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Abstract
In this thesis, we consider the summation of Cantor sets. After a
brief introduction to these sets, specifically focusing on the Cantor
Middle Third set, we explore the relevance of Cantor sets in various
number expansions, including r-ary expansions, regular continued
fraction expansions, and Lüroth series expansions. Marshall Hall,
an American mathematician, extensively studied regular continued
fractions, leading to significant discoveries, such as his theorem that
every real number can be expressed as the sum of two regular con-
tinued fractions with partial quotients less than or equal to 4. This
thesis extends Hall’s investigations to Lüroth series expansions, aim-
ing to establish analogous results to Hall’s theorem.
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7 Conclusion 47

3



4 TABLE OF CONTENTS



Chapter 1

Introduction

In 1883, Georg Cantor, a German mathematician, introduced the Cantor sets.
Among these sets, the Cantor Middle Third set stands out as the most elemen-
tary. This set is constructed by iteratively removing the open middle thirds
from a series of line segments. Initially, the open interval ( 13 ,

2
3 ) is removed from

the interval [0, 1], resulting in two remaining line segments: [0, 1
3 ] and [ 23 , 1].

This process repeats indefinitely, with each remaining segment having its open
middle third removed in subsequent iterations. The Cantor Middle Third set
comprises all points within the interval [0, 1] that remain undeleted throughout
this infinite procedure.

When we take the sum of Cantor sets, significant results emerge. For instance,
a notable result is that if C represents the Cantor Middle Third set, then C+C
equals the interval [0, 2], as will be proven in Section 2.2. This result motivated
the mathematician Marshall Hall to further investigate the summation of Cantor
sets. Hall utilized regular continued fractions, a specific method for expanding
numbers. A regular continued fraction associated with x ∈ R is an expression
of the form:

x = a0 +
1

a1 +
1

a2 +
1

a3 + . . .

where a0 ∈ Z, x − a0 ∈ [0, 1) and ai ∈ N for i > 0. Here, ai are referred to
as partial quotients. Further explanation and properties of regular continued
fractions are discussed in Chapter 3.

In 1947, Hall proved a significant theorem stating that every real number can
be represented as the sum of an integer and two regular continued fractions,
each having partial quotients less than or equal to 4. To be precise, he defines
F (m) as the set of those real numbers x having a regular continued fraction
expansion with arbitrary a0 ∈ Z and partial quotients ai ≤ m, where m is a

5



6 CHAPTER 1. INTRODUCTION

positive integer. Hall’s theorem is then stated as

F (4) + F (4) = R.

Chapter 5 provides a proof of this theorem, and several generalizations by re-
searchers such as Cusick [2], Divis [4], Astels [1], and Hlavka [9] are discussed.

In Chapter 6, we investigated whether Hall’s result can be obtained for other
number expansions besides regular continued fractions. In this thesis, we consid-
ered standard Lüroth series expansions, which are introduced in Chapter 4. We
conjecture that a theorem analogous to Hall’s theorem holds for Lüroth series.
In chapter 6, we will delve into the details and formulate a theorem regarding
this conjecture.



Chapter 2

R-ary expansions

Numbers can be represented in various ways. Among these ways, the most fa-
miliar approach is through decimal expansion. The decimal numeral system,
constantly utilized in our daily lives to represent numbers, serves as a funda-
mental example of a positional system. A positional number system indicates
that the value of a digit within a number depends on its position. Derived from
the Latin word ’decima,’ meaning ten, it employs digits from 0 to 9, with pow-
ers of 10 serving as the basis. For example, consider the number 243. In the
decimal numeral system, this number is written as follows:

243 = 2 · 102 + 4 · 101 + 3 · 100 (2.1)

In addition to the decimal system, another widely utilized positional notation is
the binary numeral system. In this system, numbers are represented using only
two digits, 0 and 1, with the base being 2. For example, the number 26 in the
binary numeral system is represented as:

26 = 1 · 24 + 1 · 23 + 0 · 22 + 1 · 21 + 0 · 20 (2.2)

The decimal system and the binary system are examples of r-ary number ex-
pansions where r = 10 for the decimal system and r = 2 for the binary system.
In general, a r-ary expansion of a number x where x ∈ [0, 1), with r in Z and
r ≥ 2, is given by:

x =

∞∑
n=1

an
rn

(2.3)

where an belongs to the set {0, 1, . . . , r − 1}.

If x is a real number with 0 ≤ x < 1, for every r in Z and r ≥ 2, there is a
sequence of integers (an) such that equation (2.3) holds. Conversely, if (an) is

7



8 CHAPTER 2. R-ARY EXPANSIONS

any sequence of integers from the set {0, 1, . . . , r− 1}, the series
∑∞

n=0
an

rn with
r in Z and r ≥ 2 converges to a real number x where 0 ≤ x < 1. We will also
write this as x = [0, a1a2 . . .]r.

To prove that if x is a real number with 0 ≤ x ≤ 1, for every r in Z and r ≥
2, there is a sequence of integers (an) such that equation (2.3) holds, we define
the function Tr : [0, 1) → [0, 1) by:

Tr(x) = rx mod 1.

In other words,
Tr(x) = rx− a1(x), (2.4)

where a1 = a1(x) = ⌊rx⌋ ∈ {0, 1, . . . , r − 1} is the first digit of x. Now, define
an = an(x) = ⌊Tn−1

r (x)⌋ for n ∈ N. Throughout this thesis, ⌊x⌋ denotes the
greatest integer less than or equal to x, and ⌈x⌉ denotes the smallest integer
greater than or equal to x. Then, from (2.4), we see that:

x =
a1
r

+
1

r
Tr(x) =

a1
r

+
1

r

(
a2
r

+
1

r
T 2
r (x)

)
=

a1
r

+
a2
r2

+
1

r2
T 2
r (x),

and after k steps, we find

x =

k∑
n=1

an
rn

+
1

rn
T k
r (x). (2.5)

Since 0 ≤ Tr

rn ≤ 1
rn → 0 as n → ∞, it follows from equation (2.5) that

x =

∞∑
n=1

an
rn

.

We can then rewrite equation (2.3) for an arbitrary x in R as

x = ⌊x⌋ +

∞∑
n=1

an
rn

= ⌊x⌋ + 0, a1a2.... (2.6)

2.1 3-ary expansion

One way to view the Cantor Middle Third set is in terms of ternary expansions,
r-ary expansions where r = 3. Given x where 0 ≤ x ≤ 1, there is a sequence of
integers (an)

∞
n=1, an ∈ {0, 1, 2} such that the series

x =

∞∑
n=1

an
3n

converges to x. In other words, we can associate x to [0, a1a2 . . .]3, where
an ∈ {0, 1, 2}.
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Consider the ternary expansion for a fixed x ∈ [0, 1]. We know that x then lies
in exactly one of the intervals I0 :=

[
0, 1

3

]
, I01 :=

(
1
3 ,

2
3

)
, or I2 :=

[
2
3 , 1

]
. Now,

if a1 = 1, one way to think about that, is to say that x then belongs to I01 .
Similarly, if a2 = 1, x then belongs to either ( 19 ,

2
9 ), (

4
9 ,

5
9 ), or (

7
9 ,

8
9 ). Then it is

clear that if a1 ̸= 1 and a2 ̸= 1, we must have x belonging to

[0, 1
9 ] ∪ [ 29 ,

1
3 ] ∪ [ 23 ,

7
9 ] ∪ [ 89 , 1].

Going further along in the ternary expansion and not using the digit 1 has the
effect of breaking each of the previous intervals into equal thirds and throwing
the middle third away. Thus we conclude that the Cantor Middle Third set is
defined as the subset of the interval [0, 1] comprising all numbers x that possess
a ternary expansion where each digit an belongs to the set {0, 2} for all n. In
other words, it consists of numbers whose ternary expansion does not contain
the digit 1.

2.2 Proof of C + C = [0, 2]

In this subsection, we will prove in two different ways that the sum of two
Cantor Middle Third sets covers the entire interval [0, 2]. We define a sum of
two sets A and B to be A+B = {a+ b : a ∈ A and b ∈ B}. This is a somewhat
surprising result since the Cantor Middle Third set has the property of having
a Lebesque measure of zero, which is demonstrated in Section 2.2.3.

2.2.1 A proof of C + C = [0, 2] using 3-ary expansions

The proof of C+C = [0, 2] provided in this subsection utilizes the expression of
numbers x in C as a ternary expansion, using only digits an from the set {0, 2},
as discussed in Section 2.1.

Consider two elements of the Cantor set, a ∈ C, b ∈ C. According to Section
2.1, a and b can be written as:

a =

∞∑
n=1

an
3n

, b =

∞∑
n=1

bn
3n

where an, bn are elements of {0, 2} for each n ∈ N.

Define x =
∑∞

n=1
xn

3n where xn := an+bn
2 . Then every xn is an element of

{0, 1, 2} since xn = 0 if an = bn = 0, xn = 2 if an = bn = 2, and xn = 1
otherwise. Clearly we have that:

x =

∞∑
n=1

xn

3n
∈ [0, 1].

And thus it follows that:
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a+ b = 2 · x = 2 ·
∞∑

n=1

xn

3n
∈ [0, 2]

Hence, we have that C + C ⊆ [0, 2].

Conversely, to show [0, 2] ⊆ C+C, it is enough to show [0, 1] ⊆ 1
2C+ 1

2C, where
we define 1

2C = { 1
2c | c ∈ C}. Let x be an arbitrary element of the interval [0,1].

Then x can be written as:

x =

∞∑
n=1

xn

3n
, where xn ∈ {0, 1, 2}.

Thus, here [0, x1, x2, . . .] represents the ternary expansion of x. Observe that
a ∈ 1

2C if and only if there exists t ∈ C such that a = 1
2 t. Hence, we have that

a ∈ 1
2C can be written as:

a =

∞∑
n=1

an
3n

, where an ∈ {1
2
· 0 = 0,

1

2
· 2 = 1}.

Now define a =
∑∞

n=1
an

3n and b =
∑∞

n=1
bn
3n in the following way:

For each n ∈ N, an = 0 if xn = 0 and an = 1 if xn = 1, 2 and bn = 0 if xn = 0, 1
and bn = 1 if xn = 2.

Thus a, b ∈ 1
2C and for each n ∈ N, an + bn = 0 if xn = 0, an + bn = 1 if

xn = 1, and an + bn = 2 if xn = 2. Therefore x = a+ b ∈ 1
2C + 1

2C and hence
[0, 1] ⊆ 1

2C + 1
2C. We conclude that [0, 2] ⊆ C +C, which completes the proof.

[11]

2.2.2 A graphical proof of C + C = [0, 2]

For the second proof of C+C = [0, 2], we will demonstrate that each line of the
form x+y = a, where a belongs to [0, 2], intersects the Cartesian product C×C.
If (c, b) denotes the point of intersection, then it follows directly a = b+c, where
both b and c belong to the Cantor Middle Third set. The Cartesian product
C×C can be constructed similarly to the Cantor Middle Third set itself, noting
that for any a ∈ [0, 2] the line x+ y = a intersects the square [0, 1]× [0, 1] in at
least one point (and infinitely many points if there is more than one intersection
point). Now divide the square [0, 1] × [0, 1] into 9 squares of side length 1

3 ; see
Figure 2.1. Remove the 5 ‘central’ squares, corresponding to the blank squares
in Figure 2.1. Note that for any a ∈ [0, 2] the line x+ y = a intersects at least
one of the four remaining squares. Choose one of these squares with which the
line x + y = a intersects; then the process repeats itself, but now on a smaller
scale. In Figure 2.1, a line x + y = a is drawn where a can take any value
between 0 and 2 and the described process is illustrated.
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Figure 2.1: A line x+ y = a where a ∈ [0, 2] and 189 squares

We denote any of the squares out of the four ‘corner’ squares with a side length
of 1

3 that intersects the line x+ y = a as S1. Similarly, any line with a slope of
1 that intersects the square S1 will intersect at least one of the ‘corner’ squares
with a side length of 1

9 that are contained within S1. We denote one of these
smaller squares as S2 and by construction we have that S2 ⊂ S1.

Using the described method, we can continue constructing sets Si where the
sequence (Si) is a nested sequence of closed sets. Moreover, the interval [0, 2]
is compact since it is closed and bounded. We have that a topological space
is compact if and only if the intersection of every sequence of closed sets with
the finite intersection property is non-empty. Here, a sequence of closed sets
is said to have the finite intersection property if every finite subsequence has
a non-empty intersection. Thus, because of the compactness of the interval
[0, 2], for the decreasing sequence (Si), it holds that the intersection of any
finite subsequence is not empty; it corresponds to the smallest square in the
subsequence. Consequently, the squares {Si} have a common point. This point
belongs to both C × C and the line x+ y = a. This holds for every point a in
the interval [0, 2] and thus we have proven that C + C = [0, 2]. [5]
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2.2.3 Lebesque measure of the Cantor set

The property of the Cantor Middle Third set having a Lebesgue measure of zero
can be demonstrated in two different ways. For the first method, notice that
from the construction of the Cantor Middle Third set, we remove 2n−1 disjoint
intervals at each step n > 0, each having a length of

(
1
3

)n
. Thus, we remove a

total length of

∞∑
n=1

2n−1 ·
(
1

3

)n

=
1

3

∞∑
n=1

(
2

3

)n

=
1

3
· 1

1− 2
3

=
1

3
· 3 = 1

from the interval [0, 1]. Since the Lebesgue measure of the interval [0, 1] is equal
to 1, the Cantor Middle Third set must have a Lebesgue measure of zero.

Another way to see that the Cantor Middle Third set has Lebesgue measure zero
is to use Ergodic Theory. Underlying the ternary expansion is the map T3(x) =
3x(mod1), and one easily can show that the system ([0, 1),B, T3, λ), where B is
the collection of Borel sets of [0, 1), and λ is Lebesgue measure on [0, 1), which
is T3-invariant, is ergodic. Due to this it follows from Birkhoff’s Individual
Ergodic Theorem that for Lebesgue almost every x ∈ [0, 1) the frequency of the
digit 1 is 1

3 . Since in C there are no numbers x with a digit 1, we conclude that
C is part of nullset, and therefore a nullset. For more details, see [3].



Chapter 3

Continued fraction
expansions

3.1 Introducing the regular continued fraction
expansion

In Chapter 2, we examined r-ary expansions with r = 2, 3, and 10 in particular.
Another way to represent a number is using a continued fraction. This thesis
almost exclusively examines a specific type of continued fractions; the regular
continued fractions. From now on, we refer to a regular continued fraction as
RCF. A RCF associated with x ∈ R is an expression of the form:

x = a0 +
1

a1 +
1

a2 +
1

a3 + . . .

(3.1)

where a0 ∈ Z, x − a0 ∈ [0, 1) and ai ∈ N for i > 0. The numbers ai are called
the partial quotients, and the notation used for the RCF-expansion of x from
(3.1) is x = [a0; a1, a2, . . .].

3.1.1 The Euclidean algorithm

Continued fractions have remarkable properties, one of them is that x is a ratio-
nal number if and only if x has a finite RCF expansion. Since rational numbers
are numbers that can be written in the form p

q , where p and q are integers

and q ̸= 0, we have that p
q determines a finite RCF and that the continued

fraction [a0; a1, a2, . . . , an] represents a rational number p
q . To prove this, we

will demonstrate how the Euclidean algorithm for finding the greatest common
divisor can be used to find the RCF of a rational number x. The Euclidean

13



14 CHAPTER 3. CONTINUED FRACTION EXPANSIONS

algorithm proceeds as follows.

1. Start with two non-negative integers, r0 and r1, where r0 ≥ r1.

2. Compute the remainder r2 of dividing r0 by r1 and express it as r0 =
a1 · r1 + r2 with 0 ≤ r2 < r1.

3. If r2 equals zero, the algorithm stops. Otherwise, repeat the following
steps.

4. Take r1 as the new r0 and r2 as the new r1.

5. Compute again the remainder r3 by dividing r0 by r1 and express it as
r1 = a2 · r2 + r3, with 0 ≤ r3 < r2.

6. Continue this iterative process until the remainder equals zero. At some
point, this occurs because the process terminates after a finite number of
steps.

Now, suppose we want to find the RCF expansion of the rational number x =
117
31 . Notice that:

117 = 3 · 31 + 24.

Rewriting this gives us:

117

31
= 3 +

24

31
= 3 +

1
31
24

.

.
We have that:

31 = 1 · 24 + 7,

which again gives us that:

31

24
= 1 +

7

24
.

Plugging this in in the equation for 117
31 , we get that:

117

13
= 3 +

1

1 +
24

7

.

Continuing using the Euclidean algorithm, we get the following equations:

24 = 3 · 7 + 3,

7 = 2 · 3 + 1,

3 = 3 · 1 + 0.
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Since we obtain a zero remainder in the last equation, the Euclidean algorithm
stops, and by substitution, we obtain the RCF of x = 117

31 :

117

13
= 3 +

1

1 +
1

3 +
1

2 +
1

3

This process works for any rational number and thus we have demonstrated
that any rational number can be written as a finite RCF.

3.2 The Gauss map T

The RCF operator also known as the Gauss map T : [0, 1) → [0, 1) is defined
by:

T (x) =
1

x
−
⌊
1

x

⌋
(3.2)

for x ̸= 0 and T (0) = 0. The map T is illustrated in Figure 3.1.

Figure 3.1: The Gauss map T
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Now, let y ∈ R \ Q and choose a0 ∈ Z such that x := y − a0 ∈ [0, 1). If we
iterate the function T , we have:

T0(x) = x,

T1(x) = T (T0(x)) =
1

T0(x)
−
⌊

1

T0(x)

⌋
.

Tn(x) =
1

Tn−1(x)
−
⌊

1

Tn−1(x)

⌋
an(x) :=

⌊
1

Tn−1(x)

⌋
Tn−1(x) =

1

an + Tn(x)

x =
1

a1 + T1(x)
=

1

a1 +
1

a2 + T2(x)

= . . . =
1

a1 +
1

a2 +
1

. . .+
1

an + Tn(x)

for n ≥ 1. Also, it holds that for all n ≥ 0, Tn(x) ∈ (0, 1).

Now, let

an = an(x) :=

⌊
1

Tn−1(x)

⌋
for n ≥ 1. This implies that for all n ≥ 1, Tn−1(x) = 1

an+Tn(x) .

Then, we have:

x =
1

a1 + T1(x)
=

1

a1 +
1

a2 + T2(x)

= . . . =
1

a1 +
1

a2 +
1

. . .+
1

an + Tn(x)

.

The Gauss map T thus generates, for each x, a sequence of digits (an)n≥0. If x
is a rational number, this sequence is finite.

If x is an irrational number whose infinite continued fraction expansion is
[0; a1, a2, a3, . . . ], one can truncate the continued fraction expansion at level
n and obtain a rational number pn

qn
given by:

pn
qn

= [a0; a1, a2, . . . , an].
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The sequence of rational numbers p0

q0
= [a0; ],

p1

q1
= [a0; a1],

p2

q2
= [a0; a1, a2], . . .,

pn

qn
= [a0; a1, . . . , an], are referred to as the convergents of a continued fraction,

where n denotes its length. So we define for x the n-th convergent with n ∈ N
by:

We will show that these convergents provide a good approximation of an irra-
tional number x in Section 3.4.

3.3 Quality of approximation

Let (an)n≥0 be a sequence of positive real numbers, and let pn and qn be defined
by the following recurrence relations for n ≥ 1:

pn = anpn−1 + pn−2,

qn = anqn−1 + qn−2

where p0 = q−1 = 1 and p−1 = q0 = 0.

Then the nth convergent is given by:

[a0, a1, a2, . . . , an] =
pn
qn

(3.3)

where pn and qn are defined as above. To prove this, we use induction. For the
case where n = 1, we have that

p1
q1

=
a1p0 + p−1

a1q0 + q−1
=

a1 · 1 + 0

a0 · 0 + 1
= [a0].

Moreover, assume equation (3.3) holds for n = k, then for n = k + 1 we have
that

[a0, a1, a2, . . . , ak, ak+1] = [a0, a1, a2, . . . , ak +
1

ak+1
]

=
(ak + 1

ak+1
)pk−1 + pk−2

(ak + 1
ak+1

)qk−1 + qk−2

=
ak+1(akpk−1 + pk−2) + pk−1

ak+1(akqk−1 + qk−2) + qk−1

=
ak+1pk + pk−1

ak+1qk + qk+1

=
pk+1

qk+1
.
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Therefore, we proved by induction that equation (3.3) holds. We also have that
the following equation holds

pnqn−1 − pn−1qn = (−1)n−1. (3.4)

Once again, we prove equation (3.4) by induction. For the base case, when
n = 1, it holds that:

p1q0 − p0q1 = p1 · 0− 1 · q1
= −q1 = −(a1q0 + q−1) = −(a1 · 0 + 1)

= −1 = (−1)−1.

Furthermore, if (3.4) holds for n = k, then for n = k + 1, we obtain:

pk+1qk − pkqk+1 = (ak+1pk + pk−1)qk − pk(ak+1qk + qk−1)

= pk−1qk − pkqk−1 = −(−1)k−1 = (−1)k = (−1)(k+1)−1.

And thus, through induction, we have demonstrated that equation (3.4) holds.
Now, let tn = [an; an+1, . . .] for n ≥ 0. Then, for x = [a0; a1, a2, . . . , an], we
have:

x =
pn−2 + tnpn−1

qn−2 + tnqn−1
. (3.5)

This can be proven again using induction. First, observe that

tn+1 =
1

tn − an
,

since we have that

tn = [an; an+1, . . .] = an +
1

tn+1
.

For the case where n = 0, we obtain

p−2 + t0p−1

q−2 + t0q−1
=

0 + t0 · 1
1 + t0·

= t0 = [a0] = x.

And thus, the base case holds. Moreover, if equation (3.5) holds for n = k, we
have that for n = k + 1 that

pk−1 + tk+1pk
qk−1 + tk+1qk

=
1

tk−ak
pk + pk−1

1
tk−ak

qk + qk−1

=
1

tk−ak
akpk−1 + pk−2 + pk−1

1
tk−ak

akqk−1 + qk−2 + qk−1

=
pn−2 + tnpn−1

qn−2 + tnqn−1
= x.

This proves equation (3.5). Finally, we establish the following bound for the
accuracy of the convergents in approximating the value of the continued fraction:∣∣∣∣x− pn

qn

∣∣∣∣ < 1

q2n
(3.6)
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The proof of equation (3.6) proceeds as follows:∣∣∣∣x− pn
qn

∣∣∣∣ = ∣∣∣∣pn−1 + tn+1pn
qn−1 + tn+1qn

− pn
qn

∣∣∣∣
=

∣∣∣∣qn(pn−1 + tn+1pn)− pn(qn−1 + tn+1qn)

qn(qn−1 + tn+1qn)

∣∣∣∣
=

∣∣∣∣ qnpn−1 − qn−1pn
qn(qn−1 + tn+1qn)

∣∣∣∣
=

∣∣∣∣ (−1)n

qn(qn−1 + tn+1qn)

∣∣∣∣
=

1

qn(qn−1 + tn+1qn)

Moreover, since tn+1 > an+1 by definition and since the qi’s are strictly increas-
ing by definition, we obtain∣∣∣∣x− pn

qn

∣∣∣∣ ≤ 1

qn(qn−1 + tn+1qn)
<

1

qnqn+1
<

1

q2n
.

We also observe that for any α, β ∈ R and continued fraction expansions:

x = [0; a1, a2, . . . , an, α],

y = [0; a1, a2, . . . , an, β],

the following relationship holds:

|x− y| = |α− β|

qk

(
α+ qn−1

qn

)(
β + qn−1

qn

) . (3.7)

This is the case since:

|x− y| = |[0; a1, a2, . . . , an, α]− [0; a1, a2, . . . , an, β]|

=
αpn + pn−1 − βpn + pn−1

αqn + qn−1

qn
βqn + qn−1

qn

=
(αpn + pn−1)(βqn + qn−1

qn
)− (αqn + qn−1

qn
)(βpn + pn−1)

(αqn + qn−1

qn
)(βqn + qn−1

qn
)

=
α(pnqn−1 − pn−1qn) + β(pn−1qn − pnqn−1)

qn(α+ qn−1

qn
)(β + qn−1

qn
)

=
|(−1)nα+ (−1)n+1β|
qn(α+ qn−1

qn
)(β + qn−1

qn
)

=
|α− β|

qn(α+ qn−1

qn
)(β + qn−1

qn
)

where we used Equations (3.3) and (3.4).
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3.4 Periodic continued fractions

A periodic continued fraction is a RCF whose partial quotients eventually repeat
from some point onwards, i.e., there exists some positive integers N , h such that

an = an+h

for all n > N . In general, a periodic continued fraction has the form

[b0; b1, b2, . . .] = [b0; . . . , bN , a0, a1, . . . , ah−1, a0, a1, . . . , ah−1, a0, . . .].

We write this as
[b0; . . . , bN , a0, . . . , ah−1]

where b0; b1, . . . , bN is the pre-period and a0, a1, . . . , ah−1 represents the period.
Furthermore, a quadratic irrational α is defined as an irrational number that is
a root of a quadratic equation, which has the following form

ax2 + bx+ c = 0

where a ̸= 0 and a, b, c ∈ Z.

Now, consider the periodic continued fraction α = [1, 2]. Suppose we want to
determine its convergence. We have that

α = 1 +
1

2 +
1

1 +
1

2 +
1

1 + . . .

We can rewrite this as

α = 1 +
1

2 + 1
α

= 1 +
1

2α+1
α

= 1 +
α

2α+ 1
=

3α+ 1

2α+ 1
.

Thus we have that 2α2 − 2α − 1 = 0, which is a quadratic equation with two
roots where α corresponds to the positive root so we have that

α =
1 +

√
3

2

and thus we have seen that this periodic continued fraction α can be written as
a quadratic irrational. Similarly, every periodic continued fraction represents a
quadratic irrational, and conversely, every quadratic irrational corresponds to
a periodic continued fraction. Thus we have that an infinite RCF is periodic if
and only if it represents a quadratic irrational.
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L. Euler proved one side of this theorem: if x is irrational with a periodic
continued fraction expansion, then x is a quadratic irrational. Euler’s theorem
is straightforward to prove. Let x = [b0, . . . , bN , a0, . . . , ah−1] and define α =
[a0, . . . , ah−1]. Then by the periodicity of the expansion, we have that α =
[a0, . . . , ah−1, α]. Using equation (3.5), we obtain

α =
pn−2 + αpn−1

qn−2 + αqn−1

which is a quadratic equation for α. Since α is an infinite continued fraction, it
is irrational. Thus, α is a quadratic irrational. Furthermore, x = [b0, . . . , bN , α]
is also a rational function in α. Combining this function with α being a root
of a quadratic equation, we conclude that x is also a root of another quadratic
equation. Since x is an irrational number, we deduce that x is a quadratic irra-
tional, completing Euler’s proof.

Joseph Lagrange proved the converse of this theorem, which has a less trivial
proof that I won’t fully elaborate on here. Nonetheless, the underlying idea is
as follows. Suppose x ∈ Q satisfies the quadratic equation

ax2 + bx+ c = 0,

where a, b, c ∈ Z. Let [a0, a1, a2, . . .] be the RCF of x, and let tn be its nth

convergent. Then, we have x = [a0, a1, a2, . . . , an−1, tn]. By equation (3.5), we
can express x as

x =
pn−1 + tnpn
qn−1 + tnqn

.

Substituting this expression for x into the quadratic equation, we obtain

Ant
2
n +Bntn + Cn = 0,

where

An = ap2n−1 + bpn−1qn−1 + cq2n−1,

Bn = 2apn−1pn−2 + b(pn−1qn−2 + pn−2qn−1) + 2cqn−1qn−2,

Cn = ap2n−2 + bpn−2qn−2 + cp2n−2.

Note that An, Bn, and Cn are integers, Cn = An−1, and

B2 − 4AnCn = (b2 − 4ac)(pn−1qn−2 − qn−1pn−2)
2 = b2 − 4ac.

Note that An ̸= 0 since otherwise pn−1

qn−1
would be a rational root of the quadratic

equation ax2 + bx + c = 0, contradicting the fact that x is irrational. The re-
mainder of the proof involves an elaborate computation that bounds each of An,
Bn, and Cn independently of n. Assuming this, there are only a finite number
of possibilities for the triples (An1 , Bn1 , Cn1), (An2 , Bn2 , Cn2), (An3 , Bn3 , Cn3).
Hence, we can choose n1, n2, n3 such that

(An1
, Bn1

, Cn1
) = (An2

, Bn2
, Cn2

) = (An3
, Bn3

, Cn3
).
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This implies that each of tn1 , tn2 , tn3 is a root of (say)

An1t
2 +Bn1t+ Cn1 .

As a result, two of them must be equal. Thus, tn1 = tn2 (say), and

tn1 = [an1 , an1 + 1, . . .],

tn2 = [an2 , an2 + 1, . . .],

and the continued fraction becomes periodic. The complete proof can be found
in [7].

3.5 Nearest integer continued fractions

The nearest integer continued fraction (NICF) is a type of real continued frac-
tion that permits negative integers as partial quotients. Unlike the RCF, where
rounding down is used, the algorithm for computing the NICF of a real number
x involves rounding to the nearest integer. In cases such as when x = 2, 5, we
round to the smallest integer, thus setting x = 2 as the nearest integer.

Given a real number x ∈ [− 1
2 ,

1
2 ), its continued fraction to the nearest integer

is of the form

x =
e1

a1 +
e2

a2 +
e3

a3 +
e4

a4 + . . .

so x = [0; e1
a1
, e2
a2
, e3
a3
, . . .]. The partial quotients an and the signs en = ±1 are

determined by the NICF operator T 1
2
: [− 1

2 ,
1
2 ) → [− 1

2 ,
1
2 ), which is defined by

T 1
2
=

∣∣∣∣ 1x
∣∣∣∣− ⌊∣∣∣∣ 1x

∣∣∣∣+ 1

2

⌋
(3.8)

for x ̸= 0 and T 1
2
(0) = 0. The signs en = ±1 are set according to whether

Tn−1
1
2

(x) is positive or not and the partial quotients an are given by

an :=

 en

Tn−1
1
2

(x)
+

1

2

 .

The NICF provides either a better or equal approximation for a real number
x compared to the RCF. We can illustrate this with an example by comparing
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the RCF with the NICF of the number π. The RCF of π is equal to

π = 3 +
1

7 +
1

15 +
1

1 + . . .

where in the third step we have that
⌊

1
0,06...

⌋
= ⌊15, 996...⌋. Since the RCF

rounds down, we assign a2 to be 15. However, the fraction 15.996... is much
closer to 16 than to 15. Therefore, selecting a2 as 16 would have been a more
logical choice, which is precisely what the NICF would have done in this situa-
tion. If we follow this approach for each step, it ultimately provides us with a
better approximation for the number π, and generally for a real number x.
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Chapter 4

Lüroth Series expansions

4.1 The standard Lüroth Series expansion

In Chapter 2 and 3 we have seen two distinct methods for representing numbers.
In 1883, Jacob Lüroth introduced an expansion for real numbers x ∈ R given
by

x = a0+
1

a1
+

1

a1(a1 − 1)a2
+ . . .+

1

a1(a1 − 1) . . . an−1(an−1 − 1)an
+ . . . (4.1)

where ao ∈ Z and an ∈ N, an ≥ 2. We write this as: x = ⟨a0; a1, a2, . . . , an, . . .⟩.
While this expansion is recognized as the standard Lüroth expansion, in this
paper it is referred to simply as the Lüroth expansion. The Lüroth expansion is
generated by the Lüroth map L : [0, 1] → [0, 1] defined by

L(x) :=

⌊
1

x

⌋(⌊
1

x

⌋
+ 1

)
x−

⌊
1

x

⌋
, for x ̸= 0

and L(0) := 0. In Figure 4.2, the operator L is illustrated.

25



26 CHAPTER 4. LÜROTH SERIES EXPANSIONS

Figure 4.1: Lüroth map L

The Lüroth expansion, as provided in equation (4.1), then arises when defining

a1 = a1(x) :=

⌊
1

x

⌋
+ 1

so x ∈ Ik := ( 1k ,
1

k+1 ], if and only if a1(x) = k. Moreover, when Ln(x) ̸= 0, we
have that

an = an(x) := a1(L
n(x))

Rewriting equation (4.1) in terms of the partial quotients ai gives us L(x) =
a1(a1 − 1)x− (a1 − 1), and in general

Ln(x) = an(an − 1)Ln−1(x)− (an − 1)

Thus we find that

x =
1

a1
+

1

a1(a1 − 1)
L(x)

=
1

a1
+

1

a1(a1 − 1)

(
1

a2
+

1

a2(a2 − 1)
L2(x)

)
=

1

a1
+

1

a1(a1 − 1)

(
1

a2
+

1

a2(a2 − 1)
(
1

a3
+

1

a3(a3 − 1)
L3(x))

)
= . . .
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Continuing in this manner yields the Lüroth expansion provided in (4.1). Since
an ≥ 2 and 0 ≤ Ln(x) ≤ 1, one easily sees that the infinite series from (4.1)
converges to x.

4.2 The alternating Lüroth Series expansion

An alternative to the standard Lüroth expansion is the alternating Lüroth ex-
pansion, defined for x ∈ (0, 1] as follows

x =
1

a1 − 1
− 1

a1(a1 − 1)(a2 − 1)
+ . . .+

(−1)k+1

a1(a1 − 1) . . . (ak−1 − 1)(ak − 1)
+ . . .

(4.2)
where ak ≥ 2 and k ≥ 1. The alternating series expansion is generated by the
operator LA : [0, 1] → [0, 1] defined by

LA(x) := 1 +

⌊
1

x

⌋
−
⌊
1

x

⌋(⌊
1

x

⌋
+ 1

)
x, for x ̸= 0

and L(0) := 0. Note that LA(x) = 1− L(x), see also Figure 4.2.

Figure 4.2: Alternating Lüroth map LA
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Chapter 5

Hall’s theorem

In 1947, M. Hall Jr. proved in [6] that

F (4) + F (4) = R (5.1)

where F (m) is defined as the set of irrational numbers with partial quotients
ai ≤ m for i ≥ 1 and a0 ∈ Z. Moreover, define for N ∈ Z: Fn(m) =
{[a0; a1, a2, a3, . . .] ∈ R : a0 = n,∀i ≥ 1 : 1 ≤ ai ≤ m} and thus F (m) =
∪

n∈Z
Fn(m).

In this chapter, we prove Hall’s Theorem, based on the proof provided by Hall
(see [6]). We begin by establishing some basic theorems concerning the summa-
tion of Cantor Sets, which are necessary for proving Hall’s theorem.

5.1 Cantor sets

As mentioned in Chapter 1, the most simple Cantor set, the Cantor Middle
Third set, is created by recursively removing the open middle thirds of a set of
line segments.

More generally, let A ⊆ R be a closed and bounded interval and consider the
open and disjoint subintervals {Cn

k ⊂ A : n ∈ Z≥0, k ∈ Z≥0, k < 2n}. Further-
morwe, the An

k and the Cn
k are ordered, so we have that An

1 < An
2 < · · · < An

2n−1

and Cn
1 < Cn

2 < · · · < Cn
2n−1. We then define the subsets Ak

n recursively as
follows:

1. A0
0 = A and C1

0 ⊂ A

2. Cn
k ⊂ An−1

k and An
2k = {x ∈ An−1

k \ Cn
k : ∀c ∈ Cn

k , x < c}

3. Cn
k ⊂ An−1

k and An
2k+1 = {x ∈ An−1

k \ Cn
k : ∀c ∈ Cn

k , x > c}

29
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Note that for n ∈ N and k < 2n, the sets Cn
k satisfy:

Cn
k ⊂ An−1

k .

See also Figure 5.1 below. This might suggest that the sets (Cn
k ) are given from

the start. This is not necessarily the case; for the Cantor Middle Third set C
these sets (Cn

k ) are given recursively by the construction of C. We refer to the
family of sets {Cn

k : n ∈ Z≥0, k ∈ Z≥0, k < 2n} as Cantor gaps for A.

If we define An
k in this way, and for A ⊆ R, we define l(A) = |sup(A)− inf(A)|

if sup(A) and inf(A) exist, and l(A) = ∞ otherwise, then we set ank = l(An
k )

and cnk = l(Cn
k ). Moreover, a General Cantor Point Set is defined as

L(A, {Cn
k : n ∈ Z≥0, k ∈ Z≥0, k < 2n}) = A \

 ⋃
n∈Z≥0,k∈Z≥0,k<2n

Cn
k

 .

For simplicity, we write L(A, {Cn
k : n ∈ Z≥0, k ∈ Z≥0, k < 2n}) as L(A). This

General Cantor Point Set together with the corresponding Cantor Gaps for A
can be visualized as a tree in the following way.

Figure 5.1: The first three layers of this process

In the context of a tree structure, we designate set A0
0 as the root. In the

remainder of this chapter, the following theorem will be proved.

Theorem 1. Let A = [a1, a2] and B = [b1, b2] be closed bounded intervals of R,
where a = a2 − a1 and b = b2 − b1. Suppose {Cn

k } and {Dn
k} are Cantor Gaps

for A and B, respectively. In addition, define e = min(a, b) and suppose that
the following conditions hold:

(C1) for every n > 0 and k < 2n, one has l(Cn
k ) := cnk ≤ min{a2kn , a2k+1

n } and
l(Dn

k ) := dnk ≤ min{b2kn , b2k+1
n }.
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(C2) 1
3 ≤ a

b ≤ 3 .

Then we have that L(A) + L(B) = A+B.

To prove Theorem 1, we first introduce several definitions and lemmas. We start
by showing that Condition (C1) holds.

Let A = [a1, a2] and B = [b1, b2] be two closed intervals, and let e = min(a2 −
a1, b2 − b1). Then we define,

[A,B] = [a2 + b2 − 2e, a2 + b2]

[A,B] = [a1 + b1, a1 + b1 + 2e]

.
Note that we obviously have that

L(A) + L(B) ⊆ [A,B] ∪ [A,B].

The next lemma gives an important tool in the proof of Hall’s Theorem.

Lemma 2. Suppose A and B are closed bounded subsets of R, where l(A) = a
and l(B) = b. Let C and D be open subsets of A and B respectively. Define

A1 = {a ∈ A : a < c for all c ∈ C},

A2 = {a ∈ A : a > c for all c ∈ C},

B1 = {b ∈ B : b < c for all d ∈ D},

B2 = {b ∈ B : b > c for all d ∈ D}.

If l(C) ≤ min{l(A1), l(A2)} and l(D) ≤ min{l(B1), l(B2)}, then for any γ ∈
[A,B] ∪ [A,B], one of the following holds:

1. γ ∈ [A,B1] ∪ [A,B1],

2. γ ∈ [A,B2] ∪ [A,B2],

3. γ ∈ [A1, B] ∪ [A1, B],

4. γ ∈ [A2, B] ∪ [A2, B].

Proof. By symmetry of cases, assuming a ≤ b is sufficient. Let A = [a1, a2] and
B = [b1, b2], then e = a2 − a1 = a. Therefore,

[A,B] = [a1 + b1, a1 + b1 + 2a] = [a1 + b1, 2a2 − a1 + b1]

[A,B] = [a2 + b2 − 2a, a2 + b2] = [2a1 − a2 + b2, a2 + b2]
(5.2)

Consider the intervals B1 = [b1, x] and B2 = [y, b2]. Depending on the lengths
of the intervals A, B1, and B2, we encounter four distinct cases.
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i. l(A) ≤ min{l(B1), l(B2)}.
In this case e = a2 − a1 = a, (5.2) and

[A,B1] = [a1 + b1, 2a2 − a1 + b1] = [A,B],

[A,B2] = [2a1 − a2 + b2, a2 + b2] = [A,B].

Therefore, we have γ ∈ [A,B1] ∪ [A,B1] or γ ∈ [A,B2] ∪ [A,B2], which
correspond to cases 1 and 2.

ii. l(B2) < l(A) ≤ l(B1).
As in case (i) we have that e = a2 − a1, and therefore

[A,B1] = [A,B] (5.3)

Moreover, for [A,B1], e = a2−a1 and for [A,B2], e
′ = b2−y, where e′ < e,

which gives

[A,B1] = [a2 + x− 2a, a2 + x] = [2a1 − a2 + x, a2 + x],

[A,B2] = [a2 + b2 − 2e′, a2 + b2] = [a2 − b2 + 2y, a2 + b2].
(5.4)

Due to the assumptions that max{l(A1), l(A2)} ≥ l(C) and max{l(B1), l(B2)} ≥
l(D),

y − x = l(D) ≤ l(B2) = b2 − y,

so 2y ≤ x+ b2 and therefore a2 − b2 +2y ≤ a2 +x, hence we conclude from
(5.4) that [A,B1] and [A,B2] overlap. Furthermore, we have that x ≤ b2,
hence 2a1 − a2 + x ≤ 2a1 − a2 + b2. But then

[A,B] = [2a1 − a2 + b2, a2 + b2] ⊆ [2a1 − a2 +x, a2 + b2] = [A,B1]∪ [A,B2].

This and (5.3) again correspond to cases 1 or 2.

iii. l(B1) < l(A) ≤ l(B2).
This problem is analogous to case (ii). We then have that

[A,B] = [A,B2],

and

[A,B] ⊆ [A,B1] ∪ [A,B2].

Thus, this situation corresponds to case 1 or 2.

iv. max{l(B1), l(B2)} < l(A).
Since by assumption, x− b1 ≥ y−x, in this case, l(A) > y−x and 3l(A) >
(x−b1)+(y−x)+(b2−y) = b2−b1 = l(B). Therefore, 3a2−3a1 ≥ b2−b1,
yielding

2a1 − a2 + b2 ≤ 2a2 − a1 + b1.
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From (5.2) this implies that [A,B] and [A,B] overlap, and that therefore

A+B = [A,B] ∪ [A,B]. If we now look at the following four intervals:

[A,B1] = [a1 + b1, a1 − b1 + 2x],

[A,B2] = [a1 + y, a1 + 2b2 − y],

[A,B1] = [a2 + 2b1 − x, a2 + x],

[A,B2] = [a2 − b2 + 2y, a2 + b2],

Because x− b1 ≥ y − x, and therefore 2x− b1 > y, from which we see that

a1 − b1 + 2x ≥ a1 + y,

and it follows that [A,B1] and [A,B2] overlap. Moreover, since b2 − y ≥
y − x, and therefore x ≥ 2y − b2, from which we see that

a2 + x ≥ a2 − b2 + 2y,

which implies that [A,B1] and [A,B2] overlap. Because x− b1 ≥ y− x and
b2 − y ≥ y− x, and given that l(B) = (x− b1)+ (y− x)+ (b2 − y), we have
3l(B1) ≥ l(B) or 3l(B2) ≥ l(B).

If 3l(B1) ≥ l(B), and because l(A) ≤ l(B) by assumption, we have that:

a2 − a1 ≤ b2 − b1 and therefore a2 − a1 ≤ 3(b1 − x),

a2 + 2b1 − x ≤ a1 − b1 + 2x.

Thus we have that [A,B1] and [A,B1] overlap.

Analogously, if 3l(B2) ≥ l(B), then [A,B2] and [A,B2] overlap.

Hence we conclude that γ lies in one of those four intervals, which completes
the proof of this lemma.

Now we will prove that under the same setup as in Theorem 1 and given (C1),
we have that

L(A) + L(B) = [A,B] ∪ [A,B] = [a1 + b1, a1 + b1 + 2e] ∪ [a2 + b2 − 2e, a2 + b2].

Proof. By construction, it is clear that L(A) + L(B) ⊆ [A,B] ∪ [A,B].

For the other direction, suppose that γ ∈ [A,B]∪ [A,B]. By Lemma 2, there ex-
ists a decreasing sequence (A1, B1), (A2, B2), (A3, B3), . . . where for all i, j > 0,
Ai+1 ⊆ Ai, Bj+1 ⊆ Bj , and there are m,n, k, l > 0 such that Ai = Am

k ,
Bj = Bn

l .

In addition, for every i > 0, γ ∈ [Ai, Bi], or γ ∈ [Ai, Bi]. There are two cases:
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1. limi→∞ l(Ai) = 0 and limj→∞ l(Bj) = 0. Take in this case α = limmax(Ai),
i → ∞ and β = limmax(Bj), j → ∞. Then α ∈ L(A), β ∈ L(B), and
γ = α+ β.

2. limi→∞ l(Ai) = s ̸= 0 or limj→∞ l(Bi) = t ̸= 0. Suppose initially that
t > s. Then, there exist i, j > 0 such that Ai = [a1, a2], l(Ai) = s,
and Bj = [b1, b2], l(Bj) = t. According to Lemma 2, the sequence
(A1, B1), (A2, B2), (A3, B3), . . . could have been selected in such a way that
Bj cannot be further partitioned, i.e., Bj ⊆ L(B). Thus, γ ∈ Ai + Bj =
[a1 + b1, a2 + b2].

(a) If a1 + b1 ≤ γ ≤ a1 + b1 + t, set α = a1 and β = γ − a1.

(b) If a1 + b1 + t ≤ γ ≤ a2 + b2, set α = a2 and β = γ − a2.

In both scenarios, α ∈ L(A) since it represents an endpoint of the interval
Ai, and β ∈ L(B). Thus, γ = α+ β ∈ L(A) + L(B).

Now, suppose t = s > 0. Then, there exist i, j > 0 such that l(Ai) = t =
l(Bj). According to Lemma 2.2.5, Ai and Bj could have been selected
such that they are no longer divisible, i.e., Ai ⊆ L(A) and Bj ⊆ L(B).
Therefore, γ ∈ Ai +Bj ⊆ L(A) + L(B).

Now, also suppose Condition (C2) holds. If 1
3 ≤ a

b ≤ 3, then b ≤ 3a and a ≤ 3b.
Therefore, (a2−a1)+(b2−b1) ≤ a+b ≤ 4a and (a2−a1)+(b2−b1) ≤ a+b ≤ 4b.
Also, (a2 − a1) + (b2 − b1) ≤ 4e. Thus, a2 + b2 − 2e ≤ a1 + b1 + 2e.

We thus conclude, L(A)+L(B) = [a1+b1, a1+b1+2e]∪ [a2+b2−2e, a2+b2] =
[a1 + b1, a2 + b2] = A+B, which proves Theorem 1. □

5.2 Proof of Hall’s theorem

In this section, Hall’s theorem, F (4)+F (4) = R, will be demonstrated by intro-
ducing a set A for which the Cantor set L(A) of A equals F (4) and by applying
Theorem 1.

5.2.1 L(A) = F 0(4) with A = [1
2
(
√
2− 1), 2(

√
2− 1)]

We will use the closed and bounded interval A = [ 12 (
√
2− 1), 2(

√
2− 1)] as the

root of a tree for which it holds that L(A) = F 0(4). To demonstrate that A is
a suitable interval for this problem, we will first show that F 0(4) is contained
in A and then obtain the set F 0(4) as a Cantor set of A.
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Two infinite continued fractions which differ in any partial quotient will be un-
equal, and if α = [a0; a1, a2, . . . , an−1, a, . . .] and β = [a0; a1, a2, . . . , an−1, b, . . .]
where if n is even and a < b, then α < β, while α > β if n is odd, see [8] for a
proof. Consequently, it holds that max(F 0(m)) = [0; 1,m] and min(F 0(m)) =
[0;m, 1]. From Section 3.4, we have that these numbers are quadratic irrationals,
namely:

max(F 0(m)) =

√
m2 + 4m−m

2

min(F 0(m)) =

√
m2 + 4m−m

2m
.

Specifically, we have

max(F 0(4)) = 2(
√
2− 1)

and

min(F 0(4)) =
1

2
(
√
2− 1).

Thus, it follows that F 0(4) ⊆
[
1
2 (
√
2− 1), 2(

√
2− 1)

]
= [0.2071068. . . , 0.8284271. . . ].

Now, we will construct a tree similar to the one depicted in Figure 5.1, with
root A =

[
1
2 (
√
2− 1), 2(

√
2− 1)

]
, where L(A) = F 0(4). The tree appears as

follows:

Figure 5.2: The first four layers of the three

Here,

1. T1(b1, b2, . . . , bk) = {[0; b1, . . . , bk, ak+1, ak+2, . . .] : 1 ≤ aj ≤ 4 for all j > k},

2. T2(b1, b2, . . . , bk) = {[0; b1, . . . , bk, ak+1, ak+2, . . .] : 2 ≤ ak+1 ≤ 4, 1 ≤ aj ≤ 4 for all j > k + 1},

3. T3(b1, b2, . . . , bk) = {[0; b1, . . . , bk, ak+1, ak+2, . . .] : 3 ≤ ak+1 ≤ 4, 1 ≤ aj ≤ 4 for all j > k + 1},
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where k ≥ 0, b1, b2, . . . , bk are fixed integers 1 ≤ bi ≤ 4 and [S] is defined to be
the smallest closed interval containing S.

Defining the sets Ti for i = 1, 2, 3 in this way gives us, for example, the sets

T1(1) = {[0; 1, a2, a3, a4, . . .] : 1 ≤ aj ≤ 4 for all j > 1} =
[
[0; 1, 1, 4], [0; 1, 4]

]
,

and

T3() = {[0; a1, a2, a3, a4, . . .] : 3 ≤ a1 ≤ 4, 1 ≤ aj ≤ 4 for all j > 1} =
[
[0; 4, 1], [0; 3, 4, 1]

]
.

Observe that the sets Ti for i = 1, 2, 3 are subsets of F 0(4), as all partial
quotients in these sets belong to the set {1, 2, 3, 4}. The idea behind constructing
the tree is essentially based on the fact that a partial quotient aj with j ≥ 0 of
a regular continued fraction can take any integer value, and we partition these
values based on whether the aj is either equal to 1, equal to a number in the
set {2, 3, 4}, or equal to a number greater than or equal to 5. This process
repeats recursively, allowing us to partition the entire interval A. To be more
precise, each of the sets Ti for i = 1, 2, 3 are divided into two closed subintervals
separated by a Cantor Gap in the following way:

1. An interval of type T1 can be divided into two intervals: one of type T1

with ak+1 = 1, 1 ≤ aj ≤ 4 for j > k + 2, and another of type T2 with
2 ≤ ak+1 ≤ 4, 1 ≤ aj ≤ 4 for j > k + 2. The corresponding Cantor Gap
then contains all other points of the interval of type T1 that are not of
these two types, namely the points with partial quotients aj ̸∈ {1, 2, 3, 4}
for j > k.

2. An interval of type T2 is divided into an interval of type T1 with ak+1 = 2,
where 1 ≤ aj ≤ 4 for j > k + 2, and one of type T3 with 3 ≤ ak+1 ≤ 4,
where 1 ≤ aj ≤ 4 for j > k + 2.

3. An interval of type T3 is divided into one interval of type T1 with ak+1 = 3,
where 1 ≤ aj ≤ 4 for j > k + 2, and another interval of type T1 with
ak+1 = 4, where 1 ≤ a1 ≤ 4 for j > k + 2.

When dividing the sets A, T1, T2, and T3 in this way, this recursively defines the
complete binary tree where the first four layers are shown in Figure 5.2.1. For
example, the first layer of the tree given in Figure 5.2.1 will consist of

T1(1) = [[0; 1, 1, 4], [0; 1, 4]] = [0.546718 . . . , 0.8284271 . . . ],

T2() = [[0; 4, 1], [0; 2, 4, 1]] = [0.2071068 . . . , 0.453082 . . .],

C1
0 = A \ (T1(1) ∪ T2()) = [0.453082 . . . , 0.546718 . . . ],

where root A is divided into the sets T1(1), T2() and the Cantor Gap C1
0 :
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Figure 5.3: The interval A divided into T1(1), C
1
0 and T2()

The intervals Ti for i = 1, 2, 3 and Cn
k form a General Cantor Point Set con-

taining all points where the regular continued fraction expansion only contain
partial quotients less than or equal to 4. Consequently, we can conclude that
L(A) = F 0(4).

5.2.2 Applying Theorem 1 on F (4) + F (4)

In Section 5.2.1 we have demonstrated that L(A) = F 0(4) where A = [ 12 (
√
2−

1), 2(
√
2−1)]. If conditions (C1) and (C2) from Theorem 1 are met for L(A) =

F 0(4), then F 0(4)+F 0(4) = A+A = [
√
2−1, 4(

√
2−1)] = [0.4142136 . . . , 1.656854 . . . ],

of length 3(
√
2− 1) = 1.242641 . . . .

We will start by examining Condition (C1), which states:

(C1) for every n > 0 and k < 2n, one has

cnk ≤ min{a2kn , a2k+1
n } and dnk ≤ min{b2kn , b2k+1

n }.

Recall that, for example, a2kn is defined as the length of the interval A2k
n .

Let pk−1

qk−1
and pk

qk
be the last two convergents of [0; b1, . . . , bk], implying that

pk

qk
= [0; b1, . . . , bk], as discussed in Section 3.2. Additionally, define ξ = 1

2 (
√
2+

1) = [1; 4, 1]. Then ξ satisfies the following relations:

4ξ =
[
4; 1, 4

]
= 2(

√
2 + 1) (5.5)

1

ξ
=

[
0; 1, 4

]
= 4ξ − 4. (5.6)

Let b1, b2, . . . , bk ∈ {1, 2, 3, 4}, then there are three cases based on how the sets
Ti for i = 1, 2, 3 were divided into two closed subintervals separated by a Cantor
Gap in Section 5.2.1.

1. For case 1, denote by t1, c, t2 respectively the lengths of the intervals
T1(b1, . . . , bk, 1), T2(b1, . . . , bk) and the corresponding Cantor Gap C. It
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follows that the extremes of T1(b1, b2, . . . , bk) are,

µ =
[
0; b1, b2, . . . , bk, 1, 4

]
=

ξpk + pk−1

ξqk + qk−1

ν =
[
0; b1, b2, . . . , bk, 4, 1

]
=

4ξpk + pk−1

4ξqk + qk−1

where if k is even, µ = max(T1) and ν = min(T1) and if k is odd, µ =
min(T1) and ν = max(T1). Then by Equation (3.7), it follows that

t1 =
1 + 1

ξ − ξ

qk(1 +
1
ξ + qk−1

qk
)(ξ + qk−1

qk
)

Similarly, upon computation, we obtained values for c and t2, yielding:

c =
2 + 1

4ξ − 1− 1
ξ

qk(2 +
1
4ξ + qk−1

qk
)(1 + ξ + qk−1

qk
)

t2 =
4ξ − 2− 1

4ξ

qk(4ξ +
qk−1

qk
)(2 + 1

ξ + qk−1

qk
)

Since the relation obtained in Equation (5.6) holds and since 0 ≤ qk−1 < qk
and thus 0 ≤ qk−1

qk
< 1, we have that:

c

t1
=

(4− 3ξ)(ξ + qk−1

qk
)

(3ξ − 3)(1 + ξ + qk−1

qk
)

c

t2
=

(4− 3ξ)(4ξ + qk−1

qk
)

(3ξ − 1)(4ξ − 3 + qk−1

qk
)
.

Observe that c
t1

as a function of qk−1

qk
takes its maximum at qk−1

qk
= 1, while

c
t2

as a function of qk−1

qk
takes its maximum at qk−1

qk
= 0. Consequently,

c

t1
≤ (4− 3ξ)(ξ + 1)

(3ξ − 3)(2 + ξ)
< 1

c

t2
≤ (4− 3ξ)(4ξ − 1)

(3ξ − 1)(4ξ − 3)
< 1.

Thus, we find that c < t1 and c < t2 and thus Condition (C1) is satisfied
for first type subdivisions.

Cases 2 and 3 are proven in a similar manner to case 1; therefore, only
the results are presented.

2. Denote by t1, c, t2 the lengths of the intervals T1(b1, . . . , bk, 2), T3(b1, . . . , bk)
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and the corresponding Cantor Gap C, respectively. Then we have that

t1 =
2 + 1

ξ − 2− 1
4ξ

qk(2 +
1
ξ + qk−1

qk
)(2 + 1

4ξ + qk−1

qk
)
,

c =
3 + 1

4ξ − 2− 1
ξ

(2 + 1
ξ + qk−1

qk
)(3 + 1

4ξ + qk−1

qk
)
,

t2 =
4ξ − 3− 1

4ξ

qk(3 +
1
4ξ + qk−1

qk
)(4ξ + qk−1

qk
)
,

satisfying c < t1 and c < t2 and thus Condition (C1) is satisfied for this
case.

3. Denote again by t1, c, t2 the lengths of the intervals T1(b1, . . . , bk, 3), C,
and T1(b1, . . . , bk, 3), respectively. Then

t1 =
3 + 1

ξ − 3− 1
4ξ

qk(3 +
1
ξ + qk−1

qk
)(3 + 1

4ξ + qk−1

qk
)
,

c =
4 + 1

4ξ − 3− 1
ξ

(3 + 1
ξ + qk−1

qk
)(4 + 1

4ξ + qk−1

qk
)
,

t2 =
4ξ − 4− 1

4ξ

qk(4 +
1
4ξ + qk−1

qk
)(4ξ + qk−1

qk
)
,

Again, Condition (C1) is satisfied for this subdivision.

We thus conclude that Condition (C1) is satisfied for all the subdivisions of A.

Furthermore, Condition (C2), which states:

(C2)
1

3
≤ a

b
≤ 3,

is also satisfied since a
b = a

a in our case. This means that Theorem 1 can be ap-

plied. Hence L(A)+L(A) = A+A and thus F 0(4)+F 0(4) = [
√
2−1, 4

√
2−4].

This implies that every element within [12 ,
3
2 ] can be written as the sum of

two elements of F 0(4). Consequently, it follows that every element of R can
be written as the sum of two elements of Fn(4), and thus we conclude that
F (4) + F (4) = R, which completes the proof of Hall’s theorem. □

Using similar techniques, analogous results were obtained by Cusick [2], Divis
[4], Astels [1], and Hlavka [9]. In 1971, T. Cusick proved in [2] that every real
number is representable as a sum of two real numbers, each of which has a
fractional part whose continued fraction expansion contains no partial quotient
less than 2. In 1973, B. Divis showed in [4] that

F (3) + F (3) + F (3) = R
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and that
F (3) + F (3) ̸= R.

Moreover, in 1975, J. Hlavka generalized Hall’s result to the case of different
sets F (m) and F (n) in [9]. He proved that

F (m) + F (n) = R

holds for (m,n) equal to (2, 7) or (3, 4), but does not hold for (m,n) equal to
(2, 4). In 1999, S. Astels [1] examined the difference of two sets F (m) and F (n).
Note that if A is a set of real numbers, we define −A by

−A = {−a | a ∈ A}

and denote A+ (−B) by A−B. He showed that

F (m)− F (n) = R

holds if (m,n) equals (2, 5), (3, 3), or (3, 4).

Moreover, in 2013, N. Oswald and J. Steuding proved in [10] that every x ∈ R
can be written as the sum of an integer and at most

⌊
b+1
2

⌋
NICF (see Chapter

3.5) each having partial quotients of at least b.



Chapter 6

Hall-type results for Lüroth
Series

In this chapter, we will demonstrate how Hall’s result can be applied to Lüroth
series in a similar way as we did in Chapter 5 with regular continued fractions.
Define for N ∈ Z:

Fn
L (m) = {⟨a0; a1, a2, a3, . . .⟩ ∈ R : a0 = n, ∀i ≥ 1 : 2 ≤ ai ≤ m}

and FL(m) = ∪
n∈Z

Fn
L (m). We will show that the following equation holds:

FL(4) + FL(4) = R. (6.1)

Note that for the Lüroth series, the digits ai for i ≥ 1 are greater or equal to
2, whereas for the RCF, the partial quotients are greater or equal to 1. This
means we only need 3 digits for FL(4) in (6.1) instead of 4 partial quotients for
F (4) in (5.1).

As can be seen in Figure 4.1, for the Lüroth map L, it holds that if x and y
have the same first digit and

if x < y then L(x) < L(y). (6.2)

We have chosen to examine the standard Lüroth series instead of the alternating
Lüroth series due to the fact that this equation holds, causing the digits of the
Lüroth series to behave differently from the partial quotients of the RCF. More-
over, the alternating Lüroth series is essentially the linear version of the RCF,
as shown in Figure 4.2, and therefore we expect Hall-type results for the alter-
nating Lüroth series would be more similar to Hall-type results for the RCF.
Nevertheless, it would be interesting to look into this in further research.

As a consequence of Equation (6.2), it holds that max(F 0
L(m)) = ⟨0; 2⟩ and

min(F 0
L(m)) = ⟨0;m⟩. Therefore, we have that max(F 0

L(4)) = ⟨0; 2⟩ = 1 and

41
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min(F 0
L(4)) = ⟨0; 4⟩ = 0.27. It follows that F 0

L(4) ⊆ [⟨0; 4⟩, ⟨0; 2⟩] = [0.27, 1].
Thus, in this case, we will look at the set A = [0.27, 1] in order to apply Theorem
1 again.

We will now construct a tree similar to the one depicted in Figure 5.1, with root
A = [0.27, 1], where L(A) = F 0

L(4). Let us first define the following sets:

1. T1(b1, . . . , bk) = {⟨0; b1, . . . , bk, ak+1, . . .⟩ : ak+1 = 2, 2 ≤ aj ≤ 4 for all j > k + 1},

2. T2(b1, . . . , bk) = {⟨0; b1, . . . , bk, ak+1, . . .⟩ : 3 ≤ ak+1 ≤ 4, 2 ≤ aj ≤ 4 for all j > k + 1},

where k ≥ 0, b1, b2, . . . , bk are fixed integers 2 ≤ bi ≤ 4.

Note that because Equation (6.2) holds, the union of the disjoint intervals T1() =
[ 12 , 1] and T2() = [0.27, 1

2 ] completely covers the set A = [0.27, 1]. This implies
that the first subdivision of the tree, where we divide the root A into T1() and
T2(), will not result in a corresponding Cantor Gap C. The first two layers of
the tree then appear as follows:

Figure 6.1: The first two layers of the tree

However, in the third layer of the tree, the first two Cantor Gaps appear when
dividing the intervals T1() and T2() as follows:

Figure 6.2: The interval T1() divided into T1(2), T2(2) and C1
0
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Figure 6.3: The interval T2() divided into T1(3), T2(3), T1(4), T2(4) and C1
1

These subdivisions, together with Figure 6.1 lead to the first three layers of the
tree:

Figure 6.4: The first three layers of the tree

To generalize the process of building the tree, each of the sets Ti for i = 1, 2 are
divided in the following way:

1. An interval of type T1 is divided into three intervals: one of type T1 with
bk = 2, one of type T2 with bk = 2 and the corresponding Cantor Gap C.

2. An interval of type T2 is divided into 5 intervals, namely one interval of
type T1 with bk = 3, one interval of type T1 with bk = 4, one of type T2

with bk = 3, one of type T2 with bk = 4 and the corresponding Cantor
Gap C.

When dividing the sets Ti for i = 1, 2 in this way, this recursively defines the
complete binary tree with root A = [0.27, 1], where the first three layers are
shown in Figure 6.4. The intervals Ti for i = 1, 2 and Cn

k form a General Cantor
Point Set containing all points where the Lüroth series only contain digits less
than or equal to 4. Consequently, we can conclude that L(A) = F 0

L(4). More-
over, if conditions (C1) and (C2) from Theorem 1 are met for L(A) = F 0

L(4),
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then Equation (6.1) follows.

Condition (C2), which states:

(C2)
1

3
≤ a

b
≤ 3,

is satisfied since a
b = a

a in this case. The only thing left is to show condition
(C1) is satisfied. We will demonstrate that (C1) holds for the third layer of
the tree and for the subdivision of T1(2) and our conjecture is that condition
(C1) holds in general. However, we intend to work on this conjecture shortly.

Let us now check condition (C1) for the two Cantor Gaps in the third layer of
the tree given in Figure 6:

1. l(C1
0 ) =

5
8 −

1
2 = 1

8 , l(T2(2)) =
3
4 −

5
8 = 3

8 and l(T1(2)) = 1− 3
4 = 1

4 . Thus
it holds that

l(C1
0 ) =

1
8 < min{ 3

8 ,
1
4} = 1

4 .

2. l(C1
1 ) =

3
8 − 1

3 = 1
24 , l(T1(3) ∪ T2(3)) =

1
2 − 3

8 = 1
8 and l(T1(4) ∪ T2(4)) =

1
3 − 0.27 = 0.06. Thus it holds that

l(C1
1 ) =

1
24 < min{ 1

8 , 0.06} = 0.06.

We conclude that condition (C1) is satisfied for this layer of the tree. To con-
vince the reader that our conjecture holds, we also examine one of the intervals
at the next level of the tree, specifically T1(2). According to the earlier descrip-
tion of the tree construction, the segment of the fourth layer containing T1(2)
will be:

Figure 6.5: The segment of the fourth layer containing T1(2)

Here, the interval T1(2) is divided as follows:
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Figure 6.6: The interval T1(2) divided into T1(2, 2), T2(2, 2) and C2
0

From Figure 6.6, we see that l(C2
0 ) =

13
16 − 3

4 = 1
16 , l(T2(2, 2)) =

7
8 − 13

16 = 1
16

and l(T1(2, 2)) = 1− 7
8 = 1

8 . Thus it holds that

l(C2
0 ) =

1
16 ≤ min{ 1

16 ,
1
8} = 1

16

and again condition (C1) is satisfied for this specific part of the tree. Given
that the rest of the tree is constructed in the same way as depicted in Figures
6.4 and 6.5, this example broadly suggests that condition (C1) is valid for any
interval of type T1. We expect that the same applies to the case where we have
an interval of type T2, and therefore, we expect our conjecture to hold. This
still needs to be formally written down in a general form, which we intend to do
shortly. However, if this proves to be the case, we can conclude that Theorem
1 applies, which means Equation (6.1) is proven.
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Chapter 7

Conclusion

This thesis provided an introduction of Cantor sets, examined various number
expansions, such as r-ary expansions, regular continued fractions, and Lüroth
series and analyzed how the summation of Cantor sets can be related to these
number expansions. For this, a foundational understanding of constructing Can-
tor sets and properties related to these number expansions were needed.

Initially, we demonstrated through ternary expansions and a graphical proof how
the sum C + C, where C is the Cantor Middle Third set, equals the interval
[0, 2]. This fundamental result served as a key motivation for Marshall Hall to
delve deeper into the summation of Cantor sets. In 1947, M. Hall proved in [6]
that

F (4) + F (4) = R,
where F (m) is defined as the set of irrational numbers with partial quotients
ai ≤ m for i ≥ 1 and a0 ∈ Z. For the proof of this result, several lemmas and
theorems were introduced and proved, and a tree was constructed that demon-
strates that F (4) is the Cantor set of A = [ 12 (

√
2− 1), 2(

√
2− 1)].

Moreover, by defining

FL(m) = {⟨a0; a1, a2, a3, . . .⟩ ∈ R : a0 ∈ Z,∀i ≥ 1 : 2 ≤ ai ≤ m},

and constructing a tree to verify that FL(4) forms the Cantor set of A = [0.27, 1],
we can apply the same lemmas and theorems. This establishes the following
Hall-type result for Lüroth series:

FL(4) + FL(4) = R.

Not all aspects of the proof for this equation have been finalized. However,
we are confident in our conjecture that the equation holds, and we intend to
confirm this shortly. Additionally, further studies could examine whether Hall’s
result and similar results by Cusick [2], Divis [4], Astels [1], and Hlavka [9]
can be applied to other number expansions, such as r-ary expansions or the
alternating Lüroth expansion.

47



48 CHAPTER 7. CONCLUSION



Bibliography

[1] S. Astels. Cantor sets and numbers with restricted partial quotients. Trans-
actions of the American Mathematical Society, 352(1):133–170, 2000.

[2] T. W. Cusick. Sums and products of continued fractions. Proceedings of
the American Mathematical Society, 27(1):35–38, 1971.

[3] Karma Dajani and Cor Kraaikamp. Ergodic theory of numbers, volume 29
of Carus Mathematical Monographs. Mathematical Association of America,
Washington, DC, 2002.

[4] B. Divis. On the sums of continued fractions. Acta Arithmetica, 22:157–170,
1973.

[5] Bernard R. Gelbaum and John M. H. Olmsted. Counterexamples in Anal-
ysis. Dover Publications, New York, kindle edition edition, July 2012.

[6] Marshall Hall. On the sum and product of continued fractions. Annals of
Mathematics, 48(4):966–993, 1947.

[7] G. H. Hardy and E. M. Wright. An Introduction to the Theory of Numbers.
5th edition, 1985.

[8] Y. Hartono. Ergodic Properties of Continued Fraction Algorithms. doctoral
thesis, Delft University of Technology, 02 2003.

[9] James L. Hlavka. Results on sums of continued fractions. Transactions of
the American Mathematical Society, 211:123–134, 1975.

[10] Nicola Oswald and Jörn Steuding. Sums of continued fractions to the
nearest integer. Annales Univ. Sci. Budapest., Sect. Comp., 39:321–332,
2013.

[11] David Wells. Game, Set and Math: Enigmas and Conundrums. Penguin
Books, London, paperback edition, September 1991.

49


