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Abstract

Following the Paris Climate Agreement, the Dutch government established a target of at least 55% re-
duction in CO2 emissions by 2030. This target will be achieved through the development of wind farm
areas in the Dutch part of the North Sea, capable of generating 10.7 GW of wind energy. The construc-
tion of offshore wind farms, alongside the occupation of areas in the North Sea for other purposes and
developments in shipping, reduces the available space for shipping. This reduction limits room to ma-
neuver and increases the likelihood for incidents. This was also highlighted after Onderzoeksraad Voor
Veiligheid (2024) published a report following the incident with the Julietta D. in January 2022. This
bulk carrier drifted and collided with an oil tanker, a windfarm transition section and a platform under
construction at a wind farm, after 13 minutes, 49 minutes and 4 hours and 6 minutes respectively. The
report emphasized that building wind farms close to shipping lanes leads to a deterioration in maritime
safety. Meanwhile, the Dutch Coast Guard provides assistance and services for the Dutch part of the
North Sea by constantly monitoring maritime traffic. This is done through screens and communication
tools, with just five people, including three operators. As a result of the Coast Guard’s current opera-
tional setting, combined with the aforementioned developments in the North Sea, the Coast Guard may
realize too late that a dangerous situation is developing, delaying their ability to respond.

Several studies showed rule-based approaches for monitoring of maritime traffic for safety and security
purposes, and Machine Learning-based approaches for anomaly detection in Automatic Identification
System (AIS) data. Other studies used alternative sources in addition to AIS data. The rule-based ap-
proaches are limited to known behaviour and require periodic updates. The Machine Learning-based
approaches do not seem to adequately consider environmental conditions. The objective of this re-
search is to contribute to the North Sea safety monitoring of Coast Guard operators by developing a
Machine Learning-based model in other words, a non-rule based approach. This model can detect
vessels showing anomalous behaviour in AIS data, taking into account the detection speed. The oper-
ators can be assisted by visually highlighting ships that exhibit anomalous behaviour. In this research,
anomalous behaviour is interpreted as behaviour deviating from generally shown behaviour taking into
account ship motion and factors influencing sailing behaviour. This research is primarily based on
AIS data of cargo ships from the the North Sea. It concentrates on the safety aspect (not security) of
monitoring tasks. The research question was stated as follows: ’How can machine learning enable
operators to detect anomalous cargo vessel behaviour with potential safety implications, on the North
Sea, more quickly, validated against historical data from a known incident’.

Safety concerning behaviour is considered from two perspectives: casualty events and behaviour pat-
terns. A framework is used to classify different types of anomalous behaviour, namely anchorage
outside the port, drifting, spoofing position, entering an area of interest, sudden change of heading,
heading approach to or off shore, ship/ activity at port at sea, ship encounters, not reporting, ship in
area at certain time of the day, sudden change of speed and distance to shore. The behaviour pattern
drifting, linked to loss-of-control as a casualty event, is used to validate the model. Contributing factors
to sailing behaviour are listed and a selection for the behaviour type drifting, are implemented in the
model as features.

A model for anomaly detection is developed, utilizing a machine learning approach and techniques,
following a literature review. Using AIS data logs of vessels, trajectories are generated and segmented
into trips based on a predefined duration, with a start time for splitting. Behaviour and contributing
factors to behaviour, are described using features extracted from these trips, either individually or in
combination with the spatial arrangement of the North Sea (as spatial properties) and metocean con-
ditions. Based on the trips and their distinctive features, represented as points, a two-dimensional em-
bedding was generated using the dimension reduction technique densMAP. This technique, a density-
preserving visualization tool based on Uniform Manifold Approximation and Projection (UMAP), pre-
serves both local and global structure in the embedding. Trips with similar features are plotted close to
each other in the embedding. The Local Outlier Factor (LOF) is applied to detect local outliers, based
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on local densities, in the embedding. Through outlier detection, trips exhibiting anomalous behaviour
were identified. The LOF technique was applied to detect local outliers based on local densities in
the embedding. The contamination factor as well as the number of neighbors, can be adjusted in the
algorithm, depending on the number of trips and distances between points.

The validity of the detection model and the speed of the detection is shown using the case study on
the drifting incident involving the bulk carrier Julietta D.. AIS data from cargo ships, covering the two
days (January 31st and February 1st) and the area in the North Sea where the Julietta D. drifted
in 2022, were used. Different combinations of features, trip durations (30 and 60 min) and model
settings (contamination factor) were tested to check the speed and accuracy of the outlier detection.
Results show that the Julietta D. can successfully be detected in 30 minutes. Features used to describe
the ship’s motion are length to beam ratio and the mean, standard deviation, maximum, minimum,
10% quantile, median, 90% quantile and skewness of the Speed Over Ground (SOG) and Rate Of
Turn (ROT). Features used to describe the spatial properties of the trip include whether the trajectory
was present in the anchorage area, in the approach area, in the safety zone of the wind park and
if it crosses the Traffic Separation Scheme (TSS). For the metocean conditions, features are used
for velu, velv, swh, mwd, u10 and v10, which represent the eastward- and northward component of
the velocity, the significant wave height of combined wind waves and swell, mean wave direction and
eastward- and westward component of the wind speed at 10 meters above the surface respectively.
The contamination factor was set on 1% and the number of neighbors is 20. In addition to detecting the
Julietta D., different groups of points, or clusters, were plotted as trajectories and the feature importance
was visualized. Furthermore, by plotting groups, an estimation could be made of whether the model
could detect other anomalou behaviour types. The model can detect drifting vessels, detect if the
vessel is anchored outside the port, and if a vessel displays a sudden change of speed. Furthermore,
the model has potential to detect if a vessel is present in a specified area, if a vessel displays sudden
change of heading and if a vessel is present at a location at a certain time of the day. Other behaviour
types are outside of the scope of this research.

A limitation of the research is that the heading information in the AIS data is not considered as (part of)
a feature, due to its unreliability. In addition, the validity of the detection model is shown with a limited
amount of AIS data over time and a single drifting incident. Additionally, the model does not account
for global outliers and cannot identify different types of anomalous behaviour.

It can be concluded that machine learning based on anomaly detection has the potential to enable
operators to identify anomalous cargo vessel behaviour, with potential safety implications on the North
Sea, more quickly (within 30 minutes). Anomalous cargo vessel behaviour is operationalized by trans-
lating the detection speed into a measurable parameter. This is achieved by filtering for cargo vessels
and by defining a start time and trip duration. Various specifications for the practical application of the
detection model, concerning operator usage and application in an operational setting, were determined.
The selected approach and methods for anomaly detection, using machine learning, were integrated
into a workflow and are generally applicable and reproducible. The model is scalable by overlaying a
grid on the North Sea, with each cell (or tile) having its own embedding and outliers. The model instills
confidence by grouping trips exhibiting similar behaviour and is interpretable by displaying the features
of these groups. Additionally, the model can be explained through interactive plotting of points, out-
liers or by manual selection in the embedding. These points are visualized as trajectories on the North
Sea. The model is potentially useful for the Coast Guard in relation to analyses of unusual behaviour,
training and supporting current operational detection. In terms of research relevance, a combination is
established between the rule-based tasks performed by the operators and the creation of rules derived
from data. This approach integrates practical experience with insights gained from data analysis.

The main recommendation for enhancing the model are to add a time component as a feature and
to incorporate a global outlier detection method. Furthermore, it is recommended to utilize labeled
dataset, enabling supervised machine learning, of known incidents to verify features in the detection
method and to identify features associated with different types of anomalous behaviour. Finally, the
model can be validated using publicly available AIS data of the United States.

In the field of monitoring maritime traffic using AIS data combined with machine learning techniques,
there are still numerous opportunities for further exploration.
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1
Introduction

It was the end of January 2022 with a strong gale with gusts of about 48 knots, very high waves and
swell of six meters high. On this day, the cargo ship Julietta D. became adrift in the North Sea. The
ship hit an oil tanker, resulting in a hole in the engine room. The captain and crew had to disembark,
prompting a Coast Guard rescue. The ship then drifted into a wind farm. There it collided with a platform
under construction, causing extensive damage (AD, 2022).

1.1. Cause and Context
The North Sea is one of themost intensively used seas in the world. The available space in this this area
is used by nature reserves, fishery and offshore wind farms. The planned expansion of wind farms is
expected to significantly reduce the shipping space. The government’s target of at least 55 percent CO2
reduction by 2030, resulting from the Climate Agreement of Paris, is realized by designating offshore
wind energy areas, resulting in an additional 10.7 GW of wind energy until 2030 in the Netherlands.

Periodic analysis of shipping traffic in the North Sea show an increase in the number of ship movements
(and gross tonnages transported). In addition, the size of ships is still increasing and the diversity in
the composition of shipping traffic is increasing as well. A volume growth of 35 to 40 percent until the
year 2030 is expected (Ministerie van Infrastructuur en Waterstaat et al., 2022).

Due to the construction of offshore wind farms and expected growth in ship movements, the traffic
intensity and traffic dynamics of the North Sea will increase. The increased traffic in combination with
the reduced available space, and additional objects (wind turbines) in the North Sea increases the
probability of incidents.

A recent report of MARIN (2019) on the implication of wind farms, in the North Sea, for maritime safety
expresses the expectation for 2030 that once every 10 years a large ship will collide with one or more
wind turbines with major consequences. Wind farm construction increases the risk for shipping and for
wind turbines, because of the large number of turbines located close to shipping routes with little room
to divert.

Onderzoeksraad Voor Veiligheid (2024) published a report, following the Julietta D. incident, address-
ing the growing safety risks for shipping in the North Sea, arising from the increasing placement of
wind turbines. The report highlights that, despite the implementation of certain measures, such as
the maintenance of buffer zones between wind farms and shipping lanes, research revealed a poten-
tial deterioration in shipping safety due to the proximity of wind farms to traffic routes. In response,
seven measures were introduced to address the identified risks. These include the establishment of
traffic control, the installation of additional sensors around and within the wind farms, the provision
of more emergency tugs, and the launch of Monitorings- en Onderzoeksprogramma Scheepvaartvei-
ligheid Wind op Zee (MOSWOZ). The report ended with a recommendation that, in order to manage
the risks to shipping safety in the North Sea both now and in the future, a different, integrated approach
to risk management is needed, one that takes into account the ever-changing situation in the North
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Sea, considering new developments in shipping and other activities in the North Sea.

1.2. Problem description and research gap
The Dutch Coast Guard provides assistance and services at the Dutch part of the North Sea and
extensive inland waters (see Figure 1.1), where they take action in case of disasters and incidents.
Maritime traffic in the North Sea is monitored using screens and communication tools. The moment
an incident occurs, a report is made, which arrives at the Coast Guard Center, allowing for appropriate
action to be taken. The Coast Guard Center is staffed 24/7 by a limited number of people, namely a
Duty Officer, three Watch Officers (operators) and a colleague from enforcement services (see Figure
1.2) (Kustwacht, 2024). As a result of the Coast Guard’s current operational setting and developments
at the North Sea, the following challenges maintaining maritime safety could potentially arise:

• Human detection by operators in dangerous situations in the North Sea is challenging considering
to the growth in the number of ships. The current safety system (VTS and VTMonitoring) does
not (yet) automatically highlight or warn for potential risks of accidents throughout the North Sea.

• Less space available for navigation results in less room for errors and less time to intervene in
unexpected situations. This requires a faster response of the captain and the Coast Guard Centre
to avoid accidents or limit their consequences.

• When there is less time to intervene, the captain is more likely to use the available time to focus
on controlling the ship rather than reporting the current situation to the Coast Guard Centre. As a
result, the awareness of potential risks for an incident comes to the Coast Guard’s attention later,
which could potentially result in a delay in assistance and/ or intervention.

The Coast Guard may realize too late whether a dangerous situation is developing, delaying their
ability to response. Marine Safety Investigation Unit (2023) conducted an investigation into the incident
with the Bulk Carrier Julietta D., which revealed that between the moment the ship reported to be
dragging its anchor and the moment the ship made contact with the wind farm transition section under
construction, in the wind farm area, was around 47 minutes. The time between the ship being Not
Under Command (NUC) and hitting the oil tanker was around 13 minutes.

Liao et al. (2021) developed a simulation platform for an airport runway collision warning system. This
system utilized real geographic coordinate data from airport maps to generate a dynamic on-board
moving map for the pilot to define several kinds of runway intrusion scenarios. Idiri & Napoli (2012)
proposed a system for the automatic identification of maritime accident risk. This system consists of
the automatic acquisition of expert knowledge through automated exploration of historical maritime
data and a rule-based reasoning mechanism. Iphar et al. (2020) proposed a method for the risk as-
sessment of cyberthreats in maritime transportation data. Discovered abnormal reporting cases were
assessed using an expert-designed, rule-based analysis framework. This assessment resulted in the
activation of alerts and the assignment of risk levels, to raise the awareness of the people in charge
of monitoring the maritime traffic. Simulation results of Gorkem et al. (2023) showed that rule-based
approach is successful in detecting dark activities, which are vessels conducting operations discreetly
or evade observation, but this approach tends to produce false alarms. In addition, the results showed
that Machine Learning-based approach provides better overall accuracy. Karimi et al. (2024) described
rule-based systems as systems using pre-defined rules to make decisions about content and feedback.
Zaman et al. (2024) applied a Machine Learning-based approach for anomaly detection in Automatic
Identification System (AIS) data, utilizing a passage plan or an extracted reference route.Seong et
al. (2023) applied a Machine Learning-based approach for detecting abnormal ship movements using
CCTV videos. Some Machine Learning approaches were used to detect incorrect AIS data (Szarmach
& Czarnowski, 2022) or detect damagedAIS data that requires reconstruction (Szarmach & Czarnowski,
2024). Finally, B. Rhodes et al. (2006) presents SeeCoast, a port surveillance system developed for
the US Coast Guard, providing scene understanding support for wathstanders. This system leverages
various data sources to automatically detect pre-defined vessel activities, namely unsafe, illegal and
threatening activities, using a rule-based pattern recognizer and detects anomalous activities with au-
tomatically learned behavior normalcy models. The data consists of streaming video data, radar and
AIS data.

Several studies showed rule-based monitoring for maritime traffic safety and machine learning-based
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approaches for detection. Rule-based systems detect vessels based on predefined rules derived from
known behaviors. Rules are typically customized for each location and require periodic updates to re-
main effective. The environmental conditions, which can significantly influence sailing behaviour, are
not adequately considered in themachine learning-based detection approaches and none of these stud-
ies specifically focus on providing monitoring support for Coast Guard operators. However, B. Rhodes
et al. (2006) employs both rule-based and machine learning approaches to assist the Coast Guard, but
it is unknown whether SeeCoast takes into account environmental conditions.

Figure 1.1: Area under the Coast Guard’s responsibility for search- and rescue operations

Source: Kustwacht (2024)

Figure 1.2: Operational setting at the Coast Guard Centre

Source: Kustwacht (2024)

1.3. Research objective and scope
The objective of this research is to contribute to the North Sea safety monitoring of Coast Guard opera-
tors by developing a machine learning-based model, in other words non-rule based approach, that can
detect vessels showing anomalous behaviour in AIS data. Anomalous behaviour can be approached
in various ways. Lane et al. (2010) outlines five anomalous ship behaviours:

• Deviation from standard routes;
• Unexpected AIS activity;
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• Unexpected port arrival;
• Close approach anomalies;
• Zone entry anomalies: vessels entering a restricted area.

Tu et al. (2018) classified ship anomalies into three types based on kinematic perspective:

• Position anomalies: ship appear in an unexpected location;
• Speed anomaly: ship shows unexpected speed;
• Time anomaly: the visiting time of a ship is unexpected.

In this research, anomalous vessel behaviour is interpreted as behaviour deviating from generally
shown behaviour, with similar environmental conditions. The scope of this research consists of mar-
itime traffic on the Dutch part of the North sea. AIS data is chosen as the primary data source for the
project, which has been made available to the TU Delft for research purposes. Mainly using AIS data
implies that ships not using AIS systems are excluded from this research. Cargo ships are of interest for
this research, because these vessels are most commonly involved in marine casualties and incidents.
This is shown in Figure 1.3 from the European Marine Casualty Information Platform (EMCIP) which
stores and analyses data on marine casualties and incidents in Europe. European Maritime Safety
Agency (2023) divides cargo ships into solid cargo and liquid cargo. Solid cargo consists of: barge,
bulk carrier, container ship, general cargo, refrigerated cargo, RoRo cargo, heavy load carrier, pon-
toon and other. Liquid cargo is divided into chemical tanker, combination carrier, liquefied gas tanker
(LNG and LPG), oil tanker (crude oil and product carrier) and tanker (liquid non-flammable). These ves-
sels navigate over traffic separation schemes (route-bound traffic) and generally exhibit relative similar
behaviour .

Figure 1.3: Number of marine casualties and incidents per ship type and per year

Source: European Maritime Safety Agency (2023)
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1.4. Research questions
To achieve the stated research objective, a research question is defined:

”How can machine learning enable operators to detect anomalous cargo vessel be-
haviour with potential safety implications, on the North Sea, more quickly, validated
against historical data from a known incident?”

The research question is divided into the following sub-questions:

1. ”How are incidents and anomalous ship behaviour types currently regarded, how does the Coast
Guard focus on these safety concerning behaviours, and what requirements should a detection
model meet to enhance monitoring in the operational setting?”

2. ”What are contributing factors to safety concerning behaviour, and what anomalous behaviour
should be detected?”

3. ”Which machine learning approaches and methods have a great potential to enhance operational
tools for detecting anomalies?”

4. ”How can the geospatial-temporal behaviour of a ship, along with its contributing behavioral fac-
tors, be integrated into a model utilizing the selected machine learning approach and methods to
effectively detect anomalies?”

5. ”Can the selected anomalous behaviour be detected by the model, what is the detection speed,
and does the model have the potential to detect other types of anomalous behaviour?”

The research approach section provides more detail on how to answer the research- and sub-questions.

1.5. Report structure
The first step is to determine what types of behaviour and incidents are known in maritime traffic. This
can be found in Chapter 2 Maritime Traffic. This chapter explains how the Coast Guard currently rec-
ognizes ships of interest in an operational setting based on a visit to the Coast Guard Centre and what
are specifications for the detection model (Sub-question 1). Subsequently, AIS data is explained and
characteristics of vessel behaviour are discussed. Finally, a decision is made as to what behaviour
type the model should detect (Sub-question 2). In Chapter 3 Literature Review, the methods available
for detection of anomalous behaviour are discussed by means of literature review (Sub-question 3).
This chapter addresses machine learning approaches, methods for anomaly detection and anomaly
detection in AIS data. The materials and methods for the detection model are elaborated in Chapter 4.
The methods describe the different steps in the model to get from AIS data to detection of anomalous
behaviour (Sub-question 4). Subsequently, the model is applied to a case study and results are gen-
erated (see Chapter 5 Results). The conclusions and discussion in Chapter 6 discuss the key findings
and importance of the results, among others (Sub-question 5). Figure 1.4 shows the project’s approach
and related chapters.
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Figure 1.4: Flowchart of research questions and corresponding chapters



2
Maritime Safety

The introduction touched on an expected increase in traffic intensity and traffic dynamics on the North
Sea. This raises the questions, what kind of incidents can these ship movements lead to and how can
the nautical safety be improved by the Coast Guard? After answering these questions, this chapter will
further discuss AIS data, classification of abnormal shipping behaviour, what anomalous behaviour will
be detected, and a summary of the findings is given towards the end.

2.1. Nautical safety
According to Witteveen+Bos Raadgevende ingenieurs B.V. & Hofmeijer (2020), nautical safety con-
cerns the extent to which the risks of maritime accidents are controlled to an acceptable and preferably
negligible level. A maritime accident is described as an incident on water in which unintentional damage
occurs and in which at least one vessel (sailing or stationary) is involved. Damage entails casualties,
damage to one or more vessels involved, damage to infrastructure, damage to objects, environmen-
tal damage, complete blockage of a waterway, residual damage (such as loss of time, damage to
household effects/ household goods and other damage). Insight into development of nautical safety is
provided by Monitor Nautical Safety. The Ship Accident System (SOS-database) provides insight into
the number of shipping accidents on the Dutch part of the North Sea, among others. For each shipping
accident, the database provides information on the location, date and time of the accident and usually
information on the circumstances, possible cause and effects of the accident.

2.1.1. Safety concerning behaviour: casualty events and behaviour patterns
In addition to a national database, an international database also exists, namely the European Marine
Casualty Information Platform (EMCIP). European Maritime Safety Agency (EMSA) publishes annual
overviews of Marine Casualties and Incidents, which analyses marine casualties and incidents reported
by the EUMember States in the EMCIP. A codification of information onmarine accidents was prepared
by EMSA, describing several elements that link the consequences of an accident to its root events
(see Figure C.1). The contributing factors to accidental events and subsequently casualty events is
elaborated in the section on ship behaviour.

European Maritime Safety Agency (2023) describes an accidental event or accident event as, ”an
event that is assessed to be inappropriate and significant in the sequence of events that led to the
marine casualty or incident”. The casualty event is described as, ”an unwanted event in which there
was some kind of energy release with impact on people and/or ship including its equipment and its
cargo or environment”. A casualty event involving one or more ships can be classified in capsizing/
listing, collision, contact, damage to or loss of equipment, grounding/stranding, fire/explosion, flooding
/ foundering, hull failure, loss of control, missing, and non-accidental events (see Figure C.1).

Next to casualty events, European Maritime Safety Agency (2024) made a distinction in behaviour
patterns for Automated Behaviour Monitoring (ABM) (see Figure 2.1). The behaviour patterns consists
of anchorage outside the port, drifting, spoofing position, entering an area of interest, sudden change
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b

Figure 2.1: Detection specific or anomalous ship behaviour patterns

Source: European Maritime Safety Agency (2024)

of heading, heading approach to or off shore, ship/ activity at port at sea, ship encounters, not reporting,
ship in area at certain time of the day, sudden change of speed and distance to shore. Spoofing is the
deliberate manipulation of an AIS device to hide or alter a vessel’s location or identity. The mentioned
casualty events and behaviour patters are known behaviours and can be used for rule-based detection.
The behavioural patterns of EMSA are used to define behaviours for this research (see Figure C.1).

2.1.2. Operational setting Dutch Coast Guard
The Coast Guard is responsible for the following three main tasks:

• Aid and services
• Enforcement
• Maritime Security

The former task, aid and services, is related to this research. Aid and services is subdivided into
Search And Rescue (SAR), disaster- and incident response, explosives clearance, nautical manage-
ment, Radio Medical Service (RMD), fairway marking and traffic control. There are different demarca-
tions of areas of work, such as SAR, surveying and airspace. The search and rescue operations cover
the Dutch EEZ, Wadden Sea, Ijsselmeer, Randmeren, Zuid-Hollandse stromen and Zeeuwse stromen.

To get a better understanding of the operational setting of the Coast Guard, a visit was made to the
Coast Guard center in Den Helder (see Appendix A). The Coast Guard brings together different sources
of information to obtain a clear picture and assess the situation on the Dutch part of the North sea.
Monitoring tasks are based on information from two main sources:

• Through screens and communication tools. The screens show current ship positions, and if nec-
essary, a certain history (trajectory, origin) can be retrieved. This also makes extensive use of
public sources such as Marine Traffic. The operators monitor themselves, based on current posi-
tions, whether a ship shows anomalous behaviour (e.g. stopping somewhere for an unusual long
time or sailing over a pipeline). In addition, based on reports, situations or ships come into focus
(e.g. from shippers in distress).

• Through intelligence Cases come to light within the Maritiem Informatie Knooppunt (MIK-NL),
where various authorities (i.a. police, customs, royal navy) physically sit together to exchange
information.

If remarkable information arises, contact can be made with the skipper, for example, or the Coast
Guard can ask for an aircraft to inspect the relevant location. In addition to experience, context plays
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an important role in assessing and determining whether shipping behaviour is deviant or explainable
(e.g. some ships have permits to cross certain areas). How quickly anomalous behaviour is noticed
depends on the situation.

2.1.3. Detection model requirements
Several specifications for the practical application of the detection model to support the operators were
determined based, among other things, on contact with the Coast Guard (see Appendix A). Specifica-
tions concerning operator usage: the implementation of the model should be gradual, the model should
instill confidence, be interpretable, be easily explainable, the detection should be fast and accurate and
the detection alarm frequency should be limited. Specifications of the detection model concerning appli-
cation in an operational setting are: a user friendly interface, capable of real-time processing, scalability
and capable of integration with other data sources and rules.

2.2. AIS data
2.2.1. International vessel traffic regulations
In 2004, the International Maritime Organization (IMO) adopted a new requirement in the International
Convention for the Safety of Life at Sea (SOLAS) regarding AIS. Ships with a displacement of more
than 300 tons making international voyages, cargo ships with a gross tonnage of more than 500 making
national voyages and all passenger ships are required to have an AIS system on board in permanent
operation (with a few exceptions). According to the regulations the AIS system should do the following:

• automatically provide information to appropriately equipped shore stations, other ships and air-
craft. This information consists of the ship identity, type, position, course, speed, navigational
status and other safety-related information;

• automatically receive this information from similarly equipped ships;
• exchange data with onshore facilities;
• track and monitor ships (IMO, 2024).

2.2.2. AIS data explained
For different times and geographic locations a signal with information is sent by the AIS transponder
on the ship, AIS data is in other words geo-spatial temporal data. AIS data consists of static, voyage
and dynamic information. Dynamic information is automatically transmitted every 2 to 10 seconds
while sailing and every 3 minutes when the vessel is anchored or traveling at speeds below 3 knots.
Yang et al. (2024) gave an overview of the AIS messages divided into the field name (subdivided
into static, dynamic and voyage-related messages), generation and extra information (see Table 2.1).
Generation information is divided into: Set On Installation (SOI), Select From the Pre-installed List
(SFPL), Automatically Updated (AU) and Manually Entered (ME).
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Table 2.1: AIS messages

Source: Yang et al. (2024)

AIS data
Field name Generation More information

Static (Update every 6 mins or on request)
MMSI, call sign, ship
name

SOI might need amending when the ship changes
ownership

IMO number SOI Unique number for the ship
Length and beam SOI Might change if the ship size is changed
Ship type SFPL -

Dynamic (2 to 10 seconds or 3 min)
Position AU Longitude and Latitude, accuracy is approxi-

mately 10m
Timestamp AU Timestamp for the position in UTC
COG, SOG, ROT AU Might not be available
Heading AU -
Navigational status ME -

Voyage-related (Updated every 6 mins or on request)
Draught ME Amended as required
Destination and ETA ME Kept up to date as necessary

Figure 2.2: Characteristics moving ship

Source: Modified figure from Zagonjolli et al. (2024)

2.2.3. Data quality
Raw AIS data contains deletions, inaccuracies and errors (Wolsing et al., 2022). Information about
draugth, navigational status, destination and Estimated Time of Arrival (ETA) are entered manually and
can be inaccurate or incomplete. The Maritime Mobile Service Identity (MMSI) -number is intended to
be unique, but are occasionally shared with multiple vessels. Sensors update information automatically,
but this information may be unreliable when the position fixing system is not properly working or not
properly connected to the AIS transponder. When the radio signal is interfered, part of the AIS message
can get (partially) lost due to meteorological and magnetic influences. AIS transceivers can be turned
off which leads to incomplete data. In addition, AIS signals can be spoofed or manipulated. Finally, the
update rates of AIS data are variable and can range from 2 seconds to 3 minutes (Yang et al., 2024).

According to the protocol for AIS data of Kennisprogramma Natte Kunstwerken, information about the
ship type or the characteristics (length and width) of vessels is often lacking or filled in with a default
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value. In addition, the dynamical information regarding heading is not always complete (Zagonjolli et
al., 2024).

2.3. Ship movement and behaviour factors
The North Sea is connected to the Northeast Atlantic Ocean (and the Baltic Sea) and is of international
importance. Shipping routes connect different countries and continents as efficiently and safely as
possible. Shipping movements occur between different ports with the Port of Rotterdam being the
largest in Europe. Maritime traffic is divided into route-bound and non-route-bound traffic. Route-bound
traffic are merchant vessels and ferries, among others. Non-route-bound traffic are fishing, offshore
supply vessels, passenger ships and pleasure craft, among others. In addition to route-bound and non-
route bound traffic, vessels have different sizes, speeds and maneuvering characteristics (Ministerie
van Infrastructuur en Waterstaat et al., 2022).

2.3.1. Ship motion and degrees of freedom of a ship
The motion of a ship can be described with Course Over Ground (COG), Speed Over Ground (SOG)
and heading (see Figure 2.2). The movement of a ship is a result of six degrees of freedom, consisting
of three translational motions (surge, sway and heave) and three rotational motions (roll, pitch and yaw)
(see Figure 2.3). Different maneuvers a ships can perform are, course keeping, course changing, track
keeping and speed changing. According to Bertram (2012), the following main characteristics can be
used to describe the maneuverability of a ship:

• Initial turning ability;
• Sustained turning ability;
• Yaw checking ability (ability to stop turning motion);
• Stopping ability;
• Yaw stability (ability to move straight ahead in the absence of external disturbances at one rudder
angle).

When a ship has to avoid obstacles at low speed, the stopping ability is applicable. However, in case
a ship is traveling at a higher speed, it is more effective to change course instead of trying to stop, as
this requires less distance (Bertram, 2012).

The dimensions and weight distribution of a ship influence maneuverability and thus the behaviour of
a ship. These differences in behaviour are reflected in the vessel types, as it distinguishes between
different purposes of the vessel, corresponding vessel designs and types of cargo.

Figure 2.3: Six degrees of freedom of ship

Source: Van Der Steen (2016)
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2.3.2. Contributing factors casualty events
The codification by EMSA, mentioned in the Section 2.1 on nautical safety, describes various contribut-
ing factors that could potentially lead to accidental events and, consequently, to casualty events (see
Figure C.1). European Maritime Safety Agency (2023) divided contributing factors to accident events
into three main types:

• External Environment - environmental impact and phenomenon.
• Shipboard operation - i.a. crew resource management, maintenance.
• Shore Management - i.a. operations management, regulatory activities, safety and environment
management.

The accident events are divided into: hazardous material, human action, other agent or vessel, system/
equipment failure and unknown. The external environment includes: wind, fog, hydrodynamic effects
(e.g. interaction with other passing vessels), current and temperature (EMSA, 2020).

EMSA analysed marine casualties and incidents involving container vessels. The external environment
was reported as a contributing factor in 12 investigations, mainly concerning damage to the ship or
equipment and . As cited by EMSA (2020): ”The following Areas of Concern have been identified:

• Wind: Abrupt wind variations, like gales or gusts, affect the vessel directly on its surface, which
may cause drift during mooring operations or maneuvering.

• Fog: This element has contributed to several navigation accidents, particularly collisions and
grounding. Poor visibility, especially in restricted fairways or near the port areas can prove to
be detrimental, especially if maximum caution is not demonstrated by the crew and when the
recommended tug assistance is not requested.

• Hydrodynamic effect: This factor has been reported in three cases where the interactions with
other passing vessels, particularly in restricted fairways, contributed to collisions or groundings.

• Current: Tidal streams or other currents were reported in two occurrences as factors contributing
collision and contact.

• Temperature: in one case, it was reported that the high environmental temperature and humidity
generated an exothermic decomposition of containerized dangerous goods (thiourea dioxide -
Class 4.2, UN 3341) subsequently resulting in a fire.”

2.3.3. Contributing factors of navigation accidents
The European Maritime Safety Agency (2022) also analyzed the contributing factors of navigation ac-
cidents, like collisions, groundings and contacts. EMSA produced statistics concerning sea area, ship
operations and time of accident among others. The time of the incident influences the visibility (during
the day or night) and the working set-up (bridge team, boredom, tiredness).

European Maritime Safety Agency (2022) mentions that environmental factors both inside and outside
the ship, can affect human performance and contribute to errors or deviations from the normal work
path. Such factors have led to collisions and groundings. Areas of concern related to environmental
factors that negatively impact safe navigation were identified. In addition to the impact of the external
environment from wind, currents, and tides potentially causing drift, visibility issues due to fog and high
traffic density were also mentioned. Traffic density can be assumed to dependent on the location, time
and season. Aside from the external environment and visibility, the limited maneuverability of the ship
(including navigation constraints due to draft), the social environment on board, interference from other
ships, and the physical environment on board were also mentioned as areas of concern. Hindrance
from other vessels concerns hydrodynamic effects resulting from interactions with passing vessels,
which increase the complexity of the environmental dynamics and influence the decision-making pro-
cess.

2.4. Abnormal safety-concerning behaviour to detect
EuropeanMaritime Safety Agency (2023) analyzed the evolution of casualty event types involving ships
over the years 2014 till 2022 (see Figure 2.4). The figure shows that in recent years, the most common
type of casualty event has been loss of control combined with loss of propulsion power. In addition,
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collision ranks high, as casualty event. Loss of control in combination with loss of directional control
is positioned in the middle of the ranking (other combinations for loss of control are loss of propulsion
power and of containment). In this research, we focus on loss of control, i.e. NUC, as mentioned in the
casualty events, which could potentially lead to safety consequences and is common (see Figure 2.4).
This casualty event is closely linked to drifters, as mentioned in the behaviour patterns, which will be
the anomalous behaviour to detect.

Figure 2.4: Evolution of occurrences with ship, organized by casualty event type from 2014 till 2022

Source: (European Maritime Safety Agency, 2023)

2.5. Summary maritime traffic
The first paragraph on nautical safety addressed various safety-concerning behaviours, focusing on the
categorization of casualty events (incidents) and behaviour patterns (anomalous ship behaviour types).
The categorization of behaviour patterns will be used as framework for anomalous vessel behaviour
(see Figure C.1). In addition, the current methods for signaling the Coast Guard about a ship in distress
in an operational setting were mentioned, primarily through communication (i.a. reports from skippers),
screen data, and intelligence. To assist the Coast Guard, vessels exhibiting anomalous behaviour can
be highlighted after detecting them. Requirements for a detection model to enhance monitoring in the
operation setting were listed, and the ability to detect quickly is crucial for this. The following paragraph
provided an explanation of AIS data and its quality. Paragraph 2.3 described vessel movements and
factors influencing sailing behaviour.

In the last paragraph, drifting was chosen as the anomalous behaviour to be detected in this research.
SOG and ROT information from AIS data, are expected to describe drifting motion, among others.
In addition, the external environment is mentioned as having an effect on sailing behaviour. For this
research, we aim to consider metocean conditions and whether the ship is present in an anchorage
area or (the safety zone of) a wind farm.



3
Literature review

This chapter will first zoom in on Machine Learning (ML) and anomaly detection. In the second para-
graph, anomaly detection application of geospatial-temporal behaviour will be discussed. Finally, the
machine learning approach and methods to enhance operational tools for detecting anomalies is dis-
cussed and selected.

3.1. Introduction to Machine Learning and Anomaly Detection
Artificial Intelligence (AI) will be applied to detect unsafe behaviour by means of Automatic Identifica-
tion System (AIS) data. As Janiesch et al. (2021) defined: ”AI comprises an technique that enables
computers to mimic human behavior and reproduce or excel over human decision-making to solve com-
plex tasks independently or with minimal human intervention”. Building analytical models to perform
cognitive tasks can be automated with ML. Specifically tasks such as classification, regression and
clustering can be applied to high-dimensional data using ML. The process of building an automated
analytical model consists of four aspects: data input, feature extraction, model building, and model
assessment.

3.1.1. What is Machine Learning?
Machine learning algorithms can be divided into four main categories; supervised, unsupervised, semi-
supervised and reinforcement learning (see Figure 3.1). Which algorithm performs best is dependent
on the objective and the characteristics of the available data. The data can be structured, unstructured
or semi-structured. Examples of machine learning algorithms are classification analysis, regression
analysis, data clustering, association rule learning, feature engineering for dimensionality reduction
and deep learning methods (Sarker, 2021).

The learning algorithm categories will be elaborated. Firstly, supervised learning which uses labeled
training data to train algorithms. Supervised learning is mainly used for classification and regression
tasks. Classification can predict distinct class labels by separating the data. With regression a con-
tinuous quantity can be predicted by fitting the data. Secondly, unsupervised learning which analyzes
data without any pre-existing labels or specifications (unlabeled data). Unsupervised learning is mainly
used for clustering, density estimation, feature learning, dimensionality reduction, finding association
rules and anomaly detection. A combination of the previous two learning methods, with and without
supervision, is semi-supervised learning. This algorithm category uses both labeled and unlabeled
data and has been applied to machine translation, fraud detection, labeling data and text classification.
Fourthly and finally, reinforcement learning. This algorithm trains software agents by using positive
and negative feedback (reward or penalty). This way the optimal behavior is evaluated to improve
efficiency. It can be used to increase automation or optimize operation efficiency (Sarker, 2021).

14
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Figure 3.1: Machine learning techniques

Source: Sarker (2021)

3.1.2. What is anomaly detection?
The goal of the project is to detect abnormal behaviour. The overview in Figure 3.2 shows the difference
between data considered as normal and data considered as an outlier. The outlier can be subdivided
into noise and anomalies, with noise considered a weak outlier and anomalies as strong outliers (Moniz
et al., 2024).

Figure 3.2: Aspect of outliers

Source: Moniz et al. (2024)

Based on availability of data labels, anomaly detection can be classified in 3 ways: use of supervised
anomaly detection, semi-supervised anomaly detection and an unsupervised algorithm (see Figure
3.3). The figure clearly shows the separation between normal data and anomalies for supervised and
semi-supervised anomaly detection, as the data are labeled. For unsupervised anomaly detection, this
distinction is variable and highly dependent on the methods and parameters chosen (Ghamry et al.,
2024).

Ghamry et al. (2024) divides anomalies in three groups dependent on their nature :

• Contextual anomalies or conditional anomalies. A data instance that may be considered un-
usual under certain circumstances. Behavioral characteristics and contextual variables (time and
space) are used to identify conditional anomalies.

• Collective anomalies, also identified as group anomalies, which is a set of data items that together
deviate from the total data set.

• Point anomalies, which is a single anomalous sample that exhibits deviation from normal be-
haviour.

Jabbar (2021), gave an overview of unsupervised and supervised anomaly detection algorithms, with
the unsupervised category divided into proximity-based and clustering-based detection approaches,
each subdivided into global and local outlier detection (see Figure 3.4). The proximity-based outlier
detection approach is classified as distance- and density- based. The review explained that different
approaches are applicable for local or global outliers, but is not effective for both outlier detection cases.
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It concludes that parameter tuning is required to identify local and global outlier objects.

Figure 3.3: Different anomaly detection classifications

Source: Ghamry et al. (2024)

Figure 3.4: Unsupervised and supervised methods divided into different approaches to detect local and global outliers

Source: Jabbar (2021)

3.1.3. Supervised versus unsupervised
An example of anomaly detection in a field other than maritime is the research by Weijler et al. (2022).
In this research a semi-supervised approach, is used on data of acute myeloid leukemia flow cytometry
in combination with implicit expert knowledge. This one-class classification approach is based on the
dimension reduction technique Uniform Manifold Approximation and Projection (UMAP) applied with
a local distance metric. Clusters are defined with the density based clustering technique Hierarchical
Density-Based Spatial Clustering of Applications with Noise (HDBSCAN). Subsequently, blast clusters
are identified based on the number of control-events in the cluster, specifically those with a very low
number of control-events.

For this research AIS data is applied. The choice for an unsupervised or supervised ML approach
depends on the availability of pre-labeled datasets. At the start of this research, no labeled AIS data
were available for use. Therefore, unlabeled AIS data will be used for the model, implying the use of
unsupervised machine learning. In addition, this research focuses exclusively on point anomalies. This
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choice is made due to time constraints and the limited amount of AIS used to show the validity of the
model. With a limited amount of AIS data, fewer groups (or clusters) exhibiting similar behaviour are
expected, leading to less reliable results for global detection.

3.2. Anomaly detection in AIS data
AIS data can be used to analyze maritime traffic. The data is used in different research areas like
traffic, logistics and transport economy, monitoring, collisions, emission, oil spills, noise, interaction
with whales, fishing and ice (Svanberg et al., 2019). Anomaly detection is a known research topic
for AIS data as well. Yang et al. (2024) concluded that the majority (90%) of the papers focused on
deviation from normal routes. A distinction was made between a clustering-based model and a neural
network-based model.

3.2.1. Anomaly detection with a clustering-based model
In distinguishing abnormal and normal trajectories using unlabeled AIS data, clustering is very effective.
Clustering can be performed using methods such as Density-Based Spatial Clustering of Applications
with Noise (DBSCAN) and K-means, among others.

Palotta & Jousselme (2015) used Traffic Route Extraction and Anomaly Detection (TREAD) with a
DBSCAN procedure, to extract valuable information for decision-making with unsupervised ML on AIS
data. Additional features for anomaly detection were incorporated, like position of ships and kinematic
features. Off-route vessels were detected with positional information and on-route vessel anomalies
were identified with COG and speed information.

According to Fernandez Arguedas et al. (2018), density-based clustering methods are convenient in
maritime applications, because the number of clusters does not need to be pre-set and clusters of
arbitrary shapes can be detected. They proposed a method to automatically produce maritime traffic
representations from historical self-reporting spatial data. Based on analysis of waypoints and routes
the maritime traffic network was created and behaviour patters inherent to spatio-temporal information
were extrapolated. Eventually, deviations from the declared route could be detected (anomaly).

An extension of DBSCAN, namely Density-Based Spatial Clustering of Applications with Noise con-
sidering Speed and Direction (DBSCANSD), was porposed by Liu et al. (2015). Vessel movements
were associated with International Maritime Organization Rule, like Traffic Separation Scheme (TSS)
boundaries. Anomalous navigational behaviors could be detected with three division distances with
the clusters. The method considered longitude, latitude, speed and direction, to determine for each
trajectory point if the vessel was anomalous.

The research of Guo et al. (2021) is an example based on K-means clustering. An improved method
called K-means++, is used for clustering error weights of AIS data points. This method (K-means++)
is applied to ensure that the the initial clustering centers are as far apart as possible. In this way, the
influence of the selection of the first cluster center on the cluster result, is reduced. Subsequently, noise
and outliers can be detected automatically with the clustering method. To detect all anomalies, a loop
detection process, by repetition of kinematic estimation (with longitude, latitude, SOG and COG), and
error clustering process, is introduced.

3.2.2. Anomaly detection with a neural network-based model
B. J. Rhodes et al. (2007) applied a neural network-based model, to use real-time tracking information
to simultaneously learn motion pattern models. The present motion states were used to evaluate the
behavior patterns of vessels. They explain event-level learning in which normal events, for example
dependent on class of vessel and environmental conditions, are learned and deviations can be detected.
Secondly, inter-event learning was described as learning links between behavioral events to predict
future position of a vessel given present behavior information, location and velocity (course and speed).
A uniform square grid of the area was used to enable learning to be contextually specific to vessel
behavior. In addition, vessel reports were split in 3 minutes for a temporal horizon of 15 minutes. In
summary, a method to detect anomalous vessel event behaviour and predict vessel locations in a port
was improved and applied for associative learning (rule-based) and making predictions of future vessel
locations.
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3.2.3. Framework for detecting and classifying abnormal behaviour
A framework can be used to implement selected machine learning methods within a detection approach.
Rong et al. (2024) presents a data-drive approach for learning maritime traffic normalcy model and de-
tecting ship abnormal behaviour, explained within a framework (see Figure 3.5). This research provides
three examples for detection approaches, using abnormal point detections and a method for detecting
and classifying ship abnormal behaviour in ship trajectories based on features. Profiles are generated
of independent motion parameters, namely COG, speed and lateral distance to ship route (see second
block in framework in Figure 3.5). Ship trajectories are grouped based on matching itinerary with a
similarity-based clustering algorithm (see (a) Ship route extraction in Figure 3.6). Each group has a
lateral distance (from ship location perpendicular to the route center line), speed and direction (COG)
distribution. A normalcy model, for the ship route, is estimated by a series of these Gaussian distribu-
tions (see (b) Ship route characterization in Figure 3.6). More specifically, the lateral distance distribu-
tion is used to define the route boundary, and offroute behaviour is detected. In addition, the speed
and COG distributions help to identify ship speed and direction that are incompatible with the ship’s
route. These anomalous ship points are detected when a point deviates from the standard neighboring
points, with the same ship route, exhibiting similar speed and direction. With the Kernal Density Esti-
mation (KDE) method the probability density function of the variables, speed and COG, are estimated
in which the abnormal points of ships correspond to low densities (see (c) Abnormal points detection
in Figure 3.6). Using a sliding window approach, motion profiles (speed, COG and lateral distance) of
parts of the trajectory in historical AIS data, are captured (see third block in framework in Figure 3.5).
A window is flagged as abnormal by comparing these motion parameters with pre-defined threshold
(rules), specifically the route boundary as well as the density threshold derived from the probability
density functions of speed and COG. Subsequently, a time interval is extracted for the occurrence of
the abnormal behaviour, namely offroute, speed- and heading not compatible with the route (see (d)
Abnormal point types considered in this study in Figure 3.6).

For the classification model Rong et al. (2024) used clusters of features capturing the observed ship’s
abnormal behaviour (see fourth till sixth block in framework in Figure 3.5). The following features
were proposed for extraction: standard deviation of the speed, detour factor, maximum drift angle,
accumulative COG change, delta COG, maximum lateral distance. First, the features are extracted
of the historical abnormal behaviours and normalized. Subsequently, clusters are generated using
a density-based clustering method, specifically DBSCAN, which groups data into objects with similar
features. DBSCAN generates clusters of elements based on the density of points in their neighborhood,
classifying points as core points, density-reachable points and noise. After clustering the features, each
trajectory and feature vector are labeled with a cluster number representing a specific behaviour pattern.
With Random Forest (RF) classification, the labeled feature vectors are used to train the multi-class
classification model. The four types of abnormal ship behaviour, correspond to four clusters. The
clusters include trajectories with characteristics based on the extracted features (see Table 3.1). A
confusion matrix was generated to evaluate the performance of the trained RF classification model.
SHapley Additive exPlanations (SHAP) is used as an Explainable Machine Learning (EML) method to
provide insight into the machine learning model, which can be regarded as a black box. SHAP shows
how each feature affects the model’s output.

Table 3.1: Ship abnormal behaviour types and their characterizing features

Abnormal ship behaviour Extracted features characteristics
Circular Speed decreasing, accumulative COG around 2π, delta

COG small
U-turn accumulative COG and delta COGaround π
Double U-turn large detour factor, accumulative COG and delta COG

small
Off-route maximum lateral distance exceeds 1 or -1
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Figure 3.5: Data-driven approach for learning a maritime traffic normalcy model and detecting abnormal ship behaviour,
explained within a framework

Source: Rong et al. (2024)

Figure 3.6: (a) Ship route extraction, (b) Ship route characterization, (c) Abnormal points detection and (d) Abnormal point
types considered in this study

Source: Rong et al. (2024)
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3.3. Detection approach and method selection
To develop a model that enhances operational tools for detecting anomalies, a machine learning ap-
proach and appropriate methods should be selected. At the end of Paragraph 3.1, unsupervised ma-
chine learning was selected for the detection approach, and the detection will be limited to point anoma-
lies. In the previous paragraphs, several detection approaches were mentioned for unsupervised ma-
chine learning, namely clustering-based, network-based and proximity-based. The proximity-based
model was divided into distance and density-based. For this research a density-based method will be
used for the local outlier detection. To develop a framework for the detection model, model steps and
machine learning methods should be selected.

3.3.1. Guideline for model steps till clustering of AIS data
The model of van Engelen (2023) applied machine learning techniques to AIS data to cluster similar
vessel behaviour on inland shipping. The vessel behaviour is characterized by extracting features
from vessel trips based on AIS data logs, such as speed, acceleration, direction, maneuverability, and
position-related features. Data of trips, characterized by their features, were reduced in two dimensions
by the UMAP algorithm. With K-means clustering, clusters were generated exhibiting similar behaviour,
in other words similar feature characteristics. This model gave a promising start for the detection of
anomalous behaviour for the North Sea.

3.3.2. Time series feature engineering
To generate meaningful features from AIS data, time series characterization methods can be applied,
which was done in the research of Christ et al. (2018). To save time in identifying and extracting mean-
ingful features from time series, the Python package Time Series FeatuRe Extraction on the basis of
Scalable Hypothesis tests (tsfresh) was developed. This package integrates 63 time series characteri-
zation methods, thereby automatically calculating 794 time series features, with feature selection. The
package utilizes machine learning libraries and standard Application Programming Interface (API) of
timeseries.

3.3.3. Dimension Reduction technique
Several dimension reduction techniques can be applied, including Principal Component Analysis (PCA),
t-Stochastic Neighborhood Embedding (t-SNE) and UMAP. Mcinnes et al. (2020) explained that UMAP
is faster and offers better scalability then t-SNE. UMAP compared to PCA is better in finding and
preserving the local structure in data. In short, UMAP successfully reflects much of the large scale
global structure that PCA represents well, while preserving local fine structure, like t-SNE. Narayan et
al. (2020) mentions in his research that t-SNE and UMAP neglect information about the local density
of data points in the source data. This results in a poor distinction in the visualization of data points
and their close-by neighbors, in contrast to their far off neighbors. The research proposes density-
preserving data visualization methods, namely den-SNE and densMAP, build upon t-SNE and UMAP
respectively. The embeddings showed that both local structure and variability were preserved in the
original data.

For this research a dimension reduction technique is preferred that groups trips with the same features
well, has a good performance, and preserves the density of the data, therefore densMAP is chosen.
DensMAP will be used to create a two-dimensional embedding to make the model better explainable
(EML).

3.3.4. Outlier detection technique
Jabbar (2021) provided an overview of outlier detection methods. The un-supervised, proximity-based,
and subsequently density-based method was chosen. Based on the review of Jabbar (2021) and the
decision for local outlier detection, several methods are mentioned (see Figure 3.4). The methods for
local outlier detection are Local Outlier Factor (LOF),Connectivity-based Outlier Factor (COF), INFLO,
Local Outlier Probabilities (LoOP), LOCI and aLOCI. For this model the Local Outlier Factor (LOF) will
be chosen, because it is already implemented in Python.



4
Materials and Methods

In the previous chapter a literature study was done for anomaly detection with machine learning and
AIS data. Different approaches and methods for anomaly detection were mentioned and selected. This
chapter explains how the detection model is composed of different steps, illustrated using a Flowchart
(ISO 5907, 1985), and where the chosen methods will be applied. In Section 2.1, model requirements
for the detection method were mentioned. In addition to anomaly detection, the requirements of ex-
plainability and scalability are addressed.

4.1. Materials
For the model the programming language Python in combination with machine learning techniques is
applied on AIS data. An anonymized AIS dataset has been made available by the Coast Guard (or
RWS) to the TU Delft for research purposes. The AIS data covers 31 January and 1 February of 2022
and an area of the North Sea (visible in Figure 4.1). Information about spatial areas in the North Sea are
obtained with QuantumGeographic Information System (QGIS) (Free Software Foundation, 1991) (see
Table E.5 and Figure E.1 for an overview). Themetocean conditions were obtained from the ERA5 data,
which provides hourly estimates for a large number of atmospheric and ocean wave quantities, among
others (Hersbach et al., 2020). Several Python libraries are used: GeoPandas (GeoPandas developers,
2013), MovingPandas (MovingPandas develeopers, 2024) scikitlearn (scikit-learn developers, 2007)
and holoviews (Holoviz contributors, 2024). In addition, the following Python packages have been
applied: Shapely (Sean Gillies and Shapely contributors, 2024), tsfresh (Maximilian Christ et al., 2024)
and umap-learn (Mcinnes et al., 2020).

4.2. Conceptual framework
The approach of the detection model consists of generating trips, subsequently features are created
for each trip. The trips with their corresponding features are represented on an embedding and finally
the outliers are detected. A simplified framework of this approach is visible in Figure 4.2. The model
for this research, representing the approach, consists of six steps to get from AIS data logs to outliers.
Each Section in the report represents a step in the model (see Figure 4.3) and a separate framework
has been created for each model step. First, trips of vessels were created from the AIS data logs
(Section 4.3). Second, a feature table is generated with motion characteristics for each trip (Section
4.4). Subsequently, information of the ship’s location, i.e. spatial properties, is included as a feature
(Section 4.5). The metocean conditions of the trip is added as feature in Section 4.6. As fifth, di-
mensional reduction is applied with densMAP and an embedding is generated (Section 4.7). Lastly,
anomalies are detected with the LOF (Section 4.8). To better understand the data in the embedding
and the designated outliers, these will be visualized (Section 4.9), i.e. EML. A summary of the key
adjustments of the model are named in Section 4.11.
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Figure 4.1: AIS dataset covering area in the North Sea, including the EEZ area (dark blue)

Figure 4.2: Simplified framework research model
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Figure 4.4: Trips creation steps

4.3. Trips creation
The first model step turns AIS data logs into one or more trips per vessel (see Figure 4.4). This results
in a trajectory collection. A trajectory collection is a collection of trajectories of the same duration from
all ship voyages. Thereby, the voyage of one ship may consist of multiple trajectories.

4.3.1. Filtering
As mentioned before AIS data contains a lot of information (see Table 2.1 and Table E.1 for units).The
relevant data is filtered according to the scope of this research, which concerns the North Sea area
and type of vessel. A polygon of the North sea is used to filter on the North Sea area (see dark blue
area in Figure 4.1). With shapely.intersects package the ship locations within the North Sea polygon
are retained. For the current AIS dataset, this means that AIS data located on inland waterways will be
filtered out. The data contains information about the vessel type by means of the ’vesseltype’ code and
the ’vesseltype ERI’ code, which is relevant for seagoing vessels and inland vessels respectively. The
vessel type codes covering cargo (and tanker) vessels are 70 up and including 89, 1003, 1004, 1016,
1017 and 1024 (see Appendix D).

4.3.2. Data pre-processing
Before the AIS data can be used to generate trajectories, the data needs to be pre-processed. Chapter
2 discussed the data quality of AIS data, which is used to select the relevant and fairly reliable columns
for the model (see Table 4.1). In addition, indices are adjusted, the (vessel)name is copied for later
use, vesseltype codes are adjusted (vesseltype and vesseltype ERI) and missing values for the length
and width have been filled in.

Table 4.1: AIS data columns selection, data pre-processing

Static and Voyage related informa-
tion

Dynamic information

Used name sog, latitude, longitude, times-
tamplast

Adjusted
and used

vesseltype ROT

Not used vesseltypeERI, hazardouscargo, eni,
imo, nationality, eta, callsign, traj_id,
tobow, tostern, toport, tostarboard,
length, width, draughtMarine, draugh-
tInland

cog, maneuver, seconds, head-
ing, headingValid, mmsi
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4.3.3. Trips collection
To make trajectories from AIS data logs the dataframe needs to be converted to a Geopandas Geo-
Dataframe with GeoPandas(GeoPandas developers, 2013) by adding geometry points of the longitude
and latitude data with the Common Reporting Standard (CRS) set as ESPSG:4326 . This is equal to
the World Geodetic System of 1984 and earth centered, e.g. WGS 84 (MapTiler, 2024). Subsequently,
the timestamplast was set as index and converted to no timezone.

Using MovingPandas (MovingPandas develeopers, 2024) and the previously defined geometry points,
one trajectory per shipname (i.e. per ship) were created. Subsequently, the trajectory of each ship was
split with theObservationGapSplitter when the trajectory showed a gap. This is necessary, otherwise a
trip sailing outside the defined area, following that returning to the area, is wrongly connected. The trip
is split in case the trajectory showed a gap in time of 5 min and a minimum length of 100m. AIS data
is received per approximately 2- 10 seconds for sailing ships and 3 minutes for ships at anchor (see
Chapter 2). The length of 5 minutes is chosen, because at least one signal should have been received
within these 5 minutes. In addition to splitting the trips based on observed gaps, the trips per vessel
are split based on a defined origin in time and time intervals (e.g. 60min). First and foremost, this is
important because the trajectories have the same length in order to compare them fairly. In addition, a
start time and duration of the trajectory are used to determine the speed of the detection. These steps
resulted in a TrajectoryCollection (see Figure 4.6).

4.3.4. Adding columns
As last step, columns are added with MovingPandas functions and manually (see Table E.2 for options).
The speed, angular difference and time elapsed are added to calculate new values for the ROT. To
calculate new values for the ROT, the speed, angular difference and time elapsed are needed. The
speed is added with movingpandas.TrajectoryCollection.add_speed, in CRS units per second. The
angular difference is added with TrajectoryCollection.add_angular_difference, in degrees between 0
and 180. The difference in seconds between the timestamps per trip are calculated and added as the
time_elapsed_seconds column. The ROT is calculated as the change in direction (angular_difference)
divided by the difference in time in minutes (using time_elapsed_seconds devided by 60). The ROT is
set to zero when the value is higher than 250 or lower than -250. In addition, ROT is set to zero when
the time difference is greater than 20 minutes and the velocity is less than 0.6 units per second. The
additional columns with values and units are shown in Table 4.2.

Table 4.2: AIS data, additional columns added with functions of MovingPandas (f) or manually generated (m)

Source: (MovingPandas develeopers, 2024)

Additional columns AIS data
Data
columns

Description range and or unit

angular_ dif-
ference (f)

Calculated as the absolute smaller angle between
the direction for points along the trajectory.

0 till 180.0 degrees

speed (f) Computed between the current point and the previ-
ous point.

meter/sec

time_elapsed
_seconds
(m)

Time elapsed between 2 signals. seconds

ROT (m) Newly defined ROT instead of original rot. Angular
difference from previous signal to current signal di-
vided by the time elapsed in minutes.

degrees/minutes
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4.3.5. Results trips creation
This model step, trip_creation, ended in a trajectory collection. The dataset started with 4,286,380
AIS data logs (see Figure 4.5). The trajectory collection with trips of a duration of 30 and 60 minutes
consisted of 3,427 trips and 5,879 trips respectively. An example of the columns after creating the trips
are visible in Figure 4.6 and the additional columns can be seen in Figure 4.7. A ship with its unique
name (’shipname_original’) can have multiple trajectories, which are described with a trip identification
name (’shipname’). In this trip identification name, the name of the vessel and the start date and time
of the trip is visible. One unique shipname has multiple timestamplast’s, since multiple AIS data logs,
which are updated around every 2 seconds to 3 minutes, can belong to one trajectory with a duration
of, for example, 30 or 60 min.

Figure 4.5: Original AIS data

Figure 4.6: Dataframe after creating a trip collection

Figure 4.7: Dataframe with additional columns

4.4. Feature engineering - motion features
In this section the transformation of the trajectory collection to the combined feature data frame will be
elaborated, i.e. feature engineering of the motion features (see Figure 4.8). The combined feature
table is a combination of features that are manually made and features that are generated with the
help of the Python package tsfresh (Maximilian Christ et al., 2024). The tsfresh package is used to
generate motion features of vessels, by means of the time series of the trajectories. The features
that are manually generated will describe characteristics of the ship and its trajectory. Per trip multiple
features are generated. Which features are potentially relevant is discussed in Chapter 2.

4.4.1. Manually added
In this step, some information of the trip collection dataframe is passed as a list (latitude, longitude,
timestamplast, time_elapsed_seconds). In addition, information is passed as a single value (vessel-
type, shipname and shipname_original). The vessel type of the trajectory can be included as a binary
code for vessel type groups, by defining the vessel type code (such as 70) as belonging to the cargo
ships (= 1/ yes) and belonging to the fishing ships (= 0/no). Another example of a manually made
feature with a binary code is the time of the day, sails the vessel during morning, afternoon, evening or
nigth. Finally, features can be created by defining and applying a manually made function, e.g. for cal-
culating the length to width ratio. This information is stored in a dataframe which shows the information
as features per trip with its unique shipname (see Figure 4.9).
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Figure 4.8: Feature engineering steps

Figure 4.9: Example dataframe manually made features

4.4.2. Generated with tsfresh
A selection of the features that can be computed with tsfresh are the mean, median, standard deviation,
skewness, kurtosis, sample_entropy, maximum, minimum, quantile (0.1, 0.2, 0.3, 0.4, 0.6, 0.7, 0.8, 0.9)
for the parameters SOG and ROT. Skewness is ameasure of the asymmetry of a distribution and needs
at least three values. Kurtosis describes the shape of the tail of a distribution compared to the overall
shape of the distribution and needs at least four values. Before tsfresh is applied, the line segments of
the trip collection will be transformed to a GeoDataFrame. The relevant information (e.g. ROT, SOG) is
then passed to the function which makes features with the help of tsfresh. This results in single values
for the defined features per shipname (i.e. trip identification name).

4.4.3. Combining manually and tsfresh features
Finally, the features will be combined into one feature table based on the unique shipnames. Which is
result of this model step, feature engineering.
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4.5. Feature engineering - spatial properties
In this method step, information is added, as a feature, about the areas where the ship was located
during the trip, i.e. spatial properties (see Figure 4.10 and Table E.4).

Figure 4.10: Steps of adding spatial properties as features

Information on spatial areas was obtained using QGIS (Free Software Foundation, 1991). The following
spatial areas are selected (see also Figure 4.12):

• Permitted wind farms safety zones (dark green in figure)
• TSS (blue in figure)
• Approach area (light green in figure)
• Anchorage area (pink in figure)

When the areas are loaded, the CRS should be defined (European PetroleumSurveyGroup (EPSG):4326),
to make the trips and areas compatible. The geometry of the areas consist of MultiPolygons (for permit-
ted wind farms safety zones, approach area and anchorage area) and MultiLineStrings (for TSS).With
geopandas.GeoSeries.union_all returns a geometry of the areas containing the union of all the geome-
tries. This allows trips to be compared to the areas in one step. For this step, the feature table must
also be modified. With geopandas.points_from_xy a linestring is added as the geometry of the fea-
ture table. In addition, the CRS is defined for the trips (EPSG:4326). Now the trips can be compared
using the functions shapely.intersects and shapely.crosses for the MultiPolygons and MultiLineStrings
geometries respectively (Sean Gillies and Shapely contributors, 2024). These functions use two ge-
ometries to check the spatial relation and returns a boolean variable. The Dimensionally Extended
Nine-Intersection Model (DE-9IM) is used to describe the spatial relation between these geometries
(e.g. intersect, touch, contain, equal). The intersects function returns 1 if the boundary or interior of
the object (trip) intersect with those of the other (areas geometry), i.e. trip being inside the area. The
crosses function returns 1 if the object (trip) intersects the interior of the other (areas geometry) but
does not contain it, and the dimension of the intersection is less than the dimension of the one or other,
i.e. trip crossing the TSS line. Finally, the spatial relationship per trip to different areas is added to the
feature table as a location feature (see Figure 4.11).

Figure 4.11: Example dataframe of spatial properties as features
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Figure 4.12: Selected spatial properties

Source: (Free Software Foundation, 1991)

4.6. Feature engineering - metocean conditions
In this model step, metocean conditions during each trip are added as environment feature (see Figure
4.13). The metocean conditions (from ERA5) consists of the following data, depending on the location
and time (hourly): velu, velv, swh, mwd, u10 and v10 (see Table 4.3) (Hersbach et al., 2020).

To be able to couple the right metocean conditions to the trip, the location and time of the metocean
conditions is compared to the location and time of the trip. But first, filtering is done on the time span
for which conditions are needed. Subsequently, a polygon with a defined CRS (EPSG:32631) is added
which is obtained from the polygon_wkt column using the geopandas.GeoSeries.from_wkt function.
To be compatible to the trips, the CRS of the polygon is converted to the same EPSG as the trips (i.e.
EPSG:4326) and set as index for the metocean conditions GeoDataFrame. In addition, a selection is
made of the columns that are relevant (velu, velv, swh, mwd, u10 and v10). The trips must also be
adjusted to be able to add metocean conditions.

The midpoint of the timestamp of the trip is assigned as middle_timestamp column. Then the associ-
ated location is added as a point as middle_trip column and defined as active geometry. Finally, the
middle_timestamp will be rounded to whole hours, named as rounded_time and defined as an index.
The middle_timestamp is rounded to whole hours, since the metocean data is defined per hour. With
geopandas.sjoin, the metocean conditions based on time and location can be added to the feature
table of the trips as single values.
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Figure 4.13: Metocean conditions steps

Table 4.3: Metocean conditions variables

Source: (Hersbach et al., 2020)

Metocean condi-
tions

Description Unit

velu Eastward component velocity m/s
velv Northward component velocity m/s
swh Significant height of combined wind

waves and swell
m

mwd Mean wave direction degrees
u10 Eastward component (u-direction) of

the wind at a height of 10 meters above
the surface of the earth

m/s

v10 Northward component (v-direction) of
the wind at a height of 10 meters above
the surface of the earth

m/s

4.7. Embedding - dimension reduction technique
Dimension reduction will be applied in this section, which will result in an embedding of the trips with their
distinctive features (see Figure 4.14). Dimension reduction can reduce the number of features in the
dataset while simultaneously preserving necessary information, subsequently data can be visualized.
In Chapter 3, it was decided to use densMAP for the dimension reduction technique.

Figure 4.14: Method steps embedding with dimension reduction technique densMAP

A general requirement for many machine learning estimators is standardization of the dataset, which
is done here with the StandardScaler. If the individual features, which are each centered and scaled
independently, do not look more or less like standard normally distributed data, the machine learning
estimator may be less reliable. This is why outliers have a negative impact on the balance in feature
scales of the StandardScaler, as they affect the computation of the empirical mean and standard devi-
ation. Moreover, outliers have different magnitudes on each feature, resulting in transformed data on
each feature (scikit-learn developers, 2007).

For the standardization and embedding, a selection of features will be used, since not every feature is
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suitable for the standardization. The selected features should somewhat resemble a standard normal
distribution and should not contain any Not A Number (NaN) values. With
sklearn.preprocessing.StandardScaler().fit_transform, the selected features are standardized by re-
moving the mean and scaling to unit variance, which results in a standard score. The following formula
shows how the standard score (z) is calculated with the feature value (F), the mean (u) and the standard
deviation (s) (scikit-learn developers, 2007):

Z =
(F − u)

s

For this research, it is decided to use the StandardScalar, because it is easy to use. Not all features
are Gaussian-distributed (see Appendix G), but due to time limitations, other scaling methods are not
tested.

To get a reduced representation of the scaled feature data, fit_transform is used to fit the data into an
embedded space and transform it. The UMAP constructor with densMAP parameters is used to create
the embedded space (Leland McInnes, 2018). The result are trips with their specific features, repre-
sented in two feature columns, named embedding_0 and embedding_1. The values of these columns,
determine the location of the points in the embedding, with embedding_0 on the horizontal axis and
embedding_1 on the vertical axis. Plotting these points results in a two-dimensional embedding, with
points representing trips and their distincitive features (see Figure 4.15).

Figure 4.15: Example of embedding with densMAP
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4.8. Anomaly detection - local outlier

Figure 4.16: Method steps anomaly detection

To determine which trips are anomalous, the LOF algorithm is applied (see Figure 4.16). This method
compares the local density of a point, in the embedding, with respect to the local density of its nearest
neighbors. The distance to the k-nearest neighbors is used to estimate this local density. A point is
considered as an outlier when the point has a lower density than their neighbors. In other words, the
LOF score represents the anomaly score of a point, which depends on how isolated the point is with
respect to the surrounding neighborhood, meaning whether the point is a local outlier.

To calculate the LOF, the number of neighbors and the contamination value are used and adjustable.
Generally, the number of neighbors is set to 20, which refers to the 20 closest points to the point in ques-
tion. The number of neighbors can be adjusted as desired. To be able to consider points as local outlier
in relation to their group, the number of neighbors should be larger than the minimum number of points
required for a group of points. The number of neighbors should be smaller than the maximum number
of nearby points that could potentially be local outliers themselves. The contamination value value can
be automatically set by the algorithm or manually specified (e.g. 0.01, 0.05, 0.1, corresponding to 1%,
5% and 10%, respectively). The contamination value determines the prediction errors, which are the
amount of trips which are identified as outliers. In other words, the contamination value represents the
percentage of the trips identified as outliers.

The fit_predict function uses the sklearn.neighbors.LocalOutlierFactor class, with the number of neigh-
bors and contamination value, in combination with the embedding points, to return labels for the outlying
points. The outlying points are labeled with a value of -1 instead of 1 for non-outlying points. The in-
dices of these outlying points, are saved to visualize the outlier scores, and to show trajectories of
these outliers (see Figure 4.18). Subsequently, the negative_outlier_factor function is used to deter-
mine how ”outlying” the points are compared to their neighbours. All the values are negative and the
lower the negative_outlier_factor score is, the more the point is considered an outlier. Inliers tend to
have a negative_outlier_factor score close to -1. Circles around the outliers are plotted with a radius
proportional to the outlier score (see Figure 4.17). The radius is calculated with the following formula,
where X represents the outlier score (scikit-learn developers, 2024):

radius =
max(X)−X[outlier]

max(X)−min(X)
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Figure 4.17: Outlier detection

4.9. Visualization
For the visualization, the coordinates of the embedding and values of the features are used. The
hvplot.scatter function from pandas can be used to plot the embedding, in which each point represents
a trip of ship. A feature can be given as a variable, which is colored according to its value relative to
the maximum and minimum value of the corresponding feature of all trips. Lastly, information about
a point representing a trip with its feature values can be displayed using the hover display (Holoviz
contributors, 2024).

Figure 4.18: Example of the visualization, embedding with outliers and outlier trajectories
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Figure 4.19: North Sea covered into multiple map tile of zoom level 8

Source: Geofabrik GmbH & OpenStreetMap Contributors (2018)

4.10. Scalability option
The detection model must predict anomalous trips within a relatively short time period (around a few
seconds) across the entire North Sea. To ensure fast run time, the North sea can be divided into multiple
map tile, each covering an area approximately equivalent to zoom level 8 (see Figure 4.19) (Open
Geospatial Consortium, 2024). Each tile (area) will have their own trips, embedding and subsequently,
outliers.

4.11. Adjustments for validation
A model has been created that can detect outliers from AIS data logs. The model filters AIS data on the
North Sea and on vessel types. It then creates trips from the logs and subsequently cuts them based
on a set time and duration of the trips ( 4.3). The trips are assigned features based on AIS data ( 4.4),
based on where the trip travelled in space during the trip ( 4.5) and based on metocean conditions
during the trip ( 4.6). An embedding with densMAP is generated based on selected features ( 4.7).
The outliers are detected with the LOF ( 4.8). Subsequently, the embedding is plotted and the outliers
are highlighted with a circle. In addition, the highlighted outliers are visualized by plotting the outlier
trajectories for explainability ( 4.9). Finally, an explanation was given for the possibility of scaling up to
the entire North Sea ( 4.10).

The results are points, representing trips, plotted on a 2D map. You expect points and clusters of points
with the same features, in other words the same behaviour and behaviour influences. Then the points
that are far compared to the cluster or their close neighbors are labeled as outliers. To make the 2D
map and the designated outliers explainable, the trajectories are plotted with the associated features
values compared to the mean of all feature values.

A few choices in the model can be used to generate results for the validation of the model. In this way,
a plan can be made to produce results that answer the research questions. Specifications of the model
are:

• Trips creation: Filter on North Sea and vesseltypes. Defining the one start time for trips and
defining the duration of the trips.

• Feature engineering: adding motion features, spatial properties and metocean conditions.
• Embedding: Features selected from feature engineering, spatial properties and metocean condi-
tions.

• Anomaly detection: For the comparison of different length, the contamination value and number
of neighbors can be adjusted.
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Results

To answer the research question of whether a drifting ship can be detected, a case study is applied.
This case study case is about the ship the Julietta D. mentioned in the Chapter 1, which started to drift.
This study will assess whether the model can detect the Julietta D. and how quickly it can do so.

5.1. Case study: Julietta D.
Marine Safety Investigation Unit (2023) investigated the incident of the bulk carrier Julietta D.,which
was mentioned at the beginning of this report. The report of the Julietta D. revealed that weather
conditions deteriorated around 08:00 (8:00 AM) with a wind direction turned north-west and a force
of 9 Beaufort. Until 10:28 (10:28 AM), the Julietta D’s movements were kept under control. At 10:30
(10:30 AM), the nearby anchored Pechora Star was informed by the Julietta D. that it was dragging its
anchor. Ijmuiden Approach called Julietta D. to inquire about the situation. Around 10:42 (10:42 AM),
the Netherlands Coast Guard established contact with Pechora Star regarding the an imminent collision
with the drifting vessel. At 10:43 (10:43 AM) the Julietta D. made contact with the Pechora Star. The
Julietta D. continued drifting southwards into the windfarm (see Figure 5.1). At around 11:19 (11:19
AM), the Julietta D made contact with a windfarm transition section under construction. At 1130 (11:30
AM), the ship appeared to drift uncontrollably instead of dragging the anchor. Afterward, crewmembers
were evacuated by helicopter. At 14:36 (2:36 PM), the Julietta D. hit a platform under construction. The
track of Julietta D. is visible in Figure 5.2.

The main conclusion is that the Julieta D. began dragging its anchor around 10:30 AM, due to bad
weather conditions. Change in heading was visible compared to other ships and a reduction in SOG.
In addition to the anchorage area, the vessel was present in the wind farm. The Juliettta Dmade contact
with the Pechora Star after 13 minutes, with the windfarm transition section after 49 minutes and with
the platform under construction after 4 hours and 6 minutes, after the vessel started drifting.
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Figure 5.1: Julietta D’s AIS track in anchorage area

Source: (Marine Safety Investigation Unit, 2023)

Figure 5.2: Julietta D’s AIS track through windfarm

Source: (Marine Safety Investigation Unit, 2023)
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5.2. AIS data
This incident occurred on February 31 and January 1 of 2022. The AIS data of cargo ships during
this period, along with the relevant area where the ship was present during this period is used. For
scalability, the North Sea can be divided into multiple tiles with an area approximately equivalent to
zoom level 8. The tile for this case study is visible as the yellow rectangle on the left side of Figure
5.3 and covers around 570,000 hectares. It should be noted that this tile is cut off by the North Sea
polygon in the model, resulting in the exclusion of ports (Rotterdam and IJmuiden) and inland waters
from this area. The corresponding trips, from AIS data in this period and area, are visible in the right
side of Figure 5.3. Trajectories are plotted to show the geo-spatial behaviour of ships (sub-question 4).

Figure 5.3: Case study area as tile (yellow rectangle area with blue outline in left figure), including ports and inland waters, and
the trajectories within this tile and the North Sea (right figure). The x-axis corresponds with the longitude values and the y-axis

corresponds with the latitude values

Source: Geofabrik GmbH & OpenStreetMap Contributors (2018)



5.3. Embedding 38

5.3. Embedding
First, trajectories of a duration of 60 minutes are made from the AIS data, starting at 8:30 AM on 31
February 2022. Other trips that do not fall within the 8:30 - 930 AM time frame begin with a start time
of 8:30 AM minus or plus (a multiple) of 1 hour (e.g. 830 AM - 3x1h: 5:30AM). This time (8:30 AM
on 31 February 2022) was chosen because Julietta D. started drifting at that moment. This allows
for determining how quickly the ship is detected. Features are generated (see left side Figure 5.4).
With densMAP a two dimensional embedding is generated with each point representing a trip with
corresponding features (see right side Figure 5.4). The trips are plotted relative to each other based
on their features. One trip in the embedding (see red dot in left side of Figure 5.5) represents a trip of
60 minutes, this trip is plotted in the right side of Figure 5.5. By plotting the point in the embedding as a
trajectory on a map of the area on the North Sea, the embedding is easier to understand (explainabe).
Groups of samples can be visualized by means of plotting groups of points and their corresponding
trajectories. The left side of Figure 5.6 shows a selection of points on the the embedding, representing
a group of trips (right side). This group of trips represent vessels present in the approach areas of
the ports IJmuiden and Rotterdam (the right side of Figure 5.6). The left side of Figure 5.7 shows a
selection of trips on the bottom of the embedding. If you plot these trips, a group of anchored vessels
are visible (see right side of Figure 5.7).
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Figure 5.4: Trips of 60 min in embedding, total of 2974 trips, with corresponding features

Figure 5.5: One selected trip of 60 minutes in the embedding (red point in the top, left figure) with its corresponding trajectory
(blue arrow, right figure)

5.4. Anomaly detection, local outlier
The outliers will be detected with a function using the LOF. For this function different settings are
possible, namely the number of neighbours and the contamination value. The number of neighbours
is kept on 20, which is the default value of the function. The contamination value, which describes the
percentage of the trips that should be detected as outlier, is deviated from 0.001 (0.1%) to 0.05 (5%). In
Figure 5.8 (left side) the outlier factor is computed for a contamination value of 1% . The corresponding
trajectories are plotted in the right side of Figure 5.8. It can be observed in the figure that the Julietta
D. is already visible (a series of arrows pointing south).
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Figure 5.6: Groups of points in embedding (left) and their corresponding trajectories of 60 minutes (right) - vessels in approach
areas

Figure 5.7: Groups of points in embedding (left) and their corresponding trajectories of 60 minutes (right) - anchored vessels

Figure 5.8: Local outlier of 1 percent of 60 min trips (, namely emb30. left figure) and corresponding trips (right figure)

5.5. Detecting Julietta D.
In this section the speed of the detection of Julietta D. is tested, which is important to determine the
operability of the model (sub-question 5). Trips of one hour was applied in the previous section. For
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this duration, the Julietta D. was faster detected than the 4 hours and 6 minutes it took the vessel to
reach the platform under construction. A trip that is faster detected than 1 hour shows improvement
of the current detection speed of the ship. The goal is to detect the Julietta D. faster than the time it
took the vessel to reach the wind farm transition section (49 minutes). To be able to do this, the trips
are cut in 30 minutes with a set fixed time to be able to compare the speed of the detection. The start
time is set with the time when the Julietta D. started drifting. In addition, different features (and feature
combinations) are tested. When the same features as Figure 5.4 are used for a trip duration of 30
minutes, a contamination value of 1% (and 5.5%) and 20 neighbours, the Julietta D. is not detected.
For the embedding (emb32) with trips of 30 minutes, the total amount of trips is 2974, with 5.5% outliers,
this results in 256 outliers.

New features were added and a new embedding was generated (emb33). With a contamination value
of 1% the Julietta D. was detected. A total of 47 trips were detected as outliers in which nine trips
belonged to the Julietta D (see Figure 5.9 with the arrows from north to south-east: purple, orange,
brown,.. ,light purple and light green in the figure).

The following features were used for the detection (embedding33):

• Ship features: sog [mean, standard deviation, maximum, minimum, 10% quantile, median, 90%
quantile and skewness], ROT [mean, standard deviation, maximum, minimum, 10% quantile,
median, 90% quantile and skewness] and length to beam ratio;

• Spatial properties: in acnhorage area, in approach area, in safety zone wind park and crossing
the TSS;

• Metocean conditions: velu, velv, swh, mwd, u10 and v10.

Table 5.1 shows the settings applied for the detection of Julietta D. (for embedding 33).

Table 5.1: Model settings, detection Julietta D.

Model step Setting
Trips creation Filter cargo ships

Start time trips: 8:30 AM on 31 February 2022
Trip duration: 30 minutes

Anomaly detection Contamination value: 1 % and n = 20

Figure 5.9: Julietta D. detected with 30 min trips and 1% contamination value (embedding 33)

Now we can check which trips belong to the Julietta D., by plotting a selection (group of trips) at the
left side of the embedding, we can show the feature importance and the trajectories of the group (see
Figure 5.10, 5.11, 5.12). The feature importance is represented as a bar for each feature. The average
value of the feature for the selected trips are comparable to the the average value of that feature of



5.5. Detecting Julietta D. 42

all the trips. Figure 5.11 shows the deviation of the average feature value for the group (Julietta D.’s
trips) compared to the average value of all trips of the following features: maximum of ROT and 90%
quantile of ROT.
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Figure 5.10: Julietta D. plotted by selection in embedding: the selected group in the embedding

Figure 5.11: Julietta D. plotted by selection in embedding: feature importance of the group

Figure 5.12: Julietta D. plotted by selection in embedding: trajectories
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5.6. Detectable types of behaviour
The drifting ship Julietta D. is successfully detected with the model (see Figure 5.9). This model can
also detect if a ship crosses an area, but does not yet know when the ship is in or out of an area (see
Figure 5.6). In addition, the model detects sudden changes of speed of a ship trajectory (see Appendix
H). Finally, the ship detects ships at anchorage outside the port (see Figure 5.7). The sudden change
in heading and present in an area in a certain time of the day are not yet possible to detect, since the
heading is not used as feature and the time component is not used as feature. The behaviour types
spoofing position and not reporting are outside of the scope of the project. The remaining types of
behaviour, namely ship at port at sea, encounter at sea, heading to/ off shore and distance to shore is
not detected. Reasons for this are: the port areas are outside the scope of this research (ship at port
at sea), ship encounters are not taken into account as feature (encounter at sea) and the area of the
North Sea does not include the shore, the distance to the shore and the heading (heading to/ off shore
and distance to shore). An overview of the detectable behaviour types is visible in Figure 5.13).

Figure 5.13: Behaviour types possible to detect with model (added from source)

Source: European Maritime Safety Agency (2024)
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Discussion, Conclusions and

Recommendations

In this research, relevant information was gathered, and a model was developed to detect anomalies
in AIS data on the North Sea. This chapter presents the discussion, conclusions and recommenda-
tions of this research. The discussion includes the research relevance, comparison with previous work
and limitations of this research. Subsequently, the answers to the sub-questions and main research
question are described. And finally recommendations for future work are done.

6.1. Research relevance
The model has potential for the Coast Guard, because multiple features can be added, its applicable
to an operational setting for both safety and security purposes, warnings can be issued, or vessels
displaying anomalous behaviour can be highlighted, the detection can be used for training purposes
to better understand characteristics of anomalous behaviour, historical data can be analysed and new
types of behaviour may emerge, as the method is non-rule based, and historical events of a limited
time period may be analysed.

The potential for research consists of: having found the intersection/ balance between rule-based tasks
for people in practice (in operational settings) and deriving rules from data. This provides an opportunity
to bring together and facilitate collaboration between professionals (skilled workers) and data analysts.
Unknown anomalous behaviour that has not yet been identified may be discovered, the current rules
are being challenged as behaviours can be expressed in features, e.g. from knowledge of practice,
instead of rules in codes. Through automation, practice and research can be integrated; however,
the people in practice must be involved in the developments to ensure that automation does not feel
imposed.

6.2. Comparison with previous work
The proposed method by van Engelen (2023) applied to AIS data from inland waters to generate clus-
ters of similar behaviour, provided a solid foundation for this research aimed at detecting anomalies at
the North Sea. Compared to this method, the current model is applied to cargo vessels in the North
Sea, incorporating different features such as spatial properties and metocean conditions. DensMap
was utilized instead of UMAP, and anomaly detection was employed instead of a clustering technique.

An example of anomaly detection in a field outside of maritime, is the research of Weijler et al. (2022).
Which used UMAP in combination with HDBSCAN and partly labeled data as one-class classification
approach for the detection of blast clusters, what can be described as anomalies. While UMAP and
HDBSCAN could serve as viable alternatives for clustering behaviour types, the one-class classification
approach is not suitable for this research, which requires a multi-class classification framework for
multiple types of anomalous behaviours. In addition, no labeled data were available for this research,
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so the anomaly detection should be unsupervised. In conclusion, a mutli-class classification utilizing
UMAP and HDBSCAN, combined with labeled data of anomalous behaviour types, has the potential
to detect anomalous behaviours, specifically global anomalies. This limits anomalous behaviour types
to the availability of labeled datasets, meaning that new behaviours may go unnoticed.

Monitoring and detecting abnormal ship behaviour can be based on rules, like the ABM model which
uses data from several tracking systems (European Maritime Safety Agency, 2024). Rong et al. (2024)
is an example of a rule based approach, in combination with AIS data, for detecting and classifying ship
abnormal behaviour in ship trajectories utilizing KDE, DBSCAN and RF. This approach uses statisti-
cal analysis to identify anomalies. Ship abnormal behaviour can be analysed with motion parameters
(speed, COG and lateral distance) of ship trajectories and characterizing ship abnormal behaviour
types by motion features . The method of Rong et al. (2024) identifies abnormal initiation points and
differentiates the time intervals of ship abnormal behaviour, resulting in an improvement of features by
capturing the abnormal behaviour. The following features were proposed: standard deviation of the
speed, detour factor, maximum drift angle, accumulative COG change, delta COG, maximum lateral
distance. Compared to this research, features are generated over a set time duration, independent
of the occurrence in time of anomalous behaviour, which make the ship features in this report less
accurate, since the features can be a result of a mix of normal and anomalous behaviour. On the other
hand, this method of Rong et al. (2024) does not include environmental conditions and the locations
with its context where the ship is sailing. The method does include deviations from the route of the
itinerary, which is missing in this research. The method of Rong et al. (2024) is suitable for identifying
and classifying four predefined abnormal behaviour types namely, circular, U-turn, Double U-turn and
off-road, for specific ship routes. The disadvantage is that this requires AIS data from complete ship’s
routes, and routes that occur very rarely are not reflected in the detection model. Furthermore, the
question is whether the four types of abnormal ship behaviour cover all anomalous behaviours, includ-
ing new ones, which are initially based on the speed, direction, and lateral distribution. Rong et al.
(2024), used statistical analysis to identify anomalies using pre-defined statistical threshold from un-
derlying distributions. This statistical-based method does not accurately capture relationships between
features, whereas this research can capture these relations.

6.3. Limitations
General limitations are divided into limitations of materials, methodology (approach, method and model
steps), validation and operational setting and into external factors. The main limitations of this research
are missing of the heading information, as this proved to be a key feature of the Julietta D. At the
moment, the Julietta D. is anomalous, because the ship was in the safety zone of the wind farm, while
this is not a defining aspect of a drifting ship, the heading is. Currently, the time component is not taken
into account as feature, meaning it is unknown whether a ship is sailing in the night or during the day.
In addition, this detection method is suitable for local outliers and not for global outliers.

Materials limitations: Manually entered statistical information, like ship dimensions, ship type, navi-
gational status, destination, ETA and MMSI number, contain inaccurate or incomplete data. Dynamical
information regarding the heading is not always complete. In addition, quality issues of AIS data are
caused by sensor reliability, radio signals interference and wrong intentions (like spoofing and manip-
ulation). These inaccuracies can lead to incorrect detection of anomalous behaviour or false positives
when applied in the detetion method.

Methodological limitations, approach of area: The North Sea polygon is used to define the bound-
aries of the North Sea, and similar boundaries are established for the individual tiles covering the North
Sea. However, this approach can result in the loss of information at the edges of these polygon and
tiles, particularly when trips are cut off at these boundaries. To facilitate meaningful comparisons be-
tween trips, it is essential that each trip exhibits the same specified duration, for example 30 minutes,
and that the entire trip is assigned to a tile without being truncated at the boundaries. Currently, this
aspect is not addressed in the methodological approach.

Methodological limitations, approach of outlier: In Chapter 3 a distinction was made between noise
and an anomaly, this distinction is not made in the model. In addition, this Chapter described the
difference between local and global outliers. The function for detecting the outliers is currently based
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on local outliers and will not detect global outliers, i.e. clusters of trips that are anomalous. When all
vesseltypes are included or a longer duration of AIS data is applied, clusters of trips are expected to be
present, instead of one cluster. With an embedding consisting of multiple clusters a detection method
for global outliers should be applied

Methodological limitations, method: Generated features should be suitable for standardization. For
example, vessel type groups could be added based on a binary classification (i.e., whether a vessel
belongs to a specific group or not) instead of relying solely on the vessel type codes as a feature. Ad-
ditionally, the weights of features in the model (detection) are not accessible. While some features
or combinations of features may hold more importance than others, their influence cannot be adjusted.
For the dimension reduction technique, DensMap is chosen, because it takes local and global structure
of the data into account (Mcinnes et al., 2020). This means that DensMap may not be the best option
for embeddings with only one cluster, which primarily has a local structure. The LOF, used for outlier
detection, is based on the contamination value and the amount of neighbours. The contamination value
is predefined, instead of deviating according to the amount of anomalous behaviours. An example of
this is an expected rise in outliers, thus a higher contamination value, in case of difficult metocean condi-
tions or high traffic density. The amount of neighbors can be adjusted manually, this means the amount
of neighbors is not set for optimum result according to the amount of trips. The variation of the amount
of neighbours is expected to be dependent on the amount of points in the embedding and clusters in
this research this aspect is not investigated. For now the LOF only takes into account local density of
the 20 neighbors and not the local density of all the data. In addition, the method StandardScalar was
used, which is sensitive to outliers and therefore cannot guarantee balanced feature scales (scikit-learn
developers, 2024). Finally, the impact of the number of features and the influence of individual features
on detection have not been thoroughly tested.

Methodological limitations, model steps: In the model, the trips belonging to the same ship, are
not coupled. Due to splitting of trip based on a defined duration, there is potential loss of information
at the time of the split. Furthermore, a combination of trips may appear anomalous, even if separate
trips does not. In addition, the extra information obtained from longer trip durations can result in the
detection of different anomalies. For instance, longer trip durations provide more AIS data logs, which
can enable the creation of new or enhanced features (e.g. kurtosis which needs at least 4 values). In the
method step for generating ship motion features, data with NaN values for skewness, which requires
at least three values, are excluded. In Chapter 2, factors which can be implemented as features,
influencing sailing behaviour were mentioned. Not all features have been incorporated, and factors
such as traffic density or interaction with other vessels can be of importance. Currently, the model
focuses on geospatial behaviour rather than geospatial-temporal behaviour, as the component has not
yet been integrated (as a feature). For these two days, the time component is not expected to have a
significant impact. The TSS is currently unsuitable to use as spatial property, because the lines do not
close, and the TSS geometry is not yet represented as polygon. Additionally, the spatial properties of
the North Sea are not yet complete, as the infrastructure (such as buoys) is not fully implemented.

Validation limitations: The test case covered two days and cargo ships, meaning a limited number
of trips, a limited variation in metocean conditions, and a selected group of vesseltypes. In addition,
the model is not tested on multiple tiles on the North Sea, only one. This means the accuracy and
scalability has not been (properly) tested.

External factors: The introduction of this research mentioned that the North Sea will see an increasing
number of wind turbines in the coming years, as it has in recent year. This development, along with
several others developments, leads to a challenging factor for the model, specifically spatial properties,
as the spatial arrangement of the North Sea changes over time.

Operational limitations: Over time, new anomalous behaviours can emerge. This model is well-
suited for identifying and potentially detecting these additional behaviours. The outliers detected by
the model are not necessarily considered anomalous or unsafe from the operator’s perspective. The
model misses additional information about developments in the present time, for example, temporary
permits for ships in defined areas.
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6.4. Conclusions
This paragraph will address the sub-questions, leading to the answer of the main research question.

Sub-question 1

”How are incidents and anomalous ship behaviour types currently regarded, how does the Coast
Guard focus on these safety concerning behaviours, and what requirements should a detection model

meet to enhance monitoring in the operational setting?”

Marine casualties and incidents were mentioned, in which marine casualties can be described as in-
cidents with damage as a consequence. In the EMCIP model in European Maritime Safety Agency
(2023), casualty events are divided into occurrence with ship(s) and occurrence with person(s). The
classification for the occurrence with ships is: capsizing/ listing, contact, fire/explosion, grounding/
stranding, loss of control, collision, damage/ loss of equipment, flooding/ foundering, hull failure and
missing. The classification of anomalous ship behaviour types are mentioned, namely: anchorage
outside the port, drifting, spoofing position, entering an area of interest, sudden change of heading,
approaches to shore, ship/ activity at port at sea, ship encounters, not reporting, ship in area at certain
time of the day, sudden change of speed and distance to shore (European Maritime Safety Agency,
2024). The Coast Guard focuses on the safety concerning behaviour by combining multiple sources of
information to gain a clear understanding of the current maritime safety situation on the North Sea. They
carry out the monitoring tasks by using screens, communication tools (e.g. reports of skippers) and
intelligence. Experience and context influence the assessment of ship behaviour. Requirements of the
detection model, to enhance monitoring with respect to operational use, are: gradual implementation
of the model, the model should instill confidence, be interpretable, be easily explainable, the detection
should be fast and accurate and the number of (detection) alarms should be limited. Requirements
with respect to application in an operational setting are: a user friendly interface, capable of real-time
processing, scalability and capable of integration with other data sources and rules.

Sub-question 2

”What are contributing factors to safety concerning behaviour, and what anomalous behaviour should
be detected?”

Factors influencing the sailing behaviour are:

• external environment regarding metocean conditions: wind, currents, tide, temperature (fog and
hydrodynamic effect);

• visibility: time of day, fog, high traffic density;
• external environment regarding vessel interaction: passing vessels that influence hydrodynamic
effects/ environmental dynamics and influence the decision-making process;

• limited maneuverability of the ship: dependent on infrastructure, bathymetry and position of other
vessels (related to traffic density)

• influences traffic density: time of day, location and season;
• voyage: sailing or anchoring in spatial areas, route bound and non-route bound traffic (TSS).

To distinguish between different anomalous behaviours, the classification of anomalous ship behaviour
types from the ABM of European Maritime Safety Agency (2024) is used. The anomalous behaviour
that was selected for detection, is drifting. Comparing the behaviour type drifting to the classification of
casualty events in the EMCIP model, this behaviour has similarities with the class loss of control.

Sub-question 3

”Which machine learning approaches and methods have a great potential to enhance operational
tools for detecting anomalies?”

The machine learning approach, which has a great potential for detecting anomalies, is an unsuper-
vised, density-based method. The approach involves the use of characterizing features for each trip
of a vessel, combined with a dimension reduction technique and an outlier detection method. For the
dimension reduction technique, densMAP was selected and for the outlier detection technique the LOF
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was used. This dimension reduction method was chosen because of the good performance and abil-
ity to preserve the density of the data. The LOF was chosen, because it was density-based and the
function was already implemented in Python.

Sub-question 4

”How can the geospatial-temporal behaviour of a ship, along with its contributing behavioral factors,
be integrated into a model utilizing the selected machine learning approach and methods to

effectively detect anomalies?”

Geospatial-temporal behaviour of a ship, along with the contributing behavioral factors, can be inte-
grated into the model using features. AIS data logs were used to generate trajectories per ship, with
a defined duration. For each trip features were generated, representing the ship motion and the influ-
encing factors of behaviour. Features that were selected to detect the anomalous behaviour drifting,
are the mean, standard deviation, maximum, minimum, 10% quantile, median, 90% quantile and skew-
ness of the SOG and ROT values, in addition the length to beam ratio was used. Furthermore, the
location where the ship has been during the voyage has been taken into account as spatial properties.
Theses spatial properties consisted of information about whether the ship crossed the anchorage area,
approach area, wind safety zone and TSS. As a final feature, metocean conditions have been added,
namely velu, velv, swh, mwd, u10 and v10. Which represent the eastward- and northward component
of the velocity, the significant wave height of combined wind waves and swell, mean wave direction and
eastward- and westward component of the wind speed at 10 meters above the surface respectively.
Trips, with its characterizing features, are plotted as points on a two dimensional embedding using
DensMap. Trips with similar features are expected to be plotted close to each other. After the points
are plotted the LOF is used to determine the local outliers, the lower the LOF value, the more the point
is seen as an outlier. The LOF is determined based on the number of closest neighbors, which is set
to 20, and the contamination value, which can be adjusted. The contamination value determines what
percentage of the total number of points/ trips is labeled as an outlier.

Sub-question 5

”Can the selected anomalous behaviour be detected by the model, what is the detection speed, and
does the model have the potential to detect other types of anomalous behaviour?””

To test if the model can detect the selected anomalous behaviour, a case study has been conducted.
A combination of features, trip duration and model setting determines the accuracy of the detection.
The case study was about the drifting ship Julietta D.. AIS data of 2 days in 2022 were used when
the drifting occurred as well as the concerned area of the North Sea. A filter for cargo ships was
applied and the trip duration was set to 30 minutes. The following features were selected to detect the
Julietta D.: mean, standard deviation, maximum, minimum, 10% quantile, median, 90% quantile and
skewness of the SOG and ROT values, in addition the length to beam ratio, spatial properties (crossing
anchorage area, approach area, wind safety zone and TSS) and metocean conditions (velu, velv, swh,
mwd, u10 and v10). The number of neighbors was set to 20 and the contamination value was set to
1%. This resulted in the model successfully detecting the Julietta D in the aforementioned AIS data set.
To check the speed of the detection the trip duration was adjustable as well as the ’start’ time of the
trajectories. This start time was set as the time the Julietta D. started drifting, namely 10:30 AM. To be
able to determine the detection speed of the Julietta D., the model should detect the first 30 minutes
of the drifting trajectory, and it successfully did so. It can now be concluded that the ship was detected
in 30 minutes, which is faster than the time it took the Julietta D. from the start of the drift to hitting the
platform under construction (after 4 hours and 6 minutes) and the windfarm transition section (after 49
minutes). Finally, to determine if the model has potential to detect other types of anomalous behaviour,
trajectories of different clusters of points in the embedding were plotted. The model can detect drifting
vessels, if the vessel is anchored outside the port, and if a vessel displays a sudden change of speed.
In addition, the model has potential to detect if a vessel is in a specified area, if a vessel displays sudden
change of heading and if a vessel is present at a location at a certain time of the day. In these cases,
features like heading, presence of the trajectory in a specified area and a time component should be
added as features. An overview of the possibility to detect different types of behaviour was made.
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Research question

”How can machine learning enable operators to detect anomalous cargo vessel behaviour with
potential safety implications, on the North Sea, more quickly, validated against historical data from a

known incident?”

To enable operators to detect anomalous cargo vessel behaviour, with potential safety implications,
more quickly, a detection model for unsupervised AIS data was developed. The goal of the detection
model is to highlight vessels exhibiting anomalous behaviour, specifically drifters, in order to support
the Coast Guard. This model showed that detection of the drifting ship Julietta D. was successful and
possible within 30 minutes, while the time between the vessel drifting and the vessel making contact
with the wind farm transition section under construction, was 49 minutes. This model showed potential
to detect more anomalous behaviour types by improving features, adjusting trip durations and model
settings.

Regarding the requirement of the detection model with respect to operational use:

• detection should be fast: could detect a vessel in 30 minutes.
• be easily explainable (EML): the points in the embedding were visualized as trajectories on the
North Sea.

• instill confidence: plotting the trajectories of groups in the embedding, revealed vessels exhibiting
similar behaviour.

• be interpretable: the feature importance of the groups was visualized.
• detection should be accurate: the Julietta D. was detected, but false positives and false negatives
were not tested.

• number of alarms should be limited and gradual implementation of the model: outside the scope
of this research.

Regarding the requirement of the detection model with respect to operational use:

• scalability: the model has the possibility to cover the entire North Sea while maintaining a fast run-
time by dividing the area into multiple tiles, each their own trips, embedding and outlier detection.
The run-time for creating the embedding was 16 seconds and the run-time for the outlier detection
a few seconds. The features can be computed parallel.

• capable of integration with other data sources and rule: the metocean conditions and locations
of areas on the North Sea were integrated into the model.

• capable of real-time processing: the model has the possibility for real-time processing, provided
that the embeddings for the North Sea tiles have already been created. New trips can be added
to the embedding over time.

• a user friendly interface: this was outside the scope of the research.

6.5. Future research
General recommendations for future research are divided into recommendations of materials, method-
ology (approach, method and model steps), validation and operational setting. The main recommen-
dations for enhancement of the model is to add the heading and a time component as a feature and
incorporate a global outlier detection method. Furthermore, test and improve the model with a labeled
dataset and validate the model with publicly available AIS data.

Materials recommendations: IVSnext and Lloyds Register can enhance the accuracy of ship dimen-
sion information, such as lenght, width, height and draught. Additionally, IVS includes data on the
weight of cargoes carried by vessels. However, there are limitations due to the need to comply with
the General Data Protection Regulation (GDPR) (Zagonjolli et al., 2024).

Methodological recommendations, approach and method: For future research, it is recommended
to utilize labeled datasets of known incidents to verify the detection method and to identify features
associated with different types of behaviour. This shift from unsupervised to a supervised machine
learning approach will enhance the detection of known behaviour types. In the embedding clusters
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can be identified using techniques such as DBSCAN. Subsequently, SHAP can be applied to assess
feature importance within each cluster (Rong et al., 2024). Finally, local outliers and global outliers can
be detected. By improving these features, the accuracy of identifying behaviour types and consequently
the accuracy of detecting anomalous behaviour types can be significantly enhanced. Furthermore, the
methodology can be expanded from merely detecting anomalous behaviours to classifying anomalous
behaviour types through clustering techniques.

Methodological recommendations, model steps: For the future research, it would be beneficial to
incorporate the following information into the AIS data: the heading, navigational status and duration
or time elapsed (to verify whether trips have the same duration). Information about distances from
ship to objects or other ships would also be interesting. As a first improvement for the features it is
recommended to add a time element. This time element can be defined by indicating whether a ship
is operating in the morning, afternoon, evening, or at night. Additionally, the four seasons could be
added as a feature as this relates to the traffic density on the waterways. Alternatively, traffic density
or interaction with other ships could be incorporated into the model, but determining the local traffic
density at a given moment in time is challenging. In Chapter 3 multiple features were proposed for
ship abnormal behaviour types. It is recommended to include the detour factor, maximum drift angle,
accumulative COG change and delta COG (Rong et al., 2024).

Validation recommendations: It is recommended to further scale the model, both in space and in time.
From one tile in the North Sea to the entire North Sea covered with tiles, or even globally. Different
embeddings for each tile can be analysed, taking into account various zoom levels of the tiles and the
positioning of their boundaries. In addition, the model can be tested using publicly available American
AIS data. This will allow for comparisons between behaviours observed in the Dutch part of the North
Sea and those in American waters. Additionally, behaviours and features of maritime vessels can be
compared with inland vessels. It is recommended to use themodel for a longer duration than the current
two days, around three to five years, to assess how the embeddings deviate with a longer time duration
and to verify the effectiveness of the detection, including additional global detection. These checks can
also be conducted using data containing all vessel type codes, without filtering for cargo and tanker
ships. Furthermore, it is advisable to test a wider range or drifting ships and anomalous behaviour
types. Additionally, the model has not yet been evaluated for performance, particularly regarding the
accuracy of its detection. This should be validated using a confusion matrix, for example.

Operational recommendations

With the current model, a demonstration or interactive workshop can be given regarding its functionality
by displaying the embedding and the outlier detection of abnormal behaviour with its trajectories. This
was illustrated in Chapter 5 about the results, and with the workshop (see Appendix B). The detection
of abnormal behaviour by operators using the model can be compared to the detection of abnormal
behaviour by the operators’ current methods in a test environment. Additionally, it is interesting to ex-
plore whether a similar method can contribute to the detection of security aspects in maritime traffic. To
operationalize the model, the following steps are recommended. First, embeddings should be created
for each tile in the North Sea. These embeddings should encompass trips that include AIS data from
a period of at least three to five years, preferably as recent as possible. Before extending the duration,
it would be beneficial to first test the comparison of embeddings from different seasons or from single
years. When determining the minimum duration of the AIS data, it is important to consider changes
in the spatial layout of the North Sea over time, societal events that may affect navigational behaviour
and movements (such as during the COVID-19 restrictions and the blockage of the Suez Canal), and
variations in weather conditions, including exceptional weather events.

During this research, the Microsoft Planetary Computer hub was utilized for larger calculations, how-
ever, this was taken out of service midway through the project. While Delft Blue was an alternative,
the time required to learn the new program prevented its implementation in this research. Additionally,
there was an aim to use labeled data, but the process of obtaining additional data proved to be time-
consuming due to privacy laws and application procedures. In the field of monitoring maritime traffic
with AIS data combined with machine learning techniques, there are still many opportunities to explore.
Ensuring the safety and security of maritime traffic in the North sea is urgently needed due to the rapid
increase in wind turbines, developments in maritime traffic and geopolitical tensions.
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A
Visit Coast Guard Center

On July 10 2024, a visit wasmade at the Coast Guard centre in Den Helder. This gave the opportunity to
know more about the duties of the Coast Guard, to show the progress of the model for the research and
to ask questions to the Coast Guard and to operators of the operational center regarding the research.
The next four pages show the key points of the visit in Dutch (’Hoofdpunten bezoek kustwacht 10-07-
2024’) and translated to English (’Main points visit Coast Guard 10-07-2024’).
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Hoofdpunten bezoek kustwacht 10-07-2024  
Jessica en Solange 

Aanwezigen: Rein de Lange (beleidsadviseur kustwacht NL), Arnold Boomstra (Innovatie en inlichtingen 
kustwacht NL), Nienke Veldhuizen (Maritime Securty Officer kustwacht NL), Gert-Jan Post (NVWA), Solange 
van der Werff (TU Delft),  Jessica van den Heuvel (TU Delft). 

 

Algemeen over de Kustwacht 

- De Kustwacht voert opdrachten uit voor de volgende ministers: de Minister van Infrastructuur en 
Waterstaat, de Minister van Justitie en Veiligheid, de Minister van Financiën, de Minister van 
Economische Zaken en Klimaat en de Minister van Landbouw, Natuur en Voedselkwaliteit. Daarbij werkt 
de Kustwacht samen met o.a. NVWA, Douane, Politie, Marechaussee, RWS.  

- Investeringen worden volgens een verdeelsleutel over al deze partijen verdeeld.  
- Er zijn veel verschillende afbakeningen van werkterreinen, bijv. SAR vs survey/monitoren vs luchtruim vs 

economische zone. Dit kan operaties bemoeilijken, omdat er soms andere landen verantwoordelijk zijn 
voor een bepaalde taak in een bepaald gebied.  

- De komende tijd gaat de Kustwacht enorm uitbreiden qua personeel. Het is moeilijk om goede mensen te 
vinden vanwege de locatie in Den Helder, maar ook omdat vooralsnog geeist wordt dat mensen hebben 
gevaren (en die vijver is klein). Met betere technische ondersteuning zou het waarschijnlijk makkelijker 
worden voor mensen met een andere (nautische) achtergrond om het werk te doen.  

 

Beeldopbouw 

- De term “beeldopbouw” wordt veel gebruikt: het kan beschreven worden als het samenbrengen van 
verschillende bronnen van informatie om in te schatten wat er ergens gebeurt.  

- Het is voor operators soms moeilijk om rekening te houden met actuele regels, zoals invaarverboden in 
natuurgebieden of bij militaire oefeningen, of wie er geautoriseerd is om een windmolenpark in te varen 
(permits variëren van een paar uur tot een paar dagen). Een applicatie waarbij verschillende kaartlagen 
aan elkaar gekoppeld worden zou wenselijk zijn, om actueel te zien of een bepaald schip geautoriseerd is 
om zich er te begeven.  

- De Kustwacht vervult de monitoring/handhavingstaak op basis van informatie uit twee hoofdrichtingen:  
• Het monitoren van de actuele situatie door middel van schermen en communicatiemiddelen (d.m.v. 

meldingen). Op de schermen zijn actuele scheepsposities te zien, en indien nodig kan een bepaalde 
historie (traject, herkomst) worden opgevraagd. Hierbij wordt ook veel gebruik gemaakt van 
openbare bronnen zoals MarineTraffic. De operators houden dus zelf op basis van actuele posities 
in de gaten of schepen zich bijvoorbeeld ongewoon lang ergens ophouden, of precies boven een 
pijpleiding stil gaan liggen.  

• “Intel”: onder andere door zaken die aan het licht komen binnen de MIK-NL (Maritiem Informatie 
Knooppunt), hierbij zitten diverse autoriteiten (politie, douane, kustwacht, etc) fysiek samen om 
informatie uit te wisselen. 

- Als hier opmerkelijke dingen in naar voren komen, kan er bijvoorbeeld contact gezocht worden met de 
schipper of gevraagd worden of het vliegtuig poolshoogte gaat nemen. 



Handelen  

- Op dit moment worden er ook alarmen afgegeven, maar dit zijn er eigenlijk al te veel, waardoor het risico 
bestaat dat ze niet meer serieus worden genomen. De operator gaf aan dat als er bijv elke 10 minuten een 
alarm afgaat, dit teveel afleidt en ervoor zou kunnen zorgen dat ze niet worden opgevolgd.  

- De operator gaf ook aan dat als er een alarm is, hij eigenlijk meteen wil kunnen zien wat de reden ervoor 
is (wat maakt dat het schip als afwijkend wordt aangemerkt).  

- De context speelt naast ervaring een belangrijke rol bij het inschatten en bepalen of vaargedrag afwijkend 
is of te verklaren valt (voorbeeld permits). 

- Hoe snel afwijkend gedrag opgemerkt kan worden verschilt per situatie. 
- Er wordt direct veel geïnterpreteerd en meteen naar verschillende bronnen gekeken. Op basis daarvan 

wordt vaak het één en ander even aangekeken. Bijvoorbeeld:  
• Tankers die ergens gaan stil liggen om een hogere olieprijs af te wachten.  
• Schepen die plotseling vertragen, omdat ze weten dat hun terminal pas later beschikbaar is. De 

operator zou dan even kijken in de “ETA” van het schip om te zien hoe laat het ergens aan zou moeten 
komen.  

- In sommige gevallen is juist meteen duidelijk dat er actie nodig is:  
• Bij de Julietta D. was meteen duidelijk dat er iets mis was, vanwege de kleine afstand tussen twee 

schepen in het ankergebied. Daarbij was de orientatie van het schip anders dan verwacht. 
• Schepen die pal boven een elektriciteitskabel of pijpleiding liggen, zijn ook meteen ‘verdacht’.  

 

Afwijkingen herkennen  

- De EMSA categorisering was bij de meesten in de ruimte wel bekend. Het “regelgebaseerd” opereren 
werd ook wel herkend. Het leek ook goed over te komen welke ‘ruimte’ we nog proberen te vullen met 
onze aanpak.  

- Er wordt snel een link gelegd naar de praktijk en hoe de aanpak daar zou (kunnen) werken. Ze zouden 
graag zien dat dit in een soort workshop vorm wordt gedaan. We hebben aangegeven dat dit op termijn 
zou kunnen, maar buiten de scope van Jessica’s onderzoek ligt. 

- Er werd aangegeven dat de implementatie van dit soort nieuwe technieken in kleine stapjes moet gaan, 
zodat de veranderingen voor operators niet te groot worden.  

 

Conclusies/verdere ideeën  

- Omdat het moeilijk is om meteen de goede balans te vinden in het aantal anomalies dat een alarm 
veroorzaakt, kan ik me voorstellen dat je eerst een applicatie maakt waarin een operator kan zien welke 
schepen zich het meest afwijkend gedragen, zonder daar een alarm aan te koppelen, dat ze tussen hun 
werkzaamheden door af en toe kunnen raadplegen. Hiermee zouden ze misschien kunnen ‘wennen’ aan 
de AI-ondersteuning en er vertrouwen in krijgen. 

- Sommige gedragingen zijn mogelijk niet eens bekend, hier kan deze aanpak aan bijdragen.  

 

 

 



Main points visit Coast Guard 10-07-2024  
Jessica en Solange 

Attendees: Rein de Lange (beleidsadviseur kustwacht NL), Arnold Boomstra (Innovatie en inlichtingen 
kustwacht NL), Nienke Veldhuizen (Maritime Securty Officer kustwacht NL), Gert-Jan Post (NVWA), Solange 
van der Werff (TU Delft), Jessica van den Heuvel (TU Delft). 

 

General about the Coast Guard 

- The Coast Guard carries out tasks for the following ministers: the Minister of Infrastructure and Water 
Management, the Minister of Justice and Security, the Minister of Finance, the Minister of Economic 
Affairs and Climate and the Minister of Agriculture, Nature and Food Quality. In doing so, the Coast 
Guard cooperates with NVWA, Customs, Police, Marechaussee, RWS, among others.  

- Investments are shared among all these parties according to a distribution key.  
- There are many different demarcations of working areas, e.g. SAR vs survey/monitoring vs airspace vs 

economic zone. This can complicate operations, because sometimes other countries are 
responsible for a particular task in a particular area.  

- In the coming period, the Coast Guard is going to expand enormously in terms of personnel. It is 
difficult to find good people, because of the location in Den Helder, but also because, for the time 
being, it is required that people have sailed. With better technical support, it would probably become 
easier for people with a different (nautical) background to do the job.  

 

Image building 

- The term ‘image building’ is widely used: it can be described as bringing together different sources of 
information to assess what is happening somewhere.  

- It is sometimes difficult for operators to take into account current rules, such as entry bans in nature 
reserves or military exercises, or who is authorised to enter a wind farm (permits vary from a few 
hours to a few days). An application linking different map layers would be desirable, to see up-to-
date  whether a particular vessel is authorised to enter.  

- The Coast Guard performs the monitoring/enforcement task based on information from two main 
directions:  

• Monitoring the current situation through screens and means of communication (through 
reports). The screens show current vessel positions, and if necessary, a certain history 
(trajectory, origin) can be requested. This also makes extensive use of public sources such 
as MarineTraffic. The operators thus monitor themselves, based on current positions, 
whether, for example, ships are holding up somewhere unusually long, or stopping precisely 
over a pipeline.  

•  “Intel”: among other things, due to cases that come to light within the MIK-NL (Maritiem 
Informatie Knooppunt), where various authorities (police, customs, coastguard, etc) 
physically sit together to exchange information. 

- If noteworthy things come to light in this, the skipper can be contacted, for example, or asked if the 
aircraft will go and take a look. 



Act 

- At the moment, alarms are also issued, but there are actually too many of them already, risking that 
they are no longer taken seriously. The operator indicated that if e.g. an alarm goes off every 10 
minutes, this is too distracting and could cause them not to be followed up.  

- The operator also indicated that if there is an alarm, he actually wants to be able to see immediately 
what the reason for it is (what makes the ship marked as anomalous).  

- In addition to experience, context plays an important role in assessing and determining whether 
sailing behaviour is deviant or explainable (example permits). 

- How quickly anomalous behaviour can be noticed varies from situation to situation. 
- A lot is immediately interpreted and various sources are immediately looked at. Based on that, things 

are often looked at for a while. For example:  
• Tankers that come to a halt somewhere to await a higher oil price.  
• Ships that suddenly slow down, because they know their terminal won't be available until 

later. The operator would then take a quick look at the ship's ‘ETA’ to see what time it should 
arrive somewhere. 

- In some cases, on the contrary, it is immediately clear that action is needed:  
• In the case of the Julietta D., it was immediately clear that something was wrong, because of 

the small distance between two ships in the anchorage area. In addition, the ship's 
orientation was different than expected. 

• Ships lying directly over a power cable or pipeline are also immediately ‘suspicious’.  

 

Recognize anomalies 

- The EMSA categorisation was familiar to most in the room. The “rule-based” operation was also well 
recognised. It also seemed to come across well what ‘space’ we are still trying to fill with our 
approach.  

- A link is quickly made to practice and how the approach could (potentially) work there. They would 
like to see this done in some kind of workshop format. We indicated that this could eventually be 
done, but is beyond the scope of Jessica's research. 

-  It was indicated that the implementation of these kinds of new techniques should be done in small 
steps, so that the changes for operators do not become too big. 
 

Conclusions/further ideas  

- Since it is difficult to immediately get the right balance in the number of anomalies that trigger an 
alarm, I can imagine first creating an application where an operator can see which ships are behaving 
the most anomalous, without attaching an alarm to it, that they can consult from time to time in 
between their work. This might allow them to ‘get used to’ AI support and gain confidence in it.  

- Some behaviours may not even be known, this is where this approach could help.  
 



B
Opinion specialists (workshop)

On the third of June 2024 a workshop (in Dutch and partly in English) was conducted at a gathering
regarding Nautical Safety and AIS data. At this gathering specialists were present from the Coast
guard, Rijkswaterstaat, MARIN, Deltares and TU Delft. During the workshop the version of the model
at that time until the embedding (DensMap) was shown, which followed from AIS data from 31-01-2021
and 01-02-2021 at the time of the incident of the Julietta D including all types of vessels and part of
the inland waters. With visualisations, the sailed trip could be shown from one or multiple points in the
embedding, this allowed trips of ships with the same features or behaviour to be shown (see Figures
B.1 and B.2 ). In addition, features of the groups were displayed. During the workshop specialists
provided comments and suggestions, which are listed in the table below (see Table B.1).
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Figure B.1: Example figures of workshop of sailing ships with detours

Figure B.2: Example figures of workshop of anchored ships
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C
EMCIP taxonomy

The European Marine Casualty Information Platform (EMCIP) stores and analyses data on marine
casualties and incidents in Europe. A codification was made for systematic investigation of marine
casualties and incidents. Different elements from the root of events are connected to the consequences
(see Figure C.1).

The EMCIP taxonomy (European Maritime Safety Agency, 2023):

• Capsizing/Listing: is a casualty where the ship no longer floats in the right-side-up mode due to
negative initial stability (negative metacentric height), or transversal shift of the centre of gravity,
or the impact of external forces.

– Capsizing: when the ship is tipped over until disabled;
– Listing: when the ship has a permanent heel or angle of loll.

• Collision: a casualty caused by ships striking or being struck by another ship, regardless of
whether the ships are underway, anchored or moored. This type of casualty event does not
include ships striking underwater wrecks. The collision can be with other ship or with multiple
ships or ship not underway.

• Contact: a casualty caused by ships striking or being struck by an external object. The objects
can be: Floating object (cargo, ice, other or unknown); Fixed object, but not the sea bottom; or
Flying object.

• Damage to equipment: damage to equipment, system or the ship not covered by any of the
other casualty type.

• Grounding/stranding: a moving navigating ship, either under command, under Power, or not
under command, Drift(ing), striking the sea bottom, shore or underwater wrecks.

• Fire/explosion: an uncontrolled ignition of flammable chemicals and other materials on board of
a ship:

– Fire: is the uncontrolled process of combustion characterised by heat or smoke or flame or
any combination of these.

– Explosion: is an uncontrolled release of energy which causes a pressure discontinuity or
blast wave.

• Flooding/foundering: is a casualty event when the ship is taking water on board.

– Foundering: will be considered when the vessel has sunk. Foundering should only be
regarded as the first casualty event if we do not know the details of the flooding which caused
the vessel to founder. In the chain of events foundering can be the last casualty event in this
case there is the need to add accidental events.

– Flooding: refers to a casualty when a vessel takes water on board and can be:
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* Progressive: if the water flow is gradual.

* Massive: if the water flow is extensive.
• Hull failure: a failure affecting the general structural strength of the ship.
• Loss of control: a total or temporary loss of the ability to operate or manoeuvre the ship, failure
of electric power, or to contain on board cargo or other substances:

– Loss of electrical power: is the loss of the electrical supply to the ship or facility;
– Loss of propulsion power: is the loss of propulsion because of machinery failure;
– Loss of directional control: is the loss of the ability to steer the ship;
– Loss of containment: is an accidental spill or damage or loss of cargo or other substances
carried on board a ship.

• Missing: a casualty to a ship whose fate is undetermined with no information having been re-
ceived on the loss and whereabouts after a reasonable period of time.

• Non-accidental events: are intentional events as a result of illegal or hostile acts therefore they
are not marine casualties or incidents. They are:

– Acts of war: any act, against a ship or the people on board, by a State that would effectively
terminate the normal international law of peacetime and activate the international law of war;

– Criminal acts: any crime, including an act, omission, or possession under the laws of a
State or local government, which poses a substantial threat to people on board of a ship or
to property (e.g. terrorism, sabotage, piracy);

– Illegal discharge: is an intentional discharge of polluting substances, oil or other noxious
substances, from ships; and

– Other: other intentional act that incur loss of or damage to a ship or environmental damage
or harm to people on board.

Non-accidental events are not considered as marine casualties or incidents and are not covered
by the scope of the Accident Investigation Directive (2009/18/EC).
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Figure C.1: EMCIP model with occurrence casualty event with a ship

Source: European Maritime Safety Agency (2023)



D
Vesseltype codes AIS data

Vesseltype codes in AIS data give a description of the ship and cargo classification. Marine Cadastre
made an overview of all the vesseltype and group codes (NOAA Office for Coastal Management, 2024)
(see next page). Cargo ships cover the AIS Vessel Code numbers 70 until 79 and for Vessel types
1003, 1004 and 1016 are included as well. Tankers cover the AIS Vessel Code numbers 80 until 89
and for Vessel Types 1017 and 1024 are included as well.
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Cargo

Fishing

Military

Not Available

Other

Passenger

Pleasure Craft/Sailing

Tanker

Tug Tow sources: U.S. Coast Guard, NOAA, BOEM

Vessel Group (2018) Vessel Type (2018) AIS Vessel Code AIS Ship & Cargo Classification

Not Available 0 0 Not available or no ship, default

Other 1-19 1-19 Reserved for future use

Other 20 20 Wing in ground (WIG), all ships of this type

Tug Tow 21 21 Wing in ground (WIG), hazardous category A

Tug Tow 22 22 Wing in ground (WIG), hazardous category B

Other 23 23 Wing in ground (WIG), hazardous category C

Other 24 24 Wing in ground (WIG), hazardous category D

Other 25 25 Wing in ground (WIG), reserved for future use

Other 26 26 Wing in ground (WIG), reserved for future use

Other 27 27 Wing in ground (WIG), reserved for future use

Other 28 28 Wing in ground (WIG), reserved for future use

Other 29 29 Wing in ground (WIG), reserved for future use

Fishing 30 30 Fishing

Tug Tow 31 31 Towing

Tug Tow 32 32 Towing: length exceeds 200m or breadth exceeds 25m

Other 33 33 Dredging or underwater operations

Other 34 34 Diving operations

Military 35 35 Military operations

Pleasure Craft/Sailing 36 36 Sailing

Pleasure Craft/Sailing 37 37 Pleasure Craft

Other 38 38 Reserved

Other 39 39 Reserved

Other 40 40 High speed craft (HSC), all ships of this type

Other 41 41 High speed craft (HSC), hazardous category A

Other 42 42 High speed craft (HSC), hazardous category B

Other 43 43 High speed craft (HSC), hazardous category C

Other 44 44 High speed craft (HSC), hazardous category D

Other 45 45 High speed craft (HSC), reserved for future use

Other 46 46 High speed craft (HSC), reserved for future use

Other 47 47 High speed craft (HSC), reserved for future use

Other 48 48 High speed craft (HSC), reserved for future use

Other 49 49 High speed craft (HSC), no additional information

Other 50 50 Pilot Vessel

Other 51 51 Search and Rescue vessel

Tug Tow 52 52 Tug

Other 53 53 Port Tender

Other 54 54 Anti-pollution equipment

Other 55 55 Law Enforcement

Other 56 56 Spare - for assignment to local vessel

Other 57 57 Spare - for assignment to local vessel

Other 58 58 Medical Transport

Other 59 59 Ship according to RR Resolution No. 18

Marine Cadastre Project
AIS Vessel Type and Group Codes used by the

2018 -05-23

Vessel Group (2018) key



Passenger 60 60 Passenger, all ships of this type

Passenger 61 61 Passenger, hazardous category A

Passenger 62 62 Passenger, hazardous category B

Passenger 63 63 Passenger, hazardous category C

Passenger 64 64 Passenger, hazardous category D

Passenger 65 65 Passenger, reserved for future use

Passenger 66 66 Passenger, reserved for future use

Passenger 67 67 Passenger, reserved for future use

Passenger 68 68 Passenger, reserved for future use

Passenger 69 69 Passenger, no additional information

Cargo 70 70 Cargo, all ships of this type

Cargo 71 71 Cargo, hazardous category A

Cargo 72 72 Cargo, hazardous category B

Cargo 73 73 Cargo, hazardous category C

Cargo 74 74 Cargo, hazardous category D

Cargo 75 75 Cargo, reserved for future use

Cargo 76 76 Cargo, reserved for future use

Cargo 77 77 Cargo, reserved for future use

Cargo 78 78 Cargo, reserved for future use

Cargo 79 79 Cargo, no additional information

Tanker 80 80 Tanker, all ships of this type

Tanker 81 81 Tanker, hazardous category A

Tanker 82 82 Tanker, hazardous category B

Tanker 83 83 Tanker, hazardous category C

Tanker 84 84 Tanker, hazardous category D

Tanker 85 85 Tanker, reserved for future use

Tanker 86 86 Tanker, reserved for future use

Tanker 87 87 Tanker, reserved for future use

Tanker 88 88 Tanker, reserved for future use

Tanker 89 89 Tanker, no additional information

Other 90 90 Other Type, all ships of this type

Other 91 91 Other Type, hazardous category A

Other 92 92 Other Type, hazardous category B

Other 93 93 Other Type, hazardous category C

Other 94 94 Other Type, hazardous category D

Other 95 95 Other Type, reserved for future use

Other 96 96 Other Type, reserved for future use

Other 97 97 Other Type, reserved for future use

Other 98 98 Other Type, reserved for future use

Other 99 99 Other Type, no additional information

Other 100 to 199 100 to 199 Reserved for regional use

Other 200 to 255 200 to 255 Reserved for future use

Other 256 to 999 256 to 999 No designation

Vessel Group (2018) VesselType (2018) AVIS Vessel Service

Other - - null

Fishing 1001 - Commercial Fishing Vessel

Fishing 1002 - Fish Processing Vessel

Cargo 1003 - Freight Barge

Cargo 1004 - Freight Ship

Other 1005 - Industrial Vessel

Other 1006 - Miscellaneous Vessel

Other 1007 - Mobile Offshore Drilling Unit

Other 1008 - Non-vessel



Other 1009 - NON-VESSEL

Other 1010 - Offshore Supply Vessel

Other 1011 - Oil Recovery

Passenger 1012 - Passenger (Inspected)

Passenger 1013 - Passenger (Uninspected)

Passenger 1014 - Passenger Barge (Inspected)

Passenger 1015 - Passenger Barge (Uninspected)

Cargo 1016 - Public Freight

Tanker 1017 - Public Tankship/Barge

Other 1018 - Public Vessel, Unclassified

Pleasure Craft/Sailing 1019 - Recreational

Other 1020 - Research Vessel

Military 1021 - SAR Aircraft

Other 1022 - School Ship

Tug Tow 1023 - Tank Barge

Tanker 1024 - Tank Ship

Tug Tow 1025 - Towing Vessel



E
Feature options and spatial properties

Table E.1: AIS data specifications

Source: Spire Global (2024)

AIS data columns
Data
columns

Description range and unit

timestamp
[string]

ISO8601 formatted timestamp in UTC
of the time the AIS message was trans-
mitted

UTC

latitude
[float]

Vessel latitude in degrees (North = pos-
itive, South = negative)

-90 to +90

longitude
[float]

Vessel longitude in degrees (East =
positive, West = negative)

-180 to +180

sog Speed Over Ground 0 till 102.2 knots (102.3: not available)
cog Course Over Ground 0 till 359.9 degrees (360.0: not available)
rot Vessel rate of turn -127 till 127 degrees (-128: not available)
length Vessel length from ship dimensions

to_bow and to_stern
meters

width Vessel width from ship dimensions
to_port and to_starboard

meters

heading Vessel true heading 0 till 359 degrees (511: not available)
maneuver Vessel maneuver code 0 (not available; default), 1 (not engaged in

special maneuver), 2 (engaged in special ma-
neuver)
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Table E.2: AIS data, additional columns added with functions of MovingPandas (f) or manually added (m)

Source: (MovingPandas develeopers, 2024)

Additional columns AIS data
Data
columns

Description range and or unit

acceleration
(f)

Acceleration between current point and
the previous

For geographic projections [m/s2] for other
projections [CRS units/s2]

angular dif-
ference (f)

Calculated as absolute smaller angle
between direction for points along the
trajectory. Not reliable, because abso-
lute diff!

[0,180.0]

direction (f) Direction between consecutive loca-
tions

[0,360] in degrees, starting from North turning
clockwise

distance (f) Computed between the current point
and the previous

If no units have been declared for geographic
projections (EPSG:4326 WGS84), in meters
for other projections, in CRS units

speed (f) Computed between the current point
and the previous

If no units have been declared for geographic
projections [m/s], for other projections [CRS
units/sec]

time elapsed
(m)

Time elapsed between 2 signals seconds

speed differ-
ence (m)

Diff. in speed between current point
and the previous

see speed

cog differ-
ence (m)

Diff. in cog between current point and
the previous

see cog

direction dif-
ference (m)

Diff. in direction between current point
and the previous

see direction

ROT Newly defined ROT instead of original
rot. Equal to angular difference / time
elapsed in minutes

degrees/ minutes
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Table E.4: Applied spatial properties for drifters and dragging anchors

Source: (Free Software Foundation, 1991)

Category Spatial property Dutch description in QGIS
Navigation Traffic Separation

Scheme (TSS)
Verkeersscheidingsstelsel

Approach area Aanloopgebied (hetzelfde als
huidige_aanloopgebieden)

Anchorage area Ankergebieden
North Sea Economic zone North Sea dhv_exl_economische_zone
Wind Permitted wind farms

safety zones
Vergunde windparken veiligheid-
zones
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Figure E.1: Selection of optional spatial properties

Source: (Free Software Foundation, 1991)
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Table E.5: Optional spatial properties

Source: (Free Software Foundation, 1991)

Category Spatial property Dutch description in QGIS
Military Military areas (former

ammunition dump, mine
clearance training area,
firing range/unsafe zone)

Militaire gebieden (voormalige
munitiestrotplaats, oefengebied
mijnenruimen, schietterrein/ on-
veilige zone)

Navigation Traffic separation scheme Verkeersscheidingsstelsel
Shipping infrastructure Scheepsinfrastructuur
Approach area Aanloopgebied (hetzelfde als

huidige_aanloopgebieden)
Anchorage area Ankergebieden
Safety zones Veiligheidszones
Passage through wind-
farm

Passage

Dredging - -
North Sea Economic zone North Sea dhv_exl_economische_zone
Infrastructure Monitoring network (buoy,

platform, platform+buoy,
measuring pole)

Meetnet (boei, platform, plat-
form+boei, meetpaal)

Control cables north
sea, electricity cables,
pipelines, telecom cables

Bedieningskabels_noordzee,
electra_kabels_noordzeek
pijleidingen_noordzee, tele-
com_kabels_noordzee

Wind Permitted wind farms
safety zones (offshore
high voltage station and
windpark)

Vergunde windparken veiligheid-
zones (offshore high voltage sta-
tion and windpark)

Designated wind areas Aangewezen windgebieden
Wind farms_turbines
(turbine, offshore high-
voltage substation, future
offshore high-voltage
substation, offshore sub-
station, Delft offshore
turbine monopile)

windparken_turbines (turbine,
offshore hoogspanningsstation,
toekomstig offshore hoogspan-
ningsstation, offshore sub-
station, Delft offshore turbine
monopile)

Permitted wind farms (in
use, under construction,
in design, undern develop-
ment)

Vergunde windparken (in ge-
bruik, in aanbouw, in ontwerp, in
ontwikkeling)



F
Details wind farms North Sea

The wind farms are under construction. The AIS data covers the first 2 months of 2022, so it will be
established which wind farms were under construction in this period (Rijksoverheid, 2024):

1. Borssele: In use since 2021.
2. Hollandse Kust Zuid: Under construction since 2021.
3. Hollandse Kust Noord: Under construction since October 2022.
4. Hollandse Kust West: The construction started in 2023.
5. IJmuiden Ver - Tender 2024
6. Nederwiek - Tender 2026
7. Ten noorden van Waddeneilanden - Tender 2027 (The Gemini WindFarm is in use since 2017)
8. Doordewin - Tender 2027

The wind farms that should be taken into account for January and February 2022 are the numbers 1
and 2 of which 2 is present in the area of the AIS data (visible in appendix E).
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Figure F.1: Offshore Wind Energy Roadmap April 2024

Source: (Netherlands Enterprise Agency, 2024)



G
Distribution of features from AIS data

To visualize the distribution of the features, a histogram has been created using features from 1-hour
trips.
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Figure G.1: Histrogram of spatial properties, with trips of 1 hour

Figure G.2: Histrogram of metocean conditions: SOG, with trips of 1 hour
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Figure G.3: Histrogram of ship motion features: SOG, with trips of 1 hour
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Figure G.4: Histrogram of ship motion features: ROT and L/B ratio, with trips of 1 hour



H
Sudden changes in speed

The standard deviation of SOG provides insight into sudden changes in speed. Figure H.2 shows a
high standard deviation of SOG compared to the average value for this feature.
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Figure H.1: Selected group for sudden change of speed: embedding

Figure H.2: Selected group for sudden change of speed: feature importance

Figure H.3: Selected group for sudden change of speed: trajectories
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