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Look up at the stars and not down at your feet.
Try to make sense of what you see,

and wonder about what makes the universe exist.
Be curious.

Stephen Hawking
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PREFACE

The present thesis is written under the project MICtoMEC: Extensive quantification of
microstructure features and statistical relations with mechanical behaviour –from sta-
tistical relations to physical understanding–.
This research was carried out under project number S41.5.14547b in the framework of
the Partnership Program of the Materials innovation institute M2i (www.m2i.nl) and the
Technology Foundation TTW (www.stw.nl), which is part of the Netherlands Organiza-
tion for Scientific Research (www.nwo.nl).
The project was initiated with the idea of bringing together material scientists and math-
ematicians to closely work on the structure-properties relation problem for metals.
I was appointed for facing the mathematical/statistical side of the problem and, though I
found the project particularly interesting, my knowledge about materials and especially
metals was quite poor.
During my research, the collaboration with materials scientists and with people from in-
dustry such as Tata Steel, was fundamental for broadening my knowledge in this field.
At the same time, the variety of data and statistical problems that one can encounter
studying materials allowed me to move into different statistical areas. From topics closely
related to geometry and topology, to regression models and functional approaches, I al-
ways tried to find a way for solving problems with advanced tools but that can still be
easily understandable and reproducible.
I do not know if it is better to develop knowledge vertically or horizontally, but I definitely
learned much more than I expected.
This project deepened my knowledge in both fields, but I still remain loyal to my first
love: Statistics.
This thesis is, in fact, written by a statistician’s perspective and it addresses statisticians
and material scientists. I describe problems and methodologies in a language that is un-
derstandable for both audiences and so my apologies, if some concepts or definitions
can be redundant for one of the two fields.
It was fascinating to find out that Statistics can help to solve several Materials Science
problems and at the same time Materials Science problems can give rise to challenging
Statistical questions.

Martina Vittorietti
Delft, March 2020
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1
INTRODUCTION

During the production of metallic alloys there are various procedures one can employ for
enhancing the quality of the final product. Cooling, heating, bending, stressing, quench-
ing for different durations and at different intensity levels are examples of the processes
that can influence the nature of the material. Variations in brittleness, ductility, elasticity,
hardness, plasticity, tensile strength, in general in the chemical, physical and mechani-
cal properties of the materials, are the visible modifications that the processing causes.
In fact, the treatments cause not immediately visible modifications that occur in a mi-
crostructural, nanostuctural and even in an atomic level. These structural modifications
cause the changes in properties.
The great interest in steel derives mainly from the possibility of generating, by solid-state
transformations during processing, a huge variety of microstructures [13] with different
mechanical behaviour.
The concept of microstructure is not easily definable and it depends on the specific ob-
servational scale. Starting from the atomic scale, metals can be described as a regular
aggregation of atoms held together by “metallic bonds” [132]. The atoms form a sym-
metrical three-dimensional aggregation, characterised by a unit cell. Unit cells in which
atoms are identically packed form a crystal, also called grain, of a specific phase. Metallic
microstructures usually contain more than one crystal, of one or multiple phases, with a
specific orientation and possible imperfections or defects.
Loosely speaking, one can say that the microstructure forms the DNA of the material and
hence contains all the necessary information determining the properties of the metals.
Ideally, we would like to genetically modify the DNA of the material to obtain a product
with the desired properties. More specifically, we would like to fully control and tune dif-
ferent microstructural parameters, one at the time, pairwise or jointly, perform various
experiments and see what the macro effect on the performance of the material is.
In reality, the impossibility of controlling different factors individually, makes the quan-
titative identification of the relation between microstructural features and mechanical
properties very hard.
The study of the relation between microstructural features and mechanical properties

1



2 1. INTRODUCTION

presents different problems that can be tackled or partially tackled with the help of physics,
stereology, geometry, computer science and also statistics.
One of the main problems regards the data.
Several techniques have been developed to obtain microstructure data. Methods for ob-
taining 3D microstructure images are rapidly arising, but time and costs make data not
easily accessible yet. The most common way of gathering microstructural information is
analysing 2D images taken using suitable tools such as optical microscopes or electron
microscopes.
This means that an intrinsically three-dimensional object is reduced to a two-dimensional
plane. This ‘one-step-back’ is the subject of stereological studies [18].
This issue can also be viewed as a statistical problem, considering that the 2D picture
must be a representative sample of the 3D microstructure.
Choices of scale and dimension are then crucial for obtaining an accurate representa-
tion of the material microstructure.
In fact, the aim is to gather in one 2D image all the characteristic features of the mi-
crostructure and then relate them to the original 3D structure.
Information about phases, morphology (arrangement, size, orientation, defects), chem-
ical composition of grains/crystals should be collected for appropriately quantifying mi-
crostructures. Metallic microstructures are complex objects, showing different features
at different scales. Examples of different microstructures are shown in Figure 1.1. The

(a) (b) (c)

Figure 1.1: (a) Single-phase steel microstructure (b) AISI stainless steel with M23C6 carbides precipitation (c)
Multi-phase steel microstructure

first feature about which we want to gather data is the grain.
A grain is usually defined as a single crystal with a simil-polygonal shape. But, as shown
in Figure 1.1 (c), its polygonal shape is not always easily recognisable and in some cases
even not present. Information on grain size (grain volume in 3D, grain area in 2D, grain
surface area (3D), grain perimeter (2D), number of grain faces (3D), number of grain
edges (2D), number of neighbours), grain phase, grain orientation and grain boundaries
are necessary for an accurate representation of the microstructure at the scale of the
grain.
As said before, a microstructure, more specifically a polycrystalline microstructure, is the
arrangement of multiple grains, including possible features within the grains.
Several models and procedures have been proposed in the literature for describing grain
growth and the geometrical aggregation of grains [102].
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For a schematic representation, one common assumption, reasonable mainly for single-
phase microstructures, is that during formation the grains start to grow at the same time
in a finite volume until they reach a space-filling configuration. This assumption per-
tains to the relatively poorly understood nucleation process. Geometrically speaking
this process can be addressed as a “tessellation of space”-process.
Voronoi tessellation constitutes one the most used and most flexible classes of models
for microstructure characterisation [103].
Poisson-Voronoi diagrams are the most basic Voronoi tessellation and they have been
commonly employed for representing single-phase steel microstructures [88]. Intuitively,
for defining a 3D Poisson-Voronoi diagram, a random set of points (generator points or
sites) is generated in a finite volume and spheres having them as centres are grown at the
same time and with the same velocity; once two spheres touch, a face between them ap-
pears. This results in a space-filling configuration made of convex polyhedra, also called
cells or grains.
A challenging statistical question to be answered is whether Poisson-Voronoi diagrams
or a more general model for a microstructure is adequate, given measured data.
Interesting analogies can be found between the distribution of the main geometrical fea-
tures of the theoretical and observed structures. But as previously stated, recovering 3D
real microstructure data can be troublesome, pushing researchers to use Voronoi dia-
grams even in cases in which they might be inappropriate.
Therefore, recalling the 2D-3D problem, an important question to be answered is: in
view of a 2D microstructure image, is the Poisson-Voronoi diagram (or another specific
model) a good model for describing the intrinsically 3D microstructure?
A clear limitation of Poisson-Voronoi diagrams, and also of other tessellations based
on classical point processes, is that the resulting grains are always convex. As is seen
in Figure 1.1 (a) even for single-phase steel this assumption can sometimes be inade-
quate. Moreover, when the microstructure under study presents multiple phases (differ-
ent colours in Fig. 1.1 (c)) or intermediate phases such as carbides (smaller grains with a
different colour in Fig. 1.1 (b)), one must resort to modifications of the classical models
or to completely different models. In fact, grains belonging to different phases present
different crystal structures, that need to be modelled in a different way [31].
Extensions of the classical Voronoi model such as Johnson-Mehl Voronoi tessellations
[89], Laguerre Voronoi tessellations [87], Controlled Poisson-Voronoi tessellations [165]
and Multi-Level Voronoi tessellations [72, 161] are relatively flexible approaches used for
modelling more complex microstructures. Also more general grain growth models such
as Cellular Automata or Monte Carlo Potts models are choices frequently used in the lit-
erature [108, 114].
Also the other aspects of the microstructure, such as grain boundaries, texture (crys-
tallographic orientations), phases and defects play an important role for an accurate
representation of the microstructure. Methods such as Electron Backscatter Diffraction
(EBSD) allow to measure crystallographic orientations/misorientations and phases of
steel specimens. The method is based on obtaining maps of Electron Back-Scatter Pat-
terns (EBSP) of individual crystalline regions inside grains, at a scale of typically 50nm.
The EBSP is solved/indexed to find the orientation of the crystal under the beam. This
results in a measurement of the phase and orientation on one specific specimen loca-
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tion and the process is repeated for many points on a regular grid (either rectangular or
hexagonal). The grain orientation is then usually expressed by a triplet of Euler angles
(φ1,Φ,φ2) [116].
Characterisation of the defects is also of paramount importance. All real crystals contain
imperfections that can be zero dimensional (point defects), one dimensional (line de-
fects also called dislocations), two dimensional (interface) and three dimensional (vol-
ume defects). Many of the physical, chemical and mechanical properties of metals are
strongly related to those imperfections [61].
Taking into account all these factors and the underlying relations among them, implies
a great difficulty in finding a model to represent metal microstructure.
The difficulty level increases when the complex nature of microstructures has to be re-
lated to the mechanical behaviour of the material. For understanding how the different
microstructural parameters relate to the mechanical performance of the material, vari-
ous approaches can be followed.
A common approach is investigating the mechanical performance of the material based
on statistics obtained from 2D images. Examples can clarify the general idea behind
this. One of the best-known relations between microstructure features and a mechan-
ical property is the so-called Hall-Petch relation [51, 109]. In particular, the Hall-Petch
equation describes the negative dependence of yield stress1 on grain size of the mate-
rial. Loosely speaking, the smaller grains are, the stronger the material is. The classical
form of the relation involves just the mean grain size as characterising feature but adding
more information gathered from the 2D microstructure images, such as grain size distri-
bution or dislocations density can lead to more accurate descriptions.
One of the most common ways for investigating strength and ductility of metallic mate-
rials is by performing a tensile test. A tensile test is an experiment in which force (stress)
is applied to the test sample causing deformation of the material, temporarily (elastic
behaviour), permanently (plastic behaviour) and eventually its fracture. During a tensile
test, dislocations, necessary to allocate the stress applied during the experiment, form
in the microstructure. Observing the 2D images taken at different levels of strain (Fig-
ure 1.2), it is indeed possible to identify features in the microstructure that are related
to these line defects which contribute to the hardening of the material. Understanding
which are the microstructural features that favour or obstacle the dislocations motion
and formation, is then a first step for material strengthening comprehension.
Building a model based on the observation of 2D microstructure images is a good start-
ing point for understanding the 3D mechanical behaviour of the material. However, ex-
perimental inaccuracy and the impossibility of controlling all possible changes occur-
ring in the microstructure during the experiments, make this kind of model just a good
preliminary inspection from which mainly qualitative conclusions can be drawn.
In order to manipulate and supervise the modifications that occur in the microstructure
and how they affect the mechanical behaviour of the material, a fully simulation-based
approach can be adopted.
It starts with the creation of a “digital twin” microstructure. The term “digital twin” was
coined by [134] in NASA’s integrated technology roadmap under Technology Area 11:
Modelling, Simulation, Information Technology and Processing and the following defi-

1The yield stress is defined as the minimal stress at which the material starts to deform permanently.
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(a) (b) (c) (d)

Figure 1.2: Images at different macroscopic plastic strains for the same region of AIS 420 steel (a) 0% strain (b)
3.5% strain (c) 6.6% strain (d) 13.9% strain (scale 5µm)

nition is given: “A digital twin is an integrated multi-physics, multi-scale simulation of
a vehicle or system that uses the best available physical models, sensor updated, fleet
history etc. to mirror the life of its corresponding flying twin”. Readapting this sentence
for the case under study, a statistically based digital twin metal microstructure can be
defined as: “an integrated multiscale simulation of a metal microstructure that uses the
best available physics-based models, scaling properties, parameters optimisation, phys-
ical relations etc. to mirror the mechanical behaviour of its corresponding steel twin”. In
the Materials Science field, this procedure has a specific name: “Digital Material Repre-
sentation (DMR)” [88]. DMR has as main goal mimicking the morphology of the material
both from the geometrical and the physical point of view, constructing a “Representa-
tive Volume Element” (RVE) or a Statistically Similar RVEs (SSRVEs). The idea behind
the two structures is the same: they have to be smaller than real volume elements but
sufficiently large to incorporate the relevant information about the material microstruc-
tural features and properties. The difference is in the way of constructing them. The
RVE is mostly based on empirical sectioning of the materials or on finite element re-
construction from tomographic measurements and mechanical tests [19]. The SSRVE
and similar constructs, such as statistically equivalent representative volume element
(SERVE) [148] and statistically similar volume elements (SSVEs) [19], incorporate stere-
ological and physical parameters in a volume, geometrically partitioned by one of the
tessellation models previously discussed.
After the digital twin microstructure is ready, the virtual experiment can be performed.
The Düsseldorf Advanced Material Simulation Toolkit (DAMASK) [123] is an open source
freeware package developed by the Max-Planck Institute für Eisenforschung for con-
ducting advanced microstructure-based simulations of mechanical behaviour. It uses
models coming from Crystal Plasticity theory, based on the behaviour of a single crys-
tal, which have been successfully used in understanding and predicting the evolution
of the underlying microstructure and the corresponding stress–strain response in poly-
crystalline metals [42]. With DAMASK, it is indeed possible, for example, to perform
large scale simulations, to model damage or fracture [135] and to model the local strain
development in the microstructure under deformation [150].
This virtual approach allows to predict the mechanical performance of potential mi-
crostructures with a drastic reduction of mechanical tests and experiments before creat-
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ing new materials.
The aim of this thesis is to develop and present statistical methods for tackling some

of the problems occurring in the identification of the relation between microstructural
features and mechanical problems.
In particular, beginning with the microstructure representation problem, we first focus
on the geometrical arrangement of the grains and in particular on the use of Poisson-
Voronoi diagrams. Providing an accurate representation of the distribution of the main
geometrical characteristics of the 3D Poisson-Voronoi cells, using parametric and non-
parametric approaches on vast simulation results, will help to obtain insights into the
appropriateness of the use of this model for approximating the geometrical microstruc-
ture of (single-phase) steels. However, given that commonly the choice of the model is
based on 2D microstructure images, a general testing framework for the comparison of
2D Sectional Poisson-Voronoi diagrams and 2D metallic sections is needed. The usual
statistical tests employed in this context, are further extended including more accurate
measures based on recently developed tools provided by Topological Data Analysis. In
cases in which the Poisson-Voronoi diagram hypothesis is rejected, alternative, more
complex models are studied and discussed.
The geometrical arrangement of the grains will be then used as a basis for the construc-
tion of a statistically based digital twin microstructure. Phases and grain orientations
must also be included for a digital representation of the microstructure.
For the mechanical problem counterpart, first, models based on the analysis of mechan-
ical properties from 2D microstructure images are presented. Methods from classical
multivariate regression, to LASSO and isotonic regression are applied to gain insight into
the relation between microstructural features and mechanical properties. Finally, a vir-
tual experiment is performed. This illustrates the use of statistical methods from the
generation of digital twin microstructure to a functional model for understanding the
influence of specific microstructural parameters on the strengthening of the material.

OUTLINE
The thesis is divided in two parts: Microstructure (MIC) and Mechanical properties (MEC),
corresponding to the acronym of the project: “MICtoMEC: Extensive quantification of
microstructure features and statistical relations with mechanical behaviour –from sta-
tistical relations to physical understanding–”. In the “MIC” part, some of the microstruc-
ture related problems are faced. The focus is mainly on the representation of the geo-
metrical arrangement of the grains.
In Chapter 2, after having reviewed the main mathematical properties of Poisson-Voronoi
diagram, the effect of the scaling property of the underlying Poisson process on the dis-
tribution of the main geometrical properties of a typical Poisson-Voronoi cell is shown.
Moreover, as in the literature no analytical expression has been derived for the main ge-
ometrical properties of a Poisson-Voronoi cell, accurate representations, parametric and
non-parametric, based on an extensive simulation approach, are given. A first compar-
ison between the volume distribution of the theoretical and a real 3D microstructure is
made.
In Chapter 3, methods to formally test whether a real steel microstructure can be ap-
proximated by a specific stochastic model are presented. More specifically, a general
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framework for testing the Poisson-Voronoi assumption based on images of 2D sections
of real metals is proposed. Following two different approaches, according to the use or
not of periodic boundary conditions, three different model tests are discussed. The first
two are based on the coefficient of variation and the cumulative distribution function
of the cells area. The third exploits tools from Topological Data Analysis, such as persis-
tence landscapes.
In Chapter 4, two different digital representation methods are presented. More specifi-
cally, a Representative Volume Element (RVE) and a Statistical Similar RVE are produced
for the digital representation of a microstructure that present more than one phase (i.e
including precipitations). In particular, the arrangement of the grains is represented by
Multi-Level Voronoi diagrams.
The second part “MEC” is dedicated to the investigation of the relation between mi-
crostructural features and mechanical properties.
In Chapter 5, an approach to study the relation between microstructural parameters and
mechanical behaviour of the material based on 2D microstructure images inspection is
presented. More specifically, the relation between Geometrically Necessary Dislocations
and density of microstructural precipitates is studied in an isotonic regression frame-
work. Already known physics-inspired qualitative relations between 2D microstructure
characteristics and 3D mechanical properties act as the starting point of the investiga-
tion. Isotonic regression allows to take into account ordering relations and leads to more
efficient and accurate results when the underlying assumptions actually hold. The statis-
tical estimation procedure is described considering three different scenarios according
to the knowledge of the variances: known variance ratio, completely unknown variances,
variances under order restrictions. New likelihood ratio tests are developed in the last
two cases. Both parametric and non-parametric bootstrap approaches are developed
for finding the distribution of the test statistics under the null hypothesis.
In Chapter 6, a completely simulation-based approach is employed. It begins with the
creation of digital twins of different microstructures, or more specifically of SSRVEs, for
stainless steel microstructures with an increasing fraction of precipitates, namely car-
bides M23C6. The resulting virtual microstructures will subsequently be used as sam-
ples for virtual tensile tests performed via DAMASK. The resulting stress-strain curves
are analysed for understanding the contribution of carbides in the strengthening of the
material.
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2
3D POISSON-VORONOI DIAGRAMS

For a full comprehension of the relation between the complex materials microstructure
and materials properties, it is fundamental to be able to describe the main characteris-
tics of the 3-dimensional microstructure. The most basic model used for approximating
steel microstructure is the Poisson-Voronoi diagram. Poisson-Voronoi diagrams have in-
teresting mathematical properties, and they are considered a good model, especially for
single-phase materials. Exploiting the scaling property of the underlying Poisson process,
the distribution of the main geometrical features of the grains for every value of the in-
tensity parameter are derived. Moreover, a sophisticated simulation program is used to
construct a close Monte Carlo based approximation for the distributions of interest. Us-
ing this, the closest approximating distributions within the mentioned frequently used
parametric classes of distributions is determined. Finally, a 3D volume dataset is consid-
ered and the real volume distribution is compared to what is expected under the Poisson-
Voronoi model.

Where there is matter, there is geometry.

Johannes Kepler

Parts of this chapter have been published in Computational Materials Science 166, 111–118 (2019).
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12 2. 3D POISSON-VORONOI DIAGRAMS

2.1. INTRODUCTION

Investigating 3-dimensional structures is a fundamental aspect for many disciplines; es-
pecially for those related to materials study, but also for more abstract discipline such as
mathematics and statistics. One of the most outstanding aims is to understand fully the
intriguing relationship between microstructures and mechanical properties of the ma-
terials. The very first step for achieving this objective is quantifying 3D microstructures.
From the materials science point of view this means examining and understanding the
different nature and variety of microstructures. From the statistics point of view means
looking for the characterisation of the 3D virtual microstructures under specific mathe-
matical models.
In the past few years the use of Voronoi diagrams has rapidly increased. These dia-
grams represent an appealing structure, especially because they describe various nat-
ural processes quite well. In [103] an extensive list of fields in which Voronoi diagrams
are adopted can be found. Among the many areas of applications of this model, the field
of materials science stands out. In fact, Voronoi diagrams are now among the most used
mathematical models for microstructure characterisation and depending on the specific
kind of materials, it is possible to use a proper category of Voronoi diagrams.
In this Chapter, we discuss the most basic instance of the model: Poisson-Voronoi di-
agrams. Intuitively, for defining a 3D Poisson-Voronoi diagram, a random set of points
(also called generator points, sites or nuclei) is generated in a finite volume and spheres
having them as centres are grown at the same time and with the same speed; once two
spheres touch a face between them appears. This results in a space-filling configuration
made of convex polyhedra, also called cells or grains.
In this framework the nuclei or sites are generated by a homogeneous Poisson process
with intensity parameter λ.
Although many interesting mathematical properties of Poisson-Voronoi diagrams are
known, there is still much to be discovered about the distributions of the geometri-
cal characteristics of its grains. Through simulations, many authors were able to ob-
tain numerical approximations of the moments of the distribution of the volume, of
the surface area, of the number of faces and many other geometrical characteristics of
the grains. Nevertheless, analytic expressions of the distributions of many of these im-
portant features are not known, others are only known via complicated numerically in-
tractable characterisations. Therefore, various proposals to obtain close approximations
to the real distributions were put forward by several authors e.g. Lognormal-, General-
ized Gamma- and Rayleigh distributions. But as far as we know, there is no theoretical
support for preferring one of these distributions.
In this Chapter, after explaining that λ, the intensity parameter of the Poisson process,
is the only parameter determining all distributional properties of the geometrical struc-
ture of the grain, we show that if we have the distribution of a given geometrical char-
acteristic for λ = 1, the distribution of the same quantity for every value of λ > 0 can be
obtained by rescaling. More precisely, we consider volume, surface area and number of
faces of the grain, but the approach can be extended to other characteristics. Then, we
find a close Monte Carlo based approximation for the previously mentioned geometrical
characteristics of the grains and using it we determine the most closely approximating
distribution within the mentioned frequently used parametric classes of distributions.
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As said before, several well known probability distributions were used for approximating
the grain geometrical characteristics distributions, but in this study we determine the
‘best’ of these.
After reviewing the basic concepts of Voronoi diagrams and the Poisson process in Sec-
tion 2.2, in Section 2.3 we explain the scaling property of the Voronoi structure in terms
of the intensity parameter and how it can be useful for studying distributional proper-
ties of the grain features. Since the intensity parameter λ is the only parameter involved
in generating a specific structure, it governs the distribution of all the geometrical char-
acteristics of the Poisson-Voronoi typical cell. Later, we explain how the scaling acts on
the different geometrical features and we show an empirical example of what happens
changing the scale parameter. Section 2.4 describes the present simulation approach
and produces an accurate Monte Carlo approximation for the distribution of the grain
volume and the grain surface area. In fact, we provide the approximate distributions of
the volume and of the grain surface area forλ= 1 and we can adapt it for the other values
of λ using the aforementioned scaling properties. In Section 2.5, we study how well the
true distributions of the geometrical characteristics can be approximated by some well-
known and frequently used probability distributions in this context: the Gamma, Gener-
alized Gamma- and Lognormal distribution. Fitting these three distributions and com-
paring them through statistical measures, such as the supremum distance between the
Monte Carlo empirical distribution and its parametric approximations and Total Varia-
tion distance, we are not only able to identify the best approximation but also to give a
measure of error for each of these parametric approximations.
In Section 2.6 an application to real data is illustrated. Finally, we introduce the pos-
sibility to extend our approach according to different Voronoi Diagrams cases, such as
Multi-level Voronoi and/or Laguerre Voronoi Diagrams later deepened in Chapter 4. For
the 3D Voronoi diagrams generation we use Tata Steel software and for data analysis the
statistical software R.

2.2. BASIC CONCEPTS
We begin by reviewing the generic definition and the basic properties of the Poisson-
Voronoi Diagram. Given a denumerable set of distinct points in Rd , X = {xi : i ≥ 1}, the
Voronoi diagram ofRd with nuclei {xi } (also called sites or generator points) is a partition
of Rd consisting of cells

Ci = {y ∈Rd : ‖xi − y‖ ≤ ‖x j − y‖, j 6= i }, i = 1,2, . . . (2.2.1)

where ‖ · ‖ is the usual Euclidean distance. This means that given a set of two or more
but finitely many distinct points, we associate all locations in that space with the closest
member(s) of the point set with respect to the Euclidean distance.
If we assume that X =Φ= {xi } is the realisation of a homogeneous Poisson point process,
we will refer to the resulting structure as the Poisson-Voronoi diagram, VΦ.
We find useful to remind briefly what a Poisson process is and which are its basic prop-
erties. For readers that aim to a formal definition, in [71] more details are provided.
Let S be a measurable set in Rd . Moreover, denote N (A) = #{i : xi ∈ A}. N (A) represents
the total number of ‘events’ that occur in A. A Poisson process on S is then a random
countable subsetΦ of S, such that
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• for every finite family of disjoint bounded subsets A1, A2, . . . , An of S, the random
variables N (A1), N (A2), . . . , N (An) are independent

• N (A) has Poisson distribution P (λ), where λ=µ(A) ∈ [0,∞).

From this it immediately follows that

µ(A) = E{N (A)}.

Therefore the measure µ on S is often called the mean measure of the Poisson process
Φ. When S = Rd , the mean measure is in most interesting cases given in terms of its
intensity. This is a nonnegative measurable function λ on S, in terms of which µ is given
by integrating λ with respect to d-dimensional Lebesgue measure:

µ(A) =
∫

A
λ(x)dx. (2.2.2)

If λ is continuous at x, then Eq. 2.2.2 implies that for small neighbourhoods A of x,

µ(A) ≈λ(x)|A|,

where |A| denotes the Lebesgue measure (length if d = 1, area if d = 2, volume if d = 3)
of A. Thus λ(x)|A| is the approximate probability of a point ofΦ falling in the small set A,
and it is larger in regions where λ is large than in those where λ is small. In the special
case when λ is a constant, so that

µ(A) =λ|A| (2.2.3)

we speak of a uniform or homogeneous Poisson process.
In this Chapter, we assume that the sites of the Poisson-Voronoi diagrams are generated
according to the particular case described by Eq. 2.2.3.
As mentioned before, our aim is to find the distribution of the geometrical characteris-
tics of the grains. In order to approximate these distributions, we generate a large sample
of independent and identically distributed cells, more specifically typical cells. A typical
Voronoi cell refers to a random polytope which loosely speaking has the same distribu-
tion as a randomly chosen cell from the diagram selected in such a way that every cell
has the same chance of being sampled. Moreover, the distribution of the typical Poisson-
Voronoi cell is by Slivnyak-Mecke formula [95] the same as the Voronoi cell containing
the origin, obtained when the origin is added to the point process Φ. This formally cor-
responds to

C = {y ∈Rd : ‖y‖ ≤ ‖y −x‖, x ∈Φ}.

Okabe et al. [103] synthesise previous research activity about the properties of Pois-
son Diagrams. Despite the fact that distributions of several geometrical characteristics
are already known in 2D, the distributions of the main features in higher dimensions, e.g.
in 3D, are not. We describe a simulation approach to approximate these distributions in
the next Section.
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2.3. DISTRIBUTION OF THE GEOMETRICAL CHARACTERISTICS
Given the complexity of finding explicit formulae for the distributions of the Poisson-
Voronoi diagram geometrical characteristics, especially in 3D, many authors used Monte
Carlo methods to approximate these. Among them Kiang [70], Kumar and Kurtz [74],
Lorz and Hahn [83], Møller [95], Tanemura [149] obtained numerical results for the mo-
ments of the distribution of volume, surface area, and number of faces of the grains in
3D. They also give histogram estimates of these distributions and suggest approxima-
tions for them using various well known probability distributions. For instance, for the
volume distribution, before 1990 most authors used the Lognormal distribution for ap-
proximating the grain size distribution in polycrystals. Nowadays, more flexible distri-
butions such as Gamma or Generalized Gamma are commonly used (e.g. [74, 149]). The
use of Gamma type distribution has also a geometrical root. In fact, it can be related to
the distribution of the volume of the typical cell of the Poisson-Delaunay triangulation
(dual graph of the poisson-Voronoi diagram) studied first by R. Miles [92] and more re-
cently by the authors in [34]. Although these models fit the observed data rather well (as
we will see in the next Section) our approach allows to find an accurate representation
of the true distribution and the parametric distribution that optimally fits the data.
The main idea is that, given a Poisson-Voronoi diagram generated by a Poisson point
process Φ with intensity parameter λ, this λ is the only parameter determining the dis-
tributions of the geometrical features of the grains. Furthermore, the dependence of the
distributions on the intensity parameter is via simple scaling of a ‘parent distribution’,
due to the following important scaling property of the Poisson process.

Lemma 2.3.1 (Scaling Property). Let Φ = {X1, X2, . . . } be a Poisson process on Rd with
intensity λ= 1. Choose λ> 0 and defineΦλ = {X1/λ1/d , X2/λ1/d , . . . }. ThenΦλ is a Poisson
process with intensity λ.

Proof. The fact that Φλ is a Poisson process is a special instance of the ‘Mapping theo-
rem’ [see 71, Section 2.3], using states space S = T =Rd and f (x1, x2, . . . , xd ) =
(x1/λ1/d , x2/λ1/d , . . . , xn/λ1/d ). Denoting the mean measure ofΦ (Lebesgue measure) by
µ1, the induced mean measure µλ ofΦλ is given by

µλ(B) =µ1( f −1(B)) =
∫

f −1(B)
dµ1(x) =λ

∫
B

dµ1(x) =λµ1(B)

In the following Sections, Lemma 2.3.1 will be used to study the dependence of the
distributions of volume, surface area and number of faces of the grains on the intensity
parameter λ.

GRAIN VOLUME
We first focus our attention on the grain volume distribution because of the direct rela-
tionship of this Poisson-Voronoi geometrical characteristic and the grain size distribu-
tion in microstructure characterisation of materials.
Exploiting the properties of the Poisson process, the distribution for the normalised
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length of the Voronoi cell in 1D or size measure in 1D, can be shown to have density
[91]

f1D (y) = 4y exp(−2y) 1[0,∞)(y)

In dimension d > 1, it was conjectured that the area (2D) and the volume (3D) of the
typical cell in a Poisson-Voronoi diagram may be distributed as the sum of two and three
gamma variables with shape and scale parameters equal to 2 [70], but [164] and [39]
showed the conjecture to be false. In 2D an analytic, though computationally challeng-
ing result is provided by Calka [23], which gives an expression for the distribution of the
area of the typical cell in 2D given the number of vertices. In 3D, as we know so far, no
trivial analytic expression for the volume distribution exists.

Lemma 2.3.2. Denote by Fλ the distribution function of the volume (length if d = 1, area if
d = 2) of the typical cell of the Poisson-Voronoi diagram based on a homogeneous Poisson
process on Rd with intensity parameter λ> 0. Then, for all x ≥ 0,

Fλ(x) = F1(λx) (2.3.1)

Proof. Let Φ be a homogeneous Poisson process on Rd with intensity 1. Denote by C

the typical cell of the Voronoi diagram based on this process. Fix λ > 0 and consider
the homogeneous Poisson process Φλ with intensity λ as introduced in the statement
of Lemma 2.3.1. Then the typical cell in the Voronoi diagram based on Φλ is a scaled
version of the typical cell of the Voronoi diagram based onΦ, in the sense that it is given
by Cλ = {x/λ1/d : x ∈ C }. This means that the volume Vλ of Cλ is exactly λ−1 times the
volume V of C . Therefore, for x ≥ 0,

Fλ(x) = P(Vλ ≤ x) = P

(
V

λ
≤ x

)
= P(V ≤λx) = F1(λx)

GRAIN SURFACE AREA

Lemma 2.3.3. Denote by Gλ the distribution function of the surface area of the typical
cell of the Poisson-Voronoi diagram based on a homogeneous Poisson process on R3 with
intensity parameter λ> 0. Then, for all x ≥ 0,

Gλ(x) =G1

(
λ

2
3 x

)
Proof. The argument follows the proof of Lemma 2.3.2. Denote by Sλ the surface area

of Cλ and note that scaling of Cλ implies that Sλ is λ− 2
3 times the surface area of C , S.

Therefore

Gλ(x) = P(Sλ ≤ x) = P

(
S

λ
2
3

≤ x

)
= P

(
S ≤λ

2
3 x

)
=G1

(
λ

2
3 x

)
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NUMBER OF GRAIN FACES
Finally, another (discrete) property of interest regards the number of grain faces of the
typical cell. It is clear that using either Φ or Φλ (from Lemma 2.3.1) as a basis for the
Voronoi diagram, yields the same number of faces of the typical cell (C or Cλ respec-
tively), leading to

Lemma 2.3.4. Denote by Nλ the distribution function of the number of faces of the typical
cell of the Poisson-Voronoi diagram based on a homogeneous Poisson process on Rd with
intensity parameter λ> 0. Then, for all x ≥ 0,

Nλ(x) = N1(x)

The same lemma holds for number of corner points, nv . In fact, exploiting the Euler-
Poincaré relation [103], it is possible to determine nv when the number of faces is known.

2.4. NON-PARAMETRIC APPROACH
Now, we approximate the distribution function of the grain geometrical features, using
the results obtained by a simulation based on 1000000 Voronoi diagrams. We consider
the volume, the surface area and the number of faces of a 3D Poisson-Voronoi typical
cell. Two possible simulation approaches, well described in [103] are possible:

1. generate a large number of points inside a bounded region B according toΦ, con-
struct VΦ and measure the characteristics of all its cells.

2. generate a sequence of independent typical Poisson-Voronoi cells, measure the
characteristics of each and then aggregate them to obtain the required distribu-
tions.

We follow the second approach. The reason for this choice derives from the convenience
of having a sample of independent and identically distributed Voronoi cells such that we
can quantify the agreement with the real distribution. Moreover, we are able to control
and eliminate the boundary effect that is present because the structure is actually only
constructed on a bounded region. For our objective only the distributions of the geomet-
rical properties of the typical cell are needed, using λ= 1 in the simulations. By Lemma
2.3.2, 2.3.3 and 2.3.4, the distributions based on diagrams with different intensities can
be obtained by scaling.
We conduct our simulation approach using the Voronoi software provided by Tata Steel.
The algorithm is based on the half plane intersection, which is closely related to the orig-
inal definition of a Voronoi tessellation. Each Voronoi cell is constructed separately by
intersecting n − 1 half spaces, where n is the number of generator points. A disadvan-
tage is that this algorithm computes in O(n2 logn) time [104], while the most frequently
used incremental algorithms require O(n2) time. To accelerate the computations, the
algorithm has been extended with a filter, which determines which neighbouring points
of a generator point are needed for the Voronoi cell construction of this site. This filter
is built in such a way that it first sorts ∼ 80% of the points which are certainly needed
for Voronoi cell construction. After that, the other ∼ 20% of the points are checked to
see if they give half plane intersection with the Voronoi cell under construction. With
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this filter the computational speed is improved to be better than O(n logn), which is the
computational speed of the fastest algorithm by Fortune [41].
We adopt the following Monte-Carlo procedure.
Repeat 1000000 times:

Step 1 : Generate a 3D Poisson-Voronoi diagram with added generator point (0,0,0)
with λ= 1;

Step 2 : Determine the geometrical characteristics of the realisations of the typical Voronoi
cell, the cell that contains the point (0,0,0), C (0);

Then, aggregate the 1000000 values.
The main graphical results are shown in Figures 2.1, 2.2 and 2.3. In Tables 2.1 and 2.2, we
report the estimated moments of the main geometrical characteristics and the estimated
probabilities for the number of faces. They are coherent with both the theoretical and
numerical results obtained by other authors [74, 149].

Table 2.1: Estimated moments of the geometrical features of 1000000 Poisson-Voronoi typical cells, λ=1

(a) Volume

µ1 1.00008
σ 0.41189
µ2 1.16981
µ3 1.55900
µ4 2.32340

(b) Surface area

µ1 5.82670
σ 1.43821
µ2 36.01888
µ3 234.69091
µ4 1603.48468

(c) Number of faces

µ1 15.53071
σ 3.33896
µ2 252.35173
µ3 4277.80397
µ4 75464.60519

V

f(x)

(a)

v

F(x)

(b)

Figure 2.1: (a) Kernel density estimate (Epanechnikov kernel, cross validation bandwidth h = 0.05) and (b)
empirical cumulative distribution function of volume of 1000000 Poisson-Voronoi typical cells, λ= 1
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Figure 2.2: (a) Kernel density estimate (Epanechnikov kernel, cross validation bandwidth h = 0.25) and (b)
empirical cumulative distribution function of surface area of 1000000 Poisson-Voronoi typical cells, λ= 1
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Figure 2.3: (a) Relative frequencies and (b) empirical cumulative distribution function of number of faces of
1000000 Poisson-Voronoi typical cells, λ= 1
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Table 2.2: Distribution of the number of faces (F) of 1000000 Poisson-Voronoi typical cell, λ= 1

F n f p f F n f p f F n f p f

4 5 0.000005 16 115188 0.115188 28 435 0.000435
5 35 0.000035 17 101151 0.101151 29 224 0.000224
6 316 0.000316 18 82277 0.082277 30 95 0.000095
7 1822 0.001822 19 62408 0.062408 31 52 0.000052
8 6190 0.006190 20 44944 0.044944 32 18 0.000018
9 15051 0.015051 21 30477 0.030477 33 3 0.000003

10 30685 0.030685 22 19466 0.019466 34 1 0.000001
11 52528 0.052528 23 11682 0.011682 35 1 0.000001
12 77421 0.077421 24 6756 0.006756 36 1 0.000001
13 100094 0.100094 25 3631 0.003631
14 114163 0.114163 26 1890 0.001890
15 120015 0.120015 27 975 0.000975
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2.5. PARAMETRIC APPROACH
Various proposals to estimate the distributions of the geometrical properties of the typ-
ical cell were put forward by several authors such as the Lognormal distribution [142,
143], Generalized Gamma distribution with 2 [154] or 3 parameters [149] and Rayleigh
distribution [105]. Ferenc and Néda [39] propose their own function for the volume dis-
tribution.
As noted in [154] the use of the Lognormal distribution function for representing grain
size distribution lacks a solid physical basis and is not in general accurate. Nowadays, the
debate regards mostly the Generalized Gamma Distribution with 2 or 3 parameters, but
until now no physical explanation for using one preferential distribution exists. How-
ever, in view of the scaling properties described in the previous Sections, it is natural
to think that the distributions of the geometrical characteristics of the grain belong to a
scale parametric family of distributions. Only then the distributions of the quantities for
all λ can belong to the class. One could, for instance, consider the Lognormal distribu-
tion. Its probability density function is given by

f (x|µ,σ) = 1

xσ
p

2π
exp(− (log(x)−µ)2

2σ2 ).

Let µ̂1 and σ̂1 be the maximum likelihood estimates when λ= 1 (based on the 1000000
simulated values). Then, define a scale family based on that, fλ(x) as:

fλ(x) =λ f (λx|µ̂1, σ̂1) = 1

xσ̂1
p

2π
exp(− (log(x)+ log(λ)− µ̂1)2

2σ̂2
1

)

which corresponds to a Lognormal distribution with parameter vector (µ̂1 − log (λ), σ̂2
1).

Therefore, we have a log-addition scaling on the first parameter, which is not consistent
with the λ-scaling that is found for real distributions. Now let us consider the General-
ized Gamma distribution. Its density function, parametrised according to [145], is given
by

f (x|a,b,k) = bxbk−1

Γ(k)abk
e−

( x
a

)b

(2.5.1)

where a and b are the shape and the scale parameters, k the family parameter. Let â1, b̂1

and k̂1 be the maximum likelihood estimates for the parameters (based on the 1000000
simulated values) when λ= 1. Define fλ(x) as equal to:

fλ(x) =λ f (λx|â1, b̂1, k̂1) = b̂1x b̂1k̂1−1

Γ(k̂1)

(
λ

â1

)b̂1k̂1

e
−

(
λ

â1
x
)b̂1

which corresponds to a Generalized Gamma with parameters ( â1
λ , b̂1, k̂1). This suggests

to look for a distribution that belongs to this scale family. Special cases of this family
are the Gamma distribution with parameters a, k and b = 1 and the Weibull distribution
with parameters a, b and k = 1. Beside the parametrisation in Eq. 2.5.1, another one is
provided by Prentice [111]. This is in general more stable in the estimation of the param-
eters but both parameterizations lead to the same estimates.
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In Tables 2.3-2.4 the estimated parameters of the best Generalized Gamma approxima-
tions for the volume and the surface area respectively are reported. After a graphical
inspection (see Figures 2.4-2.5 for the volume and Figures 2.6-2.7 for the surface area),
the fits based on the Gamma distribution, the Generalized Gamma distribution and the
Lognormal distribution are statistically compared using two criteria (Table 2.5 for the
volume and Table 2.6 for the surface area):

• Supremum distance between two distribution functions:

D(F,G) = sup
x∈R

|F (x)−G(x)| (2.5.2)

This distance is computed between the empirical distribution function Fn of the
sample and the maximum likelihood fit within the respective parametric families.
The data are the 1000000 simulated values from the distribution of interest, with
λ= 1.

• Total Variation distance between distributions with distribution functions F and
G and densities f and g respectively on R:

T V (F,G) := sup
A∈B

|
∫

A
dF (x)−

∫
A

dG(x)| = 1

2

∫
| f (x)− g (x)|d x (2.5.3)

This distance is computed between the kernel estimate of the densities and maxi-
mum likelihood parametric fits based on the simulation results with λ= 1.

Note that information on these distances is based on the data obtained with λ= 1. If the
estimates for more general values of λ are obtained via the rescaling, these distances do,
however, not change under this scaling, so the distances also hold for the other values of
λ.

Table 2.3: Estimated Generalized Gamma parameters for volume distribution approximation, λ= 1

â b̂ k̂
Estimate 0.380 1.287 3.583
Std. Error 0.005 0.006 0.0322

Table 2.4: Estimated Generalized Gamma parameters for surface area distribution approximation, λ= 1

â b̂ k̂
Estimate 3.174 2.102 3.839
Std. Error 0.025 0.011 0.036
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Table 2.5: Comparison of Gamma-, Generalized Gamma- and Lognormal approximations for volume distribu-
tion in terms of Supremum- and Total Variation distance

Gamma Generalized Gamma Lognormal
Supremum distance 0.013 0.005 0.041
TV distance 0.018 0.005 0.089

Table 2.6: Comparison of Gamma-, Generalized Gamma- and Lognormal approximations for surface area dis-
tribution in terms of Supremum- and Total Variation distance

Gamma Generalized Gamma Lognormal
Supremum distance 0.020 0.002 0.037
TV distance 0.035 0.003 0.082

Data

v

f(x)

Figure 2.4: Comparison of parametric approximations to the volume distribution of 1000000 Poisson-Voronoi
typical cells, λ= 1
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Figure 2.5: (a) QQplot and (b) cumulative distribution function comparison of parametric approximations to
the volume distribution of 1000000 Poisson-Voronoi typical cells, λ= 1
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Figure 2.6: Comparison of parametric approximations to the surface area distribution of 1000000 Poisson-
Voronoi typical cells, λ= 1
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Figure 2.7: (a) QQplot and (b) cumulative distribution function comparison of parametric approximations to
the surface area of 1000000 Poisson-Voronoi typical cells, λ= 1
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2.6. APPLICATION
Data used for this application are kindly provided by Erik Offerman (TU Delft). They are
relative to 882 grains in an actual steel microstructure in a volume of 950µm×1100µm×
400µm. The main information collected from the processed experimental data set is:

• center of mass of each grain;

• equivalent spherical radius;

• orientation as Miller indices.

More details about the 3D microstructure and the 3DXRD measurement can be found in
[137, 136].
A kernel density esitmate of the volume distribution is shown in Fig. 2.8. First, an
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Figure 2.8: Kernel density estimate (Epanechnikov kernel, cross validation bandwidth h = 21735.28)

estimate of λ is required for fitting. The most common estimator is given by the ra-
tio between the number of grains and the size of the domain; in the specific case λ̂ =
2.11 × 10−6µm−3. Another option is to determine the best λ for the fitting. For this
purpose, we propose a moment estimator. Let F be a class of distribution functions
F = {Fλ : Fλ(x) = F1(xλ)} and V1, . . .Vn ∼ Fλ (see Lemma 2.3.2). Then,

µλ =
∫ ∞

0
(1−Fλ(t ))dt = 1

λ

∫ ∞

0
(1−F1(tλ))dtλ= µ1

λ
(2.6.1)

Note that in this context µ1 = aΓ(k+ 1
b )

Γ(k) , known for the Generalized Gamma distribution.

Let V̄ be the empirical mean. Then, the moment estimator for λ is:

V̄ = µ1

λ
; λ̂= µ1

V̄
(2.6.2)

This leads to λ̂= 2.64×10−6µm−3.
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Figure 2.9: Comparison of parametric approximations to the real volume distribution (Epanechnikov kernel,
cross validation bandwidth h = 0.057, black line), λ= 1

(a) (b)

Figure 2.10: (a) QQplot and (b) cumulative distribution function comparison of Generalized Gamma distribu-
tion to the real volume distribution, λ= 1

In Figures 2.9, 2.10 (a), 2.10 (b) a graphical comparison in terms of probability den-
sity function, qq-plot (quantile-quantile plot) and cumulative distribution function, re-
spectively is performed. At a first sight the result discourages the use of Poisson-Voronoi
diagram for this dataset. One major difference is related to the presence of many more
small cells in the real microstructure than in the Poisson-Voronoi setting. In fact, the
measurement inaccuracy of the smallest cells is a very well known problem in litera-
ture [28]. Moreover, volume values close to 0 may be attributed also to the non space
filling reconstruction even in the centre regions, as reported by data providers. This
over-representation of small cells will also lead to an inaccurate estimate of λ and have
a global impact on the comparison of both distributions. It is interesting to see whether
the distributions in the higher volume regions fit better. One way to look at this is by
conditioning on the (e.g. 10%) highest observed volumes. This conditional distribution
then has to be compared to an appropriate Generalized Gamma distribution. We use a
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(conditional) method of moments estimate for λ to rescale the data on the same level as
was done in Figure 2.10 (b). This leads to Fig. 2.11. In this graph we still see a difference
between the two distribution functions as it comes to the thickness of the tails. However,
the general shape of both conditional distributions is quite similar.
All in all, we would not recommend the use of the Poisson-Voronoi model for the data
at hand because of some complications (as the overrepresentation of small volumes,
maybe due to premature stopping of the generating process) that could be addressed by
using other models, such as Weighted Voronoi Diagrams. On the other hand, if espe-
cially the distributional behaviour of the highest volumes is of interest and there are in-
dications of inaccurate measurements of the smallest grains, the Poisson-Voronoi model
may be used as a reasonable approximation and as a way of extrapolating distributional
properties for cells with volume values close to 0.

Figure 2.11: Cumulative distribution function comparison of Generalized Gamma distribution to the highest
values of volume distribution λ= 1

2.7. CONCLUSIONS
In this Chapter a very accurate representation for the distributions of the main geometri-
cal characteristics of Poisson-Voronoi typical cell is provided. It is possible to exploit the
approximated distribution for generating observations of approximately every geomet-
rical characteristic that defines the grain size and for every possible value ofλ. Moreover,
we show that the Generalized Gamma distribution, with parameter â = 0.380, b̂ = 1.287
k̂ = 3.583 for the volume and b̂ = 3.174, â = 2.102, k̂ = 3.839 (Tab. 2.3 and 2.4) for the
surface area is the best approximation in the class of the commonly used parametric
distributions for grain size distributions.
Nevertheless, it is not the true underlying distribution. In fact, the interpretation of
the total variation distance as a measure of quality allows to say that using Generalized
Gamma approximation for the grain volume distribution we could commit an error of
about 0.5% and about 0.3% for the grain surface area (Tab. 2.5 and 2.6).
As noted in the introduction, Poisson-Voronoi diagrams are interesting and widely ap-
plied, but for modeling microstructures only constitute the most basic case. Their use
in microstructure characterization is not fully evaluated yet. Therefore, we want to test
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their applicability (Chapter 3) and then extend our work to more general and less un-
derstood Voronoi structures (Chapter 4), such as Multi-Level Voronoi diagrams [72] or
Laguerre-Voronoi tessellations [87] in which the convenient scaling properties present
in the Poisson-Voronoi diagrams are less obvious.



3
POISSON-VORONOI HYPOTHESIS

TESTING

The aim of this Chapter is to develop methods that can be used to test whether a real steel
microstructure can be approximated by a specific stochastic model. As an example, a gen-
eral framework for testing the Poisson-Voronoi assumption based on images of two dimen-
sional sections of real metals is set out. Following two different approaches, according to
the use or not of periodic boundary conditions, three different model tests are proposed.
The first two are based on measures related to the cells area: the coefficient of variation
and the cumulative distribution function of the cells area. The third exploits tools from
Topological Data Analysis, such as persistence landscapes constructed using the centres of
mass of the observed 2D sectional grains.

Persistence is to the character of man as carbon is to steel.

Napoleon Hill

Parts of this chapter have been published in Applied Stochastic Models in Business and Industry.; 1–24 (2020).
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3.1. INTRODUCTION

As stated in the previous Chapters, the first step in the investigation of mechanical prop-
erties is finding a good model for metal microstructures. In fact, having a good model
for the microstructure, simulations can be performed to generate ‘digital versions’ of the
microstructure and testing its properties, using yet other models that establish the rela-
tion between microstructural and mechanical properties.
It is clear that an important and challenging statistical question to be answered is whether
a specific model for a microstructure is adequate, given measured data. In the tentative
answering of this last question several points need to be touched upon. The first point
concerns the choice of a model. There exists a vast choice of models and among them,
Voronoi diagrams have been extensively studied and used [103]. In particular, as seen in
Chapter 2, Poisson-Voronoi diagrams, only involving one nonnegative intensity parame-
ter λ, represent the most basic case for modelling microstructures. In fact, they are often
used in applications involving single-phase steel [73, 74, 103]. More sophisticated mod-
els have been proposed, but in this Chapter we will concentrate on the Poisson-Voronoi
model.
A second point concerns the available data. While the microstructure of a material is the
arrangement of grains and phases in a three dimensional space, the material is typically
observed in two dimensions. Usually, a small sample from inside the material is obtained
and the exposed surface is examined in a microscope. Therefore, the work involves the
study of 2D sections from which 3D microstructure information has to be extracted.
Under the 3D Poisson-Voronoi model, the observable 2D section is a realisation of a so
called 2D Sectional Poisson-Voronoi diagram, often denoted by VΦ(2,3). It is the result
of the intersection of a fixed plane and a 3D Poisson-Voronoi diagram. Only limited re-
sults about the geometrical characteristics of its grains have been obtained analytically
but for most of them numerical results have been obtained through Monte Carlo sim-
ulations [81]. If a Poisson-Voronoi diagram is a good model, using 2D sections for the
estimate of the intensity parameter λ, it is possible to infer distributions of almost all 3D
microstructural properties, such as grain volume, grain surface area and grain number
of faces (see Chapter 2).
The last point is about the model validation. The question that this Chapter wants to
answer is “Given a real 2D materials section, could a Poisson-Voronoi diagram be a good
model for approximating the 3D materials microstructure?” We propose several tests for
the Poisson-Voronoi hypothesis. These are all based on contrasts between features of
the observed 2D picture and the features one would expect if the data were generated
according to the Poisson-Voronoi model.
The Chapter structure is as follows. In Section 3.2, after having reviewed the basic con-
cepts of 2D Sectional Poisson-Voronoi diagrams, we recall the main stereological rela-
tions which can be used to estimate λ based on a 2D Sectional Poisson-Voronoi diagram
and the most used intensity estimators introduced in [49]. In Section 3.3, the distribu-
tions of the main geometrical characteristics of the 2D sectional cells are numerically
obtained. We distinguish periodic and non periodic boundary conditions. The former
case is very popular in materials science practice and it allows to approximate ‘infinite
structures’, giving nice scaling properties and avoiding so called “edge effects”. The latter
more closely resembles real situations.
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Then, we move to the testing framework (Section 3.4). Three model tests are proposed.
The first, already introduced in [50], is based on the coefficient of variation of the cell (or
grain) areas; the second is a Kolmogorov-Smirnov type test based on the cumulative dis-
tribution function of the cell areas. In the non periodic boundaries case, an additional
test is defined, using tools from the emergent area of Topological Data Analysis (TDA),
which combines the two disciplines of statistics and topology. The focus is on persis-
tent homology, the branch of TDA used for identifying qualitative features of data and to
give a measure of the importance of those featuresAfter having briefly and intuitively ex-
plained the basic concepts of persistent homology and the common ways of represent-
ing it (persistence diagram), a test based on the squared distances between persistence
landscapes is presented.
In Section 3.5, we carry out a computer simulation for estimating the quantiles for the
proposed model test statistics. We consider null distributions for the test statistics con-
ditional on the number of visible cells in 2D. For a general test statistic, the conditional
distribution is expressed in terms of quantities that involve the (unknown) intensity pa-
rameter λ of the 3D Poisson process and quantities independent of λ. Therefore a boot-
strap approach for computing a 90% confidence interval for λ is proposed.
In Section 3.6 the power of the tests is discussed with respect to a specific parametric
alternative hypothesis: 2D Poisson-Voronoi diagram. The new tests proposed in Section
3.4 result to be more powerful than the one already proposed in literature. Finally, in Sec-
tion 3.7, we show an application of our work based on scanned images by [50] of Alumina
Ceramics. The different tests belonging to the different approaches are performed and
the results are compared. A brief discussion on future developments follows in Section
3.8.

3.2. BASIC CONCEPTS
In real experiments of microstructure observation, it is often not possible to deal di-
rectly with 3D structures. Instead, one has to base inference on pictures of 2D sections
of the 3D structure. The theoretical baseline structure in this Chapter is the 2D Sectional
Poisson-Voronoi tessellation. This structure is produced by the intersection between
a two dimensional plane and a Poisson-Voronoi diagram generated by a Poisson point
processΦ in R3, resulting in the two dimensional Sectional Poisson-Voronoi, denoted by
VΦ(2,3).
In a more general context, Chiu et al. [25] answer a fundamental question: “For inte-
gers 2 ≤ t ≤ d −1, is the intersection between an arbitrary but fixed t-dimensional linear
affine subspace of Rd and the d-dimensional Voronoi tessellation generated by a point
processΦ a t−dimensional Voronoi tessellation?" The answer to this question is negative
when Φ is a Poisson point process [25, 90]. Moreover, each cell in a Sectional Poisson-
Voronoi tessellation is almost surely a non-Voronoi cell [25]. For 2D and 3D Poisson-
Voronoi diagrams, also for 2D Sectional Poisson-Voronoi diagrams, much information
about moments and scaling for the main geometrical characteristics is known, but little
information and no analytic expressions for the distributions of them are available so
far. In the next Section, we will see how stereological relations can be used to obtain es-
timates of the intensity parameter λ of the 3D generating Poisson process based on the
2D sections.
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STEREOLOGICAL ESTIMATORS FOR THE INTENSITY PARAMETER
Basic stereological relationships exist which are independent of any underlying tessella-
tion model. Moreover, in the literature explicit (scaling) relations are known expressing
the expected number of vertices per unit area, P A , the expected number of cells per unit
area, NA , and the mean total edge length per unit area, L A , in terms of the intensity
parameter λ for a generating 3D Poisson process. Combining stereological and scaling
relationships, the following expressions hold, see e.g. [49]:
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Furthermore, exploiting the simple relation between NA and the expected area of the
cell profiles, E(a), NA = 1

E(a) , four estimators for λ can be obtained:
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(3.2.1)

Here, the hats indicate natural estimates for the mean quantities based on the data (like
‘number of cells divided by observed area’, N̂A). In [49], the behaviour of the estimators
is investigated by means of a computer simulation. The authors state that the estimators
show hardly any difference concerning bias and variance and that the biases are less
than 1% for sample size n = 50 and that they decrease rapidly with increasing sample
size.
Once we have an estimate of the intensity parameter λ̂, as explained in Section 2.3 of the
previous Chapter, it can be used for estimating the distribution of the main geometrical
3D features of the grains.

3.3. DISTRIBUTION OF THE GEOMETRICAL CHARACTERISTICS
In this Section, we focus on the distribution of the area, the perimeter and the number
of edges of cells in 2D Sectional Voronoi diagrams, considering two cases: periodic and
non periodic boundary conditions.

PERIODIC BOUNDARY CONDITIONS
Before going more deeply into the testing problem, it is necessary to make a distinc-
tion between periodic and non periodic boundary conditions. On the one hand, pe-
riodic boundary conditions, resulting from the application of translation symmetries,
are mathematically convenient as these provide a natural way to deal with edge effects.
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Moreover, for large volumes and large values of λ, the construction really mimics the
infinite volume situation where the convenient scaling results as mentioned in Section
3.2. For real materials, the periodic boundary constraint is not realistic. The approach
without periodic boundary conditions is more realistic. It will be seen that determining
null distributions of test statistics, the approach will be slightly more simulation based,
but also more tailored to the data and 3D object at hand. For both simulation studies a
Monte-Carlo procedure is used. In particular, in the periodic boundary case, the results
are obtained by randomly generating approximately 1000 points in a box of dimension
10×10×10 and using Eq. 2.2.1 in Chapter 2 for creating 3D Poisson-Voronoi cells. This is
equivalent to saying that the generator points of the Poisson-Voronoi diagram are gen-
erated according to a Poisson process with intensity parameter λ= 1. Then, one section
with dimensions 10×10 (parallel to the cube face for reducing boundary effect) for every
3D structure is randomly taken. On average the number of 2D cells in a section turns
out to be approximately 146. The simulation is conducted using the software provided
by Tata Steel. The algorithm, that the software exploits is described in Section 2.4 of the
previous Chapter 2. The procedure consists in repeating 1000000 three main steps:

Step 1 : Generate a 3D Poisson-Voronoi diagram with intensity parameter λ = 1 apply-
ing periodic boundary conditions;

Step 2 : Take a random 2D section of the 3D structure;

Step 3 : Determine the geometrical characteristics of all cells in the 2D section.

Graphical representations of the results are shown in Figures 3.1, 3.2, 3.3. For the grain
area and the grain perimeter distributions estimation; a simple boundary correction for
kernel density estimation is adopted [67]. Quantities like area and perimeter are by defi-
nition nonnegative. This means that in general the probability density functions of these
quantities have a discontinuity at zero. Kernel estimators are biased at such points of dis-
continuity and can be corrected for bias using boundary corrected estimate described in
[67]. The linear correction approach, as proposed in [67] (see Equation 3.4 [67]), pre-
vents the estimate to assign mass outside [0,∞).
The values in Table 3.1 are the estimated values of the main geometrical features for a
2D Sectional Poisson-Voronoi diagram. They are in agreement with both theoretical and
simulation results known in the literature (see [103]).

Table 3.1: Estimated moments of the geometrical features of 36480600 2D sectional cells, λ= 1

(a) Area

µ1 0.68524
σ 0.47342
µ2 0.69367
µ3 30.37169
µ4 40.94590

(b) Perimeter

µ1 3.13345
σ 1.60552
µ2 12.39622
µ3 2072.73503
µ4 10695.17596

(c) Number of edges

µ1 6.00000
σ 1.69195
µ2 38.86268
µ3 9818.30810
µ4 72107.17324
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(a) (b)

Figure 3.1: (a) Boundary corrected Kernel density estimate (Epanechnikov kernel, linear combination correc-
tion, h = 0.2 [67]) and (b) empirical cumulative distribution function of the area of 36480600 (originating from
the 1000000 slices with periodic boundary conditions) 2D sectional cells, λ= 1

(a) (b)

Figure 3.2: (a) Boundary corrected Kernel density estimate (Epanechnikov kernel, linear combination correc-
tion, h = 0.1 [67]) and (b) empirical cumulative distribution function of the perimeter of 36480600 (originating
from the 1000000 slices with periodic boundary conditions) 2D sectional cells, λ= 1

NON PERIODIC BOUNDARY CONDITIONS

In most real situations, the data available are relative to a material section with com-
pletely visible as well as partially visible grains. In such situations it is not realistic to
use periodic boundary conditions in the model. The second simulation study does not
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(a) (b)

Figure 3.3: (a) Relative frequencies and (b) empirical cumulative distribution function of the number of edges
of 36480600 (originating from the 1000000 slices with periodic boundary conditions) 2D sectional cells, λ= 1

involve periodicity in the boundaries. We fix the geometry of the 3D volume and 2D slice
as in the periodic boundaries case. Then the procedure can be summarised repeating
1000000 times three main steps:

Step 1 : Generate a 3D Poisson-Voronoi diagram with intensity parameter λ not apply-
ing periodic boundary conditions. In this Chapter, for reasons that will become
clear later, λ= 0.2 is chosen;

Step 2 : Take a random 2D section of the 3D structure;

Step 3 : Determine the geometrical characteristics of the completely visible and the par-
tially visible cells in the 2D section.

The main graphical results for the area and the perimeter are shown respectively in
Figures 3.4, 3.5.

The shape of the distributions seems to be similar to the periodic boundary case
(Figures 3.4, 3.5). The distribution of the number of edges is the one that differs the
most in the two boundary type cases (Figures 3.3, 3.6). Note that the scale is different
given that two different values of λ are considered for the two different approaches. The
values in Table 3.2 are the estimated values of the main geometrical features for a 2D
Sectional Poisson-Voronoi diagram with non periodic boundary conditions.

3.4. MODEL TESTS
In [50, 73, 131] several model tests based on the distribution of geometrical features of
the grains in random plane sections of a spatial tessellation are proposed. More pre-
cisely in [73], the authors propose five stereological model tests based on the distribu-
tion of the number of cell vertices. The power of the model tests is investigated under
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(a) (b)

Figure 3.4: (a) Boundary corrected Kernel density estimate (Epanechnikov kernel, linear combination correc-
tion, h = 0.1 [67]) and (b) empirical cumulative distribution function of the area of 500000 (originating from
the 10000 slices with non periodic boundary conditions) 2D sectional cells, λ= 0.2

(a) (b)

Figure 3.5: (a) Boundary corrected Kernel density estimate (Epanechnikov kernel, linear combination correc-
tion, h = 0.1 [67]) and (b) empirical cumulative distribution function of the perimeter of 500000 (originating
from the 10000 slices with non periodic boundary conditions) 2D sectional cells, λ= 0.2

some special parametric alternative hypotheses: a Matérn cluster point process (CVT),
a Matérn hard-core point process (HVT) and a simple sequential inhibition point pro-
cess (SVT). Secondly, in [50] three different model tests are considered: the first two are
based on the variability of the section cells area, the third is motivated by a well-known
relationship between specific edge length L A and point process intensities λ and P A . In
line with their previous work, the authors propose one-sided and two-sided tests for dis-
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Figure 3.6: (a) Relative frequencies and (b) empirical cumulative distribution function of the number of 500000
(originating from the 10000 slices with non periodic boundary conditions) 2D sectional cells, λ= 0.2

Table 3.2: Estimated moments of the geometrical features of 500000 (originating from the 10000 slices with
non periodic boundary conditions) 2D sectional cells, λ= 0.2

(a) Area

µ1 1.99999
σ 1.42733
µ2 6.03722
µ3 63.81772
µ4 266.05660

(b) Perimeter

µ1 4.63812
σ 2.03771
µ2 25.66439
µ3 451.25743
µ4 2921.12340

(c) Number of edges

µ1 5.48690
σ 1.54197
µ2 32.48377
µ3 597.41117
µ4 4039.34983

tinguishing Poisson-Voronoi tessellation from more regular tessellations (HVT and SVT)
or irregular tessellations (CVT). The null distributions of the test statistics are approxi-
mated using simulation. Simulations also show that the model tests are quite powerful
in discriminating the different kind of plane sections. It is interesting to note that all
their tests are based on summarising indices like the coefficient of variation, skewness
index etc, and that the best behaviour among them is reported to be the one based on
the coefficient of variation of the cells area (Eq. 3.4.1), also used by the authors in [131].
In this Section we introduce test statistics that use more information contained in the
data than only summarising indices. To this end, we use tools belonging to different
branches in statistics. Moreover, we describe a partly simulation-based framework to
approximate null distributions of the test statistics considered.
If it comes to the study of mechanical properties of metal, the grain size is known to
be an important parameter. In 2D, grain area therefore represents one of the most in-
teresting features for real materials sections, especially for single-phase materials [55].
Therefore, the first two tests proposed are based on observed cell areas. The first one,
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mentioned before and already used in [50, 131], is based on the coefficient of variation
of the observed cell areas:

C =
√

1
n−1

∑n
i=1(ai − ā)2

ā
. (3.4.1)

Here ai is the area of the i -th sectional cell and ā is the mean cell area in the section. As
the coefficient of variation is scale invariant, one just needs to compute the coefficient of
variation of the area of the cells of a real section applying periodic boundary conditions
and compare it with the quantile of the distribution of this test statistic. Its counterpart,
in the non periodic boundary case, is based on the coefficient of variation of the area of
the totally and partially visible cells. Obviously, the referring quantile of the distribution
of the statistical test are different with respect to the previous case.
In both cases, the information contained in the 2D section is clearly related to the num-
ber of cells observed (n) and comparing the observed value of C with a quantile of the
conditional distribution of C given n will only depend on the number of cells observed
in the 2D section.
The second test is based on the cumulative distribution function (CDF) of the area of
the 2D sectional cells. More precisely it is a Kolmogorov-Smirnov type test given by the
supremum distance between the CDF of the area of the cells of the section for which one
wants to test the Poisson-Voronoi hypothesis and a function that reflects our expecta-
tion of the cumulative distribution function under the Poisson-Voronoi assumption. For
the latter, in the periodic boundaries case, we choose a very accurate simulation-based
approximation of the CDF of the area of 36480600 Sectional Poisson-Voronoi cells.
Let F1 be the cumulative distribution function of the areas of the 2D sectional cells with
intensity parameter λ= 1 approximated via simulation as described above and let Ĝ be
the empirical cumulative distribution function of the area of n cells of a 2D section from
a 3D structure with intensity parameter λ. First, we use eq. 3.2.1 for estimating the in-
tensity based on the considered section, λ̂a . Furthermore, inspired by Lemma 2.3.3 in
the previous Chapter, we define the next test statistic as the supremum distance between
the two functions:

D(F,Ĝ) = sup
x≥0

|F1(x)−Ĝ(λ̂
2
3 x)|. (3.4.2)

We will return to the issue of approximating the null distribution of this test statistic in
Section 3.5.
In the non periodic boundaries case, the formulation is slightly different. It is expressed
by

D(F̄λn2D ,Ĝn2D ) = sup
x≥0

|F̄λn2D (x)−Ĝn2D (x)| (3.4.3)

where F̄λn2D is the expected CDF conditioned to the event of observing exactly n2D sec-
tional cells with estimated parameter λ. In Section 3.5, it will be explained in more detail
how this can be computed. Ĝn2D is the empirical CDF of the areas of the totally and par-
tially visible cells of the section under study.
The last test exploits tools coming from the emergent field of Topological Data Analysis.
We will now explain the main concepts of persistence homology necessary for using our
model test.
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TEST BASED ON PERSISTENCE PLOTS

Instead of giving rigid mathematical and topological definitions, the aim of this Section
is to guide the reader via intuitive concepts in the construction of persistence diagrams
and persistence landscapes used for the last model test. Looking at a single 2D image,
it is hard to identify the really ‘important’ features that univocally characterise it. Topo-
logical data analysis (TDA) is a relatively new discipline that has provided new insight
into the study of qualitative features of data. In particular, persistent homology is the
branch of TDA that provides tools both for identifying qualitative features of data and
to give a measure of the importance of those features. Key topological features of a set
include connected components, holes, voids . . . . The main aim of persistent homology
is to record the evolution of those characteristics with respect to a scale parameter r that
usually can be interpreted as time.
To avoid too long digressions that can drift away from the real scope of the Chapter, most
of the main concepts belonging to homology and persistent homology field are just con-
cisely discussed. For readers that aim to come to a formal definition of the following
procedure, in [53] more details are provided.
For illustrative reasons and because in this study 2D images are used, the 2D case is con-
sidered but generalisation to higher dimensions is not complicated. The input of the
analysis typically takes the form of a point cloud X (Fig. 3.7 (a)). Based on that, a special
structure is built. It provides information about the qualitative features discussed above.
This structure is based on so called simplices. A geometric k-simplex is the convex hull
of k+1 affinely independent points v0, v1, . . . , vk . More precisely the 0-simplex identifies
vertices, the 1-simplex line segments and the 2-simplex triangles. One way for building
this structure starts off with the so called Delaunay Triangulation, DT (X) of X. Basically,
this is a graph consisting of vertices in X and edges between two points if and only if
they share a Voronoi edge (Fig. 3.7 (b)). Then, circles are grown with increasing radius
r , centred at the points in X. The Alpha complex1 at radius r , αr (X), is a subcomplex of
DT (X). In fact, for r very small, the Alpha complex is nothing but the set X of the gen-
erator points. Then r grows and once two circles intersect, the edge of the underlying
Delaunay triangulation between the two circle centres is added to αr (X). Eventually, for
r very big, the Alpha complex is the Delaunay Triangulation itself (Fig. 3.7 (c-i)).
Now, rather than considering this structure for some fixed value of r , its evolution for
growing r > 0 is registered. In particular, we keep track of the birth time b and a death
time d of connected components and holes2, where the ‘time’ is given by the radius of
the circles corresponding to those events. One can think of the circles radii growing at
constant rate. At time zero, the Alpha complex equals X. All individual points are sepa-
rate connected components. These are born at time zero. After some time, when the first
two points get connected because their circles touch, one can say two connected com-
ponents merge or one connected component ‘dies’ (in a more general case in which the
birth times might be different the edge that causes two components to merge is paired
with the component that was born most recently, i.e. the one with the later birth ‘time’).
In Figure 3.7, this happens for r = 0.47; see subplot 3.7 (c). For one connected com-

1Other common choices of simplicial complexes are Čech and Rips complexes; see [33, 53].
2In three dimensions one could also consider other topological features, like voids or cavities (holes in more

than 2 dimensions)
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ponent, we therefore have (b,d) = (0,0.47). Increasing r further, more connected com-
ponents will ‘die’ until only one remains for all r large enough because all points are
covered by the union of all large circles. During the same process, it is also possible that
holes appear. This happens when a polygon (eg. triangle) appears in the picture, such
that the r -circles around the corner points of this polygon do not cover the whole poly-
gon. At this time a hole is ‘born’, yielding a birth time b for this feature. It will also ‘die’
again, when r is further increased and the circles centered at the corners do cover the
whole polygon. Note that not all polygons that appear correspond to the birth of a hole.
For instance, in the case of triangles, acute triangles always generate a hole while obtuse
triangles not. in Figure 3.8 (g) a triangle appears but the circles centred at the three cor-
ners immediately cover the whole triangle.
The points (b,d) thus obtained can be used as coordinates and plotted on a plane, re-
sulting in the so called persistence diagram. Since the topological features (connected
components, holes) can only die ‘after’ they are born (d ≥ b), necessarily each point ap-
pears on or above the diagonal line y = x. The persistence diagram corresponding to
the data in Figure 3.7 is shown in Figure 3.8. The black dots, D0i , on the vertical axis
represent the ‘deaths’ of connected components; the lowest being the aforementioned
(b,d) = (0,0.47), the highest, (b,d) = (0,2.67), corresponding to Figure 3.7 (g). The red
triangles D1i , represent the birth- and death times of the holes. Based on persistence
diagrams, several descriptive summarising functions have been proposed in the litera-
ture. For example rank functions [121], landscapes and silhouettes [20, 24] and accumu-
lated persistence functions [15]. In this Chapter we follow the persistence landscapes
approach, but any other summary statistic could also be used for testing.
We first describe in words how to construct a landscape from a persistence diagram.
Then, the formal definition follows. For each point (b,d) in the persistence diagram,
count the number of points to its left top (north-west). This is the rank of the point (b,d)
and it can be interpreted as the number of features that are alive at time b and that are
still alive at time d . Then, draw horizontal and vertical lines from each point (b,d) in
the persistence diagram to the diagonal and ‘tip the diagram on its side’. Then take the
contour of the projection of the points with the same rank. This results in the so-called
landscape. This is done for connected components and holes separately, see Figure 3.9.
More formally, a persistence landscape is a sequence of continuous, piecewise linear
functions λ(k, ·) : R+ →R+, k = 1,2, . . . . Denote the set of ‘persistence points’ in the per-
sistence diagram by D . Then for each p = (b,d) ∈ D define the triangular functions

Λp (t ) =
{ t −b t ∈ [b, b+d

2 ]
d − t t ∈ ( b+d

2 ,d ]
0 other wi se.

Then, the persistence landscape of the persistence diagram is defined by

λD (k, t ) = kmaxp∈DΛp (t ), t ≥ 0, k ∈N. (3.4.4)

Here kmax selects the kth largest value in the set, so for a particular k at each t , λD (1, t )
is the largest value in the set {Λ1(t ),Λ2(t ), . . . ,Λp (t )}, p ∈ D , λD (2, t ) the second largest
value, etc.
Our test will be the contrast between the observed landscape and a landscape one would
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Figure 3.7: (a) Set of points X (b) Voronoi Diagram (dashed) and Delaunay Triangulation (solid) (c) Circles with
radius 0.47 around the points of X; the Alpha complex αr (X) consists of the individual points of X and the one
edge corresponding to the two touching circles (d) Alpha complex for r = 1.32 (e) Alpha complex, r = 1.35 (f)
Alpha complex, r = 1.66 (g) Alpha complex, r = 2.76 (h) Alpha complex, r = 3.61 (i) Alpha complex, r = 3.68

expect under the null hypothesis that the 3D structure is Poisson-Voronoi. For this mean
landscape, we use the conditional expectation of the landscape given that N2D = n2D

and approximate this using the simulation procedure described in Section 3.3. To be
more specific,

λ̄D j (k, t ) = 1

n

n∑
i=1

λD j (i )(k, t ) j = 0,1, t ≥ 0, (3.4.5)
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Figure 3.8: Persistence Diagram. The black dots indicate the birth- and death time of connected components
and the red triangles the birth- and death times of the holes. The data are the same as those used for Figure
3.7.

where n is the number of 2D Poisson-Voronoi sections generated with N2D = n2D . In-
spired by the approach proposed in [121], the test statistics are then given by the distance
between persistence landscapes and mean persistence landscapes using L2 norm,

L0 = ‖λ̂D0 − λ̄D0‖2 =
[n2D−1∑

k=1

∫ T

0
(λ̂D0 (k, t )− λ̄D0 (k, t ))2dt

] 1
2

L1 = ‖λ̂D1 − λ̄D1‖2 =
[ ∞∑

k=1

∫ T

0
(λ̂D1 (k, t )− λ̄D1 (k, t ))2dt

] 1
2

.

(3.4.6)

Here λ̂D j (k, ·), j = 0,1 is the k-th landscape for the connected components ( j = 0) and
for the holes ( j = 1) for the 2D section under study. If both L0 and L1 are less than the
threshold quantiles, the Poisson-Voronoi hypothesis is not rejected.

3.5. QUANTILES OF THE MODEL TESTS
In [50], the authors carry out a simulation for estimating the quantiles of the test statistics
proposed there. Cells of 3D spatial Poisson-Voronoi diagrams are generated with λ =
1. Then, a random planar section of the 3D structure is taken and square observation
windows are drawn in the section planes with an expected number of 50, 100, 150 and
200 cells, respectively.
We provide an expression for the distribution of any test statistic given the number of
observed cells in the section, separating a part that depends on the parameter λ and
a part that does not. We consider the situation where we see a window (with known
shape and size) of a 2D planar section of a 3D Poisson-Voronoi diagram in a 3D object of
known geometry. As before, denote by N3D the number of cells in the 3D object and N2D

the number of 2D cells visible in the 2D window. Lemma 3.5.1 below gives an expression
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Figure 3.9: Rank function for connected components (a) and holes (b) Persistence Landscapes for connected
components (c) and holes (d)

of the null distribution of a test statistic T , given n2D cells are observed in the section. It
separates a part that depends on the intensity parameter λ and a part that does not.

Lemma 3.5.1. Let T denote a general model test for the Poisson-Voronoi assumption val-
idation. The conditional probability Pλ(T ≥ t |N2D = n2D ) can be expressed as

Pλ(T ≥ t |N2D = n2D ) =
∑∞

k=n2D
P(T ≥ t |N3D = k, N2D = n2D )P(N2D = n2D |N3D = k) (λV )k

k !∑∞
j=n2D

P(N2D = n2D |N3D = j ) (λV ) j

j !

(3.5.1)
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Proof.

Pλ(T ≥ t |N2D = n2D ) =
∞∑

k=0
Pλ(T ≥ t , N3D = k|N2D = n2D )

=
∞∑

k=n2D

Pλ(T ≥ t , N3D = k|N2D = n2D )

=
∞∑

k=n2D

Pλ(T ≥ t |N3D = k, N2D = n2D )Pλ(N3D = k|N2D = n2D )

=
∞∑

k=n2D

P(T ≥ t |N3D = k, N2D = n2D )Pλ(N3D = k|N2D = n2D ).

(3.5.2)

In the last equality the λ-dependence disappears from the first factor, because, condi-
tionally on N3D , the distribution of T does not depend on λ. The λ-dependent part in
Eq. 3.5.2 can be made more explicit also using that conditionally on N3D , the distribution
of N2D does not depend on λ:

Pλ(N3D = k|N2D = n2D ) = P(N2D = n2D |N3D = k)Pλ(N3D = k)

Pλ(N2D = n2D )

= P(N2D = n2D |N3D = k)Pλ(N3D = k)∑∞
j=n2D

P(N2D = n2D |N3D = j )Pλ(N3D = j )

=
P(N2D = n2D |N3D = k) (λV )k

k !∑∞
j=n2D

P(N2D = n2D |N3D = j ) (λV ) j

j !

.

(3.5.3)

Combining Eqs. 3.5.2 and 3.5.3 yields Eq. 3.5.1.

For computing p-values in practice, the value of λ is needed. In order to take into
account the uncertainty in the estimate of λ while computing p-values for model tests,
we compute a 90% confidence interval for λ. To do this, as this value is not known, we
propose a bootstrap approach. More precisely, we want to compute

Pλ(

√
λ̂−

p
λ≤ u) =

∞∑
k=0

Pλ(

√
λ̂−

p
λ≤ u, N3D = k)

=
∞∑

k=0
Pλ(

√
λ̂−

p
λ≤ u|N3D = k)Pλ(N3D = k)

(3.5.4)

The procedure can be summarised as follows: first we estimate λ from a real 2D image,
using λ̂a (eq. 3.2.1). For computing Pλ(N3D = k), Pλ̂a

(N3D = k) is then used. Secondly,

for computing Pλ(
√
λ̂−p

λ≤ u|N3D = k), 10000 Poisson-Voronoi diagrams for each re-
alisation of a Poisson process with λ̂a in a cube are generated. Then a 2D section from
each 3D diagram is randomly taken and the number of cells in the section is used for
estimating λ. Next, the probability of having exactly k cells in 3D, P(N3D = k), is used
as weight for computing a weighted mean cumulative distribution function. Finally, a
square root transformation for normalising and stabilising the variance is used for com-
puting the confidence set [126]:
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P[

√
λ̂− l0.95 ≤

p
λ≤

√
λ̂− l0.05] ≈ 0.90 (3.5.5)

As an example, if λ̂a = 0.2 (as in the application shown in Section 3.7 n2D = 50 and win-
dow size= 10×10), the resulting 90%-confidence set is given by:

[0.1498;0.2439] (3.5.6)

Having a confidence set for λ at hand, the next step is to compute the null distribution
described in Lemma 3.5.1 for the various test statistics. A visualisation of the probabil-
ity of observing exactly 50 cells given P(N3D = k) is shown in Figure 3.10. The resulting
p-values depend on λ, but we can consider these for all λ in the confidence set con-
structed. We start with the coefficient of variation as test statistic (Eq. 3.4.1). In Figure
3.11 it is possible to see the difference between the cumulative distribution functions of
the coefficient of variation of the 2D sectional cells area unconditioned and conditioned
on seeing exactly 50 cells in the 2D section. Moreover, the green dotted lines represent
the cumulative distribution function of the coefficient of variation for the lower and up-
per bounds of the λ confidence set. Note that the distance between the two CDFs is
small, showing that the approach of [50] to use an unconditional distribution in this
particular setting leads to comparable results. In table 3.3, quantiles for the conditional
distribution of the CV of the cells area are shown (λ̂ = 0.2). In Figure 3.12, the condi-

Figure 3.10: Monte Carlo approximation of P(N2D = 50|N3D = k)

Table 3.3: Quantiles of the conditional distribution of the coefficient of variation of the 2D sectional cells area
given that N2D = 50, (λ= 0.2)

α 0.005 0.01 0.0125 0.025 0.05 0.1 0.9 0.95 0.975 0.9875 0.99 0.995
cα 0.531 0.547 0.553 0.571 0.591 0.615 0.798 0.826 0.853 0.875 0.883 0.903

tional weighted mean CDF for cells area (black line), its confidence bands (green dotted
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Figure 3.11: Cumulative distribution function of the coefficient of variation of the 2D sectional cells area con-
ditioned on N2D = 50 (black line; green dotted lines are obtained using the upper and lower limit of the confi-
dence set for λ̂= 0.2) and unconditioned (red line)

lines) and the unconditional mean are shown. More precisely we define

F̄λn2D (x) = Eλ{FN2D (x)|N2D = n2D } = Eλ{E(FN2D (x)|N2D = n2D , N3D )}

=
∞∑

k=n2D

Pλ(N3D = k|N2D = n2D ) ·E(FN2D=n2D ,N3D=k (x)),
(3.5.7)

where FN2D=n2D ,N3D=k (x) is the empirical distribution function of the areas given k cells
in 3D structure and n2D visible on the slice. The same type of expression is used also for
λ̄D0 (1, t ) and λ̄D1 (1, t ).
In Figure 3.13 the CDF of the test based on the supremum distance between empirical
CDFs of the 2D sectional cells area is shown. As for the test based on coefficient of varia-
tion, the difference between conditional and unconditional approach is relatively small.
Switching to the test based on persistence landscapes, Fig. 3.14-3.15 are visualisations
of k mean persistence landscapes conditioned on N2D = 50 for connected components
and holes respectively, when λ̂ = 0.2. Instead, Fig. 3.16-3.17 are the conditional maxi-
mum weighted means (black lines) and their confidence bands (green dotted lines).
In Figures 3.18-3.19 the CDF of the test based on the L2 distance between persistence
landscapes (connected components and holes) are shown. Also in this case, the differ-
ence between conditional and unconditional approach seems to be irrelevant.

For computing the quantiles of the distribution of the model tests based on CDF and
on persistence landscape (Tables 3.4, 3.5 and 3.6), we use a ‘leave one out’ procedure.
Here we use the B 2D slices generated as follows:

• For the test based on CDFs difference (3.4.3):

di = sup
x∈R

|F̄λn2D (−i )(x)− F̂n2D (i )(x)|, 1 ≤ i ≤ B (3.5.8)
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Figure 3.12: Cumulative distribution function of the 2D sectional cells area conditioned on N2D = 50 (black
line; green dotted lines are obtained using the upper and lower limit of the confidence set for λ̂ = 0.2) and
unconditioned (red line)

Figure 3.13: Cumulative distribution function of the empirical CDF test of the 2D sectional cells area condi-
tioned on N2D = 50 (black line; green dotted lines are obtained using the upper and lower limit of the confi-
dence set for λ̂= 0.2) and unconditioned (red line)

• For the test based on persistence landscapes difference (3.4.6):

l0(i ) =
[n2D−1∑

k=1

∫ T

0
(λ̂D0(i )(k, t )− λ̄D0(−i )(k, t ))2dt

] 1
2

1 ≤ i ≤ B

l1(i ) =
[ ∞∑

k=1

∫ T

0
(λ̂D1(i )(k, t )− λ̄D1(−i )(k, t ))2dt

] 1
2

1 ≤ i ≤ B

(3.5.9)

Here F̂n2D (i ), λ̂D0(i ) and λ̂D1(i ) are the empirical results for the section i and F̄n2D (−i ),
λ̄D0(−i ) and λ̄D1(−i ) are the mean result computed for all the B sections leaving out the
i -th.
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Figure 3.14: k Weighted mean landscapes (connected components) for sections with exactly 50 2D sectional
cells, (λ̂= 0.2)

Figure 3.15: k Weighted mean landscapes (holes) for sections with exactly 50 2D sectional cells, (λ̂= 0.2)

Table 3.4: Quantiles of the conditional distribution of the test based on the difference between cumulative
distribution functions of the 2D sectional cells area given that N2D = 50, (λ̂= 0.2)

α 0.005 0.01 0.0125 0.025 0.05 0.1 0.9 0.95 0.975 0.9875 0.99 0.995
dα 0.047 0.050 0.051 0.054 0.058 0.064 0.123 0.135 0.146 0.155 0.159 0.168

Table 3.5: Quantiles of the conditional distribution of the test based on the difference between the observed
landscapes and the conditional mean landscapes (connected components) of the 2D sectional cells area given
that N2D = 50, (λ̂= 0.2)

α 0.005 0.01 0.0125 0.025 0.05 0.1 0.9 0.95 0.975 0.9875 0.99 0.995
l0α×10−5 2.402 2.602 2.802 3.003 3.403 3.803 10 20 20 30 30 40
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Figure 3.16: Max weighted mean landscape (connected components) for sections with exactly 50 2D sectional
cells (black line; green dotted lines are obtained using the upper and lower limit of the confidence set for
λ̂= 0.2)

Figure 3.17: Max weighted mean landscape (holes) for sections with exactly 50 2D sectional cells (black line;
green dotted lines are obtained using the upper and lower limit of the confidence set for λ̂= 0.2)

Table 3.6: Quantiles of the conditional distribution of the test based on the difference between the observed
landscapes and the conditional mean landscapes (holes) of the 2D sectional cells area given that N2D = 50,
(λ̂= 0.2)

α 0.005 0.01 0.0125 0.025 0.05 0.1 0.9 0.95 0.975 0.9875 0.99 0.995
l1α×10−5 9.109 9.810 9.810 10 10 10 50 70 100 140 150 190

3.6. POWER OF THE MODEL TESTS
To assess the power of the three different tests proposed in Section 3.4, the values of
their power functions are estimated under a specific alternative hypothesis: 2D Poisson-
Voronoi diagram. As stated in Section 3.2, the authors in [25, 90] showed that a 2D Sec-
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Figure 3.18: Cumulative distribution function of the test based on the L2 distance between persistence land-
scapes L0, (3.4.6), of the 2D sectional cells area conditioned on N2D = 50 (black line; green dotted lines are
obtained using the upper and lower limit of the confidence set for λ̂= 0.2) and unconditioned (red line)

Figure 3.19: Cumulative distribution function of the test based on the L2 distance between persistence land-
scapes L1, (3.4.6), of the 2D sectional cells area conditioned on N2D = 50 (black line; green dotted lines are
obtained using the upper and lower limit of the confidence set for λ̂= 0.2) and unconditioned (red line)

tional Poisson-Voronoi diagram cannot be a planar Poisson-Voronoi tessellation. Some
mean values of the geometrical characteristics of the sectional diagram clearly deviate
from the tessellation resulting from a 2D Poisson point process. Nevertheless, at a first
sight the difference between them is not immediate (Figure 3.20).
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We generate 7000 2D Poisson-Voronoi diagrams with exactly 50 cells and intensity pa-
rameter λ= 0.2 under non periodic boundary conditions and the main graphical results
are shown in Figure 3.21. As the simulations results show, the most powerful test is the
one based on the L2 distance between persistence landscapes. Good results are obtained
also for the test based on the empirical CDF difference: its power value is around 90%.
The coefficient of variation reaches, however, a considerably lower power 78.6%.

(a) (b)

Figure 3.20: (a) 2D Poisson-Voronoi diagram (b) 2D Sectional Poisson-Voronoi Diagram, N2D = 50

3.7. APPLICATION
In [50], it is stated that single-phase microstructures, e.g. alumina ceramics, can be well
approximated by Poisson-Voronoi diagrams. Using the same images shown in [50], the
tests proposed in the previous Section (Sec. 3.4) are performed.
First all cells in the images (Fig. 3.22 (a)) are involved in test computations. Hereafter, for
illustrative purposes and for a better comparison with the theoretical results shown in
the previous Section, we decide to consider just part of the images used in [50]. In fact,
the original window size is reduced until exactly 50 cells are visible or partially visible
(Fig. 3.22 (b)). In Tables 3.7-3.8, the test statistics and the p values (values in brackets) are
shown for the four model tests and following the two different approaches. Figures (3.23-
3.27) and (3.28-3.32) are graphical representations of the cumulative distribution func-
tion test and the persistence approach steps. In particular, for applying the test based on
the difference between persistence landscapes, we take the center of mass of the cells in
the images (Fig. 3.24, 3.29), then compute the persistence diagrams (Fig. 3.25,3.30) and
finally the persistence landscapes (Fig. 3.26-3.27, 3.31-3.32) as explained in Section 3.4.
Results using the two different approaches lead to slightly different results regarding the
first two images (Fig. 3.22 1(a), 1(b), 2(a), 2(b)). For the first image, considering all cells,
the coefficient of variation test and the test based on the CDF of cells area suggest that
the Poisson-Voronoi model could be reasonably used for approximating alumina ceram-
ics; instead, looking at the cuts, the hypothesis is rejected by both tests. For the second
image, the coefficient of variation test based on all cells is in agreement with the results
obtained for the reduced sections; just the test based on the CDF considering all cells
does not reject the Poisson-Voronoi hypothesis.
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Figure 3.21: Histograms of the results of the coefficient of variation test (a), of the empirical CDF test (b), of the
test based on the L2 distance between persistence landscape L0 (c) and L1 (d) for 7000 2D Poisson-Voronoi
diagram. Red dotted lines identify the quantile of the conditional distribution of the test for N2D = 50
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Using tests from persistence approach instead, the use of Poisson-Voronoi model is
discouraged in both cases.

1a 1b

2a 2b

3a 3b

Figure 3.22: Schemes as planar tessellations of plane sections of alumina ceramics: preprocessing (a)
Hahn&Lorz ([50]), (b) Cut of the plane sections with exactly 50 cells
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Figure 3.23: Cumulative distribution function comparison of the cells area of the schemes of plane sections of
alumina ceramics (Fig.3.22 1 (a) black line, 2 (a) yellow line, 3 (a) green line) and of the 2D Sectional Poisson-
Voronoi cells area (red line)

Figure 3.24: From left to right centers of mass of the schemes of plane sections of alumina ceramics (Fig.3.22 1
(a), 2 (a), 3 (a))
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Figure 3.25: From left to right persistence diagrams of the centres of mass of the schemes of plane sections of
alumina ceramics (Fig.3.22 1 (a), 2 (a), 3 (a))

Figure 3.26: From left to right persistence landscapes (connected components) of the schemes of plane sec-
tions of alumina ceramics (Fig.3.22 1 (a), 2 (a), 3 (a))

Figure 3.27: From left to right persistence landscapes (holes) of the schemes of plane sections of alumina
ceramics (Fig.3.22 1 (a), 2 (a), 3 (a))
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Figure 3.28: Cumulative distribution function comparison of the cuts of the sections of alumina ceramics with
exactly 50 cells (Fig.3.22 1(b) black line, 2(b) yellow line, 3(b) green line) and of the 2D Sectional Poisson-
Voronoi cells area conditioned on N2D = 50 (red line)

Figure 3.29: From left to right centres of mass of the cuts of the sections of alumina ceramics with exactly 50
cells (Fig.3.22 1 (b), 2 (b), 3 (b))
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Figure 3.30: From left to right persistence diagrams of the centers of mass of the cuts of the sections of alumina
ceramics with exactly 50 cells (Fig.3.22 1 (b), 2 (b), 3 (b))

Figure 3.31: From left to right persistence landscapes (connected components) of the cuts of the sections of
alumina ceramics with exactly 50 cells (Fig.3.22 1 (b), 2 (b), 3 (b))

Figure 3.32: From left to right persistence landscapes (holes) of the cuts of the sections of alumina ceramics
with exactly 50 cells (Fig.3.22 1 (b), 2 (b), 3 (b))
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Table 3.7: Values of the different model tests for the schemes of plane sections of alumina ceramics (Fig.3.22 1
(a), 2 (a), 3 (a))

(a) 1b

c 0.848 (0.073)
d 0.078 (0.710)
l0 0.058 (0)
l1 0.019 (0)

(b) 2b

c 0.959 (0.002)
d 0.121 (0.172)
l0 0.057 (0)
l1 0.028 (0)

(c) 3b

c 1.492 (0)
d 0.168 (0.006)
l0 0.062 (0)
l1 0.018 (0)

Table 3.8: Values of the different model tests for the cuts of the sections of alumina ceramics with exactly 50
cells (Fig.3.22 1 (b), 2 (b), 3 (b))

(a) 1b

c 0.931 (0.004)
d 0.154 (0.014)
l0 0.077 (0)
l1 0.041 (0)

(b) 2b

c 1.002 (0.0002)
d 0.172 (0.004)
l0 0.116 (0)
l1 0.024 (0)

(c) 3b

c 1.328 (0)
d 0.248 (0)
l0 0.137 (0)
l1 0.009 (0)

3.8. CONCLUSIONS
This Chapter provides a general setting for testing whether a microstructure is generated
by a Poisson-Voronoi diagram, based on a cross section of the microstructure. Taking
inspiration from previous work in this field, [50, 73], we widen the testing framework
proposing new model tests. In particular, we introduce test statistics using tools coming
from different statistical branches like Goodness of Fit and Topological Data Analysis,
which show to be more powerful under the specific alternative hypothesis, 2D Poisson-
Voronoi diagram. We consider the situation with periodic boundary conditions, which is
popular in materials science applications, and without these conditions. Our approach
is very general and can be extended to test hypotheses for more complicated models de-
scribing the 3D structure based on a 2D section.
Being able to accept the Poisson-Voronoi model on the basis of 2D real metal sections
means having complete probabilistic information on the underlying 3D structure. Fur-
thermore, testing a more general model assumption on metal microstructure and ac-
cepting the underlying hypothesis will allow to perform mechanical experiments using
virtual microstructures and discovering new interesting relations between microstruc-
ture features and mechanical properties much faster than possible using physical exper-
iments.
Moreover, since as shown in Section 3.7, Poisson-Voronoi model can be a too simple
model for a single-phase microstructure as alumina ceramics, alternative models are re-
quired. Hence, future developments involve testing of more general and less understood
Voronoi structures for more complicated microstructures, such as Multi-Level Voronoi
diagrams. Another interesting direction is to consider fully data based approaches for
analysing 2D sections. For instance, studying such a section using a persistence land-
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scape does not need the rigid restrictions on the geometry of the cells as present in the
Poisson-Voronoi model.





4
DIGITAL MATERIAL

REPRESENTATION

Representing metallic microstructure is not an easy task. Microstructure, resulting from
binding chemistry and processing history, dictates the final properties and performance
of the metallic alloy. Microstructure can be considered the “DNA” of the material and for
producing new metallic alloys with desired properties, a deep comprehension of it is nec-
essary. In the classical experimental approaches, problems related to gathering data in
a reasonable time-frame and at relatively low cost can occur. Therefore, methods based
on digital representation of the material have been developed. In this Chapter, two dif-
ferent methods for the virtual representation of the microstructure of AI SI 420 steel are
presented. The first one accurately matches empirical and digital descriptors to recreate a
Representative Volume Element of the material under study. The latter generates statisti-
cal virtual microstructures with “similar” geometrical and physical characteristics. Fur-
thermore, in the case in which Poisson-Voronoi assumption is rejected, more “complex”
tessellations, such as Multi-Level Voronoi diagrams, constitute a valid alternative.

Technology is nothing. What’s important is that you have a faith in people, that they’re
basically good and smart, and if you give them tools, they’ll do wonderful things with

them.

Steve Jobs
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4.1. INTRODUCTION

A metallic microstructure can be defined as the three-dimensional arrangement of grains,
phases and defects, with their extensive chemical and structural variety [102]. In order
to represent microstructures, quantitative and qualitative characterisations of its com-
ponents are needed. In the previous Chapters, the focus has been on the arrangement
of the grains in (implicitly assumed) single-phase microstructure. Many metallic alloys
contain more than one phase or compound1. The term “phase” is related to the structure
of matter at the atomic scale. Usually, the predominant phase in the microstructure is
referred as “matrix” phase. The study of the microstructure of multi-phase steel involves
more ‘complications’. For instance, particles belonging to different phases can present
different size and shape distributions. Metallic compounds such as carbides, can pre-
cipitate in the microstructure during thermal processing (e.g. heating or rapid cooling).
Their formation may cause local lattice distortions, making their position another inter-
esting factor.
Another important factor that influences the mechanical performance of the material
is the “texture”. Metallic texture is defined as the collection of the grain orientations. A
common assumption is that the material presents an “isotropic” texture, meaning that
the grain orientations are uniformly at random or better that all grain orientations can
occur with the same probability. In other cases, grains may present preferred orienta-
tions of planes and/or directions of slip, that influence the mechanical behaviour of the
material during deformation.
Hence, for a complete description of the material microstructure, identification of the
phases present (phase diagrams, volume fraction and chemical composition) and the
determination of the morphology (grain arrangement, grain size, grain orientation) of
the grains are the fundamental steps.
Having acquired the necessary microstructural information, the aim is to virtually gen-
erate/reproduce microstructures and studying the mechanical properties associated to
their microstructural features. In [88] an extensive review of digital representations of
metallic microstructure is presented. This procedure called “Digital Material Represen-
tation” (DMR) is schematically summarised in Figure 4.1. Two main approaches are
distinguished: exact reconstruction of microstructures and synthetic generation of mi-
crostructures.
In both cases, the aim is to reconstruct or produce a volume element that represents the
microstructure from the geometrical, physical and mechanical point of view. The adjec-
tive “Representative” is then added if the volume element is sufficiently large (relatively
small) to represent materials properties.
Exactly reconstructing microstructures means using experimental data, coming for in-
stance from empirical sectioning of the materials or from tomographic measurements,
to loyally produce a smaller (digital) version of the microstructure. However, obtaining
this kind of data and a digital microstructure based on them is usually quite demanding
and not easily accessible [88].
The second approach, synthetic generation of microstructures, involves the generation
of a virtual microstructure by matching (or partially matching) statistical and stereolog-

1A metallic compound is a compound that contains one or more metal elements bonded to another element.
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ical parameters of the real microstructure [6].
Another important distinction regards the output of the digital material representation.
Two main different structures can be obtained: Representative Volume Element (RVE)
and Statistically Similar Representative Volume Element (SSRVE). The first definition of

Figure 4.1: Schematic version of methods for Digital Material Representation. The middle column indicates
important aspect of the representation. The left- and right column state how these aspects are dealt with in
both approaches

RVE is given in [59] as a microstructural sub-region that is representative of the entire
microstructure in ‘an average sense’. Typically, an experimentally measured large por-
tion of the material’s microstructure is considered as a suitable RVE if it is large enough
to ensure statistical homogeneity [7].

Alternatively, a digital RVE can be produced based on exact reconstruction methods
[19].
An SSRVE or similar constructs, such as statistically equivalent representative volume el-
ement (SERVE) [148] or statistically similar volume elements (SSVEs) [19], are structures
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generated with a lower morphological complexity compared to real microstructures but
still representing the material’s mechanical behaviour accurately. The construction of an
SSRVE is based on the incorporation of stereological and physical parameters in a vol-
ume partitioned by a tessellation. In fact, defining a geometrical structure and dividing
the computational domain in an appropriate geometrical tessellation is the first step for
the construction of both RVE and SSRVE.
Methods like Voronoi tessellations [103], cellular automata [162] or Monte Carlo Potts
models [169] are common ways for describing the geometrical structure underlying the
microstructure. As discussed in the previous Chapters 2-3, Voronoi tessellations are
defined as the state of the art geometrical methods for generating polycrystalline mi-
crostructures, given that their cell growth process is able to mimic the nucleation and
growth of grains [8, 165]. In particular, the Poisson-Voronoi diagram is the classical ap-
proach to generate single-phase microstructures [88]. However, its use for more com-
plex microstructure is often questionable. Methods for assessing the appropriateness
of its use are proposed in Chapter 3. The main limitations of the Poisson-Voronoi dia-
grams are: i) the impossibility of controlling the shape of the grain size distribution. This
can indeed make their use inaccurate for multi-phase or anisotropic microstructures re-
construction; ii) the intrinsic convexity of the grains that can, especially for multi-phase
microstructures, limit their capability of mimicking observed features in metallic mi-
crostructures.
For overcoming these problems, different alternatives have been proposed. The first ap-
proach consists of changing the underlying point process of the generator points of the
tessellation. As already seen in Chapter 3, a possible alternative for representing mate-
rials microstructures with a more heterogeneous grain size distribution is choosing as
underlying point process a Matérn Cluster (CVT) point process. If instead the aim is to
represent a more regular arrangement of the grains in metal microstructures, a point
process such as Matérn Hard-Core point process (HVT) can be used [50, 49].
Later, with similar objectives, models such as Controlled-Voronoi tessellations [165, 166]
and Laguerre-Voronoi [151] tessellations have been proposed. Controlled-Voronoi tes-
sellations are introduced with the aim of controlling the grain size distribution, by tuning
a regularity parameter, based on the ratio of the distance between two neighbour cells
and the distance one would observe if the structure would be as regular as a honeycomb
structure [167]. More specifically, N points are generated in a finite volume with periodic
boundary conditions according to a specific law: once the first point is generated subse-
quent points are ‘accepted’ only if they are located no nearer than a minimum allowed
distance from all other points [168].
Laguerre-Voronoi diagrams, also called weighted-Voronoi diagrams or power diagrams,
are a generalisation of the classical Voronoi diagrams in which the generating sites are
given an additional weight that affects the size of the associated cells [151]. However,
if from one side the increased control of the size distribution of the cells can allow to
generate a more realistic metals microstructure, degenerating conditions such as cells
containing multiple or no generator points can occur [37]. Another approach, adopted
to allow for non-convex grains and to represent multi-phase microstructures, is using
Multi-Level Voronoi diagrams [72, 161]. The idea behind this tessellation method is to
stack layers of tessellation with a decreasing intensity parameter of the generator points.
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For instance, in a Two-Level Voronoi algorithm, first a fine tessellation of Voronoi cells is
generated which will form the building blocks of the microstructure. Then, a second set
of sites is generated with a lower intensity compared to the one of the first tessellation.
The second level cells, or the resulting grains, are given by the union of all cells of the
first tessellation with generator points closest to the second level generator point than to
the others. Using more flexible models for representing the geometrical aggregation of
the grains can allow to include different grain size and shape distributions for grains of
different phases or precipitates, making the resulting digital microstructure more ‘simi-
lar’ to real ones. Once the phase compositions, the texture (the distribution of the grain
orientations) and the geometrical arrangement of the grains have been obtained, phe-
nomenological laws for the mechanical behaviour depending on these factors have to
be assigned for obtaining an accurate ‘digital twin’ .
In this Chapter, the main aim is representing the microstructure of the annealed AISI420
stainless steel with M23C6 carbides. In fact, understanding the role of M23C6 carbides
in the strain development of the material can lead to the design of metals with desired
levels of strength. Using a virtual representation of the microstructure allows to have full
control of the position, the size and the shape of the precipitates, reducing time and costs
typical of real experiments. The two different ways of digitally representing microstruc-
tures are considered. In Section 4.2, the creation of RVE based on Electron Backscatter
Diffraction (EBSD) data and Finite Element reconstruction methods implemented in the
software DREAM.3D is presented. In Sections 4.3 an SSRVE is constructed. The geomet-
rical structure underlying the virtual microstructure is a Multi-Level Voronoi diagram
presented in Section 4.3.1. In Section 4.4 the difference between the two approaches
and the importance of their accuracy are discussed.

4.2. REPRESENTATIVE VOLUME ELEMENT
In this Section, the creation of a digital Representative Volume Element (RVE) is pre-
sented. As previously stated, the term RVE is usually used for indicating a smaller vol-
ume element with respect to the whole material, that contains all necessary information
and properties of the microstructure under study. An RVE can be both a real smaller
part of the material or a digital version constructed as loyally as possible to the real mi-
crostructure. The latter is the approach followed in this Section. In order to produce
an RVE as similar as possible to the real material, the initial microstructure of the steel
must be studied and quantified. The microstructure of annealed AISI420 consists typ-
ically of ferrite (matrix phase) with various precipitate particles, predominantly below
10µm, identified as M23C6 Fe-Cr carbides [26]. Figure 4.2 shows a secondary electron
image of the microstructure before deformation in which ferrite grains are highly popu-
lated with precipitates, namely M23C6 carbides. M23C6 carbides mainly precipitate along
prior austenite grain boundaries [64, 160]. Electron Backscatter Diffraction (EBSD) is
one of the most used techniques to measure polycrystalline microstructures [19]. Crys-
tallographic orientations, misorientations, grain size, grain boundaries and phases of
steel specimens are the kind of data that can be obtained using EBSD. Most empirical
methods for grain reconstruction are based on EBSD, more specifically on the crystal-
lographic orientation and misorientation measurements. Indeed, exploiting the defini-
tion of a grain as a region containing material that is within a (small) specified orienta-



66 4. DIGITAL MATERIAL REPRESENTATION

Figure 4.2: Secondary electron SEM image of AI SI 420 with M23C6 carbides (smaller particles) in which rolling
direction (RD) and normal direction (ND) is indicated.

tion range, a small variation of orientation can occur within a grain. Defining a critical
value for the misorientation angle (commonly between 10° and15°), it is possible to ob-
tain an accurate reconstruction of the microstructure. EBSD measurements and inverse
pole figure map (stereographic projection of the crystallographic directions present in
the grains that constitute the material) for the material under study are shown in Figure
4.3. As it is possible to see from Figure 4.3, M23C6 carbides seem to be uniformly dis-

(a) (b)

Figure 4.3: (a) EBSD phase map overlapped on image quality map in which white lines delimit ferrite grains
with boundary angles higher than 10°. (b) ND inverse pole figure map for ferrite phase; black regions represent
M23C6 carbides

tributed within the ferrite matrix. A carbide fraction of 0.032 is measured by EBSD (50
nm step size). The size distributions of ferrite grains and M23C6 carbides are shown in
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Figure 4.4 and relevant statistical parameters are collected in Table 4.1. These values are
obtained from several EBSD maps taken with surfaces perpendicular to the normal and
transverse direction. More than 1000 grains are included in the analysis.

(a) (b)

Figure 4.4: (a) Ferrite grain size distribution (b) Carbide size distribution

Table 4.1: Estimated moments of the geometrical features of 1000 grains obtained by EBSD measurements

(a) Ferrite

Volume Fraction 0.968
Mean Volume (µm) 2.58±0.05

Mean Area (µm) 4.43±0.07

(b) Carbides

Volume Fraction 0.032
Mean Volume (µm) 0.45±0.03

Mean Area (µm) 0.70±0.03

To produce the RVE, the texture and other microstructural parameters obtained by
several EBSD measurements are used. The DREAM.3D software [46] is a software com-
monly employed for RVE generation. It is based on an algorithm that first creates a
collection of idealised ellipsoidal grains having distributions of size, shape and shape
orientation equal to those observed in the experimental microstructure; secondly, the
generated grains are placed inside a volume. A number of constraints are used to deter-
mine the arrangement and spatial location of the grains inside this volume. Then, crys-
tallographic orientations obtained via EBSD are assigned to the grains. Finally, a Finite
Element (FE) procedure2 is employed to pool all information in a single volume element.
In Figure 4.5 two different RVEs with different resolution and number of grains are shown.
They are generated for two different specific purposes. The one with lower resolution

2Finite-element methods are developed for reducing the huge number of unknowns in an engineering prob-
lem in a smaller number by dividing the solution region into small parts called elements and by expressing
the unknown field variables in terms of assumed approximating functions (interpolating functions/shape
functions) within each element [158]
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(a) (b)

Figure 4.5: Two RVEs with different resolution and number of grains: (a) 50×50×50 voxels, 502 ferrite grains
and 174 carbides (b) 100×100×100 voxels, 268 ferrite grains and 109 carbides

(Figure 4.5 (a)) is used for calibration of material properties; the second one (Figure 4.5
(b)) is used for the assessment of local strain development during uniaxial deformation.
In fact, important physical parameters have to be incorporated in the RVE in order to ob-
tain a proper digital twin. More details on the physical parameter and the phenomeno-
logical laws that will be assigned to the reconstructed volume element are given in Chap-
ter 6.

4.3. STATISTICALLY SIMILAR REPRESENTATIVE VOLUME ELE-
MENT

As seen in the previous Section, the construction of RVE is based on empirical measure-
ments such as EBSD data and inverse pole figure maps. In fact, RVE are sometimes con-
sidered as the maximal measurable portion of a microstructure [130]. Due to the high
complexity one can achieve in retrieving data of real microstructure morphology, using
RVEs as inputs of FE methods can be computationally inefficient. Therefore, the SSRVE
concept is developed with the aim of creating a structure with a lower complexity but
that still maintains the principal characteristics of the real microstructure. Examples of
their use can be found in [6, 19, 72, 122, 148, 161]. In this Section, an SSRVE is con-
structed with software provided by Tata Steel. The software allows to create volume el-
ements in which the grains are arranged according to Multi-Level Voronoi tessellations.
In the next subsection, details about the definition of this new kind of diagrams and
qualitative description of their geometrical characteristics are presented.

4.3.1. MULTI-LEVEL VORONOI TESSELLATION
In order to account for non-convex grains and to include different grain size distribu-
tions for grains of diverse phases, Tata Steel developed an algorithm based on the gen-
eration of a Multi-Level (Multi-Layer) Voronoi tessellation for the simulation of steels
microstructure [72, 161]. Following the same approach used in Chapter 2, without loss
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of generality we introduce the Multi-Level Voronoi diagrams considering two tessella-
tion layers.
Consider two finite sets of distinct points in Rd , X1 = {xk1 : k = 1, . . .n} and X2 = {xi 2 : i =
1, . . .m} and usually m < n. Here, {xk1} are the generator points of the first level tessella-
tion, and a first level cell is defined as

Ck1 = {y ∈Rd : ||x j 1 − y || ≤ ||xk1 − y ||, j 6= k}, k = 1, . . . ,n. (4.3.1)

where || · || is the usual Euclidean norm. Let

Ii = {k : ||xi 2 −xk1|| ≤ ||xi 2 −xl1||, l 6= k}, i = 1, . . . ,m, (4.3.2)

be a set of indices. The cells of the resulting Multi-Level Voronoi tessellation, also re-
ferred as second level cells or grains, are given by:

C∗
i = ⋃

k∈I1

Ck1, i = 1, . . . ,m. (4.3.3)

Loosely speaking it means that given two point sets (m < n), all the first level cells are
merged together if their generator points are closest to the second generator point with
respect to all the others. If we assume that the sites of both the first and the second tes-
sellation are generated according to Poisson processes,Φ1 andΦ2, with intensity param-
eters λ1 and λ2 respectively (λ1 >λ2), we refer to the resulting tessellation as Multi-Level
Poisson-Voronoi Diagram, MV (Φ1,Φ2).
However, unlike the case of the classical Poisson-Voronoi diagrams, there is not just one
parameter (the intensity parameter of the underlying Poisson process) influencing the
distribution of the geometrical characteristics of the grains. For illustrating this concept,
two different 3D Multi-Level Voronoi diagrams and their corresponding 2D sections are
shown in Figure 4.6.

The two diagrams are both generated in a finite volume of 10×10×10 and the inten-
sity of the second layer generator points is the same, namely 0.1. This intensity value
is responsible for the resulting number of grains in the tessellation (bigger grains indi-
cated by colours and separated by bold black lines). The first level tessellations of the
two diagrams have different generator points intensities. For the first diagram, 4.6 (a)-
(b), the intensity of the first level cells is equal to 0.3; for the second, 4.6 (c)-(d), it is
equal to 3. This intensity difference results in different grain morphologies. Taking λ1

very small results in a tessellation with grains clearly not convex and with more irregular
boundaries. If λ1 →∞ the resulting diagram boils down to the original Poisson-Voronoi
diagram based on the second level generating points and therefore the resulting grains
are convex.
In Figures 4.7-4.8 the volume and the surface area distributions of the cells of the first
tessellation (a)-(c) and of the grains of the whole tessellation (b)-(d) are compared. In
Figure 4.9 a ECDF visual comparison for volume and surface area distributions is pro-
vided. Especially from this last comparison is possible to notice how the two grain sur-
face area distributions differs. Similar conclusions can be drawn from the ECDF visual
comparison of area and perimeter distributions of 2D random sections of the two struc-
tures (Figure 4.10). Another advantage of using Multi-Level Voronoi tessellations is
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(a) (b)

(c) (d)

Figure 4.6: (a) 3D Multi-Level Poisson-Voronoi diagram and corresponding (b) 2D sectional Multi-Level
Poisson-Voronoi diagram with λ1 = 0.3 and λ2 = 0.1 (c) 3D Multi-Level Poisson-Voronoi diagram and cor-
responding (d) 2D sectional Multi-Level Poisson-Voronoi diagram with λ1 = 3 and λ2 = 0.1

the possibility of defining different size distributions for grains of diverse phase or for
precipitates. Its use is explained in the construction of an SSRVE of the microstructure
of the annealed AISI420 stainless steel with M23C6 carbides. In SSRVE construction, as
previously mentioned, matching of stereological parameters is a fundamental step. For
instance for the definition of the phases, empirical values of the volume fractions and
the correspondent mean grain size values (Table 4.1) are used. The volume fraction of
the ferrite phase is used for defining the intensity parameter of the second level grains,
instead the volume fraction of the carbides for the intensity of the first level cells. The
intensity parameter of the first level tessellation is consequently decomposed as:

λ1 =λ
f
1 +λc

1,

where λ
f
1 is the intensity of the grains belonging to the ferrite phase and λc

1 is the in-
tensity of the carbides. In Figure 4.11, two different SSRVEs with different λc

1, equal to
0.03 and 0.113, are presented. The software allows also to assign crystallographic orien-

3These volume fraction values are chosen accordingly to the volume fractions of carbides measured for the
AISI420 under study with EBSD and XRD respectively
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Figure 4.7: Histogram of the volume of the first level cells and of the second level grains of a 3D Multi-Level
Poisson-Voronoi diagram with λ1 = 0.3 and λ2 = 0.1 (a)-(b) and of a 3D Multi-Level Poisson-Voronoi diagram
with h λ1 = 3 and λ2 = 0.1(c)-(d)

tations, and thus a texture to the generated structure. Random orientation structures
or specific orientation information empirically gathered with EBSD method, can be de-
fined. For completing the definition of an SSRVE, as in the RVE case, physical parameter
and phenomenological laws have to be incorporated to obtain the final statistical digital
twin. In Chapter 6 more details about this procedure are given.
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Figure 4.8: Histogram of the surface area of the first level cells and of the second level grains of a 3D Multi-Level
Poisson-Voronoi diagram with λ1 = 0.3 and λ2 = 0.1 (a)-(b) and of a 3D Multi-Level Poisson-Voronoi diagram
with h λ1 = 3 and λ2 = 0.1(c)-(d)
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Figure 4.9: Empirical Cumulative Distribution comparison between the volume distributions of 100 grains (a)
and the volume distributions of the second level grains (b) of a 3D Multi-Level Poisson-Voronoi diagram with
λ1 = 0.3 and λ2 = 0.1 (red line) of a 3D Multi-Level Poisson-Voronoi diagram with h λ1 = 3 and λ2 = 0.1 (black
line)
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Figure 4.10: Empirical Cumulative Distribution comparison between the area distributions of the first level
cells (a) and the area distributions of the second level grains (b) of a 2D section of a 3D Multi-Level Poisson-
Voronoi diagram with λ1 = 0.3 and λ2 = 0.1 (red line) and of a 3D Multi-Level Poisson-Voronoi diagram with h
λ1 = 3 and λ2 = 0.1 (black line)
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(a) (b)

(c) (d)

Figure 4.11: Two SSRVEs with the same number of ferrite grains (λ2) but different carbides volume fractions
(λc

1) generated in a volume 10× 10× 10: (a) 3D Multi-Level Poisson Voronoi diagram and corresponding (b)
2D sectional Multi-Level Poisson Voronoi diagram with λ1 = 3 (λc

1 = 0.03) and λ2 = 0.5 (c) 3D Multi-Level
Poisson Voronoi diagram and corresponding (b) 2D sectional Multi-Level Poisson Voronoi diagram with λ1 = 3
(λc

1 = 0.11) and λ2 = 0.5. The blue particles are cells of the first level tessellation for which a different phase
(carbide) is assigned
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4.4. CONCLUSIONS
Being able to virtually reconstruct microstructures is the first step in understanding the
relation between microstructure features and mechanical properties. Accurately mim-
icking steel microstructures or generating a similar digital version of it, can lead to the
creation of new materials with desired mechanical properties. In this Chapter, two dif-
ferent approaches have been presented for representing the microstructure of AISI420
stainless steel with M23C6 carbides. The first approach is based on exact reconstruc-
tion methods resulting in the creation of RVEs. The latter, more statistically oriented,
is based on the synthetic generation of SSRVEs. Constructing RVEs can lead to more
accurate results with disadvantages in terms of time and costs than generating SSRVEs,
which compensates the drawbacks of the first approach, but with poorer accuracy. How-
ever, the two approaches are not mutually exclusive. In fact, it is possible to construct
RVEs for testing and calibrating the physical parameters that have to be assigned to the
microstructure and in the same study using SSRVEs for performing large scale simula-
tions and obtaining new insight into the relationship between microstructure features
and mechanical properties.
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5
MECHANICAL PROPERTY

INVESTIGATION FROM 2D IMAGES

Investigating the main determinants of the mechanical performance of metals is not
a simple task. Already known physically inspired qualitative relations between 2D mi-
crostructure characteristics and 3D mechanical properties can act as the starting point of
the investigation. Isotonic regression allows to take into account ordering relations and
leads to more efficient and accurate results when the underlying assumptions actually
hold. The main goal in this Chapter is to test order relations in a model inspired by a
materials science application. The statistical estimation procedure is described consider-
ing three different scenarios according to the knowledge of the variances: known variance
ratio, completely unknown variances, variances under order restrictions. New likelihood
ratio tests are developed in the last two cases. Both parametric and non-parametric boot-
strap approaches are developed for finding the distribution of the test statistics under the
null hypothesis. Finally an application on the relation between Geometrically Necessary
Dislocations and number of observed microstructure precipitate is shown.

One sees qualities at a distance and defects at close range.

Victor Hugo
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5.1. INTRODUCTION

Understanding the intrinsic nature of the mechanical properties of metals is not an easy
task. In order to get insight into what gives desired mechanical performance to a metal,
a deep and detailed analysis of the metal microstructure characteristics is needed. For
instance, it is known in literature that dislocations, i.e. line defects in the crystalline
arrangement of the atoms [65], play a fundamental role in the mechanical behaviour
of metal alloys. More specifically, the appearance of Geometrically Necessary Disloca-
tions1 (GNDs) during plastic deformation of the material contributes to the hardening
of the material. Detecting GNDs from 2D microstructure images is often challenging. A
widely accepted way is to use the so called Kernel Average Misorientation (KAM) [98].
The KAM, measured in Electron BackScatter Diffraction (EBSD), quantifies the average
misorientation around a measurement point with respect to a defined set of a nearest or
nearest plus second-nearest neighbour points of EBSD observation [21].
In [79, 118, 14] studies on the relation between GNDs and microstructure properties such
as grain size and carbide size are presented. The relation between GNDs and grain size
has both theoretical and experimental confirmation and it can be related to the well-
known macroscopic Hall-Petch relation [51, 109]. In fact, the Hall-Petch relation, in its
original version, describes the negative dependence of yield stress (mechanical prop-
erty) on grain size; loosely speaking the smaller the grains are, the stronger the material
is. More specifically in [68] the authors give as an explanation of the relation between
GNDs and grain size that as the grain size decreases the grain boundary layer in which
GNDs typically accumulate, occupies a greater volume fraction of the material, therefore
it is reasonable to think that the smaller the grains are, the more GNDs will be observed.
Still unclear is instead the relation between carbides and GNDs. In fact, since the 1940’s
several studies on the effect of carbides on the mechanical behaviour of metals have
been conducted. In [110] the authors state that the primary carbides and their distribu-
tion have a major influence on the wear resistance and the toughness of the material.
However, carbides tend to precipitate along the grain boundaries, that as said before, are
the locations in which GNDs typically accumulate. Until now, no direct physical rela-
tionship has been found between carbides and Geometrically Necessary Dislocations.
Therefore, isolating the effect of carbides and assessing the conjecture on the positive
relation between carbides and GNDs is a problem of interest. In [58] a descriptive statis-
tical analysis with response variable KAM, used as a proxy of GNDs and as explanatory
variables the number of grains, the number of carbides and the position of carbides re-
vealed an almost monotone trend of the response variable according to the increments
of the explanatories.
Therefore, in order to take into account the already known direction of the physical re-
lation, we want to propose an approach that incorporates this information and a proce-
dure for testing the prementioned conjectures on a new dataset.

1Dislocations are usually classified into redundant and non-redundant dislocations, respectively called Statis-
tically Stored Dislocations (SSDs) and Geometrically Necessary Dislocations (GNDs). GNDs are dislocations
with a cumulative effect and they allow the accommodation of lattice curvature due to non-homogeneous
deformation. They control the work hardening individually by acting as obstacles to slip and collectively by
creating a long-range back stress.



5.2. ISOTONIC REGRESSION 81

5.2. ISOTONIC REGRESSION

In this context, isotonic regression comes to aid. In fact, the idea at the basis of isotonic
regression is taking order restrictions into account for improving the efficiency of the
statistical analysis by reducing the error or the expected error of estimates and increas-
ing the power of the testing procedures, provided that the hypothesised order restriction
actually holds. The first papers about isotonic regression appeared in the 1950’s [4, 153]
and books [9, 32] are well known references for statistical inference under order restric-
tions. Isotonic regression proves its power in different fields such as epidemiology in
testing the effects of different treatments or in dose-finding [127, 147], but also in genet-
ics [86], business [69], biology [10]. There are not many examples of isotonic regression
use in materials science. Throughout this Chapter special attention is given to the pecu-
liar data structure. Nowadays, developments towards multivariate isotonic regression,
isotonic regression in inverse and censoring problems [48, 47], Bayesian isotonic regres-
sion [77] are ongoing. But also in the most basic framework there is still something miss-
ing.
In this Chapter, starting off with the most basic case, univariate isotonic regression of
means under normality assumptions with known variances, we guide the reader into es-
timation and testing order restriction assumptions, considering different conditions on
the variances.
Three different scenarios are considered. In all three cases, we focus on maximum like-
lihood as estimation procedure and likelihood ratio test as test statistic for hypothesis
testing.
The first case is the basic case in which ‘the variances’ are known or unknown but their
ratio is known. This instance is considered extensively in [9, 32] and results for estima-
tion and testing order restrictions are already known.
The second scenario is from an applications point of view the most common scenario
in which the variances are unknown. In [140], the authors derive a two steps estimating
procedure for means and variances and interesting results on existence and uniqueness
of the maximum likelihood estimates are derived under special conditions. Another iter-
ative method, proposed in [139], is extended to the unknown variances case. The deriva-
tion of the test statistic and of its distribution in this scenario is not trivial. In fact, the
estimate of the mean under the null hypothesis is also affected by the non knowledge of
the variances. We propose the likelihood ratio test statistic and two different bootstrap
approaches, one parametric and one non-parametric, for obtaining the test statistic dis-
tribution.
The last model considers not only the means under order restrictions but also the vari-
ances. This case has not often been faced probably because it is not common to have
prior knowledge on the order of both means and variances. As in the unknown vari-
ances scenario, a two steps procedure for estimating means and variances is derived in
[138] and similar results on existence and uniqueness under specific conditions on the
empirical variances are given. In [139] an improved algorithm called Alternating Itera-
tive Method (AIM) and more general results about convergence are derived. For testing
in this case we derive the likelihood ratio test taking into account the order of variances
also under the null hypothesis and apply a parametric and non-parametric bootstrap
approach in line with the one derived in the unknown variance case to obtain approxi-
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mate p-values.
The Chapter structure is the following. In Section 5.3 we explain the estimation proce-
dure of the isotonic means in the three different cases. In Section 5.4 the focus is on the
Likelihood Ratio Test. We present it in the three different cases and in Section 5.5 we
propose both a parametric and non-parametric bootstrap approach for approximating
the distribution of the test statistics under the null hypothesis. Finally, in Section 5.6 we
come back to the application and we illustrate step-by-step how to deal with a real prob-
lem and more precisely how to perform isotonic regression and test for monotonicity
of KAM with respect to the number of carbides. The Chapter ends with conclusions in
Section 5.7.

5.3. ESTIMATING RESTRICTED MEANS IN THE NORMAL CASE
We first introduce isotonic regression and the notation used in the rest of the Chapter in
a more general context. Normality is assumed throughout this section.
Let yi j , j = 1, . . . ,ni , i = 1, . . . ,k be the j th observation of the response variable Y corre-
sponding to the i th level of the explanatory variable X.
We assume Yi j to be independent random variables, normally distributed with means
µi and variances σ2

i , i = 1, . . . ,k, j = 1,2, . . . ,ni .
The log-likelihood is then given by

l (µ,σ2) =
k∑

i=1

{
− ni

2
lnσ2

i −
1

2σ2
i

ni∑
j=1

(yi j −µi )2
}
+c (5.3.1)

where c is a constant which does not depend on the parametersµ= (µ1, . . .µk )′ andσ2 =
(σ2

1, . . . ,σ2
k )′.

Furthermore, we assume that µ satisfies

µ1 ≤µ2 ≤ ·· · ≤µk . (5.3.2)

A k-dimensional vector µ is said to be isotonic if t ≤ s implies µt ≤µs .
Be D the set of all the isotonic vectors in Rk ,

D = {µ ∈Rk ;µ1 ≤µ2 ≤ ·· · ≤µk } (5.3.3)

In this section we discuss the maximum likelihood estimator of (µ,σ2), where µ is iso-
tonic and σ2

i > 0. Depending on the information on σ2, different MLEs have been de-
rived.
In the following three subsections the three different cases are considered.

ISOTONIC REGRESSION OF MEANS WITH KNOWN VARIANCE RATIO
This first case constitutes the most basic case in which all variances are either known
or unknown but they differ according to some known multiplicative constants ci . This
means that the variance σ2

i of the response variable Yi is given by:

σ2
i = ciσ

2, 1 ≤ i ≤ k.
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This specific case is already covered in [9, 32], but we hereafter report the main results.
The problem of maximising log-likelihood Eq. 5.3.1 in µ can be rewritten equivalently as
solving:

min
µ∈D

k∑
i=1

(ȳi −µi )2wi (5.3.4)

where ȳi =
∑

j yi j

ni
and wi = ni

ci
. Note that this objective function does not depend on

σ2. The solution, µ̂I , is called the isotonic regression of ȳ = (ȳ1, . . . , ȳk ) with weights
w = (w1, . . . , wk ) [140]. For obtaining the solution to Eq. 5.3.4, different algorithms have
been proposed in the literature ([9],[32]). In this Chapter, the “Pool-Adjacent Violators
Algorithm” (PAVA) is used.
More details about the algorithm are provided in Appendix A (ALGORITHM 2.1).

ISOTONIC REGRESSION OF MEANS WITH UNKNOWN VARIANCES
In this second case, no assumptions on the variances are made. They are unknown and
for obtaining the maximum likelihood estimate of µ, they need to be estimated as well.
In [140] the authors consider this case and interesting results on existence and unique-
ness of the MLE are achieved. We hereby recall the main results. The approach is to
maximise the log-likelihood Eq. 5.3.1, with µ ∈ D and σ2 ∈Rk+.
For any fixed σ2 ∈ Rk+ the maximiser µ̂I of l (µ,σ2) over µ ∈ D is the isotonic regression
of ȳ with weights w = (w1, . . . wk )′ and wi = ni

σ2
i

.

On the other hand, for any fixed µ ∈ D , the maximiser σ2 of l (µ,σ2) over σ ∈ Rk+ is

σ̂2(µ) = (σ̂2
1(µ1), . . . σ̂2

k (µk ))′, where σ̂2
i (µi ) =

∑ni
j (yi j −µi )2

ni
.

Substituting σ̂2(µ) into Eq. 5.3.1, we can express the profile log-likelihood of µ as

l (µ) =
k∑

i=1
−ni ln[σ̄2

i + (ȳi −µi )2]+ c (5.3.5)

where σ̄2
i =

∑ni
j (yi j −ȳi )2

ni
is the sample variance of the i th normal population and c a con-

stant that does not depend on µ. Note that l (µ) →−∞ if µk →∞ or µ1 →−∞. Hence,
maximising l over D is equivalent to maximising l over a compact subset of D of type
Da = {µ ∈ D :µ1 ≥−a,µk ≤ a}. As l is continuous on Da , a maximizer over D exists.
As previously said, the authors in [140] discuss also uniqueness of the MLE of (µ,σ2).
They state that l is not a concave function in general and that for guaranteeing unique-
ness the following condition suffices (see Theorem 2.3 [140]):

Condition 5.3.1. For i = 1, . . . ,k, σ̄2
i > max{(ȳi −min(ȳ))2, (ȳi −max(ȳ))2}.

For finding a maximizer of Eq. 5.3.5, a two steps iterative algorithm based on PAVA
has been proposed in [140]. From an initial guess for µ, the associated maximizer in σ2

is computed and after that the maximizer in µ based on thisσ2 and so on. This iterative
procedure stops when the maximum difference between the estimated means at step
l −1 and at step l is less than an arbitrary small threshold value, e.g.,

max
1≤i≤k

|µI (l−1)
i −µI (l )

i | ≤ 10−m ,



84 5. MECHANICAL PROPERTY INVESTIGATION FROM 2D IMAGES

where m is taken to be equal to 3 in our case. In [139] the authors propose a new algo-
rithm called Alternating Iterative Method (AIM). The procedure is based on the minimi-
sation of a semi-convex function. In particular, restating the problem in terms of (µ,ν),
where ν= (1/σ2

1, . . . ,1/σ2
k )′ and given Da is a convex subset of Rk and V a convex subset

of Rk+,

V = {ν ∈Rk
+ : 0 ≤ 1/max

i
( min

min(ȳ)≤θ≤max(ȳ)
s2

i (θ)) ≤ νi ≤ 1/min
i

( min
min(ȳ)≤θ≤max(ȳ)

s2
i (θ))},

L(µ,ν) is a semi-convex function because: i) L(µ,ν) is defined on Da ×V ; ii) for any
givenµ ∈ Da , L(µ, ·) is strictly convex on V and, for any given ν ∈V , L(·,ν) is strictly con-
vex on Da . The algorithm originally proposed for the simultaneous order restrictions of
means and variances can be easily extended to the unknown variance case. The iteration
method works in alternating the search of the minimum point, µ(l ), of L(µ,ν(µ(l−1))) on
a compact subset Da and the search of the minimum point, ν(l ), of L(µ(ν(l−1)),ν) on V .
Proof of the convergence of the algorithm does not require additional conditions [139].
The iterative procedure stops when the difference between the likelihoods at step l −1
and at step l is less than an arbitrary small threshold value:

|L(µ(l−1),ν(l−1))−L(;µ(l ),ν(l ))| ≤ 10−m (5.3.6)

A more detailed version of both algorithms is reported in Appendix A (ALGORITHM 2.2).

ISOTONIC REGRESSION OF MEANS AND VARIANCES SIMULTANEOUSLY
We now assume that both mean and variances are restricted by simple orderings. There-
fore, in addition to assumption Eq. 5.3.2, we assume also:

σ2
1 ≥σ2

2 ≥ ·· · ≥σ2
k > 0 (5.3.7)

The reason for taking decreasing order is relates to our application considered in Section
5.6; increasing variances can be dealt with analogously. In [138], maximum likelihood
estimation under simultaneous order restrictions on mean and variances from a Nor-
mal population is studied. Some of the most important results are hereby recalled. The
approach is to maximise the log-likelihood Eq. 5.3.1 with µ ∈ D and σ2 ∈ Ḡ , where Ḡ is
the closure of

G = {σ2 ∈Rk
+ :σ2

1 ≥σ2
2 ≥ ·· · ≥σ2

k > 0}. (5.3.8)

This means that the maximizer will have positive σ2-values if there is variation within
the groups. Then, for any fixed σ2 ∈ G , the maximizer µI of l (µ,σ2) over µ ∈ D is the
isotonic regression of ȳ with weights w = (w1, . . . wk )′ and wi = ni

σ2
i

.

Furthermore, for anyµ ∈ D , the maximizer σ̂2I (µ) of l (µ,σ2) is the so called antitonic re-

gression (isotonic regression with reversed order [47]) of s2 = (s2
1 , . . . s2

k )′, s2
i =

∑ni
j=1(yi j −µi )2

ni
,

with weights N = (n1, . . . ,nk )′. Existence is guaranteed noticing that
σ2 ∈ [mini (minmini (ȳ)≤θ≤maxi (ȳ) s2

i (θ)),maxi (minmini (ȳ)≤θ≤maxi (ȳ) s2
i (θ))], s2

i (θ) =∑ni
j=1(yi j−

θ)2/ni (see Theorem 2.1 [138]).
Uniqueness is proven under the following condition (see Theorem 2.2 [138])
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Condition 5.3.2. For i = 1, . . .k the sample variance σ̄2
i satisfies σ̄2

i > 2(b − a) where b
and a are the maximal and the minimal means respectively.

As in the unknown variances case, a two steps iterative algorithm is proposed for
finding the solution for both means and variances under order restrictions. The proof of
the convergence of the algorithm is given under Condition 5.3.2.
Later, in [139], as mentioned in the previous section, the authors show that restating the
problem in terms of (µ,ν), where ν= (1/σ2

1, . . . ,1/σ2
k )′ Condition 5.3.2 is not needed for

proving that the algorithm converges. In fact, also in this case the proposed AIM algo-
rithm can be employed. Since L(µ,ν) has continuous second-order partial derivatives
and the Hessian matrix with respect to µ H(µ,ν) = diag(n1ν1, . . . ,nkνk ) is a positive def-
inite diagonal matrix for any fixed ν= (ν1, . . . ,νk )′ ∈V0,

V0 = {ν ∈Rk : 0 ≤ 1

maxi (minmini (ȳ)≤θ≤maxi (ȳ) s2
i (θ))

≤ ν1 ≤ ·· · ≤ νk ≤ 1

mini (minmini (ȳ)≤θ≤maxi (ȳ) s2
i (θ))

}

then by Theorem 4 in [139] the iterative sequence of solutions to L(µ,ν), {(µ(n),ν(n))}
converges to the MLE solution and consequently the sequence {(µ(n),σ2(n))} as well.
As in the previous case, the alternating iterative procedure is stopped when the maxi-
mum difference between the likelihoods at step l−1 and at step l is less than an arbitrary
small threshold value (see Eq. 5.3.6).
A pseudo-code of the algorithms can be found in Appendix A (ALGORITHM 2.3).

5.4. LIKELIHOOD RATIO TEST: CONSTANT µ AGAINST MONO-
TONICITY

We are interested in testing hypotheses of monotonicity in µ under the various assump-
tions on the variances discussed in Section 5.3. There exists extensive literature on test-
ing hypotheses on means. In most cases, a standard testing procedure entails testing the
hypothesis of equality of means against the hypothesis that they are different. In this
Chapter, we consider the same null hypothesis but the alternative is different: mono-
tonicity of the means. As in the previous section, we consider three different testing
frameworks according to the different assumptions on the variances. In all three differ-
ent scenarios the test statistic of interest is the Likelihood Ratio Test (LRT), an intuitive
and powerful tool in hypothesis testing. In both [9] and [32] an entire chapter is ded-
icated to LRT developments and its use for testing order restrictions hypothesis under
the normality assumption and known variance ratio. Using the same notation used in
Section 5.3, we wish to test

H0 : µ1 =µ2 = ·· · =µk

against monotonicity of means

H1 : µ1 ≤µ2 ≤ ·· · ≤µk . (5.4.1)

The likelihood ratio test for H0 against H1 can be defined as:

Λ=
max(µ∈H0;σ2) L(y1, y2, . . . , yk ;µ,σ2)

max(µ∈H1;σ2) L(y1, y2, . . . , yk ;µ,σ2)
(5.4.2)

where yi = (yi 1, . . . , yi ni )′,µ= (µ1, . . .µk )′ andσ2 = (σ2
1, . . .σ2

k )′ . It rejects the null hypoth-
esis for small values of Λ or alternatively for large values of −2logΛ. The convenience
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in using this other form lies on the analogy with the χ2 statistic used to test against the
alternative hypothesis H̄0, that not all µi ’s, i = 1, . . . ,k, are the same.
In the following subsections more explicit expressions for Λ are given depending on the
specific assumptions on means and variances.

LIKELIHOOD RATIO TEST WITH KNOWN VARIANCE RATIO
As in Section 5.3 let yi j j = 1,2, . . .ni , i = 1,2, . . .k be independent observations, normally
distributed with unknown mean µi and variances σ2

i = ciσ
2 with ci known and σ2 un-

known. Under H0, the maximum likelihood estimate of µ1 =µ2 = ·· · =µk is given by:

µ̂H0 =
∑k

i=1 wi ȳi∑k
i=1 wi

(5.4.3)

with wi = ni
ci

. Under H1 the MLE of µ is µ̂I
H1

, the isotonic regression of ȳ , with weights

w = (w1, . . . , wk )′, with respect to the simple order defined in (5.4.1).
The likelihood ratio test for H0 against H1, if the variances are known and ci = 1 boils
down to rejecting H0 for large values of

−2logΛ= 1

σ2

[ k∑
i=1

ni∑
j=1

(yi j − µ̂H0 )2 −
k∑

i=1

ni∑
j=1

(yi j − µ̂I
i H1

)2
]

(5.4.4)

It is easy to check that the test is equivalent to rejecting H0 for large values of:

χ̄2 =
∑k

i=1 χ̄
2
i

σ2 (5.4.5)

where χ̄2
i = ni (µ̂I

i H1
− µ̂H0 )2 and σ2 is the (known) common value of the variance.

Now, let us consider the more general case, σ2
i = ciσ

2 with c1,c2, . . .ck known and σ2

unknown. The estimator of σ2 under the null hypothesis is

σ̂2
H0

=
∑k

i=1 c−1
i

∑ni
j=1(yi j − µ̂H0 )2

N
(5.4.6)

and under H1

σ̂2
H1

=
∑k

i=1 c−1
i

∑ni
j=1(yi j − µ̂I

i H1
)2

N
(5.4.7)

The likelihood ratio test rejects H0 for small values ofΛ= ( σ̂2
H1

σ̂2
H0

)N /2 or equivalently, taking

Ē 2 = 1−Λ2/N , for large values of

Ē 2 =
∑k

i=1 c−1
i χ̄2

i∑k
i=1 c−1

i

∑ni
j=1(yi j − µ̂H0 )2

(5.4.8)

An extension to the multivariate case with covariance matrix Σ unknown but common
can be found in [107, 129].
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LIKELIHOOD RATIO TEST WITH UNKNOWN VARIANCES
In this second case, no assumptions on the variances are made. They are unknown and
possibly unequal. Using the notation of Section 5.3 let yi j , j = 1,2, . . . ,ni , i = 1,2, . . . ,k be
independent observations from a univariate Normal distribution with unknown mean
vector µi and completely unknown variances σ2

i > 0. Let µ̂I be the solution of the iso-
tonic regression of ȳ with weights w = (w1, . . . , wk )′, wi = ni

σ2
i

found used Algorithm (2.2)

in Appendix A.
The first example of testing when all the variances are unknown can be found in [11] and
the univariate version of the test proposed by the author is:

k∑
i=1

(µ̂I
i − ȳ)2ni

s2
i

(5.4.9)

where ȳ =
∑k

i=1 ni ȳi∑k
i=1 ni

and s2
i =

∑k
i=1

∑ni
j=1(yi j −ȳi )2

ni−1 . This test is clearly inspired by the LRT but

it is not.
Let us consider first the maximum likelihood solution (µ̂H0 ,σ̂2

H0
), σ̂2

H0
= (σ̂2

1H0
, . . . , σ̂2

kH0
)′

under the null hypothesis. The log-likelihood under the null hypothesis is

l (µ,σ2) =
k∑

i=1

{
− ni

2
lnσ2

i −
1

2σ2
i

ni∑
j=1

(yi j −µ)2
}
+c. (5.4.10)

Differentiating this log-likelihood with respect toµ andσ2
i , the following k+1 score equa-

tions in k +1 unknowns emerge:
µH0 =

∑k
i=1 niσ

−2
i H0

ȳi∑k
i=1 niσ

−2
i H0

σ2
i H0

=∑ni
j=1 n−1

i (yi j −µH0 )2 1 ≤ i ≤ k

(5.4.11)

Substituting σ2
H0

(µ) in Eq. 5.4.10, the profile likelihood of µ is:

l (µ) =−
k∑

i=1

ni

2
ln

( ni∑
j=1

n−1
i (yi j −µ)2)+ c. (5.4.12)

Theorem 5.4.1. A maximizer of Eq. 5.4.12 over Rd exists and it is contained in
[mini ȳi ,maxi ȳi ]. Moreover, if [mini ȳi ,maxi ȳi ] ∈ [max1≤i≤k (ȳi − σ̄i ),min1≤i≤k (ȳi + σ̄i )]
then the maximizer is unique.

Proof. Maximizing profile likelihood of µ Eq. 5.4.12 boils down to maximise the sum of
functions

− ni

2
ln(ni (σ̄2

i + (ȳi −µ)2)), i = 1, . . . ,k. (5.4.13)

Functions of type Eq. 5.4.13 are unimodal with mode at ȳi and strictly concave on
[ȳi −σ̄i ; ȳi +σ̄i ]. As the sum of unimodal functions is decreasing to the right of the right-
most mode (since all terms are decreasing) and from −∞ to the leftmost mode, the sum



88 5. MECHANICAL PROPERTY INVESTIGATION FROM 2D IMAGES

is increasing (as all of the functions are increasing on that set). Therefore, any maxi-
mizer of l , if it exists, belongs to the interval [mini ȳi ,maxi ȳi ]. As l is continuous on
[mini ȳi ,maxi ȳi ], existence of a maximizer is guaranteed.
Then if we consider the (possibly empty) interval where all the functions in Eq. 5.4.13 are
strictly concave, on that interval the sum is also strictly concave. As for each i the func-
tion Eq. 5.4.13 is strictly concave on Ii = [ȳi − σ̄i ; ȳi − σ̄i ], Eq. 5.4.12 is strictly concave
on

⋂k
i=1 Ii . If [mini ȳi ,maxi ȳi ] is contained in this intersection, l is strictly concave on

[mini ȳi ,maxi ȳi ]. Hence l has a unique maximizer on Rd .

Remark: in a setting with real data, it is easy to check whether [mini ȳi ,maxi ȳi ] ∈
[max1≤i≤k (ȳi − σ̄i ),min1≤i≤k (ȳi + σ̄i )] and hence to determine whether the maximum is
unique.
However, as seen from Eq. 5.4.11 the MLE estimate (µ,σ2) has no closed form expres-
sion. Therefore, in [44] and [100] two different methods for finding the optimal solu-
tion are proposed. The first is an iterative procedure based on the Newton-Raphson
method. A reasonable initial value for µ̂(0)

H0
is the so called Graybill-Deal estimator [45]

µ̂(GD) =
∑k

i=1(ni ȳi )/s̄2
i∑k

i=1 ni /s̄2
i

with s̄2
i =

∑ni
j=1(yi j −ȳi )2

ni−1 . The convergence speed of the algorithm

strongly depends on the initial values. The second method is based on the profile likeli-
hood approach. The authors in [100] propose the bisection method for finding the zero
of the profile likelihood with respect toµH0 . Under H1 we use as estimates of (µH1 ,σ2

i H1),
(µ̂I ,σ̂2) found using the iterative procedure described in Section 5.3.
The likelihood ratio test when the variances are completely unknown can be expressed
as:

Λ̃=
k∏

i=1

( σ̂2
i H0

σ̂2
i H1

)− ni
2

Therefore, as in the previous case, the test rejects for small values of Λ̃ or equivalently for
large values of −2logΛ̃.

LIKELIHOOD RATIO TEST WITH ORDERED VARIANCES
Using the notation of Section 5.3 let yi j , j = 1,2, . . . ,ni , i = 1,2, . . . ,k be independent
observations from Normal distributions with mean vector µi and variances σ2

i . As in the
previous case, the first step is the estimation of (µ,σ2) under the null hypothesis. In this
case we need to maximise Eq. 5.4.10 under the restriction

σ2
1 ≥σ2

2 ≥ ·· · ≥σ2
k > 0. (5.4.14)

Theorem 5.4.2. Suppose that for 1 ≤ i ≤ k, σ̄2
i > 0. Then there exists a maximizer of Eq.

5.4.10 under constraints Eq. 5.4.14.

Proof. First consider the situation for fixed σ2 with σ2
i > 0 for all i . Differentiating Eq.

5.4.10 with respect to µ yields the equation

k∑
i=1

ni (ȳi −µ)

σ2
i
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This shows, that for this σ2, the (unique) maximizer of Eq. 5.4.10 in µ is given by the
following weighted sum of level-means,

µ̂(σ2) =
∑k

i=1 niσ
−2
i ȳi∑k

i=1 niσ
−2
i

Consequently, mini ȳi ≤ µ̂(σ2) ≤ maxi ȳi , bounding the set of possible maximizers of Eq.
5.4.10 in µ irrespective of the precise value of σ2.
Now, given any µ ∈ R, the corresponding optimal σ2 is the solution to the antitonic re-

gression problem antireg(σ̄2
H0

, N ) where σ̄2 = (σ̄2
1, . . . σ̄2

k )′, σ̄2
i =

∑ni
j=1(yi j −µ)2

ni
, N = (n1, . . . ,nk )′

(see [32] Example 1.5.5). The vector to be projected has elements σ̄2
i + (µ− ȳi )2. This

means, that if µ is restricted to [mini ȳi ,maxi ȳi ], the coordinates to be projected all be-
long to the interval [mini σ̄

2
i ,max σ̄2

i +(max ȳi−min ȳi )2]. So, ifµ ranges over [mini ȳi ,maxi ȳi ],
the optimalσ2 is also contained in a the closed bounded region [mini σ̄

2
i ,max σ̄2

i +(max ȳi−
min ȳi )2]k . By our assumption that all σ̄2

i > 0, the MLE exists being a maximizer of a con-

tinuous function on a compact set in R×Rk

If we consider this case as a special case of the case considered in [138] the solution is
unique if Condition 5.3.2 holds. Given that the solution is not in a closed form, we use an
iterative procedure to approximate the solution. As a starting value µ̂(0), a modified ver-
sion of the Graybill-Deal estimator of the common mean when the variances are subject
to order restrictions proposed in [94] appears to be a good choice:

µ̂(I ) =
∑k

i=1 wi τ̂i ȳi∑k
i=1 wi τ̂i

(5.4.15)

where τ̂i is the isotonic regression of (t , N ) where t = (t1, . . . tk )′, ti = 1
s2

i
.

Under H1 we use as estimates of (µH1 ,σ2
i H1), (µ̂I ,σ̂2I ) found using the iterative proce-

dure described in Section 5.3.
In contrast with the previous cases, it is not possible to further reduce the expression of
the LRT because

exp
{1

2

k∑
i=1

ni∑
j=1

(yi j − µ̂H0 )2

σ2
H0

}
does not reduce to a constant. The same holds under H1. Therefore the LRT in this
case can be computed by substituting the solutions obtained via the iterative procedure
under H0 and H1 in the generic expression given in Eq. 5.4.2:

ΛI =
L(µ̂H0 ,σ̂2I

H0
)

L(µ̂I
H1

,σ̂2I
H1

)
(5.4.16)

5.5. BOOTSTRAP APPROACH
In order to determine the significance of the various test statistics proposed in the pre-
vious sections, we need the null hypothesis distribution of the test statistics. The main
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distributional results concerning χ̄2
k and Ē 2

k , the test statistics derived in the known vari-
ance ratio case, are contained in [9] (Theorems 3.1-3.2). However, problems related to
the value of k can arise in the analytical derivation of the p-values. Numerical approxi-
mation can be necessary, especially if k > 4 and if the variation in the range of the weights
is not ‘moderate’ [120, 141].
Furthermore, in the case of completely unknown variances, the null distribution de-
pends on the unknown variances. When analytical derivation of the null distribution
is particularly complex or not possible, bootstrap methodology is a good option. There-
fore, we propose both a parametric and a non-parametric bootstrap approach that can
be easily employed for finding approximate p-values taking into account the different
assumptions on the variances. For overcoming the complex derivation when the vari-
ances are unknown, bootstrap procedures have been proposed in the literature [93, 11].
In particular, in [93] an interesting review of the methods used to approximate the null
distribution of the test statistic under H0 and the restrictive normality assumption (with
which we will not deal in this Chapter) is reported. Moreover the authors propose both
a parametric and non-parametric bootstrap approach for the likelihood ratio test null
distribution for one sided hypothesis testing for means in a multivariate setting [93].
Also in [11] a bootstrap approach to test the homogeneity of order restricted mean vec-
tors when the covariance matrices are unknown is used. In line with those previous
approaches, here we propose two general bootstrap procedures, parametric and non-
parametric, that can be used for testing the null hypothesis taking into account the vari-
ous assumptions on the variances.

PARAMETRIC BOOTSTRAP
Algorithm:

(1) Obtain the estimates µ̂I
i H1

and µ̂H0 using the original data and compute the observed

value of the test statistic of interest LRT (0) (χ̄2(0), Ē 2(0), Λ̃(0) orΛI (0)).

(2) Generate, for 1 ≤ i ≤ k, 1 ≤ j ≤ ni Y ∗
i j ∼ N

(
µ̂H0 ,

√
σ2

i H0

)
, independently.

(3) For (Y ∗
i , . . . ,Y ∗

k ) obtain the estimates µ̂I∗
i and µ̂∗ and compute the bootstrap test

statistic of interest LRT ∗

(4) Repeat (2)-(3) for a sufficient large number of times M

The bootstrap approximation of the p-value is the given by:

p ≈ #(LRT ∗ > LRT (0))

M
(5.5.1)

and the null hypothesis is rejected whenever this p-value is less than the nominal level
α.
Step (2) is the key step, in which the assumption on the variances play a crucial role.
It is interesting to notice that the above procedure can be further simplified. In fact,
we can instead of generating individual observations, directly generate empirical means
ȳi = Zi ∗ σp

ni
, with Zi Standard Normally distributed.
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NON-PARAMETRIC BOOTSTRAP
The non-parametric version of the bootstrap releases the normality assumption of the
bootstrap samples. However a relatively large sample size is required for the following
approach.

Algorithm:

(1) Obtain the estimates µ̂I
i H1

and µ̂H0 using the original data and compute the observed

value of the test statistic of interest LRT (0) (χ̄2(0), Ē 2(0), Λ̃(0) orΛI (0)).

(2) Standardize the original yi j to obtain ‘standardized residuals’ zi j = yi j −ȳi√
s2

i

(3) Combine all zi j observations from (1 ≤ i ≤ k;1 ≤ j ≤ ni ) into a vector of length∑k
i=1 ni and draw k simple random samples z∗

i j with replacement each of respec-
tive sizes (n1,n2, . . . ,nk )

(4) Transform z∗
i j to y∗

i j = z∗
i j · σ̃i H0 + µ̂H0

(5) For each bootstrap sample y∗
i j (1 ≤ i ≤ k;1 ≤ j ≤ ni ) obtain the estimates µ̂I∗

i H1
and

µ̂∗
H0

and compute the bootstrap test statistic of interest LRT ∗

(6) Repeat (3)-(4)-(5) for a sufficient large number of times M

The bootstrap approximated p-value is defined as in the parametric case Eq. 5.5.1.

5.6. APPLICATION
One of the most common ways for investigating strength and ductility of metallic materi-
als is by performing a tensile test. A tensile test is an experiment in which a uniaxial force
is applied to the test sample causing deformation of the material, temporarily (elastic be-
haviour), permanently (plastic behaviour) and eventually its fracture [27]. Data used in
this Chapter are image data of the microstructure of the material subjected to a plastic
strain (deformation) of 0.139 obtained performing a uniaxial tensile test in which force
is applied to the test sample with respect to just one specific axis (Fig. 5.1). At a mi-
crostructure level the deformation of the material corresponds to displacements in the
lattice structure and in the possible appearance of Geometrically Necessary Dislocations
(GNDs). The material used is the same described in Chapter 4, more specifically an an-
nealed AISI420 ferrite stainless steel with M23C6 carbides. The aim is to investigate the
carbide effect on the GNDs formation. Kernel Average Misorientation (KAM) is used as a
proxy of the GNDs. In Figure 5.2 the KAM is represented by red filaments, the blue lines
represent the ferrite grain boundaries, carbides are the black dots. The results of the
estimation in the three different scenarios faced in Sections 5.3 are summarised in Table
5.1. Modelling the relationship between KAM and carbides and more generally under-
standing its inhomogeneous distribution over the microstructure is now the main aim
and it can be considered a starting point for finding a stochastic model for predicting
mechanical properties from 2D microstructure images. We apply estimation procedures
and perform tests under order restrictions, three different univariate isotonic regressions
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Figure 5.1: Tensile testing machine

Figure 5.2: Microstructure image showing the KAM at strain level 13.9 % (overlapped grid of 25×25).

according to the assumption on the variances.
The first step for obtaining the data in the most suitable form for the analysis is ‘overlay-
ing’ a grid over the image. In Figure 5.2 a 25×25 grid is added to the image. With yi j , we
denote the mean KAM value of the j th square of the grid of the image taken in which i
carbides are observed. The explanatory variable X in all three isotonic regressions is the
number of carbides observed in the grid squares. A plot of the data is shown in Figure
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Figure 5.3: Plot of KAM and Number of carbides for the 625 squared areas of Figure 5.2

5.3.
We wish to test the null hypothesis that the expected KAM is the same in all the squares
of the gird, regardless the numbers of carbides observed in the grid. The alternative hy-
pothesis

µ0 ≤µ1 ≤µ2 ≤µ3. (5.6.1)

represents the idea that KAM tends to be higher in areas where more carbides are ob-
served. Moreover, in the ordered variances case, we assume that

σ2
0 ≥σ2

1 ≥σ2
2 ≥σ2

3 > 0. (5.6.2)

This is in accordance with what we see in Figure 5.3. In fact, the idea behind this as-
sumption is that in areas in which less carbides are observed GNDs have more freedom
to move, resulting in increments in dispersion. In Table 5.2, the results of testing the null
hypothesis are shown. For computing χ2(0) and Ē 2(0), the variance ratio is supposed to
be known. In the specific case, we assume that the KAM total variance for the whole im-

age is the real known variance and that ci = σ̄2
i

σ2 . For computing both the parametric and
non-parametric p-values, the two different bootstrap approaches described in Section
5.5 have been used and M , the number of replications, is taken equal to 20000. Indepen-
dent of the knowledge or assumptions on the variances, the conclusion is the same and
leads to the rejection of the null hypothesis.

5.7. CONCLUSIONS
This Chapter presents three different models involving order restrictions and within these
models the ML estimators and Likelihood Ratio tests for the homogeneity of the means
against monotonicity are introduced and studied. Prior knowledge given by physical re-
lations or intuition is not often exploited in statistical studies about materials and this
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Table 5.1: Values of estimated means and variances of the KAM conditioned on the number of carbides visible
in a square of a grid 25×25 according to different order restrictions assumptions (13.9% Strain)

0 1 2 3
ȳ 0.815 0.833 0.870 0.854

σ̄2 0.035 0.024 0.017 0.022
s2 0.035 0.024 0.017 0.023

µ̂I
(1) 0.815 0.833 0.867 0.867

µ̂I
(2) 0.815 0.833 0.867 0.867

σ̂(2) 0.035 0.024 0.017 0.022
µ̂I

3) 0.815 0.833 0.866 0.866
σ̂I

(3) 0.035 0.024 0.018 0.018

n 340 211 54 18

Table 5.2: Estimated values for the four different likelihood ratio test with the corresponding parametric and
non-parametric p-values

µ̂H0 Test Statistic p-value (parametric) p-value (non-parametric)
χ̄2(0) 0.827 5.760 0.0323 0.0310
Ē 2(0) 0.831 0.0121 0.0112 0.0085

−2logΛ̃ 0.831 7.330 0.0178 0.0222
ΛI (0) 0.831 7.105 0.0212 0.0251

0 1 2 3
σ̂2

H0
0.035 0.024 0.018 0.022

σ̂2I
H0

0.035 0.024 0.019 0.019

can lead to less efficient methods that produce less accurate results. After having de-
scribed the estimation procedures and highlighted the influence of prior knowledge of
the variances, we propose the likelihood ratio test as test statistic for testing the ho-
mogeneity of means. In the case of unknown variances and ordered variances, het-
eroskedasticity plays a crucial role also under the null hypothesis, leading to different
estimates of the common mean under H0. Results on existence and uniqueness of the
maximum likelihood estimates in these last two cases are derived. Furthermore, two dif-
ferent bootstrap approaches are proposed for approximating the null distribution of the
test statistic under the different assumptions on the variances. The proposed tests are
applied to a real data example of a metal microstructure, showing evidence that the so-
called KAM tends to be higher in regions of the microstructure where more carbides are
observed. In fact, incorporating reasonable intuition about the order of means and the
variances order in this context helps understanding the evolution of complicated struc-
ture of dislocations in metals and its effect on the hardening behaviour of the material
during deformation.



6
3D VIRTUAL EXPERIMENTS

Multiple factors, as measurement accuracy, limitations in controlling microstructural
changes of all individual constituents during the deformation of a material and lack of
data due to high costs of experiments make the identification of a physical relation be-
tween microstructure features and mechanical properties very challenging. In this Chap-
ter we propose a completely simulation-based approach. Digital twins of different mi-
crostructures with different carbides volume fractions and different textures are gener-
ated. Multi-Level Poisson Voronoi diagram is adopted as model. The resulting virtual
microstructures are used as samples for virtual tensile tests. The stress–strain curves cor-
responding to the different volume fractions of carbides and different textures are studied.
Two different approaches are employed for understanding how the different microstruc-
tural characteristics relate to the mechanical behaviour of the material. The first is to
construct a function ad hoc piecewisely defined with change points based on the different
stages observed during a tensile test. The characteristic parameters of the resulting func-
tion are then analysed as function of the carbides intensity and texture. The latter treats
the data as functional data and uses functional principal component analysis to describe
the variation among the functions in terms of carbide intensity and texture.

Difficulties strengthen the mind, as labor does the body.

Lucius Annaeus Seneca

95



96 6. 3D VIRTUAL EXPERIMENTS

6.1. INTRODUCTION

It is well known that strain development in metallic alloys is critically affected by the
microstructural characteristics such as grain size of the matrix phase (size of the cells
belonging to the principal phase) as well as size, density and nature of existing precip-
itates. These characteristics, influencing the dislocation motion in the structure, play a
fundamental role in the mechanical behaviour of the metallic alloys. Metal microstruc-
tures may indeed consist of hard particles embedded in a relatively soft (plastic) matrix,
or viceversa a soft phase embedded in a matrix with significantly higher hardness [5].
Understanding the contribution and the interaction among grains and precipitates of
different phases can lead to the design of superior materials with desired mechanical
properties [156].
Predicting macroscopic material properties and relating them to microstructures fea-
tures has been the focus of many studies [7, 19, 54, 123, 156, 165].
However, controlling all the microstructure parameters that influence the mechanical
behaviour of the material is a too ambitious aim in real experiments. Therefore, sim-
ulations and statistics may help in this respect. In this Chapter, a digital approach is
proposed and it can be summarised in three main steps.
As in all simulation-based studies, the first step is creating a virtual microstructure, or in
other words a ‘digital twin’ of the physical microstructure.
As explained in Chapter 4, digitally representing microstructures, using statistical and
stereological models (SSRVE) or empirical based reconstruction (RVE), is a fundamental
step for simulating the mechanical behaviour of the material.
One of the advantages of virtually generating microstructures is the possibility of test-
ing materials with hypothetical microstructure characteristics that can improve the me-
chanical response of the material.
Once the digital twin microstructure is ready, the second step is to perform the virtual
experiment. For this purpose a software that combines a crystal plasticity model with a
Spectral Solver, called DAMASK (Düsseldorf Advanced Material Simulation Toolkit,[123])
is used. Finally, the last step is assessing the validity of the outcome comparing it to real
experiments results.
In this Chapter, a virtual tensile test is performed for the investigation of mechanical
properties of a AISI420 stainless steel with M23C6 carbides precipitates. We start with the
description of the virtual experiment (Section 6.2). Using Multi-Level Poisson Voronoi
diagrams as geometrical model for the digital microstructures, 70 Statistically Similar
RVEs are produced. The difference is in the texture (10 different random orientations
distributions) and in the carbides volume fraction (7 different values for the first level
cells intensity of a Multi-Level Poisson Voronoi diagram with two phases). Then, the vir-
tual tensile test is performed using DAMASK. The main outcomes of the experiments
are stress–strain curves corresponding to the different microstructures. After having re-
viewed the main characteristics of a stress–strain diagram, some of the classical models
used for representing the stress–strain function are discussed (Section 6.3). The influ-
ence of the type of tensile test performed, the temperature, the texture and the volume
phase fractions are examples of the parameters influencing the resulting stress–strain
curve. The high number of parameters and the interrelation of multiple factors makes
the identification of a unique function for representing the stress–strain behaviour of
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metals (almost) impossible to achieve. In this Chapter, two new modelling approaches
for understanding the influence of the different carbide intensities are introduced. The
first is an approach ‘ad hoc’, based on a priori physical knowledge. The assumption is
that a typical stress–strain curve can be represented by different segments correspon-
dent to different stages of the tensile test: elastic deformation, plastic deformation, rup-
ture. For determining the points at which the function changes, an algorithm based on
a “leave-one-out” maximisation procedure is proposed. The dependence of the param-
eters of the resulting function on the value of the carbide intensity is then studied. Also
the texture seems to have an influence on the resulting stress–strain curve (Section 6.4).
The second approach is a functional approach, in which the stress–strain curves are used
as input of Functional Principal Component Analysis (FPCA) (Section 6.5). FPCA is one
of the most common tools in Functional Data Analysis, used for understanding the dif-
ferent sources of variability among the functions. Here, we propose a modified version
of the classical approach in which the functions are not centred on the mean, but on
the mean stress–strain curve one would observe for a microstructure without carbides.
Conclusions and further developments are discussed in Section 6.6.

6.2. VIRTUAL TENSILE TEST
As previously stated, the virtual approach proposed in this Chapter consists of three
main steps.
The first step is generating a virtual microstructure. In Chapter 4, the main methods
used for digital representation of metal microstructures are reviewed. In particular, two
examples of digital twins for describing the microstructure of AISI420 stainless steel with
M23C6 carbides precipitations are presented (Sections 4.2-4.3). Here, the Statistically
Similar Representative Volume Element (SSRVE) approach is followed. With the aim of
understanding the relation between carbides presence and material’s strengthening, SS-
RVEs with increasing carbides volume fractions are generated. The Multi-Level Poisson
Voronoi diagram is used as model (Section 4.3.1). The value of the intensity of the first

level cells decomposed in λ1 =λ
f
1 +λc

1 is taken equal to 3; λ2, the intensity of the second
level grains is instead taken equal to 0.5. Taking into account that the observed vol-
ume fraction of carbides in stainless steels is usually in the range [0.03,0.11], 7 different
values are considered for λc

1, namely: 0, 0.01, 0.03, 0.05, 0.07, 0.09, 0.11. The virtual mi-

(a) (b) (c) (d) (e) (f) (g)

Figure 6.1: 3D Multi-Level Poisson Voronoi diagrams with increasing level of λc
1: (a) λc

1 = 0, (b) λc
1 = 0.01, (c)

λc
1 = 0.03, (d) λc

1 = 0.05, (e) λc
1 = 0.07, (f) λc

1 = 0.09, (g) λc
1 = 0.11

crostructures shown in Figure 6.1 differ just for the carbides intensity: ferrite grain size
and ferrite grain orientations are kept the same. This generation is repeated 10 times,
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hence in total 70 microstructures are considered. While the ferrite grain size is kept con-
stant, not changing the value of the intensity of the second level grains, the orientations
of the grains are randomly assigned. In total 10 different random textures are considered.
Although texture effect is not the principal scope of this Chapter, its possible influence
has to be taken into account. In fact, during deformation the grains in a polycrystalline
material tend to rotate towards stable orientations [106] and specific initial texture con-
ditions can lead to different mechanical responses.
The strain and stress development in the different digital versions of the microstructure
is simulated combining a crystal plasticity model and a spectral solver based on the Fast
Fourier Transform (FFT) implemented in the DAMASK software. The intricate stress in-
teractions between the grains of a polycrystalline material are modelled numerically us-
ing the spectral element (SE) method. In the following subsection, only the constitutive
equations for the elastic and plastic deformation are broadly presented.

DAMASK
The Düsseldorf Advanced Material Simulation Kit (DAMASK) is an an open source soft-
ware based on a Crystal Plasticity methods which allows to conduct advanced microstruc-
tural and mechanical property simulations. Crystal Plasticity (CP) methods, which are
based on the behaviour of an assembly of single crystals, have been successfully ap-
plied in predicting the mechanical response of polycrystals up to the industrially rele-
vant component scale [123]. Each grain is represented by one or more finite elements;
then the single elements are combined in a polycrystal structure with specific bound-
ary conditions for which the deformation under specific constraints is simulated. The
single crystal plasticity model is combined into the Spectral Element framework to de-
fine the constitutive relation at each integration point of the element. The deformation
in the continuum theory of crystal plasticity is described as a multiplicative decompo-
sition into elastic, Fe , and plastic, Fp , parts of the deformation gradient F , where the
elastic part accounts for lattice distortion and rotation, and plastic defromation arises
due to slip. The elastic stress is expressed in form of the 2nd Piola-Kirchhoff stress S and
depends only on the elastic strain expressed as the Green-Lagrange strain tensor E and
the material specific stiffness C , S = C : E , E = 1/2(F e F e T − 1). For cubic crystals, the
elastic stiffness matrix is assumed to be composed of three independent terms, C11, C12

and C44. It is worth to note that the effect of dislocations is not included in this model.
The evolution of plastic strain is given by:

Ḟp = Lp Fp (6.2.1)

where Lp is the plastic velocity gradient. A widely adopted phenomenological descrip-
tion for the hardening is used, which is based only on slip of multiple slip systems βi .

The evolution of critical shear stress1, τ̇βC , i.e. the hardening, of individual slip systems
in a single crystal is given by:

τ̇
β

C =∑
η

hβηγ̇
η (6.2.2)

1The shear stress is the force tending to cause deformation of a material by slippage along a plane or planes
parallel to the imposed stress.
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The instantaneous slip-system hardening moduli hβη, in general, depend upon the his-
tory of slip and provides information about additional hardening caused by interactions
of fixed slip systems β and active slip systems η. hβη is determined by the following ex-
pression:

hβη = qβη[h0(1− (τηC )/τsat )a] (6.2.3)

The parameters h0, τηC and τsat are respectively the reference hardening, the critical slip
resistance and the saturation shear stress, and depend on the crystal structure and the
slip system. Parameter a has not a direct physical meaning, but has a direct influence
on the development of hardening and it is usually taken a ≥ 1. The latent hardening
parameter, qβη, defines the interaction between system β and η and is set to 1, if β and
η are coplanar, otherwise qβη = 1.4. The shear strain rate γ̇η of the system η is restricted
by it resolved shear stress, τη, and τ

η

C :

γ̇η = γ̇0|τη/τηC |1/nsign(τη) (6.2.4)

where n is related to the strain rate sensitivity of slip and γ̇0 is the reference shear rate,
being both variables specific of the material. The shear rates of all slip systems can be
then used to determine the plastic velocity gradient:

Lp =
N∑
β=1

γ̇ηmβ⊗nβ (6.2.5)

where N denotes the number of slip systems (N = 12 for iron {110}bcc and N = 12 for
M23C6 carbides {111} f cc ), m is the normalized slip direction and n the unit normal of the
slip plane. For a complete description of simulation procedure, the reader is referred to
[123]. The materials parameters required for the simulation have been obtained and op-
timised and their values are reported in Table 6.1. The calibration of the crystal plasticity

Table 6.1: Materials parameter for DAMASK model implementation

(a) Ferrite

Nsl i p 12
C11 233×109GPa
C12 135×109GPa
C44 118×109GPa
γ̇0 0.001s−1

n 110
τ
η

C 77×106MPa
τsat 220×106MPa

h0 2370×106GPa
a 1.6

(b) Carbides

Nsl i p 12
C11 550.8×109GPa
C12 225.9×109GPa
C44 140×109GPa
γ̇0 0.001s−1

n 200
τ
η

C 1600×106MPa
τsat 1800×106MPa

h0 20000×106GPa
a 1.1

constitutive parameters for ferrite is performed based on strain-stress data from tensile
tests (better discussed in the next Section 6.3), obtained using the RVE method described
in Section 4.2 (see Figure 6.2). Finding experimental measurements of the mechanical
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properties of single crystal of M23C6 carbide is more challenging and thus, a rather qual-
itative choice of material parameters has been made, based on previous results in the
literature [80, 66] and on arbitrary selection trying to emulate a particle exhibiting high
hardening [58].
Once the crystal plasticity model and the parameters are set, the virtual tensile test is
performed. The most commonly used test is the uniaxial tensile test in which force is
applied to the test sample with respect to just one specific axis causing deformation of
the material, temporarily (elastic behaviour) and permanently (plastic behaviour) and
eventually its fracture. In this virtual test, uniaxial tension along x-direction is applied
at a constant deformation rate of 0.0001 s−1 . The main output of the test are stress and
strain values, plotted in the so called “stress–strain diagram”. In Figure 6.3, the stress–
strain curve for the 70 different microstructures are shown. From the analysis of the

Figure 6.2: Experimental (hollow symbol) and simulated (red line) stress–strain obtained at constant deforma-
tion rate of 0.0001 s−1

stress–strain curve several insights about mechanical properties of the materials can be
achieved. More details are given in the next Section 6.3.



6.3. STRESS–STRAIN DIAGRAM 101

Figure 6.3: Stress–Strain curves. Different colours indicating different values of the intensity parameter of the
carbides, different symbols indicating different textures.

6.3. STRESS–STRAIN DIAGRAM
Tensile testing is one of the most common ways for investigating strength, ductility and
in general loadability (the ability of a material to support a stress) of metallic materials
[27]. In this section, a basic explanation of the stress–strain diagram is presented. From
the stress–strain diagram, several mechanical properties, such as elasticity, strength,
brittleness, can be determined.
During a uniaxial tensile test, as previously stated, an increasing (ε) is applied (x-axis)
and the resulting stress (σ) in the material is recorded and plotted in an X Y -plane (Fig.
6.4). Various formulas have been developed to describe stress–strain curves of metals
[76]. However, a unified formula that describes accurately the material’s behaviour in
the full range of the experiment is (almost) impossible to obtain [152]. In fact, the overall
shape of the curve depends on several factors such as the material considered and the
temperature, at the macro-scale. Moreover, the strain hardening behaviour involves a
complex interaction among various factors also at the micro-scale. Grain size, disloca-
tions, volume fractions and crystallographic orientations are aspects that can influence
the shape of the curve. However, there are some recurrent features in every stress and
strain diagram. As shown in Figure 6.4, points of interest of a general stress–strain curve
are: the proportionality limit, the offset yield, the elastic deformation limit (yield point),
the maximum tensile strength and the fracture or rupture point. These points corre-
spond to different phases or regions in which the material behaves differently.
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Figure 6.4: Stress–Strain Diagram

At the start of a tensile test, stress and strain are proportionality (elastic deformation
- proportionality region). The material follows the well-known Hooke’s Law [63]. The
limiting point beyond which stress and strain are not proportional anymore is the pro-
portionality limit (Point A Fig. 6.4). Beyond the proportionality limit, elastic deforma-
tion still takes place but greater elongation occurs in this section under increasing ap-
plied force (elastic deformation - proportionality region). The end of the elastic region
of the stress–strain diagram is the yield point also called elastic limit (Point C Fig. 6.4).
Problems in the determination of the proportional and elastic limit can occur due to
measurements precision, therefore an offset yield strength is used for increasing repro-
ducibility (Point B Fig. 6.4). This point is defined as the stress corresponding to the inter-
section point between a straight line parallel to the initial proportional line with an offset
given by the strain equal to 0.002. After the yield point the plastic region begins, where
the material deforms permanently. In the first part of the plastic region strain harden-
ing2 usually occurs. The maximum point in the plastic region is called tensile strength
or ultimate strength (Point D Fig. 6.4). After this point, the materials starts to neck. The
stress in fact is applied in a much smaller cross-sectional area of the material. The dia-
gram ends with the fracture of the material. In the next Section the main mathematical
models used for representing the stress–strain behaviour are reviewed.

CLASSICAL MATHEMATICAL MODELS
In this Section we recall the main mathematical models used for describing the stress–
strain curve. As previously mentioned, a typical stress–strain curve presents different
regions corresponding to the different stages of the tensile test. Starting from the elas-

2Hardness increment due to plastic deformation
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tic region and in particular from the first part of the elastic region, stress and strain are
proportional following Hooke’s Law:

σ= Eε, (6.3.1)

where E is called elastic modulus or Young’s modulus [125].
This law is valid until the proportionality limit point. In most of the cases proportionality
limit point, elastic limit point and offset yield point are very close[57], therefore Hooke’s
Law is used to describe the whole elastic behaviour. While for the elastic proportional
part of the curve Eq. 6.3.1 is commonly accepted, for the other regions of the curve
various formula have been proposed. In general, the plastic deformation part of the
stress–strain curve of many metals can be described by a power curve relation [29]:

σ= K ·εn (6.3.2)

strain hardening exponent. The value of K provides some indication of the level of the
strength of the material and of the magnitude of forces required in forming3, whilst the
value of n provides a measure of the ability of the material to retard localisation of de-
formation [128]. Equation 6.3.2 is also known as Hollomon equation [62]. The materi-
als constants are usually determined by a log-log plot of the stress versus the strain in
which log(K ) is the intercept and n is the slope of the regression line. Hollomon equa-
tion is nowadays one of the most popular equation for describing the plastic part of the
stress–strain diagram [12]. However, the resulting double logarithmic plot rarely exhibits
a linear trend. Especially for stainless steel the use of Hollomon equation is considered
inadequate [159]. Another common expression proposed by Ludwik [85] is:

σ=σ0 +L ·εq (6.3.3)

where σ is the true stress, ε is the true strain, σ0, is a type of friction stress and L and
q are material constants. However, also this expression seems to don’t be suitable for
austenitic stainless steel [159]. A modified version of equation 6.3.2 for which its validity
is generally confirmed for austenitic stainless steels also in presence of carbide precipi-
tates [159] is proposed by Ludwigson [84]:

σ= k1ε
n1 +exp(k2 +n2ε). (6.3.4)

In [159] the effect of grain boundary carbide in the resulting stress–strain curve is stud-
ied; the major empirical finding is that the presence of grain boundary carbide decreases
n1 and n2, increases k1 slightly and does not change k2.
Another approach to characterise the full-range stress–strain curve is using segmented
functions [1, 76]. Most of these formulas proposed are purely empirical descriptions of
the stress–strain relationships and material specific [76].
In the next Sections, two different approaches are proposed. The first is an ad hoc ap-
proach that recalls the use of segmented function and of change point detection tools.
The latter is a functional approach based on Functional Principal Component Analysis.

3Metal forming is a process in which the shape of the metal is changed using plastic deformation
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6.4. SEGMENTED APPROACH
As seen in the previous Section, mathematically describing the full range stress–strain
curve with just one expression is not an easy task. Representing the stress response to
strain deformation during the different stages of the tensile test using a unique expres-
sion is hardly possible. Therefore, separate models for the stress behaviour in the elastic
and in the plastic regime are usually fitted.
Inverse problem methods and curve fitting procedure are the common approaches for
the estimation of the parameters of the chosen models [155]. Inspired by the approaches
proposed in [1, 56, 117], we can describe the stress–strain behaviour as a function made
of three/four segments representing the different deformation phases occurring during
the tensile test (elastic-proportional, elastic-non proportional, plastic-strain hardening,
plastic-necking, Figure 6.4). In the specific case, given that rupture (end of the plastic
deformation region) is not present, three different segments are considered:

σ= Eε ε< ε1

σ= K1 ·εn1 ε1 ≤ ε< ε2

σ= K2 ·εn2 ε≥ ε2.

(6.4.1)

The first segment up to ε1 represents the elastic part described by the Hooke’s Law, where
E correspond to the Young’s modulus. The other two segments are two non-linear func-
tions (inspired by 6.3.2) describing the elastic part where proportionality does not hold
anymore (up to ε2) and the plastic deformation up to the tensile strength. The decision
of using these three segments is arbitrary and different choices are possible. The aim of
this Section is twofold: i) presenting a new method for estimating the parameters and
the change points of a segment function (Eq. 6.4.1) using an iterative algorithm based
on “leave-one-out” Mean Squared Error; ii) understanding how the increasing carbides
intensity and the different textures relate to the model parameters using linear mixed
models.
The streamline of the approach is now sketched. Let us consider stress data ordered by
the strain and denote them by σ = (σ1, . . . ,σn). Assume the function relating stress and
strain can be represented by m +1 distinct segments, implying that there are m change-
points in the data. We let the j−th change point be ε j with ε1 = ε1 and εm+1 = εn . The
j−th segment will consist of data points σε j−1+1, . . . ,σε j for j = 1, . . . ,m. For such a prob-
lem, change points correspond to points in strain where the fitting of each segment of
the function becomes “too poor”. For the continuity constraint and for the parameter
estimation Equation 6.4.1 can be rewritten as:

σ= Eε ε< ε1

σ= Eε1( ε
ε1

)n1 ε1 ≤ ε< ε2

σ= Eε1( ε2
ε1

)n1 ( ε
ε2

)n2 ε≥ ε2.

(6.4.2)

Therefore, the parameters of interest are E (Young’s Modulus), n1 and n2 (Hollomon
strengthening coefficients).
For the first segment a simple linear regression model without intercept is used. The
other two segments are non-linear. Hence, a non-linear regression estimation procedure
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based on linearisation of the segments, using a logarithmic transformation is adopted
[124] (Figure 6.5).

An iterative procedure based on “leave-one-out” or “add-one-in” Goodness of Fit cri-

Figure 6.5: Log-log plot for one stress–strain curve excluding the first linear part of the function

terion is adopted for finding the change points among the segments. In particular, for
the first linear segment, an “add-one-in” procedure based on the coefficient of determi-
nation, R2, is used for the determining the first change point ε1. In fact, it is reasonable
to assume that the more observations you add, the lower the R2 will become. Therefore,
fixing a threshold t , observations keep being added until R2 becomes lower than t (in our
case t = 0.98). For the second piece, a “leave-one-out” Minimum Squared Error (MSE)
criterion is used:

MSEl =
1

n

n∑
i=1

(σ(−l )i − f̂m(ε(−l )i ))2, l = 1, . . . ,n

where f̂m(εi ) the predicted response value considered the m-th segment. ε2 is the strain
value corresponding to the model with the highest number of observations for which the
MSE value is minimum. The results are shown in Figures 6.6-6.7. In Figure 6.8 the two
change points and their relation with λc

1 and texture (indicated with different symbols)
is presented: the values of the change points do not differ particularly among the curves
and especially λc

1 does not seem to be related to them. The value of ε1 can be interpreted
as the proportionality limit, while ε2 as the yield point. Moreover, given that ε2 values are
very close to 0.002 the relation between yield point and off-set yield is confirmed. The
next step is relating the intensity value of carbides precipitates (λc

1) to the parameters of
the model (E , n1, n2).
In Figure 6.9, the estimated parameters are plotted against the observed value ofλc

1. Both
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Figure 6.6: Plot of the fitted segmented function for the 70 different stress–strain curves. Different colours
indicating the three different segments in Eq. (6.4.2)

λc
1 and the texture seem to have an influence on the parameters of the model. Looking

at the parameter relative to the linear part of the function (Figure 6.9), λc
1 has a positive

effect on the parameter E . Moreover, it seems to be the same for any texture, that instead
acts just on the intercept of the relationship. Regarding the relation with the other model
parameters, the texture seems to be less influent for n1 (Figure 6.9 (b)), instead it plays a
role for n2 (Figure 6.9 (c)). For assessing the reasonability of these qualitative comments,
3 different models are fitted. Given that the effect of λc

1 seems to be the same for each
texture, linear mixed models with random intercepts are used [157].

Linear Mixed Model Linear Mixed Model (LMM) is a class of model used especially
when the data present a clustered structure. Let yi = [yi 1, . . . , yi ni ] denote the vector of
responses in the i−th cluster, i = 1, . . .k; Xi denote the matrix of explanatory variables
for which fixed effect are assumed and βi be the corresponding vector of fixed parame-
ters; Zi denote the matrix of explanatory variables for which random effect are assumed
and αi be the corresponding vector of random parameters. We consider a linear mixed
model that assumes heterogeneity of the intercepts only. The model assumptions are:

• yi |(Xi ,1,α0i ) ∼ Nni (Xiβ,1α0i ,σ2Ini )
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Figure 6.7: Comparison between the observed stress—strain values (black dots) and the estimated piecewise
function for one of the 70 stress–strain curve.
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Figure 6.8: Plot of the estimated change points, ε1 (a) and ε2 (b), and the observed volume fraction of carbides
for the 70 different microstructures (different symbols indicating different textures).
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Figure 6.9: Plot of the estimated model parameters and the observed volume fraction of carbides for the 70
different microstructures (different symbols indicating different textures).

• α0i ∼ N (0,σ2
α),

where α0i represents the vector of random intercepts. The model formula is:

µi =β0 +α0i +β1xi ,

with µi indicating the expected response. The three different models with responses
given by the parameters values E , n1 and n2 and explanatory variable given by the ob-
served volume fraction of carbides are:

• Ei = 248286.1+α0 j +151893.5λc
1i , α0i ∼ N (0,7136.176), i = 1, . . . ,70, j = 1, . . . ,10;

• n1i = 0.220+α0 j +0.248λc
1i , α0i ∼ N (0,0.001), i = 1, . . . ,70, j = 1, . . . ,10;
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• n2i = 0.222+α0 j +0.069λc
1i , α0i ∼ N (0,0.002), i = 1, . . . ,70, j = 1, . . . ,10.

The estimated parameters values and visual results are reported in the Appendix B.
The approach proposed in this Section is an ad hoc easy and intuitive approach, but it
presents some drawbacks.
First, the number of change points and the shape of the piecewise function should be
known. Second, the speed of iterative algorithm for determining the values of the change
points can be improved. Finally, for high strain values the fitting appears to be poor (Fig-
ure 6.7). For overcoming these problems, a more flexible approach based on Functional
Data Analysis is proposed in the next Section 6.5.

6.5. FUNCTIONAL DATA ANALYSIS
In this Section the influence of the carbides volume fraction, λc

1, on the shape of the re-
sulting stress-strain diagrams (Figure 6.3) is described in a functional context. As already
mentioned in Section 6.3 an easy and univocally accepted expression that describes the
full range stress–strain curve for metals does not exist. The influencfactors influencing
the resulting stress–strain diagram. Treating the stress–strain data obtained from our
digital experiment as functional data, we aim to find an underlying function that can
describe the general shape of the curve for stainless steel and explain its variability in
terms of carbide intensity. The most usual way to represent functional data consists of
assuming an expansion of each sample curve in terms of a basis of functions [2]. The ba-
sis coefficients are estimated using smoothing, interpolation or as in this Section using
Functional Principal Component Analysis (FPCA).
First, we briefly introduce Functional Principal Component Analysis for characterising
the functional variation observed in the data. The approach followed in this Chapter is
not the conventional approach of centring the functions around the observed empirical
mean; the function are centred to the mean stress–strain curve one would observed in
microstructures without carbides precipitates. Then, as in the previous Section, a linear
mixed model with random intercept is used for relating the Functional Principal Com-
ponent Scores to the carbides intensity and the texture.

FUNCTIONAL PRINCIPAL COMPONENT ANALYSIS
Principal Component analysis and its functional extension have been successfully ap-
plied in reduction of data complexity and interpretation of the underlying variability
sources [115]. The idea is that a function Xi (t ) can be expressed in terms of the following
expansion:

Xi (t ) =µ(t )+
∞∑

k=1
Ai kφk (t ), (6.5.1)

or by linear approximation

Xi K (t ) ≈µ(t )+
K∑

k=1
Ai kφk (t ), (6.5.2)

where µ(t ) is the functional mean, φk (t ) are the orthonormal eigenfunctions and Ai k =∫
(Xi (t )−µ(t ))φk (t )dt are called the Functional Principal Component Scores. FPCA at-

tempts to find the dominant modes of variation around an overall trend function [163].
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In our case, we assume that the overall trend is given by the stress–strain curve for the
microstructure without carbides and that the variation from the baseline function can
be explained by the increasing carbide volume fractions and the different texture. A
modified FPCA is proposed in this context. The difference with the classical approach
is in the centring of the functions. In fact, the functions are not centred on their mean
function but on the expected stress–strain curve function one would observe for a metal
microstructure without carbides. The modified principal component decomposition is:

Xi K (t ) ≈µ0(t )+
K∑

k=1
Ai kφk (t ), (6.5.3)

and

Ai k =
∫

(Xi (t )−µ0(t ))φk (t )dt (6.5.4)

are the modified functional principal components scores. The scores of individual curves
on the leading eigenfunctions can be used for description, clustering, classification and
prediction [133]. Therefore, in this study the aim is to find an expression for them in
terms of the known sources of variations, namely the different texture and the differ-
ent carbides volume fractions. In some studies, FPCA is used as a method for finding
a smooth representation of the data, in others instead the data are smoothed first, and
then an unsmoothed functional PCA is carried out. [78]. In the next Section we show an
application of the second method.

APPLICATION
The first step for the modified FPCA approach is defining the mean stress–strain curve
for microstructures without carbides. Using the stress–strain values obtained for the 10
different microstructures corresponding to the 10 different textures, the expected stress–
strain curve for the microstructure without carbides is defined as:

σ̂0(ε) = 1

10

10∑
j=1

σ j 0, (6.5.5)

where σ j 0i is the stress–strain curve corresponding to j−th texture. In Figure 6.10 the
10 different stress–strain curve corresponding to the microstructures without carbides
and the expected stress–strain curve (red line) are shown. Secondly the original stress–
strain data are centred to the expected stress-strain curve for microstructure without
carbides (Figure 6.11). Then we can perform, the modified FPCA. In Figure 6.12 the first
two eigenfunctions are plotted. Looking at the behaviour of the first eigenfunction φ1,
for low strain levels corresponding to the elastic part of the curve the variance among the
curves is low; around the yield point it reaches is maximum and then it stabilises. The
interpretation of the second eigenfunction φ2, is instead less intuitive. The plot of the
two FPCA scores, A1 and A2, shows that the variable are uncorrelated as imposed in the
classical FPCA. Moreover, it is possible to interpret A1 as the effect of the different carbide
intensity and A2 as the effect of the different random textures (Figure 6.13). However, A1

seems to gather also part of the texture effect (Figure 6.14) and given that it is the one
associated with the highest variance, the analysis is reduced to just this component. For
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Figure 6.10: Mean stress–strain curve for microstructure without carbides (red line). Different colours indicat-
ing different textures.

Figure 6.11: Stress–strain centred to the expected stress–strain for microstructure without carbides. Differ-
ent colours indicating different values of the intensity parameter of the carbides, different symbols indicating
different textures.
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Figure 6.12: First two eigenfunctions obtained with the modified FPCA performed on the 70 stress–strain
curves.

Figure 6.13: Plot of the two FPCA scores obtained for the 70 stress–strain curves. Different colours indicating
different values of the intensity parameter of the carbides, different symbols indicating different textures.
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Figure 6.14: Plot of the FPCA scores correspondent to first functional principal componentφ1 and the observed
values of carbide intensity λc

1 for the 70 stress–strain curves.Different colours indicating different values of the
intensity parameter of the carbides, different symbols indicating different textures.

giving a physical meaning to this decomposition a linear mixed model is used to relate
A1 to the texture and carbides volume fraction 6.14. The model considered is:

A1i =−1.351+α0 j +355.793λc
1i , α0 j ∼ N (0,3.320), i = 1, . . . ,70, j = 1, . . . ,10. (6.5.6)

In Table 6.2 the estimated value forα j and β are reported. Figure 6.15 shows that a linear

Table 6.2: Estimated values of the parameters of the linear mixed model

(a) Texture

texture β0 +α0 j

1 −2.204
2 −5.498
3 −5.864
4 3.043
5 −1.914
6 −0.170
7 1.715
8 −1.464
9 −4.163

10 2.983

(b) λc
1

β

355.779

mixed model with random intercepts shows a good fitting. Combining Eq. 6.5.3 to Eq.
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Figure 6.15: Observed first principal component scores, A1, versus fitted values of linear mixed model (Eq.
6.5.6)

6.5.6, the final model for a generic stress–strain curve is then:

σ̂i (ε) = σ̂0(ε)+ [−1.351+α0 j +355.793λc
1i ]φ1(ε, ) α0 j ∼ N (0,3.320), (6.5.7)

The main graphical model result is shown Figure 6.16. From the comparison for a small
subset of the curves shown in Figure 6.17, the model 6.5.7 seems to be adequate. How-
ever, around the yield strength point for the curves with a higher value of λc

1 over esti-
mation seems to occur. In Figures 6.18-6.19 the effect of the different textures and of the
carbides volume fractions is shown. The effect is obtained by multiplying the coefficient
of the linear mixed model by the eigenfunction φ(ε). The effect of the texture can be
both positive or negative on the resulting stress–strain curve. However, given that the
crystallographic orientation are uniformly at random the increase on the points of in-
terest of the curve such as yield stress is moderate (Figure 6.18). The estimated effect of
the carbides volume fraction is in agreement with the experimental findings previously
discussed: increasing carbide volume fraction does not play a fundamental role in the
elastic part of the curve, but it increases the yield strength up to 80 MPa (Figure 6.19).

6.6. CONCLUSIONS
In this Chapter, the influence of M23C6 carbides on the stress-strain behaviour of an-
nealed AISI420 stainless steel is studied. A virtual experiment is set out. The first step is
digitally reproducing the microstructure. Synthetic generation of SSRVEs are obtained
combining experimental results coming from real experiments and previous virtual ex-
amination on an RVE. They are generated changing just two microstructural parameters:
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Figure 6.16: Fitted stress–strain functions using model 6.5.7. Different colours indicating different values of
the intensity parameter of the carbides, different symbols indicating different textures.

the carbides intensity parameter and the texture. The algorithm used for the geomet-
rical aggregation of multi-phase grains is the Multi-Level Poisson Voronoi tessellation.
Then, the virtual tensile test is performed using a software that combine crystal plas-
ticity model and Finite Element methods. The main output of the virtual experiment
are the stress–strain curves. After having reviewed the classical mathematical models
used for representing the stress–strain behaviour of (stainless) steel, two different new
approaches are proposed. The first one is an ad hoc approach that combines the use of
segmented function and change points detection tools. It exploits a priori knowledge on
the changes in the shape of the function corresponding to the different stages of the ten-
sile test. The second one is based on Functional Principal Component Analysis. A non
standard FPCA is performed, centring the function instead of on their functional mean,
on the functional stress–strain curve one would observe for a microstructure without
carbides. With both approaches the main finding is that the increasing volume fraction
of carbides relates to an increment in the strengthening of the material, instead the tex-
ture, even if in smaller intensity, influences especially the elastic part of the curve. Fur-
ther development will include a classification of the textures based on Schmid’s factors
and a study on the relation between stress–strain curve and position of carbides precip-
itates.
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Figure 6.17: Comparison between observed (filled circles) and fitted (empty circles) stress–strain functions.
Different colours indicating different values of the intensity parameter of the carbides.
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Figure 6.18: Effect of texture in the stress-strain curves.
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Figure 6.19: Effect of carbides volume fraction in the stress-strain curves. Different symbols indicating different
textures.





7
CONCLUSIONS

This thesis aims at the development of physical relations between the intricate metal-
lic microstructures and the mechanical properties of the material. It is part of the out-
put of the project S41.5.14547b “MICtoMEC: Extensive quantification of microstructure
features and statistical relations with mechanical behaviour –from statistical relations
to physical understanding–” carried out in the framework of the Partnership Program
of the Materials innovation institute M2i (www.m2i.nl) and the Technology Foundation
TTW (www.stw.nl), which is part of the Netherlands Organization for Scientific Research
(www.nwo.nl).
The project was initiated with the aim of studying the complex 3D features of multi-
phase metallic microstructures of Advanced High-Strength Steels (AHSS) and the me-
chanical properties of the material.
Materials such as AHSS are of great interest for high-tech applications because of their
higher strengths compared to conventional steels.
In the automotive industry this higher strength enables lightweight, fuel-efficient de-
signs, which are also safer than those using conventional materials.
In order to develop new AHSS, the steel industries make use of multi-scale microstruc-
ture modelling to predict mechanical properties from the microstructure.
The results of the present project will be directly implemented in microstructure mod-
elling and will be directly available for researchers within the steel industry for develop-
ing new materials.
This ambitious project aim is dived into four sub-aims:

1. Statistical analysis of microstructural features;

2. Characterisation of multi-phase microstructures;

3. Microstructural modelling of mechanical behaviour;

4. Stochastic modelling of the relation between microstructural and mechanical prop-
erties.
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The first two points are faced in the “MICrostructure” part, the last two in the “MEChan-
ical properties” part of this thesis. In the next Sections, after summarising the main re-
sults of the thesis, limitations and further developments for the “MIC” and the “MEC”
part are discussed.

MICROSTRUCTURE (MIC)
Metallic microstructures are of paramount importance for the properties and perfor-
mance of the material. One can say that the microstructure forms the DNA of the mate-
rial. Using a more specific definition, “microstructure” is: a three-dimensional arrange-
ment of grains, phases and defects, with all their chemical and structural variety. For cre-
ating new materials with desired properties, a deep characterisation of the microstruc-
ture features is needed.
Several problems can be encountered in the study of microstructures. Scale, 2D-3D re-
lation, sampling/sectioning are just examples of the problems one must face.
The arrangement of the grains is one of the microstructure features analysed in this the-
sis. In particular, the focus is on models used for describing the grain structures.
The use of Voronoi diagrams, referred as the state of the art for modelling the arrange-
ment of the grains in a metal microstructure, is furthered studied and extended. Starting
with the most basic case, Poisson-Voronoi diagrams, the main geometrical characteris-
tics of the tessellation cells (grains) are studied. In particular, new simulation results for
the grain volume-, grain surface area-, grain number of faces- distributions are obtained.
Non parametric and parametric representations of the distributions are given. In the
latter case, the best parametric approximation is determined using two criteria: Supre-
mum Distance between cumulative distribution functions and Total Variation Distance.
Generalized Gamma results to be the best parametric distribution but not the true un-
derlying distribution. A measure of error is given in case of use.
Poisson-Voronoi diagrams are commonly employed for representing the microstructure
of single-phase materials but for more complex microstructures their use is showed to be
inadequate. A testing framework based on the comparison of 2D real microstructure sec-
tion and 2D theoretical sectional diagrams is set. Two new test are proposed: the first one
is a Kolmogorov-Smirnov type test based on the distance between cumulative distribu-
tion functions of the cells area; the second one exploits tools coming from the emergent
area of Topological Data Analysis, in particular persistence landscapes. Two different ap-
proaches are proposed according to the use or not of periodic boundary conditions. In
both cases, new simulation distributional results are obtained for the reference theoret-
ical diagram: the 2D Sectional Poisson-Voronoi diagram. Quantiles of the distributions
of the model tests are given conditionally and unconditionally on the number of ob-
served cells in the section. From the investigation of the tests power, the two new tests
result to be more powerful with respect to the one based on the coefficient of variation
already proposed in the literature. In the cases in which the use of Poisson-Voronoi is
not advisable, e.g for multi-phase microstructures, different alternatives have been pro-
posed in the literature. In this thesis Multi-Level Voronoi diagrams are proposed. Two
main advantages of using Multi-Level Voronoi diagrams are discussed: i) the possibil-
ity of generating non-convex grains; ii) the ease of defining multi-phase microstructures
differentiating properties of the distributions (grain size distribution, precipitation posi-
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tion, creation of phases islands) according to the different phases.
However, microstructures are not just about grains. Grain phases, grain orientations,
grain boundaries, defects are features of paramount importance in the determination of
the mechanical properties of the material. Therefore, these factors have to be studied
and included in the so called digital twin microstructure. The concept of digital mate-
rial representation is sketched in the thesis. The first extension and future development
is taking into account all the other important micorstructure characteristics, in order to
improve the prediction of the mechanical behaviour of steels.

MECHANICAL PROPERTIES (MEC)
Predictive modelling of mechanical behaviour of steels is possible only if all relevant as-
pects of the microstructure are taken into account to the required degree of complexity.
Properties like hardness, yield strength, toughness, bending strength and hole expan-
sion are desired properties one would like to study in order to get new materials. In this
thesis, two different approaches for mechanical properties investigation are proposed.
The first one is investigating data from 2D images of material sections. The relation be-
tween microstructure features such as different volume fractions or precipitates and the
strengthening of the material can be studied for instance looking at the heterogeneous
formation of dislocations in areas of the materials in which diverse particles are present.
Studying the mechanical behaviour, investigating data coming from 2D images of ma-
terial sections constitutes a good starting point for understanding the influence of mi-
crostructural features on the mechanical response of the material. In this context, a new
method for incorporating prior physical knowledge and empirical observation into the
statistical modelling of the relation between geometrically necessary dislocations and
carbides volume fraction is described. Estimation and testing under order restrictions
are faced in an isotonic context. Three different scenarios according to the knowledge
of the variance structure are considered. New likelihood ratio tests and two bootstrap
approaches (parametric and non parametric) are proposed. However, studying the rela-
tion between microstructural features and mechanical properties from 2D images makes
impossible controlling all the possible influencing factor and their intrinsic correlation
structures.
Therefore, a more advanced way for studying this relation is proposed: a virtual ap-
proach. Academia and steel industry are developing tools that simulate the mechanical
behaviour of metallic materials in two steps: (i) the creation of virtual microstructures;
(ii) the simulation of the mechanical behaviour of these microstructures. The simulation
of the mechanical behaviour is based on Finite Element Modelling and Crystal Plasticity
Modelling. Such simulations allow probing the influence of several microstructural fea-
tures like the grain geometrical arrangement, grain-size distribution and phase fractions.
Performing simulations on the mechanical behaviour of well-defined virtual microstruc-
tures allows to develop the physical basis of the relation between microstructural fea-
tures and the mechanical properties. Virtual microstructures are designed in such a way
that have the same microstructural features as selected real materials, but also that they
obey to the same physical and phenomenological laws. The computer modelling allows
to apply variations in the microstructure at a level of control that is not achievable in real
experiments. This yields a strengthened insight into the relation between microstruc-
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tural features, physical behaviour and mechanical properties. The valuable information
and insight that one can achieve with simulation-base methods pay the cost of more rig-
orous and detailed experimental validation.
In this thesis, the effect of carbides on material strengthening is studied via virtual tensile
tests. Two new approaches based on Change-point detection, functional data analysis
are developed and applied for obtaining new insights in the investigated relation.
The main limitations of the approaches proposed in this thesis is that they consider the
relation of one microstructure features on one specific mechanical property. The plan is
to extend this study, including a multivariate approach that will take into account the in-
terrelation among the explanatory variables on multiple response variables correspond-
ing to different mechanical properties.
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CHAPTER 4
ALGORITHM 2.1
0. INITIALIZATION Let µ(0) = ȳ = (ȳ1, . . . ȳk )′ and w = (w1, . . . wk )′, wi = ni

ci

1. QUESTION Is ȳ1 ≤ ȳ2 ≤ ·· · ≤ ȳk ?

1.1 YES µ∗ = ȳ is the solution

1.2 NO ȳi > ȳi+1

Replace ȳi and ȳi+1 by

mi ,i+1 = wi ȳi +wi+1 ȳi+1

wi +wi+1
(A.0.1)

Repeat until QUESTION 1 is satisfied.

ALGORITHM 2.2
Two steps Iterative procedure

0. INITIALIZATION Let µ(0) = ȳ = (ȳ1, . . . ȳk )′, σ2(0) = σ̄2 = (σ̄2
1, . . . σ̄2

k )′, σ̄2
i =

∑
j (yi j −ȳi )2

ni

and w (0) = (w (0)
1 , . . . w (0)

k )′, w (0)
i = ni

σ2(0)

1. QUESTION Is ȳ1 ≤ ȳ2 ≤ ·· · ≤ ȳk ?

1.1 YES µ∗ =µ(0) = ȳ and σ2 =σ2(0) = σ̄2 are the solutions

1.2 NO Use Step 1.2 Algorithm 2.1 to compute µ(l ) with weights w (l−1)

1.2.1 Compute σ2(l ) = s2(l ), s2(l )
i =

∑
j (yi j −µ(l )

i )2

ni
and w (l ) = (w (l )

1 , . . . w (l )
k )′, w (l )

i =
ni

σ2(l )

1.2.2 Go back to QUESTION 1 using w (l ).
Repeat until

max
1≤i≤k

|µ∗(l−1)
i −µ∗(l )

i | ≤ 10−m
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Alternating Iterative Method

0. INITIALIZATION Let ν(0) = (1/σ̄2
1, . . .1/σ̄2

k )′, σ̄2
i =

∑
j (yi j −ȳi )2

ni

1. FIND µ(l ) the isotonic regression on Da using weights w (l−1) = (w (l−1)
1 , . . . w (l−1)

k )′,
w (l−1)

i = niν
(l−1);

2. FIND ν(l ) maximizing the profile likelihood L(y ;µ(l );ν) on V0,
V0 = {ν ∈Rk : 0 ≤ 1/maxi (minmin(ȳ)≤θ≤max(ȳ) s2

i (θ)) ≤ ν1 ≤ ·· · ≤ νk ≤
1/mini (minmin(ȳ)≤θ≤max(ȳ) s2

i (θ))}.
Repeat (1)-(2) until

|L(y ;µ(l−1),ν(l−1))−L(y ;µ(l ),ν(l ))| ≤ 10−m

ALGORITHM 2.3
Two steps Iterative procedure

0. INITIALIZATION Let µ(0) = ȳ = (ȳ1, . . . ȳk )′, σ2(0) = σ̄2 = (σ̄2
1, . . . σ̄2

k )′, σ̄2
i =

∑
j (yi j −ȳi )2

ni

and and w (0) = (w (0)
1 , . . . w (0)

k )′, w (0)
i = ni

σ2(0) .

1. QUESTION Is ȳ1 ≤ ȳ2 ≤ ·· · ≤ ȳk ?

1.1 YES µ∗ =µ(0) = ȳ go to QUESTION 2.

1.2 NO Use Step 1.2 Algorithm 2.1 to compute µ(l ) with weights w (l−1)

1.2.1 Compute σ2(l ) = s2(l ), s2(l )
i =

∑
j (yi j −µ(l )

i )2

ni
and w (l ) = (w (l )

1 , . . . w (l )
k )′, w (l )

i =
ni

σ2(l )

2. QUESTION Is σ2(l )
1 ≥σ2(l )

2 ≥ ·· · ≥σ2(l )
k ?

2.1 YES µ∗ =µ(l ) and σ2∗ =σ2(l ) are the solutions.

2.2. NO σ2(l )
i <σ2(l )

j

Replace σ2(l )
i and σ2(l )

i+1 by

σ2(l+1)
i =σ2(l+1)

i+1 = s̄i ,i+1 =
niσ

2(l )
i +ni+1σ

2(l )
i+1

ni +ni+1
(A.0.2)

Repeat until QUESTION 2 is satisfied.

2.2.1 Go back to QUESTION 1 using w (l ).
Repeat until

max
1≤i≤k

|µ∗(l−1)
i −µ∗(l )

i | ≤ 10−m and max
1≤i≤k

|σ2∗(l−1)
i −σ2∗(l )

i | ≤ 10−m
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Alternating Iterative Method

0. INITIALIZATION Let ν(0) = (1/σ̄2
1, . . .1/σ̄2

k )′, σ̄2
i =

∑
j (yi j −ȳi )2

ni

1. FIND µ(l ) use Step 1 AlM Algorithm 2.2;

2. FIND ν(l ) the isotonic regression on V0, V0 = {ν ∈Rk : 0 ≤ 1/maxi (minmin(ȳ)≤θ≤max(ȳ) s2
i (θ)) ≤

ν1 ≤ ·· · ≤ νk ≤ 1/mini (minmin(ȳ)≤θ≤max(ȳ) s2
i (θ))} with weights N = (n1, . . . ,nk )′

Repeat (1)-(2) until

|L(y ;µ(l−1),ν(l−1))−L(y ;µ(l ),ν(l ))| ≤ 10−m
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CHAPTER 5

Table B.1: Estimated values of the parameters of the linear mixed model

(a) E

β0 +α0 j β1
251083.3 151893.5
236909.1
238729.9
257385.0
245591.7
250462.0
251891.7
250660.8
242674.7
257472.5

(b) n1

β0 +α0 j β1
0.220 0.248
0.223
0.224
0.222
0.222
0.220
0.223
0.220
0.222
0.222

(c) n2

β0 +α0 j β1
0.221 0.069
0.225
0.227
0.220
0.223
0.220
0.223
0.222
0.224
0.222
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Fitted values
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Figure B.1: Estimated E parameter of the first segment of function (6.4.1) versus fitted values of a linear mixed
model with random intercepts for the different textures and explanatory variable given by the observed carbide
volume fraction
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Figure B.2: Estimated n1 parameter parameter of the second segment of function (6.4.1) versus fitted values of
a linear mixed model with random intercepts for the different textures and explanatory variable given by the
observed carbide volume fraction
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Fitted values
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Figure B.3: Estimated n2 parameter of the third segment of function (6.4.1) versus fitted values of a linear
mixed model with random intercepts for the different textures and explanatory variable given by the observed
carbide volume fraction
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SUMMARY

This thesis aims at the development of physical relations between the intricate 3D fea-
tures of metallic microstructures and the mechanical properties of the material. For un-
derstanding which are the microstructural determinants of the resulting mechanical be-
haviour of metals, a deep quantitative characterisation of the microstructure is needed.
The main steps of quantitative characterisation of the microstructures are: identification
of the phases distribution and their chemical composition, study of the microstructure
morphology (geometrical arrangement of grains, grain boundaries, grain orientations,
grain size and grain shape). An accurate description of the microstructure features en-
riched with physical knowledge can lead to new insight into the relation between micro
and macro properties. Advanced statistical tools are used to find relations between mi-
crostructural and mechanical quantities. Eventually, results coming from the statistical
modelling of this relation will lead to the design of new materials with desired properties.

The thesis is divided in two parts: “Microstructure (MIC)” and “Mechanical proper-
ties (MEC)”, corresponding to the acronym of the project: “MICtoMEC: Extensive quan-
tification of microstructure features and statistical relations with mechanical behaviour
–from statistical relations to physical understanding–”.
In the “MIC” part, microstructure related problems are faced with a focus mainly on the
representation of the geometrical arrangement of the grains.
In Chapter 2, the most basic model used for approximating steel microstructure, the
Poisson-Voronoi diagram is presented. Poisson-Voronoi diagrams have interesting math-
ematical properties, and they are considered a reasonably good model for single-phase
metals microstructure. The effect of the scaling property of the underlying Poisson pro-
cess on the distribution of the main geometrical properties of a typical Poisson-Voronoi
cell is studied. Moreover, a sophisticated simulation program is used to construct a close
Monte Carlo based approximation for the distributions of interest. Using this, the closest
approximating distributions within the mentioned frequently used parametric classes
of distributions is determined. Finally a 3D volume dataset is considered and the real
volume distribution is compared to what is to be expected under the Poisson-Voronoi
model.
In Chapter 3, methods to formally test whether a real steel microstructure can be ap-
proximated by a specific stochastic model are presented. More specifically, a general
framework for testing the Poisson-Voronoi assumption based on images of 2D sections
of real metals is proposed. Following two different approaches, according to the use or
not of periodic boundary conditions, three different model tests are proposed. The first
two are based on the coefficient of variation and the cumulative distribution function
of the cells area. The third exploits tools from Topological Data Analysis, such as persis-
tence landscapes.
In Chapter 4, digital representation methods are discussed. Two different approaches for
virtually representing microstructures are presented. The first one uses empirical data
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for recreating a Representative Volume Element of the material under study. The latter is
based on the statistical generation of a virtual microstructure with “similar” geometrical
and physical characteristics. Moreover, the use of more “flexible” tessellations methods,
such as Multi-level Voronoi diagrams, are discussed in the context of a multi-phase mi-
crostructure representation.
The second part “MEC” is dedicated to the investigation of the relation between mi-
crostructural features and mechanical properties.
In Chapter 5, an approach to study how microstructural parameters relate to the me-
chanical behaviour of the material based on 2D microstructure images inspection is
presented. More specifically the relation between Geometrically Necessary Dislocations
and density of microstructural precipitates is studied in an isotonic regression frame-
work. Already known physics-inspired qualitative relations between 2D microstructure
characteristics and 3D mechanical properties act as the starting point of the investiga-
tion. Isotonic regression allows to take into account ordering relations and leads to more
efficient and accurate results when the underlying assumptions actually hold. The statis-
tical estimation procedure is described considering three different scenarios according
to the knowledge of the variances: known variance ratio, completely unknown variances,
variances under order restrictions. New likelihood ratio tests are developed in the last
two cases. Both parametric and non-parametric bootstrap approaches are developed
for finding the distribution of the test statistics under the null hypothesis.
In Chapter 6, a completely simulation-based approach is employed. Digital twins of dif-
ferent microstructures with different carbides volume fractions and different textures
are generated. Multi-Level Poisson-Voronoi diagram is adopted as model. The result-
ing virtual microstructures are used as samples for virtual tensile tests. The stress–strain
curves corresponding to the different volume fractions of carbides and different textures
are studied. Two different approaches are employed for understanding how the differ-
ent microstructural characteristics relate to the mechanical behaviour of the material.
The first is to construct a function ad hoc using a change-points based procedure that
allows to incorporate a priori knowledge on the different phases observed during a ten-
sile test. The parameters of the resulting function will be then analysed as a function of
the carbides intensity and texture in a linear mixed model context. The latter treats the
data as functional data and uses functional principal component analysis to describe the
variation among the functions in terms of carbide intensity and texture.



SAMENVATTING

Dit proefschrift richt zich op de ontwikkeling van fysieke relaties tussen de complexe
3D kenmerken van metalen microstructuren en de mechanische eigenschappen van het
materiaal. Om te begrijpen wat de microstructurele determinanten zijn van het resul-
terende mechanische gedrag van metalen, is een grondige kwantitatieve karakterisering
van de microstructuur nodig. De belangrijkste stappen voor de kwantitatieve karakteri-
sering van de microstructuren zijn: identificatie van de faseverdeling en hun chemische
samenstelling, studie van de microstructuurmorfologie (geometrische indeling van kor-
rels, korrelgrenzen, korreloriëntaties, korrelgrootte en korrelvorm). Een nauwkeurige
beschrijving van de kenmerken van de microstructuur verrijkt met fysieke kennis kan
leiden tot nieuw inzicht in de relatie tussen micro- en macro-eigenschappen. Geavan-
ceerde statistische tools worden hier gebruikt om de relaties tussen microstructurele en
mechanische grootheden te vinden. Uiteindelijk zullen resultaten die voortkomen uit
de statistische modellering van deze relatie leiden tot het ontwerp van nieuwe materia-
len met gewenste eigenschappen. Het proefschrift bestaat uit twee delen: “ Microstruc-
tuur (MIC) ” en “Mechanische eigenschappen (MEC)”, overeenkomend met het project
acroniem: “MICtoMEC: uitgebreide kwantificering van microstructurele kenmerken en
statistische relaties met mechanisch gedrag –van statistische relaties tot fysiek begrip - ”.
In het “MIC” gedeelte worden met name de microstructurele problemen behandeld met
een focus op de weergave van de geometrische rangschikking van de korrels.
In Hoofdstuk 2 wordt het meest basaal gebruikte model voor het benaderen van staal mi-
crostructuur, het Poisson-Voronoi diagram, gepresenteerd. Poisson-Voronoi diagram-
men hebben interessante wiskundige eigenschappen en ze worden beschouwd als een
redelijk goed model voor enkel-fasig metalen microstructuren. Het effect van de scha-
lingseigenschap van het onderliggende Poisson-proces op de distributie van de belang-
rijkste geometrische eigenschappen van een typische Poisson-Voronoi cel wordt bestu-
deerd. Bovendien wordt een geavanceerd simulatieprogramma gebruikt om een nauw
op Monte Carlo gebaseerde benadering te construeren voor de verdelingen van belang.
Hiermee wordt de dichtstbijzijnde benaderende verdelingen binnen de genoemde veel
gebruikte parametrische verdelingsklassen bepaald. Ten slotte wordt een 3D volumege-
gevensset bekeken en wordt de werkelijke volumeverdeling vergeleken met wat onder
het Poisson-Voronoi model verwacht wordt.
In Hoofdstuk 3 worden methoden gepresenteerd om formeel te testen of een echte stalen
microstructuur kan worden benaderd door een specifiek stochastisch model. Specifie-
ker, wordt een algemeen raamwerk voorgesteld om de aanname van Poisson-Voronoi
te testen op basis van afbeeldingen van 2D secties van echte metalen. Volgens twee
verschillende benaderingen worden, afhankelijk van het wel of niet gebruiken van pe-
riodieke randvoorwaarden, drie verschillende modeltests voorgesteld. De eerste twee
zijn gebaseerd op de variatiecoëfficiënt en de cumulatieve verdelingsfunctie van de cel
oppervlakte. De derde maakt gebruik van tools uit topologische gegevensanalyse, zoals
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“persistence landscape”.
In Hoofdstuk 4 worden digitale representatiemethoden besproken. Er worden twee ver-
schillende benaderingen gepresenteerd om microstructuren virtueel weer te geven. De
eerste gebruikt empirische gegevens voor het recreëren van een representatief volume-
element van het bestudeerde materiaal. De tweede is gebaseerd op de statistische for-
matie van een virtuele microstructuur met ‘vergelijkbare’ geometrische en fysieke ken-
merken. Verder wordt het gebruik van meer ‘flexibele’ tesselatiekmethodes, zoals multi-
level Voronoi-diagrammen, besproken in de context van een meerfasige microstructuur
representatie.
Het tweede deel “MEC” is gewijd aan het onderzoek tussen de relaties van microstruc-
turele kenmerken en mechanische eigenschappen.
In Hoofdstuk 5 wordt een benadering gepresenteerd om te bestuderen hoe microstruc-
turele parameters zich verhouden tot het mechanische gedrag van het materiaal op basis
van 2D microstructuurstructuren inspectie. In het bijzonder wordt de relatie tussen Ge-
ometrisch Noodzakelijke Dislocaties en de dichtheid van microstructurele precipitaten
bestudeerd in een isotoon regressiekader. Reeds bekende fysisch geïnspireerde kwali-
tatieve relaties tussen 2D microstructuur kenmerken en 3D mechanische eigenschap-
pen vormen het uitgangspunt van het onderzoek. Isotone regressie maakt het moge-
lijk om rekening te houden met ordeningsrelaties en leidt tot efficiëntere en nauwkeu-
rigere resultaten wanneer de onderliggende veronderstellingen daadwerkelijk gelden.
De statistische schattingsprocedure wordt beschreven aan de hand van drie verschil-
lende scenario’s volgens de kennis van de varianties: bekende variantie-ratio, volledig
onbekende varianties, variaties onder orderbeperkingen. In de laatste twee gevallen zijn
nieuwe kans ratio tests ontwikkeld. Er zijn zowel parametrische als niet-parametrische
bootstrap-benaderingen ontwikkeld voor het vinden van de verdeling van de teststatis-
tieken onder de nulhypothese.
In Hoofdstuk 6 wordt een volledig simulatie gebaseerde benadering gebruikt. Digitale
tweelingen met verschillende micro structuren met verschillende carbidevolumefrac-
ties en verschillende texturen worden gegenereerd. Multi-Level Poisson-Voronoi dia-
gram wordt als model aangenomen. De resulterende virtuele microstructuren worden
gebruikt als monsters voor virtuele trekproeven. De spanningsrekcurven die overeenko-
men met de verschillende volumefracties van carbiden en verschillende texturen wor-
den bestudeerd. Er worden twee verschillende benaderingen gebruikt om te begrijpen
hoe de verschillende microstructurele kenmerken zich verhouden tot het mechanische
gedrag van het materiaal. De eerste is het ad hoc construeren van een functie met be-
hulp van een op veranderingspunten gebaseerde procedure die het mogelijk maakt a
priori kennis op te nemen over de verschillende fasen die worden waargenomen tijdens
een trektest. De parameters van de resulterende functie worden vervolgens geanaly-
seerd als een functie van de carbidenintensiteit en textuur in de context van een lineaire
gemengde model. Deze laatste behandelt de gegevens als functionele data en gebruikt
functionele hoofdcomponentanalyse om de variatie tussen de functies te beschrijven in
termen van carbidintensiteit en textuur.



ACKNOWLEDGEMENTS

PhD is usually compared to a journey. I totally agree.
For me, PhD was a journey of discovery. I travelled from Statistics to the fascinating world
of metal microstructures, unravelling everyday something new. I learned what doing re-
search means: the frustration and the satisfaction of achieving small milestones that can
contribute to progress. Sometimes, it can be tough and you can get lost but this makes
the goal even more gratifying.
For me, PhD was a journey among cultures. I travelled among different countries, meet-
ing people coming from everywhere in the world. I learned words, habits, pros and cons,
typical food of Dutch, Chinese, Australian, Persian, Indian, Croatian, Albanian, German,
Greek, Spanish, Hungarian, Brazilian (and many more other) cultures. It was incredi-
bly enriching and fun to discover the differences and the similarities of all these cultures
with respect to Italian (Sicilian) culture. Sicily is famous for its cultural contaminations
and I am now proud to have continued its tradition.
Finally, PhD was a journey into myself. If I look behind me, I see a young girl with a big
suitcase. A big suitcase full of expectations, enthusiasm and curiosity but also of fears
and worries. Not everything went as I expected, but I am grateful to have been able to do
this experience.
But PhD for me was not a solo travel. I couldn’t have make it without help.
Therefore, I would like first to express my gratitude to whom made this journey possible.
Thanks Geurt and Jilt. Since the moment of the interview I always felt stimulated and re-
assured by you. Thanks for all the support that you gave me as a student and as a person.
You taught me a lot, not only about Statistics and Materials Science, but also to be more
confident and to look things from different prospectives. Besides all your commitments
you always had time for discussions, for a word of encouragement. I always felt my back
covered. Grazie mille (milione).
Thanks to all the people from M2I, in particular to Viktoria, Lima and Maria. Thanks for
the amazing support and for the network that you helped me creating.
Thanks to Tata and in particular to Piet for all the calls, all the emails. Thanks for your
unlimited patience and availability.
Thanks to my defence committee for the insightful comments and suggestions that im-
proved the final version of the thesis.
Thanks to the University of Palermo and to Ornella, my first academic guide, that kept
motivating me and working with me in my other love Social Statistics. Thanks, also to
Fabio, Massimo and Giovanni.
A special thanks goes also to my Australian professor Vanessa, for having introduced me
to Topological Data Analysis field .
Thanks to all my colleagues (ex colleagues) of the Department of Applied Mathematics.
Thanks to Alessandra, Jacob, Richard, Joris, Juan, Annoesjka, Caroline, Rik, Nestor, Frank,
Wioletta, Pasquale, Dorota, Cor, Ludolf, Tina, Gioia, Moritz, Carl, Stephanie, Cecilia,

147



148 ACKNOWLEDGEMENTS

Dorotee, Cindy, Evelyn.
Thanks to all my fellow PhDs.
Thanks to Jasper (for all my no coffee mornings) and Birbal (for introducing me to the
Indian world). To Dan and Lixue for all the nice moments and your sweetness, for all the
dinners and for all the fights for who has to pay the bill.
To Larisa (for all your complicity looks), Andrea (ti devo ancora un corso!), to Said, Lor-
inc, Sebastiano, Inoni and Mark. Thanks for all the nice discussions, breaks and support.
Thanks to Fede (per tutte le girovagate) and Bruno, to Rik, Bart (for all the interesting
cultural discussions), Mario, Simone (per la tua educazione e simpatia), Kailun and Le-
andro. I promise no more obsessions with the Christmas party.
Thanks to Andrea. Per tutte le lezioni su come essere un buon PhD e per tutte le volte
che hai ascoltato i miei problemi di qualsiasi natura.
Thanks to Eni and Francesca. Noi tre, il trio inseparabile. Senza di voi, non so come avrei
fatto. Eni, grazie. Grazie perché sin dal primo momento mi sei sempre stata vicina. Dalla
prima cena durante un temporale, ai traslochi, al montaggio dei mobili durante la notte,
sempre. Fra, grazie. Grazie per tutti i nostri discorsi presto la mattina. Grazie per avermi
sempre ascoltato e consigliato al meglio. Per tutto l’aiuto che mi hai dato dentro e fuori
accademia. Grazie per essere state le mie rocce durante questo PhD. Grazie ragazze, per
tutte le risate, le avventure e i viaggi che abbiamo fatto e che faremo.
Thanks to all my colleagues (ex colleagues) of 3ME.
Thanks to Wei, my PhD twin.
Thanks to Javi. Your passion for this work inspired me. Thanks for all the help and the
patient explanations about carbides and DAMASK.
Thanks also to Carola, for your advice and your kindness.
Thanks to Vivi. Your positivity, your comprehension, your connection, your personality
enlightened every moment of this journey.
Thanks also to Konstantina, Behnam, Sudhee, Arthur, Chrysa, Richard, Emiliano, Ar-
avind Babu (for the beautiful images of the microstructures) and Prisca.
Outside University thanks to Jackie for all the nice advise and for the best gift ever, Mia.
Thanks to the people that supported me besides kilometres of distance.
Thanks to my friends.
Thanks to Angela. Per tutti i Buongiorno la mattina, per essere sempre accanto a me e
per capire ogni mio stato d’animo.
Thanks to Maria Chiara, Antonio, Federica, Franco e Anna, perché nonostante la dis-
tanza è sempre bello ritrovarsi in Olanda, in Sicilia o a Milano.
Thanks to my family.
Grazie a Maria Elena, per tutte le volte che mi sei venuta a trovare e per tutte le dis-
cussioni serie e meno serie. Grazie alla nonna. Grazie per aver comprato uno smart-
phone, per essere diventata un’esperta di video chiamate e per tutte le cose buone che
mi prepari ogni volta che torno a casa.
Grazie a Mamma, Papà e Piè. Grazie per avermi concesso di seguire la mia ambizione.
Grazie per avermi supportato (sopportato) e incoraggiato, anche a discapito dei vostri
sentimenti. Grazie per tutti viaggi, per tutto l’amore.
Finally thanks to Zyl. Thanks for teaching me yoga, for always pushing me to strive for
the best, to remember me of being compassionate and lovely towards me and the others.



ACKNOWLEDGEMENTS 149

Thanks for all your curiosity and for patiently listening to my PhD problems. Thanks for
being always next to me. Namaste.

Grazie mille a tutti!





CURRICULUM VITÆ

Martina VITTORIETTI

21-05-1992 Born in Palermo, Italy.

EDUCATION
2010–2013 Bachelor of Science in Statistics (cum laude)

Università degli Studi di Palermo, Palermo, Italy

2013–2016 Master of Science in Statistics (cum laude)
Università degli Studi di Palermo, Palermo, Italy

2014–2015 Erasmus Project
Ludwig-Maximilians Universität, Munich, Germany

2016–2020 Ph.D in Statistics
Delft University of Technology, Delft, The Netherlands
Thesis: Statistical Analysis of the Relation between Metallic

Microstructures and Mechanical Properties
Promotor: Prof. dr. ir. G. Jongbloed
Promotor: Prof. dr. ir. J. Sietsma

151





LIST OF PUBLICATIONS

5. Hidalgo, J., Vittorietti, M., Farahani, H., Vercruysse F. , Petrova R. & Sietsma, J. (2020). In-
fluence of large M23C6 carbides on the heterogeneous strain development in annealed 420
stainless steel.(submitted).

4. Vittorietti, M., Hidalgo, J., Sietsma, J., Li, W., & Jongbloed, G. (2020). Isotonic regression for
metallic microstructure data: estimation and testing under order restrictions. (submitted)

3. Li, W., Vittorietti, M., Jongbloed, G., & Sietsma, J. (2020). The combined influence of grain
size distribution and dislocation density on hardness of interstitial free steel. Journal of
Materials Science & Technology, 45, 35-43.

2. Vittorietti, M., Kok, P. J., Sietsma, J., Li, W., & Jongbloed, G. (2020). General framework for
testing Poisson-Voronoi assumption for real microstructures. Appl Stochastic Models Bus
Ind, 1–24.

1. Vittorietti, M., Kok, P. J., Sietsma, J., & Jongbloed, G. (2019). Accurate representation of the

distributions of the 3D Poisson-Voronoi typical cell geometrical features. Computational

Materials Science, 166, 111-118.

153


	Preface
	List of Figures
	List of Tables
	Introduction
	I MIC
	3D Poisson-Voronoi Diagrams
	Introduction
	Basic concepts
	Distribution of the geometrical characteristics
	Non-parametric approach
	Parametric approach
	Application
	Conclusions

	Poisson-Voronoi hypothesis testing
	Introduction
	Basic concepts
	Distribution of the geometrical characteristics
	Model tests
	Quantiles of the model tests
	Power of the model tests
	Application
	Conclusions

	Digital Material Representation
	Introduction
	Representative Volume Element
	Statistically Similar Representative Volume Element
	Multi-Level Voronoi tessellation

	Conclusions


	II MEC
	Mechanical property investigation from 2D images
	Introduction
	Isotonic Regression
	Estimating restricted means in the normal case
	Likelihood Ratio Test: constant  against monotonicity
	Bootstrap approach
	Application
	Conclusions

	3D Virtual Experiments
	Introduction
	Virtual Tensile Test
	Stress–Strain Diagram
	Segmented approach
	Functional Data Analysis
	Conclusions

	Conclusions
	Appendix
	Appendix
	Bibliography
	Summary
	Samenvatting
	Acknowledgements
	Curriculum Vitæ
	List of Publications


