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Abstract

In order to ensure safety and prevent collisions on road, automotive radars must be fault proof and
have to be tested on reliability and performance, which requires proper diagnostic of well­functioning
of the radar so that the car may participate to traffic. One way of the diagnostic of well­functioning of
the automotive radar is by means of calibration in service stations. In contrast to offline calibration in
service stations, one anotherway of testing the automotive radar onwell­functioningwould be bymeans
of monitoring the state, or with other words the healthiness, of the radar in real­time. One possible
solution to monitor the radar state is to use a massive set of calibration targets in road infrastructure
and thereby the problem lies in optimally estimating the state based on the RCS information provided
by the radar. As a result, in the first part of this thesis, based on the defined target selection criteria,
selection of the most appropriate calibration target among possible candidates is discussed.

Using massive set of targets is required to overcome the uncertainty in production and installation
accuracy in one­target measurements. However, this method brings randomness which is caused by
two error sources being the non­ideal shapes of the calibration targets originating from mass produc­
tion errors and orientation errors either from installation or maintenance errors. Second part of the
thesis investigates how this randomness affects the self­diagnostics performance of automotive radar.
Thereby, themodel of target orientation andRCS loss due to orientation errors, and, themodel of target
RCS and its RCS loss due to mass production errors are developed. For both error sources, the statisti­
cal characteristics of the loss factors are determined bymeans of corresponding probability distribution
functions which are derived analytically. In case of orientation errors, analytical results are validated
byMonte­Carlo simulations as well as Kullback­Leibler Divergence. In case of mass production errors,
analytical results are validated by Monte­Carlo simulations only. Together with the results obtained in
the first part, results of the statistical characteristics of the loss factor due to non­orthogonality help to
find a balance between the size, quality and number of targets to be deployed in a certain range in a
given road configuration.

To finalize the project, the measurement model is determined according to which the approach for
self­diagnostics is developed under certain assumptions and considering a set of measurements of the
same realization of a single target only. By the developed approaches, the relation of statistical param­
eters on self­diagnostics performance is determined by means of three different estimation methods
and the results are validated by Monte­Carlo simulations.
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1
Introduction

This chapter deals with the general overview of the thesis. The motivation for this thesis work is ad­
dressed in the first section which is then followed by a summary of the literature review of the calibra­
tion of both automotive radar and airborne SAR systems. The main contribution of this thesis project
to autonomous driving as well as the novelties and the approach are then discussed in the next section.
Finally, the outline of the remainder of the thesis is given in the last section.

1.1. Motivation
Through the advances and developments in millimeter­wave (mm­wave) semiconductor technology
and signal processing techniques, autonomous driving became a reality and it gains increasing popu­
larity nowadays. Together with different sensors such as lidar, ultrasound and camera’s, automotive
radars form the most important building block of self­driving cars and Advanced Driver Assistant Sys­
tems (ADAS). Biggest advantage these radars offer is their ability to see long distances (up to 200 m
for Long Range Automotive Radar) ahead of the car when the visibility conditions are poor. As known,
the information these radars provide are the radar cross section (RCS) of the encountered object(s),
their velocity with respect to that of the car, distance to them and the angular position in terms of the
elevation and azimuth coordinates. In order to ensure safety and prevent collisions on road, they must
be fault proof and have to be tested on reliability and performance, which requires proper diagnostic
of well­functioning of the radar so that the car may participate to traffic.

One way of the diagnostic of well­functioning of the automotive radar is by means of calibration
in service stations. This type of calibration is performed offline using an object of known radar cross
section placed at a known distance and orientation and it can be repeated in pre­determined periods.
Despite the fact that there is full control over the environment involved in this calibration method, one
drawback is that it might be expensive and time consuming, especially if the calibration has to be per­
formed in relatively every short time periods.

In contrast to offline calibration in service stations, one another way of testing the automotive radar
on well­functioning would be by means of monitoring the state, or with other words the healthiness,
of the radar in real­time. One possible solution to monitor the radar state is to use a massive set of
calibration targets in road infrastructure and thereby the problem lies in optimally estimating the state
based on the RCS information provided. As a result, first part of this thesis is focused on the selection
of the most appropriate calibration target among possible candidates.

Using massive set of targets is required to overcome the uncertainty in production and installation
accuracy in one­targetmeasurements inwhich, otherwise, themeasurement environmentmust be fully
controlled in terms of known RCS, distance, orientation, noise and eventually known clutter. However,
this method introduces randomness into the project, which is caused by two error sources: I. Non­ideal
shapes of the calibration targets originating from mass production errors, II. Orientation errors either
from installation or maintenance errors. Therefore, a statistical approach is required in order to cope

1



2 1. Introduction

with the estimation problem here and, as a result, second part of the thesis is focused on statistical
estimation of the state of the radar under certain assumptions.

With the results and the knowledge obtained in this thesis project, an improvement of safety of
(semi­)autonomous vehicles can be achieved by means of improving reliability of automotive radars
self­diagnostic to detect degraded radar performance via the developed approach which can make it
possible to take it from offline to real­time.

1.2. Literature Review
Despite different kind of calibration targets and methods have been proposed and used for the calibra­
tion of different type of radar systems throughout the history, there is still a gap in the field of real­time
calibration of automotive radars on the go. As discussed in the next chapter in more detail, these cali­
bration targets are divided into two categories, being either active or passive.

Speaking of cars particularly, mainly active targets have been used in the calibration of cars. Exam­
ples comprise the alignment of the radar beam direction to the thrust vector of the vehicle in factory
lines or service stations for initial calibration as depicted in figure 1.1. Used equipment thereby include
lasers and transponders or receiving antennas which are integrated with power detectors [1],[2],[3].

Figure 1.1: Error due to misalignment angle 𝛼 between the vehicle thrust vector and the radar beam direction [3]

Speaking of airborne SAR systems, a ground based calibration experiment is reported in [4] where
active radar calibrators and corner reflectors are used in conjunction with a test flight, whereas in [5] it
is reported that using corner reflectors of knownRCS as point targets for radiometric SAR calibration is
simple and practicable. Figure 1.2 shows the arrangement of active radar calibrators (ARC) and corner
reflectors (CR) deployed in the runway.

Figure 1.2: Arrangement of ARCs and CRs on the runway for the test flight [4].
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1.3. Contributions, Novelties and Approach
This project investigates how the randomness, that is caused by the two error sourcesmentioned above,
affects the self­diagnostics performance of automotive radar. In order to achieve this, first, the most
appropriate calibration target is determined based on the defined target selection criteria, theoretically.
This is then followed by the development of the model of target orientation and RCS loss due to orien­
tation errors, and, the development of the model of target RCS and its RCS loss due to mass production
errors. For both error sources, the corresponding probability distribution functions of the RCS loss
factors are derived analytically. In case of orientation errors, analytical results are validated by Monte­
Carlo simulations as well as Kullback­Leibler Divergence. In case of mass production errors, analytical
results are validated by Monte­Carlo simulations only.

Then, the measurement model is determined according to which the approach for self­diagnostics,
that is based on set of measurements of the realization of a single target, is developed under certain
assumptions for convenience.

Finally, relation of statistical parameters on self­diagnostics performance is determined and the
developed approach is validated by Monte­Carlo simulations.

1.4. Outline of the Thesis
This master thesis is organized as follows:

• Chapter 2 gives examples of a set of calibration targets which have been used throughout the
history for the calibration of different type of radar systems. This is then followed by an evaluation
of the calibration targets to determine the most appropriate one to use in this project based on
the defined target selection criteria. Finally, based on a straight three­lanes European highway
configuration and two different automotive radar specifications, minimum required size of the
calibration target is determined.

• Chapter 3 deals with the statistical characteristics of RCS loss factors that originate from the two
error sources. Thereby, the probability distributions of the loss factors are derived analytically
for the four factors that cause reduction in the expected RCS to be returned from the selected cal­
ibration target. Then, validation of these analytical results are given which is followed by a distri­
bution fit analysis that is performed on the histograms of each loss factors which are obtained via
Monte­Carlo simulations. Furthermore, also the restrictions, that are put by the only single for­
mula found from which the statistical characteristics of RCS loss factor due to non­orthogonality
is determined, are investigated. Finally, the results of the beta distribution fit analysis on the his­
togram of total loss factor, assuming the size of the calibrator is accurate, are given and validated.

• Chapter 4 deals with the estimation of the quality metric based on which the healthiness of the
automotive radar can be evaluated. Thereby the quality metric is defined first. Then, an estima­
tion of this quality metric is done by means of three different estimation methods with each of
them under certain assumptions.

• In Chapter 5 summarizes the findings and conclusions in this master thesis project, as well as
some recommendations are provided for the future work.

• Appendix A gives the most important symbols used in the highway configuration as well as their
meaning, formulas and their numeric values in a table for each of the corresponding figures.





2
Calibration Targets

Throughout the history, different kind of calibration targets have been proposed and used for the cal­
ibration of different type of radar systems. These calibration targets are divided into two main cate­
gories; active calibration targets and passive calibration targets.

2.1. Active Calibration Targets
Racor target, dopler/delay target and transponder are among the examples of active calibration tar­
gets. Racor target is a frequency shift reflector and needs both power supply and an antenna to be
implemented. Doppler/delay radar targets are used to test and calibrate both pulse­Doppler radars
and conventional pulse radars with Moving Target Indicator (MTI) modes of operation. This type of
targets also need to be powered and use antenna as well. Transponder is a radio receiver which detects
the energy and then transmits an amplified signal at a known level back to the radar. Figure 2.1 gives
images of a racor target as well as a portable doppler/delay target.

(a) RACOR target (b) Portable Doppler/Delay Target

Figure 2.1: Examples of active calibration targets
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6 2. Calibration Targets

2.2. Passive Calibration Targets
Examples of passive calibration targets are corner reflectors, metal spheres, rectangular metal plates
and Luneburg Lens. There targets are used to calibrate different type of radar systems. One example is
the calibration of Imaging Radar as well as Airborne SAR system using corner reflectors. Yet another
example is the calibration of scatterometer using Luneburg Lens. Figure 2.2 gives the images of the
examples mentioned above.

(a) Trihedral Corner Reflector (b) Metal Sphere (c) Rectangular Metal Plate

(d) Layers of Luneburg Lens

Figure 2.2: Examples of passive calibration targets

2.3. Existing Targets from Traffic Infrastructure
Besides the targets mentioned above, targets such as traffic signs and guide posts, that already exist in
the current traffic infrastructure, can be considered as potential calibration targets. Figure 2.3 visual­
izes these two examples.

(a) Traffic Signs (b) Guide Posts

Figure 2.3: Examples of possible calibration targets already existing in the traffic infrastructure
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2.4. Target Selection Criteria
Selection of the true calibration target is very important in the calibration of radar systems. Thereby
there are some important desired characteristics that the calibration targets need to possess. These
characteristics form also the criteria which the targets must fulfill and they are mainly:

1. Large and stable RCS;

2. Wide RCS pattern;

3. Low RCS sidelobes;

4. Small in physical size and weight;

5. Insensitivity of RCS to the surrounding environment;

6. Cost efficiency.

2.5. Selection of the Calibration Target
This section deals with the selection of the most appropriate calibration target to be used in this work.
First, a comparison is made between the active and passive calibrators to determine which family of
calibrators would be the most appropriate one. After that, a comparison is made among the set of
targets from the family of calibrators determined from the first step.

2.5.1. Active Calibrators vs. Passive Calibrators
As alreadymentioned, calibration targets are divided into twomain categories; active and passive. One
big advantage of active calibrators is that the transmitted signal can be much larger than the signal
scattered by passive calibrators. Yet another advantage is that the alignment problems, which do arise
with passive calibrators, are not such a big issue since the communication antennas being used both
for reception and transmission can have moderately broad antenna beams.

On the contrary, active calibrators comprise components such as power supply, antennas, delay
elements, amplifiers and attenuators for their operation which makes them cost inefficient compared
to passive calibrators. Additionally, the high amount of loss in the long coaxial cables makes active
calibrators less attractive than passive calibrators. It is also apparent that the size and weight of these
targets are in excess of that of the passive calibrators which make them impractical to deploy them
around the roads and highways for automotive radar calibration.

From the discussion above, it is convenient to draw the conclusion that, considering the selection
criteria, the disadvantages of active calibrators can be said to outweigh their advantages with respect
to the passive calibrators. Therefore can be concluded that passive calibrators would be a more appro­
priate choice to use in the context of automotive radar calibration in real­time.

2.5.2. Evaluation of the Passive Calibration Targets
In section 2.5.1 concluded that the family of passive calibrators would be a more appropriate choice to
use in this work. A search on the passive calibration targets that are being used for radar calibration
resulted in corner reflectors, metal spheres, rectangular metal plates and Luneburg lens as mentioned
in section 2.2. Below an evaluation is made for each of these targets separately.

Corner Reflectors Depending on the number of surfaces comprising them, corner reflectors are
divided into two categories, being dihedral and trihedral corner reflectors. High­frequency radar cross
section, that is estimated using geometrical optics and multiple scattering taken into account, for both
dihedral and trihedral corner reflectors are given below.
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Dihedral Corner Reflectors

For dihedral corner reflectors, the high­frequency RCS is given in [7] as:

𝜎(𝜃 = 𝜋
2 , 𝜙) =

16𝜋𝑎2𝑏2 sin2(𝜋4 + 𝜙)
𝜆20

(2.1)

with 𝑎 the width of one plate and 𝑏 being half of the length of the plate. Dihedral corner reflector has
an obvious disadvantage. That is it provides a large and wide RCS only in the plane perpendicular to
its corner faces, i.e. at 𝜃 = 90∘ as seen from the equation (2.1). Figure 2.4a represents a computed plot
of equation (2.1) at f=77 GHz for 𝑎 = 0.1 𝑚 and 𝑏 = 2𝑎. It is clear from this figure that the 3­dB pattern
beamwidth of the corner reflector of the given dimensions at the given frequency is about 90∘.

Trihedral Corner Reflectors

For triangular trihedral corner reflectors, the high­frequency RCS is given in [7] to be:

𝜎(𝜃, 𝜙, 𝑙) ≈ 4𝜋
𝜆20
𝑙4[cos𝜃 + sin𝜃(sin𝜙 + cos𝜙)

−2[cos𝜃 + sin𝜃(sin𝜙 + cos𝜙)]−1]2
(2.2)

where 𝑙 is the leg length of the reflector. From equation (2.2) it is obvious that the disadvantage of
dihedral corner reflectors discussed above can be decreased to some extent with trihedral corner re­
flectors due to the flexibility in the elevation plane. Figure 2.4b gives a computed plot of equation (2.2)
for different 𝜃 values at f=77 GHz for 𝑙 = 0.2 𝑚. As seen from the figure, trihedral corner reflectors
produce a large and wide RCS at a reasonably small dimension at the specified frequency. The 3­dB
pattern beamwidth of the selected curve at 𝜃 = 30∘ in the figure is 2⋅21.25∘ = 42.5∘, which is quite wide.

In the ideal case, walls of corner reflectors are orthogonal to each other. Any deviation from the
orthogonality results in a reduction in the RCS of corner reflectors. Such a deviation might be caused,
for example, by errors in the mass production of these reflectors in manufacturing.
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(a) RCS of a dihedral corner reflector

Metal Spheres For perfectly conducting metal spheres, the approximate solutions method in the
far field gives the high­frequency radar cross section to be :

𝜎𝑠𝑝ℎ = 𝜋𝑎2 (2.3)

with 𝑎 being the radius in x, y and z­directions [6]. One big advantage of metal sphere is that its radar
cross section has no angular depencency which makes it insensitive to errors in orientation, as with
Luneburg lens, but it is cheaper than Luneburg lens to construct. As obvious from the equation, it has
a constant RCS value at a fixed size in terms of its radius 𝑎.
From Figure 2.5 one can conclude that in order to reach high RCS values, say RCS>30 dBsm, radius of
the sphere must be a > 10 m already.
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(b) RCS of a triangular trihedral corner reflector at different 𝜃 values

Figure 2.4: RCS of Corner Reflectors

Perfectly Conducting Ellipsoids

Since the radar cross section of metal spheres from equation (2.3) solely depends on their size, any ex­
ternal factor that results in a change in the radius would change its shape from sphere into an ellipsoid.
This external factor could either be a hit or amass production error in the radius in any direction, either
x, y or z­direction. Therefore it is important to add ellipsoids into this discussion as well. Dependent
on the ellipsoid semi­axes lengths, ellipsoids have two special cases, the prolate and oblate spheroid.

For perfectly conducting ellipsoids where 𝑎 ≥ 𝑏 ≥ 𝑐 with 𝑎, 𝑏, 𝑐 being the ellipsoid semi­axes, radar
cross section is given in [6] by the approximate solution for high­frequency to be:

𝜎(𝜃, 𝜙) = 𝜋𝑎2𝑏2𝑐2
[𝑎2𝑠𝑖𝑛2𝜃𝑐𝑜𝑠2𝜙 + 𝑏2𝑠𝑖𝑛2𝜃𝑠𝑖𝑛2𝜙 + 𝑐2𝑐𝑜𝑠2𝜃]2 (2.4)

As apparent from equation (2.4), radar cross section of ellipsoids is both size and angular dependent
in elevation as well as in azimuth plane. Figure 2.6 represents a computed plot of equation 2.4 as a
function of azimuth incidence angle for different semi­axis lengths at 𝜃30∘. As it can be seen from this
figure clearly that in order to reach a significant RCS value, semi­axis lengths of the ellipsoid need to be
very big. Yet another disadvantage of an ellipsoid is that the 3­dB beamwidth of the RCS pattern gets
large if the dimensions of the ellipsoid gets larger.
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Figure 2.5: RCS of a Metal Sphere as a function of its radius

Prolate Spheroids

For perfectly conducting prolate spheroids where 𝑎 > 𝑏 = 𝑐, high­frequency radar cross section is given
in [6] by the following formula:

𝜎(𝜃 = 𝜋
2 , 𝜙) =

𝜋𝑎2𝑏4

[𝑎2 cos2(𝜙) + 𝑏2 sin2(𝜙)]2
(2.5)

Equation (2.5) shows that in order to receive the scattered wave back from a prolate spheroid, incident
wave in elevation plane must be 𝜃 = 𝜋

2 = 90
∘, which means that otherwise the RCS can not be measured

at all. Thismakes a prolate spheroid very sensitive to errors in orientation as a calibration target. As can
be seen from figure 2.7a, which represents a computed plot of equation (2.5), RCS of a prolate spheroid
has a low value even at reasonably big dimensions such as 1.2m x 0.7m. Additionally, the 3­dB pattern
beamwidth depends pretty much on the dimensions, being about 55∘ for 𝑎=1.2m, 𝑏=0.7m and about
19∘ for 𝑎=1.2m, 𝑏=0.3m.

Oblate Spheroids

For perfectly conducting oblate spheroids where 𝑎 = 𝑏 > 𝑐, high­frequency solution for radar cross
section is given in [6] by the following formula:

𝜎(𝜃, 𝜙 = 0) = 𝜋𝑎4𝑏2

[𝑎2 sin2(𝜃) + 𝑐2 cos2(𝜃)]2
(2.6)

As can be seen from figure 2.7b, reaching a high RCS value goes at the expense of a narrower 3­dB
pattern beamwidth; when the RCS has a value of 28.14 dBsm, corresponding 3­dB beamwidth is about
6.2∘ on the red curve, while the RCS corresponding to a 3­dB beamwidth of 34.2∘ is 14.16 dBsm on the
yellow curve.
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Figure 2.6: RCS of an Ellipsoid
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(a) RCS of a Prolate Spheroid

(b) RCS of an Oblate Spheroid

Figure 2.7: RCS of Prolate and Oblate Spheroids
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Rectangular Flat Metal Plates For rectangular perfectly conducting metal plates, high frequency
backscatter cross section has been obtained by the geometrical diffraction method by Ross and the
results for both perpendicular and parallel polarizations are given respectively in [7] as:

𝜎⊥(𝜙) =
𝑏2
𝜋 | [𝑐𝑜𝑠(𝑘0𝑎𝑠𝑖𝑛𝜙) −

𝑖𝑠𝑖𝑛(𝑘0𝑎𝑠𝑖𝑛𝜙)
𝑠𝑖𝑛𝜙 ] − 𝑒𝑥𝑝[𝑖(𝑘0𝑎 − 𝜋/4)]

√2𝜋(𝑘0𝑎)
3
2

×[ 1
𝑐𝑜𝑠𝜙 +

𝑒𝑥𝑝[𝑖(𝑘0𝑎 − 𝜋/4)]
4√2𝜋(𝑘0𝑎)

3
2

((1 + 𝑠𝑖𝑛𝜙)𝑒𝑥𝑝[−𝑖𝑘0𝑎𝑠𝑖𝑛𝜙](1 − 𝑠𝑖𝑛𝜙)2 + (1 − 𝑠𝑖𝑛𝜙)𝑒𝑥𝑝[𝑖𝑘0𝑎𝑠𝑖𝑛𝜙](1 + 𝑠𝑖𝑛𝜙)2 )]

[1 − 𝑒𝑥𝑝[𝑖(2𝑘0𝑎 − 𝜋/2)]8𝜋(𝑘0𝑎)3
]
−1
|2

(2.7)

𝜎∥(𝜙) =
𝑏2
𝜋 | [𝑐𝑜𝑠(𝑘0𝑎𝑠𝑖𝑛𝜙) +

𝑖𝑠𝑖𝑛(𝑘0𝑎𝑠𝑖𝑛𝜙)
𝑠𝑖𝑛𝜙 ] − 4 exp[𝑖(𝑘0𝑎 + 𝜋/4)]

√2𝜋(𝑘0𝑎)
1
2

×[ 1
𝑐𝑜𝑠𝜙 −

𝑒𝑥𝑝[𝑖(𝑘0𝑎 + 𝜋/4)]
2√2𝜋(𝑘0𝑎)

1
2

(𝑒𝑥𝑝[−𝑖𝑘0𝑎𝑠𝑖𝑛𝜙](1 − 𝑠𝑖𝑛𝜙) + 𝑒𝑥𝑝[𝑖𝑘0𝑎𝑠𝑖𝑛𝜙](1 + 𝑠𝑖𝑛𝜙) )]

[1 − 𝑒𝑥𝑝[𝑖(2𝑘0𝑎 + 𝜋/2)]2𝜋(𝑘0𝑎)
]
−1
|2

(2.8)

where 𝑘0 is the free­space wavenumber, 𝑎 is the plate width and 𝑏 is the plate length.

As seen from the equations above, flat plates are sensitive to orientation errors, either in azimuth or
elevation plane depending on the configuration of the plate. With 𝜙 being the aspect angle, computed
plots of equations (2.7) and (2.8) are illustrated in figures 2.8a and 2.8b below, respectively.

(a) RCS in Perpendicular Polarization
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(b) RCS in Parallel Polarization

Figure 2.8: RCS of Rectangular Metal Plates in Perpendicular and Parallel Polarizations

Luneburg Lens A high­frequency approximate solution for the RCS of a Luneburg lens with a re­
flective coating is given in [6] to be:

𝜎 = 𝜋𝑘20𝑎40 (2.9)

inwhich 𝑘0 is the free­spacewave number and 𝑎0 is the lens radius. Luneberg lens offers some attractive
features as a radar calibration target. It has a large radar cross section as well as insensitive to errors in
orientation as also seen from the formula that it has no angular dependency. One very big disadvantage
of Luneburg lenses is, however, that they are both difficult and costly to construct in sizes exceeding
0.5 m in diameter. One can read out from figure 2.9 that the RCS at 0.1𝑚 diameter is about 17 dBsm at
f=77 GHz.
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Figure 2.9: RCS of a Luneburg Lens as a function of its radius

2.5.3. Existing Targets from Traffic Infrastructure
As mentioned in section 2.3, objects already existing in the current traffic infrastructure can also be
thought of as potential calibration targets. Traffic signs and guide posts are among those targets and
their RCS characteristics are discussed below.

Traffic Signs It has been shown in [8] that the RCS of traffic signs is strongly angle dependent.
Figure 2.10a represents the results of the RCSmeasurements conducted in [8] for different traffic signs.
As can be seen from the figure, there occurs strong reflection from the traffic signs only if the plane of
the sign is perpendicular to the radar, otherwise there is almost no back­scattering. Additionally, it is
also shown here that the optical reflective covermaterial of two round traffic signs has no effect on their
radar characteristics, i.e. RA2 vs. RA3.

Guide Posts In [9], it has been shown that guide posts can be discriminated from the cylindrical
metal posts due to them having a unique RCS behaviour both in co­ and cross­ polarized channels.
Metal post might either be the post used to hold up a traffic sign or bottom part of a traffic light or
street light. Figure 2.10b as given in [9] shows the co­ and cross­polarized RCS patterns of metal posts
and dielectric guide posts. Note the sharp peaks at 105∘ and 255∘ in both co­ and cross­polarized pat­
terns. Additionally, the guide posts have a lower RCS because it is composed of a dielectric material.
In conclusion, one can be sure about it that the object is a guide post when the RCS signature shows
narrow sharp peaks in both co­ and cross­polarized channels.
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(a) Resulting angular diagrams of network analyzer RCS measurements [8].

(b) RCS of metal and guide post [8].

Figure 2.10: RCS of existing targets from traffic infrastructure

2.5.4. Outcome of the Evaluation
Table 2.1 gives an overview of each of the calibrators discussed above and their characteristics accord­
ing to the criteria listed in 2.4. In the comparison, same cross­section size has been used for the objects
whenever possible and f=77 GHz.

In the table, green cells highlight what is considered to be the pro’s and the red cells highlight what
is considered as the con’s that the calibrators exhibit based on the defined target selection criteria.

Evaluation resulted in that trihedral corner reflectors would be the most appropriate calibration
targets to use in this project due to their relatively high RCS value, lesser sensitivity of RCS in orien­
tation and reasonably wide 3­dB RCS pattern beamwidth with respect to other targets at reasonably
comparable small size, weight and cost. 3­dB RCS pattern beamwidth is related to the RCS stability of
the target since larger is the 3­dB RCS pattern beamwidth, higher is the stability of RCS of the target.
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Table 2.1: Characteristics of the Passive Calibrators (at f=76GHz when applicable)

Target

RCS

Value

[dBsm]

3­dB

RCS beamwidth

[degrees]

RCS

Sensitivity

Physical

Size

[mxmxm]

Weight Cost

Luneburg Lens 17.08 n.a n.a 0.10 * ***

Rect. Flat Metal Plates ∼ 9.4 ∼ 54.5 **** 0.10x0.20 * *

Metal Spheres 4.97 n.a. n.a 1 * *

PEC Ellipsoids 7.6 94.6 ** 1.2x0.7x0.5 * *

Prolate Spheroids 6.55 55 ***** 1.2x 0.7 * *

Oblate Spheroids 14.16 34.2 ** 1.2x1.2x0.5 * *

Dihedral Cor. Ref. 31.22 89.8 **** 0.1x0.2 * *

Trihedral Cor. Ref. 25.72 43.14 *** 0.2 * *

Traffic Signs 20 a few ****
Round: 0.3

Triangular : 0.9
* *

Guide Posts 8 at 𝜙=255∘ a few * 1.73 * *
1Number of ∗’s is used here as a weight metric which reflects how big, heavy, costly and sensitive to orientation errors the target

is.

2.6. Calibration Target in a Highway Configuration
For triangular trihedral corner reflectors, the high­frequency RCS was given in equation (2.2) approx­
imately as:

𝜎(𝜃, 𝜙, 𝑙) ≈ 4𝜋
𝜆20
𝑙4[cos𝜃 + sin𝜃(sin𝜙 + cos𝜙)

−2[cos𝜃 + sin𝜃(sin𝜙 + cos𝜙)]−1]2
(2.10)

where 𝑙 is the leg length of the reflector [7].

The ideal orientation of the calibration target can be considered to be the pair of spherical incidence
angles (𝜃𝑖𝑑𝑒𝑎𝑙,𝜙𝑖𝑑𝑒𝑎𝑙) in elevation and azimuth planes, respectively, whichmaximizes equation (2.10) at
a given leg length 𝑙 and frequency 𝑓, because it is desirable to be able to receive the maximum amount
of energy reflected back from the target into the automotive radar receiver. Any deviation from the pair
of spherical incidence angles (𝜃𝑖𝑑𝑒𝑎𝑙,𝜙𝑖𝑑𝑒𝑎𝑙) thus results in lower energy returned from the target.

Steps in modelling the configuration can be given as:

1. Determination of an appropriate position of the calibration target alongside the highway,

2. Range of incidence angles Δ𝜃 and Δ𝜙 into the calibration target,

3. Determination of the pair of ideal spherical incidence angles (𝜃𝑖𝑑𝑒𝑎𝑙,𝜙𝑖𝑑𝑒𝑎𝑙),

4. Size of the calibration target,

Remainder of this section is build up following the steps mentioned above.
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Additionally, the coordinate system used here is given in figure 2.11 as taken from [7].

Figure 2.11: Coordinate system used for the orientation of the corner reflector [7].

2.6.1. Determination of an Appropriate Position of the Calibration Target
alongside the Highway

The configuration used throughout this section concerns a straight European highway. The high­
way consists of three lanes, each of 𝑤𝑙𝑎𝑛𝑒 = 3.75𝑚 wide and an Emergency Stopping Lane (ESL) of
𝑤𝑒𝑠𝑙 = 2.5𝑚 wide, both as the European standards. Vehicles used in the configuration are assumed to
be personal cars of 𝑤𝑐𝑎𝑟 = 2.0𝑚 wide.

An appropriate position of the calibration target is chosen to be point 𝑇 which lies in between the
points 𝑄 and 𝑃 at a distance of 𝑑1 𝑚 from point 𝑄. This is represented in figure 2.12. Points 𝑄 and 𝑃
are the nearest and furthest positions, respectively, to the ESL, where a calibration target can be placed
considering visibility issues.

Additionally, based on this configuration, the distance between two successive targets is calculated
to be at most 𝑑 = 66.243 𝑚 as followed from the formula given in table A.1.
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Figure 2.12: 3­Lanes highway configuration with calibrator placed at point T

2.6.2. Range of Incidence Angles
Determination of the range of spherical incidence angles (Δ𝜃𝑖𝑛𝑐, Δ𝜙𝑖𝑛𝑐) is based on the highway config­
uration from figure 2.12 which is extended further below according to visibility issues both in elevation
and azimuth planes.

Range of Incidence Angles Δ𝜙𝑖𝑛𝑐 in Azimuth Plane Consider figure 2.13, which is an extended
version of figure 2.12. With the target placed at point 𝑇, range of incident angles Δ𝜙𝑖𝑛𝑐 is decided by the
vehicles 𝐶𝑎𝑟 1 and 𝐶𝑎𝑟 2 as represented. This range is highlighted in the figure as filled in with yellow
color.

In this figure,𝜙𝑖𝑑𝑒𝑎𝑙 represents the ideal orientation of the calibration target in azimuth planewhich
maximizes equation 2.2, with other parameters in the equation kept fixed. Moreover, 𝜙𝑚𝑖𝑛 and 𝜙𝑚𝑎𝑥
represents the two ends of the range of incidence angles Δ𝜙𝑖𝑛𝑐 and they are expressed as:

• Δ𝜙𝑖𝑛𝑐 = 90∘ − 𝜁 − 𝛽,
• 𝜙𝑚𝑖𝑛 = 𝜙𝑖𝑑𝑒𝑎𝑙 − 0.5 ⋅ Δ𝜙𝑖𝑛𝑐,
• 𝜙𝑚𝑎𝑥 = 𝜙𝑖𝑑𝑒𝑎𝑙 + 0.5 ⋅ Δ𝜙𝑖𝑛𝑐.
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Figure 2.13: Configuration used for determination of the range of incidence angles Δ𝜙𝑖𝑛𝑐 in azimuth plane
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Range of IncidenceAngles Δ𝜃𝑖𝑛𝑐 in ElevationPlane Consider the configuration given in figure
2.14, where the calibration target is represented as the yellow dot. Automotive radars on the personal
cars are assumed to be mounted at the height of ℎ𝑟𝑎𝑑. Also important is the maximum height ℎ𝑚𝑎𝑥,
above radar height ℎ𝑟𝑎𝑑, at which the calibration target can be placed such that it will be visible to all
vehicles driving on the highway.

The maximum target height ℎ𝑚𝑎𝑥 is restricted by the vehicle, i.e. 𝐶𝑎𝑟 2, which finds itself at the
nearest possible position to the calibration target while the automotive radar still can detect the target.
In other words, for heights above ℎ𝑚𝑎𝑥 this vehicle is not able to detect the target.

Figure 2.14: Configuration used for determination of the range of incidence angles Δ𝜃𝑖𝑛𝑐 in elevation plane.

Note that this drawing is not drawn on the true scale and only meant for visual representation of
the configuration. Therefore, for example, the angle 𝜌 does not necessarily need to be smaller than the
angle 𝜂 despite the figure shows it the other way around.

The range of incidence angles in the used configuration thus concerns the region between 𝜃𝑚𝑎𝑥 and
𝜃𝑚𝑖𝑛, which are computed as follow:

• Δ𝜃𝑖𝑛𝑐 = 𝜃1 − 𝜃2, where

• 𝜃1 = 180∘ −𝑚𝑖𝑛 {𝜌, 𝜂, Ψ, 𝜔},

• 𝜃2 = 180∘ −𝑚𝑎𝑥 {𝜌, 𝜂, Ψ, 𝜔},

and,

• 𝜃𝑚𝑎𝑥 = 𝜃𝑖𝑑𝑒𝑎𝑙 + 0.5 ⋅ Δ𝜃𝑖𝑛𝑐,

• 𝜃𝑚𝑖𝑛 = 𝜃𝑖𝑑𝑒𝑎𝑙 − 0.5 ⋅ Δ𝜃𝑖𝑛𝑐.
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2.6.3. Determination of the Pair of Ideal Spherical Incidence Angles
In 3.6 it is mentioned that the ideal orientation of the calibration target can be considered to be the
pair of spherical angles (𝜃𝑖𝑑𝑒𝑎𝑙,𝜙𝑖𝑑𝑒𝑎𝑙) whichmaximizes equation (2.10) within the appropriate interval
of incidence angles. The idea behind this is clearly that the automotive radar gets the maximum RCS
return from the target.

First, the ideal incident angle 𝜙𝑖𝑑𝑒𝑎𝑙 in azimuth plane is determined by evaluating equation (2.10)
at different 𝜃𝑖𝑛𝑐 values where the frequency and size of the corner reflector kept fixed as 𝑓 = 77 𝐺𝐻𝑧
and 𝑙 = 0.10 𝑚. Figure 2.15a shows that the maximum RCS is reached at 𝜙𝑖𝑛𝑐 = 45∘ at all 𝜃𝑖𝑛𝑐 values.
Therefore, it is concluded that 𝜙𝑖𝑑𝑒𝑎𝑙 = 45∘.

Having determined 𝜙𝑖𝑑𝑒𝑎𝑙, a further evaluation of equation (2.10) at 𝜙𝑖𝑛𝑐 = 45∘, with the frequency
and size of the corner reflector kept fixed as 𝑓 = 77 𝐺𝐻𝑧 and 𝑙 = 0.10 𝑚, shows in figure 2.15b the ideal
incident angle in elevation plane to be 𝜃𝑖𝑑𝑒𝑎𝑙 = 54.7∘.

(a) RCS of a trihedral corner reflector as a function of azimuth incidence angles 𝜙𝑖𝑛𝑐 at different elevation incidence angles 𝜃𝑖𝑛𝑐.
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(b) RCS of a trihedral corner reflector as a function of elevation incidence angles 𝜃𝑖𝑛𝑐 at the ideal incident angle 𝜙𝑖𝑑𝑒𝑎𝑙.

Figure 2.15: Evaluation of equation (2.2) to find the ideal pair of spherical incidence angles (𝜃𝑖𝑑𝑒𝑎𝑙,𝜙𝑖𝑑𝑒𝑎𝑙).

2.6.4. Size of the Calibration Target
Re­writing equation (2.10), size of the reflector follows to be approximately:

𝑙 ≈ (
𝜎𝑟𝑒𝑞 ⋅ 𝜆20

4𝜋[cos𝜃𝑖𝑑𝑒𝑎𝑙 + sin𝜃𝑖𝑑𝑒𝑎𝑙(sin𝜙𝑖𝑑𝑒𝑎𝑙 + cos𝜙𝑖𝑑𝑒𝑎𝑙) − 2[cos𝜃𝑖𝑑𝑒𝑎𝑙 + sin𝜃𝑖𝑑𝑒𝑎𝑙(sin𝜙𝑖𝑑𝑒𝑎𝑙 + cos𝜙𝑖𝑑𝑒𝑎𝑙)]−1]2
)
1/4

(2.11)
Factors that determine the size of the leg length are thus theminimum required RCS 𝜎𝑟𝑒𝑞 of the calibra­
tion target and the ideal pair of spherical incidence angles (𝜃𝑖𝑑𝑒𝑎𝑙,𝜙𝑖𝑑𝑒𝑎𝑙) at the given frequency. The
minimum required RCS 𝜎𝑟𝑒𝑞 is calculated using the specifications of the automotive radar in question
through the radar range equation.

Radar Range Equation The radar range equation for automotive FMCW radars in the form of
(required) SNR, including the free­space losses, can be given as:

𝑆𝑁𝑅 = 𝑃𝑟
𝑃𝑛
=

𝑃𝑡𝐺𝑡𝐺𝑟𝜆2𝜎𝑟𝑒𝑞
(4𝜋)3𝑅4𝑘𝑇0𝐹𝐵𝐿𝑠𝑦𝑠

𝐹4𝑝𝑟 ⋅ (𝜏𝐵) (2.12)

with 𝐺𝑡 = 𝐺𝑟= 𝐺 in monostatic radar case, where;

• 𝑃𝑛 is the thermal noise power k𝑇0FB ,
• 𝐿𝑠𝑦𝑠 is the system loss comprising transmitter losses, atmospheric losses, receiver losses, signal
processing losses, the polarization mismatch loss and additionally the losses due to wet radome.
Therefore, 𝐿𝑠𝑦𝑠 [dB] = 𝐿𝑡𝑟 [dB] + 𝐿𝑎𝑡𝑚 [dB] + 𝐿𝑟𝑒𝑐 [dB] + 𝐿𝑠𝑝 [dB] + 𝐿𝑝𝑜𝑙 [dB] + 𝐿𝑟𝑎𝑑 [dB], respec­
tively. Assuming that signal processing losses 𝐿𝑠𝑝, atmospheric losses 𝐿𝑎𝑡𝑚 and the polarization
missmatch losses 𝐿𝑝𝑜𝑙 are negligible and that the transmitter and receiver losses, 𝐿𝑡𝑟 and 𝐿𝑟𝑒𝑐 are
accounted for in the gains 𝐺𝑡 and 𝐺𝑟 , the system loss becomes 𝐿𝑠𝑦𝑠 = 𝐿𝑟𝑎𝑑.
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• 𝐹4𝑝𝑟 is the two­way propagation factor in the power form. This propagation factor is assumed to
be 1 in the free­space conditions.

• 𝜎𝑟𝑒𝑞 is the minimum required RCS of the calibration target to be visible by the automotive radar
in question.

and finally,

• (𝜏𝐵) is the waveform’s time­bandwidth (TB) product coming from the Pulse Compression Gain.

The Minimum Required RCS 𝜎𝑟𝑒𝑞 Re­writing the radar range equation from equation (2.12) in
the RCS form results in:

𝜎𝑟𝑒𝑞 =
𝑆𝑁𝑅𝑟𝑒𝑞.(4𝜋)3𝑅4𝑘𝑇0𝐹𝐵𝐿𝑟𝑎𝑑

𝑃𝑡𝐺2𝜆2
⋅ ( 1𝜏𝐵 ) (2.13)

From equation 2.13 can be seen that the size of the target depends in turn on the radial distance 𝑅
as well.

SpecificationsRecommmendation ITU­R,M.2057­0 Systemcharacteristics to be used in equa­
tion (2.13) for the calculation of the requiredRCS𝜎𝑟𝑒𝑞 can be taken from theRecommmendation ITU­R,
M.2057­0, ”Systems characteristics of automotive radars operating in the frequency band 76­81 GHz
for intelligent transport systems applications” [10]. Table 2.2 gives an overview of the recommended
system characteristics both for long range radar and short range radar.

Table 2.2: Automotive radar characteristics in the frequency band 76­81 GHz [10].

Parameter
Long Range

Radar

Short Range

Radar

Sub­band used (GHz) 76­77 77­81

Max necessary bandwidth(GHz) 1 4

Typical sweep time (𝜇s)
10 ­ 40

for fast FMCW

10 ­ 40

for fast FMCW

Maximum transmit power to antenna (dBm) 10 10

Receiver Sensitivity (dBm) ­ 115 ­ 120

Receiver noise figure F (dB) 15 12

Antenna main beam gain(dBi)
Typical 30,

Maximum 45

TX: 23

RX: 13

Antenna height (m) 0.3 ­ 1 above road 0.3 ­ 1 above road

Antenna azimuth scan angle(degrees) TX/RX: ±15 TX/RX: ±50
Antenna elevation (degrees) TX/RX: ±3 TX/RX: ±5.5

From the specifications, minimum required signal­to­noise ratio at the input of the receiver can be
calculated to be 𝑆𝑁𝑅𝑟𝑒𝑞.,𝐼𝑇𝑈 =

𝑃𝑟
𝑃𝑛
= −115 𝑑𝐵𝑚

−98.977 𝑑𝐵 = 16.02 𝑑𝐵, where 𝑇0 is taken to be 290K in the calcula­
tions.

Range 𝑅 in equation (2.13) is the maximum possible direct line­of­sight distance between the car
and the calibration target while the target is still visible to the radar.From the configuration represented
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in figure 2.12 follows that 𝑅 = 𝑅3.

Furthermore, in [11], it is shown that, depending on the thickness of the water film on the surface of
radome formed by rain drops when the automotive radar operates in the adverse weather, amount of
loss can become as high as 20 𝑑𝐵. Therefore, the amount of loss due to wet radome is considered to be
𝐿𝑟𝑎𝑑 = 20 𝑑𝐵 as well as the pulse duration of 𝜏𝐼𝑇𝑈 = 10 𝜇𝑠. Additionally, the antenna gain is assumed
to be 𝐺 = 30 𝑑𝐵𝑖 and the operational bandwidth is assumed to be 𝐵𝐼𝑇𝑈 = 1 𝐺𝐻𝑧.

Putting these values in equation (2.13) results in the required RCS to be 𝜎𝑟𝑒𝑞.,𝐼𝑇𝑈 = 0.3186 𝑑𝐵𝑠𝑚.

Specifications Continental ARS 30X Long Range Radar On the other hand, the required
RCS 𝜎𝑟𝑒𝑞. can also be computed using the specifications of a commercial radar, for which the ”Conti­
nental ARS 30X Long Range Radar” is taken as an example here. Table 2.3 below gives the values of
some important characteristics of this radar for far field measurements.

Table 2.3: Some important system characteristics of Continental ARS 30X Long Range Radar [12].

Continental ARS 30X Radar Sensor

77 GHz ( for far field)

Distance Range 0.25 ... 200 m far field

Radar Operating Frequency Band 76 ­ 77 GHz

Transmission Capacity <10 mW ≡ 10 dBm
Range Resolution 2 m

Range Accuracy 0.25 m

Speed Range ­ 88 km/h ... +265 km/h

Speed Resolution 2.76 km/h

Speed Accuracy 0.5 km/h

Cycle Time 66 ms

Range Resolution and Bandwidth

From the range resolution, the operational bandwidth 𝐵 is calculated from the following formula to be:

Δ𝑅 = 𝑐
2𝐵 − > 𝐵 = 𝑐

2Δ𝑅

= 3 ⋅ 108 𝑚/𝑠
2 ⋅ 2 𝑚 = 75 𝑀𝐻𝑧

(2.14)

Range Accuracy and Default 𝑆𝑁𝑅0

From the range accuracy, we can calculate the 𝑆𝑁𝑅0 as follows:

𝛿𝑅 = 𝑐
2𝐵√2𝑆𝑁𝑅0

− > 𝑆𝑁𝑅0 =
1
2(

𝑐
2𝐵 ⋅ 𝛿𝑅)

2
(2.15)

Filling in the values from the table, the result is 𝑆𝑁𝑅0 = 32 ≡ 15.05 𝑑𝐵𝑚.
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Speed Resolution and Observation Time CPI

From the speed resolution, the doppler frequency resolution is calculated as follows:

Δ𝑣𝑟 =
𝜆Δ𝑓𝑑
2 − > Δ𝑓𝑑 =

2Δ𝑣𝑟
𝜆 (2.16)

Since the observation time CPI is the inverse of the doppler frequency resolution :

𝐶𝑃𝐼 = 1
Δ𝑓𝑑

= 𝜆
2Δ𝑣𝑟

(2.17)

Filling in the values gives for the observation time 𝐶𝑃𝐼 ≈ 2.55 𝑚𝑠.

Speed Range, PRF, 𝑁𝑝𝑢𝑙𝑠𝑒𝑠 and the SNR

From the speed range, the maximum unambiguous radial speed 𝑣𝑟,𝑚𝑎𝑥 is calculated to be:

𝑣𝑟,𝑚𝑎𝑥. =
88 + 265

2 𝑘𝑚/ℎ

= 353
2 𝑘𝑚/ℎ

= 176.5 𝑘𝑚/ℎ
≈ 49.02 𝑚/𝑠

(2.18)

Since in general holds that 𝑣𝑟 =
𝜆⋅ 𝑃𝑅𝐹
2 , filling in the corresponding values gives the PRF to be:

𝑃𝑅𝐹 = 2𝑣𝑟,𝑚𝑎𝑥.
𝜆 = 25 𝑘𝐻𝑧 (2.19)

Additionally, CPI is a function of the PRF, and so pulse time 𝜏, and the number of pulses used for the
estimation:

𝐶𝑃𝐼 =
𝑁𝑝𝑢𝑙𝑠𝑒𝑠
𝑃𝑅𝐹 = 𝑁𝑝𝑢𝑙𝑠𝑒𝑠 ⋅ 𝜏 (2.20)

Therefore, the number of pulses, or chirps in this case, can be calculated as follows:

𝑁𝑝𝑢𝑙𝑠𝑒𝑠 = 𝐶𝑃𝐼 ⋅ 𝑃𝑅𝐹
= 2.55 𝑚𝑠 ⋅ 25 𝑘𝐻𝑧
= 63.75
≈ 64.

(2.21)

Assuming that coherent integration is used in the estimation process, the default 𝑆𝑁𝑅0 is improved by
the number of pulses used. Therefore,

𝑆𝑁𝑅(𝑁𝑝𝑢𝑙𝑠𝑒𝑠) = 𝑆𝑁𝑅0 ⋅ 𝑁𝑝𝑢𝑙𝑠𝑒𝑠
= 32 ⋅ 64
≡ 33.11 𝑑𝐵.

(2.22)
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Pulse Time

From equation (2.20) follows that, the pulse time is:

𝑃𝑢𝑙𝑠𝑒 𝑇𝑖𝑚𝑒 𝜏𝐶𝑂𝑁𝑇 =
𝐶𝑃𝐼
𝑁𝑝𝑢𝑙𝑠𝑒𝑠

= 2.55 𝑚𝑠
64

≈ 40 𝜇𝑠.
(2.23)

Having determined the operational bandwidth to be𝐵𝐶𝑂𝑁𝑇 = 75𝑀𝐻𝑧, theminimumrequired signal­to­
noise­ratio to be 𝑆𝑁𝑅𝑟𝑒𝑞.,𝐶𝑂𝑁𝑇 = 33.11 𝑑𝐵, the pulse duration to be 𝜏𝐶𝑂𝑁𝑇 = 40 𝜇𝑠 and again assuming
𝐿𝑟𝑎𝑑 = 20 𝑑𝐵 and 𝐺 = 30 𝑑𝐵𝑖, putting these values in equation (2.13) results in the required RCS to be
𝜎𝑟𝑒𝑞.,𝐶𝑂𝑁𝑇 = 11.38 𝑑𝐵𝑠𝑚.

Size of the CornerReflector Having determined theminimum required signal­to­noise­ratio val­
ues 𝑆𝑁𝑅𝑟𝑒𝑞.,𝐼𝑇𝑈 and 𝑆𝑁𝑅𝑟𝑒𝑞.,𝐶𝑂𝑁𝑇, and thereby theminimumrequiredRCS values𝜎𝑟𝑒𝑞.,𝐼𝑇𝑈 and𝜎𝑟𝑒𝑞.,𝐶𝑂𝑁𝑇
from both specifications and the pair of incidence angles to be (𝜃𝑖𝑑𝑒𝑎𝑙 = 54.7∘, 𝜙𝑖𝑑𝑒𝑎𝑙 = 45∘) as shown
earlier, filling in these values in equation (2.11) at the frequency 𝑓 = 77 𝐺𝐻𝑧 results in that the size of
the corner reflector should be minimum 𝑙𝑚𝑖𝑛 [𝑚] values, which are given in table 2.4, in order to reach
the minimum required RCS under the given pair of ideal incident angles.

Note that in case of ”Continental ARS 30X Long Range Radar” the minimum size 𝑙𝑚𝑖𝑛 [𝑚] has been
calculated only for the combination of the signal­to­noise value of 𝑆𝑁𝑅 = 33.11𝑑𝐵 and a pulse time of
𝜏𝐶𝑂𝑁𝑇 = 40 𝜇𝑠 since these are the values obtained from the known specifications above.

Table 2.4:Minimum required size of the corner reflector 𝑙𝑚𝑖𝑛 [𝑚] for combinations of different 𝑆𝑁𝑅𝑟𝑒𝑞 and pulse
duration 𝜏 values.

Pulse Duration

𝜏 [𝜇𝑠]
10 (= 𝜏𝐼𝑇𝑈) 20 30 40 (= 𝜏𝐶𝑂𝑁𝑇)

SNR

Values

[dB]

𝑆𝑁𝑅𝑟𝑒𝑞.,𝐼𝑇𝑈 = 16.02 0.0444 m 0.0374 m 0.0338 m 0.0314 m

25 0.0745 m 0.0627 m 0.0566 m 0.0527 m

30 0.0994 m 0.0835 m 0.0755 m 0.0703 m

𝑆𝑁𝑅𝑟𝑒𝑞.,𝐶𝑂𝑁𝑇 = 33.11 ­ ­ ­ 0.0840 m

As it ismore appropriate to take the threshold value of the SNR in the order of 20 ∼ 30𝑑𝐵 in practical
systems, considering the results from Table 2.4 especially for the commercial Continental ARS Radar,
one can conclude that the required size of the corner reflector should be 𝑙𝑚𝑖𝑛 ≥ 0.0840 𝑚.

2.7. Conclusions
In this chapter, the most appropriate calibration target is determined, after an evaluation among dif­
ferent possible calibrations targets, to be trihedral corner reflector. This evaluation is done based on
the defined target selection criteria that is formed by some important desired characteristics the cali­
bration targets need to possess.

Considering visibility and safety issues based on the geometry of a straight three­lanes European
highway configuration, an appropriate position of the calibration target alongside the highway is chosen
to be point 𝑇 as given in figure 2.12. The formulas to compute the range of spherical incidence angles
are provided to be :

• Δ𝜙𝑖𝑛𝑐 = 90∘ − 𝜁 − 𝛽,

• Δ𝜃𝑖𝑛𝑐 = 𝜃1 − 𝜃2, where
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• 𝜃1 = 180∘ −𝑚𝑖𝑛 {𝜌, 𝜂, Ψ, 𝜔},

• 𝜃2 = 180∘ −𝑚𝑎𝑥 {𝜌, 𝜂, Ψ, 𝜔},

The pair of ideal spherical angles, which maximizes equation (2.10) within the appropriate interval
of incidence angles, are determined to be (𝜃𝑖𝑑𝑒𝑎𝑙 = 54.7∘,𝜙𝑖𝑑𝑒𝑎𝑙 = 45∘).

The required size of the corner reflector is shown to depend on the minimum required RCS 𝜎𝑟𝑒𝑞 of
the calibration target, the ideal pair of spherical incidence angles (𝜃𝑖𝑑𝑒𝑎𝑙,𝜙𝑖𝑑𝑒𝑎𝑙) and the radial distance
𝑅 at the given frequency. Considering two different references of specifications, Recommmendation
ITU­R, M.2057­0 and Specifications Continental ARS 30X Long Range Radar, minimum required
RCS are obtained to be 𝜎𝑟𝑒𝑞.,𝐼𝑇𝑈 = 0.3186 𝑑𝐵𝑠𝑚 and 𝜎𝑟𝑒𝑞.,𝐶𝑂𝑁𝑇 = 11.38 𝑑𝐵𝑠𝑚 as well as the minimum
required signal­to­noise ratio at the input of the receiver are determined to be 𝑆𝑁𝑅𝑟𝑒𝑞.,𝐼𝑇𝑈 = 16.02 𝑑𝐵,
and 𝑆𝑁𝑅 = 33.11𝑑𝐵, respectively.

Minimum required size of the corner reflector is obtained to be 𝑙𝑚𝑖𝑛 ≥ 0.0840𝑚 from the evaluation
of these two references.





3
Statistical Characteristics of the RCS

Loss Factor

This chapter investigates the statistical characteristics of the RCS loss in terms of RCS Loss Factor
for orientation errors, both in elevation and azimuth plane, errors in leg length as well as the non­
orthogonality of the corner walls which results from mass production errors.

3.1. RCS Loss Factor due to Orientation (Alignment) Errors
In general, the RCS loss factor due to orientation errors can be derived from the formula given in (2.10)
to be:

𝐿𝑜𝑟𝑖. =
𝜎𝑟𝑒𝑐.(𝜃, 𝜙, 𝑙)

𝜎𝑖𝑑𝑒𝑎𝑙(𝜃𝑖𝑑𝑒𝑎𝑙 , 𝜙𝑖𝑑𝑒𝑎𝑙 , 𝑙𝑖𝑑𝑒𝑎𝑙)
(3.1)

where 𝜎𝑟𝑒𝑐.(𝜃, 𝜙, 𝑙) is the received RCS reflected from the reflector under actual conditions and
𝜎𝑖𝑑𝑒𝑎𝑙(𝜃𝑖𝑑𝑒𝑎𝑙 , 𝜙𝑖𝑑𝑒𝑎𝑙 , 𝑙𝑖𝑑𝑒𝑎𝑙) is the RCS expected to be received under ideal orientation and leg length of
the reflector.

3.1.1. RCS Loss Factor due to Errors in Elevation Plane
Considering equation (3.1), the RCS loss factor solely due to elevational orientation errors can be de­
rived to be:

𝐿𝑒𝑙𝑒𝑣. =
𝜎(𝜃, 𝜙𝑖𝑑𝑒𝑎𝑙 , 𝑙𝑖𝑑𝑒𝑎𝑙)

𝜎𝑖𝑑𝑒𝑎𝑙(𝜃𝑖𝑑𝑒𝑎𝑙 , 𝜙𝑖𝑑𝑒𝑎𝑙 , 𝑙𝑖𝑑𝑒𝑎𝑙)
(3.2)

where,

𝜎(𝜃, 𝜙𝑖𝑑𝑒𝑎𝑙 , 𝑙𝑖𝑑𝑒𝑎𝑙) is the received RCS reflected from the reflector when the reflector has error in its
orientation in elevation plane only, while the reflector has the ideal orientation in azimuth plane and
has no errors in its leg length,

and,

𝜎𝑖𝑑𝑒𝑎𝑙(𝜃𝑖𝑑𝑒𝑎𝑙 , 𝜙𝑖𝑑𝑒𝑎𝑙 , 𝑙𝑖𝑑𝑒𝑎𝑙) is the RCS expected to be received under ideal orientation both in eleva­
tion and azimuth planes and the leg length of the reflector has no errors. Specifically,

𝜎(𝜃, 𝜙𝑖𝑑𝑒𝑎𝑙 , 𝑙𝑖𝑑𝑒𝑎𝑙) ≈
4𝜋
𝜆20
𝑙4𝑖𝑑𝑒𝑎𝑙[cos𝜃 + sin𝜃(sin𝜙𝑖𝑑𝑒𝑎𝑙 + cos𝜙𝑖𝑑𝑒𝑎𝑙)

−2[cos𝜃 + sin𝜃(sin𝜙𝑖𝑑𝑒𝑎𝑙 + cos𝜙𝑖𝑑𝑒𝑎𝑙)]−1]2
(3.3)
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and,

𝜎(𝜃𝑖𝑑𝑒𝑎𝑙 , 𝜙𝑖𝑑𝑒𝑎𝑙 , 𝑙𝑖𝑑𝑒𝑎𝑙) ≈
4𝜋
𝜆20
𝑙4𝑖𝑑𝑒𝑎𝑙[cos𝜃𝑖𝑑𝑒𝑎𝑙 + sin𝜃𝑖𝑑𝑒𝑎𝑙(sin𝜙𝑖𝑑𝑒𝑎𝑙 + cos𝜙𝑖𝑑𝑒𝑎𝑙)

−2[cos𝜃𝑖𝑑𝑒𝑎𝑙 + sin𝜃𝑖𝑑𝑒𝑎𝑙(sin𝜙𝑖𝑑𝑒𝑎𝑙 + cos𝜙𝑖𝑑𝑒𝑎𝑙)]−1]2
(3.4)

3.1.2. Approximation of High­Frequency RCS by its Taylor Series
First step to derive the probability distribution of the loss factor 𝐿𝑒𝑙𝑒𝑣., is to approximate the high­
frequency RCS 𝜎(𝜃, 𝜙𝑖𝑑𝑒𝑎𝑙 , 𝑙𝑖𝑑𝑒𝑎𝑙) by means of its Taylor series in the vicinity of the point 𝜃 = 𝜃𝑖𝑑𝑒𝑎𝑙.

Consider equation (3.3) for the ideal azimuth incidence angle 𝜙𝑖𝑑𝑒𝑎𝑙 = 45∘ and the ideal leg length
of the reflector 𝑙𝑖𝑑𝑒𝑎𝑙 :

𝜎(𝜃, 𝜙𝑖𝑑𝑒𝑎𝑙 , 𝑙𝑖𝑑𝑒𝑎𝑙) ≈
4𝜋
𝜆20
𝑙4𝑖𝑑𝑒𝑎𝑙[cos𝜃 + sin𝜃(sin𝜙𝑖𝑑𝑒𝑎𝑙 + cos𝜙𝑖𝑑𝑒𝑎𝑙)

−2[cos𝜃 + sin𝜃(sin𝜙𝑖𝑑𝑒𝑎𝑙 + cos𝜙𝑖𝑑𝑒𝑎𝑙)]−1]2
(3.5)

Since sin(45∘) = cos(45∘) = √2
2 , this equation simplifies to :

𝜎(𝜃, 𝜙𝑖𝑑𝑒𝑎𝑙 , 𝑙𝑖𝑑𝑒𝑎𝑙) ≈ 𝐶 [(cos𝜃 + √2 sin𝜃) − 2[cos𝜃 + √2 sin𝜃]−1]
2

where 𝐶 = 4𝜋
𝜆20
𝑙4𝑖𝑑𝑒𝑎𝑙 .

(3.6)

One can approximate the function 𝜎(𝜃, 𝜙𝑖𝑑𝑒𝑎𝑙 , 𝑙𝑖𝑑𝑒𝑎𝑙) by means of ”quadratic approximation” that fol­
lows from the Taylor’s theorem.

Denote 𝜎(𝜃, 𝜙𝑖𝑑𝑒𝑎𝑙 , 𝑙𝑖𝑑𝑒𝑎𝑙) = 𝑓(𝜃),

the quadratic approximation of the function 𝜎(𝜃, 𝜙𝑖𝑑𝑒𝑎𝑙 , 𝑙𝑖𝑑𝑒𝑎𝑙) around the point 𝜃 = 𝜃𝑖𝑑𝑒𝑎𝑙 by means of
the second­order Taylor polynomial is to be given as :

𝜎(𝜃, 𝜙𝑖𝑑𝑒𝑎𝑙 , 𝑙𝑖𝑑𝑒𝑎𝑙)|𝜃=𝜃𝑖𝑑𝑒𝑎𝑙
≈ 𝑓(𝜃𝑖𝑑𝑒𝑎𝑙) +

𝑑 𝑓(𝜃)
𝑑𝜃 |

𝜃=𝜃𝑖𝑑𝑒𝑎𝑙
(𝜃 − 𝜃𝑖𝑑𝑒𝑎𝑙) +

1
2!
𝑑2 𝑓(𝜃)
𝑑2 𝜃 |

𝜃=𝜃𝑖𝑑𝑒𝑎𝑙
(𝜃 − 𝜃𝑖𝑑𝑒𝑎𝑙)2

(3.7)

The elements of the Taylor polynomial from equation (3.7) are obtained to be as follows:

𝑓(𝜃𝑖𝑑𝑒𝑎𝑙) = 𝐶 [ cos𝜃𝑖𝑑𝑒𝑎𝑙 + √2 sin𝜃𝑖𝑑𝑒𝑎𝑙 −
2

cos𝜃𝑖𝑑𝑒𝑎𝑙 + √2 sin𝜃𝑖𝑑𝑒𝑎𝑙
]
2
, (3.8)

The first derivative
𝑑 𝑓(𝜃)
𝑑𝜃 in equation (3.7) is obtained to be:

𝑑 𝑓(𝜃)
𝑑𝜃 = 𝑑 𝜎(𝜃, 𝜙𝑖𝑑𝑒𝑎𝑙 , 𝑙𝑖𝑑𝑒𝑎𝑙)

𝑑𝜃

= 2 𝐶[(cos𝜃 + √2 sin𝜃) − 2(cos𝜃 + √2 sin𝜃)−1 ]

⋅ [ (− sin𝜃 + √2 cos𝜃) + 2 (cos𝜃 + √2 sin𝜃)−2 ⋅ (− sin𝜃 + √2 cos𝜃)]

(3.9)
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To keep the notation short and simple, call the elements in the brackets from equation (3.9) as:

𝑎(𝜃) = [(cos𝜃 + √2 sin𝜃) − 2(cos𝜃 + √2 sin𝜃)−1 ],

and,

𝑏(𝜃) = [ (− sin𝜃 + √2 cos𝜃) + 2 (cos𝜃 + √2 sin𝜃)−2 ⋅ (− sin𝜃 + √2 cos𝜃)],

Therefore, the first derivative can be re­written simplified as:

𝑑 𝑓(𝜃)
𝑑𝜃 = 2 𝐶 [𝑎(𝜃) ⋅ 𝑏(𝜃)] (3.10)

Note that, actually, 𝑏(𝜃) = 𝑑 𝑎(𝜃)
𝑑𝜃 .

Now, from equation 3.10, using the product rule, the second derivative
𝑑2 𝑓(𝜃)
𝑑2 𝜃 can be obtained to be:

𝑑2 𝑓(𝜃)
𝑑2 𝜃 = 2 𝐶 [ 𝑑 𝑎(𝜃)𝑑𝜃 ⋅ 𝑏(𝜃) + 𝑎(𝜃) ⋅ 𝑑 𝑏(𝜃)𝑑𝜃 ] (3.11)

Note that since 𝑏(𝜃) = 𝑑 𝑎(𝜃)
𝑑𝜃 , actually,

𝑑 𝑏(𝜃)
𝑑𝜃 = 𝑑2 𝑎(𝜃)

𝑑2𝜃 .

Therefore, the second derivative can be re­written as:

𝑑2 𝑓(𝜃)
𝑑2 𝜃 = 2 𝐶 [𝑏2(𝜃) + 𝑎(𝜃) ⋅ 𝑑

2𝑎(𝜃)
𝑑2𝜃 ] (3.12)

Again using the product rule for the element in the right­half side after ”+”­sign in the bracket assigned
to 𝑏(𝜃), i.e. for 2 (cos𝜃 + √2 sin𝜃)−2 ⋅ (− sin𝜃 + √2 cos𝜃), the derivative becomes:

𝑑2 𝑎(𝜃)
𝑑2𝜃 = 𝑑 𝑏(𝜃)

𝑑𝜃
= (− cos𝜃 − √2 sin𝜃) +
[ − 4(cos𝜃 + √2 sin𝜃)−3 ⋅ (− sin𝜃 + √2 cos𝜃)2 + 2(cos𝜃 + √2 sin𝜃)−2 ⋅ (− cos𝜃 − √2 sin𝜃)]

(3.13)

Since the element
𝑑 𝑓(𝜃)
𝑑𝜃 |

𝜃=𝜃𝑖𝑑𝑒𝑎𝑙
in equation (3.7) stands for the derivative of the function𝜎(𝜃, 𝜙𝑖𝑑𝑒𝑎𝑙 , 𝑙𝑖𝑑𝑒𝑎𝑙)

at the point 𝜃 = 𝜃𝑖𝑑𝑒𝑎𝑙 , at which point the high­frequency RCS from equation(2.2) has its maximum

value, this element should equal to zero, i.e.
𝑑 𝑓(𝜃)
𝑑𝜃 |

𝜃=𝜃𝑖𝑑𝑒𝑎𝑙
= 0.

One of the solutions to the equation
𝑑 𝑓(𝜃)
𝑑𝜃 |

𝜃=𝜃𝑖𝑑𝑒𝑎𝑙
= 0 by solving it analytically is:

𝜃 = 2(𝜋𝑛 + tan−1 (12(√6 − √2))), 𝑛 ∈ ℤ (3.14)

which, for 𝑛 = 0, results in 𝜃 ≈ 0.955317 𝑟𝑎𝑑 = 54.74∘ = 𝜃𝑖𝑑𝑒𝑎𝑙. This is represented in figure 3.1.
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Figure 3.1: Solution from equation (3.14) as a function of n.

Also from figure 3.2 can be seen that, numerically, the derivative goes to zero around 𝜃 = 𝜃𝑖𝑑𝑒𝑎𝑙 ≈
54.74∘.

Figure 3.2: Derivative of the function 𝜎(𝜃,𝜙𝑖𝑑𝑒𝑎𝑙 , 𝑙𝑖𝑑𝑒𝑎𝑙) as a function of incident angle 𝜃𝑖𝑛𝑐..

Therefore, the Taylor polynomial from equation (3.7) simplifies to:

𝜎(𝜃, 𝜙𝑖𝑑𝑒𝑎𝑙 , 𝑙𝑖𝑑𝑒𝑎𝑙)|𝜃=𝜃𝑖𝑑𝑒𝑎𝑙
≈ 𝑓(𝜃𝑖𝑑𝑒𝑎𝑙) +

1
2
𝑑2 𝑓(𝜃)
𝑑2 𝜃 |

𝜃=𝜃𝑖𝑑𝑒𝑎𝑙
(𝜃 − 𝜃𝑖𝑑𝑒𝑎𝑙)2 (3.15)

which after filling in for the corresponding elements results into the following approximation:

𝜎(𝜃, 𝜙𝑖𝑑𝑒𝑎𝑙 , 𝑙𝑖𝑑𝑒𝑎𝑙)|𝜃=𝜃𝑖𝑑𝑒𝑎𝑙
≈ 𝐶 [ cos𝜃𝑖𝑑𝑒𝑎𝑙 + √2 sin𝜃𝑖𝑑𝑒𝑎𝑙 −

2
cos𝜃𝑖𝑑𝑒𝑎𝑙 + √2 sin𝜃𝑖𝑑𝑒𝑎𝑙

]
2
+

𝐶 [𝑏2(𝜃𝑖𝑑𝑒𝑎𝑙) + 𝑎(𝜃𝑖𝑑𝑒𝑎𝑙) ⋅
𝑑2𝑎(𝜃)
𝑑2𝜃 |

𝜃=𝜃𝑖𝑑𝑒𝑎𝑙
] (𝜃 − 𝜃𝑖𝑑𝑒𝑎𝑙)2

(3.16)
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Having approximated the high­frequency RCS 𝜎(𝜃, 𝜙𝑖𝑑𝑒𝑎𝑙 , 𝑙𝑖𝑑𝑒𝑎𝑙) by means of its Taylor series in the
vicinity of the point 𝜃 = 𝜃𝑖𝑑𝑒𝑎𝑙 to be as given in equation (3.16), the loss factor 𝐿𝑒𝑙𝑒𝑣. takes finally the
form :

𝐿𝑒𝑙𝑒𝑣. ≈
𝜎(𝜃, 𝜙𝑖𝑑𝑒𝑎𝑙 , 𝑙𝑖𝑑𝑒𝑎𝑙)|𝜃=𝜃𝑖𝑑𝑒𝑎𝑙
𝜎𝑖𝑑𝑒𝑎𝑙(𝜃𝑖𝑑𝑒𝑎𝑙 , 𝜙𝑖𝑑𝑒𝑎𝑙 , 𝑙𝑖𝑑𝑒𝑎𝑙)

= 1 − 𝑁 (𝜃 − 𝜃𝑖𝑑𝑒𝑎𝑙)2, (3.17)

in which the factor 𝑁 is simply obtained to be:

𝑁 = 1
2
𝑑2 𝑓(𝜃)
𝑑2 𝜃 |

𝜃=𝜃𝑖𝑑𝑒𝑎𝑙
⋅ 1
𝑓(𝜃𝑖𝑑𝑒𝑎𝑙)

(3.18)

Filling in for the elements of 𝑁 into equation (3.17) gives that:

𝐿𝑒𝑙𝑒𝑣. ≈ 1 −
1
2 2 𝐶 [𝑏

2(𝜃𝑖𝑑𝑒𝑎𝑙) + 𝑎(𝜃𝑖𝑑𝑒𝑎𝑙) ⋅
𝑑2𝑎(𝜃)
𝑑2𝜃 |

𝜃=𝜃𝑖𝑑𝑒𝑎𝑙
] ⋅

1

𝐶 [ cos𝜃𝑖𝑑𝑒𝑎𝑙 + √2 sin𝜃𝑖𝑑𝑒𝑎𝑙 −
2

cos𝜃𝑖𝑑𝑒𝑎𝑙+√2 sin𝜃𝑖𝑑𝑒𝑎𝑙
]
2 (𝜃 − 𝜃𝑖𝑑𝑒𝑎𝑙)2

≈ 1 −
[𝑏2(𝜃𝑖𝑑𝑒𝑎𝑙) + 𝑎(𝜃𝑖𝑑𝑒𝑎𝑙) ⋅

𝑑2𝑎(𝜃)
𝑑2𝜃 |

𝜃=𝜃𝑖𝑑𝑒𝑎𝑙
]

[ cos𝜃𝑖𝑑𝑒𝑎𝑙 + √2 sin𝜃𝑖𝑑𝑒𝑎𝑙 −
2

cos𝜃𝑖𝑑𝑒𝑎𝑙+√2 sin𝜃𝑖𝑑𝑒𝑎𝑙
]
2 (𝜃 − 𝜃𝑖𝑑𝑒𝑎𝑙)2

(3.19)

Equation (3.19) shows that the error 𝐿𝑒𝑙𝑒𝑣. does not depend on the parameters 𝜆0 and 𝑙𝑖𝑑𝑒𝑎𝑙 of the cor­
ner reflector. For the pair of spherical incidence angles (𝜃𝑖𝑑𝑒𝑎𝑙 = 54.7∘, 𝜙𝑖𝑑𝑒𝑎𝑙 = 45∘), the factor𝑁 ≈ 5.0.

Figure 3.3 below gives the obtained Taylor approximation versus the original function of the high­
frequency RCS.
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Figure 3.3: Original high­frequency RCS function vs. its Taylor approximation

3.1.3. AnalyticalDerivationof theProbabilityDistributionof theLoss Fac­
tor 𝐿𝑒𝑙𝑒𝑣.

Deviations from the ideal orientation in elevation plane can be assumed to be normal distributed with
mean 𝜃𝑖𝑑𝑒𝑎𝑙 and variance 𝜎2𝜃 . Therefore, the probability distribution of the incident elevation angle 𝜃
can be given by 𝜃 ∼ 𝑁(𝜃𝑖𝑑𝑒𝑎𝑙 , 𝜎2𝜃):

𝑝1(𝜃) =
1

√2𝜋𝜎𝜃
𝑒𝑥𝑝( − (𝜃 − 𝜃𝑖𝑑𝑒𝑎𝑙)

2

2𝜎2𝜃
) (3.20)

Having determined the formula of the loss factor in equation (3.17) approximately to be:

𝐿𝑒𝑙𝑒𝑣. ≈ 1 − 𝑁 (𝜃 − 𝜃𝑖𝑑𝑒𝑎𝑙)2, (3.21)

the probability distribution of the loss factor 𝐿𝑒𝑙𝑒𝑣. can be derived bymeans of ”Transformation of Ran­
dom Variables” from the probability distribution 𝑝1(𝜃) of elevation incidence angle 𝜃 from equation
(3.20). Therefore, the probability distribution of the loss factor 𝐿𝑒𝑙𝑒𝑣. is:

𝑝(𝐿𝑒𝑙𝑒𝑣.) = 2 𝑝1(𝜃(𝐿𝑒𝑙𝑒𝑣.)) |
𝑑𝜃

𝑑𝐿𝑒𝑙𝑒𝑣.
| (3.22)

where the factor 2 comes from the even symmetry of the function in equation (3.21), and,

𝜃(𝐿𝑒𝑙𝑒𝑣.) = 𝜃𝑖𝑑𝑒𝑎𝑙 + [
1
𝑁(1 − 𝐿𝑒𝑙𝑒𝑣)]

1/2
(3.23)

is the inverse function that follows from equation (3.21), and the derivative of this inverse function is:

𝑑𝜃(𝐿𝑒𝑙𝑒𝑣.)
𝑑𝐿𝑒𝑙𝑒𝑣.

= 1
2[
1
𝑁(1 − 𝐿𝑒𝑙𝑒𝑣)]

−1/2
⋅ − 1𝑁 (3.24)

which gives,

|𝑑𝜃(𝐿𝑒𝑙𝑒𝑣.)𝑑𝐿𝑒𝑙𝑒𝑣.
| = 1

2𝑁[
1
𝑁(1 − 𝐿𝑒𝑙𝑒𝑣)]

−1/2
(3.25)
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and,

𝑝1(𝜃(𝐿𝑒𝑙𝑒𝑣.)) =
1

√2𝜋𝜎𝜃
𝑒𝑥𝑝( −

1
𝑁 (1 − 𝐿𝑒𝑙𝑒𝑣.)

2𝜎2𝜃
). (3.26)

Finally, putting the pieces together according to equation (3.22), the probability distribution of the loss
factor 𝐿𝑒𝑙𝑒𝑣. is obtained analytically to be:

𝑝(𝐿𝑒𝑙𝑒𝑣.) =
1

( 1𝑁 )
−1/2√2𝜋𝜎𝜃

(1 − 𝐿𝑒𝑙𝑒𝑣)−1/2 𝑒𝑥𝑝( −
1
𝑁 (1 − 𝐿𝑒𝑙𝑒𝑣.)

2𝜎2𝜃
) (3.27)

Next, equation (3.27) can be approximated by 𝛽­distribution for small error in elevation orientation.
For small error in orientation, i.e. (𝜃 − 𝜃𝑖𝑑𝑒𝑎𝑙) ≈ 0 in equation (3.21), the loss factor 𝐿𝑒𝑙𝑒𝑣 . ≈ 1.

Furthermore, the following factor from equation (3.27) can be re­written as:

𝑒𝑥𝑝( −
1
𝑁 (1 − 𝐿𝑒𝑙𝑒𝑣.)

2𝜎2𝜃
) = [𝑒𝑥𝑝 (1 − 𝐿𝑒𝑙𝑒𝑣.)]

−1
2𝑁𝜎2𝜃 = [𝑒𝑥𝑝 (𝐿𝑒𝑙𝑒𝑣. − 1)]

1
2𝑁𝜎2𝜃 (3.28)

Denote 𝑒𝑥𝑝 (𝐿𝑒𝑙𝑒𝑣. − 1) = 𝑓(𝑦), the Taylor expansion of 𝑓(𝑦) around the point 𝐿𝑒𝑙𝑒𝑣.,0 ≈ 1 follows as:

𝑓(𝑦)|
𝐿𝑒𝑙𝑒𝑣.=𝐿𝑒𝑙𝑒𝑣.,0

≈ 𝑓(𝐿𝑒𝑙𝑒𝑣.,0) +
𝑑 𝑓(𝐿𝑒𝑙𝑒𝑣.)
𝑑𝐿𝑒𝑙𝑒𝑣.

|
𝐿𝑒𝑙𝑒𝑣.=𝐿𝑒𝑙𝑒𝑣.,0

(𝐿𝑒𝑙𝑒𝑣. − 𝐿𝑒𝑙𝑒𝑣.,0) (3.29)

The elements of the Taylor polynomial from equation (3.29) can be obtained to be:

𝑓(𝐿𝑒𝑙𝑒𝑣.,0) ≈ 𝑒𝑥𝑝 (𝐿𝑒𝑙𝑒𝑣.,0 − 1) = 𝑒𝑥𝑝 (0) = 1 (3.30)

𝑑 𝑓(𝐿𝑒𝑙𝑒𝑣.)
𝑑𝐿𝑒𝑙𝑒𝑣.

|
𝐿𝑒𝑙𝑒𝑣.=𝐿𝑒𝑙𝑒𝑣.,0

≈ 𝑒𝑥𝑝 (𝐿𝑒𝑙𝑒𝑣.,0 − 1) = 𝑒𝑥𝑝 (0) = 1 (3.31)

which after filling into equation 3.29 results in:

𝑒𝑥𝑝 (𝐿𝑒𝑙𝑒𝑣. − 1)|𝐿𝑒𝑙𝑒𝑣.=𝐿𝑒𝑙𝑒𝑣.,0 ≈ 𝐿𝑒𝑙𝑒𝑣.. (3.32)

Therefore,

𝑒𝑥𝑝( −
1
𝑁 (1 − 𝐿𝑒𝑙𝑒𝑣.)

2𝜎2𝜃
) = [𝑒𝑥𝑝 (𝐿𝑒𝑙𝑒𝑣. − 1)]

1/2𝑁𝜎2𝜃 |
𝐿𝑒𝑙𝑒𝑣.=𝐿𝑒𝑙𝑒𝑣.,0

≈ 𝐿1/2𝑁𝜎
2
𝜃

𝑒𝑙𝑒𝑣. (3.33)

Using this approximation in (3.27) gives:

𝑝𝛽(𝐿𝑒𝑙𝑒𝑣.) ≈
1

( 1𝑁 )
−1/2√2𝜋𝜎𝜃

(1 − 𝐿𝑒𝑙𝑒𝑣)−1/2 𝐿
1/2𝑁𝜎2𝜃
𝑒𝑙𝑒𝑣. (3.34)

which has the form of 𝛽­distribution pdf with the shape parameters:

𝛼 = 1
2𝑁𝜎2𝜃

+ 1 (3.35)

𝛽 = 1
2 (3.36)

However, this pdf is subject to normalization to satisfy the rule that ∫10 𝑝𝛽(𝐿𝑒𝑙𝑒𝑣.) 𝑑𝐿𝑒𝑙𝑒𝑣. = 1. It is
notable that the error in orientation affects only the parameter 𝛼 of the distribution, in which 𝛽 = 0.5 is
a fixed value. Below in figure’s 3.4a and 3.4b, an example of the PDF’s from (3.27) and (3.34) is given
for 𝜎𝜃 = 1.25∘, 𝜎𝜃 = 1.05∘,𝜎𝜃 = 0.85∘ and 𝑁 = 5.0, which was obtained before from equation (3.17) for
the pair of spherical incidence angles (𝜃𝑖𝑑𝑒𝑎𝑙 = 54.7∘, 𝜙𝑖𝑑𝑒𝑎𝑙 = 45∘).
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(a) Both x­ and y­axis in logarithmic scale.

(b) y­axis in logarithmic scale only.

Figure 3.4: Exact PDF vs. its 𝛽­distribution approximation for different values of the standard deviation 𝜎𝜃 for 𝑁 = 5.0.
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Additionally, figure 3.5 below represents the shapeparameters obtained from thederived𝛽­distribution
alongside the shape parameters obtained from theMonte­Carlo simulation performed for n=10000 re­
alizations of targets evaluated at 𝑓 = 77 𝐺𝐻𝑧.

Figure 3.5: Shape parameters 𝛼𝐻𝑖𝑠𝑡𝑜𝑔𝑟𝑎𝑚 from simulations vs. the obtained ones from the 𝛽­distribution approximation.

From both figures one can conclude that the plots agree quite well with each other which means
that the approximation made above is applicable.

3.1.4. Validation of the Analytical Results by Kullback­Leibler Divergence
The analytical results in this chapter were derived as given in the following order:

1. Startingwith the high­frequencyRCS𝜎(𝜃, 𝜙𝑖𝑑𝑒𝑎𝑙 , 𝑙𝑖𝑑𝑒𝑎𝑙) as the function of angle 𝜃 as given in (3.3).

2. This high­frequency RCS is approximated in the vicinity of the maximum, where 𝜃 = 𝜃𝑖𝑑𝑒𝑎𝑙, by
the parabola given in equation (3.16). This has led to the pdf 𝑝(𝐿𝑒𝑙𝑒𝑣.) given in equation (3.27).

3. Demonstrated that (3.27) can be approximated well by a known 𝛽­distribution, 𝑝𝛽(𝐿𝑒𝑙𝑒𝑣.), with
certain shape parameters (𝛼, 𝛽) as given in equation (3.34).

Bymeans of Kullback­Leibler divergence, it can be shown how the distribution 𝑝𝛽(𝐿𝑒𝑙𝑒𝑣.) is different
from the distribution of 𝑝(𝐿𝑒𝑙𝑒𝑣.). With otherwords, Kullback­Leibler divergence here is ametric of how
well the 𝛽­distribution approximation fit the exact distribution in equation (3.27).
Additionally, also the Kullback­Leibler divergence between the Monte Carlo simulation results and the
analytically derived probability distributions are considered below.
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Kullback­Leibler Divergence Between 𝑝(𝐿𝑒𝑙𝑒𝑣.) and 𝑝𝛽(𝐿𝑒𝑙𝑒𝑣.)
As since for distributions of continuous random variables, the Kullback­Leibler divergence between
𝑝(𝐿𝑒𝑙𝑒𝑣.) and its 𝛽­approximation 𝑝𝛽(𝐿𝑒𝑙𝑒𝑣.) is defined to be the integral:

𝐷𝐾𝐿 (𝑃 || 𝑃𝛽) = ∫𝑝(𝐿𝑒𝑙𝑒𝑣) 𝑙𝑜𝑔 (
𝑝(𝐿𝑒𝑙𝑒𝑣)
𝑝𝛽(𝐿𝑒𝑙𝑒𝑣)

) 𝑑𝐿𝑒𝑙𝑒𝑣 (3.37)

which can also be written as the following summation:

𝐷𝐾𝐿 (𝑃 || 𝑃𝛽) =
𝑚

∑
𝑖=1
𝑝(𝐿𝑒𝑙𝑒𝑣,𝑖) 𝑙𝑜𝑔 (

𝑝(𝐿𝑒𝑙𝑒𝑣,𝑖)
𝑝𝛽(𝐿𝑒𝑙𝑒𝑣,𝑖)

) 𝛿𝐿𝑒𝑙𝑒𝑣 (3.38)

where 𝑝(𝐿𝑒𝑙𝑒𝑣,𝑖) = 𝑝(𝛿𝐿𝑒𝑙𝑒𝑣 ⋅ 𝑖), 𝑝𝛽(𝐿𝑒𝑙𝑒𝑣,𝑖) = 𝑝𝛽(𝛿𝐿𝑒𝑙𝑒𝑣 ⋅ 𝑖) and 𝛿𝐿𝑒𝑙𝑒𝑣 =
1
𝑚 since 𝐿𝑒𝑙𝑒𝑣 ∈ [0, 1] .

Figure 3.6 below shows the KL­Divergence between 𝑝(𝐿𝑒𝑙𝑒𝑣.) and 𝑝𝛽(𝐿𝑒𝑙𝑒𝑣.) as a function of 𝜎𝜃 for both
with and without normalization of 𝑝𝛽(𝐿𝑒𝑙𝑒𝑣). Results in the figure are for 𝑛 = 10000 realizations and
𝛿𝐿𝑒𝑙𝑒𝑣 = 1𝑒 − 4, where the factor 𝑁 = 5.0 as it was determined earlier that for the pair of spherical
incidence angles (𝜃𝑖𝑑𝑒𝑎𝑙 = 54.7∘, 𝜙𝑖𝑑𝑒𝑎𝑙 = 45∘), the factor is 𝑁 ≈ 5.0.

As expected, with normalization of the pdf 𝑝𝛽(𝐿𝑒𝑙𝑒𝑣.), the divergence is very low for small errors in
orientation in terms of 𝜎𝜃­values and it gets higher for bigger errors in orientation. This justifies the
correctness of transition from step 2 to step 3. Therefore the 𝛽­approximation made here is applicable
and it is validated. Moreover, the divergence becomes much bigger even for relatively small errors in
orientation when the pdf 𝑝𝛽(𝐿𝑒𝑙𝑒𝑣.) is not normalized as expected.

Figure 3.6: KL­Divergence between 𝑝(𝐿𝑒𝑙𝑒𝑣.) and 𝑝𝛽(𝐿𝑒𝑙𝑒𝑣.) as a function of 𝜎𝜃 with and without normalization of 𝑝𝛽(𝐿𝑒𝑙𝑒𝑣.)
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Kullback­Leibler Divergence Between 𝑝𝑠𝑖𝑚(𝐿𝑒𝑙𝑒𝑣.) FromMC Simulation and Analytically Derived Prob­
ability Distributions 𝑝(𝐿𝑒𝑙𝑒𝑣.) and 𝑝𝛽(𝐿𝑒𝑙𝑒𝑣.)
The Kullback­Leibler divergence between 𝑝𝑠𝑖𝑚(𝐿𝑒𝑙𝑒𝑣.) that is gained from the Monte Carlo simulation
and the analytically derived probability distribution 𝑝(𝐿𝑒𝑙𝑒𝑣.) can be written as:

𝐷𝐾𝐿 (𝑃𝑠𝑖𝑚 || 𝑃) =
𝑚

∑
𝑖=1
𝑝𝑠𝑖𝑚(𝐿𝑒𝑙𝑒𝑣,𝑖) 𝑙𝑜𝑔 (

𝑝𝑠𝑖𝑚(𝐿𝑒𝑙𝑒𝑣,𝑖)
𝑝(𝐿𝑒𝑙𝑒𝑣,𝑖)

) 𝛿𝐿𝑒𝑙𝑒𝑣. (3.39)

and similarly,

the Kullback­Leibler divergence between 𝑝𝑠𝑖𝑚(𝐿𝑒𝑙𝑒𝑣.) gained from the Monte Carlo simulation and the
analytically derived 𝛽­approximated probability distribution 𝑝𝛽(𝐿𝑒𝑙𝑒𝑣.) can be written as:

𝐷𝐾𝐿 (𝑃𝑠𝑖𝑚 || 𝑃𝛽) =
𝑚

∑
𝑖=1
𝑝𝑠𝑖𝑚(𝐿𝑒𝑙𝑒𝑣,𝑖) 𝑙𝑜𝑔 (

𝑝𝑠𝑖𝑚(𝐿𝑒𝑙𝑒𝑣,𝑖)
𝑝𝛽(𝐿𝑒𝑙𝑒𝑣,𝑖)

) 𝛿𝐿𝑒𝑙𝑒𝑣. (3.40)

Figure 3.7 below shows the Kullback­Leibler divergence plot between 𝑝𝑠𝑖𝑚(𝐿𝑒𝑙𝑒𝑣.) obtained from the
Monte­Carlo simulation and the analytically derived pdf’s of 𝑝(𝐿𝑒𝑙𝑒𝑣.) and 𝑝𝛽(𝐿𝑒𝑙𝑒𝑣.) as a function of 𝜎𝜃
for 𝑛 = 10000 realizations of the target and 𝛿𝐿𝑒𝑙𝑒𝑣 = 1𝑒 − 4 for the leg size of 𝑙 = 0.10 𝑚 at 𝑓 = 77𝐺𝐻𝑧
for the ideal spherical incidence angles (𝜃𝑖𝑑𝑒𝑎𝑙 = 54.7∘, 𝜙𝑖𝑑𝑒𝑎𝑙 = 45∘). Note that the pdf 𝑝𝛽(𝐿𝑒𝑙𝑒𝑣.) is
normalized in the computations here.

Figure 3.7: Kullback­Leibler Divergence results between 𝑝𝑠𝑖𝑚(𝐿𝑒𝑙𝑒𝑣.) and the probability distributions 𝑝(𝐿𝑒𝑙𝑒𝑣.) and 𝑝𝛽(𝐿𝑒𝑙𝑒𝑣.)
as a function of 𝜎𝜃 .

From both Kullback­Leibler divergence plots in the figure can be concluded that for small errors in
orientation in terms of 𝜎𝜃­values, the divergence is much smaller than for bigger errors in orientation.
Particularly the Kullback­Leibler divergence plot 𝐷𝐾𝐿 (𝑃𝑠𝑖𝑚 || 𝑃) justifies the correctness of transition
from step 1 to step 2 by which the approximation of the high­frequency RCS in the vicinity of the max­
imum is validated. Also, the Kullback­Leibler divergence plot 𝐷𝐾𝐿 (𝑃𝑠𝑖𝑚 || 𝑃𝛽) justifies the correctness
of transition from step 1 through step 3.
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3.1.5. Beta Distribution Fit on the Distribution of RCS Loss Factor 𝐿𝑒𝑙𝑒𝑣.
Beta distribution is a family of continuous probability distributions which are defined on the interval
[0,1]. Furthermore, a beta distribution is parametrized by two positive shape parameters 𝛼 and 𝛽. If 𝑋
is a random variable with beta distribution 𝐵𝑒𝑡𝑎(𝛼, 𝛽), the pdf of 𝑋, for 0 ≤ 𝑥 ≤ 1 and 𝛼, 𝛽 > 0, is given
as :

𝑝(𝑥) = 𝑥𝛼−1(1 − 𝑥)𝛽−1
𝐵(𝛼, 𝛽) , (3.41)

where 𝐵(𝛼, 𝛽) is the Beta function.

The error in the elevation orientation is assumed to be normally distributed with the mean value of
𝐸(𝜃) = 𝜃𝑖𝑑𝑒𝑎𝑙 and standard deviation of 𝜎𝜃 = 1.25∘, i.e. 𝜃 ∼ 𝑁(𝜃𝑖𝑑𝑒𝑎𝑙 , 𝜎2𝜃).

Figure 3.8 gives the result of the beta distribution fit, that is obtained for n=10000 targets evalu­
ated at 𝑓 = 77 𝐺𝐻𝑧, on the histogram of the loss factor for the ideal leg length 𝑙𝑖𝑑𝑒𝑎𝑙 = 0.10 𝑚 and ideal
azimuthal incidence angle 𝜙𝑖𝑑𝑒𝑎𝑙. The corresponding shape parameters for this beta distribution are
estimated to be 𝛼 = 228.29 and 𝛽 = 0.546.

Figure 3.8: Beta distribution fit of the loss factor in RCS due to orientation errors in elevation plane.

Additionally, figure 3.9 gives the results of the beta distribution fit for the ideal leg length 𝑙𝑖𝑑𝑒𝑎𝑙 and
ideal azimuthal incidence angle 𝜙𝑖𝑑𝑒𝑎𝑙 for different variances of 𝜎2𝜃,1 > 𝜎2𝜃,2 > 𝜎2𝜃,3. As expected, as the
variance gets smaller, the beta distribution gets narrower which means the loss factor 𝐿𝑒𝑙𝑒𝑣. gets closer
to the unity.
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Figure 3.9: Beta distribution fit of the loss factors in RCS due to orientation errors in elevation plane for different variances of
𝜎2𝜃,1 > 𝜎2𝜃,2 > 𝜎2𝜃,3.

3.2. RCS Loss Factor due to Errors in Azimuth Plane
Considering equation (3.1), the RCS loss factor solely due to azimuthal orientation errors is :

𝐿𝑎𝑧𝑖. =
𝜎(𝜃𝑖𝑑𝑒𝑎𝑙 , 𝜙, 𝑙𝑖𝑑𝑒𝑎𝑙)

𝜎𝑖𝑑𝑒𝑎𝑙(𝜃𝑖𝑑𝑒𝑎𝑙 , 𝜙𝑖𝑑𝑒𝑎𝑙 , 𝑙𝑖𝑑𝑒𝑎𝑙)
(3.42)

3.2.1. Approximation of High­Frequency RCS by its Taylor Series
Following the same steps as in the previous section, the Taylor polynomial of high­frequency RCS at
the point 𝜙 = 𝜙𝑖𝑑𝑒𝑎𝑙 is obtained to be approximately:

𝜎(𝜃𝑖𝑑𝑒𝑎𝑙 , 𝜙, 𝑙𝑖𝑑𝑒𝑎𝑙)|𝜙=𝜙𝑖𝑑𝑒𝑎𝑙
≈ 𝐶[(𝑎 + 𝑏 (sin𝜙𝑖𝑑𝑒𝑎𝑙 + cos𝜙𝑖𝑑𝑒𝑎𝑙)) −

2
(𝑎 + 𝑏 (sin𝜙𝑖𝑑𝑒𝑎𝑙 + cos𝜙𝑖𝑑𝑒𝑎𝑙))

]
2
+

𝐶 [𝑡2(𝜙𝑖𝑑𝑒𝑎𝑙) + 𝑠(𝜙𝑖𝑑𝑒𝑎𝑙) ⋅
𝑑2𝑠(𝜙)
𝑑2𝜙 |

𝜙=𝜙𝑖𝑑𝑒𝑎𝑙
] (𝜙 − 𝜙𝑖𝑑𝑒𝑎𝑙)2

(3.43)

where,

𝐶 = 4𝜋
𝜆20
𝑙4𝑖𝑑𝑒𝑎𝑙,
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𝑎 = cos(54.7∘),

𝑏 = sin(54.7∘),

𝑠(𝜙) = [(𝑎 + 𝑏 (sin𝜙 + cos𝜙)) − 2(𝑎 + 𝑏 (sin𝜙 + cos𝜙))−1],

and,

𝑡(𝜙) = [𝑏 (cos𝜙 − sin𝜙) + 2 (𝑎 + 𝑏 (sin𝜙 + cos𝜙))−2 ⋅ 𝑏 (cos𝜙 − sin𝜙)].

Having approximated the high­frequency RCS 𝜎(𝜃𝑖𝑑𝑒𝑎𝑙 , 𝜙, 𝑙𝑖𝑑𝑒𝑎𝑙) by means of its Taylor series at the
point 𝜙 = 𝜙𝑖𝑑𝑒𝑎𝑙 as given in equation (3.43), the loss factor 𝐿𝑎𝑧𝑖. takes the form :

𝐿𝑎𝑧𝑖. ≈
𝜎(𝜃𝑖𝑑𝑒𝑎𝑙 , 𝜙, 𝑙𝑖𝑑𝑒𝑎𝑙)|𝜙=𝜙𝑖𝑑𝑒𝑎𝑙
𝜎𝑖𝑑𝑒𝑎𝑙(𝜃𝑖𝑑𝑒𝑎𝑙 , 𝜙𝑖𝑑𝑒𝑎𝑙 , 𝑙𝑖𝑑𝑒𝑎𝑙)

= 1 − 𝐾 (𝜙 − 𝜙𝑖𝑑𝑒𝑎𝑙)2. (3.44)

in which the factor 𝐾 is simply obtained to be:

𝐾 =
[𝑡2(𝜙) + 𝑠(𝜙) ⋅ 𝑑

2𝑠(𝜙)
𝑑2𝜙 |

𝜙=𝜙𝑖𝑑𝑒𝑎𝑙
]

[(𝑎 + 𝑏 (sin𝜙𝑖𝑑𝑒𝑎𝑙 + cos𝜙𝑖𝑑𝑒𝑎𝑙)) −
2

(𝑎+𝑏 (sin𝜙𝑖𝑑𝑒𝑎𝑙+cos𝜙𝑖𝑑𝑒𝑎𝑙))
]
2 (3.45)

Equation (3.44) shows that the error 𝐿𝑎𝑧𝑖. does not depend on the parameters 𝜆0 and 𝑙𝑖𝑑𝑒𝑎𝑙 of the corner
reflector. For the pair of spherical incidence angles (𝜃𝑖𝑑𝑒𝑎𝑙 = 54.7∘, 𝜙𝑖𝑑𝑒𝑎𝑙 = 45∘), the factor 𝐾 ≈ 3.33.

Figure 3.10 below gives the obtained Taylor approximation versus the original function of the high­
frequency RCS.

Figure 3.10: Original high­frequency RCS function vs. its Taylor approximation
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3.2.2. AnalyticalDerivationof theProbabilityDistributionof theLossFac­
tor 𝐿𝑎𝑧𝑖.

Deviations from the ideal orientation in azimuth plane are assumed to be normal distributedwithmean
𝜙𝑖𝑑𝑒𝑎𝑙 and variance 𝜎2𝜙. Therefore, the probability distribution of the incident azimuth angle 𝜙 can be
given by 𝜙 ∼ 𝑁(𝜙𝑖𝑑𝑒𝑎𝑙 , 𝜎2𝜙):

𝑝1(𝜙) =
1

√2𝜋𝜎𝜙
𝑒𝑥𝑝( − (𝜙 − 𝜙𝑖𝑑𝑒𝑎𝑙)

2

2𝜎2𝜙
) (3.46)

Having determined the formula of the loss factor before in equation (3.44), following the same steps
as in the previous chapter, the probability distribution of the loss factor 𝐿𝑎𝑧𝑖. is obtained analytically to
be:

𝑝(𝐿𝑎𝑧𝑖.) =
1

( 1𝐾 )
−1/2√2𝜋𝜎𝜙

(1 − 𝐿𝑎𝑧𝑖.)−1/2 𝑒𝑥𝑝( −
1
𝐾 (1 − 𝐿𝑎𝑧𝑖.)

2𝜎2𝜙
) (3.47)

which can be approximated by 𝛽­distribution for small error in azimuth orientation.

Again following the same kind of approximations in (3.47) as done in the previous chapter in eleva­
tion plane gives:

𝑝𝛽(𝐿𝑎𝑧𝑖.) ≈
1

( 1𝐾 )
−1/2√2𝜋𝜎𝜙

(1 − 𝐿𝑎𝑧𝑖)−1/2 𝐿
1/2𝐾𝜎2𝜙
𝑎𝑧𝑖. (3.48)

which has the form of 𝛽­distribution pdf with the shape parameters:

𝛼 = 1
2𝐾 𝜎2𝜙

+ 1, (3.49)

𝛽 = 1
2 . (3.50)

However, this pdf is also subject to normalization to satisfy the rule that ∫10 𝑝𝛽(𝐿𝑎𝑧𝑖.) 𝑑𝐿𝑎𝑧𝑖. = 1. It is
notable that the error in orientation affects only the parameter 𝛼 of the distribution, in which 𝛽 = 0.5
is a fixed value as in the previous chapter in elevation plane.

Below in figures 3.11a and 3.11b, an example of the PDF’s from (3.47) and (3.48) is given for 𝜎𝜙 =
6.2850∘, 𝜎𝜙 = 2.2850∘, 𝜎𝜙 = 1.2850∘ and 𝐾 = 3.33, which was obtained before from equation (3.44)
for the pair of spherical incidence angles (𝜃𝑖𝑑𝑒𝑎𝑙 = 54.7∘, 𝜙𝑖𝑑𝑒𝑎𝑙 = 45∘).

Additionally, figure 3.12 below represents the shapeparameters obtained from thederived𝛽­distribution
alongside the shape parameters obtained from theMonte­Carlo simulation performed for n=10000 re­
alizations of targets evaluated at 𝑓 = 77 𝐺𝐻𝑧.

From both figures can be concluded that the plots agree quite well with each other which means
that the approximation made above is applicable.
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(a) Both x­ and y­axis in logarithmic scale.

(b) y­axis in logarithmic scale only.

Figure 3.11: Exact PDF vs. its 𝛽­distribution approximation for different values of the standard deviation 𝜎𝜙 for 𝐾 = 3.33.
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Figure 3.12: Shape parameters 𝛼𝐻𝑖𝑠𝑡𝑜𝑔𝑟𝑎𝑚 from simulations vs. the obtained ones from the 𝛽­distribution approximation.

3.2.3. Validation of the Analytical Results by Kullback­Leibler Divergence
Analytical results in this section are derived in the same order as listed in section 3.1.4, but now con­
sidering the azimuth plane.

How the distribution 𝑝𝛽(𝐿𝑎𝑧𝑖.) is different from the distribution of 𝑝(𝐿𝑎𝑧𝑖.) is shown below bymeans
of Kullback­Leibler divergence. Additionally, also the Kullback­Leibler divergence between the Monte
Carlo simulation results and the analytically derived probability distributions are considered.

Kullback­Leibler Divergence Between 𝑝(𝐿𝑎𝑧𝑖.) and 𝑝𝛽(𝐿𝑎𝑧𝑖.)
The Kullback­Leibler divergence between 𝑝(𝐿𝑎𝑧𝑖.) and its 𝛽­approximation 𝑝𝛽(𝐿𝑎𝑧𝑖.) can be written as
the following summation:

𝐷𝐾𝐿 (𝑃 || 𝑃𝛽) =
𝑚

∑
𝑖=1
𝑝(𝐿𝑎𝑧𝑖,𝑖) 𝑙𝑜𝑔 (

𝑝(𝐿𝑎𝑧𝑖,𝑖)
𝑝𝛽(𝐿𝑎𝑧𝑖,𝑖)

) 𝛿𝐿𝑎𝑧𝑖. (3.51)

Figure 3.13 below shows the KL­Divergence between 𝑝(𝐿𝑎𝑧𝑖.) and 𝑝𝛽(𝐿𝑎𝑧𝑖.) as a function of 𝜎𝜙 for both
with and without normalization of 𝑝𝛽(𝐿𝑎𝑧𝑖.). Results in the figure are for 𝑛 = 10000 realizations and
𝛿𝐿𝑎𝑧𝑖 = 1𝑒 − 4 where the factor 𝐾 = 3.33 as it was determined earlier that for the pair of spherical
incidence angles (𝜃𝑖𝑑𝑒𝑎𝑙 = 54.7∘, 𝜙𝑖𝑑𝑒𝑎𝑙 = 45∘), the factor is 𝐾 ≈ 3.33.

As expected, with normalization of the pdf 𝑝𝛽(𝐿𝑎𝑧𝑖.), the divergence is very low for small errors
in orientation in terms of 𝜎𝜙­values and it gets higher for bigger errors in orientation. This justifies
the correctness of transition from step 2 to step 3 and therefore the 𝛽­approximation made here is
applicable and it is validated. Moreover, the divergence becomes much bigger even for small errors in
orientation when the pdf 𝑝𝛽(𝐿𝑎𝑧𝑖.) is not normalized as expected.
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Figure 3.13: KL­Divergence between 𝑝(𝐿𝑎𝑧𝑖.) and 𝑝𝛽(𝐿𝑎𝑧𝑖.) as a function of 𝜎𝜙 with and without normalization of 𝑝𝛽(𝐿𝑎𝑧𝑖.).

Kullback­Leibler Divergence Between 𝑝𝑠𝑖𝑚(𝐿𝑎𝑧𝑖) From MC Simulation and Analytically Derived Prob­
ability Distributions 𝑝(𝐿𝑎𝑧𝑖) and 𝑝𝛽(𝐿𝑎𝑧𝑖)
The Kullback­Leibler divergence between 𝑝𝑠𝑖𝑚(𝐿𝑎𝑧𝑖) that is gained from the Monte Carlo simulation
and the analytically derived probability distribution 𝑝(𝐿𝑎𝑧𝑖) can be written as:

𝐷𝐾𝐿 (𝑃𝑠𝑖𝑚 || 𝑃) =
𝑚

∑
𝑖=1
𝑝𝑠𝑖𝑚(𝐿𝑎𝑧𝑖,𝑖) 𝑙𝑜𝑔 (

𝑝𝑠𝑖𝑚(𝐿𝑎𝑧𝑖,𝑖)
𝑝(𝐿𝑎𝑧𝑖,𝑖)

) 𝛿𝐿𝑎𝑧𝑖. (3.52)

and similarly,

the Kullback­Leibler divergence between 𝑝𝑠𝑖𝑚(𝐿𝑎𝑧𝑖) gained from the Monte Carlo simulation and the
analytically derived 𝛽­approximated probability distribution 𝑝𝛽(𝐿𝑎𝑧𝑖.) can be written as:

𝐷𝐾𝐿 (𝑃𝑠𝑖𝑚 || 𝑃𝛽) =
𝑚

∑
𝑖=1
𝑝𝑠𝑖𝑚(𝐿𝑎𝑧𝑖,𝑖) 𝑙𝑜𝑔 (

𝑝𝑠𝑖𝑚(𝐿𝑎𝑧𝑖,𝑖)
𝑝𝛽(𝐿𝑎𝑧𝑖,𝑖)

) 𝛿𝐿𝑎𝑧𝑖. (3.53)

where 𝑝(𝐿𝑎𝑧𝑖,𝑖) = 𝑝(𝛿𝐿𝑎𝑧𝑖 ⋅ 𝑖), 𝑝𝛽(𝐿𝑎𝑧𝑖,𝑖) = 𝑝𝛽(𝛿𝐿𝑎𝑧𝑖 ⋅ 𝑖) and 𝛿𝐿𝑎𝑧𝑖 =
1
𝑚 since 𝐿𝑎𝑧𝑖 ∈ [0, 1] .

Figure 3.14 below shows the Kullback­Leibler divergence plot between 𝑝𝑠𝑖𝑚(𝐿𝑎𝑧𝑖) obtained from the
Monte Carlo simulation and the analytically derived pdf’s of 𝑝(𝐿𝑎𝑧𝑖) and 𝑝𝛽(𝐿𝑎𝑧𝑖.) as a function of 𝜎𝜙
for 𝑛 = 10000 realizations of the target and 𝛿𝐿𝑎𝑧𝑖 = 1𝑒 − 4 for the leg size of 𝑙 = 0.10 𝑚 at 𝑓 = 77𝐺𝐻𝑧
for the ideal spherical incidence angles (𝜃𝑖𝑑𝑒𝑎𝑙 = 54.7∘, 𝜙𝑖𝑑𝑒𝑎𝑙 = 45∘). Note that the pdf 𝑝𝛽(𝐿𝑎𝑧𝑖.) is
normalized in the computations here.

From both Kullback­Leibler divergence plots in the figure can be concluded that for small errors in
orientation in terms of 𝜎𝜙­values, the divergence is much smaller than for bigger errors in orientation.
Particularly the Kullback­Leibler divergence plot 𝐷𝐾𝐿 (𝑃𝑠𝑖𝑚 || 𝑃) justifies the correctness of transition
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Figure 3.14: Kullback­Leibler Divergence results between 𝑝𝑠𝑖𝑚(𝐿𝑎𝑧𝑖) and the probability distributions 𝑝(𝐿𝑎𝑧𝑖) and 𝑝𝛽(𝐿𝑎𝑧𝑖) as a
function of 𝜎𝜙.

from step 1 to step 2 whereby the approximation of the high­frequency RCS in the vicinity of the max­
imum is validated. Also, the Kullback­Leibler divergence plot 𝐷𝐾𝐿 (𝑃𝑠𝑖𝑚 || 𝑃𝛽) justifies the correctness
of transition from step 1 through step 3.

3.2.4. Beta Distribution Fit on the Distribution of RCS Loss Factor 𝐿𝑎𝑧𝑖.
The error in the azimuth orientation is assumed to be normally distributed with the mean value of
𝐸(𝜙) = 𝜙𝑖𝑑𝑒𝑎𝑙 and standard deviation of 𝜎𝜙 = 6.285∘, i.e. 𝜙 ∼ 𝑁(𝜙𝑖𝑑𝑒𝑎𝑙 , 𝜎2𝜙).

Figure 3.15 gives the result of the beta distribution fit, that is obtained for n=10000 targets eval­
uated at 𝑓 = 77 𝐺𝐻𝑧, on the histogram of the loss factor for the ideal leg length 𝑙𝑖𝑑𝑒𝑎𝑙 = 0.10 𝑚 and
ideal elevation incidence angle 𝜃𝑖𝑑𝑒𝑎𝑙. The corresponding shape parameters for this beta distribution
are estimated to be 𝛼 = 12.33 and 𝛽 = 0.492.

Additionally, figure 3.16 gives the results of the beta distribution fit for the ideal leg length 𝑙𝑖𝑑𝑒𝑎𝑙 and
ideal elevation incidence angle 𝜃𝑖𝑑𝑒𝑎𝑙 for different variances of 𝜎2𝜙,1 > 𝜎2𝜙,2 > 𝜎2𝜙,3. As expected, as the
variance gets smaller, the beta distribution gets narrower which means the loss factor 𝐿𝑎𝑧𝑖. gets closer
to the unity.
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Figure 3.15: Beta distribution fit of the loss factor in RCS due to orientation errors in azimuth plane.

Figure 3.16: Beta distribution fit of the loss factors in RCS due to orientation errors in azimuth plane for different variances of
𝜎2𝜙,1 > 𝜎2𝜙,2 > 𝜎2𝜙,3.
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Furthermore, also a beta distribution fit analysis is made on the distribution of the RCS loss factor,
𝐿𝑎𝑧𝑖.,𝑣𝑒ℎ.𝑝𝑜𝑠., that originates from the observation errors. Observation error in the azimuth plane was
modelled to be uniform distributed between 𝜙𝑚𝑖𝑛 and 𝜙𝑚𝑎𝑥, i.e. 𝑈(𝜙𝑚𝑖𝑛 , 𝜙𝑚𝑎𝑥), which was, according
to the configuration used, found to be 𝜙𝑚𝑖𝑛 = 38.715∘ and 𝜙𝑚𝑎𝑥 = 51.285∘.

Figure 3.17 gives the result of this analysis, which is obtained for n=10000 targets evaluated at
𝑓 = 77 𝐺𝐻𝑧, for the ideal leg length 𝑙𝑖𝑑𝑒𝑎𝑙 = 0.10𝑚 and ideal elevation incidence angle 𝜃𝑖𝑑𝑒𝑎𝑙, including
the estimated shape parameters 𝛼 = 50.12 and 𝛽 = 0.668.

Figure 3.17: Beta distribution fit of the loss factor in RCS due to errors in the position of vehicles in azimuth plane.

3.3. RCS Loss Factor due to Errors in Leg Length
Considering equation (2.10), yet another factor that can cause RCS loss is the inaccuracy in the leg
length 𝑙 of the corner reflectors. The RCS loss factor solely due to production errors in leg length is
then:

𝐿𝑝𝑟𝑜. =
𝜎(𝜃𝑖𝑑𝑒𝑎𝑙 , 𝜙𝑖𝑑𝑒𝑎𝑙 , 𝑙)

𝜎𝑖𝑑𝑒𝑎𝑙(𝜃𝑖𝑑𝑒𝑎𝑙 , 𝜙𝑖𝑑𝑒𝑎𝑙 , 𝑙𝑖𝑑𝑒𝑎𝑙)
(3.54)

3.3.1. AnalyticalDerivationof theProbabilityDistributionof theLoss Fac­
tor 𝐿𝑝𝑟𝑜. due to Errors in Leg Length

If it is assumed that the corner reflectors can be produced with some acceptable tolerance in the leg
lengths, they can be assumed to be normal distributed with mean 𝑙𝑖𝑑𝑒𝑎𝑙 and variance 𝜎2𝑙 , i.e. 𝑙 ∼
𝑁(𝑙𝑖𝑑𝑒𝑎𝑙 , 𝜎2𝑙 ):
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𝑝1(𝑙) =
1

√2𝜋𝜎𝑙
𝑒𝑥𝑝( − (𝑙 − 𝑙𝑖𝑑𝑒𝑎𝑙)

2

2𝜎2𝑙
) (3.55)

From equations (2.10) and (3.54) follows that:

𝐿𝑝𝑟𝑜. =
4𝜋
𝜎0 𝜆20

𝑙4[𝑥 − 2𝑥 ]
2

, with 𝑥 = cos𝜃 + sin𝜃(sin𝜙 + cos𝜙)

and 𝜎0 = 𝜎𝑖𝑑𝑒𝑎𝑙(𝜃𝑖𝑑𝑒𝑎𝑙 , 𝜙𝑖𝑑𝑒𝑎𝑙 , 𝑙𝑖𝑑𝑒𝑎𝑙)
(3.56)

Following the procedure given in the previous section, the probability distribution of the loss factor
𝐿𝑝𝑟𝑜. is obtained analytically from the probability distribution 𝑝1(𝑙) of length 𝑙 from equation (3.55) to
be :

𝑝(𝐿𝑝𝑟𝑜.) =
1

2( 𝜋𝜎0 )
1/4√2𝜋𝜎𝑙

𝐿−3/4𝑝𝑟𝑜. (
𝜆0

2[𝑥 − 2
𝑥 ]
)
1/2

𝑒𝑥𝑝( −
{( 𝐿𝑝𝑟𝑜. 𝜎0𝜋 )

1/4
( 𝜆0
2[𝑥− 2𝑥 ]

)
1/2

− 𝑙𝑖𝑑𝑒𝑎𝑙}
2

2𝜎2𝑙
) (3.57)

3.3.2. Normal Distribution Fit on the Distribution of RCS Loss Factor 𝐿𝑝𝑟𝑜.
Figure 3.18 represents the result of the normal distribution fit on the distribution of the RCS loss factor
that is obtained for n=10000 targets evaluated at 𝑓 = 77 𝐺𝐻𝑧. In the simulation, leg lengths of the re­
flectors are assumed to be normal distributed with mean value of 𝐸(𝑙) = 𝑙𝑖𝑑𝑒𝑎𝑙 = 0.10 𝑚 and standard
deviation of 𝜎𝑙 = 2 𝑚𝑚 , i.e. 𝑙 ∼ 𝑁(𝑙𝑖𝑑𝑒𝑎𝑙 , 𝜎2𝑙 ). The distribution of the RCS loss can clearly be fitted by a
normal distribution.

From this result can be concluded that the pdf in equation (3.57) might further be approximated by
a normal distribution.

Figure 3.18: Normal distribution fit of the loss factor in RCS due to errors in the leg length of the reflector.
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3.4. RCS Loss Factor due to Non­Orthogonality
For trihedral corner reflectors, the maximum expected loss for a given trihedral for angular deviations
smaller than 1∘ can be approximated by:

𝐿𝑛𝑜𝑛.𝑜𝑟𝑡ℎ. = 10 log10(
sin 𝑞
𝑞 )4

= 10 log10 𝑠𝑖𝑛𝑐4(𝑞) [𝑑𝐵], where 𝑞 =
2.54 𝛿𝑒𝑟𝑟𝑙

𝜆

(3.58)

with 𝑙 is the leg length and 𝛿𝑒𝑟𝑟 is the threefold angular error (i.e. deviation angle) in radian as given
in [13]. It is clear from the equation that the loss due to non­orthogonality is a function of two vari­
ables, namely the angular error 𝛿𝑚𝑎𝑥 and the leg length 𝑙. Due to the restriction that this equation puts,
production of the trihedral corner reflectors should be atmost within 1∘ of precision in the corner walls.

3.4.1. AnalyticalDerivationof theProbabilityDistributionof theLoss Fac­
tor 𝐿𝑛𝑜𝑛.𝑜𝑟𝑡ℎ. due to Mass Production Errors

If the corner reflectors can be produced with some acceptable tolerance in the alignment of the surfaces
during mass production, with no extra knowledge about the angular error, it can be assumed to be
normal distributed :

𝑝1(𝛿𝑒𝑟𝑟) =
1

√2𝜋𝜎𝛿𝑒𝑟𝑟
𝑒𝑥𝑝( − 𝛿2𝑒𝑟𝑟

2𝜎2𝛿𝑒𝑟𝑟
) (3.59)

For small angular error, function (3.58) can be approximated, by means of its Taylor series represen­

tation, with 𝑠𝑖𝑛𝑐 (𝑥) ≈ 1 − 𝑥2
6 , which gives:

𝐿𝑛𝑜𝑛.𝑜𝑟𝑡ℎ ≈ (1 − 𝐶 𝛿2𝑒𝑟𝑟)4, (3.60)

where 𝐶 = (2.54𝑙)2
6𝜆2 .

The probability distribution of the loss factor 𝐿𝑛𝑜𝑛.𝑜𝑟𝑡ℎ can be derived by means of ”Transformation
of Random Variables” from the probability distribution 𝑝1(𝛿𝑒𝑟𝑟) of the angular error 𝛿𝑒𝑟𝑟 from equa­
tion (3.59). Applying transformation of the variable from (3.60) to the PDF of (3.59), the probability
distribution 𝑝(𝐿𝑛𝑜𝑛.𝑜𝑟𝑡ℎ) is:

𝑝(𝐿𝑛𝑜𝑛.𝑜𝑟𝑡ℎ.) = 2 𝑝1(𝛿𝑒𝑟𝑟(𝐿𝑛𝑜𝑛.𝑜𝑟𝑡ℎ.)) |
𝑑𝛿𝑒𝑟𝑟

𝑑𝐿𝑛𝑜𝑛.𝑜𝑟𝑡ℎ.
| (3.61)

where the factor 2 comes from the even symmetry of the function in equation (3.60), and,

𝛿𝑒𝑟𝑟(𝐿𝑛𝑜𝑛.𝑜𝑟𝑡ℎ.) = (
1 − 𝐿1/4𝑛𝑜𝑛.𝑜𝑟𝑡ℎ.

𝐶 )
1/2

(3.62)

is the inverse function that follows from equation (3.60). Taking the absolute value of the derivative of
this inverse function gives:

| 𝑑𝛿𝑒𝑟𝑟
𝑑𝐿𝑛𝑜𝑛.𝑜𝑟𝑡ℎ.

| = 𝐿−3/4𝑛𝑜𝑛.𝑜𝑟𝑡ℎ

8𝐶 (1−𝐿
1/4
𝑛𝑜𝑛.𝑜𝑟𝑡ℎ
𝐶 )

1/2 (3.63)

and,

𝑝1(𝛿𝑒𝑟𝑟(𝐿𝑛𝑜𝑛.𝑜𝑟𝑡ℎ.)) =
1

√2𝜋𝜎𝛿𝑒𝑟𝑟
𝑒𝑥𝑝( −

(1−𝐿
1/4
𝑛𝑜𝑛.𝑜𝑟𝑡ℎ.
𝐶 )

2𝜎2𝛿𝑒𝑟𝑟
) (3.64)
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Finally, putting the pieces together according to equation (3.61) and simplifying the results, the prob­
ability distribution of the loss factor 𝐿𝑛𝑜𝑛.𝑜𝑟𝑡ℎ. is obtained analytically to be:

𝑝(𝐿𝑛𝑜𝑛.𝑜𝑟𝑡ℎ.) =
1

4√2𝜋𝐶𝜎𝛿𝑒𝑟𝑟
𝐿−3/4𝑛𝑜𝑛.𝑜𝑟𝑡ℎ. (1 − 𝐿

1/4
𝑛𝑜𝑛.𝑜𝑟𝑡ℎ.)−1/2 𝑒𝑥𝑝( −

1 − 𝐿1/4𝑛𝑜𝑛.𝑜𝑟𝑡ℎ.
2𝐶𝜎2𝛿𝑒𝑟𝑟

) (3.65)

Next, equation (3.65) can be approximated by 𝛽­distribution for small error. For small angular error,
i.e. 𝛿𝑒𝑟𝑟 ≈ 0 in equation (3.60), the loss factor becomes approximately 𝐿𝑛𝑜𝑛.𝑜𝑟𝑡ℎ . ≈ 1.

Denote (1−𝐿1/4𝑛𝑜𝑛.𝑜𝑟𝑡ℎ) = 𝑓(ℎ), the Taylor expansion of 𝑓(ℎ) around the point 𝐿𝑛𝑜𝑛.𝑜𝑟𝑡ℎ.,0 ≈ 1 follows as:

𝑓(ℎ)|
𝐿𝑛𝑜𝑛.𝑜𝑟𝑡ℎ.=𝐿𝑛𝑜𝑛.𝑜𝑟𝑡ℎ.,0

≈ 𝑓(𝐿𝑛𝑜𝑛.𝑜𝑟𝑡ℎ.,0) +
𝑑 𝑓(𝐿𝑛𝑜𝑛.𝑜𝑟𝑡ℎ.)
𝑑𝐿𝑛𝑜𝑛.𝑜𝑟𝑡ℎ.

|
𝐿𝑛𝑜𝑛.𝑜𝑟𝑡ℎ.=𝐿𝑛𝑜𝑛.𝑜𝑟𝑡ℎ.,0

(𝐿𝑛𝑜𝑛.𝑜𝑟𝑡ℎ. − 𝐿𝑛𝑜𝑛.𝑜𝑟𝑡ℎ.,0)
(3.66)

The elements of the Taylor polynomial from equation (3.66) can be obtained to be:

𝑓(𝐿𝑛𝑜𝑛.𝑜𝑟𝑡ℎ.,0) ≈ (1 − 𝐿1/4𝑛𝑜𝑛.𝑜𝑟𝑡ℎ.,0) = 0 (3.67)

𝑑 𝑓(𝐿𝑛𝑜𝑛.𝑜𝑟𝑡ℎ.)
𝑑𝐿𝑛𝑜𝑛.𝑜𝑟𝑡ℎ.

|
𝐿𝑛𝑜𝑛.𝑜𝑟𝑡ℎ.=𝐿𝑛𝑜𝑛.𝑜𝑟𝑡ℎ.,0

= −14 (3.68)

which, after filling into equation 3.66, results in:

(1 − 𝐿1/4𝑛𝑜𝑛.𝑜𝑟𝑡ℎ)|𝐿𝑛𝑜𝑛.𝑜𝑟𝑡ℎ.=𝐿𝑛𝑜𝑛.𝑜𝑟𝑡ℎ.,0 ≈ −
1
4(𝐿𝑛𝑜𝑛.𝑜𝑟𝑡ℎ. − 1) =

1
4(1 − 𝐿𝑛𝑜𝑛.𝑜𝑟𝑡ℎ.) (3.69)

Furthermore, the following factor from equation (3.65) can be re­written as:

𝑒𝑥𝑝( − 1 − 𝐿
1/4
𝑛𝑜𝑛.𝑜𝑟𝑡ℎ.

2𝐶𝜎2𝛿𝑒𝑟𝑟
) = [𝑒𝑥𝑝(1 − 𝐿1/4𝑛𝑜𝑛.𝑜𝑟𝑡ℎ.)]

−1/2𝐶𝜎2𝛿𝑒𝑟𝑟 ≈ [𝑒𝑥𝑝 (−14(𝐿𝑛𝑜𝑛.𝑜𝑟𝑡ℎ. − 1))]
−1/2𝐶𝜎2𝛿𝑒𝑟𝑟

= [𝑒𝑥𝑝 (𝐿𝑛𝑜𝑛.𝑜𝑟𝑡ℎ. − 1)]
1/8𝐶𝜎2𝛿𝑒𝑟𝑟

(3.70)

Now, denote 𝑒𝑥𝑝(𝐿𝑛𝑜𝑛.𝑜𝑟𝑡ℎ. − 1) = 𝑓(𝑦), the Taylor expansion of 𝑓(𝑦) around the point 𝐿𝑛𝑜𝑛.𝑜𝑟𝑡ℎ.,0 ≈ 1
follows as:

𝑓(𝑦)|
𝐿𝑛𝑜𝑛.𝑜𝑟𝑡ℎ.=𝐿𝑛𝑜𝑛.𝑜𝑟𝑡ℎ.,0

≈ 𝑓(𝐿𝑛𝑜𝑛.𝑜𝑟𝑡ℎ.,0) +
𝑑 𝑓(𝐿𝑛𝑜𝑛.𝑜𝑟𝑡ℎ.)
𝑑𝐿𝑛𝑜𝑛.𝑜𝑟𝑡ℎ.

|
𝐿𝑛𝑜𝑛.𝑜𝑟𝑡ℎ.=𝐿𝑛𝑜𝑛.𝑜𝑟𝑡ℎ.,0

(𝐿𝑛𝑜𝑛.𝑜𝑟𝑡ℎ. − 𝐿𝑛𝑜𝑛.𝑜𝑟𝑡ℎ.,0)
(3.71)

The elements of the Taylor polynomial from equation (3.71) can be obtained to be:

𝑓(𝐿𝑛𝑜𝑛.𝑜𝑟𝑡ℎ.,0) ≈ 𝑒𝑥𝑝 (𝐿𝑛𝑜𝑛.𝑜𝑟𝑡ℎ.,0 − 1) = 𝑒𝑥𝑝 (0) = 1 (3.72)

𝑑 𝑓(𝐿𝑛𝑜𝑛.𝑜𝑟𝑡ℎ.)
𝑑𝐿𝑛𝑜𝑛.𝑜𝑟𝑡ℎ.

|
𝐿𝑛𝑜𝑛.𝑜𝑟𝑡ℎ.=𝐿𝑛𝑜𝑛.𝑜𝑟𝑡ℎ.,0

≈ 𝑒𝑥𝑝 (𝐿𝑛𝑜𝑛.𝑜𝑟𝑡ℎ.,0 − 1) = 𝑒𝑥𝑝 (0) = 1 (3.73)

which, after filling into equation 3.71, results in:

𝑒𝑥𝑝 (𝐿𝑛𝑜𝑛.𝑜𝑟𝑡ℎ. − 1)|𝐿𝑛𝑜𝑛.𝑜𝑟𝑡ℎ.=𝐿𝑛𝑜𝑛.𝑜𝑟𝑡ℎ.,0 ≈ 𝐿𝑛𝑜𝑛.𝑜𝑟𝑡ℎ.. (3.74)
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Therefore,

[𝑒𝑥𝑝 (𝐿𝑛𝑜𝑛.𝑜𝑟𝑡ℎ. − 1)]
1/8𝐶𝜎2𝛿𝑒𝑟𝑟 ≈ 𝐿1/8𝐶𝜎

2
𝛿𝑒𝑟𝑟

𝑛𝑜𝑛.𝑜𝑟𝑡ℎ. (3.75)

Using these approximations in (3.65) gives:

𝑝(𝐿𝑛𝑜𝑛.𝑜𝑟𝑡ℎ.) ≈
1

2√2𝜋𝐶𝜎𝛿𝑒𝑟𝑟
𝐿

1
8𝐶𝜎2𝛿𝑒𝑟𝑟

− 34
𝑛𝑜𝑛.𝑜𝑟𝑡ℎ. (1 − 𝐿𝑛𝑜𝑛.𝑜𝑟𝑡ℎ.)−1/2 (3.76)

which has the form of 𝛽­distribution pdf with the shape parameters:

𝛼 = 1
8𝐶𝜎2𝛿𝑒𝑟𝑟

+ 14; (3.77)

𝛽 = 1
2 , (3.78)

However, this pdf is subject to normalization to satisfy the rule that ∫10 𝑝(𝐿𝑛𝑜𝑛.𝑜𝑟𝑡ℎ.) 𝑑𝐿𝑛𝑜𝑛.𝑜𝑟𝑡ℎ. = 1. It
is notable that the error in orientation affects only the parameter 𝛼 of the distribution, in which 𝛽 = 0.5
is a fixed value.

Figure 3.19 below represents the plots of shape parameters obtained from the derived 𝛽­distribution
alongside the shape parameters obtained from theMonte­Carlo simulations, for n=10000 targets eval­
uated at 𝑓 = 77 𝐺𝐻𝑧, as a function of the angular error 𝛿𝑒𝑟𝑟 at different leg sizes. From the figures can
be concluded that the two curves agree quite well at small errors. It is also notable that as the leg size
increases, two curves are becoming apart at smaller values of angular error.

(a) for leg size l=0.10 m.
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(b) for leg size l=0.20 m.

(c) for leg size l=0.30 m.

Figure 3.19: Shape Parameters 𝛼’s vs. Angle Errors
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Figure 3.20below represents the plots of the shapeparameters obtained from thederived𝛽­distribution
alongside the shape parameters obtained from theMonte­Carlo simulations, for n=10000 targets eval­
uated at 𝑓 = 77 𝐺𝐻𝑧, as a function of the leg size 𝑙 at different angular errors 𝛿𝑒𝑟𝑟. From the figures can
be concluded that, at a given angular error 𝛿𝑒𝑟𝑟, the two curves agree quite well at smaller leg sizes. The
fact that the two curves are becoming apart at smaller values of angular error as the leg size increases
is more obvious from the plots in this figure.

(a) at std. dev. of 𝛿𝑒𝑟𝑟 = 0.15 ∘

(b) at std. dev. of 𝛿𝑒𝑟𝑟 = 0.20 ∘
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(c) at std. dev. of 𝛿𝑒𝑟𝑟 = 0.50 ∘

Figure 3.20: Shape Parameters 𝛼’s vs. Leg Size

3.4.2. Beta Distribution Fit on the Distribution of RCS Loss Factor due to
Angular Error at l=0.10 m.

In this section, a beta distribution fit on the histograms of the loss factor due to angular errors in the
corner reflector is performed at different 𝛿𝑒𝑟𝑟 deviation angles, when the size of the reflector is kept
fixed to be 𝑙 = 0.10 𝑚. This is represented in figure 3.21.

From the plots in figure 3.21 can be seen that beyond a certain amount of angular error, a second
peak starts to appear, which is found to be roughly about 𝛿𝑒𝑟𝑟 ≈ 0.50∘ for 𝑙 = 0.10 𝑚. Therefore, under
these conditions, the maximum amount of angular error that is applicable is 𝛿𝑒𝑟𝑟,𝑚𝑎𝑥 = 0.50∘ and the
corresponding shape parameters are estimated to be 𝛼 = 2.398 and 𝛽 = 0.489.
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(a) Beta distribution fit for deviations of 𝛿𝑒𝑟𝑟 = 0.50∘, 𝛿𝑒𝑟𝑟 = 0.55∘ and 𝛿𝑒𝑟𝑟 = 0.60∘

(b) Beta distribution fit for deviations of 𝛿𝑒𝑟𝑟 = 0.80∘, 𝛿𝑒𝑟𝑟 = 0.85∘ and 𝛿𝑒𝑟𝑟 = 0.90∘

Figure 3.21: Beta Distribution fit plots for different deviation angles from the orthogonality for 𝑙 = 0.10 𝑚.
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Additionally, the RCS pattern vs. deviation angles 𝛿𝑒𝑟𝑟, which follows directly from equation (3.58),
is plotted in figure 3.22 with the second lobe present for leg size of 𝑙 = 0.10 𝑚. In the figure, an ad­
ditional straight blue line is drawn at ­3­dB level as well as the minima are highlighted whereafter the
second lobe starts to appear as can be seen from the figure.

Figure 3.22: RCS loss pattern of the trihedral corner reflector vs. deviation angle 𝛿𝑚𝑎𝑥 in radians from the orthogonality, at leg
size of 𝑙 = 0.10 𝑚.

In figure 3.23, the plots are given in which the estimated shape parameters 𝛼 and 𝛽 of the beta dis­
tributions are plotted versus the deviation angles 𝛿𝑒𝑟𝑟 in relative scale at leg length of 𝑙 = 0.10 𝑚, with
a vertical blue line indicating the maximum applicable deviation angle 𝛿𝑒𝑟𝑟,𝑚𝑎𝑥.

Moreover, an evaluation is made to see how the shape parameters 𝛼 and 𝛽 behave if the leg size of
the reflector increases for the deviation angle 𝛿𝑒𝑟𝑟 kept fixed. This is plotted and represented in figure
3.24 at 𝛿𝑒𝑟𝑟 = 0.50∘. From the figure can be concluded that the shape parameter 𝛼 decreases under 0.5
for leg sizes bigger than 𝑙 = 0.25 𝑚 while the shape parameter 𝛽 at starts to increase again beyond leg
size of 𝑙 = 0.30 𝑚.
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Figure 3.23: Estimated shape parameters at leg size 𝑙 = 0.10 𝑚 vs. deviation angles 𝛿𝑒𝑟𝑟.

Figure 3.24: Estimated shape parameters at deviation angle 𝛿𝑒𝑟𝑟 = 0.50∘ vs. the leg size of the reflector.
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3.4.3. Beta Distribution Fit on the Distribution of RCS Loss Factor due to
Angular Error at Other Leg Sizes

This section deals with the similar evaluations, as in previous section, for leg sizes of 𝑙 = 0.20 𝑚 and
0.30 𝑚. Figure 3.25 gives the 3­dB beamwidths at the leg sizes 𝑙 = 0.10 𝑚, 𝑙 = 0.20 𝑚 and 𝑙 = 0.30 𝑚,
both in radians and in degrees, after investigating the RCS patterns for the latter two leg sizes in the
same way done for leg size 𝑙 = 0.10 𝑚 in the last section. From this figure can be seen that the 3­dB
beamwidth decreases with the increasing leg size.

Figure 3.25: 3­dB beamwidth vs. the leg sizes of 𝑙 = 0.10 𝑚, 𝑙 = 0.20 𝑚 and 𝑙 = 0.30 𝑚, with upper figure representing it given
in radians and lower figure given in degrees.

The beta distribution fit analysis resulted in that, at the leg size 𝑙 = 0.20 𝑚 the maximum amount of
angular error that is applicable in this work is roughly 𝛿𝑒𝑟𝑟,𝑚𝑎𝑥 ≈ 0.25∘, whereas it is roughly 𝛿𝑒𝑟𝑟,𝑚𝑎𝑥 ≈
0.20∘ for the leg size 𝑙 = 0.30 𝑚, because a second peak tends to appear in the beta distribution fit plots
when the deviation angle 𝛿𝑒𝑟𝑟 gets bigger than these values, respectively at the considered leg sizes.
The corresponding shape parameters are estimated to be 𝛼 = 2.476 and 𝛽 = 0.491 for the leg size of
𝑙 = 0.20 𝑚 and 𝛼 = 1.712 and 𝛽 = 0.491 for the leg size of 0.30 𝑚.

Figure 3.26 gives the plots inwhich the estimated shape parameters 𝛼 and𝛽 of the beta distributions
are plotted versus the deviation angles 𝛿𝑒𝑟𝑟 in relative scale at leg lengths of 𝑙 = 0.20 𝑚 and 𝑙 = 0.30 𝑚.
Again with a vertical blue line indicating the maximum applicable angular error 𝛿𝑚𝑎𝑥,𝑒𝑟𝑟 at the given
leg sizes.

Considering figures 3.23 and 3.26, one can conclude that the second peak in the beta distribution
fit plots appears earlier when the size of the reflector gets bigger.
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(a) At leg size of 𝑙 = 0.20 𝑚

(b) At leg size of 𝑙 = 0.30 𝑚

Figure 3.26: Estimated shape parameters vs. deviation angles 𝛿𝑒𝑟𝑟 at leg sizes of 𝑙 = 0.20 𝑚 and 𝑙 = 0.30 𝑚, respectively.
Vertical blue line denotes 𝛿𝑒𝑟𝑟,𝑚𝑎𝑥.
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As in the previous section, again an evaluation is made to see how the shape parameters 𝛼 and 𝛽
behave if the leg size of the reflector increases, with the deviation angle 𝛿𝑒𝑟𝑟 being fixed. The results
are given in figure 3.27 for deviation angles 𝛿𝑒𝑟𝑟 = 0.25∘ and 𝛿𝑒𝑟𝑟 = 0.20∘, respectively. From the
figures can be concluded that at both deviation angles the shape parameters 𝛼 and 𝛽 decrease with the
increasing leg size of the reflector.

(a) At 𝛿𝑒𝑟𝑟 = 0.25∘.

(b) At 𝛿𝑒𝑟𝑟 = 0.20∘.

Figure 3.27: Estimated shape parameters vs. leg size of the reflector, with the deviation angles 𝛿𝑒𝑟𝑟 kept fixed at 𝛿𝑒𝑟𝑟 = 0.25∘
and 𝛿𝑒𝑟𝑟 = 0.20∘, respectively.
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In table 3.1, a summary of the evaluations made above is given at the three leg sizes considered.

Table 3.1: Summary of beta distribution fit analysis at different leg sizes

Leg Size

in m

Max. Allowable

Angular Error

𝛿𝑚𝑎𝑥,𝑒𝑟𝑟
in deg

Max. Allowable

Angular Error

𝛿𝑚𝑎𝑥,𝑒𝑟𝑟
in rad

Shape

Parameter

𝛼

Shape

Parameter

𝛽

0.10 m 0.50 ∘ 0.0087 2.398 0.489

0.20 m 0.25 ∘ 0.0044 2.476 0.491

0.30 m 0.20 ∘ 0.0035 1.712 0.491

In general, better visibility of the target requires bigger size but, as can be concluded from the re­
sults in the table, bigger size in turn requires higher production precision in terms of the angular error
𝛿𝑚𝑎𝑥,𝑒𝑟𝑟. Also note that, as the size gets bigger, the second lobe will appear earlier since 𝛿𝑚𝑎𝑥,𝑒𝑟𝑟 value
gets then smaller. This is in accordance with the decreasing 3­dB beamwidth as the size of the corner
reflector gets bigger. Furthermore, the shape parameters 𝛽 are almost always about 𝛽 ≈ 0.5, as resulted
from the analytical derivation, while the shape parameter 𝛼 changes from one leg size to another.

3.4.4. A Theoretical Check :
Match Between The Expected Maximum Allowable Angular Errors
from Theory and Simulations

Themaximum allowable angular errors 𝛿𝑒𝑟𝑟,𝑚𝑎𝑥 from the simulations given in table 3.1 are thus the de­
viation angles beyondwhich a second peak starts to appear in the beta distribution fit plots. Specifically,
denote the expected maximum allowable angular error from theory to be 𝛿𝑒𝑟𝑟,𝑚𝑎𝑥_𝑒𝑥𝑝. The histograms
of the RCS loss factor due to non­orthogonality, using the formula from equation (3.58), are generated
by means of a Monte Carlo simulation in which the angular errors 𝛿𝑒𝑟𝑟 ’s are assumed to be normal
distributed. From the properties of a normal distribution it is known that 99.7% of the data lies within
three standard deviations of the mean.

Consider figure 3.28 in which the RCS loss pattern of the trihedral corner reflector for leg size of
𝑙 = 0.10 𝑚 and an example pdf of normal distribution are given [14]. In the upper figure, 𝛿0 denotes
the normal distributed angular error where the first minimum in the RCS loss pattern before the sec­
ond lobe arises and in the lower figure, 𝜎𝐶𝐴 is the standard deviation of the corner angles (CA), i.e.
𝜎𝐶𝐴 = 𝛿𝑒𝑟𝑟, near the minimum in the pdf of normal distribution.

Theoretically, one would expect that, considering the symmetry in the pdf of normal distribution,
the second peak in the beta distribution fit plot would start to appear beyond 𝛿0 = 6 ⋅ 𝜎𝐶𝐴 , where the
standard deviation of the corner angle should be set to 𝜎𝐶𝐴 = 𝛿𝑒𝑟𝑟,𝑚𝑎𝑥. This means that if there is a
match between 𝛿0 and 𝛿𝑒𝑟𝑟,𝑚𝑎𝑥_𝑒𝑥𝑝 values, it can be concluded that the maximum allowable angular
errors 𝛿𝑒𝑟𝑟,𝑚𝑎𝑥 ’s achieved from the simulations are the good ones.
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Figure 3.28: RCS loss pattern at leg size 𝑙 = 0.10 𝑚 and the pdf of normal distribution.
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Table 3.2 below gives an overview of the results achieved through Monte­Carlo simulations and
from the theory at different leg sizes. To make the comparison easier, figure 3.29 below plots the 𝛿0
values alongside the 𝛿𝑒𝑟𝑟,𝑚𝑎𝑥_𝑒𝑥𝑝 values at the corresponding leg sizes. It can be said that these two
matches quite well with each other.

Table 3.2: 𝛿𝑒𝑟𝑟,𝑚𝑎𝑥 results from simulations and the expected theoretical results 𝛿𝑒𝑟𝑟,𝑚𝑎𝑥_𝑒𝑥𝑝 at different leg sizes
in a table.

Leg Size

in m

Max. Allowable

Angular Error

𝛿𝑒𝑟𝑟,𝑚𝑎𝑥
in deg

Max. Allowable

Angular Error

𝛿𝑒𝑟𝑟,𝑚𝑎𝑥
in rad

First Minimum

𝛿0
in rad

Expected

Max. Allowable

Angular Error

𝛿𝑒𝑟𝑟,𝑚𝑎𝑥_𝑒𝑥𝑝
in rad

0.10 m 0.50 ∘ 0.0087 0.048 6 ⋅ 𝛿𝑒𝑟𝑟,𝑚𝑎𝑥 = 0.0524
0.20 m 0.25 ∘ 0.0044 0.024 6 ⋅ 𝛿𝑒𝑟𝑟,𝑚𝑎𝑥 =0.0262
0.30 m 0.20 ∘ 0.0035 0.016 6 ⋅ 𝛿𝑒𝑟𝑟,𝑚𝑎𝑥 =0.0209

Figure 3.29: 𝛿0 from the Monte Carlo simulations vs. expected 𝛿𝑒𝑟𝑟,𝑚𝑎𝑥_𝑒𝑥𝑝 values from the theory. Plots show that the two
values at a given leg size match quite well.
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3.5. RCS Loss Factor due to Total Loss
The total loss factor is obtained by multiplying the two loss factors for orientation errors and non­
orthogonality as :

𝐿𝑡𝑜𝑡𝑎𝑙 = 𝐿𝑜𝑟𝑖. ⋅ 𝐿𝑛𝑜𝑛.𝑜𝑟𝑡ℎ (3.79)

In [15], it is proved that the product of independent random beta variables is a beta variable and
the formula for the approximate distribution of this beta variable is also given. The distribution of 𝑍 =
∏𝑘𝑖=1 𝑋𝑖, where 𝑋𝑖 ’s are independent variables with a beta distribution of 𝐵𝑒𝑡𝑎(𝛼𝑖 , 𝛽𝑖), is approximated
by the beta distribution of 𝐵𝑒𝑡𝑎(𝛼𝑎𝑝𝑝𝑟𝑥 , 𝛽𝑎𝑝𝑝𝑟𝑥). The shape parameters 𝛼𝑎𝑝𝑝𝑟𝑥 and 𝛽𝑎𝑝𝑝𝑟𝑥 are obtained
by :

𝛼𝑎𝑝𝑝𝑟𝑥 =
(𝑆 − 𝑇) ⋅ 𝑆
(𝑇 − 𝑆2) ,

𝛽𝑎𝑝𝑝𝑟𝑥 =
(𝑆 − 𝑇) ⋅ (1 − 𝑆)

(𝑇 − 𝑆2) ,

(3.80)

in which

𝑆 = 𝐸(𝑍) =
𝑘

∏
𝑖=1

𝐸(𝑋𝑖) =
𝑘

∏
𝑖=1

𝛼𝑖
𝛼𝑖 + 𝛽𝑖

,

𝑇 = 𝐸(𝑍2) =
𝑘

∏
𝑖=1

𝐸(𝑋2𝑖 ) =
𝑘

∏
𝑖=1

𝛼𝑖(𝛼𝑖 + 1)
(𝛼𝑖 + 𝛽𝑖)(𝛼𝑖 + 𝛽𝑖 + 1)

.

(3.81)

Therefore concluded that 𝐿𝑡𝑜𝑡𝑎𝑙 is a beta variable as well.

Next, a beta distribution fit analysis is performed on the distribution of the total loss factor due to
orientation errors 𝐿𝑜𝑟𝑖..

3.5.1. Beta Distribution Fit Analysis on the Histogram of RCS Loss Factor
due to Orientation Errors

Assuming that the leg length of the corner reflector has no errors, so therefore accurate, the total loss
due to orientation errors can be written as the product of three independent random beta variables:

𝐿𝑜𝑟𝑖. = 𝐿𝑒𝑙𝑒𝑣. ⋅ 𝐿𝑎𝑧𝑖. ⋅ 𝐿𝑎𝑧𝑖.,𝑣𝑒ℎ.𝑝𝑜𝑠. (3.82)

where, 𝐿𝑒𝑙𝑒𝑣. is the loss factor due to orientation errors in elevation plane, 𝐿𝑎𝑧𝑖. is the loss factor due
to orientation errors in azimuth plane and 𝐿𝑎𝑧𝑖.,𝑣𝑒ℎ.𝑝𝑜𝑠. is the loss factor due to errors in the position
of vehicles in azimuth plane from which the histograms and the beta distribution fit results have been
shown in sections 3.1.1 and 3.2, respectively.

Below the result is given for the beta distribution fit analysis, that is obtained for n=10000 targets eval­
uated at 𝑓 = 77 𝐺𝐻𝑧, on the distribution of the total loss factor 𝐿𝑜𝑟𝑖.,𝑡𝑜𝑡. in figure 3.30 at the ideal leg size
𝑙𝑖𝑑𝑒𝑎𝑙 = 0.10 𝑚. Also the corresponding shape parameters are given in this figure which follow both
from the distribution fit inMatlab itself and from the formula of approximate distribution given in [15].

One can conclude that the approximated shape parameters (𝛼𝑎𝑝𝑝𝑟𝑥 = 16.1, 𝛽𝑎𝑝𝑝𝑟𝑥 = 0.91) agree
reasonably well with the estimated shape parameters (𝛼 = 20.9, 𝛽 = 1.19).
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Figure 3.30: Beta distribution fit plot on the distribution of total loss factor due to orientation errors at 𝑙𝑖𝑑𝑒𝑎𝑙 = 0.10 𝑚.

3.5.2. BetaDistribution Fit Analysis on theHistogramof Total Loss Factor
Figure 3.31 represents the beta distribution fit results on the distribution of the total loss factor 𝐿𝑡𝑜𝑡𝑎𝑙
from equation (3.79) at leg sizes of 𝑙 = 0.10 𝑚, 𝑙 = 0.20 𝑚 and 𝑙 = 0.30 𝑚 at the corresponding
maximum applicable deviation angles of 𝛿𝑒𝑟𝑟,𝑚𝑎𝑥 = 0.50∘, 𝛿𝑒𝑟𝑟,𝑚𝑎𝑥 = 0.25∘ and 𝛿𝑒𝑟𝑟,𝑚𝑎𝑥 = 0.20∘,
respectively. Also the corresponding shape parameters are given in the figure which follow both from
the distribution fit in Matlab itself and from the formula of the approximate distribution given in [15].

(a) Beta distribution fit for leg length 𝑙 = 0.10 𝑚 and deviation of 𝛿𝑒𝑟𝑟,𝑚𝑎𝑥 = 0.50∘



70 3. Statistical Characteristics of the RCS Loss Factor

(b) Beta distribution fit for leg length 𝑙 = 0.20 𝑚 and deviation of 𝛿𝑒𝑟𝑟,𝑚𝑎𝑥 = 0.25∘

(c) Beta distribution fit for leg length 𝑙 = 0.30 𝑚 and deviation of 𝛿𝑒𝑟𝑟,𝑚𝑎𝑥 = 0.20∘

Figure 3.31: Beta distribution fit on the histogram of total loss factor at leg sizes of 0.10𝑚, 0.20𝑚 and 0.30𝑚 at deviation angles
of 𝛿𝑒𝑟𝑟,𝑚𝑎𝑥 = 0.50∘, 𝛿𝑒𝑟𝑟,𝑚𝑎𝑥 = 0.25∘ and 𝛿𝑒𝑟𝑟,𝑚𝑎𝑥 = 0.20∘, respectively.
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Figure 3.32 gives these estimated and approximated shape parameters at the corresponding leg
sizes. One can see from the plots that they do not differ from one another significantly.

Figure 3.32: Estimated shape parameters vs. approximated shape parameters

3.6. Conclusions
This chapter dealt with the statistical characteristics of the RCS loss in terms ofRCS Loss Factor for ori­
entation errors, both in elevation and azimuthplane, errors in leg length aswell as thenon­orthogonality
of the corner walls which results from mass production errors.

In case of orientation errors, first, the high­frequency RCS is approximated by means of its Taylor
series in the vicinity of the points 𝜃 = 𝜃𝑖𝑑𝑒𝑎𝑙 and 𝜙 = 𝜙𝑖𝑑𝑒𝑎𝑙, as given in equations (3.16) and (3.43),
respectively. From these results, the probability distributions of the loss factors are derived analytically
for errors in elevation and azimuth plane as well as for errors in leg length of the corner reflector, un­
der assumption that deviations from the ideal orientation in elevation and azimuth plane and that the
errors in the leg lengths are normal distributed.

Particularly for orientation errors in elevation and azimuth plane, it is shown that the probability
distribution of the RCS loss factors can bewell approximated by 𝛽­distribution for small errors in orien­
tation, for which the loss factor is 𝐿𝑜𝑟𝑖 ≈ 1. Results are validated both by means of matching shape pa­
rameters obtained from the derivations andMonte­Carlo simulation and bymeans of Kullback­Leibler
divergence in which the divergence is shown to go to very low values for small errors in orientation.
Therefore, loss factors are concluded to be beta distributed.

Particularly for errors in leg length, after performing a normal distribution fit on the distribution of
the loss factor, it is concluded that this pdf might further be approximated by a normal distribution.
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In case of errors due to non­orthogonality of the corner walls, based on the formula given in (3.58)
and assuming that the angular error is normal distributed, it can be assumed to be normal distributed,
it is shown that the probability distribution of the RCS loss factors can be well approximated by 𝛽­
distribution for small angular errors for which 𝐿𝑛𝑜𝑛.𝑜𝑟𝑡ℎ . ≈ 1. Results are validated by means of match­
ing shape parameters obtained from the derivation and Monte­Carlo simulation at small errors. It is
noted that as the leg size increases, two curves of shape parameters are becoming apart at smaller val­
ues of angular error, which means that the 𝛽­distribution approximation is then applicable only for
smaller errors.

Production of the trihedral corner reflectors should be at most within 1∘ of precision in the corner
walls since the the formula given in (3.58) is applicable only for angular deviations smaller than 1∘. Beta
distribution fit analysis showed that beyond a certain amount of angular error, a second peak starts to
appear, which are found to be the values as given in table 3.1 for three different leg sizes. From the re­
sults in the table concluded that, in contrast to better visibility, bigger size requires higher production
precision in terms of the angular error because the second peak appeared earlier when the size of the
reflector gets bigger. Also observed that 3­dB beamwidth decreases with the increasing leg size. These
two results support the conclusion that the 𝛽­distribution approximation is applicable only for increas­
ingly smaller errors when the leg size increases. Furthermore, deviation angles beyond which a second
peak starts to appear in the beta distribution fit achieved from the simulations as given in table 3.1 are
validated by theory corresponding to the properties of normal distribution to be roughly the good ones
as they match quite well as given in figure 3.29. Together with the results obtained in section , results
of the statistical characteristics of this loss factor helped to find a balance between the size, quality and
number of targets to be deployed in a certain range in a given road configuration.

It is shown that the total loss factor, obtained by product of two independent random beta variables
of loss factors 𝐿𝑜𝑟𝑖. and 𝐿𝑛𝑜𝑛.𝑜𝑟𝑡ℎ, can be approximated by a beta distribution as well. This is shown by
means of a comparison between the estimated and approximated shape parameters at the correspond­
ing leg sizes as given in figure 3.32, assuming accurate leg length of the corner reflector.



4
Estimation of the Radar Healthiness

Ratio Q(t,R)

This chapter deals with defining and the estimation of the quality metric (or quality factor) based on
which the healthiness of the automotive radar can be evaluated.

4.1. Defining the Radar Healthiness Ratio Q(t,R)
The radar range equation for automotive FMCW radars in the form of (required) SNR, including the
free­space losses, were given in equation 2.12 to be:

𝑆𝑁𝑅 = 𝑃𝑟
𝑃𝑛
=

𝑃𝑡𝐺𝑡𝐺𝑟𝜆2𝜎𝑟𝑒𝑞
(4𝜋)3𝑅4𝑘𝑇0𝐹𝐵𝐿𝑠𝑦𝑠

𝐹4𝑝𝑟 ⋅ (𝜏𝐵) (4.1)

This equation can be re­arranged by putting all the radar specific constants, losses and the propagation
factor in a single variable, called 𝐴(𝑡), which results in the following equation:

𝑆𝑁𝑅(𝑅) = 𝐴(𝑡, 𝑅) ⋅ 𝜎(𝛼, 𝜃, 𝜙, 𝑙)
𝑅4 (4.2)

where

𝐴(𝑡, 𝑅) = 𝑃𝑡𝐺2𝜆2
(4𝜋)3𝑘𝑇0𝐹𝐵𝐿𝑠𝑦𝑠

𝐹4𝑝𝑟 ⋅ (𝜏𝐵) (4.3)

In equation (4.2), 𝑆𝑁𝑅(𝑅) is the Signal­to­Noise Ratio being measured on drive, 𝜎(𝛼, 𝜃, 𝜙, 𝑙) is the RCS
of the targets encountered on drive and 𝐴(𝑡, 𝑅) denotes the current state of the radar on the go.

Radar range equation can also be written in the RCS form in terms of the 𝑆𝑁𝑅(𝑅) that is produced
by the radar. This gives:

𝜎𝑚 =
𝑅4 ⋅ 𝑆𝑁𝑅(𝑅)

𝐴0
(4.4)

In equation (4.4), 𝐴0 represents a constant value which comprises the radar specific constants, losses
and the propagation factor defined in the production or initial calibration phase at the factory side and
𝜎𝑚 is thus the measured RCS value at the output of the radar in real time based on this 𝐴0 value.

Re­writing equation (4.4) by substituting equation 4.2 into 𝑆𝑁𝑅(𝑅) gives:

73
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𝜎𝑚 =
𝑅4
𝐴0
⋅ 𝐴(𝑡, 𝑅) ⋅ 𝜎(𝛼, 𝜃, 𝜙, 𝑙)𝑅4

= 𝐴(𝑡, 𝑅) ⋅ 𝜎(𝛼, 𝜃, 𝜙, 𝑙)
𝐴0

= 𝑄(𝑡, 𝑅) ⋅ 𝜎(𝛼, 𝜃, 𝜙, 𝑙)

(4.5)

which is the measurement equation that is used when dealing with the estimation of the quality metric.

Therefore,

𝑄(𝑡, 𝑅) = 𝜎𝑚
𝜎(𝛼, 𝜃, 𝜙, 𝑙) =

𝐴(𝑡, 𝑅)
𝐴0

(4.6)

In equation (4.6), 𝑄(𝑡, 𝑅) is thus the quality metric that needs to be estimated.

4.2. Estimation of 𝑄(𝑡, 𝑅) by Method of Moments
In equation 4.5, the measurement equation in terms of the quality metric 𝑄(𝑡, 𝑅) was derived to be:

𝜎𝑚 = 𝑄(𝑡, 𝑅) ⋅ 𝜎(𝛼, 𝜃, 𝜙, 𝑙) (4.7)

where 𝜎(𝛼, 𝜃, 𝜙, 𝑙) is the RCS of the targets encountered on drive that depends on a number of factors
such as the range to the target, size, orientation, observation and orthogonality of the corner faces of the
target. Assuming accurate leg length 𝑙, the range 𝑅 is known and that the orientation error in azimuth
is the only error that affects this RCS, equation (4.7) reduces to:

𝜎𝑚 = 𝑄 ⋅ 𝜎(𝜃𝑖𝑑𝑒𝑎𝑙 , 𝜙, 𝑙𝑖𝑑𝑒𝑎𝑙)
= 𝑄 ⋅ (𝐿𝑎𝑧𝑖. ⋅ 𝜎𝑖𝑑𝑒𝑎𝑙(𝜃𝑖𝑑𝑒𝑎𝑙 , 𝜙𝑖𝑑𝑒𝑎𝑙 , 𝑙𝑖𝑑𝑒𝑎𝑙))

(4.8)

Given equation (4.8), measurement equation with additive noise can now be written as:

𝜎𝑚 = 𝑄 ⋅ (𝐿𝑎𝑧𝑖. ⋅ 𝜎𝑖𝑑𝑒𝑎𝑙(𝜃𝑖𝑑𝑒𝑎𝑙 , 𝜙𝑖𝑑𝑒𝑎𝑙 , 𝑙𝑖𝑑𝑒𝑎𝑙)) + 𝑛 (4.9)

Scaling equation (4.9) by the factor 𝜎𝑖𝑑𝑒𝑎𝑙(𝜃𝑖𝑑𝑒𝑎𝑙 , 𝜙𝑖𝑑𝑒𝑎𝑙 , 𝑙𝑖𝑑𝑒𝑎𝑙) results in:

𝜎′ = 𝑄 ⋅ 𝐿𝑎𝑧𝑖. + 𝑛′ (4.10)

with 𝜎′ = 𝜎𝑚/𝜎𝑖𝑑𝑒𝑎𝑙(𝜃𝑖𝑑𝑒𝑎𝑙 , 𝜙𝑖𝑑𝑒𝑎𝑙 , 𝑙𝑖𝑑𝑒𝑎𝑙), and, 𝑛′ = 𝑛/𝜎𝑖𝑑𝑒𝑎𝑙(𝜃𝑖𝑑𝑒𝑎𝑙 , 𝜙𝑖𝑑𝑒𝑎𝑙 , 𝑙𝑖𝑑𝑒𝑎𝑙). Also note that the
loss factor 𝐿𝑎𝑧𝑖. was determined to be beta distributed with the shape parameters 𝛼 and 𝛽: 𝐿𝑎𝑧𝑖. ∼
𝐵𝑒𝑡𝑎(𝛼, 𝛽).

4.2.1. RCS Fluctuation is a Source of Noise
Assuming there is no additive noise, measurement can be regarded as a scaled beta distribution with
four parameters : 𝜎′ ∼ 𝐵𝑒𝑡𝑎(𝛼, 𝛽, 𝑎, 𝑐) , where 𝛼 and 𝛽 are as usual the shape parameters and 𝑎 and 𝑐
are the parameters representing the minimum and maximum values of the distribution, respectively.
Note that in our measurement, the parameter 𝑎 = 0 and 𝑐 = 𝑄.

Probability density function of this scaled beta distribution conditioned on the quality factor 𝑄 is:

𝑝(𝜎′|𝑄) = (𝜎′)𝛼−1 (𝑄 − 𝜎′)𝛽−1
𝐵(𝛼, 𝛽) 𝑄(𝛼+𝛽−1) (4.11)
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All the four parameters of a scaled beta distribution can be estimated by means of the method of mo­
ments by equating sample and population values of the first four central moments; mean, variance,
skewness and excess kurtosis [16], [17]. One equation to calculate the estimation of the support inter­
val range (𝑄̂ − 𝑎̂), in terms of the sample variance and sample excess kurtosis, gives the estimate of
parameter 𝑄 as:

𝑄̂ = √(sample variance) √6 + 5𝑣̂ + (2 + 𝑣̂)(3 + 𝑣̂)6 (sample excess kurtosis) (4.12)

One another alternative equation to calculate the estimation of the support interval range (𝑄̂ − 𝑎̂), in
terms of the sample variance and sample skewness, gives the estimate of parameter 𝑄 as:

𝑄̂ = √(sample variance)
2 √(2 + 𝑣̂)2 (sample skewness)2 + 16(1 + 𝑣̂) (4.13)

where the sample size and sample moments are:

𝑣̂ = 𝛼̂ + 𝛽̂ (4.14)

sample mean = 𝑦̄ = 1
𝑁

𝑁

∑
𝑖=1
𝜎′𝑖 (4.15)

sample variance = 𝑣̄𝜎′ =
1

𝑁 − 1

𝑁

∑
𝑖=1
(𝜎′𝑖 − 𝑦̄)2 (4.16)

sample skewness = 𝑁
(𝑁 − 1)(𝑁 − 2)

∑𝑁𝑖=1(𝑌𝑖 − 𝑦̄)3

𝑣̄3/2𝑌
(4.17)

sample excess kurtosis = 𝑁(𝑁 + 1)
(𝑁 − 1)(𝑁 − 2)(𝑁 − 3)

∑𝑁𝑖=1(𝑌𝑖 − 𝑦̄)4
𝑣̄2𝑌

− 3(𝑁 − 1)2
(𝑁 − 2)(𝑁 − 3) (4.18)

Note that the estimated shape parameters 𝛼̂ = 𝛼 and 𝛽̂ = 𝛽 are gathered from the distribution of
𝐿𝑎𝑧𝑖. ∼ 𝐵𝑒𝑡𝑎(𝛼, 𝛽) in the simulation.

4.2.2. Results of the Estimation of 𝑄 by Method of Moments
The results of the estimation of the quality factor 𝑄 by means of Method of Moments for 𝑁 = 5000 re­
alizations of a corner reflector with leg size 𝑙 = 0.10 𝑚, evaluated at 𝑓 = 77 𝐺𝐻𝑧, for different standard
deviation values 𝜎𝜙 of the orientation error are given in figure 4.1. In the estimation, true quality factor
is considered to be constant for all realizations and it is chosen to be 𝑄𝑡𝑟𝑢𝑒 = 0.7 .

One can conclude that the estimation formula in terms of the sample variance and sample skewness
from equation (4.13) delivers more accurate estimation results.
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Figure 4.1: True 𝑄­value vs. estimated 𝑄 for different values of 𝜎𝜙.

4.2.3. Mean Squared Error of the MoM Estimation
The mean squared error of the MoM estimation is calculated by:

𝑀𝑆𝐸 (𝑄(𝑛)𝑒𝑠𝑡) =
1

(size of r)

𝑅

∑
𝑟
(𝑄(𝑛)𝑒𝑠𝑡,𝑟 − 𝑄𝑡𝑟𝑢𝑒)2 (4.19)

where𝑛 = {10, 20, 30, ..., 𝑁} is the vector containing thenumber of observations𝜎′𝑛, and, 𝑟 = {10, 12, 14, ..., 𝑅}
is the vector containing the number of realizations of the corner reflector.

Note that the vector 𝑟 does not start to increase from 𝑟 = {1, ...} because of the need for more real­
izations due to beta distribution fitting operation in the code.

Figure 4.2 give the resulting MSE plot of the MoM estimation as a function of number of observa­
tions for both estimators from equations (4.12) and (4.13). There results validate that the estimation
formula in terms of the sample variance and sample skewness in equation (4.13) delivers indeed more
accurate estimation result than the estimator in equation (4.12). Furthermore, as expected, estimation
accuracy improves with the increasing number of observations.
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Figure 4.2: MSE of the estimated Q values as a function of the number of observations where 𝑁 = 250 and 𝑅 = 20000.

4.3. Maximum a Posteriori (MAP) Estimation of the Quality
Factor 𝑄

In the presence of additive noise, scaled measurement equation is given in (4.10) to be :

𝜎′ = 𝑄 ⋅ 𝐿𝑎𝑧𝑖. + 𝑛′ (4.20)

with the loss factor 𝐿𝑎𝑧𝑖. ∼ 𝐵𝑒𝑡𝑎(𝛼, 𝛽). RCS fluctuation now is considered to be a nuisance parameter
here.

In case of N measurements of N independent targets, measurement equation becomes:

Σ = 𝑄 ⋅ Lazi + n’ (4.21)

where Σ =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝜎′1
𝜎′2
.
.
𝜎′𝑁

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, Lazi =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝐿𝑎𝑧𝑖.,1
𝐿𝑎𝑧𝑖.,2
.
.

𝐿𝑎𝑧𝑖.,𝑁

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, and, n’ =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑛′1
𝑛′2
.
.
𝑛′𝑁

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

For high SNR, noise can be assumedGaussian aswell as the distribution of the power. Therefore the pdf
of the measurements that are conditioned on the scalar quality factor 𝑄 and the loss factors 𝐿𝑎𝑧𝑖.,𝑖 , 𝑖 =
1, ..., 𝑁, from the corresponding independent targets follows as :
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𝑝(Σ|𝑄,Lazi) =
1

(2𝜋𝜎2𝑛)
𝑁
2
exp[ − 1

2𝜎2𝑛

𝑁

∑
𝑖=1
(𝜎′𝑖 − 𝑄 𝐿𝑎𝑧𝑖.,𝑖)2] (4.22)

Since we are interested in the estimation of quality factor𝑄 only, it is convenient to treat the loss factors
Lazi as a nuisance parameter and to integrate it out by means of Bayesian approach.

The posterior pdf of the quality factor 𝑄 in the vector form is :

𝑝(𝑄|Σ) = 𝑝(Σ|𝑄) 𝑝(𝑄)
𝑝(Σ) (4.23)

with

𝑝(Σ|𝑄) = ∫𝑝(Σ|𝑄,Lazi) 𝑝(Lazi) 𝑑Lazi (4.24)

being the likelihood by which the loss factors Lazi are integrated out, and,

𝑝(Σ) = ∫𝑝(Σ|𝑄)𝑝(𝑄)𝑑𝑄 (4.25)

being the marginal likelihood which normalizes the posterior density 𝑝(𝑄|Σ).

The joint distribution of the loss factors from the corresponding independent targets in equation
(4.21) is:

𝑝(Lazi) =
𝑁

∏
𝑖=1

𝑝(𝐿𝑎𝑧𝑖.,𝑖) =
𝑁

∏
𝑖=1

𝐿𝛼−1𝑎𝑧𝑖.,𝑖(1 − 𝐿𝑎𝑧𝑖.,𝑖)𝛽−1
𝐵(𝛼, 𝛽) , 𝐿𝑎𝑧𝑖.,𝑖 ∈ [0, 1], (4.26)

and the normal distributed prior pdf of the quality factor 𝑄 is:

𝑝(𝑄) = 𝒩(𝑄0, 𝜎2𝑄)

= 1

√2𝜋𝜎2𝑄
exp[ − 1

2𝜎2𝑄
(𝑄 − 𝑄0)2] (4.27)

Now from equations (4.22) and (4.26), the likelihood equation in (4.24) becomes :

𝑝(Σ|𝑄) = ∫ 1
(2𝜋𝜎2𝑛)

𝑁
2
exp[ − 1

2𝜎2𝑛

𝑁

∑
𝑖=1
(𝜎′𝑖 − 𝑄 𝐿𝑎𝑧𝑖.,𝑖)2]

𝑁

∏
𝑖=1

𝐿𝛼−1𝑎𝑧𝑖.,𝑖(1 − 𝐿𝑎𝑧𝑖.,𝑖)𝛽−1
𝐵(𝛼, 𝛽) 𝑑Lazi, 𝐿𝑎𝑧𝑖.,𝑖 ∈ [0, 1]

(4.28)

From this result follows that the MAP estimation of 𝑄 requests the following equation to be solved:

𝑄̂𝑀𝐴𝑃 = arg max
𝑄

{𝑝(Σ|𝑄)𝑝(𝑄)}

= arg max
𝑄

{∫ 1
(2𝜋𝜎2𝑛)

𝑁
2
exp[ − 1

2𝜎2𝑛

𝑁

∑
𝑖=1
(𝜎′𝑖 − 𝑄 𝐿𝑎𝑧𝑖.,𝑖)2]

𝑁

∏
𝑖=1

𝐿𝛼−1𝑎𝑧𝑖.,𝑖(1 − 𝐿𝑎𝑧𝑖.,𝑖)𝛽−1
𝐵(𝛼, 𝛽) 𝑑Lazi

⋅ 1

√2𝜋𝜎2𝑄
exp[ − 1

2𝜎2𝑄
(𝑄 − 𝑄0)2] }, 𝐿𝑎𝑧𝑖.,𝑖 ∈ [0, 1]

(4.29)
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Since equation (4.29) can be quite complex to solve, for convenienceNmeasurements of the real­
ization of a single target are considered. In that case, the measurement equation becomes :

Σ = 𝑄 ⋅ 𝐿𝑎𝑧𝑖 + n’ (4.30)

where Σ =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝜎′1
𝜎′2
.
.
𝜎′𝑁

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, n’ =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑛′1
𝑛′2
.
.
𝑛′𝑁

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

and the loss factor 𝐿𝑎𝑧𝑖 is now a constant parameter.

Then the pdf of the measurements that are conditioned on the scalar quality factor 𝑄 and the constant
loss factor 𝐿𝑎𝑧𝑖. follows as :

𝑝(Σ|𝑄, 𝐿𝑎𝑧𝑖.) =
1

(2𝜋𝜎2𝑛)
𝑁
2
exp[ − 1

2𝜎2𝑛

𝑁

∑
𝑖=1
(𝜎′𝑖 − 𝑄 𝐿𝑎𝑧𝑖.)2] (4.31)

For one target only, the distribution of the loss factor is simply :

𝑝(𝐿𝑎𝑧𝑖.) =
𝐿𝛼−1𝑎𝑧𝑖. (1 − 𝐿𝑎𝑧𝑖.)𝛽−1

𝐵(𝛼, 𝛽) , 𝐿𝑎𝑧𝑖. ∈ [0, 1], (4.32)

Now from equations (4.31) and (4.32), the likelihood equation becomes :

𝑝(Σ|𝑄) = ∫𝑝(Σ|𝑄, 𝐿𝑎𝑧𝑖) 𝑝(𝐿𝑎𝑧𝑖) 𝑑𝐿𝑎𝑧𝑖

= ∫ 1
(2𝜋𝜎2𝑛)

𝑁
2
exp[ − 1

2𝜎2𝑛

𝑁

∑
𝑖=1
(𝜎′𝑖 − 𝑄 𝐿𝑎𝑧𝑖.)2]

𝐿𝛼−1𝑎𝑧𝑖. (1 − 𝐿𝑎𝑧𝑖.)𝛽−1
𝐵(𝛼, 𝛽) 𝑑𝐿𝑎𝑧𝑖 , 𝐿𝑎𝑧𝑖. ∈ [0, 1]

(4.33)

The integral in the likelihood function from equation (4.33) for single targetmeasurements can approx­
imately be written as a summation which results into:

𝑝(Σ|𝑄) ≈
𝑚

∑
𝑘=1

𝑝(Σ|𝑄, 𝐿𝑎𝑧𝑖,𝑘) 𝑝(𝐿𝑎𝑧𝑖,𝑘) 𝛿𝐿𝑎𝑧𝑖.

≈
𝑚

∑
𝑘=1

( 1
(2𝜋𝜎2𝑛)

𝑁
2
exp[ − 1

2𝜎2𝑛

𝑁

∑
𝑖=1
(𝜎′𝑖 − 𝑄 𝐿𝑎𝑧𝑖,𝑘)2]

𝐿𝛼−1𝑎𝑧𝑖,𝑘(1 − 𝐿𝑎𝑧𝑖,𝑘)𝛽−1
𝐵(𝛼, 𝛽) 𝛿𝐿𝑎𝑧𝑖.)

(4.34)

where 𝐿𝑎𝑧𝑖,𝑘 = 𝛿𝐿𝑎𝑧𝑖. ⋅ 𝑘 , and, 𝛿𝐿𝑎𝑧𝑖. =
1
𝑚 since 𝐿𝑎𝑧𝑖. ∈ [0, 1] .
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From these equations follow that the MAP estimation of 𝑄 requests the following equation to be
solved:

𝑄̂𝑀𝐴𝑃 = arg max
𝑄

{𝑝(Σ|𝑄)𝑝(𝑄)}

= arg max
𝑄

{∫ 1
(2𝜋𝜎2𝑛)

𝑁
2
exp[ − 1

2𝜎2𝑛

𝑁

∑
𝑖=1
(𝜎′𝑖 − 𝑄 𝐿𝑎𝑧𝑖.)2]

𝐿𝛼−1𝑎𝑧𝑖. (1 − 𝐿𝑎𝑧𝑖.)𝛽−1
𝐵(𝛼, 𝛽) 𝑑𝐿𝑎𝑧𝑖

⋅ 1

√2𝜋𝜎2𝑄
exp[ − 1

2𝜎2𝑄
(𝑄 − 𝑄0)2] }

≈ arg max
𝑄

{ [
𝑚

∑
𝑘=1

( 1
(2𝜋𝜎2𝑛)

𝑁
2
exp[ − 1

2𝜎2𝑛

𝑁

∑
𝑖=1
(𝜎′𝑖 − 𝑄 𝐿𝑎𝑧𝑖,𝑘)2]

𝐿𝛼−1𝑎𝑧𝑖,𝑘(1 − 𝐿𝑎𝑧𝑖,𝑘)𝛽−1
𝐵(𝛼, 𝛽) 𝛿𝐿𝑎𝑧𝑖.)]

⋅ 1

√2𝜋𝜎2𝑄
exp[ − 1

2𝜎2𝑄
(𝑄 − 𝑄0)2] }, 𝐿𝑎𝑧𝑖. ∈ [0, 1]

(4.35)

Figure 4.3a below give the plots of the likelihood functions 𝑝(Σ|𝑄) from equation (4.34) for differ­
ent discretization values 𝛿𝐿𝑎𝑧𝑖. where SNR = 30 dB and the true quality factor 𝑄𝑡𝑟𝑢𝑒 in the simulation
is assumed to be 𝑄𝑡𝑟𝑢𝑒 = 1. Discretization value 𝛿𝐿𝑎𝑧𝑖. has clearly no impact on the position of the
maxima of the likelihood functions. Figure 4.3b gives the plots of the likelihood functions for different
SNR values when discretization value is 𝛿𝐿𝑎𝑧𝑖. = 1𝑒 − 2. Reducing the SNR value causes the position
of the maxima of the likelihood functions to shift slighty away to right side.

Note that SNR here is defined to be the ratio of the power in true value of 𝑄 to the power in noise;
i.e.

𝑃𝑄𝑡𝑟𝑢𝑒
𝜎2𝑛

= 30 𝑑𝐵. These results are obtained for 𝑁 = 10measurements of the realization of a single
target where the error in orientation is taken to be 𝜎𝜙 = 3.0∘.



4.3. Maximum a Posteriori (MAP) Estimation of the Quality Factor 𝑄 81

(a) 𝑝(Σ|𝑄) for different discretization values 𝛿𝐿𝑎𝑧𝑖. when SNR = 30 dB and 𝑄𝑡𝑟𝑢𝑒 = 1.

(b) 𝑝(Σ|𝑄) for different SNR values at the discretization value 𝛿𝐿𝑎𝑧𝑖. = 1𝑒 − 2 and 𝑄𝑡𝑟𝑢𝑒 = 1.

Figure 4.3: Likelihood Functions 𝑝(Σ|𝑄)
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In figure 4.4, the plot of the relative errors in the position of themaximaof the likelihood functions as
a function of SNR is given when two different discretization values 𝛿𝐿𝑎𝑧𝑖. are considered. It is clear that
the relative error decreases with the increasing SNR for both discretization values. One can conclude,
therefore, that the noise power has much more impact on the error than the discretization errors.

Figure 4.4: Relative errors in 𝑝(Σ|𝑄) as a function of SNR, for the two given discretization values 𝛿𝐿𝑎𝑧𝑖. and 𝑄𝑡𝑟𝑢𝑒 = 1.
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In figure 4.5, the plots of the posterior pdf’s 𝑝(𝑄|Σ) are given for different SNR values for the given
discretization value 𝛿𝐿𝑎𝑧𝑖. = 1𝑒 − 2, where the prior pdf of the quality factor 𝑄 is taken to be normal
distributed as 𝑝(𝑄) = 𝒩(𝑄0, 𝜎2𝑄) = (15, 102). Decreasing SNR value, as it was the case for the likeli­
hood functions from figure 4.3b as well, causes the position of the maxima of the posterior pdf’s to shift
slighty away to right side.

Figure 4.5: Posterior pdf’s for different SNR values for the two given discretization values 𝛿𝐿𝑎𝑧𝑖. and 𝑄𝑡𝑟𝑢𝑒 = 1.
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Finally, taking the derivative of the argument (𝑝(Σ|𝑄)𝑝(𝑄)) in equation (4.35) with respect to 𝑄
using the product rule and setting this result equal to zero gives the analytical equation that needs to
be solved to gather the MAP estimator of the quality factor 𝑄:

𝜕(𝑝(Σ|𝑄)𝑝(𝑄))
𝜕𝑄 |

𝑄=𝑄̂𝑀𝐴𝑃
=

𝜕 𝑝(Σ|𝑄)
𝜕𝑄 ⋅ 𝑝(𝑄) + 𝑝(Σ|𝑄) ⋅ 𝜕 𝑝(𝑄)𝜕𝑄 |

𝑄=𝑄̂𝑀𝐴𝑃
=

𝑚

∑
𝑘=1

( 1
(2𝜋𝜎2𝑛)

𝑁
2
exp[ − 1

2𝜎2𝑛

𝑁

∑
𝑖=1
(𝜎′𝑖 − 𝑄 𝐿𝑎𝑧𝑖,𝑘)2]

𝐿𝛼−1𝑎𝑧𝑖,𝑘(1 − 𝐿𝑎𝑧𝑖,𝑘)𝛽−1
𝐵(𝛼, 𝛽) 𝛿𝐿𝑎𝑧𝑖)

⋅ { 1

√2𝜋𝜎2𝑄
exp[ − 1

2𝜎2𝑄
(𝑄 − 𝑄0)2] ⋅ (

𝑚

∑
𝑘=0

(𝐿𝑎𝑧𝑖,𝑘𝜎2𝑛

𝑁

∑
𝑖=1
(𝜎′𝑖 − 𝑄 𝐿𝑎𝑧𝑖,𝑘)) −

1
𝜎2𝑄
(𝑄 − 𝑄0))}|𝑄=𝑄̂𝑀𝐴𝑃

= 0

(4.36)

Solving this equation to find zero reduces to solving for the second term inside the curly braces, since
the first multiplier term in equation (4.36) will be greater than zero. Therefore,

1

√2𝜋𝜎2𝑄
exp[ − 1

2𝜎2𝑄
(𝑄 − 𝑄0)2] ⋅ (

𝑚

∑
𝑘=0

(𝐿𝑎𝑧𝑖,𝑘𝜎2𝑛

𝑁

∑
𝑖=1
(𝜎′𝑖 − 𝑄 𝐿𝑎𝑧𝑖,𝑘)) −

1
𝜎2𝑄
(𝑄 − 𝑄0))|𝑄=𝑄̂𝑀𝐴𝑃

= 0 (4.37)

Considering the case of Nmeasurements of the same realization of a single target, an eval­
uation of the estimator performance in terms of estimation error is made by means of Monte Carlo
simulation for different SNR values, orientation errors 𝜎𝜙, prior pdf’s 𝑝(𝑄) and number of measure­
ments 𝑁. The results are given in figures 4.6 through 4.9 below.

Figure 4.6 gives the plots of the histogram and variance of the estimation error, which is defined
as the difference between 𝑄̂𝑀𝐴𝑃 and 𝑄𝑡𝑟𝑢𝑒; i.e. 𝑄𝑒𝑟𝑟 = 𝑄̂𝑀𝐴𝑃 − 𝑄𝑡𝑟𝑢𝑒, for different SNR values after
running the estimator for 𝑀 = 500 Monte­Carlo trials. This result is obtained for 𝑁 = 10 measure­
ments of the realization of a single target where the error in orientation 𝜎𝜙 = 3.0∘, discretization value
𝛿𝐿𝑎𝑧𝑖. = 1𝑒 − 2, the normal distributed prior pdf 𝑝(𝑄) = 𝒩(15, 102). The true quality factor 𝑄𝑡𝑟𝑢𝑒 in
the simulation is assumed to be 𝑄𝑡𝑟𝑢𝑒 = 1.

As expected, the histogram of the estimation error 𝑄𝑒𝑟𝑟 gets narrower at higher SNR values, which
means that the noise power has a significant impact on the performance of the MAP estimator. This
conclusion can also be drawn from the decrease in variance of the estimation error with the SNR in­
creasing as given in figure 4.6b. Also, mean of the estimation error is found to be around zero in all the
four cases considered, i.e. 𝐸[𝑄𝑒𝑟𝑟] ≈ 0.
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(a) Histograms of the estimation errors for four different SNR values; 𝑆𝑁𝑅 = 0 𝑑𝐵, 𝑆𝑁𝑅 = 10 𝑑𝐵, 𝑆𝑁𝑅 = 20 𝑑𝐵, 𝑆𝑁𝑅 = 30 𝑑𝐵, after 𝑀 = 500
Monte­Carlo trials.

(b) Variance of the estimation errors for the four given SNR values.

Figure 4.6: An evaluation of the estimation error 𝑄𝑒𝑟𝑟 for different SNR values.
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Figure 4.7 gives the result of the evaluation of the estimation error𝑄𝑒𝑟𝑟 for four different orientation
errors 𝜎𝜙 after running the estimator for𝑀 = 500Monte­Carlo trials. This result is again obtained for
𝑁 = 10measurements of the realization of a single target where the discretization value 𝛿𝐿𝑎𝑧𝑖. = 1𝑒−2,
the normal distributed prior pdf 𝑝(𝑄) = 𝒩(15, 102) and the 𝑆𝑁𝑅 = 30 𝑑𝐵. The true quality factor𝑄𝑡𝑟𝑢𝑒
in the simulation is again assumed to be 𝑄𝑡𝑟𝑢𝑒 = 1.

From the rather constant behaviour of the variance of the estimation error can be seen that, for equal
SNR, orientation error 𝜎𝜙 has no significant impact on the distribution of the estimation error, which
means, given correct information about potential losses 𝐿𝑎𝑧𝑖., estimator shows comparable performance
for equal SNR. From this evaluation, the mean of the estimation error is found to be around zero in all
the four cases considered, i.e. 𝐸[𝑄𝑒𝑟𝑟] ≈ 0. Therefore, one can conclude that the impact of the noise
power on the performance of MAP estimator is way bigger than the impact of the loss factor 𝐿𝑎𝑧𝑖..

Figure 4.7: Variance of the estimation errors for four different orientation errors; 𝜎𝜙 = 0.1∘, 𝜎𝜙 = 0.5∘, 𝜎𝜙 = 1.0∘, 𝜎𝜙 = 3.0∘,
after𝑀 = 500Monte­Carlo trials.
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Figure 4.8 gives the results of the evaluation of the estimation error 𝑄𝑒𝑟𝑟 for different normal dis­
tributed prior pdf’s 𝑝(𝑄) = 𝒩(𝑄0, 𝜎2𝑄) after running the estimator for𝑀 = 500Monte­Carlo trials. This
result is again obtained for 𝑁 = 10 measurements of the realization of a single target where the error
in orientation 𝜎𝜙 = 3.0∘, the discretization value 𝛿𝐿𝑎𝑧𝑖. = 1𝑒−2 and the 𝑆𝑁𝑅 = 30 𝑑𝐵. The true quality
factor 𝑄𝑡𝑟𝑢𝑒 in the simulation is again assumed to be 𝑄𝑡𝑟𝑢𝑒 = 1.

The variances of the estimation error seem to be very close to one another both for different standard
deviations 𝜎𝑄 when the mean value 𝑄0 is fixed and for the same standard deviations 𝜎𝑄 when the mean
value 𝑄0 is changed from one value to another. From this rather constant behaviour of the variances
of the estimation error can be seen that, given correct information on the quality factor 𝑄 in terms of
prior pdf, estimator shows comparable performance for equal SNR. The mean of the estimation error
is again found to be around zero in all the cases considered in this particular evaluation.

Figure 4.8: Variances of the estimation errors for twelve different prior pdf’s from the combination of three differentmean values
𝑄0 and four different standard deviation values 𝜎𝑄.

Figure 4.9 gives the plots of the histograms, mean and variance of the estimation error 𝑄𝑒𝑟𝑟 ob­
tained for four different number of measurements, i.e. 𝑁 = 10, 𝑁 = 100, 𝑁 = 200 and 𝑁 = 500, of
the realization of a single target after running the estimator for 𝑀 = 500Monte­Carlo trials. Here the
error in orientation 𝜎𝜙 = 3.0∘, the discretization value 𝛿𝐿𝑎𝑧𝑖. = 1𝑒 − 2 and the 𝑆𝑁𝑅 = 30 𝑑𝐵. The true
quality factor 𝑄𝑡𝑟𝑢𝑒 in the simulation is again assumed to be 𝑄𝑡𝑟𝑢𝑒 = 1.

As expected, taking more measurements improves the performance of the estimator as can be seen
from the histogram of the estimation error 𝑄𝑒𝑟𝑟 getting narrower with increasing amount of measure­
ments. This can also be seen from the decrease in variance of the estimation error with the number of
measurements 𝑁 increasing as given in figure 4.9b. The mean of the estimation error is again found to
be around zero in all the four cases considered.
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(a) Histograms of the estimation errors for four different number of measurements; 𝑁 = 10, 𝑁 = 100, 𝑁 = 200 and 𝑁 = 500, after 𝑀 = 500
Monte­Carlo trials.

(b) Variance of the estimation errors for the four given different number of measurements.

Figure 4.9: An evaluation of the estimation error 𝑄𝑒𝑟𝑟 for different number of measurements.
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4.4. MaximumLikelihoodEstimation (MLE)of theQualityFac­
tor 𝑄

Assuming the case when no prior information on the quality factor 𝑄 is available, then, considering the
case of N measurements of the same realization of a single target, one can perform a MLE
estimation of parameter 𝑄 :

𝑄̂𝑀𝐿𝐸 = arg max
𝑄

{𝑝(Σ|𝑄)}

≈ arg max
𝑄

{
𝑚

∑
𝑘=1

( 1
(2𝜋𝜎2𝑛)

𝑁
2
exp[ − 1

2𝜎2𝑛

𝑁

∑
𝑖=1
(𝜎′𝑖 − 𝑄 𝐿𝑎𝑧𝑖,𝑘)2]

𝐿𝛼−1𝑎𝑧𝑖,𝑘(1 − 𝐿𝑎𝑧𝑖,𝑘)𝛽−1
𝐵(𝛼, 𝛽) 𝛿𝐿𝑎𝑧𝑖.)}.

(4.38)

Taking the derivative of the argument with respect to 𝑄 and setting this result equal to zero gives the
analytical equation that needs to be solved to obtain the MLE estimator of the quality factor 𝑄:

𝜕(𝑝(Σ|𝑄))
𝜕𝑄 |

𝑄=𝑄̂𝑀𝐿𝐸
=

[
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𝑁
2
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2𝜎2𝑛

𝑁

∑
𝑖=1
(𝜎′𝑖 − 𝑄 𝐿𝑎𝑧𝑖,𝑘)2]

𝐿𝛼−1𝑎𝑧𝑖,𝑘(1 − 𝐿𝑎𝑧𝑖,𝑘)𝛽−1
𝐵(𝛼, 𝛽) 𝛿𝐿𝑎𝑧𝑖.)]
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𝑚
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𝑘=1
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𝑁
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(𝜎′𝑖 − 𝑄 𝐿𝑎𝑧𝑖,𝑘))]|𝑄=𝑄̂𝑀𝐴𝑃

= 0

(4.39)

An evaluation of the estimator performance in terms of estimation error is made by means of Monte
Carlo simulation for different SNR values, orientation errors 𝜎𝜙 and number of measurements 𝑁. The
results are given in figures 4.10 through 4.12 below.

Figure 4.10 gives the plots of the histograms and variance of the estimation error 𝑄𝑒𝑟𝑟 for different
SNR values after running the estimator for 𝑀 = 500 Monte­Carlo trials. This result is obtained for
𝑁 = 10 measurements of the realization of a single target where the error in orientation 𝜎𝜙 = 3.0∘
and discretization value 𝛿𝐿𝑎𝑧𝑖. = 1𝑒 − 2. The true quality factor 𝑄𝑡𝑟𝑢𝑒 in the simulation is assumed be
𝑄𝑡𝑟𝑢𝑒 = 1.

As expected, the estimator performance improves with increasing SNR as can be seen from the his­
togram of the estimation error 𝑄𝑒𝑟𝑟 getting narrower at higher SNR values as well as from the decrease
in variance of the estimation error with the SNR increasing as given in figure 4.10b. Additionally, mean
of the estimation error is around zero in all the four cases considered, i.e. 𝐸[𝑄𝑒𝑟𝑟] ≈ 0. The noise power
has thus a significant impact on the performance of the MLE estimator.
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(a) Histograms of the estimation errors for four different SNR values; 𝑆𝑁𝑅 = 0 𝑑𝐵, 𝑆𝑁𝑅 = 10 𝑑𝐵, 𝑆𝑁𝑅 = 20 𝑑𝐵, 𝑆𝑁𝑅 = 30 𝑑𝐵, after 𝑀 = 500
Monte­Carlo trials.

(b) Variance of the estimation errors for the four given SNR values.

Figure 4.10: An evaluation of the estimation error 𝑄𝑒𝑟𝑟 for different SNR values.
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Additionally, figure 4.11 gives the result of the evaluation of the estimation error 𝑄𝑒𝑟𝑟 for four dif­
ferent orientation errors 𝜎𝜙 after running the estimator for𝑀 = 500Monte­Carlo trials. This result is
obtained for 𝑁 = 10 measurements of the realization of a single target where the discretization value
𝛿𝐿𝑎𝑧𝑖. = 1𝑒 − 2 and the 𝑆𝑁𝑅 = 30 𝑑𝐵. The true quality factor 𝑄𝑡𝑟𝑢𝑒 in the simulation is again assumed
to be 𝑄𝑡𝑟𝑢𝑒 = 1.

From the rather constant behaviour of the variance of the estimation error can be seen that, for equal
SNR, orientation error 𝜎𝜙 has no significant impact on the distribution of the estimation error, which
means, given correct information about potential losses 𝐿𝑎𝑧𝑖., estimator shows comparable performance
for equal SNR. As it was the case for previous evaluation results, mean of the estimation error is again
around zero in all the four cases considered, i.e. 𝐸[𝑄𝑒𝑟𝑟] ≈ 0. Therefore, one can conclude that the
impact of the noise power on the performance of MLE estimator is way bigger than the impact of the
loss factor 𝐿𝑎𝑧𝑖..

Figure 4.11: Variance of the estimation errors for the four given orientation errors; 𝜎𝜙 = 0.1∘, 𝜎𝜙 = 0.5∘, 𝜎𝜙 = 1.0∘, 𝜎𝜙 = 3.0∘,
after𝑀 = 500Monte­Carlo trials.

Figure 4.12 gives the plots of the histograms and variance of the estimation error 𝑄𝑒𝑟𝑟 obtained for
four different number of measurements, i.e. 𝑁 = 10, 𝑁 = 100,𝑁 = 200 and𝑁 = 500, of the realization
of a single target after running the estimator for 𝑀 = 500Monte­Carlo trials. Here the error in orien­
tation 𝜎𝜙 = 3.0∘, the discretization value 𝛿𝐿𝑎𝑧𝑖. = 1𝑒 − 2 and the 𝑆𝑁𝑅 = 30 𝑑𝐵. The true quality factor
𝑄𝑡𝑟𝑢𝑒 in the simulation is again assumed to be 𝑄𝑡𝑟𝑢𝑒 = 1.

As expected, taking more measurements improves the performance of the estimator as can be seen
from the histogram of the estimation error 𝑄𝑒𝑟𝑟 getting narrower with increasing amount of measure­
ments. This can also be seen from the decrease in variance of the estimation error with the number of
measurements 𝑁 increasing as given in figure 4.12b. Moreover, mean of the estimation error is around
zero in all the four cases considered, i.e. 𝐸[𝑄𝑒𝑟𝑟] ≈ 0.
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(a) Histograms of the estimation errors for four different number of measurements; 𝑁 = 10, 𝑁 = 100, 𝑁 = 200 and 𝑁 = 500, after 𝑀 = 500
Monte­Carlo trials.

(b) Variance of the estimation errors for the four given different number of measurements.

Figure 4.12: An evaluation of the estimation error 𝑄𝑒𝑟𝑟 for different number of measurements.
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4.5. Conclusions
In this chapter, the quality metric (or the quality factor), based on which the healthiness of the automo­
tive radar can be evaluated, is defined and estimated by means of three different estimation methods.
This quality metric is defined through radar range equation for automotive FMCW radars.

InMethod of Moments method, assuming RCS fluctuation is the only source of noise, thus no addi­
tive noise, accurate leg length of 𝑙, the known range of 𝑅 and that the orientation error in azimuth is the
only error that affects the receivedRCS,measurement is regarded as a scaled beta distributionwith four
parameters. The parameter 𝑄, being the maximum value of the distribution, is estimated by equating
sample and population values of the first four central moments using equations 4.12 and 4.13. The es­
timation formula in terms of the sample variance and sample skewness from equation (4.13) delivered
more accurate estimation results which are also validated in terms of the mean squared error of both
estimators. Furthermore, estimation accuracy improves with the increasing number of observations.

In the presence of additive noise and prior information on the quality factor 𝑄 and consideringmul­
tiple measurements of the same realization of a single target, an estimation of the quality factor is
done by means of Maximum a Posteriori (MAP) estimation by solving equation (4.35) numerically. An
evalution of the likelihood functions showed that the positions of themaxima of the likelihood functions
are independent of the discretization value in numerical computation but they are sensitive to changes
in SNR. The relative errors in the position of thesemaxima decreases with the increasing SNR. An eval­
uation of the estimator performance in terms of the estimation error is made by means of Monte Carlo
simulations for different SNR values, orientation errors, prior pdf’s of 𝑄 and number of measurements.
It is shown that increasing the SNR and taking more measurements improve the performance of the
estimator. Furthermore, performance of the estimator is in this case also independent of the amount
of orientation errors as well as different normal distributed prior pdf’s of 𝑄.

In the presence of additive noise and assuming the case when no prior information on the quality
factor 𝑄 is available, an estimation of the quality factor 𝑄 is done by means of Maximum Likelihood
Estimation (MLE). Evaluation of the estimator performance in terms of estimation error for different
SNR values, orientation errors and number of measurements showed that the estimator performance
improves with increasing SNR and number of observations whereas the performance of the estimator
is independent of the amount of orientation errors.





5
Conclusions and Future Work

5.1. Conclusions
The major goal of this project is to provide results and knowledge that will contribute to the improve­
ment of safety of (semi­)autonomous vehicles by means of improving reliability of automotive radars
self­diagnostic bywhich degraded radar performance can be detected via the developed approach based
on randomized set of targets that are embedded into road infrastructure.

In order to develop such an approach,

• First, the most appropriate calibration target is determined according to defined target selection
criteria, which turned out to be a trihedral corner reflector. Considering visibility and safety issues
based on the given geometry of a straight three­lanes European highway configuration, an appro­
priate position of the calibration target alongside the highway as well as the number of targets to
be deployed in a certain range are determined. Based on the given road configuration and two
different references of automotive radar specifications, the minimum required size of the corner
reflector is obtained to be 𝑙𝑚𝑖𝑛 ≥ 0.0840 𝑚.

• Then, statistical characteristics of the RCS loss for orientation errors, both in elevation and az­
imuth plane, errors in leg length aswell as the non­orthogonality of the cornerwalls are discussed.
The probability distributions of the loss factors are derived analytically shown that they can be
well approximated by beta distribution for small errors in orientation in elevation and azimuth
plane and for small angular errors in the alignment of corner walls of the corner reflector. Results
are validated by means of matching shape parameters obtained from the derivation and Monte­
Carlo simulations at small errors. Therefore, these three loss factors are concluded to be beta
distributed.

Moreover, production of the trihedral corner reflectors should be at most within 1∘ of precision
in the corner walls since the the formula given in (3.58) is applicable only for angular deviations
smaller than 1∘. 𝑠𝑖𝑛𝑐­nature of this formula results in a second lobe that arises beyond a cer­
tain amount of angular error which led to the finding that, in contrast to better visibility, bigger
size requires higher production precision in terms of the angular error because the second peak
appeared earlier when the size of the reflector gets bigger. Also observed that 3­dB beamwidth
decreases with the increasing leg size. From these two results concluded that the 𝛽­distribution
approximation is applicable only for smaller errors when the leg size increases. Results achived
by simulations are then validated by the theory corresponding to the properties of normal dis­
tribution. Additionally, the total loss factor is shown to be able to be approximated by a beta
distribution as well.

Togetherwith the results obtained in section 3.6, results of the statistical characteristics of the loss
factor due to non­orthogonality helped to find a balance between the size, quality and number of
targets to be deployed in a certain range in a given road configuration.
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• Finally, the qualitymetric (or the quality factor), based onwhich the healthiness of the automotive
radar can be evaluated, is defined and estimated by means of three different estimation methods.

In addition to the assumptions of accurate leg length of 𝑙, the known range of𝑅 and that the orien­
tation error in azimuth is the only error that affects the received RCS, assuming no additive noise
andRCS fluctuation being the only source of noise, quality factor𝑄 is estimated byMethod ofMo­
ments by equating sample and population values of the first four central moments using formulas
given in 4.12 and 4.13. The estimation formula in terms of the sample variance and sample skew­
ness from equation (4.13) delivered more accurate estimation results which are also validated in
terms of the mean squared error of both estimators. Furthermore, estimation accuracy improves
with the increasing number of observations.

In the presence of additive noise and prior information on the quality factor 𝑄 and considering
multiple measurements of the same realization of a single target, an estimation of the quality
factor is done bymeans of Maximum a Posteriori (MAP) estimation. An evaluation of the estima­
tor performance in terms of the estimation error is made by means of Monte Carlo simulations
for different SNR values, orientation errors, prior pdf’s of 𝑄 and number of measurements. It is
shown that increasing the SNR and taking more measurements improve the performance of the
estimator. Furthermore, performance of the estimator is independent of the amount of orienta­
tion errors as well as different normal distributed prior pdf’s of 𝑄.
Again considering themultiple measurements of the same realization of a single target, the case
when in the presence of additive noise and assuming no prior information on the quality factor
is available, an estimation of the quality factor 𝑄 is done by means of Maximum Likelihood Esti­
mation (MLE). Evaluation of the estimator performance in terms of estimation error for different
SNR values, orientation errors and number of measurements showed that the estimator perfor­
mance improves with increasing SNR and number of observations whereas the performance of
the estimator is in this case also independent of the amount of orientation errors.

The developed statistical approach of dynamic evaluation of the automotive radar performance is
novel and can directly contribute to real­time evaluation of the radar performance and be used for an
appropriate sensor fusion at an autonomous vehicle.

5.2. FutureWork
• Trihedral corner reflector was selected to be the most appropriate calibration target to use in
this project among the discussed ones. However, it can still be meaningful to consider possible
another candidates of calibration targets in the future research.

• The algorithm to estimate the quality factor 𝑄 either by means of MAP or MLE is derived for
the case of multiple measurements of the same realization of a single target because equation
(4.29) can be quite complex to solve. In this case it requires the integration over the loss factors
of multiple targets. Hence, in presented study we did not solve the most general problem when
the radar sensor health estimated usingmultiple sequentialmeasurements ofmultiple calibration
targets that have statistical uncertainties in their production quality and installation errors. Solv­
ing equation (4.29) is left open for future attention in order to solve the full estimation problem in
which the case ofmultiple measurements of multiple independent targets have to be considered.



A
Symbols used in the Highway

Configurations and Their Numeric
Values in a Table

In the next pages, the most important symbols used throughout the figures 2.12, 2.13 and 2.14, their
meaning, formulas to calculate their numeric values and their numeric values are given in tables, re­
spectively.
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Table A.1: Important symbols and their numeric values from Figure 2.12

Symbol

Description

of the

Symbol

Formula to Compute

Numerical Value

Numerical

Value

𝑅𝑟𝑎𝑑
Detection Range of

the Automotive LRR
­ 200 m

𝑛𝑙𝑎𝑛𝑒𝑠 Number of Lanes ­ 3

𝑤𝑙𝑎𝑛𝑒 Lane Width ­ 3.75 m

𝑤𝑒𝑠𝑙
Emergency Stopping Lane

Width
­ 2.5 m

𝑤𝑐𝑎𝑟 Personal Car Width ­ 2.0 m

𝜙𝑠𝑐𝑎𝑛
Automotive Radar

Antenna Azimuth

Scan Angle

­ 15∘

Q
Nearest Possible Target

Position to ESL
((𝑛𝑙𝑎𝑛𝑒𝑠 ⋅ 𝑤𝑙𝑎𝑛𝑒) + 𝑤𝑒𝑠𝑙 Q(x,y) = (200 m, 13.75 m)

P
Furthest Possible Target

Position to ESL
𝑅𝑟𝑎𝑑⋅tan(𝜙𝑠𝑐𝑎𝑛) P(x,y) = (200 m, 53.589 m)

T Calibration Target Position ­ T(x,y) = (200 m, )

d
Maximum Distance Between

Two Successive Calibration Targets
((𝑛𝑙𝑎𝑛𝑒𝑠 ⋅ 𝑤𝑙𝑎𝑛𝑒) + 𝑤𝑒𝑠𝑙 + 𝑑1) − 0.5 ⋅ 𝑤𝑐𝑎𝑟)/tan(𝜙𝑠𝑐𝑎𝑛) 66.243 m

𝑑1 Distance between Q and T ­ 5.0 m

𝛼
Azimuthal Observation

Angle Car 3
𝑎𝑟𝑐𝑡𝑎𝑛( ((𝑛𝑙𝑎𝑛𝑒𝑠⋅𝑤𝑙𝑎𝑛𝑒+𝑤𝑒𝑠𝑙+𝑑1)−0.5⋅𝑤𝑐𝑎𝑟)𝑅𝑟𝑎𝑑

) 5.07∘

𝛽
Azimuthal Observation

Angle Car 1
𝑎𝑟𝑐𝑡𝑎𝑛( (0.5⋅𝑤𝑐𝑎𝑟+𝑤𝑒𝑠𝑙+𝑑1)𝑅𝑟𝑎𝑑

) 2.43∘

𝑅1
Radial Distance Between

Car 1 and Calibration Target
√𝑅2𝑟𝑎𝑑 + (0.5 ⋅ 𝑤𝑐𝑎𝑟 +𝑤𝑒𝑠𝑙 + 𝑑1)2 200.180 m

𝑅3
Radial Distance Between

Car 3 and Calibration Target
√𝑅2𝑟𝑎𝑑 + (((𝑛𝑙𝑎𝑛𝑒𝑠 ⋅ 𝑤𝑙𝑎𝑛𝑒) + 𝑤𝑒𝑠𝑙 + 𝑑1) − 0.5 ⋅ 𝑤𝑐𝑎𝑟)2 200.786 m

𝑅4
Radial Distance Between

Car 4 and Calibration Target
((𝑛𝑙𝑎𝑛𝑒𝑠 ⋅ 𝑤𝑙𝑎𝑛𝑒) + 𝑤𝑒𝑠𝑙 + 𝑑1) − 0.5 ⋅ 𝑤𝑐𝑎𝑟)/sin(𝜙𝑠𝑐𝑎𝑛) 68.581 m
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Table A.2: Important symbols and their numeric values from Figure 2.13

Symbol

Description

of the

Symbol

Formula to Compute

Numerical Value

Numerical

Value

𝑅𝑟𝑎𝑑
Detection Range of

the Automotive LRR
­ 200 m

𝑤𝑙𝑎𝑛𝑒 Lane Width ­ 3.75 m

𝑤𝑒𝑠𝑙
Emergency Stopping Lane

Width
­ 2.5 m

𝑤𝑐𝑎𝑟 Personal Car Width ­ 2.0 m

𝜙𝑠𝑐𝑎𝑛
Automotive Radar

Antenna Azimuth

Scan Angle

­ 15∘

𝑑1 Distance between Q and T ­ 5 m

𝑑𝑚𝑖𝑛 See figure (0.5 ⋅ 𝑤𝑐𝑎𝑟 +𝑤𝑒𝑠𝑙 + 𝑑1)/tan(𝜙𝑠𝑐𝑎𝑛)

𝑅𝑚𝑖𝑛
Radial Distance Between

Car 2 and Calibration Target
(0.5 ⋅ 𝑤𝑐𝑎𝑟 +𝑤𝑒𝑠𝑙 + 𝑑1)/sin(𝜙𝑠𝑐𝑎𝑛) 32.841 m

𝛽
Azimuthal Observation

Angle Car 1
𝑎𝑟𝑐𝑡𝑎𝑛( (0.5⋅𝑤𝑐𝑎𝑟+𝑤𝑒𝑠𝑙+𝑑1)𝑅𝑟𝑎𝑑

) 2.43∘

𝜁 See figure 90∘ − 𝜙𝑠𝑐𝑎𝑛 75∘

Δ𝜙𝑖𝑛𝑐
Range of Incident Angles

in Azimuth Plane
90∘ − 𝜁 − 𝛽 12.57∘
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Table A.3: Important symbols and their numeric values from Figure 2.14

Symbol

Description

of the

Symbol

Formula to Compute

Numerical Value

Numerical

Value

𝑅𝑟𝑎𝑑
Detection Range of

the Automotive LRR
­ 200 m

𝑛𝑙𝑎𝑛𝑒𝑠 Number of Lanes ­ 3

𝑤𝑙𝑎𝑛𝑒 Lane Width ­ 3.75 m

𝑤𝑒𝑠𝑙
Emergency Stopping Lane

Width
­ 2.5 m

𝑤𝑐𝑎𝑟 Personal Car Width ­ 2.0 m

𝜃𝑠𝑐𝑎𝑛
Automotive Radar

Antenna Elevation

Scan Angle

­ 3∘

𝑑1 Distance between Q and T ­ 5.0 m

ℎ𝑟𝑎𝑑 Automotive Radar Height ­ 0.5 m

ℎ𝑚𝑎𝑥
Maximum Possible

Target Height

above ℎ𝑟𝑎𝑑

𝑅𝑚𝑖𝑛⋅tan(𝜃𝑠𝑐𝑎𝑛) 1.72 m

𝑅1
Radial Distance

Between Car 1

and Calibration Target

√𝑅2𝑟𝑎𝑑 + (0.5 ⋅ 𝑤𝑐𝑎𝑟 +𝑤𝑒𝑠𝑙 + 𝑑1)2 200.180 m

𝑅3
Radial Distance

Between Car 3

and Calibration Target

√𝑅2𝑟𝑎𝑑 + (((𝑛𝑙𝑎𝑛𝑒𝑠 ⋅ 𝑤𝑙𝑎𝑛𝑒) + 𝑤𝑒𝑠𝑙 + 𝑑1) − 0.5 ⋅ 𝑤𝑐𝑎𝑟)2 200.786 m

𝑅4
Radial Distance

Between Car 4

and Calibration Target

((𝑛𝑙𝑎𝑛𝑒𝑠 ⋅ 𝑤𝑙𝑎𝑛𝑒) + 𝑤𝑒𝑠𝑙 + 𝑑1) − 0.5 ⋅ 𝑤𝑐𝑎𝑟)/sin(𝜙𝑠𝑐𝑎𝑛) 68.581 m

𝑅𝑚𝑖𝑛
Radial Distance

Between Car 2

and Calibration Target

(0.5 ⋅ 𝑤𝑐𝑎𝑟 +𝑤𝑒𝑠𝑙 + 𝑑1)/sin(𝜙𝑠𝑐𝑎𝑛) 32.841 m

𝑑𝑚𝑖𝑛 See figure ­ 5.0 m

𝜌
Illimunation Angle

into Calibration Target

from Car 1

𝑎𝑟𝑐𝑡𝑎𝑛(𝑅1/ℎ𝑚𝑎𝑥) 89.501∘

𝜂
Illimunation Angle

into Calibration Target

from Car 3

𝑎𝑟𝑐𝑡𝑎𝑛(𝑅3/ℎ𝑚𝑎𝑥) 89.501∘

Ψ
Illimunation Angle

into Calibration Target

from Car 2

𝑎𝑟𝑐𝑡𝑎𝑛(𝑅𝑚𝑖𝑛/ℎ𝑚𝑎𝑥) 87.002∘

𝜔
Illimunation Angle

into Calibration Target

from Car 4

𝑎𝑟𝑐𝑡𝑎𝑛(𝑅4/ℎ𝑚𝑎𝑥) 88.563∘
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