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Can Shared Mobility Compensate for
Public Transport Disruptions? The Case
of Milan’s Bike Sharing System During
the COVID-19 Pandemic

Georgia Liouta1, Giorgio Saibene2 , Niels van Oort1 ,
Oded Cats1 , and Frederik Schulte1

Abstract
The COVID-19 pandemic poses an unprecedented challenge for public transport systems. The capacity of transport systems
has been significantly reduced because of the social distancing measures. Therefore, new avenues to increase the resilience of
public urban mobility need to be explored. In this work, we investigate the integration of bike sharing and public transport
systems to compensate for limited public transport capacity under the disruptive impacts of the COVID-19 pandemic. As a
first step, we develop a data analysis model to integrate the demand of the two underlying systems. Next, we build an optimi-
zation model for the design and operation of hybrid mixed-fleet bike sharing systems. We analyze the case of the subway and
public bike sharing systems in Milan to assess this approach. We find that the bike sharing system (in its current state) can
only compensate for a minor share of the public transport capacity, as the needs in fleet and station capacity are very high.
However, the resilience of public urban mobility further increases when new design concepts for the bike sharing system are
considered. An extension to a hybrid free-floating bike and docked e-bike system doubled the covered demand of the system.
An extension of the station capacity of about 37% yields an additional increase of the covered demand by 6.5%–7.5%. On the
other hand, such a hybrid mixed-fleet bike sharing system requires many stations and a relatively large fleet to provide the
required mobility capacity, even at low demand requirements.

Keywords
pedestrians, bicycles, human factors, bike sharing, public transportation, capacity, elderly, Mobility as a Service, shared, transit,
crowding

The global impact of the COVID-19 pandemic on the
mobility and transportation sector has been established
in multiple cases. Because of the high transmissibility of
the virus, the outbreak was recognized as a pandemic in
March 2020 (1). Measures such as quarantine, lockdown,
social distancing, travel restrictions, closing of restau-
rants and schools, and isolation help to reduce the spread
of corona viruses and are followed by many governments
(2–4). The proposed measures for social distancing in
closed places have a great impact on the mobility capac-
ity of public transport systems (PTSs) (5, 6).

PTSs are mostly closed, crowded spaces that increase
the chances of transmitting viruses such as the COVID-
19 virus from infected to uninfected people (7, 8).
COVID-19-related studies found a significant impact of

infections in public transit systems on the overall infec-
tion speed (9) as well as a relation between the number
of new daily cases and the number of mobility trips per-
formed in the preceding three weeks (10). The aforemen-
tioned studies conclude that PTSs are sources of COVID-
19 virus transmission. Therefore, social distancing mea-
sures have been implemented that reduce the mobility
capacity of PTSs. The result of the implementation of
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these measures can be seen, for instance, in the case of
the Milan subway in Italy (illustrated in Figure 1).

The limited capacity of PTSs because of the COVID-
19 distancing measures (i.e., mostly 1–2m between pas-
sengers), the precautionary behavior of people, and the
gradual return to normal life rhythms lead to PTSs being
in unprecedented states (11, 12). A central issue is the
excessive demand, which is not satisfied by the PTSs and
pushes for an alternative that enables people to move
safely. There are several alternatives that can be inte-
grated with PTSs to create systems that can accommo-
date this new situation. However, traffic congestion in
most cities and air pollution are calling for green alterna-
tives that do not burden the network too much. In line
with this paradigm, the city of Milan has converted pub-
lic roads into bicycle lanes during the pandemic.
Furthermore, subsidies for personal bicycles have been
discussed by several authors (13). In particular, subsidies
for e-bikes are recognized as policy options during the
pandemic. Personal bicycles may present an alternative
whenever the PTS capacity is limited. However, in con-
trast to bicycles as part of a bike sharing system (BSS),
these bicycles do not add to the publicly available mobi-
lity options. A recent study on public transit strikes (14)
concludes that integrating BSSs into the PTS increases
the system’s resilience to disruptive events. Moreover,
several studies investigate the interplay of bike sharing
and public transport in cities such as Poznań (15), Oslo
(16), and Vienna (17). Recent literature has further
stressed the importance of reliable service quality in
shared mobility (18), possibly implemented in different

service zones (19). Nevertheless, hardly any research con-
siders disruptive events comparable to the COVID-19
pandemic and, to the best of our knowledge, there is no
study available that explicitly considers the COVID-19
scenario. In this work, we propose and evaluate an
operational integration of PTSs and BSSs to meet the
mobility demand of cities in the face of disruptive events
such as the recent COVID-19 pandemic. With this inte-
gration and the efficient design and operation of the
BSS, a new integrated PTS is created that is suitable to
deal with excessive unsatisfied demand because of the
social distancing measures or similar capacity-limiting
disruptive events.

The main challenge in implementing this integrated
alternative is the method of designing and operating the
BSS to provide safe mobility for all unsatisfied demand
(i.e., demand exceeding the capacity implied by the 1.5m
distance criterion). Thus, the proposed approach is sup-
ply-oriented. In this work, we focus on the optimal
design and operation of a mixed-fleet hybrid BSS
(MFHBSS) considering the COVID-19 situation and
aiming to create an integrated PTS. To this end, we pro-
pose a data analysis model to integrate the demand of
the two underlying systems and develop an optimization
model with a maximal location covering approach (20)
for the design and operation of a MFHBSS. Such a sys-
tem integrates free-floating and station-based bike shar-
ing with electric and conventional bicycles to consider
the requirements of elderly passengers. We analyze the
case of the subway and public BSSs in Milan to evaluate
the proposed methodology.

Related Work

The reduced public transport capacity caused by social
distancing measures, the increased likelihood of the virus
spreading in PTSs, the need for people to keep moving,
and reservations against PTSs strengthen the need to
find a safe alternative to satisfy the mobility demand of
people. The safe alternative, which could be integrated
with current PTSs to maintain mobility capacity, could
be BSSs. This choice is reinforced by many cities around
the world, as they try to deal with social distances mea-
sures, becoming more friendly to pedestrians and cyclists
by providing them with more urban space (21, 22).
Moreover, in this situation, there is a surge of people
turning to BSSs (23, 24), as bike sharing is perceived to
be safer than public transit (25), increasing the impor-
tance of bike sharing as an alternative to public transit.

BSSs can complement or substitute existing PTSs (17,
26–28). Moreover, a BSS can be a solution in the event
of a long-term or short-term disruption of the PTS (14,
29, 30). An element to consider for the efficiency of a
BSS is its design and operation. This type of problem

Figure 1. Social distancing measures affect the capacity of public
transport systems. Here, it is shown how the implementation of
the general rule of social distancing (i.e., 1.5 m between
passengers) affects the capacity of subway trains and the bike
sharing system (BSS) demand in Milan. The red dots represent
subway stations, while the black dots represent BSS stations.
(Color online only.)
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can be addressed by optimization models. The main
objective categories of these models are the maximization
of demand coverage (31–34), the minimization of trans-
portation costs and overall costs (35–38), and the maxi-
mization of profit (39, 40). Moreover, there are studies
that use different approaches to design and operate a
BSS, such as simulation approaches (41–43). Table 1 pre-
sents the above studies in summary.

There are many works that study the design and oper-
ation of a BSS. The optimization models developed in
each study differ in features, such as the level of service
or the costs of the system, that are considers in their for-
mulation. These features are expressed in the objective
function and the type of constraints of the models. Most
of the reported research includes constraints related to
various costs of a BSS or their objective function refers
to the cost or profit of the system. This means that the
level of service offered by the BSSs designed by these
optimization models is limited by the available budget. It
is also observed that the optimization models concern
the design and operation of either free-floating systems
or docked systems, whose characteristics differ. The
main difference is that the design of the docked system

requires the installation of stations, while in the free-
floating system there may be no stations. Moreover, it is
observed that only one study (39) approaches the design
of a mixed-fleet bike and e-bike BSS. Therefore, there is
no study that simultaneously designs a BSS consisting of
a mixed-fleet—bike and e-bike—where the bike system is
free floating, while the e-bike system is docked. Finally,
none of the reviewed studies consider extreme situations
and disturbances in the PTS, such as a pandemic situa-
tion and distancing constraints. In the case that the sys-
tem costs are not considered, it leads to the development
of an optimization model that can provide the design
and operation of a BSS designed to provide increased
mobility capacity. In addition, a mixed-fleet BSS can
serve different cases of people, such as young people, the
elderly, or people with vulnerable health conditions and
those traveling different distances. A hybrid system can
cope with the increased demand that results from the dis-
tancing constraints, as it combines the positives of
docked and free-floating systems. To the best of the
authors’ knowledge, this is the first study that considers
a pandemic situation and mobility needs arising because
of distancing constraints on the PTS and seeks to

Table 1. Summary Table of Past Research on BSS Design and Operation

Reference Problem

Objective

Method CaseMDC MUD MP MC

Caggiani et al. (35) Bike station na na na = ILP AC
Cxelebi et al. (31) Bike station na = na na MINLP Istanbul
Fernández et al. (41) Bike location na na na na ABS Madrid
Frade and Ribeiro (32) Bike station na na na na na na

Bike relocation = na na na LP Coimbra
Jian et al. (42) Bike allocation na na na na na na

Dock allocation na = na na SO New York City
Lin and Yang (36) Bike station na na na na na na

Bikeways na na na = INLP AC
Martinez et al. (39) (E)Bike station na na na na na na

(E)Bike relocation na na = na MILP Lisbon
Park and Sohn (33) Bike station = na na na BILP Seoul
Saharidis et al. (34) Bike station na = na na PILP Athens
Sayarshad et al. (40) Bike station na na na na na na

Bike relocation na na = na ILP Tehran
Soriguera et al. (43) Bike rebalancing na na na na na na

Bike relocation na na na = ABS Barcelona
Yan et al. (37) Bike station na na na na na na

Bike relocation = MILP Taipei
Yuan et al. (38) Bike station, na na na na na na

Bike relocation na na na = MILP Beijing
This paper Bike station na na na na na na

E-bike station = na na na MILP Milan
(E)Bike relocation

Note: MDC = maximization of demand coverage; MUD = minimization of unmet demand; MP = maximization of profit; MC = minimization of costs. LP =

linear program; ILP = integer linear program; MILP = mixed-integer linear program; INLP = integer non-linear program; MINLP = mixed-integer non-linear

program; BILP = binary integer linear program; PILP = pure integer linear program; SO = simulation–optimization; ABS = agent-based simulation; AC =

artificial case; BSS = bike sharing system; na = not applicable.
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integrate the PTS and the BSS with regard to mobility
capacity. That is, the study deals with the creation of a
resilient PTS that can provide mobility capacity in
extreme and special situations. In addition, it is the first
research to develop a BSS optimization model that incor-
porates the design and operation of a mixed-fleet system
as well as a different design approach—free floating and
docked—of the two-mode system. All the above features
create an advanced optimization model that optimizes
the design and operation of bike and e-bike systems sep-
arately but simultaneously.

Modeling Approach

In this section, we introduce the applied modeling frame-
work, the data analysis approach to integrate the PTSs
and BSSs, and the developed optimization model.

Modeling Framework

The modeling framework of the study, which includes
the integration of the PTSs and BSSs and the optimiza-
tion model of the MFHBSS under the impacts of social
distancing measures, is shown in Figure 2.

Integration of Public Transport and Bike Sharing
Systems

The objective of the integration of the two systems is to
find the demand per system so as to then adjust the capa-
cities in an integrated fashion. The approach to achieving
this integration is based on the factors of the pandemic,
namely the capacity constraints on the PTS and the new
bike system network. The first step is to create a mathe-
matical data analysis model that calculates the permissi-
ble boarding of demand per station of each pubic
transport vehicle and exports the unsatisfied demand per
station. The model gives priority to boarding passengers
with the farthest destination. The inputs of the model are
the capacity of the vehicle (with regard to passengers that
can be transported by the vehicle), the percentage of per-
missible occupancy (i.e., the allowed load of passengers)
because of the distancing constraints, the number of sche-
dules, and the demand of the PTS. The outputs of the
model are the vehicle load, the demand satisfied by the
vehicle and its destination station, and the unsatisfied
demand and the respective destination station. Therefore,
the destination pairs of the unsatisfied demand are
known. The result of this model is the distribution of
demand in PTSs and BSSs.

Here, P is the set of stations indexed by i and j, k is the
index for the schedule, ldk, i is the load of schedule k in
station i, demk, i, j is the demand from station i to station j

for schedule k, undemk, i, j is the unmet demand from

station i to station j for schedule k, ac is the allowed
capacity on the vehicle, ubk, i is the debarkation passen-
gers in station i for schedule k, and bk, j is the boarding
passengers at station i for schedule k.

Subsequently, the integration approach is described.
For the first station 1 of the line, in the case in which the
vehicle demand is lower than the available vehicle capac-
ity because of the distancing constraints, the following
holds:

ldk, 1 =
X

j2P

(demk, 1, i) ð1Þ

undemk, 1, j = 0 8j 2 P ð2Þ

Equation 1 states that the load of the vehicle schedule k

at the first station is equal to the sum of the demand of
the first station to all the other stations of this line. The
unsatisfied demand of the schedule k from the first sta-
tion to any other station is zero (Equation 2).

In the case in which the demand is higher than the
available vehicle capacity because of the distancing con-
straints, the following holds:

ldk, 1 = ac ð3Þ

Figure 2. Modeling framework, showing the various steps of the
process and their sequence. The rectangles represent a process
or a state, while parallelograms are used for input or output
operation. The arrows connect the symbols and indicate the flow
of the process and information.

370 Transportation Research Record 2678(12)



undemk, 1, j =
X

j2P

(demk, 1, j) � ac 8j 2 P ð4Þ

The load of the schedule k at the first station is equal to
the allowed capacity of the vehicle because of the distan-
cing constraints (Equation 3). In this case the unsatisfied
demand, Equation 4, of the schedule k from the first sta-
tion to a station j is equal to the sum of the demand from
the first station to all other stations minus the allowed
capacity on the vehicle.

For all other stations of the line, in the case in which
the vehicle load is lower than the available vehicle capac-
ity because of the distancing constraints, the following
holds:

ubk, i =
X

(demk, 1:i, i � undemk, 1:i, i) ð5Þ

bk, i =
X

(demk, i, i+ 1:P) ð6Þ

ldk, i = ldk, i�1 � ubk, i + bk, i ð7Þ

undemk, i, j = 0 8j 2 P ð8Þ

Equation 5 determines that the passengers who disem-
bark from the schedule k in station i are equal to the
total demand of all the previous stations that have as a
destination the station i if you exclude the unsatisfied
demand of all the previous stations that have as a desti-
nation the station i, while passengers boarding the sched-
ule k at the station i are equal to the total demand from
the station i to all subsequent stations (Equation 6). The
load of the schedule k at the station i is equal to the load
of the schedule k at the previous station (i� 1) and the
passengers who want to board at station i minus the pas-
sengers who want to disembark at the station i (Equation
7). Equation 8 states that there is no unsatisfied demand
for the schedule k from station i to any other station j.

In the case in which the vehicle load is higher than the
available vehicle capacity because of the distancing
constraints:

ldk, i = ac ð9Þ

undemk, i, j = ldk, i�1 � ac� ubk, i + demk, i, j 8j 2 P ð10Þ

Equation 9 specifies that the load of schedule k at station
i is equal to the allowed capacity of the vehicle, while the
unsatisfied demand of schedule k from station i to sta-
tion j is equal to the vehicle load at the previous station
(i� 1) and the demand of station i to the station j after
subtracting the allowed capacity of the vehicle and pas-
sengers disembarking at station i (Equation 10).

The second step of the integration approach is to sep-
arate BSS demand into bike demand and e-bike demand.
This can be achieved based on the travel distances. The
data for this step are the unsatisfied demand from the
PTS, the travel distances of the bike network, which has

been extended because of the pandemic situation,
between the stations of the PTS with unsatisfied demand,
and the rates of use per mode—bike and e-bike—for spe-
cific distance clusters. The result of this integration is the
separation of the existing demand of the PTS into the
demand of the PTS and the demand for bikes and the
demand for e-bikes of the BSS.

Optimization Model

We introduce an optimization model to determine the
optimal design and operation of a hybrid mixed-fleet
BSS compensating for the limited capacity in the PTS
because of social distancing constraints. The notation
used to represent the elements of the optimization model
is shown in Table 2.

This is achieved by maximizing the covered demand
considering location and relocation constraints. Most
bike sharing models assume a cost-based optimization
approach; in this case, however, we set out to examine
how many stations with how many bikes would be
needed to cover the excess demand for public transit.
Therefore, we model the problem based on a maximal
covering location approach, introduced by Church and
ReVelle (20), which maximizes the demand covered by
the BSS.

The model has some inputs and outputs. The inputs
are a set of stations, the demand of the bike and e-bike
systems, the values for the parameters of maximum and
minimum capacity, the maximum available bikes in a vir-
tual station, the maximum and minimum percentage of
used capacity of the e-bike system, and the number of
time periods. A virtual station is a station that does not
exist yet but may be opened to cover the additional
demand (as a result of the decisions proposed by the
optimization model). That is, within the model, all sta-
tions are treated as virtual stations. For simplicity, we
subsequently refer to virtual stations only as stations.
Furthermore, we focus on the capacity and supply of a
system. This is an important assumption, since we want
to provide a viable alternative to PTS capacity and we
must ensure that most PTS users would be able to use
this alternative, even if they are not in physical shape for
longer (non-electric) bike rides. That is, we aim to satisfy
a certain share of e-bike demand, even if users may
switch between modes if they cannot use their preferred
choice. Time periods are essentially the number of peri-
ods into which a day is divided. This number can be
determined in each case study based on its data. The
model satisfies the demand of the system but also relo-
cates bikes and e-bikes, so there should be a balance
between them when determining the number of time peri-
ods. In addition, the values of maximum and minimum
capacity and percentage of used capacity can be
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determined based on the literature, or there can be varia-
tion in their range of values. This depends on the require-
ments of each case study. The parameter for the
maximum number of bikes in a station depends on each
case of study, that is, the availability of public space. The
outputs of the optimization model are the covered
demand of the hybrid mixed-fleet BSS, the number of
stations, the sizes of the bike and e-bike fleets, the num-
ber of bikes and e-bikes at stations in each time period,
the number of relocated bikes and e-bikes per station
pair in each time period, the portion of covered demand
per station pair in each time period, and the number of
stations of the e-bike system.

In the following, the model is presented:

Max Z =
X

i2J

X

j2J

X

t2T

(ui, j, t � xi, j, t)

+
X

i2J

X

j2J

X

t2T

(ei, j, t � wi, j, t)
ð11Þ

subject to:

yi, t = yi, (t�1) �
X

j2J

ui, j, (t�1) � xi, j, (t�1)

+
X

j2J

uj, i, (t�1) � xj, i, (t�1) +
X

j2J

rj, i, (t�1) �
X

j2J

ri, j, (t�1)

8i, j 2 J , t 2 T

ð12Þ

bi, t = bi, (t�1) �
X

j2J

ei, j, (t�1) � wi, j, (t�1)

+
X

j2J

ej, i, (t�1) � wj, i, (t�1) +
X

j2J

sj, i, (t�1) �
X

j2J

si, j, (t�1)

8i, j 2 J , t 2 T

ð13Þ
ui, 1 = ui, T 8i 2 J ð14Þ

bi, 1 = bi, T 8i 2 J ð15Þ

vi ł vmax � hi 8i 2 J ð16Þ
vi ø vmin � hi 8i 2 J ð17Þ

yi, t ø
X

j2J

(ui, j, t � xi, j, t) 8i, j 2 J , t 2 T ð18Þ

bi, t ø
X

j2J

(ei, j, t � wi, j, t) 8i, j 2 J , t 2 T ð19Þ

bi, t ł pmax � vi 8i 2 J , t 2 T ð20Þ

bi, t ø pmin � vi 8i 2 J , t 2 T ð21Þ

yi, t ł zmax � yi 8i 2 J , t 2 T ð22Þ
X

j2J

ri, j, t ł yi, t 8i 2 J , t 2 T ð23Þ

X

j2J

si, j, t ł bi, t 8i 2 J , t 2 T ð24Þ

Table 2. Optimization Model Notation

Sets

J: set of stations, with indices i and j
T: set of time periods, with index t, T = 1,., t
P � T: set of time periods, with index t, P = 2,., t

Decision variables

yi: is 1 if the bikes station is opened and 0 otherwise
xi, j, t: proportion of covered bikes demand from station i to station j in period t
ri, j, t: number of bikes relocated from i to j at period t
yi, t: number of bikes in station i at the beginning of period t
Tut: total bike fleet size of the system
hi: is 1 if the e-bike station is opened and 0 otherwise
vi: number of e-bike docks in station i
wi, j, t: proportion of covered e-bike demand from station i to station j in period t
si, j, t: number of e-bikes relocated from i to j at period t
bi, t: number of e-bikes in station i at the beginning of period t
Tet: total e-bike fleet size of the system
ui, j, t: bike demand from i to j in period t

Parameters

ei, j, t: e-bike demand from i to j in period t
zmax: maximum available bikes in a station
vmin: minimum capacity of e-bike station
vmax: maximum capacity of e-bike station
pmin: minimum percentage of used capacity in an e-bike station i at the beginning of period t
pmax: maximum percentage of used capacity in an e-bike station i at the beginning of period t
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Tut =
X

i2J

yi, t 8t 2 T ð25Þ

Tet =
X

i2J

bi, t 8t 2 T ð26Þ

xi, j, t ł 1 8i, j 2 J , t 2 T ð27Þ

wi, j, t ł 1 8i, j 2 J , t 2 T ð28Þ

wi, j, t ł hi 8i, j 2 J , t 2 T ð29Þ

wi, j, t ł hj 8i, j 2 J , t 2 T ð30Þ

xi, j, t ł yi 8i, j 2 J , t 2 T ð31Þ

xi, j, t ł yj 8i, j 2 J , t 2 T ð32Þ

ri, j, t ø 0 8i, j 2 J , t 2 T ð33Þ

si, j, t ø 0 8i, j 2 J , t 2 T ð34Þ

xi, j, t ø 0 8i, j 2 J , t 2 T ð35Þ

wi, j, t ø 0 8i, j 2 J , t 2 T ð36Þ

hi 2 f0, 1g 8i 2 J ð37Þ
yi, t, bi, t, vi, ri, jt, si, j, t, Tut, Tet 2 N 8i, j 2 J , t 2 T ð38Þ

The objective function 11 of this mixed-integer linear
programming (MILP) model consists of two terms. The
first term is the covered demand for conventional bikes,
while the second term is the covered demand for e-bikes.
The objective function maximizes the covered demand
by the BSS. Constraint 12 determines the available bikes
at station i at period t. The first term of the constraint
refers to the number of available bikes at station i in the
previous period. The second and third terms refer to the
number of bikes that left or arrived at the station i,
respectively, in the previous period, while the fourth and
fifth terms refer to the bikes transported to or from the
station i, respectively, at the previous period. Constraint
13 determines the number of available e-bikes at station i

at period t. Constraints 14 and 15 state that the bike and
e-bike fleet of the system remains the same between the
first and the last period. The capacity of an e-bike station
is limited by Constraints 16 and 17. Constraint 16 speci-
fies the upper capacity limit (number of docks), while
Constraint 17 specifies the lower capacity limit. The
available bikes at the station i should meet the demand
of the station (Constraint 18), and the available e-bikes
at the station i should meet the demand of the station
(Constraint 19). Stations should always have available e-
bikes as well as available docks for parking. This is
achieved by Constraints 20 and 21. Constraint 20 speci-
fies that the available e-bikes at the station i at the period
t should not exceed a specific number, and there should
be a minimum number of e-bikes at the station
(Constraint 21). Constraint 22 sets a limit on the maxi-
mum number of available bikes at a station. The relo-
cated bikes from the station i at the period t should not

exceed the available bikes at the station i at that period
(Constraint 23). Decision variable yi indicates whether a
new station should be opened in location i. The corre-
sponding constraint for the e-bike system is Constraint
24. Constraints 25 and 26 specify the total bike and e-
bike fleet of the BSS, respectively. The portion of cov-
ered demand from stations i to j at the period t cannot
exceed the value 1 (Constraint 27). The corresponding
constraint for the e-bike system is Constraint 28. The
demand for the bike and e-bike system can only be
served by existing (virtual) stations (Constraints 29–32).
Constraints 33–38 specify the domain of the decision
variables.

Case Study and Numerical Results

In this section, we present the underlying case study, the
considered scenarios, and the obtained computational
results.

Case Study

In this study, the area of investigation is the city center
of Milan and the studied systems are the subway system
and the public BSS. Milan is located in northern Italy
and is the capital of the administrative region of
Lombardy. The Milan subway has four lines (M1, M2,
M3, and M5) and 106 stations. The public BSS started
operating at the end of 2008. At present, the system has
4280 bikes and 1150 e-bikes. The number of operational
stations is 320. Subway system demand data, that is, the
origin–destination data, is generated based on higher-
level data from the subway system in Milan. Firstly, we
use information about the subway system and its
demand. The available information is related to the daily
passenger demand per line in 2018, the total daily system
demand for 2019, and the passenger use of each station
(low, medium, or high) during the day at time intervals
of half an hour for the first week of April 2021, and the
system’s peak hours. Based on this data, the generation
of the origin–destination pairs is performed separately
for each subway line.

Scenarios and Designs

There are three demand scenarios (SClow, SChigh,
SClockdown). SClow and SChigh consist of the unsatis-
fied demand of the PTS and the demand of different
days of the public BSS (4 and 8 April 2019, respectively),
while SClockdown consists of the demand of the BSS on
8 April 2020. The three different demand scenarios are
used as inputs for the designs. The basic demand sce-
nario that most designs consider is SClow. SChigh and
SClockdown will be used as inputs for a few designs.
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SClow is the BSS combination of the unsatisfied demand
for the PTS (bike demand: 44,700 and e-bike demand:
12,700) and the demand for the BSS on 4 April 2019
(bike demand: 800 and e-bike demand: 200). In the
SClockdown scenario, the demand for the BSS is based
on 8 April 2020 (bike demand: 150 and e-bike demand:
90). The BSS during the period of strict lockdown is in
low demand on all the investigated days. The date 8
April 2020 is chosen because it is one of the most
demanding days with regard to demand for the system
during the lockdown period. SClockdown does not
include unsatisfied demand from the PTS, as human
movements were very low because of the strict lockdown.
SChigh includes the unsatisfied demand for the PTS
(bike demand: 44,800 and e-bike demand: 12,700) and
an increased demand for the BSS on 8 April 2019 (bike
demand: 3500 and e-bike demand: 550). All demand
numbers are rounded to indicate that they are estimates.

The designs are created based on the needs of the
BSS. The parameters that differ in the designs are the
number and the location of (virtual) stations in the net-
work, the maximum number of bikes per station, and
the capacity (number of docks) of the e-bike stations.
The first categorization of the designs concerns the num-
ber and the location of stations and e-stations. Based on
these two parameters, seven basic designs are created.
Each design is named with the capital letter D from the
word design and the number of stations. These are
D225, D245, D238, D241, D236, D285, and D227. We
have limited the scenarios to this relatively narrow band
based on an initial analysis that gave us lower bounds
based on the required capacity and upper bounds based
on an estimation of available space in the considered
area. The locations of the new stations are close to sub-
way stops. Then, the other two parameters are consid-
ered. Two main types of designs emerge from this
separation, Da and Db. Da has a maximum number
of bikes per station at 50 bikes, a minimum number of

e-bikes docks at 10, and a maximum number of e-bike
docks at 25, while Mb has 80 bikes, 10 e-bikes docks,
and 40 e-bikes docks. Design D0 is the design of the BSS
in 2019 with parameter values of 20, 1, and 10, respec-
tively. The specifications of design D0 also apply to
D227. The final design that is created is the Mc, in which
there is no limit to the maximum number of bikes, while
the maximum and the minimum number of e-bike docks
are 10 and 200, respectively. The common features of all
designs are the following. The system is studied for 6 h,
15:00–21:00. The optimization model requires the defini-
tion of time periods. This period is selected because it
includes the evening peak hour. The choice of the eve-
ning peak hour versus the morning peak hour is based
on the BSS. The BSS was in greater demand during the
evening peak hour in 2019. In this case, there are three
time periods, t1: 15:00–17:00; t2: 17:00–19:00; and t3:
19:00–21:00. Therefore, the demand for the system is
divided into these three time periods. In addition, the
maximum and minimum used capacity percentages on e-
stations are 25% and 75%, respectively. Figure 3 shows
the scenarios and designs.

Experimental Results

The first analysis is related to the unsatisfied demand of
the PTS. Unsatisfied demand arises from the use of the
mathematical model for the integration of the two sys-
tems—PTS and BSS—and the demand of the PTS.
Demand for the PTS is considered hourly. It is therefore
divided equally among the schedules operated on each
subway line per hour. For the different demand scenarios
(SClow, SChigh, SClockdown), different percentages of
unsatisfied PTS demand caused by social distancing con-
straints are considered. For the SClow and SChigh sce-
narios, a value of 30% is assumed, while the
SClockdown scenario considers 0% because of generally
low public transit demand in this scenario. Then, the

Figure 3. Developed scenarios and designs for model application. There are three demand scenarios and 15 designs in which their
parameters are differentiated.
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unsatisfied demand is divided into bike and e-bike
demand based on the bike network travel distances and
the rates of bike and e-bike use for specific travel dis-
tance intervals. About 22% of the total demand resulting
from the integration of the two systems is the demand
for e-bikes and 78% is the demand for bikes.

The analysis of the BSS considering aspects of the
pandemic situation uses the optimization model for a
MFHBSS and the various designs developed. The out-
puts of the model are the number of stations, the covered
demand and the size of the fleets, and the relocation.
Table 3 shows the outputs of some designs, for which the
correlations are analyzed below. The system demand is
the same for all designs presented in Table 3.

Initially, the covered demand per scenario is analyzed.
Covered demand in design D0 is just 6% for the bike sys-
tem and just under 7% for the e-bike system. In all other
designs, there is at least a doubling of the covered
demand rates (2.1–2.4 times). Only D227 fully meets the
demand of both systems, which is logically because of the
low demand of the input SClockdown. The other design
that has a full coverage of bike system demand and high
coverage of e-bike system demand is D285c. The high
coverage rates, in this case, are related to the design fea-
tures of the system, that is, an unlimited number of bikes
per station and the large capacity of the e-stations. In all
other designs, it is observed that the covered demand is
higher in percentage for the e-bike system. This may be
because of the lower demand requirements for this sys-
tem. In addition, it is observed that the Da designs, which
have lower values in the capacity of their stations, have
lower covered demand compared to the scenarios in Db,
which are characterized by higher station capacity.
Demand rates in designs Db show a steady growth rate

compared to the corresponding Da designs. Figure 4
gives an overview of the analyzed scenarios and designs.
It becomes clear that there are only minor differences in
covered demand between the high and low demand sce-
narios. This can be explained, because only the BSS
demand changes in these scenarios and the BSS demand
is significantly lower than the unsatisfied PTS demand.

Considering the relation between the covered demand
and the fleet size, the general trend in the bike system is
that the covered demand increases with the increase of
the bike fleet. It is also observed that in each design the
fleet size is about half in relation to the covered demand.
This observation does not apply only to the D227 design
in which the fleet size and the covered demand are almost
the same and the D285c design in which the fleet size is
lower than the covered demand but not to the trend pre-
vailing in the other designs. The e-bike system does not
show the same trends as the covered demand and the
fleet size as the bike system. Designs D227 (low demand)
and D285c (high station capacity specifications) have a
large fleet size in relation to covered demand for both
systems. This indicates that the BSS based on its design
has service specifications, such as the availability of bikes
and e-bikes, regardless of the size of its demand.

The analysis of covered demand and the number of
stations is performed separately for the two systems (see
Figure 4). With regard to design D227, the demand of
both systems is fully covered. Although the demand is
low, the station network is relatively large (227 stations
and 107 e-stations). This indicates that demand is spread
across the study area and wide station coverage is needed
even in this case. For both systems, it is observed that the
increase of the stations is not in line with the increase of
the covered demand in some cases. In cases where the

Table 3. Inputs and Outputs of Some of the Developed Designs

Inputs

D0 D285a D285b D285c

Number of stations 225 285 285 285
Maximum number of bikes 20 50 80 Unlimited
Maximum number of docks 10 25 40 200

Outputs

D0 D285a D285b D285c

Number of selected stations 169 211 215 210
Number of stations 225 285 285 285
Covered bike demand 2732 6599 9685 45,513
Covered e-bike demand 871 2160 3279 8896
Bike fleet 1213 3105 4488 30,959
E-bike fleet 627 3267 4886 20,445
Relocated bikes 1146 2596 3746 30,329
Relocated e-bikes 474 2045 3865 13,019
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number of selected stations is the same or almost the
same, designs with high-capacity specifications (Db
designs) satisfy more demand. For the bike system, in the
case of the scenario with higher demand, it is observed
that the same number of stations can satisfy more
demand.

An interesting analysis is the number of stations com-
pared to the size of the fleet (see Figures 5 and 6). There
can be no clear trend for the Da designs of the e-bike sys-
tem. For the Db designs, it is observed that the fleet pre-
sents slightly differently for the same number of stations
(180). However, the design with the lowest fleet size satis-
fies higher demand. In addition, the difference in the fleet
size between a system with 180 stations and a system

with 189 stations is significant. However, this does not
mean an increase in covered demand. In other cases, as
the number of stations increases, so does the fleet size as
well as the covered demand.

The bike system presents uniformity between the
results of designs with low (Da) and high (Db) capacity
specifications. The size of the fleet increases as the num-
ber of stations increases. This statement differs only
when the number of network stations is 241 or 245. In
these two cases, it is observed that the bike fleet shows a
decrease. However, this is in line with the demand cover-
age. In the case in which the demand for the system
increases, the same number of stations satisfies more
demand (design D285b under different demand
scenarios).

The size of the bike relocation follows an upward
trend as the size of the bike fleet increases (see Table 4).
In a few cases, there is a decrease in the size of bike relo-
cation, while there is an increase in the size of the fleet.
The size of the relocation is always smaller than the size
of the fleet. Only the case of design D227 is an exception.
This may be because there are many stations (227 sta-
tions) relative to the low fleet size (137 bikes). It should
also be noted that there is no difference in results
between designs with low-capacity (Da) and high-
capacity (Db) specifications on stations. The e-bike sys-
tem cannot be characterized by stability in the relation
between the fleet and relocation size. The size of the fleet
is higher than the size of the relocation for all designs
beyond one design. In the designs with stations of high-
capacity specifications, there is more relocation in
relation to the size of the fleet than in the designs with
low-capacity specifications.

The final analysis concerns the system costs. The total
cost consists of the purchase costs and the relocation

Figure 4. Covered demand per design. For each design, the
demand for the bike system is presented in blue, while the demand
for the e-bike system is presented in gray. (Color online only.)

Figure 5. For each design, the relationship between the number
of stations (x-axis) and the size of the e-bike fleet (y-axis) is
presented.
Note: OD = origin–destination.

Figure 6. For each design, the relationship between the number
of stations (x-axis) and the size of the bike fleet (y-axis) is
presented. The gray color illustrates the Db designs, while the
blue color illustrates the Da designs. (Color online only.)
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costs. The cost of buying e-bikes is the highest cost. In
most cases, low station capacity designs (Da) have lower
final costs than higher station capacity designs (Db). The
cost of relocating (e)-bikes is relatively low compared to
the purchase costs of the fleet. For both systems, an
increase in the fleet size does not imply an increase in
relocation costs. Finally, it should be noted that there is
no correlation between costs and covered demand.

Conclusions and Future Work

During the COVID-19 pandemic, many sectors have
been affected by the government measures to reduce the
spread of the virus. The transport sector is one of the
sectors most affected by these measures. The mobility
capacity of PTSs has been reduced by the implementa-
tion of the distancing measures. That is, part of the sys-
tem’s capacity has no longer been provided. This leads
to the need of finding new forms of PTSs that can offer
mobility capacity to those who need it during the pan-
demic or similar future situations. The integration of
bike sharing and existing PTSs is one form of creating
such new systems. In this work, we have aimed to design
a BSS to meet the extraordinary needs for mobility dur-
ing a pandemic situation. The first need that arises is to
provide a solution that not only serves all groups of peo-
ple, that is, young and elderly, but also considers differ-
ent trip distances. This need can be met by using a mixed
fleet, that is, bikes and e-bikes. Conventional bikes may
be preferred for shorter distances and by people in better
physical condition, while e-bikes may be preferred by
people with health conditions and, generally, for longer
distances since their use does not cause much physical
fatigue. The second need that likely arises in a pandemic
scenario is the increased demand for transportation

because of the reduced mobility capacity of PTSs caused
by the distancing measures. A BSS with a free-floating
bike system and docked e-bike system addresses this
need and increases the mobility capacity in the BSS.

To achieve the aforementioned integration, a data
analysis model that integrates the demand needs of PTSs
and BSSs has been developed. Moreover, a model for
optimizing a MFHBSS has been proposed. The optimi-
zation model is used to evaluate different designs and
demand scenarios to identify the prevailing trends for the
design and operation of a MFHBSS that aims to provide
mobility capacity during a pandemic (and similar disrup-
tive events). The city of Milan is used as a case study for
the implementation of the approach. In this way, this
work overcomes a research gap in providing mobility
capacity during a pandemic (or similar capacity-limiting
events) by integrating PTSs and BSSs and adds to earlier
work on the interplay of BSSs and PTSs as presented in
case studies in different cities (15–17).

The main findings and policy implications are sum-
marized subsequently.

� Based on our analysis, we observe that 30% of the
demand for the evening peak hour of the subway
system in Milan cannot be satisfied because of dis-
tancing measures. In an effort to maintain mobi-
lity capacity, we would propose the integration of
the BSS with the PTS. Therefore, we recommend
cooperation between the operators of the PTSs
and BSSs. This could be achieved by means of an
integrated planning system that adjusts the PTS
capacities (e.g., with regard to train frequencies)
and BSS capacities (e.g., with regard to new sta-
tions, bicycles, or relocations) according to pre-
dicted real-time demands. For the customer, an

Table 4. The Bike Fleet and the Relocation Sizes per Design

Designs Bike fleet size Relocation size E-bike fleet Relocation size

SClockdown-D227 137 178 402 373
SClow-D0 1213 1146 627 474
SClow-D225a 2379 1866 1192 1500
SClow-D236a 2542 2200 1927 1147
SClow-D241a 2608 2197 2610 1936
SClow-D245a 2622 2146 1874 1387
SClow-D238a 2748 2287 2769 2257
SClow-D285a 3105 2596 3267 2045
SClow-D225b 3568 3024 2729 2142
SClow-D236b 3786 3264 4564 4438
SClow-D241b 3866 3508 4599 4506
SClow-D245b 3939 3269 2614 2030
SClow-D238b 4325 3907 2382 2130
SClow-D285b 4488 3746 4886 3865
SC2-D285b 5575 5180 5884 4880
SClow-D285c 30,959 30,329 20,445 13,019
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integrated app would act as a ‘‘single window’’
and provide instructions as well as assignments,
routing, and fare information.

� The current BSS in Milan can only compensate
for 6% of the PTS and its own demand. Our
advice to BSS operators to increase this percent-
age is a system design with different types of bikes,
that is, the creation of e-bike stations and free-
floating bike systems. The PTSs may increase fre-
quencies on their lines or spread out demand
across the day. In addition, PTSs could require
100% compliance with face mask rules (if not
done already) and investigate the effectiveness of
their heating, ventilation, and air conditioning
systems.

� The dual strategy with a free-floating bike system
and a docked e-bike system and the creation of
bike stations near the subway stations with unsa-
tisfied demand increases the covered demand at
least twice (2.1–2.4 times). We therefore propose
that the BSS providers should invest in the con-
struction of stations near subway stations.

� An increase of the capacity of the e-stations and
the available bikes in stations by about 37%
results in an additional increase of the covered
demand by 6.5%–7.5%. Based on this result, we
recommend that BSS operators pay special atten-
tion to the capacity specifications of the stations
during their design.

� As far as the free-floating bike system is con-
cerned, it is also observed that there is stability in
the ratio of the covered demand and bike fleet.
The ratio (covered demand/fleet size) is between
2.13 and 2.36. It is suggested that the Milan BSS
takes this into account for a rough initial fleet
forecast. In this way, it will provide the necessary
mobility but will also be a careful investment.

� The demand for the e-bike system is 22% of the
unsatisfied demand and 78% for the conventional
bike system. Based on this insight and the instabil-
ity of the e-bike system results, it is recommended
that BSS operators should carefully invest in the
e-bike system and then extend it based on needs
that arise.

� In our results, we observe that the system fully
satisfies its low demand during the lockdown
period. However, the fleet needs in relation to the
covered demand are high. The covered demand to
fleet size ratio is 1.1 for the bike system and 0.23
for the e-bike system. Also, the network of sta-
tions is wide, with 107 e-stations and 227 stations.
This shows that the system has a spatial range of
demand. We would therefore advise BSS opera-
tors to develop a wide network of stations.

� The results show differences in fleet needs, 137–
5575 bikes and 402–5884 e-bikes, and station
needs, 107–271 e-stations and 225–285 stations.
We would therefore also advise BSS operators to
install some stations on mobile trailers that can be
easily moved. An additional piece of advice would
be that the available fleet on the system should be
period-based.

� To fully meet the bike system demand, 30,959 con-
ventional bikes are needed, while 20,445 e-bikes
are needed for 70% coverage of e-bike demand. In
addition, there is no limit to the available bikes
per station, while the maximum number of docks
per station is 200. It is concluded that the BSS can-
not fully counterbalance for the limited capacity
of the PTS.

� The BSS may have been designed based on the
needs of the pandemic, but the use of such a sys-
tem may be more extensive. The basic criterion
for the implementation of a MFHBSS is its ability
to satisfy the mobility needs of each case.

Nevertheless, this work also has some limitations that
could be addressed in future research. The approach of
the system integration can be done based on the travel
time and be more pandemic-oriented with the integration
of an application that detects the movement of infected
people. Therefore, the user will be informed in real-time
about the chances of meeting an infected person and will
choose accordingly the transport means they desire. It
should furthermore be noticed that the PTS in Milan
involves a fairly extensive tram, trolley-tram, and bus
network, in addition to its four subway lines. In a pan-
demic situation, these other PTS modes may also have to
deal with reduced capacities. Future research could also
take into account this unmet demand to investigate the
impact of other modes of public transportation on BSSs
and other shared mobility systems. Moreover, the for-
mulation of the developed optimization model refers to
the design and operation of a docked e-BSS. It is sug-
gested that future research also includes the choice of
whether to use an e-bike based on its battery level and/or
consider the rebalancing processes.
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Model for Public Bike-Sharing Systems. Transporation

Research Procedia, Vol. 33, No. 4, 2018, pp. 139–146.

https://doi.org/10.1016/j.trpro.2018.10.086.

380 Transportation Research Record 2678(12)

https://www.weforum.org/agenda/2020/04/milan-covid-19-coronavirus-lockdown-reducing-car-use/
https://www.weforum.org/agenda/2020/04/milan-covid-19-coronavirus-lockdown-reducing-car-use/
https://mobycon.com/
https://nextcity.org/urbanist-news/covid-19-reveals-how-micromobility-can-build-resilient-cities
https://nextcity.org/urbanist-news/covid-19-reveals-how-micromobility-can-build-resilient-cities
https://nextcity.org/urbanist-news/covid-19-reveals-how-micromobility-can-build-resilient-cities
https://www.wri.org/insights/biking-provides-critical-lifeline-during-coronavirus-crisis
https://www.wri.org/insights/biking-provides-critical-lifeline-during-coronavirus-crisis
https://doi.org/10.1016/j.tra.2017.04.017
https://doi.org/10.1016/j.tra.2017.04.017
https://doi.org/10.1016/j.jclepro.2020.120846
https://doi.org/10.1016/j.jclepro.2020.120846
https://doi.org/10.1016/J.JTRANGEO.2014.06.026
https://doi.org/10.1016/J.JTRANGEO.2014.06.026
https://doi.org/10.1016/j.ypmed.2011.09.021
https://doi.org/10.1016/j.jtrangeo.2019.03.004
https://doi.org/10.1016/j.jtrangeo.2019.03.004
https://doi.org/10.1016/j.trb.2018.05.018
https://doi.org/10.1016/j.tra.2015.09.014
https://doi.org/10.1016/j.tra.2017.08.019
https://doi.org/10.1016/j.trpro.2020.03.006
https://doi.org/10.1016/j.trpro.2020.03.006
https://doi.org/10.1016/j.tre.2010.09.004
https://doi.org/10.1016/j.tre.2010.09.004
https://doi.org/10.1016/j.cie.2017.02.018
https://doi.org/10.1016/j.scs.2019.101515
https://doi.org/10.1016/j.sbspro.2012.09.769
https://doi.org/10.1016/j.sbspro.2012.09.769
https://doi.org/10.1016/j.apm.2011.12.032
https://doi.org/10.1016/j.apm.2011.12.032
https://doi.org/10.1080/17477778.2020.1718022
https://doi.org/10.1109/WSC.2016.7822125
https://doi.org/10.1016/j.trpro.2018.10.086

