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For electricity grids with an increasing share of intermittent renewables, the power generation mix can
have significant daily variations. This leads to time-dependent emission intensities and volatile electricity
prices in the day-ahead and spot market tariffs that can be better utilised by energy intensive industries
such as water supply utilities. A multi-objective optimisation method for scheduling the operation of
pumps is investigated in this paper for the reduction of both electricity costs and greenhouse gas emis-
sions for a benchmark water distribution system. A set of energy supply scenarios has been formulated
based on future projections from National Grid plc (UK) in order to investigate the range of cost savings
and emission reductions that could be possibly achieved. Pump scheduling options with fixed time-of-
use and day ahead market tariffs are analysed in order to compare potential reduction tradeoffs for both
electricity costs and greenhouse gas emissions using Pareto optimality. The presented analysis concludes
that the explicit inclusion of greenhouse gas emission reductions in optimising the scheduling of pumps
operation in water distribution systems could provide considerable benefits; however, more compelling
fiscal and regulatory incentives are needed.
� 2017 The Authors. Published by Elsevier Ltd. This is an openaccess article under the CCBY license (http://

creativecommons.org/licenses/by/4.0/).
1. Introduction

The water industry is a large consumer of energy and an emitter
of carbon, much of which is associated with the electricity it uses
[1]. Although the UK water industry is expected to substantially
contribute towards the emissions reduction targets established
under the Climate Change Act (34% by 2020 and 80% by 2050)
[2], there are currently no clear targets of what emissions reduc-
tions the water industry should be aiming for and within what
time-frame. In anticipation of pending regulatory targets and fiscal
incentives, and also water resources and assets management chal-
lenges associated with climate change, some UK water utilities are
working towards carbon neutrality by 2050 [3,4], delivered
through a combination of operational efficiency, renewable energy
generation and the purchase of low-carbon grid electricity.

The majority of the electrical power utilised by water compa-
nies (65–80%) is for operating pump motors in order to deliver
potable water from sources to customers [5,6]. Pumps in water dis-
tribution systems (WDS) operate with control schedules that sat-
isfy flow and pressure head requirements in order to guarantee a
supply of water while minimising the cost of operation. This min-
imisation is achieved by making use of time periods with a low-
price electricity tariff to fill tanks and reservoirs and minimise
the operation of pumps during periods of high-price electricity [7].

As intermittent renewables are projected to generate a large
share of grid electricity, energy storage technologies and variable
pricing models are becoming increasingly important to support
the load management and grid stability [8]. As a result, water util-
ities could pro-actively use pump scheduling to participate in
demand side response schemes to reduce both their electricity
costs and GHG emissions, and contribute to grid stability [9].

Greenhouse gas emissions of the pump operation can also be
minimised by changing the optimisation problem to specifically
minimise GHG emissions and make use of the diurnal fluctuations
of GHG emissions of the electricity supply [10,11]. To best assess
GHG emission reductions and cost minimisation from pump
scheduling, the problem is formulated as a multi-objective optimi-
sation problem. To ensure the resulting schedules and operating
cost, in terms of financial cost and GHG emissions, can be com-
pared, a mathematical optimisation procedure that can quantify
the optimality gap is applied. Different pump operating schedules
are compared within a set of electricity supply scenarios for a
benchmark water supply network. These scenarios are derived
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from the Future Energy Scenarios provided by National Grid plc
(UK) [12] in order to examine plausible changes in the utilisation
of intermittent renewables. In addition, various electricity pur-
chasing options for water utilities are considered such as time-
of-use (TOU) and day-ahead market (DAM) tariffs. A mathematical
multi-objective Pareto optimality method is then applied to deter-
mine the optimal electricity costs and GHG emissions for the oper-
ation of pumps under future energy supply scenarios and various
tariff structures.
2. Methodology and analysis

The reduction in both electricity costs and GHG emissions
through optimising the operation of pumps in WDS under different
energy supply scenarios has been carried out in two stages.

Firstly, future energy supply scenarios were defined as the
Green and No-Progress scenarios for year 2035 based on analysis
by National Grid plc [12]. These scenarios reflect expected changes
in power generation technologies and fuel supply in the UK. Details
of formulating the future energy supply scenarios are described in
Section 2.1. The pump schedules are then optimised to reduce the
electricity costs for a WDS operating with either a fixed time-of-
use (TOU) tariff with peak pricing as commonly used by UK water
utilities or variable electricity tariffs using day-ahead-market
(DAM) tariffs. Secondly, optimal pump schedules and their associ-
ated electricity costs and GHG emissions were derived and com-
pared using a branch and bound algorithm [13] that also
includes the quantification of an optimality gap. The applied
multi-objective global optimisation method is explained in
Section 2.2.

The operating cost and GHG emissions resulting from the oper-
ation optimised for different objectives in different energy scenar-
ios are compared by analysing the operation of the WDS on
selected operating days.
2.1. Energy supply scenarios

Future energy supply scenarios vary significantly in their pro-
jections for the penetration rate of renewable energy in the UK
[12]. An analysis of a wide range of future energy scenarios con-
firms that high penetration rates of renewables are feasible [14].
To ensure the applicability of our results and conclusions to many
scenarios the operation in a broad range of scenarios is considered.
Energy scenarios or software packages modelling energy scenarios
or energy-water scenarios, that could be used to construct future
operating scenarios cannot consider the hourly variance observed
in the energy supply [15].

In this analysis, the assumed energy supply scenarios take both
mean and extreme values from projections made by National Grid
plc (UK) [16]. However, these energy supply scenarios do not con-
sider the hourly variance observed in a diurnal energy supply [15].
Therefore, the energy supply scenarios were modified based on
time series describing the electricity generation mix in terms of
fuel type and total supplied energy, in order to provide half-hour
time estimates. Technology specific Emission Factors (EFs), for each
power generation type including the interconnections that supply
the UK grid, were taken into account to derive GHG emissions time
series with the required temporal resolution. The pricing data,
which were used to compute the operating costs of the benchmark
WDS, is based upon electricity tariffs used by three UK water util-
ities and spot market prices for 2014 [17]. The GHG emissions for a
benchmark WDS has been investigated under four different grid
(fuel mix) scenarios: the 2014 grid and three possible future sce-
narios which are defined as No-Progress, Green and Green⁄ (based
upon information presented in [16]).
2.1.1. No-Progress energy supply scenario
This scenario assumes that the UK’s renewable energy target of

15% for 2035 [2] is not met. Sustainability and decarbonisation of
the energy sector are not policy priorities, which results in more
emphasis on Combined Cycle Gas Turbines (CCGTs) over nuclear
and renewables [16]. The fuel combination for this scenario in
2035 assumes that the contribution of natural gas increases to
47% while coal is reduced to 1% of the generation output. Renew-
ables moderately change by 2035 with photovoltaics contributing
2%, wind energy increases to 19% and the generation from biomass
contributes 5% [16].
2.1.2. Green energy supply scenario
The Green scenario assumes that the renewable energy target of

15% for 2035 is met. In addition, new European renewable energy
targets are set to stipulate 23% energy supply from renewables by
2030 and 39% by 2050 [16]. It is assumed that the UK government
adopts these recommendations and meets the targets for renew-
able energy production. Decarbonisation efforts are strengthened
which lead to significant changes in the electricity supply with a
high penetration of renewable energy. The most significant change
to the fuel mix of the electrical energy supply would be the reduc-
tion of coal from 32% to 6% by 2035, which will be further coupled
with carbon capture and storage (CCS) technologies. Consequently,
the EF from coal is reduced from 870 to 220 g CO2-e/kW h. Further-
more, the contribution from wind energy is expected to rise to 40%
in 2035. Biomass fuel and other renewables such as photovoltaic
generation will increase their contributions to 6% and 4% respec-
tively by 2035 [16].
2.1.3. Green* energy supply scenario
An alternative Green⁄ energy supply scenario has also been for-

mulated due to technical, institutional and economic uncertainties
associated with CCS [18]. In this case, the GHG emissions under the
Green scenario are recalculated for the same fuel combination;
however, the emissions intensity reduction through CCS are
deduced.
2.1.4. Formulation of representative operating days
A previous analysis by [10] proposed a future electricity supply

by increasing the wind power generation and reducing coal power
generation accordingly. In comparison, the energy supply scenarios
applied in this analysis were formulated using grid data obtained
from the Balancing Mechanism Reporting System [23] and APX
Power UK [17]. Based on the proposed modelling method, a future
scenario will have different overall energy supply, but weather,
price and consumption patterns will preserve the variation and
volatility of the energy supply from data for a benchmark year
(e.g. 2014). The presented analysis focuses on relative changes
between different operating conditions that arise from the short-
term fluctuations in the emission intensities and electricity prices.
These fluctuations cannot be represented accurately in an aggre-
gated model. The emission intensity (EI) of the energy supply for
a given time is given by:

EIs;t ¼ 1
1� Tloss

Xf¼n

f¼1
Ef ;t � EFf

Xf¼n

f¼1
Ef ;t

ð1Þ

where EIs;t is the emission intensity (EI) of scenario s at time t. The
electricity source EI factors are summarised in Table 1. Ef ;t is the
power generated at time t by fuel type f and EFf is the emission
factor for fuel type f 2 f1;ng. The transmission and distribution
losses Tloss are assumed constant (7.6%) for all energy supply
scenarios [24].



Table 1
EI factors by electricity source. Sources: 1EDF [19] 2Intergovernmental Panel on Climate Change [20] 3DECC [21] 4Defra et al. [22].

Fuel type Factor Fuel type Factor Fuel type Factor

gCO2e
kWh

� �
gCO2e
kWh

� �
gCO2e
kWh

� �

Coal 8701 Wind 112 Interconnections
Coal-CCS 2202 Solar 722 French-ICT 654

Nuclear 122 Biomass 2302 French-ICT 654

Gas 4871 Hydro Irish-ICT 4624

Gas-CCS 1702 Pumped storage 301 EastWest-ICT 4624

Oil 6501 Non-pumped storage 101 Other 7703
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The large number of operating days (14,600) across all energy
supply scenarios precludes their complete enumeration. Monte
Carlo simulations were considered to select operating days to
ensure a good representation of energy supply scenarios and oper-
ating conditions; however, the number of independent variables
lead to a large set of operating days for the multi-objective optimi-
sation problem.

In order to explore the operation of WDS within a wide range of
grid states, the operating conditions were clustered by the domi-
nant fossil fuel and renewable source. In the Green scenarios, there
is no dominant fossil fuel; and therefore, the two dominant renew-
able sources are used to characterise the energy supply. A decision
tree template was developed and applied to derive four represen-
tative operating days for each of the four energy supply scenarios
(Fig. 1). As an example, Fig. 2 describes the calculated representa-
tive operating days for the 2035 Green scenario with daily fluctua-
tions in electricity costs and GHG emissions. The 2035 scenarios
were also clustered based upon the dominant fuel types as shown
in Table 2. For each energy supply scenario, different representa-
tive operating days were selected to model the operation of a
benchmark WDS. This selection aims to encapsulate the significant
variations in diurnal EI fluctuations caused by differences between
the energy supply scenarios and individual operating days (Fig. 2).
A day with a fuel distribution closest to the groups median is
selected that results in different days for each scenario with speci-
fic DAM tariffs and diurnal EIs.

The sixteen representative operating days are summarised in
Table 3. These days are utilised in the pump scheduling analysis
for all investigated energy supply scenarios, EI characteristics and
various pricing models. The correlation between EI and DAM tariffs
Fig. 1. A decision tree template for the construction of operating da
differ significantly for the operating days while the correlation
between the EI and TOU tariffs remains relatively constant. The
correlation between the GHG EI and the DAM tariff for 2014 is
0.44 while the correlation between the TOU and GHG emissions
is 0.20 (Table 3). The standard deviation of the normalised DAM
tariffs ranges from 0.15 to 0.29 for all considered energy supply
scenarios. The standard deviation of EI in 2014 is small
(0.02–0.09) and it depends upon the day in the No-Progress and
Green scenarios (0.06–0.17). In comparison, the standard deviation
for the Green⁄ energy supply scenario is considerably larger
(0.09–0.29).

2.2. Optimisation of pumping schedules

The optimisation of pumping schedule in WDS is a computa-
tionally challenging problem as underlying fundamental system
equations are non-linear and the description of pump or flow
states involves binary variables. In mathematical optimisation,
the problem can be posed as a mixed integer problem (MIP) and
solved using branch and bound methods [25–27]. By using a piece-
wise linear approximation of the hydraulic systems, as described in
[26], the operating electricity costs and resulting GHG emissions
for a benchmark WDS have been computed in different electricity
pricing models and GHG emission scenarios. A background review
on optimisation methods for the operation of water distribution
networks is provided in [28].

The optimisation problem in this analysis is formulated as a
mixed integer quadratic problem (MIQP) with linear constraints
and solved using a branch and bound method. The optimisation
problem for the optimal WDS pump schedule is described as:
ys for each energy supply scenario (based on data from 2014).



Fig. 2. Fuel mix share and electricity prices for the selected days of the 2035 Green (UK) scenario. The left y-axis shows fuel mix share and spot market prices, the right y-axis
represents the emission intensity.

Table 2
An application of the decision tree template for the various energy supply scenarios. The separation is based on the dominating fuel types. Note: the Green and Green⁄ scenario
have the same fuel usage.

Scenario Fuel Fuel contribution average

2014 Coal > 31:5% (229 days) 6 31:5% (136 days)
Wind > 7:7% (108 days) 6 7:7% (121 days) > 6:1% (50 days) 6 6:1% (86 days)

2035 Wind > 36:5% (181 days) 6 36:5% (184 days)
Green Solar > 4:9% (92 days) 6 4:9% (92 days) > 2:7% (75 days) 6 2:7% (106 days)
2035 Wind > 36:5% (181 days) 6 36:5% (184 days)
Green⁄ Solar > 4:9% (92 days) 6 4:9% (92 days) > 2:7% (75 days) 6 2:7% (106 days)
2035 No Gas > 45:3% (196 days) 6 45:3% (169 days)
Progress Wind > 28:7% (85 days) 6 28:7% (85 days) > 11:2% (87 days) 6 11:2% (109 days)
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minimise : Pump operating costs and GHG emissions;
subject to : Hydraulic constraints of components;

Mass balance of the system:

ð2Þ
2.2.1. Objective function
The decision variable in scheduling the operation of a fixed

speed pump is the pump’s state, ON or OFF, here described by
Tipj 2 f0;1g for pump ip at time step j 2 ½0;N�. With the power rat-
ing of the pump assumed fixed (i.e. independent of flow conditions
for a fixed speed pump), the energy consumption by each pump
during a 24hr period and the associated energy cost are calculated
by a linear function:

f 1ð�Þ :¼
Xip¼Np

ip¼1

Xj¼N

j¼1

Tip ;j � kPE
ip ;j þ 1� kð ÞPGHG

ip ;j

� �
ð3Þ



Table 3
Summary of the properties of the operating days for each energy supply scenario. The table also includes the variability in the energy intensity and electricity tariffs, and the
correlation between DAM, TOU and the energy intensity. The operating days are described by their fuel types. For example, 2014: LH represents low coal and high wind.

Scenario 2014 2035 No progress 2035 Green 2035 Green⁄

Day LL LH HL HH LL LH HL HH LL LH HL HH LL LH HL HH
Max GHG 487 462 566 524 318 312 421 380 223 241 130 161 300 339 236 300
Mean GHG 450 435 538 495 294 244 385 343 188 202 112 127 257 276 188 202
Min GHG 376 385 521 449 246 166 311 279 170 148 88 98 211 226 137 138

EI r⁄ 0.09 0.06 0.02 0.04 0.06 0.17 0.06 0.11 0.07 0.14 0.10 0.14 0.12 0.09 0.15 0.29
DAM r⁄ 0.17 0.17 0.24 0.26 0.14 0.22 0.18 0.2 0.21 0.22 0.26 0.18 0.16 0.15 0.25 0.29
(DAM-TOU) ry 0.63 0.37 0.73 0.76 0.59 0.31 0.38 0.31 0.26 0.62 0.60 0.35 0.05 0.33 0.76 0.78
(DAM-EI) ry 0.87 0.73 �0.42 0.56 0.27 0.47 0.62 0.60 0.25 0.73 0.18 0.75 �0.04 0.23 0.47 0.35

y Correlation between prices.
⁄ Standard deviation of prices.
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where PE
ip ;j represents the cost of energy of having pump ip ON at

time j; PGHG
ip ;j represents the GHG emissions associated with having

pump ip ON at time j. The vectors describing the cost PE and PGHG

are normalised such that PE ¼ 1 and PGHG ¼ 1, and the factor
k 2 ½0;1� generates a weighted sum of the normalised components
of costs and GHG emissions [29].

Since switching the pumps operation could have a negative
impact on the maintenance cost of a system due to the resulting
pressure variations and fatigue related failures, penalties for the
pump switching could be introduced to reduce this negative
impact [30,31]. A penalty function that approximates the switching
costs was added to the objective function to lower maintenance
costs. By penalising ON-to-OFF and OFF-to-ON states equally, this
function is defined as:

f 2ð�Þ :¼ Pip¼Np

ip¼1 Ps

Xj¼N

j¼1

jTip ;j � Tip ;j�1j

¼ Pip¼Np

ip¼1 Ps

Xj¼N

j¼1

Tip ;j � Tip ;j�1
� �2

ð4Þ

where Ps is an approximation of the costs for switching a pump
(adapted from [30]). While the electricity costs and GHG emissions
are difficult to estimate as a function of the number of pumps
switches, a well designed and maintained surge protection coupled
with continuous high-frequency pressure monitoring [32] can
ensure that such additional operating costs are kept to a minimum
and are several orders of magnitude smaller than the considered
electricity and GHG emission costs [33]. In fact, the electrical energy
expended for pumping is the most significant GHG emission source
during the life cycle of a pump [6]. The inclusion of f 2 in the multi-
objective optimisation could be used to reduce the number of
pumps switches; however, it is not included here since the exact
cost and environmental impact are not known and the additional
costs from frequent pumps switches are assumed negligible in this
Fig. 3. Benchmark case study adopted from [33].
work. For a WDS without adequate surge protection and continuous
pressure monitoring, the pumps switches may be a major con-
tributing factor for a cumulative pressure induced stress and pipe
failures that result in considerable extra costs.

2.2.2. Hydraulic energy conservation
The head difference across a pump is given by a set of linear

constraints. These constraints describe a convex set that approxi-
mates the characteristic curve. For the benchmark network
resented in Fig. 3, the hydraulic constraints at a given time step
for a pump ip connecting nodes J1 and J2 are:

hJ1 � hJ2 6

mp
ip ;1

qip þ cpip ;1Tip and

mp
ip ;2

qip þ cpip ;2Tip and

..

.

mp
ip ;5

qip þ cpip ;5Tip if : Tip ¼ 1

Dhub; qip ¼ 0 if : Tip ¼ 0

8>>>>>>>><
>>>>>>>>:

ð5Þ

where mip ;1 . . .mip ;5and cip . . . cip ;5 are the linear coefficients. Dhub is
an upper bound on the head difference across the pump. The con-
straints are enforced using a big-M method and the symmetry of
pump schedules is defined by:

T1 P T2 . . . P Tnp�1 P Tnp ð6Þ
The hydraulic balance for the pipes is done using a piecewise

linear approximation of the head losses in pipes as given by the
Hazen-William or Darcy–Weisbach equations [25]. For a pipe P2,
which connects nodes J3 and J4, this can be approximated using
a set of piecewise linear equations (five pieces were applied in this
case):

hJ3 � hJ4 ¼

qP2m
c
P2;1 þ ccP2;1; if qlim1 6 qP2 6 qlim2

qP2m
c
P2;2 þ ccP2;2; if qlim2 6 qP2 6 qlim3

..

.

qP2m
c
P2;5 þ ccP2;5; if qlim5 6 qP2 6 qlim6

8>>>>><
>>>>>:

ð7Þ

where the linear sections are given by
mP2;1qP2 þ cP2;1 . . .mP2;5qP2 þ cP2;5. The linear sections are bound by
qlimk and qlimkþ1, where k is the number of the section. These are
implemented using linear big-M constraints as detailed in [26]
and [25].

2.2.3. Mass balance at network nodes
The flow of water in pipes is considered incompressible and for

a network node with demand dj, and incident components
P1; P2; � � � Pn, the conservation of mass flow at each time step j is:

qP1;j þ qP2;j þ � � � þ qPn;j ¼ dj: ð8Þ
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Demand at network nodes must be met to obtain hydraulically
feasible solutions. To ensure further feasibility requirements of the
solutions, a minimum hydraulic head could be enforced at specific
(critical) nodes in the network.

Tanks provide buffer storage in a network to meet water
demand when the supply from the pumps is less than the demand.
For a tank J with flows qin and qout the mass balance for time steps
j ¼ 1 . . .N � 1 is given by:

qin;j þ qout;j ¼ hJ;jþ1 � hJ;j
� �� AJ ; ð9Þ

where the surface area of the tank is given by AJ . Since diurnal
demand patterns are relatively similar, the pump schedules are
repeatable by enforcing a constraint that the final levels in tanks
do not differ notably from their initial conditions:

hJ;1 � hJ;N
� �� AJ 6 dV
hJ;1 � hJ;N
� �� AJ P dV ;

ð10Þ

where dV defines the volumetric difference. This removes the
requirement to specify the final or initial tank levels as input data,
which would limit the feasible search space and could potentially
lead to a sub-optimal final solution. A similar approach is adopted
by [34].
Fig. 4. Calculated pump schedules that take into consideration the various
electricity tariffs, green house gas emissions and the day-ahead market prices.
The inputs are normalised to have a mean of 1.
2.2.4. Summary of the optimisation problem
The pump schedule optimisation problem for fixed-speed

pumps is given by:

min : f 1ð�Þ
s:t: : ð5Þ; ð6Þ; ð7Þ; ð9Þ; ð8Þ; ð10Þ: ð11Þ

The MIQP problem in (11) has been implemented in MATLAB
and solved with CPLEX. The formulation as a branch and bound
problem provides solutions with certifiable optimality, which
enables a comparison between objectives with small differences
in value. By varying the factor k in small increments, a weighted
sum multi-objective optimisation was carried out.

A commonly applied benchmark network (Fig. 3), which was
presented by [33], has been chosen for this study. In order to make
a comparison of the energy consumption of the benchmark net-
work using different pump configurations and flows, the water
demand has been redefined in terms of the pump capacity of the
network. The water demand allocated to a node is described by a
time dependent demand pattern and a constant base demand
[33]. The network has one source reservoir and the hydraulic con-
ditions in the network such as demand and pressure are main-
tained by the pumping station with pumps main1 and main2. For
the purpose of this analysis, the pump utilisation of the network
is described as a ratio of the average demand versus the flow rate
at the best efficiency point (BEP) of one of the identical parallel
pumps. The initial demand do is 14 ML/day. The total demand in
the simulation is ds and ds

do
is the pump utilisation rate. To define

do, the water demand was modified for the benchmark network
(Fig. 3) with the base water demand set to the BEP flow rate of
main1. A low pump utilisation factor suggests that a large pump
supplies a network, while a higher utilisation factor indicates that
several smaller pumps supply the network. The proportion of time
that pumps are operational, which is a measure of their utilisation
rate, can vary by a factor of two over a period of one year as shown
in [35]. The pump utilisation rate affects the ability of a WDS to
alter its pumping schedules, and consequently, it has an impact
on the potential GHG emissions reduction. This is further discussed
in the following section.
3. Results

The optimisation of pumps operation has provided a control
schedule and a corresponding system response. The system
response was verified for its hydraulic feasibility in a hydraulic
simulation using a sparse null-space hydraulic solver [36]. An
example of a calculated pumps schedule and electricity tariffs,
for which the schedule was optimised for, is shown in Fig. 4.

The performed investigation aims to compare different operat-
ing strategies for the various energy supply scenarios. As a result,
the optimal pump schedules and the corresponding electricity
costs and GHG emissions were determined for each operating
day from the considered energy supply scenarios and for different
values of the trade-off term k (described in Section 2.2.1).

The variations in operating costs and GHG emissions depend on
the pump utilisation rate, the ability to alter pump schedules and
the electricity tariffs (e.g. switching from a TOU tariff to a DAM tar-
iff) as demonstrated in Fig. 5. A significant reduction in GHG emis-
sions was achieved for the benchmark WDS for a pump utilisation
rate of ds=do ¼ 0:5 versus other utilisation rates. For example, GHG
emissions have been reduced within 0–11% for the considered
2035 scenarios and for pump utilisation rates greater than 0.5
(Fig. 5). For 2014, GHG emission reductions of around 8% were
obtained, while the operation costs increased in all scenarios for
which the pricing plans were switched from TOU to DAM tariffs.

A comparison of the future Green scenarios against the 2014
and 2035 No Progress scenarios demonstrates that the GHG emis-
sion reductions from pump scheduling is most significant for the
Green⁄ scenario, followed by the Green scenario and the other
two scenarios. A greater variation of the emission intensity in the
Green⁄scenario enables a greater reduction. The variations in oper-
ating costs and GHG emissions, as a result of optimising different
objectives, are summarised in Tables 4 and 5. These results indicate
that depending on the pump utilisation rate, significant reductions
in GHG emissions can also be achieved when switching from TOU
to DAM tariffs. These reductions were up to 35% for ds

do
¼ 0:5, and

5–10% for ds
do
¼ 0:7. For ds

do
¼ 1, reductions between 2 and 5% were

achieved on most operating days, and no reductions were realised
with ds

do
¼ 1:3. Switching from DAM to GHG emissions reduces only



Fig. 5. Pump utilisation rate versus the reduction (savings) in GHG emissions when changing electricity tariffs from TOU to DAM for all energy supply scenarios and operating
days.

Table 4
Maximum GHG emissions reduction and savings in operating costs for ds=do ¼ 0:5 and ds=do ¼ 0:7. The change is reported as a percentage decrease in the objective function value.
The reported variable is displayed in brackets. E.g. The third row is the percentage-decrease in GHG emissions when switching from a TOU tariff to a DAM tariff. The fourth row
shows the change in electricity costs associated with the same switch of tariffs.

Schedule change and
criterion (%)

2014 2035 Green 2035 Green⁄ 2035 No progress

LL LH HL HH LL LH HL HH LL LH HL HH LL LH HL HH

Pump utilisation rate ds=do ¼ 0:5
DAM to GHG (GHG) �0.7 �1.0 �2.3 �0.5 �2.6 �3.6 �9.5 �1.6 0.7 3.4 6.4 12.1 3.5 5.8 1.0 1.5
TOU to GHG (GHG) 33.5 33.6 32.6 32.4 33.7 35.4 39.1 36.8 32.5 36.8 36.9 41.0 34.7 35.9 34.5 34.0
TOU to DAM (GHG) 33.1 33.0 31.0 32.1 32.0 33.0 32.8 35.7 32.0 34.5 32.6 32.8 32.3 32.0 33.9 33.0
TOU to DAM (Cost) 20.9 23.6 26.2 25.0 25.7 26.3 22.5 24.2 21.6 21.2 25.1 27.1 20.6 26.5 23.9 23.2

Pump utilization rate ds=do ¼ 0:7
DAM to GHG (GHG) 1.3 3.6 7.3 0.2 7.9 2.4 6.0 2.5 6.9 5.5 4.4 10.6 6.1 4.5 4.5 2.7
TOU to GHG (GHG) 1.9 5.2 7.6 0.8 6.3 2.4 8.9 4.3 5.3 9.0 4.0 7.4 6.2 2.0 6.5 1.4
TOU to DAM (GHG) 0.6 1.6 0.3 0.5 �1.7 0.0 3.0 1.9 �1.7 3.6 �0.4 �3.5 0.1 �2.7 2.2 �1.4
TOU to DAM (Cost) �19.3 �16.4 �12.3 �13.8 �13.7 �14.4 �14.1 �17.2 �17.5 �17.8 �14.6 �11.5 -

19.0
�13.6 �15.9 �16.9

%: percentage decrease.
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marginally the GHG emissions, as the observed reductions are
within the margin of error for the optimisation analysis. The
change in costs when switching from TOU to DAM tariffs also
depends on the pump utilisation rate. For ds

do
¼ 0:5, the costs were

reduced within 20–26%. In comparison, the operating costs
increased by 20% for ds
do
¼ 0:7, and by up to 5% for higher pump util-

isation rates.
Within the considered energy supply scenarios, operating days

with a significant share of renewables and, consequently, a wide
range between the diurnal maximum and minimum GHG emis-



Table 5
Maximum GHG emission savings and operating cost changes for ds=do ¼ 1 and ds=do ¼ 1:3.

Schedule change and criterion (%) 2014 2035 Green 2035 Green⁄ 2035 no progress

LL LH HL HH LL LH HL HH LL LH HL HH LL LH HL HH

Pump utilization rate ds=do ¼ 1:0
DAM to GHG (GHG) 0.0 0.0 0.5 0.5 1.5 0.4 5.3 0.3 0.9 1.3 1.1 5.8 0.1 1.8 0.2 0.5
TOU to GHG (GHG) 3.7 4.3 5.0 4.0 5.3 2.5 5.3 2.6 3.6 6.3 2.8 4.7 5.0 2.9 4.9 3.5
TOU to DAM (GHG) 3.7 4.3 4.5 3.6 3.8 2.1 0.1 2.3 2.8 5.1 1.7 �1.2 4.9 1.2 4.7 3.0
TOU to DAM (Cost) �5.4 �4.3 �4.6 �3.4 �3.6 �4.9 �4.4 �5.0 �3.7 �4.0 �4.9 �2.5 �5.1 �3.6 �4.2 �5.7

Pump utilization rate ds=do ¼ 1:3
DAM to GHG (GHG) 0.2 0.3 0.6 0.1 0.7 1.6 3.5 1.0 0.1 1.4 1.4 4.4 1.4 2.3 0.5 1.0
TOU to GHG (GHG) 0.4 0.8 0.7 0.4 0.9 1.2 4.0 2.2 5.6 2.6 2.1 4.0 1.3 1.6 1.4 0.7
TOU to DAM (GHG) 0.1 0.4 0.1 0.3 0.2 �0.4 0.5 1.2 2.1 1.2 0.7 �0.4 �0.1 �0.7 0.9 �0.3
TOU to DAM (Cost) �5.4 �4.7 �3.5 �3.7 �3.4 �4.1 �4.7 �4.6 �5.1 �5.2 �4.2 �2.9 �5.4 �3.6 �4.5 �4.5

%: percentage decrease.

Fig. 6. Pareto fronts (Green⁄ scenario) that quantify the trade-offs in reducing both the operating (electricity) costs and GHG emissions based on the pump utilisation rate and
energy supply scenarios.
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sions, have shown considerable GHG emission reductions when
optimising the pump scheduling for lower GHG emissions (e.g.
the HH day in the Green⁄ scenario). Whether these reductions
can also be achieved when scheduling for minimising the electric-
ity costs using the TOU or DAM tariffs would depend on the corre-
lation between the electricity prices and GHG emissions as
summarised in Table 3.
In order to investigate the trade-offs between optimising the
pump scheduling for electricity costs and GHG emissions, a set of
Pareto fronts have been derived (Fig. 6). The results indicate that
pump schedules that optimise both electricity costs and GHG emis-
sions are attainable. Significant reductions in GHG emissions could
be achieved for only a small increase in operating costs. The pump
utilisation rates have a significant impact on the magnitude of the
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GHG emission reductions; and less on the trade-off between the
multiple objectives.
4. Discussion

The presented results for a benchmark network show that a
multi-objective optimisation analysis for scheduling the operation
of pumps could successfully reduce both the operating costs and
GHG emissions. The correlation between the emissions intensity
of the fuel mix and electricity costs is a key factor which also
depends on the applied tariff (e.g. TOU or DAM), the energy supply
scenario and the share of renewables in the daily power
generation.

The reduction in electricity costs and GHG emissions from opti-
mally scheduling the operation of pumps depends considerably on
the utilisation rate of available pumps. This is particularly evident
when the benchmark network operates at the lowest pump utilisa-
tion ratio of 0.5 as there is a large number of feasible pump sched-
ules and options to vary pumps operation. For the considered
benchmark network and operating scenarios, the achieved reduc-
tion in electricity costs was within 20%, while the reduction in
GHG emissions was within 30% for most operating days with low
pumps utilisation rates. In comparison, a 5% increase in operating
costs and no significant changes in GHG emissions were observed
for operating days with high pumps utilisation rates.

The multi-objective pump scheduling analysis shows that there
is a potential to reduce both electricity costs and GHG emissions
for all energy supply scenarios. This potential is the largest for
the two Green energy supply scenarios. For the No Progress scenar-
io, the considerable share (approximately 50%) of natural gas and
the low utilisation of renewables, has minimised the variations in
the diurnal emission intensities that limit the potential reductions
in both operating costs and GHG emissions. Similar results were
observed for the 2014 scenario, when the energy supply was dom-
inated by coal. The larger variations in daily emission intensities
for the Green energy supply scenario, and in particular for the
Green⁄ scenario, result in greater GHG emission reduction opportu-
nities for water utilities from optimal pump scheduling.

For tariffs with an equal average cost, a tariff with finer time
steps is expected to lead to lower operating cost due to the finer
schedule adjustments possible. In the energy prices used the
DAM price showed significantly finer differentiation in prices
across the day, but the overall variance of the price was not always
larger than that of the TOU tariff. The results suggest instead, that
low pump utilisation rates would provide greater flexibility and
opportunities for reducing both operating costs and GHG emis-
sions. Consequently, the pumps utilisation rate could be an impor-
tant factor for the design of pumping stations given the anticipated
benefits from pump scheduling and the increased operational reli-
ability. The results suggest that with a low pump utilization rate,
these savings can be achieved. The pump utilisation rate varies
with seasonal demand throughout the year, by � �2 [35], suggest-
ing that the WDS’s ability to reduce its GHG emissions through
optimised scheduling may depend on the seasons or time of year
and the configuration of existing pumping stations.

The greater reduction in GHG emissions from DAM tariffs com-
pared to TOU tariffs arises from the stronger correlation between
the energy prices and corresponding time-dependent emission
intensities (eg. 0.44 compared to 0.20 in 2014). This is because
expensive and GHG intensive plants, such as open gas cycle tur-
bines (OCGTs), are used for electricity generation at peak demand.
However, this situation could change in the future as carbon tax
might improve the correlation between energy prices and GHG
emissions. Alternatively, the wider adoption of intermittent
renewables or cheaper fossil fuels might weaken this correlation
as renewable energy generation from wind or PV could drive spot
prices down [37–39].

The Pareto fronts plotted in Fig. 6 illustrate that the tradeoffs in
reducing electricity costs and GHG emissions from optimising the
operation of pumps in WDS depends on the scenario days and
the fuels mix that supplies the power grid. Scenario days with a
higher standard deviation of the GHG emissions and electricity
costs provide a greater opportunity for achieving substantial
reductions in GHG emissions for only a minor increase in electric-
ity costs. The presented analysis could also be utilised to identify
(and even drive) a threshold price for GHG emissions; for example,
a threshold price of �100 £/ t of CO2, which would have a sufficient
financial justification for water utilities to proactively optimise the
operation of their pumping stations in order to reduce both oper-
ating costs and GHG emissions.
5. Conclusions and further work

A multi-objective optimisation method for scheduling the oper-
ation of pumps has been investigated in this paper. The derivation
of pump schedules for optimally reducing both electricity costs
and GHG emissions for a benchmark water supply network under
different energy supply scenarios and electricity tariff structures
has demonstrated considerable benefits. Further analysis on multi-
ple operational networks is required to validate the presented
results and take into account operational constraints associated
with assets condition and utilisation.

The analysis has demonstrated that the potential reductions in
electricity costs and GHG emissions depend on the pump utilisa-
tion rate, the ability to alter pump schedules and the used electric-
ity tariffs (e.g. switching from a TOU tariff to a DAM tariff). A
significant reduction in GHG emissions was achieved for a bench-
mark WDS when a pump utilisation rate of ds=do ¼ 0:5 was consid-
ered versus other pump utilisation rates. For example, GHG
emissions were reduced within 0–11% for the derived 2035 scenar-
ios and for pump utilisation rates greater than 0.5. The reduction in
electricity costs was close to 20%, and the reduction in GHG emis-
sions was 30% for most operating days with low pumps utilisation
rates.

The presented analysis has only focused on the reduction in
electricity costs and GHG emissions from optimal pump schedul-
ing. Optimising the operation of pumps, reservoirs and water
transmission mains, which are considered the backbone of a water
supply system, tend to be decoupled from the operational optimi-
sation of water distribution networks. Water distribution networks
are segregated into sectors (e.g. District Metering Areas in the UK)
and the pressure management, leakage and GHG emissions associ-
ated with their operation could and should be considered in the
drivers for reducing operating costs and GHG emissions in water
supply systems.

The analysis has demonstrated the importance of considering
the pumps utilisation rate as an additional variable in the design
of pumping stations. This would have a combined impact on the
pump scheduling capacity of a water supply system and its relia-
bility of operation. The enhanced pump scheduling flexibility
would be beneficial not only for optimally managing the operating
costs and GHG emissions, but can enable the participation in
demand response schemes to create new revenue streams for
WDS.

There is an increasing interest among UK water utilities to opti-
mise pump scheduling for reducing electricity costs. However,
more compelling fiscal and regulatory incentives are needed to
encourage water utilities to consider the simultaneous reduction
in electricity costs and GHG emissions when deriving schedules
for the operation of pumps. The presented multi-objective optimi-
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sation problem formulation could be utilised to identify a thresh-
old price for GHG emissions.
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