3) + µ(c4).

If the children of v1 are the same as the children of v2 then c1 and c2 both
have two parents and are therefore reticulations. In that case, #µ(c1) ≥ 2 and
#µ(c2) ≥ 2, and if µ(c1) = µ(c2), then #µ(c1) ≥ 4, because c1 cannot have the
same child as c2 because the network is stack-free.

If v1 and v2 share only one child, say c2 = c3, then c1 and c4 are dis-
tinct nodes. In this case, c2 is a reticulation, and #µ(c2) ≥ 2. Then, either
µ(c1) = µ(c4) ̸= µ(c2), so that #µ(c1) ≥ 2 as well. Or µ(c1) = µ(c4) = µ(c2),
which implies #µ(c1) ≥ 4, because neither c1 nor c4 can be the child of c2,
because the network is stack-free.

Finally, if all nodes c1, c2, c3 and c4 are distinct from each other. Then ei-
ther, the sets {µ(c1), µ(c2)} and {µ(c3), µ(c4)} are not the same set, in which
case µ(N) contains two distinct pairs, whose sum is µ(v1). Or they are the
same set, in which case we can say w.l.o.g. that µ(c1) = µ(c3), which implies
µ(c2) = µ(c4). Which means that both #µ(c1) ≥ 2 and #µ(c2) ≥ 2, and if
µ(c1) = µ(c2) then #µ(c1) ≥ 4. □

39

Lemma 28 Let µ(vb) ∈ µ(N) belong to a bridge-node vb. Let Ib be the set
of leaves below vb, so that µi(vb) = 0 for i /∈ Ib. For any µ(x) ∈ µ(N) with
µ(x) ̸< µ(vb), it holds that µ(x) = Pxvb

µ(vb) + µ′(x), where Pxvb
is a non-

negative integer, equal to the number of paths from x to vb, and µ′ is a µ-vector
such that µ′

i = 0 for i ∈ Ib.

Proof: Let µ(vb) ∈ µ(N) belong to a bridge-node. For any µ(x) ∈ µ(N) with
µ(x) ̸< µ(vb), by Lemma 20, µ(x) does not belong to a descendant of the nodes
with µ-vector µ(vb). Therefore, all paths from x to leaves below vb must visit
vb. Thus, if a is a leaf below vb, then any path from x to a is the composition
of a path from x to vb and a path from vb to a. It follows that for each such
leaf a, µa(x) = Pxvb

µa(vb). From this it follows that µ(x) = Pxvb
µ(vb) + µ′(x),

where µ′(x) contains only the paths to leaves not below vb, and therefore µ′(x)
is a µ-vector such that µ′

i(x) = 0 for i ∈ Ib. □

Lemma 29 Let µ(vb) ∈ µ(N) belong to a bridge-node vb. Then, for any
µ(x), µ(y) ∈ µ(N) such that µ(x) < µ(vb), µ(N) does not contain µ(k), µ(ℓ)
with µ(k) ̸< µ(vb) and µ(ℓ) ̸< µ(vb), such that µ(k) + µ(ℓ) = µ(x) + µ(y).

Proof: We will show this with a proof by contradiction. Let us assume that
µ(vb) ∈ µ(N) belong to a bridge-node vb and µ(N) contains some µ(x), µ(y)
such that µ(x) < µ(vb). Now let us assume, µ(N) contains µ(k), µ(ℓ) with
µ(k) ̸< µ(vb) and µ(ℓ) ̸< µ(vb), such that µ(k) + µ(ℓ) = µ(x) + µ(y). First
note, that if µ(y) ≤ µ(vb), then µ(y) belongs to a descendant of vb and therefore
µ(k) + µ(ℓ) = µ(x) + µ(y) ≤ µ(vb). But this contradicts our assumption that
µ(k) ̸< µ(vb). Therefore, we can assume that µ(y) ≰ µ(vb). Then, by Lemma 28:

µ(k) = Pkvb
µ(vb) + µ′(k)

µ(ℓ) = Pℓvb
µ(vb) + µ′(ℓ)

and

µ(y) = Pyvbµ(vb) + µ′(y).

Furthermore, from µ(x) + µ(y) = µ(k) + µ(ℓ) it follows:

µ(x) = µ(k) + µ(ℓ)− µ(y)

= Pkvb
µ(vb) + µ′(k) + Pℓvbµ(vb) + µ′(ℓ)− [Pyvbµ(vb) + µ′(y)]

= (Pkvb
+ Pℓvb

− Pyvb)µ(vb) + µ′(k) + µ′(ℓ)− µ′(y).

Then, from µ(x) < µ(vb) it follows that Pkvb
+ Pℓvb

− Pyvb = 0, and µ′(k) +
µ′(ℓ)−µ′(y) = 0. But then µ(x) is the zero vector, which is not possible because
the zero vector is not a µ-vector and therefore not contained in µ(N). We have
reached a contradiction. □

40

Lemma 30 Given a µ-vector µ(vb) ∈ µ(N). If µ(N) contains µ(z) ≰ µ(vb),
µ(x) < µ(vb) and µ(y), such that µ(z) = µ(x) + µ(y). Then, µ(vb) does not
belong to a bridge-node.

Proof: We will argue by contradiction. Assume µ(N) contains µ(vb), µ(z), µ(x)
and µ(y) as described in the lemma and let µ(vb) belong to a bridge-node vb.
If µ(z) belongs to a reticulation r, then the child of r must be a tree-node with
the same µ-vector, so w.l.o.g. we can assume µ(z) belongs to a tree-node z.
Because µ(z) = µ(x) + µ(y), we know z is not a leaf, because µ(z) is not a unit
vector. If µ(x), µ(y) is the only pair in µ(N) which sum up to µ(z) then z must
be the parent of x. If there are more pairs in µ(N) then by Lemma 29, each
of those pairs must contain at least one µ-vector lower than µ(vb). This means
that in any case z will have a child with µ-vector lower than µ(vb). However,
µ(z) ≰ µ(vb) implies that z is not a descendant of vb. Then there must be a path
from the root to a leaf below vb via z which does not visit vb. By Lemma 20,
this means that vb is not a bridge-node. Which contradicts our assumption. □

Theorem 5 A non-unit vector µ(vb) belongs to a bridge-node if, and only if,

• there is exactly one pair µ(k), µ(ℓ) ∈ µ(N) such that µ(vb) = µ(k) + µ(ℓ),
and

• µ(k) and µ(ℓ) do not both have multiplicity greater than 1 in µ(N) unless
µ(k) = µ(ℓ) with #µ(k) = 2, and

• µ(N) does not contain vectors µ(x), µ(y), µ(z), such that µ(z) ≰ µ(vb),
µ(z) = µ(x) + µ(y) and µ(x) < µ(vb).

Proof: Assume the non-unit vector µ(vb) belongs to a bridge-node. Then
µ(vb) belongs to a tree-node which is not a leaf and, by Lemma 26, there ex-
ists exactly one pair µ(k), µ(ℓ) with µ(vb) = µ(k) + µ(ℓ). Furthermore, by
Lemma 25, the combined multiplicity of µ(k) and µ(ℓ) in µ(N) is lower than or
equal to 3. Finally, by Lemma 30, there does not exist µ(z) ≰ µ(vb) such that
µ(z) = µ(x) + µ(y) for µ(x) < µ(vb). This proves the first direction.

For the other direction, we will show the inverse holds. Let us assume the
non-unit vector µ(vb) does not belong to a bridge-node. Then, for each node
vb with µ-vector µ(vb) there must be a path from the root to a descendant
of vb, which does not visit vb. Note that for any reticulation r with µ-vector
equal to µ(vb), there must be a tree-node with the same µ-vector and r itself
is not a bridge node. So w.l.o.g. it is enough to show that this holds for tree-
nodes with µ-vector µ(vb). Note that, for the µ-vector of the root µ(ρ) ≰ µ(vb).
Therefore, there must be a node z on the path from the root to a descendant
of vb which does not visit vb, with µ(z) ̸< µ(vb), and z is the parent of a
node x, with µ(x) < µ(vb). Note that z cannot be a reticulation, because then
µ(vb) ̸> µ(z) = µ(x) < µ(vb).

41

This means, that either µ(z) = µ(vb) or µ(z) ≰ µ(vb). If µ(z) = µ(vb), then
µ(vb) belongs to a tree-clone. In that case, there is at least one pair µ(k), µ(ℓ) ∈
µ(N) which belong to the children of a node vb, such that µ(vb) = µ(k) + µ(ℓ).
Then, by Lemma 27, either there is more than one such pair, or #µ(k) ≥ 2 and
#µ(ℓ) ≥ 2, and if µ(k) = µ(ℓ) then #µ(k) ≥ 4. This violates condition 1 or 2.

If µ(z) ≰ µ(vb), then µ(vb) does not necessarily belong to a tree-clone. Note
z is also not a leaf, as a leaf has no children. Therefore z is a tree-node with
two children, one of which is x. This means, there exists a node y, the other
child of z, such that µ(z) = µ(x) + µ(y). This violates condition 3. Now, we
have shown one of the three conditions must be false. This proves the inverse
statement. □

Let N1 and N2 be two semi-binary stack-free networks. Theorem 5 shows
that if µ(N1) = µ(N2) then the same µ-vectors will belong to bridge-nodes in
both µ-representations. Lemma 24 shows that if µ(vb) belongs to a bridge in
both networks, then the same µ-vector belongs to the lowest reticulation above
that bridge in both networks. Then, by Lemma 22, these reticulations will be
stable with respect to the same leaves.

Theorem 6 Let N1 and N2 be two strongly reticulation-visible semi-binary net-
works, with µ(N1) = µ(N2). Then, µ̄(N1) = µ̄(N2).

Proof: As N1 and N2 are strongly reticulation-visible, there is a tree-path
to a bridge node from the child of each reticulation. As mentioned above, the
same µ-vectors belong to bridge-nodes in both networks, and the same µ-vectors
belong to the lowest reticulation above those bridge-nodes. Therefore, the same
µ-vectors in both µ-representations will belong to reticulations which are stable
for the same set of leaves. To make this more clear, note the following. By
Lemma 16, µ-vectors which belong to stable nodes cannot belong to tree-clones.
Furthermore, by Corollary 3, µ-vectors with multiplicity greater than 3 do not
belong to stable nodes. Moreover, as N1 and N2 are strongly reticulation-
visible, all the reticulations in both networks are stable. Therefore, the µ-
vectors with multiplicity greater than 3 in µ(N1) and µ(N2) do not belong
to reticulations in either network. This means that the set of µ-vectors with
multiplicity 2, for which the conditions in Theorem 5 hold is in bijection with
the set of reticulations in both networks. In conclusion, the same µ-vectors
belong to reticulations in N1 and N2, and they are stable for a common set of
leaves. Thus, by Theorem 4, µ̄(N1) = µ̄(N2). □

Theorem 7 Let N1 and N2 be two semi-binary stack-free networks with µ(N1) =
µ(N2). Let N1 be strongly reticulation-visible and orchard. Then, N1

∼= N2.

Proof: Because, N1 is orchard, it contains no tree-clones. Therefore, each
µ-vector in µ(N1) has multiplicity at most 2. And the subset of µ(N1) of
µ-vectors with multiplicity 2 is exactly the set of µ-vectors which belong to
reticulations. Furthermore, because N1 is strongly reticulation-visible, these

42

µ-vectors belong to reticulations which are lowest above some bridge. By The-
orem 5, the same µ-vectors correspond to bridge-nodes in N1 and N2. And by
Lemma 24, every lowest reticulation - bridge-node pair is preserved in N2. As
both µ-representations do not contain any vectors with multiplicity greater than
2, there are no other µ-vectors belonging to reticulations in N2. Note that, each
µ-vector with multiplicity 2 belongs to exactly one reticulation in N1. There-
fore, N1 and N2 have the same reticulation set R and each reticulation is stable
for a common set of leaves in both networks. This means that, by Theorem 4,
µ̄(N1) = µ̄(N2). Therefore, by Theorem 1, N1

∼= N2. □

In the same way as in Section 3, Theorem 7 shows that in a sample of semi-
binary stack-free networks, a single strongly reticulation-visible orchard network
can be compared to every other network in the sample using the cardinality of
the symmetric difference of the µ-representations. Therefore, we can apply the
µ-distance dµ(N1,N2) = |µ(N1)△µ(N2)| between two semi-binary stack-free
networks N1,N2 as a metric, as long as one of them is strongly reticulation-
visible orchard.

43

6 Conclusions and Discussion
6.1 Main results

In this section we will outline and discuss the main contributions of this thesis,
some of which are displayed in Table 6.1.

Given class N1 class N2 Result Theorem

µ̄(N1) = µ̄(N2) SBSF orchard SBSF N1
∼= N2 Theorem 1

µ(N1) = µ(N2) SB SRV SB SRV µ̄(N1) = µ̄(N2) Theorem 6

µ(N1) = µ(N2) SB SRV orchard SBSF N1
∼= N2 Theorem 7

Table 6.1: A table detailing some of the main results of this report. SB stands
for semi-binary, SF stands for stack-free and SRV stands for strongly reticu-
lation visible. Note that strongly reticulation visible networks are stack-free.
The first row reads: “Given two networks N1 and N2 with equal modified µ-
representation, if N1 is semi-binary stack-free orchard and N2 is semi-binary
stack-free then they are isomorphic”

We’ve shown that semi-binary stack-free orchard networks are encoded in the
space of semi-binary stack-free networks by a modified µ-representation (Theo-
rem 1). This modified µ-representation, which we dubbed the µ̄-representation,
contained the same path multiplicity vectors as the standard µ-representation
as originally proposed by Cardona et al. in [4], but modified to include the in-
degrees of nodes. With this result we’ve shown that given a semi-binary stack-
free orchard network and a semi-binary stack-free network, the cardinality of
the symmetric difference of the µ̄-representations of the networks gives a met-
ric. We’ve also shown that this encoding result does not extend to non-binary
stack-free orchard networks even if the out-degrees of nodes corresponding to
µ-vectors are fixed (Theorem 2).

We proposed an equation governing the relationship between in-degrees of
reticulations in a given X-DAG and the µ-vectors of those reticulations and the
root, and we proved the correctness of this equation (Theorem 3). We showed
that such an equation exists for each leaf, which induces a system of equations
for any given network. We discussed how the system of equations for a given
network does not necessarily have a unique solution. We then showed that for
any network in the class of reticulation visible networks the system of equations
does have a unique solution as long as the reticulation set is fixed and each
reticulation is stable with respect to a fixed leaf (Theorem 4).

44

We then showed that the lowest reticulation above a bridge is stable and can
be found by its µ-vector, as long as the µ-vector of the tail of the bridge is known
(Lemma 24). Then, we proved that it is possible to determine whether a µ-vector
belongs to the tail of a bridge (Theorem 5). We proposed the class of strongly
reticulation visible networks, as the class of networks for which each reticulation
is lowest above some bridge. For this class we proved that for any two networks
with the same µ-representation, the µ-vectors belong to nodes with equal in-
degrees. Therefore, they have the same modified µ-representation (Theorem 6).
Finally, we concluded that strongly reticulation visible semi-binary stack-free
orchard networks are encoded in the class of semi-binary stack-free networks by
their µ-representation (Theorem 7). Which means that the cardinality of the
symmetric difference of the µ-representation of two semi-binary stack-free, of
which one is strongly reticulation visible orchard, gives a metric.

6.2 Discussion

In this section we will discuss some of the remaining open problems. For one,
it is still unclear whether semi-binary stack-free orchard networks are in fact
encoded in their own class by the µ-representation. Furthermore it may be
interesting whether we could further modify the µ-representation to encode
more classes. Another open problem is whether bridge-nodes are determined
by the µ-representation in non-binary networks. We’ll go into more detail on
these problems below. A final remaining question is whether there are still more
classes of networks, besides subclasses of orchard networks, which are encoded
by the µ-representaton. We suggest an interesting research subject could be to
try to define the class of networks which do not contain ambiguous nodes, which
we defined in Section 4.2.

Tree-clone free networks

The question posed by Murakami in [11], after presenting their counterexample
of the original theorem by Bai et al. is whether semi-binary stack-free orchard
networks are actually encoded within their own class by the µ-representation.
This question remains unanswered. Murakami focussed on the fact that their
counterexample contains tree-clones and investigated the structure of tree-clone
free networks. However, the example in Figure 6.1 shows two tree-clone free
networks, which have the same µ-representation that are not isomorphic. The
colored nodes in these networks are what we called ambiguous nodes, in Sec-
tion 4.2. The µ-vectors of these nodes can be generated by taking the sum of
two distinct pairs of nodes in the network.

If we refer to the colored nodes in Figure 6.1 by their color (vred, vblue, vyellow),
and the reticulation parents of the leaves we denote with an apostrophe (a′, b′, c′, d′)
and the tree-nodes whose children are two of these reticulations as vab, vbc, vbd.

45

Figure 6.1: Two non-isomorphic semi-binary reticulation-visible tree-clone free
networks with the same µ-representation. The coloured nodes have the same
µ-vectors in both networks but their children have been permuted.

We obtain the following system of equations:

µ(vred) = µ(a′) + µ(vbc) = µ(c′) + µ(vab)

µ(vblue) = µ(c′) + µ(vbd) = µ(d′) + µ(vbc)

µ(vyellow) = µ(d′) + µ(vab) = µ(a′) + µ(vbd).

The µ-vectors of children of the colored nodes are simply in the middle col-
umn of these equations for the left network and the right column for the right
network. These networks are semi-binary and reticulation visible, this makes
them also stack-free. However, they are not orchard and there does not seem
to be an obvious way to make them orchard while preserving the equality of
µ-representations and the non-isomorphism. It remains to be seen whether this
type of structure does not exist in orchard networks and whether other struc-
tures still exist which generate ambiguity.

Combining the extended and the modified µ-representations

In [3] Cardona et al. propose an extended µ-representation for encoding binary
orchard networks. The extended µ-representation is generated by appending
the number of paths to reticulations to the µ-vectors of the µ-representation.
They show that with this extended µ-representation reticulated cherries can be
found even in networks with stacks. Intuitively, if we combine both their ex-
tension and the modification we proposed in Section 3, the resulting encoding
should be unique for semi-binary orchard networks. We therefore propose the
following definition and conjecture.

46

Definition 4 Let the twice extended µ-representation, denoted µ̇(N), be the
encoding of a phylogenetic network N , which combines both the extended and
modified µ-representations, by appending both the number of paths to reticula-
tions and the in-degrees to the path multiplicity vectors.

Conjecture 1 Let N1, N2 be semi-binary orchard networks. Then,

µ̇(N1) = µ̇(N2) ⇐⇒ N1
∼= N2. (6.1)

Non-binary strongly reticulation-visible networks

In this section we will discuss how the results from Section 5 regarding bridge-
nodes and strongly reticulation visible networks extend to non-binary networks.
The preliminary lemmas set forth in Section 5.2 hold for both semi-binary and
non-binary networks as we never made any assumptions on the degrees of the
nodes. However, in the entire Section 5.3 we only considered semi-binary net-
works. The first lemmas, Lemma 25, Lemma 26 and Lemma 27 all serve to
show how to distinguish a bridge-node with multiplicity 2 from a pair of tree-
clones. The example shown in Figure 6.2, shows that no similar lemmas hold for
non-binary networks. The networks N1 and N2 are both strongly reticulation-
visible with the same µ-representation, but in N2 the node vb is a bridge-node
with µ-vector 0220, but in N1 the nodes with µ-vector 0220 are tree-clones and
therefore not stable. This example shows that it is not possible to determine
whether a µ-vector with multiplicity 2 belongs to a stable reticulation and its
bridge-node child or a pair of tree-clones in non-binary strongly reticulation-
visible networks. It also shows that two non-binary strongly reticulation-visible
networks with the same µ-representation do not necessarily have the same mod-
ified µ-representation as defined in Section 3. This means the µ-vectors do not
necessarily belong to nodes with the same in-degrees in both networks.

This negative result does not mean that being strongly reticulation-visible
is not relevant for non-binary networks. Remember that orchard networks do
not contain any tree-clones. Therefore, if we focus on comparing orchard net-
works, we do not need to be able to distinguish bridge-nodes from tree-clones.
If we look at Lemma 28, we see that it holds for non-binary networks. However,
for Lemma 29 there does not seem to be an immediate non-binary analogue.
Lemma 29 and Lemma 30, serve to establish a way to determine whether a
descendant of a node vb (besides vb itself) has a parent which is not a descen-
dant of that node, thereby proving that vb is not a bridge-node. However, in
non-binary networks any number of µ-vectors in µ(N) which together sum up
to the µ-vector of a node v may belong to the children of v. Therefore, we
can no longer assume that given a bridge-node vb and a node z which is not a
descendant of vb, that the sum of the µ-vectors of the children of z which are
descendants of vb is actually smaller than µ(vb). If we would modify Lemma 29
to consider tree-nodes which can have any number of children greater than 1,

47

Figure 6.2: Two non-binary strongly reticulation-visible networks N1 and N2

with the same µ-representation. In N2 the edge between the reticulation with
µ-vector 0220 and its child is a bridge and the node vb is a bridge-node. In N1

the nodes with µ-vector 0220 are tree-clones and therefore not stable.

we would get the following:

Let µ(vb) ∈ µ(N) belong to a bridge-node and let µ(x) < µ(vb). Then, there
do not exist S1, S2 subsets of V , with µ(v) ̸< µ(vb) for all v ∈ S2, such that:

µ(x) +
∑
u∈S1

µ(u) =
∑
v∈S2

µ(v) (6.2)

However, if we let S′
1 be the subset of S1 of nodes whose µ-vector is smaller

than vb. Then we would get:

µ(x) +
∑
v∈S′

1

µ(v) =
∑
u∈S2

µ(u)−
∑

w∈S1\S′
1

µ(w)

=

∑
u∈S2

Puvb
−

∑
w∈S1\S′

1

Pwvb

µ(vb) +
∑
u∈S2

µ′(u)−
∑

w∈S1\S′
1

µ′(w)

but in this case we do not have for the left side µ(x) +
∑

v∈S′
1
µ(v) < µ(vb),

thus we do not have
(∑

u∈S2
Puvb

−
∑

w∈S1\S′
1
Pwvb

)
= 0 for the right side.

Therefore, we cannot use this argument to state that Equation 6.2 has no
solution. Further research is needed to determine whether bridge-nodes are
uniquely determined by the µ-representation in non-binary orchard networks.
Even if they are, non-binary strongly reticulation-visible orchard networks are
not encoded by their µ-representation, as the networks in Figure 3.4 are strongly
reticulation-visible and serve as a counterexample.

48

Final Remarks

In this report we identified several classes of phylogenetic networks which are en-
coded by the µ-representation or a modified version thereof in the larger class of
semi-binary stack-free networks. This (modified) µ-representation can be found
in polynomial time for any X-DAG. It can be applied by researchers for com-
paring phylogenetic networks through the symmetric difference, as long as the
results of the algorithmic techniques used to generate the phylogenetic networks
are restricted to the class of semi-binary stack-free networks. Thus, allowing for
uncertainty in the order of hybridization or hybridizations in which a larger
number of species combine, but not sequential hybridizations with no evolu-
tion steps in-between. Therefore, if by application of different techniques or the
same technique to different sets of gene-sequences multiple results are generated
for the same set of species or taxa, these results can be compared in polyno-
mial time using the µ-representation as long as one is strongly reticulation-
visible and orchard or the modified µ-representation as long as one is orchard.
Where before, using the µ-representation was only possible if all results were
binary stack-free orchard networks or tree-child networks, which is a subclass
of strongly reticulation-visible orchard networks. Furthermore, adapting and
extending the proof, one can obtain a polynomial-time algorithm to construct
a unique semi-binary strongly reticulation-visible orchard network from a given
µ-representation (if it is consistent). Thus allowing for reconstruction of such a
network if the µ-representation can be generated from genetic data.

49

Bibliography
[1] Allan Bai, Péter L Erdős, Charles Semple, and Mike Steel. “Defining phy-

logenetic networks using ancestral profiles”.Mathematical Biosciences 332
(2021).

[2] David Baum. “Reading a phylogenetic tree: the meaning of monophyletic
groups”. Nature Education 1.1 (2008).

[3] Gabriel Cardona, Joan Carles Pons, Gerard Ribas, and Tomás Mart́ınez
Coronado. “Comparison of orchard networks using their extended
µ-representation”. arXiv preprint arXiv:2302.10015 (2023).

[4] Gabriel Cardona, Francesc Rosselló, and Gabriel Valiente. “Comparison
of tree-child phylogenetic networks”. IEEE/ACM Transactions on Com-
putational Biology and Bioinformatics 6.4 (2008), pp. 552–569.

[5] Gabriel Cardona, Francesc Rosselló, and Gabriel Valiente. “Tripartitions
do not always discriminate phylogenetic networks”. Mathematical Bio-
sciences 211.2 (2008), pp. 356–370.

[6] Surekha Challa and Nageswara Rao Reddy Neelapu. “Phylogenetic trees:
applications, construction, and assessment”. Essentials of Bioinformatics,
Volume III: In Silico Life Sciences: Agriculture (2019), pp. 167–192.

[7] Charles Darwin. On the origin of species: A facsimile of the first edition.
Harvard University Press, 1964.

[8] W Ford Doolittle. “Phylogenetic classification and the universal tree”.
Science 284.5423 (1999), pp. 2124–2128.

[9] Péter L Erdős, Charles Semple, and Mike Steel. “A class of phyloge-
netic networks reconstructable from ancestral profiles”. Mathematical bio-
sciences 313 (2019).

[10] Leo van Iersel, Remie Janssen, Mark Jones, and Yukihiro Murakami.
“Orchard networks are trees with additional horizontal arcs”. Bulletin
of Mathematical Biology 84.8 (2022).

[11] Yukihiro Murakami. “On Phylogenetic Encodings and Orchard Networks”.
PhD dissertation. Delft University of Technology, 2021.

[12] Rosanne Wallin, Leo Van Iersel, Steven Kelk, and Leen Stougie. “Applica-
bility of several rooted phylogenetic network algorithms for representing
the evolutionary history of SARS-CoV-2”. BMC ecology and evolution
21.1 (2021), pp. 1–14.

50

	Summary
	Acknowledgements
	Introduction
	Phylogenetic trees
	Phylogenetic networks
	Metrics and encodings
	The -representation for encoding phylogenetic networks, to apply the symmetric difference as a metric
	Contributions
	Overview of the thesis

	Preliminaries
	Rooted directed acyclic graphs on a leaf set X
	The -representation
	Phylogenetic networks
	The symmetric difference

	Encoding results for stack-free orchard networks by modified -representations
	Introduction
	Why -representations do not encode semi-binary stack-free orchard networks in the space of semi-binary stack-free phylogenetic networks
	Preliminary lemmas
	Reconstructing orchard networks
	The -distance as a metric
	Non-binary stack-free orchard networks

	Determining the in-degrees of reticulations from -representations
	Introduction
	Identifying the parents of a node
	Preliminary lemmas
	An equation relating the in-degrees of reticulations and -vectors
	In-degrees of stable reticulations

	Determining stable nodes from -representations
	Introduction
	Preliminary lemmas
	Strongly reticulation-visible networks

	Conclusions and Discussion
	Main results
	Discussion

	Bibliography

