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PathNet: Path-Selective Point Cloud Denoising
Zeyong Wei , Honghua Chen , Liangliang Nan , Jun Wang , Jing Qin , Senior Member, IEEE,

and Mingqiang Wei , Senior Member, IEEE

Abstract—Current point cloud denoising (PCD) models optimize
single networks, trying to make their parameters adaptive to each
point in a large pool of point clouds. Such a denoising network
paradigm neglects that different points are often corrupted by
different levels of noise and they may convey different geometric
structures. Thus, the intricacy of both noise and geometry poses
side effects including remnant noise, wrongly-smoothed edges,
and distorted shape after denoising. We propose PathNet, a path-
selective PCD paradigm based on reinforcement learning (RL).
Unlike existing efforts, PathNet enables dynamic selection of the
most appropriate denoising path for each point, best moving it onto
its underlying surface. We have two more contributions besides the
proposed framework of path-selective PCD for the first time. First,
to leverage geometry expertise and benefit from training data, we
propose a noise- and geometry-aware reward function to train the
routing agent in RL. Second, the routing agent and the denoising
network are trained jointly to avoid under- and over-smoothing.
Extensive experiments show promising improvements of PathNet
over its competitors, in terms of the effectiveness for removing
different levels of noise and preserving multi-scale surface geome-
tries. Furthermore, PathNet generalizes itself more smoothly to real
scans than cutting-edge models.

Index Terms—Geometry preservation, path selection, PathNet,
point cloud denoising, reinforcement learning.

I. INTRODUCTION

POINT clouds captured by 3D scanners or depth cameras
are often corrupted by noise, due to both the measurement

and reconstruction errors. Point cloud denoising (PCD) aims
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at recovering a clean point cloud to represent the underlying
surface from its noisy scan(s). As deep learning goes main-
stream in many research fields, impressive progress has been
made in learning-based PCD methods, e.g., PointCleanNet [1],
Pointfilter [2], and RePCD-Net [3]. However, these cutting-edge
models usually denoise all points by a single deep or iterative
model, neglecting the fact that different points are corrupted
with different levels of noise and possess varying geometric
structures. Such a PCD paradigm often leads to side effects in-
cluding remnant noise, wrongly-smoothed edges, and distorted
shape after denoising.

We raise an intriguing question: Is it a good way to process
all points of noisy point clouds with the same network? The
answer may be “NOT”. For example, large variations of surface
structures and noise intensities always exist in a complex and
noisy point cloud. It is easy to deduce a simple fact that, the points
that are very close to their ground-truth surface have already
conveyed an object’s structures well and they just need slight
denoising or even avoid such a denoising operation; the points
in sharp regions (i.e., the regions around edges and corners) need
to be elaborately denoised to preserve the sharp features; while
the points within piece-wisely smooth regions are inherently
less difficult to denoise and can be achieved in a cheaper way. In
general, sharp features of a point cloud are sensitive to denoise,
since they fall under the category of geometric details and are
considered as signals with high frequency [9]. Therefore, sharp
features are easily smoothed and removed along with the noise.
To this end, we need deeper networks to differentiate sharp
features and noise, while shallow networks are enough to deal
with the smooth (planar) regions.

If we adhere to the prevailing wisdom in PCD, a network with
a single denoising path is typically employed to denoise an entire
point cloud, without taking into account the potential presence of
complex noise patterns and various structural elements. Utilizing
a network with a single denoising path to process all points
within a noisy point cloud indiscriminately is conceptually less
effective. Consequently, this approach can lead to the presence
of noise residuals in the denoised point clouds of heavily-noised
datasets and result in geometric over-smoothing when applied
to low-noise point clouds.

A new PCD paradigm that can select a suitable network path
for each noisy point is promising to avoid the aforementioned
shortcomings. We show a typical CAD-like model that contains
planar regions, edges, and corners, as well as different levels
of noise in Fig. 1: In (b)-(d), the first column is the input data,
and the 2nd, 3 rd, and 4th columns are the denoising results of
the network with 1, 3, and 5 denoising blocks respectively. As
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Fig. 1. PathNet to handle a typical 3D model with sharp edges and increased levels of noise. The testing validates that different levels of noise and geometries
require a network with different depths. (b)-(d) are the denoising results of some representative regions, where the first column is the input fragment data visualized
from a specific view, and the 2nd, 3 rd, and 4th columns are the denoising results of the network with 1, 3, and 5 denoising blocks, respectively. The best results
but with the fewest blocks are framed by colored rectangles. The best results for 1, 3, and 5 denoising block networks are marked by the blue, yellow, and red
rectangles, respectively. Thus, an ‘optimal’ network path should be selected for each point based on its geometric characteristics and noise levels.

Fig. 2. Visual comparisons of the denoising results of our method (j) against state-of-the-art methods (c-i) including AD [4], TD [5], PF [2], GeoDualCNN [6],
Score [7], RePCD [3] and PSR [8]. The input data is corrupted by 1.0% Gaussian noise. Our method outperforms the others in terms of both noise removal and
feature preservation (see particularly the close-up views). The colorful points are colored by their normals calculated using the same algorithm. The discontinuity
in color indicates noise residuals (legs) that cause errors in the normals. The gray models are the meshes reconstructed by Poisson surface reconstruction.

observed, points within the blue rectangles are located in smooth
regions and thus can be easily denoised with one denoising
block. Increasing the network depth or the number of iterations
will increase computation and running time but without clear
improvements in denoising quality. In the yellow rectangles,
points with moderate noise or geometry features are recovered
to the ground-truth surface with three denoising blocks. The
points in the red rectangle located in geometry sharp regions or
contain intensive noise, require five denoising blocks or more
iterations to effectively remove the noise.

Inspired by image restoration [10], we formulate PCD as a
decision-making process by which an agent dynamically selects
a denoising path for each point. We call the path-selective PCD
network PathNet. To the best of our knowledge, we are the first
to consider PCD as a reinforcement learning problem. In our
work, the agent is formulated in a reinforcement learning (RL)
framework. It learns to select the suitable path by analyzing
the state of a denoised point in each step driven by a reward that
improves the quality of the input point cloud while improving ef-
ficiency. Extensive experiments show that our approach achieves
state-of-the-art performance compared to the previous methods.

Our main contributions are three-fold:
• We propose PathNet, a novel point cloud denoising network

based on the path-selective strategy. PathNet selects the most
suitable path for denoising each point.

• We provide the first implementation of PathNet based on
reinforcement learning, which jointly trains the PCD network
and agent for path selection. PathNet shows promising im-
provements over its competitors in terms of effectiveness and
efficiency.
• We introduce a noise- and geometry-aware reward for PCD.

This reward is devised to gain more attention to the performance
for geometry feature regions and challenging scenarios.

As demonstrated in Fig. 2, the proposed PathNet exhibits
better performance over both the traditional and learning-based
methods in terms of normal rendering and Poisson surface
reconstruction. More visual and numerical results can be found
in Section IV.

II. RELATED WORK

In this section, we review previous research from
optimization-based methods to recent prevalent learning-based
methods for PCD, followed by deep reinforcement learning.

A. Optimization-Based Methods

Optimization-based methods that formulate PCD as an op-
timization problem can be classified into four categories, i.e.,
moving least-squares (MLS)-based, locally optimal projection
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(LOP)-based, sparsity-based, nonlocal-based, and graph-based
methods.

MLS-based methods approximate a smooth surface from the
input point cloud and achieve denoised results by projecting
the noisy point cloud onto the estimated underlying surface [4],
[11], [12], [13], [14], [15], [16]. Alexa et al. [12] define a
smooth manifold surface from input points [11] and address
PCD based on MLS [17]. Guennebaud et al. [13] define algebraic
point set surfaces using local MLS fitting of algebraic spheres.
Meanwhile, Cazals et al. [14] propose jet fitting forn-order poly-
nomial surfaces to calculate normals and curvatures. Fleishman
et al. [15] and Oztireli et al. [16] extend [12] to preserve features
and introduce robust statistics to reduce the sensitivity to outliers.
Xu et al. [4] introduce the anisotropic denoising (AD) technique
based on a dense aggregation of MLS estimates characterized by
asymmetric directional neighborhoods. This approach can adapt
to edges and discontinuities using much larger supports than
classical MLS based on symmetric weights. However, smooth
surfaces reconstructed by these methods are always prone to
over-smooth features together with noise.

LOP-based methods represent the underlying surface with a
set of points instead of implicit surface parameters and enforce
a uniform distribution of denoised points [18]. The original
LOP [18] projects noisy points onto the underlying surface while
employing a repulsion term to maintain the point uniformity.
However, it is not suitable for point clouds with uneven density
distribution and sharp features. Therefore, some improved meth-
ods are proposed, such as WLOP [19], EAR [20], FLOP [21],
CLOP [22], GPF [23] and TUPD [24]. However, these methods
require tedious parameter tuning and are sensitive to outliers.

Sparsity-based methods are based on the theory of sparse
representations [25]. The theory assumes that common objects
can be defined as piece-wise smooth surfaces with sparse fea-
tures. Based on it, Avron et al. [26] and Sun et al. [27] adopt
l1 regularization and l0 minimization respectively, to deal with
noisy point clouds. They both retain sharp features well but
suffer from undesired staircase effects in smoothly curved ar-
eas [28]. Mattei et al. [29] propose Moving Robust Principal
Component Analysis (MRPCA). This approach models the point
cloud as multiple overlapping 2D subspaces and computes esti-
mated point locations through local average estimation. Digne et
al. [30] define the local probing field (LPF) as a local frame and
employ dictionary learning for sparse shape description. In our
tests, when the noise is large, sparsity-based methods may lead
to inaccurate denoising results due to poor normal estimation.

Nonlocal-based methods are based on the geometric statistics
that many surface patches sharing similar geometric properties
always exist within a 3D model. This kind of method exploits the
non-local similarities among surface patches to collaboratively
filter a noisy point cloud [31], [32], [33], [34], [35], [36]. The
main challenge of these methods is the regular representation of
irregular local point cloud structures. Lu et al. [33] use the ma-
trix organized from the non-local isotropic neighbors. Different
from [33], Chen et al. [34] build a height-map patch for each
point and pack similar patches into a height-map patch-group
matrix, which is further used to denoise the target local structure.
Inspired by [33] and [34], Zhou et al. [35] capture non-local

similarities by normal height projection. They project the neigh-
boring points of each point onto its normal to build a projective
height vector. In general, non-local-based methods usually work
better than other competitors, but with two drawbacks. First, the
lack of similar patches within the point cloud may degrade their
performance. Second, these methods usually suffer from high
computational complexity.

Graph-based methods first construct a graph for a point
cloud and then filter the graph for PCD [37], [38], [39], [40],
[41], [42], [43], [44], [45]. Schoenenberger et al. [37] construct
a k-NN graph from the points and denoise the graph by a
convex optimization method. Gao et al. [38] treat the distance of
each point to the approximated surface as the graph signal and
remove noise through convex optimization with a graph-signal
smoothness prior. Instead of constructing a graph in euclidean
space, Dinesh et al. [43] present a reweighted graph Laplacian
regularizer as the signal prior for point clouds, offering two char-
acteristics: rotation invariance and the enhancement of piecewise
smoothness. Zeng et al. [42] and represent point clouds by a
low-dimensional manifold model and denoise the patches by
minimizing the manifold dimension. Hu et al. [45] represent
dynamic point clouds on spatial-temporal graphs and exploit
the temporal consistency via a manifold-to-manifold distance.
Graph-based methods could achieve satisfactory performance
on the point clouds with low-intensity noise. However, heavy
noise may affect the stability of graph construction and denoising
performance [46].

B. Learning-Based PCD Methods

Learning-based PCD methods can be categorized into four
categories including point-based, normal-based, multi-task, and
unsupervised methods.

Point-Based Methods: Most PCD methods use neural net-
works to predict the displacement (or additive noise) of each
noisy point and restore each point by adding the displacement
(or subtracting the additive noise) [3], [7], [47], [48], [49], [50],
[51], [52], [53]. Huang et al. [47] present a non-local part-aware
PCD method to explore semantically-relevant features in point
clouds, which considers the inherent non-local self-similarity in
3D objects and scenes. Pistilli et al. [48] present GPD based on
graph convolutional networks that enhance the robustness of the
neural denoiser. Besides, Luo et al. [49] note that displacement
prediction methods typically suffer from two types of artifacts:
shrinkage and outliers, which are due to inaccurate estimation of
noisy displacements. As a result, they propose to learn the under-
lying manifold (surface) of a noisy point cloud for reconstruc-
tion in a downsample-upsample architecture. Later, they further
present a score-based method that models a noisy point cloud as
samples from a noise-convolved distribution [7]. This method
estimates the score of the distribution and leverages the score
to denoise point clouds via gradient ascent. The extended work
Point Set Resampling (PSR) [8] presents a continuous and global
gradient field model and reconstructs degraded point clouds
using gradient ascent with Graph Laplacian Regularizer. Mao
et al. [52] propose PD-Flow to uncover latent representations
of noise-free data at higher dimensions by utilizing normalizing
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flows, and then obtain the filtered displacements. Chen et al. [3]
present a feature-aware recurrent network (RePCD), which uses
multi-scale features and trains feature-aware loss iteratively to
predict multi-scale geometric details. This method iterates to
recover better geometric features at the expense of efficiency.
Considering that RePCD ignores the iterative reduction of noise
and still requires iteration during testing, Edirimuni et al. [53]
propose an iterative point cloud filtering network (IterativePFN)
to explicitly model the iterative filtering process internally,
which corresponds to a testing iteration of other methods.
Nevertheless, because 3D coordinates typically provide limited
information, point-based denoising methods often struggle to
preserve sharp features effectively. To enhance denoising results,
it can be advantageous to incorporate joint learning with other
closely related tasks, such as normal estimation.

Normal-Based Methods: The first-order normal variations can
better describe surface variations than point position variations.
Therefore, normal-based point cloud denoising approaches also
attacked many researchers’ attention [2], [6], [54], [55], [56],
[57], [58]. This kind of method first filters the point normals,
and then the point positions are then adjusted to well match
the filtered normals. [56] projects 3D patches to regular 2D
height maps, then uses a CNN architecture to iteratively estimate
normals and update point positions based on the estimated
normals. PF [2] integrates prior normal information into training
loss to preserve sharp features. GeoDualCNN [6] leverages a
dual convolutional neural network architecture with geometry
support to effectively filter point cloud normals and shows the
potential performance. However, its end-to-end applicability
is limited by the necessity to compute an extra homogeneous
neighborhood for each point.

Multi-Task Methods: Some PCD methods combine denoising
with other tasks, such as upsampling, edge extraction, and outlier
removing [1], [59], [60], [61], [62]. Yu et al. [59] introduce
an edge-aware point cloud consolidation network (EC-Net)
that can generate high-density edge-aware denoising results.
Zhou et al. [60] propose DUP-Net that combines denoising
and upsampling together, which can simultaneously enhance
point resolutions and remove outliers in an adversarial manner.
Rakotosaona et al. [1] design a two-stage network architecture,
PointCleanNet (PCN), that first removes outliers followed by
denoising the central points of local patches. PCDNF [61] jointly
learns the tasks of denoising and filtering normals of point
clouds. However, it is subject to constraints imposed by the
quality of initial normal estimations and the sparsity of the point
cloud.

Unsupervised Methods: Unsupervised methods strive to de-
noise point clouds directly without the supervision of clean point
clouds since it is difficult to acquire ground-truth data in various
contexts. Hermosilla et al. [5] propose the first unsupervised
PCD method, called Total Denoising (TD), based on the as-
sumption that points with denser surroundings are closer to the
underlying surface. However, due to the lack of clear feature in-
formation during the training phase, this method cannot preserve
geometric features. To explore geometric structures of point
clouds, Chen et al. [63] propose a graph-based auto-encoder
with folding, graph-topology inference, and graph filtering to

achieve compact representations of unorganized 3D point clouds
in an unsupervised manner. The decoder leverages a learnable
graph topology to push the codeword to preserve representative
features.

In this work, we propose a new framework that distinguishes
from the aforementioned methods. We formulate PCD as a
decision-making process that dynamically selects a denoising
path for each point. Our method is shown to preserve features
while removing noise and achieves better denoising perfor-
mance.

C. Deep Reinforcement Learning

Reinforcement learning is a powerful tool for training an
agent to make decisions and maximize accumulative rewards.
Following Mnih et al. [64], several deep reinforcement learning
networks have been successfully applied to 3D point cloud
processing tasks such as semantic parsing [65], completion [66],
registration [67], classification [68], and segmentation [69],
[70]. In this work, we investigate path selection for point cloud
denoising by proposing a reinforcement learning framework.
This is the first time that deep reinforcement learning is applied
to PCD.

III. METHOD

A. Overview

Given a noisy point cloud P̂, PCD is to recover a clean point
cloud P from P̂ to truly convey the geometry of a 3D object.
We formulate a noisy point cloud as

P̂ = P+ ε, (1)

where ε is the additive noise between P̂ and P. Existing deep
learning-based methods use the same model to remove ε for all
points indiscriminately. Since εmay vary largely in a point cloud
and the point cloud possesses multi-scale geometric features, the
same model poorly gives attention to different scales of noise
and geometric features. Thus, the side-effects are inevitably
introduced including remnant noise, wrongly-smoothed edges,
and distorted shape after denoising. Differently, we treat PCD
as a decision-making process and propose PathNet to adaptively
select the most suitable denoising path for each point based
on the extracted noise features and geometric features. Fig. 3
demonstrates the network architecture of PathNet.

B. Network Architecture

Based on the network architecture in Fig. 3, we propose
PathNet that offers a dynamic network for the denoising task
without knowing the noise prior. PathNet consists of three parts:
an encoder, T denoising blocks, and a decoder. The encoder
extracts patch features as input to the first denoising block, and
the decoder predicts a displacement vector as the noise for each
point. In the t-th denoising block, there is a shared sub-network
f t
share, a denoising path sub-network, and a routing agent f t

ra.
The denoising path sub-network contains M selectable denois-
ing paths f t

0, f
t
1, . . ., f

t
M−1, and the routing agent provides a

probabilistic distribution of plausible paths for selection.
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Fig. 3. Overview of PathNet. Following [10] for image restoration, PathNet consists of an encoder and a decoder at the start- and end-point, and T denoising
blocks between the encoder and decoder. The encoder extracts patch features as input to the first denoising block, and the decoder predicts a displacement vector
as the noise for each point. In each denoising block, there is a routing agent for generating a probabilistic distribution of plausible paths for selection. The routing
agent and the denoising network are jointly trained for path-selective denoising based on reinforcement learning. The reward encourages the routing agent to focus
more on regions with rich geometric features.

Fig. 4. The patch-graph module consists of the first-layer graphs G1 built at
all the neighbors and the second-layer graph G2. In the patch P̂ , the black dots
denote the neighbors p̂j of the red point p̂. p̂ is the point to be denoised and all
the points in the patch serve to denoise p̂. The first-layer graphs connect each
neighbor point p̂j with its localK-Nearest neighbors (in blue). The second-layer
graph is a unique graph with its edges (in red) connecting p̂ with all its neighbors
p̂j ∈ P̂ .

Encoder: We first normalize P̂ into a unit sphere centered
at the origin and then build a local patch P̂ for each input
point p̂ ∈ P̂ to extract features. Specifically, we employ a range
query to generate patches with a specified radius r. To keep
all patches with the same number of points, we either pad a
patch (if it has too few points) with the queried point p̂ or
randomly downsample the patch (if it has too many points)
to the desired number of points. For rotation invariance, we
follow PF [2] to align these patches via the PCA technique. To
enhance the feature representation, we employ two-layer graph
convolutions [71], named the patch-graph module (see Fig. 4), to
learn more local contextual information for robust noise residual
estimation. Different from the general graph convolution, in the
second layer, only the global graph for the patch center point
(red point in Fig. 4) is constructed. The patch-graph module is
formulated as

F0 = MLP (cat (max (MLP(G1)) ,MLP(G2))) , (2)

where G1 and G2 are the first-layer graphs and second-layer
graph, respectively; MLP(·) denotes a fully connected network;
cat(·, ·) is the concatenation operation; max(·) means the max

pooling operation. Empirically, the patch point number is set to
128, and the patch radius r defaults to 0.05 times the diagonal
length of the bounding box of the point cloud. The number of
points in G1 is set to 10.

Denoising Block: The denoising block aims to offer different
denoising paths of complexity for each point. We design the
denoising block as a structure containing parallel paths, as
shown in Fig. 3. Specifically, the t-th denoising block consists
of a shared sub-network f t

share, a denoising path sub-network
containing M selectable denoising paths, and a routing agent
f t
ra. We formulate the t-th denoising block f t as

Ft = f t
at

(
f t
share(F

t−1)
)
, 1 ≤ t ≤ T, (3)

where Ft−1 and Ft are the input features and output features
of the t-th denoising block f t. The sub-network f t

share and fat

are both the residual MLP, and f t
at denotes the selected path

from the denoising path sub-network. at is the path selection
action provided by the routing agent f t

ra. The denoising path
sub-network consists of two or more different paths: a bypass
path for the simple tasks (at is 0) and the others for solving the
complex tasks (at is 1, 2, . . .,M − 1). We empirically set M to
2.

Decoder: Once we obtain the output features F t of the
t-th denoising block (1 ≤ t ≤ T ), the decoder regresses the
displacement vectors εt by applying max pooling and two fully-
connected layers. The network then outputs the denoised point
cloud P t by adding the regressed displacement vectors εt to the
original point cloud P̂ .

Routing Agent: To achieve an adaptive dynamic network, we
attempt to employ a routing network. It learns to select the
denoising paths. Although the routing network can be trained
by the denoising loss, it does not achieve satisfactory denoising
results (see Section IV-D and IV-E). Thus, we adopt a routing
agent trained by reinforcement learning strategy to select suit-
able denoising paths for each point.

We first clarify some terminologies like state, action, and
reward, followed by the details of the network. Given the input
state st, the routing agent f t

ra(·) outputs the policy πt(a|st) in
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t-th denoising block. The procedure is expressed as

πt(a|st) = f t
ra(s

t), (4)

where st consists of the patch features and the hidden state of
Long Short-Term Memory (LSTM), and it contains information
that could be observed by the agent. πt(a|st) is the probabilistic
distribution of the action space (i.e., all possible actions that
could be selected by the routing agent). During training, the
routing agent samples at from πt(a|st) for more exploration. In
the test, the routing agent selects an action corresponding to the
highest probability at = argmaxa π

t(a|st) for a higher reward.
The agent obtains the reward rt after selecting the action at.

The reward is an evaluation of the selected action and drives the
training of the agent. The agent aims to maximize the cumulative
rewardR =

∑T
i=1 r

t for all selected actions. Thus, the reward is
critical for the agent. To select proper denoising paths for points
in different regions, we employ a noise- and geometry-aware
reward to guide the agent to pay more attention to noisy and
feature-rich regions. The detailed reward is explained in Section
III-C.

Agent Structure: The routing agent is a connection of the
following modules (see Fig. 3): an MLP followed by a max
pooling layer, an LSTM module, a fully-connected (FC) layer,
and an activation function (Softmax). LSTM is used to capture
the correlations of path selection in different dynamic denoising
blocks from the contextual information of historical features and
actions. Since the routing agent is non-differentiable, we cast the
sequential path decision as a Markov Decision Process (MDP)
and employ reinforcement learning to train the agent.

Finally, our denoising model is formulated as⎧⎪⎪⎨
⎪⎪⎩

F0 = E(P̂)
Ft = f t(Ft−1), 1 ≤ t ≤ T
εt = D(Ft)

Pt = P̂+ εt

, (5)

where E(·) and D(·) are the encoder and decoder, respectively.
Ft indicates the output features from the t-th denoising block
f t. εt and Pt are the displacement vectors regressed from Ft

and denoising results, respectively. T is the number of denoising
blocks, i.e., the maximum length of the denoising path.

C. Loss and Reward

We propose a joint loss function to train PathNet. The joint
loss consists of two components, i.e., a denoising loss and a
repulsion loss. Moreover, a noise- and geometry-aware reward
is designed to train the routing agent using the REINFORCE
algorithm [72].

Denoising Loss: To encourage the denoised points to be as
close as possible to the ground-truth surface, we calculate the
denoising loss as the squared distance between the denoised
point and its nearest neighbor in the ground-truth [1]. The
denoising loss function of pt is formulated as

Lt
d = ‖pt − pn‖22, (6)

where pt ∈ Pt is the denoising result of p̂ in the t-th denoising
block. pn = NN(pt,P), with NN(pt,P) denoting the nearest

point to pt inP .P refers to the local ground-truth patch centered
at the noisy point p̂ in the ground-truth point cloud. The radius
of P is the same as that of the noisy input patch P̂ .

Repulsion Loss: Minimizing the loss defined in (6) helps
regress noisy points toward the underlying surface. However,
it often leads to the side effect, i.e., the denoised points are
clustered together and distributed non-uniformly, especially
when multiple denoised points share the same nearest point
in the ground truth. To mitigate the side effect, we introduce
a repulsion loss [1]. This repulsion loss measures the squared
distance between the denoised point and its farthest point in the
local ground-truth patch. The loss function is formulated as

Lt
r = ‖pt − pf‖22, (7)

where pf = FN(pt,P), and FN(pt,P) is the farthest point
to pt in the local ground-truth patch P . Note that the farthest
point search needs to be updated in every training epoch. By
minimizing Eq. 7, we ensure that the denoised point pt remains
centered in the local ground-truth patch, thereby promoting a
regular distribution of denoised points and preventing excessive
clustering.

Overall, the joint loss function L is formulated as

L =
1

N

∑
p̂∈P̂

Lp̂,

Lp̂ =
1

T
LT
b + γ

T−1∑
i=1

Lt
b,

Lt
b = (1− α)Lt

d + αLt
r, (8)

where Lp̂ is the final loss of noisy point p̂. N is the number
of points in noisy point cloud P̂. T is the number of denoising
blocks. Lt

b is the joint loss that is the weighted average of Lt
d

and Lt
r. α is a trade-off factor to balance the importance of each

loss, and we empirically set α to 0.01. γ is set to 0.1 to control
the intermediate denoising blocks.

Reward: It is challenging to remove noise for points with com-
plex geometric patterns and/or high levels of noise. The reward
function is crafted to steer the routing agent towards choosing
deeper networks with a more robust denoising capability for
points with more complex geometry and higher levels of noise.
When designing the reward function, we devise a penalty com-
ponent to avoid choosing complex paths for points that are easy
to denoise, thereby reducing the waste of computing resources.
The reward function counteracts this penalty by obtaining a
higher positive reward for noise removal in regions characterized
by higher levels of noise and more complex geometric features.
It leads to the selection of complex paths for points that are
difficult to denoise.

Based on the above design principle, and inspired by the image
restoration methods [10], [73], to encourage the routing agent
to select a proper denoising path for different points that have
varying noise and shape features, we propose the noise- and
geometry-aware reward rt at the t-th denoising block formulated
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as

rt =

{−pat, 1 ≤ t ≤ T − 1
−pat − (v + wn + λwg)(L

T
b − L0

b), t = T,
(9)

where at is the action decided by the routing agent (0 or 1). p is a
constant, which denotes the penalty for choosing a complex path.
L0
b is the loss between the original noisy point and the ground-

truth point. LT
b is the loss between the final denoising result and

the ground-truth point.−(LT
b − L0

b) is a general positive reward.

v is the fixed base weight. wn = L
T/
b max(LT

b ) is the noise-
aware weight, in which max(LT

b ) represents the maximum loss
value of all points in the training dataset. wg = e−� l

σ � is the
geometry-aware weight, in which l is the geometric feature level
classified by a feature extraction algorithm (see from Section
IV-A) and σ is the scaling parameter of the geometric feature
level. The lower the level l, the sharper the geometric features.
λ is a trade-off factor to balance the noise weight and geometry-
aware weight, and we empirically set λ to 0.1. v + wn + λwg

can increase the positive reward for noise removal in regions
characterized by high levels of noise and geometric features.

IV. EXPERIMENTS

A. Datasets and Implementation Details

Training Dataset: We select 32 mesh models from the training
dataset of PU-GAN [74], with varying complexities classified
into three categories: Simple (10 models), Medium (10 models),
and Complex (12 models). For each object, we uniformly sample
20 K points from its surface mesh as the ground-truth point
cloud. To create the noisy input, each point cloud is added
with Gaussian noise with standard deviations of 0.0%, 0.5%,
1.0%, and 1.5% of the diagonal length of the bounding box of
the object. For each point cloud, we generate 500 patches for
training. Hence, there are in total 32× 4× 500 = 64K training
patches.

Testing dataset: We construct four datasets for the experi-
ments, including two synthetic datasets (called Synth-A and
Synth-B) and two real-world datasets (called Real-A and Real-
B). In the following, we provide a detailed description of these
datasets.

Synth-A: We employ all mesh models from the test dataset
of PU-GAN [74], which contains 27 mesh models. For each
testing mesh, we sample 10 K, 20 K, and 50 K points, and each
point cloud is added by Gaussian noise with standard deviations
of 0.5%, 1.0%, and 1.5% of the diagonal length of the object
bounding box. This dataset is intended to evaluate the robustness
of the PCD methods against varying point densities, noise levels,
and geometric complexity of the models.

Synth-B: Through this dataset, we aim to investigate the
effectiveness of our methodology under various scenarios, such
as different noise intensities, fluctuating densities, and distinct
noise types. The models within this dataset are the same as those
in Synth-A, but they are further enhanced and categorized into
four sub-datasets. In the first sub-dataset, each point cloud is
divided into left and right parts, containing 5 K and 25 K points,
respectively. In the second sub-dataset, the left and right parts of

Fig. 5. Geometric feature levels (0-5) of each point in the training dataset. The
lower geometric feature levels (in blue) represent sharper regions.

each point cloud have noise levels of 0.5% and 1%, respectively.
In the third sub-dataset, the noise level in each point cloud
increases from 0.5% to 2% from left to right. In the fourth sub-
dataset, the left and right parts of each point cloud contain 1%
Gaussian noise and 1% impulse noise, respectively. Analyzing
these sub-datasets allows us to assess the effectiveness of our
proposed model under a variety of conditions, which will help
validate the model’s robustness and flexibility.

Real-A: It comprises all real-scanned data from [75] to val-
idate the generalization capability of denoising methods. It is
divided into three sub-datasets, containing point clouds acquired
via different scanning methods.1 Specifically, the first two sub-
datasets are captured from single views by Kinect v1 and Kinect
v2, respectively, with each containing 144 point clouds, while
the third sub-dataset includes 7 point clouds that are obtained
by fusing scans captured by Kinect v1 from multiple views. For
all models in this dataset, their ground truths are obtained from
high-precision 3D mesh models of the scanned objects.

Real-B: It consists of 5 real-scanned LiDAR point clouds,
among which 4 LiDAR point clouds were collected from [76],
and an entire airplane point cloud scanned by ourselves. The
models in this dataset have no ground truths and are exclusively
used for visual evaluation.

Geometric Feature Labeling: Geometric feature extraction is
a well-studied topic in the field of geometric processing. To
better restore geometric features, we fuse features and rewards
to train the agent. Inspired by the selective geometry texture
filtering [9], we calculate the geometric feature level as the label
of each ground-truth point cloud and the corresponding noisy
point cloud (i.e., 0-5, the values of l in Eq. 9). Fig. 5 demonstrates
the visualization of the geometric feature levels in a continuous
scalar field l of our training dataset. Lower geometric feature
levels represent sharper geometric regions. Notably, in Eq. 9,
instead of converting the geometric feature level l directly into
weights, we balance the proportion of each level by merging
the levels with low proportion but high similarity. Specifically,
we merge 6 levels into 3 levels by the scaling parameter σ in
Eq. 9. Furthermore, it will ignore geometric features in smooth
regions if we directly classify all points into 3 levels as shown
in Fig. 6. In Fig. 6, (b) classifies all points into 3 levels directly,
while (c) classifies all points into 6 levels. (d) merges 6 levels
of (c) into 3 levels to balance the proportion of each level. It
is obvious that (d) gives a higher level to the geometric feature

1The noise characteristics of Kinect v1 and v2 are different because of their
different scanning principles: Kinect v1 is based on structured light, and Kinect
v2 is based on time-of-flight.
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Fig. 6. Geometric feature levels (3 levels and 6 levels) of three 3 point clouds
in the training dataset. (b) classifies all points into 3 levels directly, while (c)
classifies all points into 6 levels. (d) merges 6 levels into 3 levels to balance
the proportion of each level by merging the levels with low proportion but high
similarity. The lower geometric feature levels (in blue) represent sharper regions.
Compared with (b), (d) gives a higher level to the geometric feature area in the
smooth region compared with (b), which avoids geometric smoothing in the
smooth region while denoising.

area in the smooth region compared with (b), which makes our
network preserve geometric features better while denoising.

Comparison with state of the art: To evaluate the denoising
and geometric feature preservation capabilities of our method,
we compare it with the state-of-the-art point cloud denoising
methods, including WLOP [19], PCN [1], GPD [48], TD [5],
PF [2], Score [7], RePCD [3], AD [4], GeoDualCNN [6],
PCDNF [61], and PSR [8]. Among these methods, WLOP and
AD are traditional denoising methods, TD is an unsupervised
method, and the other methods are learning-based denoising
methods. To ensure a fair comparison, we re-train the competing
models using their publicly released source code on our dataset.
Particularly, for PSR [8], we strictly adhere to its training strat-
egy, supplying 10 K, 20 K, and 50 K noise-free Poisson-sampled
data points and perturbing points with Gaussian noise with the
standard deviation from 0.5% to 3%. Also, following the original
work and its default implementation, we train PSR on patches
and validate it on complete point clouds to select the optimal
model.

Network Training: We divide the whole training process into
two stages. In the first stage, we train the denoising block with
the joint loss function L (in (8)) to initialize the denoising paths,
in which each path is randomly selected by the routing agent.
In the second stage, we jointly train the denoising block and
routing agent and alternately optimize the parameters of the
denoising block and the routing agent. The training process of
the denoising block is similar to that in the first stage, with one
difference that γ in Eq. 8 is set as 0 to de-control the intermediate
denoising blocks and enhance the adaptiveness of the network.
The routing agent is trained with the reward rt in Eq. 9 by
the REINFORCE algorithm [72]. Also, we reveal the default
parameter settings of our network, i.e., the block number T = 6,
the scale parameter σ = 2.3, the penalty value p = 0.002, and
max(Lt

b) = 0.4.

We implement our PathNet in Pytorch and test it on a PC with
an Intel Core I7-8700 K CPU (3.70 GHz, 16 GB memory) and a
GeForce GTX 1080 GPU (8 GB memory, CUDA 10.0). PathNet
is trained with the Adam optimizer using a learning rate of 1e−6.
We train PathNet with a batch size of 64, and the epoch number
of the first and second stages is set to 150 and 100, respectively.

Patch-Based and Whole Point Cloud Inference Schemes: Our
method involves the procedure of denoising each point in a point
cloud based on its local patch. When handling the point cloud of
an entire scene, we search for a local patch around each point of
interest. Denoising is performed independently for each patch,
allowing to efficiently process multiple patches in batches, and
the denoising result of the entire scene is naturally obtained after
denoising all the patches. Importantly, whether the test data is
complete or not, the denoising results remain consistent, since
the local context remains unchanged for both an individual patch
and the entire model.

B. Quantitative Comparisons

To quantitatively compare our PathNet against its competitors,
we follow existing works and use the Chamfer Distance (CD)
and Mean Square Error (MSE) between the denoised point
clouds and their ground-truth counterparts as the evaluation
metrics. Lower CD and MSE values indicate better denoising
performance. CD and MSE are formulated as

CD(P,P) =
1

N

∑
pi∈P

min
pj∈P

||pi − pj ||22

+
1

M

∑
pj∈P

min
pi∈P

||pj − pi||22, (10)

MSE(P,P) =
1

kN

∑
pi∈P

∑
pj∈K(pi)

||pi − pj ||2, (11)

where P is the denoised result of the noisy input P̂. P is the
ground truth. N and M are the point numbers of P and P,
respectively. K(pi) is the k-nearest neighbors of pi in P. k is set
to 10. The units of CD and MSE are 10−5 and 10−3, respectively.

Table I presents the comparison in terms of CD and MSE, eval-
uated on the synthetic point clouds with varying noise levels in
Synth-A and real-scanned Kinect data in Real-A. The compar-
ison demonstrates that our method achieves state-of-the-art re-
sults on both the synthetic data and the Kinect data. This provides
evidence that our methodology exhibits powerful denoising and
generalization performance when applied to real-scanned data.

Our method may exhibit slightly inferior performance com-
pared to several methods in the case of 0.5% noise. There are
two main reasons: i) The path selection mechanism guides points
with varying levels of noise to choose different paths, with the
aim of achieving higher overall accuracy. PathNet is based on
the idea that selecting longer paths for points with higher noise
levels can yield greater rewards. Consequently, points with lower
noise levels are compelled to opt for shorter paths, which may,
unfortunately, reduce their denoising accuracy. This hypothesis
can be validated by comparing the results of variants V 3 and V 6
in Section IV-D. ii) The CD metric computes bidirectional shape
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TABLE I
QUANTITATIVE COMPARISON ON SYNTH-A AND REAL-A

similarity, while MSE is unidirectional. The method, Score [7],
computes CD values based on uniformly sampled denoising
results, which can result in higher CD values compared to our
approach. The method, AD [4], outperforms our approach in
terms of MSE but lags behind in the CD metric. This discrepancy
can be attributed to AD producing clustered points, resulting in
a lower MSE value but a higher CD value. To further promote
performance on 0.5% noise, it could be advantageous to explore
increasing the complexity of the chosen paths and incorporating
uniform resampling techniques for the final results.

C. Visual Comparisons

Apart from the quantitative comparisons, we conduct vi-
sual comparisons on both the synthetic and real-scanned point
clouds. Fig. 7 shows the results of real-scanned LiDAR data
in Real-B from [76]. Fig. 8 presents the denoised results of
three point clouds from the fusion sub-dataset and Kinect v1
sub-dataset in Real-A, respectively. Fig. 9 shows the denoising
results of a real-scanned airplane with 246 K points in Real-B,
which is scanned by a Leica RTC360. Fig. 10 demonstrates
the results of an animal model and a CAD model with rich or
sharp features in Synth-A, respectively. The gray models are
the meshes reconstructed by the Poisson surface reconstruction
algorithm.

In general, GeoDualCNN [6] is prone to retain excessive
noise. AD [4], TD [5], PF [2], Score [7], and PSR [8] tend to
over-smooth the sharp geometric features of the objects. In con-
trast, with the path routing agent and the noise- and geometry-
aware reward, our method offers adaptive denoising paths for

the points in varying noisy and geometric regions, thereby
robustly removing heavy noise and restoring finer geometric
details.

D. Ablation Study

We analyze the contribution of the major modules of our
method by comparing its several variants.
� V 1 “no patch-graph”: the patch-graph module is replaced

by MLPs to extract features. All denoising blocks choose
the bypass path without training the routing agent.

� V 2 “all path 0”: all denoising blocks choose the bypass
path without training the routing agent.

� V 3 “all path 1”: all denoising blocks choose the complex
path without training the routing agent.

� V 4 “one stage without RL”: all denoising blocks select
paths by a routing network. The routing network is trained
with the denoising blocks during the first training stage si-
multaneously. No second stage and reinforcement learning
are available.

� V 5 “no RL”: all denoising blocks select paths by a routing
network. The routing network is trained with the denoising
blocks during the second training stage simultaneously. No
reinforcement learning is available.

� V 7 “no aware”: in the second training stage, we train
the routing agent without the noise- and geometry-aware
reward by setting the two weights to 0.

� V 8 “no geometry-aware”: in the second training stage, we
train the path routing agent without the geometry-aware
reward by setting the geometry-aware weight to 0.
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Fig. 7. Denoising real-scanned LiDAR data in Real-B. PathNet removes heavy noise and preserves geometry better (see the magnified parts) than its competitors.

Fig. 8. Denoising real-scanned Kinect data in Real-A. The models in the first two rows are obtained by fusing scans from multiple views, and the one in the
bottom row is a single-view point cloud. PathNet outperforms the others in terms of both noise removal and feature preservation. The points are colored by their
normals calculated using the same algorithm.

� “Full”: our complete scheme.
� “ES-1”: following [77], we employ ensemble learning to

train a variant based on three frozen pre-trained denoising
sub-networks. These sub-networks are trained based on
different loss functions, including the L2 losses ( (6) and
7), noise-aware L2 loss, and geometry-aware L2 loss.

� “ES-2”: an ensemble variant is trained concurrently with
three denoising sub-networks.

We perform quantitative comparisons between these vari-
ants on Synth-A, and the denoising results are summarized in
Table II. By comparing the performance of these variants, it is
obvious that each module plays a positive role in denoising.

Particularly, comparing the variant V 1 “no patch-graph” and
V 2 “all path 0”, the patch-graph module improves the denoising
results. The reason is that the patch-graph module extracts the
local geometric features of each point. The module enables
learning the correlation between the point p̂ and its neighbor
points in the patch P̂ , and more consistent local structure
information for robust residual estimation. Besides, compared to
the variant V 2 “all path 0”, the variant V 3 “all path 1” improves
denoising accuracy using a deeper network by selecting all
complex paths. In the variants V 4 “one stage without RL”, V 5
“no RL”, and V 6 “no aware”, the dynamic denoising path is
more suitable for the denoising tasks than a fixed network. Note
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Fig. 9. Visualization of the real-scanned airplane data (246 K points) in Real-B and its denoising results. The airplane is scanned from multiple stations by a
Leica RTC360. PathNet removes noise and preserves geometry better (see the magnified parts) than three state-of-the-art methods, namely PF [2], Score [7], and
PSR [8].

Fig. 10. Denoising synthetic point clouds in Synth-A. The noisy models are an animal and a CAD model corrupted by 1.0% and 1.5%Gaussian noise, respectively.
PathNet outperforms the others in terms of both noise removal and feature preservation (see the close-up views). The colorful points are colored by their normals.
The discontinuity in color indicates noise residuals (horse legs) that cause errors in the normals. The gray models are the meshes reconstructed by Poisson surface
reconstruction.
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TABLE II
ABLATIVE RESULTS OF THE VARIANTS ON SYNTH-A

that, the CD accuracy of 0.5% noise is not effectively improved,
which means that the deeper network of V 3 “all path 1” has ex-
ceeded the requirement of low noise and increased unnecessary
computation. By comparing the variants V 5 “no RL” and V 6
“no aware”, the routing agent trained by reinforcement learning
selects more suitable paths for better results. In addition, the
noise-aware reward of V 7 “no geometry-aware” encourages the
network to pay more attention to the heavily noisy points that
are difficult to denoise, which effectively decreases the metric
values. Finally, our complete pipeline “Full” proves that the
geometry-aware reward is effective for point clouds with levels
of noise.

More importantly, by comparing V 3 “all path 1” and “Full”,
our full method “Full” achieves better results on all metrics.
However, the network of V 3 is more powerful since it chooses
all complex paths for each point and uses more network param-
eters than “Full”. This strongly proves the effectiveness of our
strategy.

Besides the above RL-based path selection, we also design
two ensemble learning-based variants, “ES-1” and “ES-2”, in-
spired by the image denoising wisdom [77]. The ensemble
learning network consists of two main components: denoising
sub-networks and an ensemble module. The ensemble module
adaptively assigns a weight to each denoising sub-network,
functioning as an alternative form of path selection. From the
comparison results of the variants “ES-1”, “ES-2”, and “Full”
in Table II, we can see that our method achieves superior results
in terms of both metrics. It shows the advantages of RL’s reward
function for dynamic denoising tasks involving path selection.

E. Path Selection

In Fig. 11, we visualize the path lengths of ten models, where
the path length represents the number of times that a complex
path is selected. These models are drawn from Synth-A, Real-
A, and Real-B, and they include synthetic data, real-scanned
LiDAR data, and real-scanned Kinect data. It is noteworthy that
complex paths are frequently chosen by points located within
regions characterized by high-intensity noise or sharp features.
Building on this observation, in this section, we delve deeper

Fig. 11. Visualization of path lengths of ten models from Synth-A, Real-A,
and Real-B datasets. The 1st and 3 rd rows demonstrate the path lengths on the
inputs. The 2nd and 4th rows are on the denoised outputs.

into the analysis of path selection under various scenarios, e.g.,
different noise intensities and types, and varying densities.

Varying Point Densities, Noise Intensities, and Noise Patterns
Within a Single Point Cloud: Handling varying point densities,
noise intensities, and noise patterns within a single point cloud
is a challenging task for denoising algorithms. To further inves-
tigate the efficiency of our method under various scenarios, we
test our approach on Synth-B. Table III presents the quantitative
comparison results. By leveraging the path-routing agent and the
noise- and geometry-aware reward, our method flexibly removes
noise and restores geometric details, achieving the best results
across all scenarios and metrics. Fig. 12 displays a visualization
result of our method in each scenario. For sub-figure (a), we
use the same reception field for all points. It is obvious that our
method is less influenced by the changes in point cloud density.
This is because ball query and sampling techniques are employed
to obtain neighboring contextual information. For sub-figure
(b) and (c), our model adaptively selects more paths for better
suppressing the noise. For sub-figure (d), since the Armadillo
model is of rich geometry details, 1% noise is still heavy relative
to the scale of details, leading to a more complex denoising path.
Moreover, impulsive noise is not present in the training dataset.
We can observe that our approach can still effectively process it
and select the appropriate path.

Different Receptive Fields: The receptive field (namely neigh-
borhood scale) is an important factor affecting access to neigh-
borhood contextual information [3]. The receptive field is rel-
ative to the scale of geometric features and noise intensities.
Intuitively, for one noise point, a smaller receptive field will
make the noise appear larger, thus choosing a more complex
path. As shown in Fig. 13 (b) and (c), it is obvious that more
points are denoised by a more complex path. On the contrary,
the noise level present within the larger receptive field is propor-
tionally reduced, making the removal of high-level noise more
feasible (see Fig. 13 (c)). Besides, we find that more red points
are selected in the small cubic region of Fig. 13 (d). This is
because a larger receptive field makes the local structure of this
region more complex, thus requiring a longer denoising path.
Finally, in sub-figures (e-g), our method produces similar CD
quantitative results across three different receptive fields. This
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TABLE III
QUANTITATIVE COMPARISON ON SYNTH-B

Fig. 12. Path selection visualization of four point clouds with different densi-
ties, noise levels, and noise types. Each point cloud is separated into two parts
(left and right) in (a), (b), and (d). (c) is a point cloud with increasing noise from
0.5% to 2%. Obviously, our path selection mechanism works in all four cases.

indicates that our model can flexibly and adaptively select the
appropriate path to handle different situations while achieving
good denoising performance.

In the above experiment, the routing agent selects a suitable
denoising path for each point. Specifically, the routing agent
arranges longer denoising paths for points with heavier noise
or more complex features. This complies with the expectation
that PathNet focuses on processing noisy and feature points to re-
move noise and restore geometric details. In addition, the routing
agent could identify a large number of low-noise points close
to the ground-truth surface and heavy-noise points in smooth

Fig. 13. Path selection visualization for a point cloud (1% noise and 50 K
points) with different receptive fields. The two rows respectively demonstrate
the input and output colored by the path length. The receptive fields from (b)
to (d) are 0.3, 0.5, and 0.75, respectively. PathNet operates smoothly with these
different receptive fields.

regions, which do not require a complex denoising network.
Our network processes them with suitable paths to maintain the
overall structure of the point clouds and prevent over-smoothing.
For these reasons, our method achieves satisfactory results with
a good balance between denoising and feature preservation.

Path Selection in Each Denoising Block: Also, we visualize
the path selection results of different learning strategies on a
CAD model corrupted by 1.0% Gaussian noise in Fig. 14. In
Fig. 14 (a)–(f), the red and blue points separately represent the
complex and bypass paths. (g) and (f) show the path length for
each point on the input and output, respectively. From the 1st
row in Fig. 14, we can see that the complex paths in Blocks 1
to 4 are mainly used to restore points with heavy noise or in
complex geometric regions. The points in the smooth regions
select a complex path in Block 5, while the points in the points
in geometric regions select a complex path in Block 6. This way,
our network can effectively preserve structures while reducing
noise.

In addition, we observe that the longest path length in all
denoising results shown in Fig. 11 is 5. Since we designed a total
of 6 denoising blocks, the longest path length can be up to 6.
From the 1st row of Fig. 14, by comparing Block 5 (e) and Block
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Fig. 14. Path selection visualization in each denoising block. The three rows show the path selection of the variants “Full”, V 4 “one stage w/o RL”, and V 5
“no RL”, respectively. In (a-f), the red and blue points respectively represent the complex and bypass paths. (g) and (f) visualize the path lengths on the input and
output, respectively. The CAD model is corrupted by 1.0% Gaussian noise.

6 (f), we can find that their path selection results are completely
opposite, which indicates that Block 5 (e) and Block 6 (f) are de-
noising blocks that can handle points with opposing properties.
Since each point can only choose one of their complex paths, this
explains the observation that the longest path length is 5. The
above observation proves that there are low-consistency tasks in
the denoising process, which are not suitable for being processed
by a single model. The routing agent could arrange different
denoising paths for these low-consistency tasks to obtain better
denoising results. Moreover, we have tried to omit the step of
aligning the patch to the Z-axis with PCA to improve efficiency.
It turns out that the routing agent will arrange different paths for
points with different orientations, which indicates that points
with different orientations have opposite properties. This also
proves the existence of low-consistency tasks in the denoising
process, and it is necessary to handle them by using different
networks or by enhancing their consistency.

Path-Selective Denoising Without Reinforcement Learning:
In the 2nd and 3rd rows of Fig. 14, we also visualize the path
selection results of the variants V 4 “one stage without RL”
and V 5 “no RL”. For the variant V 4 “one stage without RL”
in the 2nd row, the path selection results are not clear, and
only the first block selects complex paths for some geometric
feature regions. The reason is that the denoising block cannot
effectively remove noise in the early stage of training, which
leads to wrong path selection results. The wrong path selection
results further affect the training of the denoising paths, resulting
in the network falling into the local optimum. In addition, the
variant V 5 “no RL” in the 3 rd row tends to choose complex
paths for regions with rich geometric features. Compared with
our full scheme, the variant V 5 “no RL” is less sensitive to
noise and geometric features. When we try to improve them
by applying the awareness of the reward function to the loss
function, the accuracy of denoising is reduced, which means
that the awareness weights directly applied to the loss function
affect the overall denoising performance. On the contrary, our
method applies awareness weights to the reward function of

TABLE IV
RUNNING TIMES (IN SECONDS) OF DIFFERENT METHODS ON SEVERAL POINT

CLOUDS SHOWN IN FIG. 11

reinforcement learning, which further improves denoising per-
formance. Therefore, it is necessary to use the reinforcement
learning strategy.

F. Running Time

Although our network has multiple denoising blocks, it is still
competitive in efficiency. Table IV demonstrates the running
time of our network for the models shown in Fig. 11. Besides,
we separately measure the average processing time for synthetic
data with 20,000 points at different noise levels in Synth-A. It
requires 25.78 s, 28.33 s, and 31.27 s for denoising the data with
noise levels of 0.5%, 1%, and 1.5%, respectively. Notably, our
method achieves a 21.3% faster denoising speed for the 0.5%
noise data compared to that of the 1.5% noise data.

V. LIMITATIONS AND FUTURE WORK

Despite the promising performance, our method still has some
limitations. First, the results of path selection are sensitive to
hyper-parameters of the reward. Thus, the hyper-parameters
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must be tuned by trial-and-error experiments to obtain the ex-
pected results of path selection. Second, PathNet is patch-based,
which does not fully exploit the correlation between points.
Thus, PathNet can only denoise an entire point cloud after mul-
tiple passes, which makes it impossible to rebuild patch features
after each denoising block. In the future, we will explore an
RL-based neighborhood selection mechanism to further enhance
the denoising quality.

VI. CONCLUSION

We introduce a new deep model designed for path-selective
point cloud denoising, called PathNet. PathNet is the deep
reinforcement learning effort for point cloud denoising. We for-
mulate the noise-aware and geometry-aware rewards to train the
routing agent. Our path-selective denoising strategy selects the
most suitable paths to adaptively denoise points with different
properties. Our method achieves state-of-the-art performance
in terms of effectiveness and robustness in noise removal and
geometric detail preservation, and it generalizes well to real
scans. In the future, we will adjust our network architecture to
improve efficiency and expand it to other 3D tasks, such as point
cloud completion and segmentation.
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