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Abstract

Convective heat transfer finds applications in several domains of industry like heat exchangers, gas tur-
bine blades, IC engine surfaces etc. The surfaces of these heat transfer applications are either naturally
rough owing to manufacturing techniques or become rough over a period of time during operation.
These rough surfaces usually contain multiple length scales and exhibit random and heterogenous
properties. Fractal roughness, in principal, is characterized by self-similar detail on smaller and smaller
length scales and hence fractal dimension which is independent of any length scale can become a
very viable option to characterize these multi-scale random surfaces. Therefore in the current thesis,
rough surfaces characterized by fractal dimensions were designed and their role in the heat transfer
enhancement relative to the pressure drop was studied using DNS.

The fractal surfaces were designed by randomly placing five generations of self-similar cuboids with
decreasing sizes from higher to lower generations. The quantity of cuboids sprinkled randomly for each
generation followed a fractal dimension. Two principal fractal dimensions were selected, i.e 𝐷 = 1
and 𝐷 = 2 and eight random realizations of each were generated in order to study the averaged
effect of the heat transfer performance. Since the cuboids were randomly placed, different realizations
within the same fractal dimension experienced varied sheltering effects by larger generation cuboids.
This ultimately produced a fluctuation in the ”sheltered” solidity of the fractal surface for different
realizations whose effect was also studied. The cuboids were resolved in the simulation using an
immersed boundary method [1].

To quantify the heat transfer performance of the rough surfaces, two performance factors namely the
aero-thermal efficiency (𝜂 ) and Reynolds analogy factor (𝑅𝐴/𝑅𝐴 ) were defined. It was found that
the two types of fractal surfaces performed approximately similarly with a slight higher mean for 𝐷 = 2
based on the above heat performance parameters even though the two surfaces looked very different.
However, the above performance factors showed a very strong correlation with the ”sheltered” solidity
of the fluctuating realizations displaying an increasing trend.
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1
Introduction

1.1. Turbulent flows
It is very easy to observe examples of turbulent flows in our daily surroundings. Be it the smoke ema-
nating from a chimney or a jet engine, air flows around vehicles or atmospheric flows around buildings.
Despite being such a wide spread and common phenomenon, turbulence still remains one of the most
difficult phenomena to define in physics. On first glance, these flows may seem to look very random
and chaotic, however when studied closely we observe certain distinct patterns and characteristics.
One such characteristic is that these flows contain numerous eddies with different sizes that constantly
interact with each other. These eddies have a significant impact on the fluid flow and they help us to
understand the distribution of various features such as pressure, velocity and temperature etc. which
can be useful in modelling various engineering flow applications. Another important property of a tur-
bulent flow is that it is diffusive i.e it is very effective in mixing fluids. This property is certainly a boon in
many applications, ranging from simplistic cases like efficient mixing of our morning coffee to efficient
dissipation of heat required in cooling applications. This property of turbulence was demonstrated by
Osborne Reynolds in his famous experiment in 1883 as shown in figure 1.1. As it can be seen, the flow
is not always turbulent i.e. it can also be laminar (more ordered) and it’s transition to turbulence is
governed by a quantity that is defined as the Reynolds Number. Turbulence usually occurs at higher
values of Reynolds number.

Figure 1.1: Onset of turbulent flows depicted by mixing of dye from an experiment conducted by Reynolds [2]

In addition to the Reynolds number criterion, the transition to turbulence can also be triggered by
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2 1. Introduction

inserting certain passive disturbances on walls which is obtained by modifying the shape and surface
of the walls. This is widely used in the sports cycle/car racing industry where the earlier transition to
turbulence is sometimes favoured so as to make use of the mixing property of turbulence. Small dis-
turbances are added on the helmets of cyclists or towards the rear of racing cars (vortex generators) to
enforce turbulence which delays the separation of the low energy laminar boundary layer by mixing the
high momentum fluid in the outer field with the low momentum fluid within the boundary layer thereby
reducing drag. Besides artificially adding these disturbances, natural surfaces (in most engineering
applications) tend to be very rough with varied size and shape distributions in different directions. On
account of this, it is important to understand the interaction of the flow with these multi-scale rough
walls so that they can be modelled.

The mixing property of turbulence, specifically for applications where heat transfer is involved will be
explored in this thesis in particular on rough wall surfaces. This will be described further in the next
subsection.

1.2. Convective Heat transfer
Convection is one of the three modes of heat transfer which is governed by the bulk motion of fluid
as compared to conduction which occurs due to molecular motion and radiation which occurs through
electromagnetic waves. Convective heat transfer occurs whenever a fluid flows over a hot/cold surface
and it finds applications in numerous industrial processes and heating/cooling devices. It is usually
expressed in terms of a heat transfer co-efficient (h) defined as:

ℎ = 𝑄
𝐴 (𝑇 − 𝑇 ) (1.1)

where 𝑄 is the convective heat transferred from the surface to the fluid, 𝐴 refers to the surface
area and 𝑇 & 𝑇 refers to the averaged surface temperature and the bulk fluid temperature whose
difference drives the heat exchange. In order to gain a better insight into the physics and quantify the
effectiveness of heat transfer due to fluid flow over a surface, it is convenient to non-dimensionalize
the heat transfer co-efficient with relevant parameters. Two such parameters which are often used
are the Nusselt number, 𝑁𝑢 = ℎ𝐿/𝜆 (where, 𝐿 is the characteristic length scale and 𝜆 is the thermal
conductivity of the fluid) and the Stanton number, 𝑆𝑡 = ℎ/𝜌𝐶 𝑈 (where 𝜌 is the fluid density, 𝐶 is
the specific heat capacity & 𝑈 is the fluid bulk velocity). For simple geometries like pipe/channel
flow, the convective heat transfer is directly related to air flow and therefore, the Nusselt number can
be expressed in terms of Reynolds number and Prandtl number [3]:

𝑁𝑢 = 𝐴𝑅𝑒 𝑃𝑟 𝑓(𝑖𝑛𝑏𝑜𝑥(𝑔𝑒𝑜𝑚𝑒𝑡𝑟𝑦)) (1.2)

where 𝑃𝑟 is the Prandtl number, (𝑃𝑟 = 𝜈/𝛼, where 𝜈 & 𝛼 are the viscosity and thermal diffusivity of
the fluid respectively), 𝐴 is a constant, 𝑛 and 𝑚 are correlation coefficients and 𝑓(𝑖𝑛𝑏𝑜𝑥(𝑔𝑒𝑜𝑚𝑒𝑡𝑟𝑦))
is a function dependent on geometry.

Similarly for simple geometries, Reynolds suggested that the heat and momentum transfer are caused
by the same physical mechanism which is expressed by the classical relation as given below [3]:

𝑆𝑡 = 1
2𝐶 , (1.3)

where 𝑆𝑡 is the local Stanton number, based on the local heat transfer coefficient, and 𝐶 , is the local
friction factor, defined as 𝐶 , = 2𝜏 /𝜌𝑈 where 𝜏 is the wall shear stress. From this, a relation
between the local heat transfer and fluid flow near the wall can be deduced as below [3]:

ℎ ∼ 𝜏
𝑈 (1.4)

But the relations mentioned in eqn. 1.2 & 1.4 estimate the convective heat transfer with correct
order of magnitude only for simple geometries with single characteristic length scales like pipe/channel
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Figure 1.2: Flow features around single cube in turbulent channel flow as represented by an artist. A-side vortex, B-top vortex,
C-horseshoe vortex & D-wake vortex. [3]

flow with smooth walls. Nevertheless, realistic surfaces for practical engineering applications tend to be
very complex, rough, spatially heterogeneous and irregular in nature (for example, rough pipes/turbine
blades that are affected by operational issues like erosion, deposition & spallation etc. [7] or flows over
wall mounted cubes for cooling applications) and consist of multiple length scales. These multi-scale
roughness elements ultimately interfere with the dynamics of the flow & heat transfer near the wall
which causes deviations from these correlations [3]. Three dimensional roughness elements act as bluff
bodies and significantly affect the flow structure near the wall by producing separations, re-circulations
and reattachment zones. Figure 1.2 shows the complex three dimensional nature of flow around a
single cube that is governed by different vortical structures like the horseshoe vortex (𝐶), wake vortex
(𝐷) and top (𝐵) & side (𝐴) vortices which would be absent in smooth wall cases. In this work this is a
very relevant case, as we will construct roughness using a collection of surface mounted cubes.

These vortical structures can lead to steep spatial gradients in the distribution of the convective heat
transfer [3]. In addition to the above, periodic flow phenomena like vortex shedding can also emerge
due to flow instabilities arising from separation at sharp edges and these can affect the time depen-
dent convective heat transfer in the roughness layer [3]. The interaction between vortical structures
can differ between different topologies of rough surfaces which ultimately affects the convective heat
transfer and hence further research needs to be done for these complex surfaces. In the next section
we review some of the relevant literature for flow and heat transfer over complex surfaces.

1.3. Literature review: Turbulent flow over rough surfaces & scalar
dispersion

From the previous section, we learnt that smooth wall correlations (eqn. 1.2 & 1.4) cannot be directly
applied to rough wall geometries due to various complexities induced in the flow. We therefore, do a
comprehensive literature search in order to study the flow dynamics occurring due to these roughness
elements which cause the departure from smooth wall correlations. It is essential to note that the
driving potential for heat (𝑇 −𝑇 ) and mass (𝜌 −𝜌 ) transfer in dilute solutions are equivalent when
the transport of a passive scalar is considered between wall and free stream [8]. Therefore, analogous
studies for mass transfer over complex surfaces are also highlighted in the literature below.

As briefly mentioned earlier, the surface quality for practical engineering applications tends to be very
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rough, spatially heterogeneous and highly irregular in nature. For example, the surfaces of turbine
blades & heat exchanger pipes tend to become very rough during their life cycle due to various reasons
like erosion, deposition & spallation etc. that affect the convective heat transfer and skin friction as
compared to their smooth wall counterparts [7]. In addition to life cycle operational reasons, many
applications that involve the use of novel additive manufacturing techniques for IC engine surfaces can
make them very rough as well [7]. Besides applications in practical engineering problems, realistic
ground surfaces for atmospheric flows over urban or rural terrains (buildings, trees & mountains etc.)
are also very rough with elements displaying a range of shape complexities and size distributions [4].
Before diving into the literature for rough wall flows, let us briefly talk about the important regions for
turbulent flows over smooth walls and then discuss the impact of roughness elements on these regions.

Classical textbooks like Pope [9] & Nieuwstadt et al. [10] have given a detailed explanation of the
structure of smooth wall bounded turbulent flows. Generally, smooth wall bounded flows are governed
by two sets of scales, namely, one very close to the wall called the inner layer and the other very
far from the wall called the outer layer. For the inner layer, viscosity plays an important role and the
relevant scaling parameters are friction velocity (𝑢 = √𝜏 /𝜌, where 𝜏 and 𝜌 are the wall shear stress
and fluid density respectively) and the viscous wall unit (𝛿 , where 𝛿 = 𝜈/𝑢 ). Within this inner layer,
there is a region called the viscous sub-layer which is very close to the wall and the buffer layer which is
a little further away from the wall and it is responsible for generating most of the turbulent energy. On
the other hand for the outer layer, the size of the turbulent structures are limited by the boundary layer
thickness (𝛿) which becomes the relevant length scale [11]. For fully developed turbulent flows, there
is also a layer between the outer and buffer region where the relevant length scale is it’s distance from
the wall and which follows a logarithmic profile for the stream wise velocity. This layer is called the
logarithmic layer and is also responsible for contributing majorly to the overall production of turbulent
energy [11].

However when roughness elements are present on the surface, depending on their height they can
interfere with the scales of smooth wall flows described above. If the height (𝑘) of roughness exceeds
a few wall units, they interfere with the operation of the buffer-layer and completely destroy it when
𝑘 ≥ 5−100 (where, 𝑘 = 𝑘/𝛿 ) [11]. For the case of rough wall flows, the viscous sublayer for ’smooth
wall’ flows is replaced by the roughness sub-layer [12] the dynamics of which is important to understand
in order to model the flow or dispersion processes in urban environments or rough channels. Within
the roughness sublayer, the mean flow exhibits spatial variability associated with geometric attributes
of topographic elements, while above this (in the inertial layer) the mean flow (stream wise velocity
component) tends to a logarithmic profile and the turbulence structural attributes are unaffected by
the topography [12]. In the next section, we present some of the parameters most commonly used in
turbulent flow studies for characterizing rough surfaces.

1.3.1. Roughness Parameters

An important reason for implementing various roughness parameters for defining rough surfaces is to
simplistically model their complex nature in terms of a momentum deficit (increased drag) that they
add to their smooth wall flow counterpart [12]. However, our aim is not to make any model for the
rough surface but to study the flow dynamics that occur in the roughness sub layer by manipulating the
surface heterogeneity of the wall. A comprehensive guide on the different roughness parameters used
both for engineering applications and atmospheric flows with relevant roughness models for predicting
the drag reduction are given in Flack and Schultz [13], Grimmond and Oke [14] & Zhu et al. [12].
In this section, we simply highlight some of the important parameters that can be used to define our
surfaces’ heterogeneity.

For engineering applications, an important parameter that represents the effect of the roughness is
the equivalent sand roughness height 𝑘 which was first defined by Schlichting [15] from the sizes of
the sand grains in Nikuradse’s experiments [16] that produce the same friction coefficient as the rough
surface [13]. However, 𝑘 is a representative roughness scale that only models the bulk effect of the
wall on the momentum deficit but does not really give us any insight of the flow structure/dynamics
in the roughness sub layer [17]. Nevertheless, it remains an important parameter as it helps us in
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distinguishing between hydraulically smooth (𝑘 < 5), transitionally rough (5 < 𝑘 ≤ 70), and fully
rough (𝑘 ≥ 70) walls, with 𝑘 = 𝑘 /𝛿 [17].

An analogous counterpart of 𝑘 in atmospheric flows is given by the aerodynamic roughness length
𝑧 . It is used in conjunction with the zero-plane displacement 𝑑 to model the cumulative effect of flow
separation over an urban terrain (plant canopies, multiple sizes of buildings etc.) in terms of the mean
momentum deficit (aerodynamic drag) [12]. In this case, 𝑧 is interpreted as the effective height at
which 𝑈 = 0 and 𝑑 is the elevation at which the mean surface drag acts [12].

Even though, 𝑧 & 𝑘 have constraints in intrinsically describing the roughness topography yet they can
act as a common language to describe the bulk effect of different surfaces for modelling engineering
and atmospheric surfaces [12] [13]. Therefore, there have been attempts to predict the values of 𝑧
& 𝑘 for rough surfaces by using additional parameters describing the geometry in terms of spatial
distribution, density of arrangement of elements and their shape. It is common to model 𝑧 using
the surface areal density parameters like the frontal area density (𝜆 = 𝐴 /𝐴 ) and plan area density
(𝜆 = 𝐴 /𝐴 ) [12] (where, 𝐴 , 𝐴 and 𝐴 are the total frontal area of obstacles, total bottom surface
area and total plan area covered by obstacles respectively). Another parameter that is used is Λ which
was introduced by Van Rij et al. [18] who tested it for irregular, three dimensional roughness [13]. This
parameter combines the effect of the density of roughness elements given by (𝐴 /𝐴 ) and the shape
factor for the roughness elements (𝐴 /𝐴 ).

Λ = 𝐴
𝐴 (

𝐴
𝐴 )

.
(1.5)

where 𝐴 is the total windward wetted surface area.

For complex roughness, the above areal parameters still do no completely capture the spatial het-
erogeneity and therefore statistical relations are sometimes suited to describe the surface. Flack and
Schultz [13] (for engineering flows) studied the effect of statistical parameters and concluded that the
rms value of roughness height (𝑘 ) and skewness (𝑠 ) had a strong influence on 𝑘 while the kurtosis
of the surface had a negligible impact which was also confirmed by Zhu et al. [12] (for heterogeneous
buildings in atmospheric flows). The skewness, 𝑠 characterizes the asymmetry of the distribution of
local surface elevations 𝑘, 𝑠 =< (𝑘− < 𝑘 >) >. Surfaces that are roughnened over time by the ac-
cumulation of deposits (like exhaust particulates, fouling etc.) generally have positive skewness while
those surfaces that are pitted (like by corrosion, surface wear etc.) have negative skewness [13]. In
table 1.1 we summarize the different roughness parameters described above along with a few studies
in which they were included.

Table 1.1: List of parameters used to characterize roughness elements

Roughness Parameter Symbol Shapes Reference

Equivalent Sandgrain roughness 𝑘 Sandgrains & other
shapes 1 [13]

Roughness Length & Displacement
height 𝑧 , 𝑑 Cuboids [14],[12],[4],

[19],[6],[20]

Frontal Density & Plan Density 𝜆 , 𝜆 Cuboids [14],[12],[4],
[19],[6],[20],[7]

Combined Density & Shape Parameter Λ Pyramids & other
shapes 1 [13], [7]

Standard deviation & Skewness 𝑘 , 𝑠 Cuboids & other
shapes 1

[13],[12]

We will be using some of the above mentioned parameters along with the fractal dimension of the
surface to interpret the effect of a multi-scale surface described in Chapter 2 on the turbulent flow &
heat transfer.
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1.3.2. Studies on turbulent flows and scalar dispersion over rough surfaces
with cubical geometry

Studies on flows over rough surfaces have focused on different shapes of roughness elements like sand
grain roughness, pyramids, hemispheres, cubes, riblets etc. which can be quantified and modelled by
the parameters mentioned in section 1.3.1. In this thesis though, we would like to focus only on cubical
shaped elements but with a broad range of size distributions. As mentioned earlier in section 1.2,
roughness elements interfere with the dynamics of smooth wall flows; hence it is vital to understand
the flow dynamics and the corresponding scalar dispersion (heat transfer) over complex terrains which
could later be used to model them. Differing shapes, sizes and distribution of roughness elements can
have varying effects on mean vertical profiles, turbulence intensities and vertical fluxes. We again note
here that the driving potential for mass & heat transfer are the same when modelled as a passive scalar
and hence we also mention analogous studies for mass transfer here.

As described earlier in section 1.2, the flow separation, reattachment & impingement dictates the local
heat transfer phenomena near simple 2-D square cross-section obstacles. Numerous studies have been
done which substantiate the above statement with a lot of data available from experiments (Aliaga
et al. [21]) and DNS (Orlandi et al. [22], Miyake et al. [23]) to name a few. Extending to a 3-D case,
flows over arrays of cubes have been studied along with local convective heat transfer by Chyu and
Natarajan [8] who studied heat transfer over 3D protruding elements, Anderson [24] & Meinders [3]
who studied matrix of cubes and studied the heat transfer co-efficient variation which was again found
to be dictated by 3D vortex structures in the vicinity of the cubes. Another important phenomenon that
augments the turbulent heat transfer in the boundary layer is the periodic vortex shedding phenomenon
as demonstrated in experiments performed by Wroblewski and Eibeck [25]. Analogous studies in the
atmospheric flows domain have been conducted for arrays of cubes arranged in an ordered manner
(either inline or staggered) (Tomas [6], Coceal et al. [26], Belcher [27] & Macdonald et al. [28]). The
cubes used in the above studies however, were of the same size with uniform spacing between them
in the domain but they all nonetheless established the strong influence of 3D vortex structures in the
vicinity of the cubes.

But natural rough surfaces exhibit multiscale, random and heterogeneous properties as opposed to the
single scale studies mentioned above. This was first explored by Cheng and Castro [20] who studied
an array of cuboids with height variation following a normal distribution but having uniform spacing
between cubes and compared them with single sized homogeneous cube arrangement. They again
confirmed the highly 3D nature of the flow and also found that the height of the roughness sub-layer
was thicker for the heterogeneous case (height variation) in comparison to the homogeneous one.
As mentioned in section 1.3.1, using statistical moments sometimes gives a better description of the
surface topography. This was recently explored by Zhu et al. [12] who conducted LES studies for flow
over cuboids arranged in a random manner and varied the values of rms (< (ℎ− < ℎ >) > / ) and
skewness of the height distribution.

Another interesting aspect of natural surfaces as first noted by Mandelbrot [29] is that many of it’s
features demonstrate fractal properties, including the height distribution of eroded surfaces and the
layout of urban sprawl. In various studies on experimentally mapping rough surfaces, it was found that
their anatomy follows a fractal pattern wherein under repeated magnification of the surface similar
images emerge [30]. Also, as established earlier rough surfaces have several length scales and hence
it is sometimes easier to characterize it using parameters that are independent of any length scale and
so using fractals to describe the same becomes a very viable option [30] [4]. Therefore, in this work
we use fractals to describe rough surfaces (Chapter 2).

Recently, there has been a growing interest in studying flows over fractal surfaces (both in engineering
and atmospheric applications). One interesting study was done by Chen et al. [31] who studied the heat
transfer in micro-channels for laminar flow over fractal surfaces described by a Weirstrass-Mandelbrot
function with varying fractal dimension (𝐷). They found that the flow convective heat transfer per-
formance was optimized with increasing fractal dimension of the surface. However, we would like to
focus on cubical roughness elements to form the fractal surface. Yang and Meneveau [4] examined
flow past multi-scale surfaces that consisted of randomly placed cuboids whose number quadrupled as
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the size of their edges were halved. As will be explained in chapter 2, the fractal dimension of such
a rough surface is two, so it is strictly not a fractal. The surface designed in this study is illustrated
in figure 1.3 which also formed the inspiration for our current study. The rough surface designed in
Chapter 2 will be using similar cuboids arranged in a random manner but now in a way such that the
fractal dimension is varied. However, the study of (Yang and Meneveau [4]) was majorly focused on
developing an analytical roughness model for multi-scale terrains in atmospheric flows and only few
results for mean structure of the flow with respect to the surface were presented. Of late, another
interesting study was done by Vanderwel and Ganapathisubramani [19] who created fractal surfaces
with cubical base structures akin to an ordered Sierpienski carpet with a similar power law height distri-
bution (like Yang and Meneveau [4]) but they randomized the positioning of the cuboids. They varied
the frontal density (𝜆 ) and the packing density (spacing between cubes) for different random fractal
surfaces to study their effect on turbulent stresses & mean flow velocities and also compared them
with the ordered Sierpienski carpet.

Figure 1.3: Rough wall synthesized using self-similar rectangular roughness elements. Reproduced from Yang and Meneveau
[4]

Nonetheless, in the above studies the fractal dimension of the cubical structure has not been varied
and it’s relation with the hydrodynamic performance has not been established. Moreover, none of the
above works have investigated the heat transfer over such surfaces which will be our scope of interest.
Therefore in the current study, we intend to extend the works of Yang and Meneveau [4] and Vanderwel
and Ganapathisubramani [19] to study the hydrodynamic and heat transfer performance over fractal
surfaces and try to establish it’s relation with the fractal dimension of the surface. Additionally, for
a surface with the same fractal dimension we will also randomize the arrangement of the cuboids to
analyze the similarities and differences in the turbulent flow & heat statistics. The simulations will
be conducted using Direct Numerical Simulations (DNS) which integrates the Navier-Stokes equations
without any tuning or modelling assumptions. We simulate the heat transfer as a passive scalar and
neglect the effect of buoyancy in the flow. For simulating the effect of cuboids we will use an Immersed
boundary method designed by Pourquie et al. [1] which is very suitable for cubical shaped obstacles
and also make the computational domain parallel in the x-direction. Finally, we will be using periodic
boundary conditions in the stream-wise direction which is analogous to simulating fully developed flows
[26]. The objectives of this thesis will be presented in the next subsection.

1.4. Objectives
From the literature study done above, we limit the objectives of the current thesis to the following
goals:
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1. Develop a Fortran code to simulate heat transfer of a turbulent channel flow over a fractal surface
using an Immersed boundary method and make it parallel in the x-direction.

2. How do the different random realizations affect the flow hydrodynamically? What is the difference
within the same fractal dimension?

3. What is the averaged effect of increasing the fractal dimension of a surface on the heat transfer
performance relative to the pressure drop?

1.5. Outline of thesis
• Chapter 2 provides a basic introduction about fractals in general and presents a detailed expla-
nation of the methodology employed to design the fractal surfaces for the current study.

• Chapter 3 gives an insight into the Direct Numerical Simulations setup used in this thesis. It also
briefly explains the immersed boundary method used to simulate the cubical obstacles and the
methodology used to make the model parallel in the X-direction.

• Chapter 4 discusses the results of the current thesis. Initially, a summary of the roughness cases
simulated in the current study along with the methodology for post processing the results is
presented. This is followed by roughness length estimations for the two kinds of fractal surfaces
and ultimately the enhancement of heat transfer relative to pressure drop is analyzed with respect
to the fractal dimension of the surface.

• Chapter 5 presents various conclusions drawn from chapter 4 and several recommendations for
further studies are made.



2
Design of fractal surface

In this chapter, a basic introduction of fractal geometry will be provided along with it’s properties
followed by a detailed description of the method used to design fractal surfaces for the final simulations.

2.1. Introduction to fractals

The theory of fractals which is one of the most important developments in natural science was firstly in-
troduced by Mandelbrot [29]. It was derived mainly to overcome the shortcomings of classical geometry
in describing the structural disorder and chaos of naturally occurring complex shapes and phenomena.
Fractal geometry finds applications in numerous fields ranging from molecular physics to the large scale
structure of the universe, and provides new conceptual tools and insights [5]. Numerous examples
of fractal objects can also be observed in our daily environment like the shapes of coastlines, clouds,
and mountains etc. A very interesting and unique property of fractal objects is that with increased
magnification, increasing details of the object keep appearing. These details tend to follow the same
structural pattern at several length scales of observation [30].

In classical Euclidean geometry, the shapes of smooth structures are characterized by dimensions
having integer values like line (1 dimension), square (2 dimension) etc. and hence it fails to completely
characterize the structural complexity found in numerous natural objects. In order to tackle this,
Mandelbrot extended the classical definition of a dimension to include a fractional value which provides
a measure for the space filling capacity of a complex rugged structure. The idea was to differentiate
between the topological dimension of a system and its fractal dimension. By topology, we mean that
the properties of a system remain invariant when the space in which they are contained is distorted
[5].

An example of the same is shown in figure 2.1 where different shapes of curves have varying space
filling capacities. The topological dimension of all curves is one because if suppose all the curves were
to be drawn on an elastic graph, when the graph is stretched all the curves will fit over a traditional
straight line whose topological dimension is one. However, the fractal dimension of the curves will lie
between one and two as the respective space filling capacity of each curve is more than a line but less
than a plane. Another example can be that of a paper surface which under normal human vision is
perceived as a flat, straight, and Euclidean surface whose topological dimension is two. Nevertheless,
when the paper is magnified more details of the roughness structure appear which cause a variation
in its fractal dimension. Therefore the use of fractal dimensions provides a new tool for describing
such roughness [5]. Additionally, it is easily apparent that Euclidean shapes are usually described by
a simple algebraic formula, whereas fractals are the result of a recursive construction procedure or
algorithm [5]. In our current application, fractal shapes designed in section 2.2.1 will also be made

9
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recursively leading to algebraic relations between properties and length scale.

Figure 2.1: Difference between topological dimension and fractal dimension. The space filling capacity of each curves increases
from top to bottom and hence the increase in the fractal dimension. [5]

2.1.1. Fractal Dimension

Fractals are characterized by a fractal dimension 𝐷. It is defined through covering the fractal with cov-
ering elements (line for fractals in one dimension, squares for fractals that live in two dimensions, cubes
for the three-dimensional case, etc) and measuring the length (one dimension), area (two dimensions)
or volume (three dimensions) with the total number of covering elements.

Fractal dimension is the relation between the total number of covering elements and their linear size. If
𝑙 is the linear size of a covering element (for squares the side length), and 𝑁(𝑙) the number of elements
needed to cover the fractal, the fractal dimension 𝐷 follows from

𝑁(𝑙) ∼ 𝑙 . (2.1)

We will be using this definition to define our fractal surfaces where we cover the planar view of our
rough surface with square shaped covering elements to calculate the fractal dimension 𝐷 which will be
described further in section 2.2.1.

Many refinements of this simple notion are possible, for example, we may allow for the different “mass”
of the objects that we cover. Another way to understand fractal dimension is asking what the chances
𝑃(𝑙) are to find a non–empty square of the fractal cover in 2 dimensions. It is

𝑃(𝑙) ∼ 𝑙 (2.2)

It is analogous to the above in 3 dimensions.

2.1.2. Self Similarity

The definition of self-similarity is based on the property of equal magnification in all directions [30]. An
intuitive example of self-similarity is illustrated in figure 2.2. An object considered as one dimensional
possesses a single scaling property in that direction. It can be divided into 𝑁 identical parts each of
which is scaled down by the ratio 𝑙 = 1/𝑁 from the whole. Similarly, a two-dimensional object, such
as a square area in the plane, can be divided into 𝑁 self-similar parts each of which is scaled down
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by a factor 𝑙 = 1/𝑁 / . A three-dimensional object like a solid cube may be divided into 𝑁 little cubes
each of which is scaled down by a ratio 𝑙 = 1/𝑁 / . With self-similarity the generalization to fractal
dimension is straightforward as shown in the above section. A 𝐷-dimensional self-similar object can be
divided into 𝑁 smaller copies of itself each of which is scaled down by a factor 𝑙 where 𝑙 = 1/𝑁 / .

Figure 2.2: Self-similarity concept based on Euclidean objects (line, square, cube). Reproduced from [5]

So far we saw simple Euclidean objects with integer values for fractal dimensions, however for more
complex cases the fractal dimension need not be an integer. A simple example of a self-similar com-
plex structure is the Koch curve as shown in figure 2.3 which is constructed by means of a recursive
procedure. Firstly, a straight line is broken into three parts and the middle segment is replaced by two
segments of equal length. Further, each straight segment is again broken into three parts replacing the
middle portion by two more parts and the procedure is repeated infinite times to obtain the Koch curve.
Its fractal dimension is 𝐷 = log𝑁/ log(1/𝑙) = log 4/ log 3 or about 1.26. This non integer dimension
represents the unusual space filling property of the curve which is greater than simple line (𝐷 = 1),
but less than a Euclidean area of the plane (𝐷 = 2). Unlike Euclidean shapes, this curve has detail on
all length scales. Indeed, the closer one looks, the more detail one finds. More importantly, the curve
possesses an exact self-similarity. Each small portion can reproduce exactly a larger portion [5].

2.1.3. Self-affine fractals

Self–affine fractals have the property that there are different scale factors in different directions, not
just a single scale factor. A striking example in 𝑥, 𝑦 is the Weierstrass function,

𝑦 = 𝑅(𝑥) =∑ cos(2𝜋𝛾 𝑥)
𝛾( ) , with 𝛾 > 1 (2.3)

When the horizontal scale changes by a factor 𝛾, the vertical scale changes by a factor 𝛾 . This is
the key point of self-affinity. When the sum over 𝑛 extends to ∞, there is no smallest scale. In practical
cases, such as for our fractal cover, there is a largest 𝑛, and thus a smallest scale. Then, scaling is only
observed over a finite dynamical range of length scales.
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Figure 2.3: Recursive construction of the Koch curve with fractal dimension, D=1.26.

It is easy to see that 𝐷 in Eq. 2.3 is indeed the fractal dimension: the chances to find a point of the
curve in a box with size 𝛾 are 𝛾 . So, unlike Majumdar and Tien [30], who claim that box–counting
dimension does not apply to self–affine fractals, 𝐷 in Eq. 2.3 is just the box counting dimension.

Self–affine fractals can be characterized by the structure function, which is defined as

𝑆 (𝑥) = ⟨(𝑅(𝑦 + 𝑥) − 𝑅(𝑦)) ⟩ ≃ 𝑥 ( ) (2.4)

The scaling of the structure function trivially follows from Eq. 2.3, and thus caries over to any self–affine
fractal.

The scaling exponent 𝜉 of the structure function, 𝑅(𝑥) ∼ 𝑥 , with 𝜉 = 2(2 − 𝐷 ) where 𝐷 is
the embedding dimension (2 in this example) does only hold for self–affine fractals. In general, other
relations exist between scaling exponent and fractal dimension. A quite relevant example is turbulence.

2.2. Fractal Roughness
Measurements of rough surfaces show that they contain roughness features at several length scales
ranging from millimeters to nano-meters [30]. The standard ways to characterize these surfaces is
through the root-mean-square variation of the height, the probability density function of elevations,
and through the solidity. The solidity 𝜆 is defined as the ratio of the area projected along the surface
normal to the area projected perpendicular to the surface normal. The idea of fractal scaling can
provide an alternative way to characterize rough surfaces which we will try to explore in this thesis.

2.2.1. Making fractal surfaces

We make fractal surfaces by placing prisms with a distribution of sizes. This distribution is fractal, it
has a fractal dimension 𝐷, but it is not a self–affine fractal.

The prisms come in generations 𝑛. In generation 𝑛, the size of the square ground plane of a prism
is 𝐿 × 𝐿 , whereas the height is 𝐿 /2. In this way we follow Yang and Meneveau [4]. The sizes are
𝐿 ∼ 𝛽 , their numbers are 𝑁 ∼ 𝛽 . Trivially, the fractal dimension of the vertical projection of this
rough surface is 𝐷 = 𝛼 since 𝑁 ∼ 𝐿 . For the case 𝛼 = 2, which was done by Yang and Meneveau
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[4], 𝐷 = 2, so their surface was not fractal.

Figure 2.4 shows the top view of two fractal surfaces, one with 𝐷 = 𝛼 = 1, the other one with
𝐷 = 𝛼 = 2. These dimensions were verified by covering the top view with a regular grid with mesh
size 𝛿, and counting the number 𝑁(𝛿) of non-empty cells. Figure 2.4 (𝑐) demonstrates that the fractal
scaling, observed over a limited dynamical range of scales 𝛿, is consistent with the construction.
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Figure 2.4: Fractal rough surfaces generated by randomly sprinkling prisms on a × grid, with side length of ground
plane , height / , number , with / , and . The generations ranged from

to . (c) Covering with a regular grid with mesh size and counting the number ( ) of non-empty cells. The
dashed lines have slopes and for and , respectively. (d) Structure functions ( ).

Our fractal surface is not self-affine, and has a trivial correlation function 𝑆 (𝑥). It is easy to see that
each generation 𝑛 adds a linear piece 𝑆 (𝑥) ∼ 𝑥 to the correlation function which simply follows from
the used rectangular building blocks of the rough surface. This is illustrated in figure. 2.4 (d).

The fractal surface of figure. 2.4 was constructed on a 1024 × 1024 grid by choosing cubes with size
𝐿 = 𝐿 𝛽 and height 𝐿 /2. At each generation the number of cubes is 𝑁 = 𝑁 𝛽 , with 𝛼 the
fractal dimension. The generations 𝑛, ranged from 𝑛 = 2 to 𝑛 = 8, with 𝐿 = 170, 𝑁 = 2 and 𝛽 = √2.
At each new generation 𝑛, 𝑁 cubes with size 𝐿 were sprinkled randomly in the space left by the
previous generations. Consequently, the number of generations is limited, with the available space
decreasing more rapidly as 𝐷 increases.

For our fractal roughness the structure function cannot be used to distinguish one fractal surface
from another one. Other ways to characterize rough surfaces are the root-mean square height (𝜎 =
⟨(ℎ − ⟨ℎ⟩) ⟩ / ), and the solidity. The solidity 𝜆 is defined as the surface area of the 𝑋− (or 𝑌−)
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Figure 2.5: Solidity of randomly generated fractal surfaces on a × grid, taking into account geometric sheltering of
small prisms by large ones. (a) Sheltering is the case when a smaller prism sits in the shade of a larger one. The length of the
shade is varied from , , , . The prisms drawn are sheltered, their frontal area does not contribute to the total solidity of
the surface. (b) In the random generation of fractal surfaces, the dimension is kept constant, but the fluctuating distribution of
prisms results in a fluctuating solidity. The gray lines are the solidity without considering sheltering.

projection of all prisms over the total planar area. In principle, both quantities 𝜎 and 𝜆 can be computed
analytically. For 𝐷 = 2, we have, in our realizations, 𝜎 = 12.1 and 𝜆 = 0.19. For 𝐷 = 1, we have 𝜎 = 8.4
and 𝜆 = 0.042. Although, the rms heights 𝜎, for the two surfaces of figure. 2.4 are not very different,
the relative fluctuating heights are 𝜎/⟨ℎ⟩ = 1.6 for 𝐷 = 2, and 𝜎/⟨ℎ⟩ = 3.7 for 𝐷 = 1. Therefore, the
rms height 𝜎 is not a good quantity to distinguish the two rough surfaces at 𝐷 = 1 and 𝐷 = 2. Better
quantities are the relative fluctuating height 𝜎/⟨ℎ⟩, the solidity (𝜎), and, of course the fractal dimension
𝐷.

Alternatively, it is interesting to consider the probability density function 𝑃(ℎ) of height ℎ variations.
Also, 𝑃(ℎ) can be computed analytically: it is flat for 𝐷 = 2 and 𝑃(ℎ) ≃ ℎ for 𝐷 = 1. Therefore, it is
very different from that of self–affine surfaces (for example surfaces based on Eq. 2.3) which have a
near–Gaussian PDF.

In the random generation of fractal surfaces, the dimension is kept constant between different realiza-
tions of the surfaces. However, when we allow for sheltering of small prisms by large ones upstream,
the fluctuating distribution of prisms results in a fluctuating solidity. These fluctuations will be more
prominent for smaller grids. We consider a simple geometric model, in which we vary the downstream
length of the shadow. The results are shown in figure 2.5.

The final fractal surface designed for simulations with 𝐷 = 1 & 𝐷 = 2 were constructed on a 256×256
grid unlike the 1024 × 1024 grid shown in figure 2.4 and details of those cases will be provided in
section 4.1.



3
Numerical model

In this chapter, the details of direct numerical simulations method employed for the study are discussed.
A brief description of the finite volume method, details on the grid and boundary conditions along with
the stability criteria are given. This is followed by a description of the immersed boundary method for
cubical obstacles and the implementation of the parallel model.

3.1. Direct Numerical Simulations

In Direct Numerical Simulations (DNS), the Navier-Stokes equations are solved by resolving all the
scales of motion (from largest to smallest eddies), with the initial and boundary conditions relative
to the flow requirements. This approach does not employ any modelling approximations (unlike LES
& RANS) and hence it is known to give very accurate and detailed results about the flow which also
makes it computationally very expensive. However, to ensure that the DNS resolves both the macro
and micro-structures of turbulence, the flow domain must be large enough to contain the large-scale
motions of size ℒ, while at the same time the spatial resolution Δ of the grid should be small enough
to resolve the Kolmogorov scale 𝜂. Using the above length scales, an estimation can be made of the
total number of grid cells 𝒩 in the simulation:

𝒩 ≈ (ℒ𝜂 ) = 𝒪(𝑅𝑒 / ) (3.1)

Additionally, the integration time step Δ𝑡 should be small enough to resolve the Kolmogorov timescale
𝜏 , while the total simulation time should be sufficiently long to cover a sufficient number of integral
timescales 𝒯. It can be shown that:

𝒯
𝜏 ∼ 𝑅𝑒 / (3.2)

Hence an estimation for total number of computations required can be scaled according to:

𝒩𝑥ℳ = 𝒪(𝑅𝑒 / .𝑅𝑒 / ) = 𝒪(𝑅𝑒 / ) (3.3)

where ℳ is the total number of time integration steps. Thus, it can be seen that the computational
effort of DNS grows almost with an exponent of three of the Reynolds number. In view of such high
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computation costs it’s applicability is limited only to flows with low or moderate Reynolds numbers [9]
[10]. However, various engineering estimates could be made on the maximum domain size and the
smallest grid size (where it need not be exactly equal to the Kolmogorov scale but in order of magnitude
of the same).

In the present study, an in-house code developed by Boersma & Pourquie which uses a finite volume
approach for solving the Navier-Stokes and the energy equation has been modified further to include a
random array of multi-sized cubes (using IBM [1]). In the next sub-section, the basic flow and energy
equations are described.

3.1.1. Basic equations of fluid flow

Fluid flow is described using three sets of equations, namely, conservation of mass, Eq. 3.4, conser-
vation of momentum, Eq. 3.5 & the conservation of energy, Eq. 3.6. The flow is considered to be
incompressible in the present research and there are no internal sources of heat within the fluid. Also,
the temperature is modelled as a passive scalar (i.e temperature variations do not affect the momentum
equation). The equations are given as below:

𝜕𝑢
𝜕𝑥 = 0 (3.4)

𝜌 ∗ (𝜕𝑢𝜕𝑡 +
𝑢 𝜕𝑢
𝜕𝑥 ) = − 𝜕𝑝𝜕𝑥 + 𝜇𝜕 𝑢𝜕𝑥 (3.5)

𝜌 𝐶 (𝜕𝑇𝜕𝑡 +
𝑢 𝜕𝑇
𝜕𝑥 ) = 𝜆(𝜕 𝑇𝜕𝑥 ) (3.6)

In fluid mechanics, it is a preferred practice to make the above equations non-dimensional using rele-
vant flow and geometric scales. Dimensionless equations give a better insight on the dominating terms
in the Navier-Stokes and energy equations thereby highlighting the importance of certain forces. Also,
using non-dimensional equations helps us in up-scaling or down-scaling experimental setups for similar
physical situations. Non-dimensionalization can be done using characteristic velocity, length, time and
temperature scales relevant to the problem. In our case we do it with respect to the channel height
(𝐻), bulk velocity (𝒰 ) and temperature difference between the hot and cold wall (𝑇 − 𝑇 ).

𝑢∗ = 𝑢
𝒰 , 𝑥∗ = 𝑥

𝐻 , 𝑡∗ = 𝑡.𝒰
𝐻 , 𝑇∗ = 𝑇

(𝑇 − 𝑇 ) (3.7)

Substituting the above into Eqs. 3.4, 3.5 & 3.6 we get the following

𝜕𝑢∗
𝜕𝑥∗ = 0 (3.8)

𝜕𝑢∗
𝜕𝑡∗ +

𝑢∗𝜕𝑢∗
𝜕𝑥∗ = −𝜕𝑝

∗

𝜕𝑥∗ +
1
𝑅𝑒

𝜕 𝑢∗

𝜕𝑥 ∗ (3.9)

𝜕𝑇∗
𝜕𝑡∗ +

𝑢∗𝜕𝑇∗
𝜕𝑥∗ = 1

𝑅𝑒 𝑃𝑟
𝜕 𝑇∗

𝜕𝑥 ∗ (3.10)
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From the above equations, we see that two important non-dimensional terms emerge, namely, the
bulk Reynolds number 𝑅𝑒 and the Prandtl number 𝑃𝑟. They can be expressed as follows:

𝑅𝑒 = 𝒰 𝐻
𝜈 , 𝑃𝑟 = 𝜈

𝛼 (3.11)

3.1.2. Staggered grid

In order to discretize the Navier-Stokes equations in three dimensional space, the continuous spatial
domains must be divided into a set of discrete cells or control volumes over which the physical flow
quantities are stored. In the present simulation, a staggered grid is used where the scalar quantities
are stored at the cell centers and vector quantities are stored at the cell edges (figure 3.1). This setup
prevents the odd-even decoupling between pressure and velocity which is seen in collocated grids [6].

Figure 3.1: Staggered grid with velocities u, v, and w evaluated at the cell faces, while scalars like pressure and temperature
(only p shown) are evaluated at the cell centers indicated by the circles. The relative position of the cells is indicated by the
indices i, j, and k. (a) grid in the x−y plane, (b) grid in the x-z plane. Reproduced from Tomas [6]

3.1.3. Spatial Discretization

The spatial derivatives for Equations 3.8 & 3.9 (continuity and momentum equation) are discretized
using a second-order central difference scheme. For Equation 3.10 (energy equation) however, the
convective term is discretized using a second-order upwind scheme (kappa scheme Hundsdorfer et al.
[32]) and the diffusion term is discretized using a second-order central difference scheme to ensure
physical positive values at the domain boundaries. All the discretizations done, ensure that the mass,
momentum and energy are conserved over the control volume. The grid spacing is maintained uniform
in all the three directions without any grid stretching as we need to model multiple scales of cubes.

3.1.4. Time Integration and Pressure-Correction Method

Integration in time is done by marching equations 3.9 & 3.10 over a time step Δ𝑡 by using an explicit
scheme as implicit schemes will be computationally very expensive. For the momentum equation we
use a second order Adams Bashforth scheme but for the energy equation we use a third order TVD
Runge Kutta Scheme (Gottlieb and Shu [33]) where the latter is mostly used along with higher order
spatial discretization schemes mentioned above to ensure physically positive values. The integration
step for the scalar (temperature equation 3.10) is very straight forward and the new time integrated
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value satisfies the energy balance over the control volume cell. However, the same cannot be said
about the velocity which does not satisfy the continuity equation 3.8. This happens because in the
momentum equation (equation 3.9) there is no time derivative for the pressure. However, this issue
can be solved by using a fractional step method to correct the velocities and pressure at each time
step. We describe the procedure in terms of the second order Adam Bashforth scheme which we use
for time integration of the momentum equation.

𝑢 − 𝑢
Δ𝑡 = −∇𝑝 − ∇�̃� + 12(3(−𝒜 +𝒟 ) − (−𝒜 +𝒟 )) (3.12)

The terms 𝒜 & 𝒟 represent the advection and diffusion terms respectively of the momentum equation
3.9 and �̃� is the pressure correction term. Initially, an intermediate value of velocity called the prediction
velocity, 𝑢 is calculated as shown in Equation 3.13 which is not divergence free. Taking the divergence
of equation 3.13, we get equation 3.14 that can be solved using a fast Poisson solver to obtain the
pressure correction �̃� which can be used to correct the final velocity and pressure at the new time step
as shown in Equation 3.15 & 3.16.

𝑢 = 𝑢 + Δ𝑡( − ∇𝑝 + 12(3(−𝒜 +𝒟 ) − (−𝒜 +𝒟 ))) (3.13)

∇ �̃� = 1
Δ𝑡 (∇.𝑢 ) (3.14)

𝑢 = 𝑢 − Δ𝑡(∇�̃�) (3.15)

𝑝 = 𝑝 + �̃� (3.16)

3.1.5. Stability Condition on time step

Explicit time integration schemes have a disadvantage over their implicit counterpart due to the restric-
tion on the largest allowable time step size required for stability. The two important stability criteria that
govern the maximum time step size are stated below. The first criterion, is the Courant-Friedrichs-Lewy
(CFL) condition;

Δ𝑡( 𝑢Δ𝑥 +
𝑣
Δ𝑦 +

𝑤
Δ𝑧) ⩽ 𝐶 (3.17)

where 𝐶 is the maximum Courant number. We maintain 𝐶 below 0.3 for our simulations. The
second criterion is that of the diffusion number whose critical value is maintained below 0.4 given as
[6].

Diffusion number = 𝛼Δ𝑡
(Δ𝑥 + Δ𝑦 + Δ𝑧 ) (3.18)

where 𝛼 stands for the scalar diffusivity. The above criterion also holds for the diffusion of momentum
where the diffusivity, 𝛼 can be replaced by viscosity, 𝜈.
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3.1.6. Domain Setup & Boundary Conditions

The domain size for the fractal case simulations is scaled according to the length of the largest gener-
ation of cubes (ℒ). In the three directions, we have the domain size as 6ℒ x 6ℒ x 6ℒ and a uniform
resolution of 256 x 256 x 256 is set.

Also in order to solve the flow equations, it is essential to provide proper boundary conditions. In the
stream wise (𝑥) and lateral (𝑦) directions we use periodic boundary conditions for velocity. At the top
wall (smooth) and bottom wall (fractal cubes) we use a no slip boundary condition. For the scalar
temperature we provide a constant temperature at the inlet (𝑇 = 5) and a robust convective boundary
condition at the outlet in the stream wise (𝑥) direction. Iso-thermal wall conditions are used on the
top (cold, 𝑇 = 0) and bottom wall (hot, 𝑇 = 10) and the lateral (𝑦) direction boundaries are periodic.
The convective outlet boundary condition for the scalar can be given as below:

𝜕𝑇
𝜕𝑡 + 𝒰

𝜕𝑇
𝜕𝑥 = 0 (3.19)

where 𝑇 indicates the temperature and𝒰 is the bulk velocity. The scheme used for the time integration
of this boundary condition is the third order TVD Runge Kutta scheme which is the same as for the scalar
equation 3.10. The computational domain is represented below in figure 3.2 with relevant boundary
conditions.

Figure 3.2: An illustration of the domain used in the simulation (One case with fractal dimension ). The top wall is
smooth with & the bottom wall contains the fractal cubes with . In the stream wise ( ) direction we have periodic
boundaries for velocity and inflow/outflow for temperature. The lateral ( ) boundaries contain periodic conditions for velocity
and temperature. The dotted lines represent the edge of the computational domain and the shaded surfaces at the bottom wall
represent the fractal cubes.



20 3. Numerical model

In order to sustain the flow in the stream wise direction which uses periodic boundaries we need to
implement a forcing strategy which is mentioned in the next section.

3.1.7. Forcing strategy used for periodic boundary condition

For a flow to occur through a channel/pipe, an external source of energy is usually required that supplies
the pressure gradient across the stream wise channel to overcome the friction losses occurring at the
walls. In experimental channel flow studies, the driving force is generated mostly by means of a pump.
However, in numerical simulations especially with the ones having periodic boundary conditions in the
stream wise direction an additional modelling step to define the external force is necessary. There
are two methods by which this forcing term can be defined, namely, the constant flow rate and the
constant pressure gradient method. In the constant flow rate method, the force required to maintain
a constant mass flow rate along a cross-section of the channel is calculated and adjusted uniformly
at all cells in the entire channel at every time step excluding the cells inside the fractal cubes on the
bottom wall. When defining the forcing term with the constant flow rate method, it is easy to define
the Reynolds number in terms of channel height (𝐻) and the bulk velocity (𝒰 ).

𝒰 = 1
𝐻 ∫ 𝑢𝑑𝑦 (3.20)

𝑅𝑒 = 𝒰 𝐻
𝜈 (3.21)

In the constant pressure gradient method, the external driving force is prescribed by setting a constant
value of pressure gradient at all cells uniformly (except the cells in the fractal cubes) throughout the
domain in the x-component of the momentum equation. This constant pressure gradient balances the
shear stress (𝜏 ) at the walls. When using this method, the flow is specified through friction Reynolds
number defined in terms of the channel height and the friction velocity (𝑢 ).

𝑢 = √
𝜏
𝜌 (3.22)

𝑅𝑒 = 𝑢 𝐻
𝜈 (3.23)

In the current thesis, the constant flow rate approach is used to define the external driving force.

3.2. Immersed Boundary Method

In this thesis, we incorporate cubes in the flow domain by using an Immersed boundary method
wherein the cubes will be immersed in the three-dimensional flow computational grid with appropriate
wall forces applied on the fluid rather than imposing no-slip / no-penetration conditions at the fluid
solid interfaces. The main advantage of this method is that a regular continuous grid without any
holes in the flow domain could be used which enables the use of an efficient FFT based direct solver
to evaluate pressure correction from the Poisson equation 3.14 [34]. We will be using an IBM method
by Pourquie et al. [1] which is very suitable for simple geometries (cubical structures) and produces
accurate results when computing flow over cubical objects. In this technique, the cubes are aligned
along the computational mesh in such a way that it’s surface coincides with the mesh points for the
normal velocity location as shown in figure 3.3. This allows for an exact implementation of the wall
boundary conditions on the fluid.



3.2. Immersed Boundary Method 21

Figure 3.3: A representation of the stress IBM method by Pourquie et al. [1]. (Left) Velocity treatment at cube wall. Normal
velocity is set to zero before pressure correction. For tangential velocity, the contribution from the stress at the bottom fluid cell
face, calculated as if no wall is there, is subtracted and a new stress is added which uses a no-slip condition for the tangential
component. (Right) Scalar treatment at cube wall. The contribution by the scalar flux at the bottom cell wall as if no wall is
there is subtracted and the scalar flux for a wall is added.

The no-penetration condition on the cubes is enforced by putting the prediction velocity 𝑤 at the
wall location to zero (as shown in figure 3.3). However, the pressure correction step may cause these
penetration velocities at the cube surfaces to be 𝑤 ≠ 0 but these values are restricted to the order of
10 𝒰 in the current simulations. Similar treatment is applied for 𝑢 & 𝑣 on cube walls which have
normals along the 𝑥 & 𝑦 directions respectively. In addition to this, the no-slip condition can be applied
by replacing the shear stress without the wall in the momentum equation 3.9 with the shear stress due
to the wall as represented in figure 3.3. For example, in the x-component of the momentum equation
3.9 the diffusion part can be given as:

𝒟 = 𝜕
𝜕𝑥 [ 𝜈(

𝜕𝑢
𝜕𝑧 +

𝜕𝑤
𝜕𝑥 )] (3.24)

The above equation can be discretized as follows at the point (𝑖, 𝑗, 𝑘):

𝒟 = 1
Δ𝑧[ 𝜈(

𝑢 , , − 𝑢 , ,

Δ𝑧 + 𝑤
, , −𝑤 , ,

Δ𝑥 ) − 𝜈(𝑢
, , − 𝑢 , ,

Δ𝑧 + 𝑤
, , −𝑤 , ,

Δ𝑥 )] (3.25)

For the point above the wall, the part of equation 3.25 which contains the stress for the wall i.e

𝜈(𝑢
, , − 𝑢 , ,

Δ𝑧 + 𝑤
, , −𝑤 , ,

Δ𝑥 ) (3.26)

is replaced by the actual stress when the wall is present i.e

𝜈𝜕𝑢𝜕𝑧 | = 2𝜈𝑢
, ,

Δ𝑧 (3.27)

This treatment can be translated to other tangential velocities 𝑣 & 𝑤 along respective cube walls and
it is performed both outside the cube surface and within the cube surface. A procedure similar to the
above is carried out for heat flux in the energy equation as shown in figure 3.3. Furthermore, it should
be noted that the forcing term from the constant flow rate method described above is set to zero inside
the cube.
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3.3. Parallel Implementation of model

The above DNS code is made parallel in the stream wise (𝑥) direction. Each sub-domain is solved
independently in a particular core on the cluster, with flow & energy data exchange between cores
occurring through MPI (Message Passing Interface). We use 16 cores for the final simulations.

The cube boundaries are defined by using index limits in the three directions on the global domain.
There are two main sets of indices to define cube boundaries: the global indices (global domain) and
the local indices (for each processor). The total count of cubes defined in local indices is equal to the
global count. For eg. if there are 44 cubes in the global domain then each local processor will also have
44 local cube indices. When the model is made parallel in the 𝑥 direction, the cubes are distributed in
different processors where the global cube indices are converted to local indices on every processor.
The idea behind defining equal local cubes is that after making the model parallel, if the global cubes
are not present in a particular local processor then garbage values are stored in those corresponding
cube indices. On the other hand if the global cubes are present in a local processor (either completely
or partially) then those corresponding local cube indices will be assigned relevant positions (1). The
IBM routine will only execute for realistic local cube indices and will be discarded for those cubes which
contain garbage indices. After the model is made parallel in the 𝑥 direction, one of the following six
interactions of the cube boundary with the processor boundary will be encountered as shown in figure
3.4 (top view of the bottom wall in the computational domain). Therefore, either complete cube indices
will be stored in one local processor and garbage values in the other as in cases 1 and 2 or the cubes
indices will be split amongst local processors as in cases 3, 4, 5 and 6.

Figure 3.4: A top view of the domain is shown ( direction). The domain is made parallel in the stream wise ( ) direction.
Therefore, when the cubes are divided one of the six cases mentioned above will occur. The external grey rectangle represents
the domain in the X-Y plane and the internal yellow square represents the cube. The dotted line represents the processor
boundary.

1The global cube indices are defined on a grid size of 256 in direction while the maximum sub-domain index of each processor
is 16 in direction. Hence, the local cube index needs to be adjusted depending on the distance of the processor from the
start of the global domain.
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Results & discussions

4.1. Roughness cases summary and analysis

4.1.1. Fractal rough surfaces

In chapter 2 a brief description of the design of fractal surfaces was provided whereas in chapter
3 the numerical method and boundary conditions for the domain were mentioned. In this section,
roughness parameters and details on the case setup is provided along with various results. Different
realizations of surfaces with two fractal dimensions were studied, i.e. 𝐷 = 1 & 𝐷 = 2. In principle, a
fractal roughness is characterized by self-similar detail on smaller and smaller length scales, however
considering the resolution limits and the cost of the simulation the total number of cuboid generations
were limited to 5. The size distribution of the cuboids used were same as that mentioned in chapter
2. The cuboids were randomly sprinkled on the bottom surface of the domain (figure 3.2) which gave
rise to inhomogeneity for a given fractal dimension. Hence, eight random realizations of each fractal
dimension were generated in order to evaluate the averaged effect of the surface fractal dimension
on the heat transfer performance. As mentioned in chapter 1, Chen et al. [31] conducted a study to
probe the effect of the fractal dimension on the heat transfer performance and concluded that the heat
transfer is enhanced with increasing fractal dimension. However, the fractal roughness implemented by
Chen et al. [31] was self-affine, whereas in the present study our distribution of cuboids is self-similar
and it is of interest to know if a similar trend is observed for surfaces in the current study too.

An example of different realizations for fractal dimension 𝐷 = 1 is shown in figure 4.1 which was
similarly implemented for 𝐷 = 2 as well. Additionally in figure 4.1, the solidity (𝜆 ) of the surface for
various realizations is also shown. Since the cuboids are randomly placed for various realizations they
may produce varying sheltering effects for those realizations even though the geometric frontal area
is the same. The horizontal line on the top represents the geometric solidity for various realizations,
however as can be seen there is more variability in the solidity in the lines below. The flow sheltering
considered here is geometric by considering the wake of the cuboids to be of certain length (in terms
of cube units) and neglecting the frontal area of the cuboids that fall within the above shelter. The
different lines represent a shelter factor of 1, 2, 4 & 8 respectively from top to bottom. Further analysis
on the considerations of this shelter factor will be done in section 4.2.4.

As mentioned earlier, the size of the largest generation of cuboid is ℒ with its corresponding height
of ℒ/2 and size of the computational domain is 6ℒ x 6ℒ x 6ℒ. All 16 simulations are carried out at
a constant bulk Reynolds number 𝑅𝑒 = 13000 (𝑅𝑒 = 𝑈 ∗ 6ℒ/𝜈 , where 𝑈 is the bulk
velocity in channel flow, 6ℒ is the channel height & 𝜈 is the viscosity.) and 𝑃𝑟 = 0.71. As explained in
chapter 2, the fractal dimension of our surfaces uniquely determines the solidity and the rms height.
For 𝐷 = 1, 𝜆 = 0.151 and ℎ = 0.177 (ℎ /𝐻 / = 0.059), where 𝐻 / = 𝐻/2 = 3ℒ is half channel
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Figure 4.1: An illustration of the top view for random realizations of the fractal surface used in the study. The color
codes represent cuboids of different generations. Also, the solidity ( ) of the different realizations are plotted with the top
horizontal line representing the geometric solidity and the lines below are solidity with increasing shelter factor (1, 2, 3 & 4).

height & 𝐻 is the height of the channel. For 𝐷 = 2, 𝜆 = 0.22 ± 0.01 and ℎ = 0.179 ± 0.001
(ℎ /𝐻 / = 0.0597± 0.0001). It should be noted that the solidity (𝜆 ) mentioned above is the value
presented without sheltering effect i.e it is the geometric solidity.

4.1.2. Methodology for analysis

The objective of this thesis is to understand if the fractal dimension of the surface is a representative
parameter for the surface roughness and also if it improves the performance of the surface in terms of
heat transfer enhancement. In this section, we describe the methodology implemented for the post-
processing calculations of heat transfer and friction parameters for the 16 cases summarized above.

A schematic illustration of the domain setup is given in figure 4.2 and the calculation procedure for
bulk flow and heat transfer quantities is inspired by Nagano et al. [35] & Forooghi et al. [36] wherein
the domain is similar to the current setup with roughness elements on the bottom wall and a smooth
top wall. Due to the presence of the roughness elements on the bottom wall, the mean velocity profile
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Figure 4.2: Domain for analysis. The volume is divided into two sections based on the maximum velocity location.

over the roughness cases is not symmetric and it’s maximum is shifted towards the smooth top wall
which will also be seen later in figure 4.3. As depicted in figure 4.2, the channel is split into two parts,
namely, the rough wall side 𝐻 and the smooth wall side 𝐻 based on the maximum velocity location
(𝐻 = 𝐻 + 𝐻 ). Here, 𝐻 and 𝐻 are determined ’a posteriori’ and can be considered as ’effective’
channel half height for the rough and smooth sides respectively. The calculation of the bulk quantities
along with heat flux and wall stresses are done for the smooth and rough walls based on the above
half channel heights as explained below.

Firstly, we focus on the friction losses at the wall. The calculation for the wall shear at the smooth wall
is very straightforward.

𝜏 , = −𝜌𝜈
𝜕𝑈
𝜕𝑧 (4.1)

where 𝑈 is the velocity averaged in the wall parallel directions and time. The wall stress on the rough
side can be calculated by employing a global force balance as shown below.

𝜏 , = 𝐻𝑃 − 𝜏 , (4.2)

Here, 𝜏 , is the stress due to both the viscous shear and form drag on the rough wall divided by the
total wall projected area. Wall scales namely, friction velocity and viscous length scale for the smooth
and rough wall sides can be estimated from above stresses.
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𝑢 , / = √
𝜏 , /
𝜌 , 𝛿 , / = 𝜈

𝑢 , /
(4.3)

Since we mainly study rough wall flows in this thesis, 𝑢 , and 𝛿 , are used for the definition of viscous
or plus units () unless otherwise stated.

As regards the heat flux, they are calculated respectively at the smooth and rough walls from mean
temperature gradients at the fluid-wall interface.

𝑞 , / = −𝑘 𝜕𝑇
𝜕𝑧 (4.4)

In the above equations, 𝑘 is the thermal conductivity of the fluid.

The surface area considered for the heat flux calculation could either be the wall projected area or the
total fluid-wall interaction surface area (i.e total roughness surface area). The wall projected area is
considered in studies by Forooghi et al. [7] and MacDonald et al. [37] etc. while the total surface area
is considered in Ventola et al. [38] and Lu et al. [39] etc. In most boundary layer flows, the projected
area of the roughness is considered whereas for compact applications like electronic cooling the total
wetted surface area is considered. In the current study, the roughness surface area of 𝐷 = 2 is 1.2
times that of 𝐷 = 1 while the heat transfer from the two surfaces is approximately same. Hence the
heat flux is dominated by surface area effects producing significantly higher values for 𝐷 = 1 than
𝐷 = 2 if the total roughness area is considered. However, we are interested in the global heat addition
of the surface which can be quantified in terms of a higher global temperature of the fluid in the domain
as will be shown in section 4.2.1. The global temperature of 𝐷 = 2 is slightly higher than that of 𝐷 = 1.
Hence in order to evaluate the global heat addition from the surfaces, we take the projected surface
area for the calculation of the heat flux.

The bulk quantities for velocity and temperature gradients are evaluated for each side by integrating
from the wall to the maximum velocity location (𝐻 / ).

𝑈 , =
1
𝐻 ∫ 𝑈𝑑𝑦, 𝑈 , =

1
𝐻 ∫ 𝑈𝑑𝑦 (4.5)

Δ𝑇 , =
1

𝐻 𝑈 ,
∫ 𝑈(𝑇 − 𝑇)𝑑𝑦, Δ𝑇 , =

1
𝐻 𝑈 ,

∫ 𝑈𝑇𝑑𝑦 (4.6)

Here, 𝑇 is the temperature of the hot bottom wall.

The friction factor, Nusselt number and the Stanton number can be calculated as,

𝐶 , / =
2𝜏 , /
𝜌𝑈 , /

, 𝑁𝑢 / =
4𝐻 / 𝑞 , /
Δ𝑇 , / 𝑘

, 𝑆𝑡 / =
𝑞 , /

𝜌𝑐 𝑈 , / Δ𝑇 , /
(4.7)

where, 𝑐 is the heat capacity of the fluid. The length scale used for the definition of Nusselt number
is the ’effective hydraulic diameter’ which is 4𝐻 / [36]. This because the smooth wall correlations
(equations 4.16, 4.17 & 4.18) which are used for normalization of the performance factors are defined
based on the ’effective hydraulic diameter’. The plots made for 𝐶 , / are based on 𝑅𝑒 (bulk Reynolds
number) and the plots made for 𝑁𝑢 / & 𝑆𝑡 / are based on 𝑅𝑒 (hydraulic Reynolds number) which
are defined as below:
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𝑅𝑒 , / =
𝑈 , / 𝐻 /

𝜈 , 𝑅𝑒 , / =
𝑈 , / 4𝐻 /

𝜈 (4.8)

The velocity and the temperature fields are averaged over time (denoted by overline ()) after the
simulation has reached a statistically steady state which is monitored through the temporal evolution
of the drag force and the heat flux over the rough wall. The spatial averaging employed for velocity
and temperature fields is carried out in wall parallel directions (denoted by angle brackets <> i.e.
𝑈 =< 𝑢 > and Θ =< 𝑇 >) and the averaging is done only in the part of the domain occupied by the
fluid an example of which is shown in the formula for the temperature field below.

Θ =< 𝑇 >= 1
𝑆 ∫ 𝜓𝑇𝑑𝑆 (4.9)

where 𝜓 is an indicator function that is equal to unity within the fluid and zero in the roughness elements
and 𝑆 denotes the plane parallel to the wall.

Since the goal is to quantify the heat transfer enhancement of rough surfaces and compare it for
two types fractal surfaces, a performance factor needs to be defined. It is easily apparent that by
increasing the contact surface area of the roughness with the fluid, the heat transfer of the surface
will be enhanced however this will also put a penalty on the pump power input (higher pressure drop).
Therefore a parameter that finds a balance between both is essential to find an optimal solution. One
such parameter is the aero-thermal efficiency (𝜂 ) that was used by Ventola et al. [38] which quantifies
the heat transfer enhancement of the surface for a given pressure loss.

𝑃𝐹 = 𝜂 =
𝑁𝑢 , /𝑁𝑢 ,
[𝐶 , /𝐶 , ] /

(4.10)

The smooth wall Nusselt number (𝑁𝑢 , ) and skin friction (𝐶 , ) have been evaluated at the same bulk
Reynolds number as their rough wall counterparts. Another similar parameter which is often used to
quantify the rough wall effects is the Reynolds Analogy factor normalized by its value for the smooth
wall case Forooghi et al. [7].

𝑃𝐹 = 𝑅𝐴
𝑅𝐴 (4.11)

Additionally, the convective heat transfer enhancement due to roughness can also be quantified as
below (Ventola et al. [38]):

𝐸 =
𝑁𝑢 , − 𝑁𝑢 ,

𝑁𝑢 ,
(4.12)

4.1.3. Estimation of roughness lengths for fractal surfaces

In the current thesis, several realizations of surfaces with a particular fractal dimension are used with
fractal dimension being the representative parameter. Figure 4.3, shows the velocity profiles normalized
by the full channel bulk velocity for few cases of the two fractal dimensions. It can be seen that the
maxima of the velocity profile is shifted towards the smooth wall side which is indicative of rough wall
effects on the flow. Geometrically, the generation of cuboids and height distribution of the generations
are the same for different realizations, however due to the randomness in the sprinkling of the cuboids
the aerodynamic effect on the flow may not be the same. Therefore, in this section we make an
estimate for the aerodynamic roughness lengths for the surfaces studied which quantifies the rough
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Figure 4.3: Velocity profiles normalized by bulk velocity of the domain for few cases of the two fractal dimensions.

wall effects on the flow. Few kinks are observed near the rough wall side at the height of different
generations of cuboids, which can be attributed to a combination of the cubic geometry used in the
study and the spatial averaging technique mentioned in equation 4.9.

For fully rough regime atmospheric flows, the velocity field follows a log law profile given as below:

𝑈 = 1
𝜅 𝑙𝑛(

𝑧 − 𝑑
𝑧 ) (4.13)

Physically, 𝑧 represents the effective height at which 𝑈(𝑧) = 0 while 𝑑 is interpreted as the elevation
at which the mean surface drag acts. In terms of the roughness surface, 𝑧 also represents the
momentum deficit or its associated aerodynamic drag while the displacement height (𝑑) modifies the
slope of the logarithmic linear (𝑈(𝑧)) profile for it to have a collapse in that region. Various methods
can be employed in order to compute the displacement height (𝑑) as mentioned in Cheng and Castro
[20] i.e by computing the moment of the drag force of individual elements and evaluating the elevation
at which moment acts or by using a best fit algorithm to match the slope of the log layer. In the current
analysis, evaluation of 𝑑 based on the best fit algorithm proposed in Zhu et al. [12] which then also
enables the computation of the roughness length (𝑧 ). In this method, the vertical gradient of Eq.
4.13 is computed and in doing so, 𝑧 being a constant vanishes and the gradient can be rearranged to
obtain the slope equation,

𝛾 = 𝑧 − 𝑑
𝑢

𝑑𝑈
𝑑𝑧 =

1
𝜅 (4.14)

where 𝑈 is time and spatially averaged velocity.
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An iterative process was run by varying the value of 𝑑 to obtain a best-fit in the inertial layer logarithmic
profile, since each 𝑑 yields a unique 𝛾 = 𝜅 . The value of displacement height maintained was
𝑑 ≤ 0.75ℎ (ℎ : height of largest generation cube) during the iteration as a value 𝑑 > ℎ is not
physical [40]. Each successive value of 𝑑 yielded a cumulative error against the logarithmic profile
and the value associated with the smallest error was selected. The logarithmic fitting was conducted
between heights 𝑧 = 1.5ℎ and 2.5ℎ in accordance with Yang and Meneveau [4] whose geometry is
similar to the current analysis. The corresponding ordinate value from the best-fit yields the value of
the roughness length (𝑧 ) of the surface. The von Karman constant is taken to be 𝜅 = 0.4.

Figure 4.5 shows the velocity defect profiles for the rough surfaces against their smooth wall counter-
parts. The smooth wall velocity profile is plotted in the half channel (𝐻 ) from the top wall until the
maximum velocity location for every case and normalized in wall units. It shows a good collapse with
the log law for the smooth wall. However, the velocity profiles for both types of fractal surfaces when
scaled in wall units do not collapse for the same fractal dimension as seen in 4.5a & 4.5b. This may
be due to the in-homogeneity in the distribution of the cuboids for each fractal dimension which is
indicative of varying aerodynamic effects on the rough surfaces producing varying roughness lengths
and in turn different drag forces. However when scaled with their respective roughness lengths, the
velocity profiles show a good collapse in the log region depicting universality as seen in figure 4.6.
In figure 4.6, the velocity profiles seem to deviate towards the outer layer showing that 𝑧 is not a
representative scale for the outer layer normalization.

The roughness lengths and the displacement height of the 16 cases studied here are compiled in table
4.1 and the values normalized by ℎ are plotted in figure 4.4. The roughness length estimations for
the 𝐷 = 1 on an average is higher than that of 𝐷 = 2 with some overlap between the two types of
surfaces. This is despite 𝐷 = 1 having lesser number of cuboids (44) and thereby a larger surface area
as against 𝐷 = 2 surface (69-73). This is because of a tighter packing of cuboids on the bottom surface
for 𝐷 = 2 which creates sheltering and thereby an overall lower drag for the surface. As mentioned
in Jiménez [11], roughness flows can be divided into two regimes: the sparse one (𝜆 ≈ 0.15) for
which roughness length increases with solidity and the dense regime for higher values of 𝜆 where the
roughness effect decreases due to sheltering. As mentioned earlier, the geometric solidity for 𝐷 = 1 is
𝜆 ≈ 0.15 and for 𝐷 = 2 is 𝜆 ≈ 0.22 and hence we can expect the value of the drag force to decrease
as the fractal dimension increases. This effect will be seen again in the calculation of the skin friction
coefficients and heat transfer co-efficients in figure 4.9 & 4.10a.

The average value of the roughness lengths are 𝑧 /ℎ = 0.17 and 𝑧 /ℎ = 0.13 for 𝐷 = 1 & 𝐷 = 2,
respectively with a corresponding standard deviations of 𝜎 = 0.028 and 𝜎 = 0.025. The values
of the roughness lengths as normalized with ℎ of the fractal surface falls in the range of 0.1 − 0.2
which is within the limits mentioned by Zhu et al. [12].

4.2. Performance evaluation for rough surfaces

4.2.1. Mean Temperature Profile

The vertical mean temperature profiles across the entire channel height for few cases of the two types
of fractal surfaces are presented in figure 4.7. The temperature profile is spatially and temporally
averaged as discussed earlier. The temperature profile is normalized with respect to the difference in
the wall temperatures (Δ𝑇 = 𝑇 − 𝑇 , Here 𝑇 is the hot rough wall & 𝑇 is the cold smooth wall) and
the vertical distance is normalized by the channel height, 𝐻. It can be seen from the figure that the
profiles agree well near the smooth upper wall and in the interior of the channel. The flow temperature
is very well mixed in the interior. The main difference can be seen near the rough wall sides for the two
types of surfaces, where the spatially averaged temperature < 𝑇 > is slightly higher for 𝐷 = 2 cases.
In order, to gain a quantitative measure of the increase in heat transfer for the two types of surfaces,
the global temperature of the flow (𝑇 = ∫ < 𝑇 > 𝑑𝑧) in accordance with [41] was plotted in figure
4.8. The global flow temperature of 𝐷 = 2 is slightly higher than for 𝐷 = 1 for all the cases simulated.
Few kinks are observed near the rough wall in figure 4.7 which is mainly due to a combination of
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Table 4.1: Summary of roughness lengths and displacement heights. ( : height of the largest generation, : root mean
square height of rough surface. Average values of viscous length scales at rough walls are , . & , .

Case 𝑑/ℎ 𝑧 /ℎ 𝑧 /ℎ
𝑑1 − 01 0.632 0.0645 0.182
𝑑1 − 02 0.681 0.0492 0.139
𝑑1 − 03 0.663 0.0556 0.157
𝑑1 − 04 0.560 0.0647 0.183
𝑑1 − 05 0.500 0.0556 0.157
𝑑1 − 06 0.589 0.0548 0.155
𝑑1 − 07 0.591 0.0818 0.231
𝑑1 − 08 0.607 0.0594 0.168
𝑑2 − 01 0.714 0.0436 0.122
𝑑2 − 02 0.652 0.0607 0.169
𝑑2 − 03 0.670 0.0401 0.112
𝑑2 − 04 0.743 0.0331 0.093
𝑑2 − 05 0.716 0.0452 0.126
𝑑2 − 06 0.749 0.0438 0.122
𝑑2 − 07 0.631 0.0592 0.165
𝑑2 − 08 0.623 0.0476 0.133

the geometry studied (cuboids of various generations) and the spatial averaging procedure defined in
equation 4.9. The kinks are observed near the heights of the five generation of cuboids used in the
fractal surface.

4.2.2. Friction and heat transfer coefficients for surfaces

In this section, we evaluate the skin friction and the heat transfer parameters to quantify the perfor-
mance of the two types of surfaces. All the calculations for the parameters are conducted in accordance
with the method described in section 4.1.2. It can be seen from figures 4.9 & 4.10, that the Reynolds
numbers vary for the rough and smooth wall half channels with the rough wall counterpart being on
the higher side. This is mainly because the half channel height of the rough wall is much higher than
that of the smooth wall (𝐻 > 𝐻 ) and also the local bulk velocities of the respective half channels are
different.

Firstly, the skin friction coefficient evaluated as per equation 4.7 for the 16 cases with respect to their
bulk Reynolds number is plotted in figure 4.9. The friction coefficients for the smooth wall half channel
(𝐻 ) collapse very well with Dean’s 1978 correlation (𝐶 = 0.073𝑅𝑒 . ). In the calculation of the
performance factor, the friction factor for the rough wall is normalized with the corresponding smooth
wall value at their corresponding bulk Reynolds number as obtained from Dean’s correlation. The
friction coefficient for the fractal surface 𝐷 = 1 on an average is higher than 𝐷 = 2 which is expected
as mentioned in the previous section due to a higher packing density of the cuboids in 𝐷 = 2 resulting
in skimming of the flow over these cuboids. However, there is an overlap in the friction coefficients for
the two surfaces as also seen for 𝑧 values for some realizations.

Now, in order to evaluate the heat transfer performance of the surface we calculate and plot the Nusselt
number from equation 4.7 for the 16 cases as shown in figure 4.10a. The half channel Reynolds number
used here is based on the ’equivalent’ hydraulic diameter which is four times the effective channel height
as per equation 4.8. In the current simulations, inflow/outflow conditions for temperature and periodic
for velocity are used instead of periodic conditions for both temperature and velocity as in Forooghi
et al. [36]. Hence, even though the flow is fully developed in terms of momentum but it cannot be
considered to be thermally developed due to which the heat transfer coefficients (Nu, St & RA) can
increase by a factor of 2-2.5 times the fully developed value Mills [42]. Phillips [43] suggested a factor
(𝜙), which incorporates the above effect, and can be used to multiply the fully developed correlation
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to find the corresponding smooth wall values for the current cases. The factor is as below:

𝜙 = 1 + (𝐷𝐿 ) (4.15)

where, 𝐷 is the equivalent Diameter of the smooth channel and 𝐿 is the length of the channel. Three
commonly used correlations for Nusselt Number in a fully developed turbulent region for smooth circular
ducts/channel flows are mentioned below.

Kays & Crawford, 1993 [44]: 𝑁𝑢 = 0.021𝜙𝑅𝑒 . 𝑃𝑟 . (4.16)

Dittus & Boelter, 1985 [45]: 𝑁𝑢 = 0.023𝜙𝑅𝑒 . 𝑃𝑟 . (4.17)

Philips, 1976 [43]: 𝑁𝑢 = 0.012𝜙(𝑅𝑒 . − 280)𝑃𝑟 . (4.18)

The correlation by Dittus & Boelter, 1985 gives the best fit for the smooth wall values as seen from figure
4.10a and therefore the same is used to estimate the smooth wall Nusselt number at the corresponding
rough wall Reynolds numbers for normalization.

A peculiar aspect of this plot is that there is almost a complete overlap in the Nusselt numbers for the
two types of surfaces unlike the friction factor plot. This indicates that the fractal dimension 𝐷 = 2 does
not significantly improve the heat transfer as compared to 𝐷 = 1 despite having a larger roughness
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surface area. This can again be attributed to the higher packing density of the cuboids in 𝐷 = 2 than
in 𝐷 = 1 which could result in larger re-circulation zones amidst the cuboids. These re-circulation
zones act as thermal barriers [3] and thus, despite having a larger surface area for heat transfer, the
heat transfer performance is not significantly improved. It is also observed from figure 4.10a, that the
Nusselt number on the rough wall is nearly proportional to Reynolds number and grows with a higher
slope compared to that on the smooth wall.

Plots for Stanton number reveal a similar story (figure 4.10b), where almost a complete overlap for
𝐷 = 1 and 𝐷 = 2 surfaces can be seen however a sharp rise with respect to Reynolds number is not
seen which may be due to the presence of a fully rough regime. Similar to the Nusselt number, the
Stanton number too is evaluated for the smooth wall at relevant reynolds number for the corresponding
rough wall cases (𝑆𝑡 = ).

4.2.3. Performance factors

From the previous section it was seen that the performance 𝐷 = 1 surface is almost similar to 𝐷 = 2
in terms of heat transfer coefficients whereas the skin friction for 𝐷 = 1 was higher than 𝐷 = 2.
Therefore, it can be expected that the overall performance of 𝐷 = 2 will be better than 𝐷 = 1 for heat
transfer relative to the pressure drop. Further, in this section the performance parameter (𝑃𝐹) will be
quantified based on equation 4.10. Also, the relative enhancement (𝐸) of the convective heat transfer
(equation 4.12) will be calculated independently.

The Enhancement factor, (𝐸) is plotted for the two kind of surfaces in figure 4.11. The average values
of the enhancement factor are 𝐸 = 1.45 & 𝐸 = 1.47 with respective standard deviations of
𝜎 = 0.046 and 𝜎 = 0.047. Hence, it can be seen that even though there is slight increase in the
heat enhancement factor, the increment is insignificant and the two fractal dimensions perform similarly
based on this parameter. The performance factor, (𝜂 ) and the Reynolds analogy factor (𝑅𝐴/𝑅𝐴 ) are
also plotted for the two kinds of surfaces in figure 4.12a & 4.12b. The surface 𝐷 = 2 on an average
shows a better enhancement for the performance factors than 𝐷 = 1 because the skin friction induced
by 𝐷 = 2 is smaller than 𝐷 = 1 with its heat transfer performance being similar. The mean values of
the performance factor are 𝜂 , = 1.58 and 𝜂 , = 1.64 with their respective standard deviations
of 𝜎 = 0.018 and 𝜎 = 0.035 while that of the Reynolds analogy factor are (𝑅𝐴/𝑅𝐴 ) = 0.66
and (𝑅𝐴/𝑅𝐴 ) = 0.73 with respective standard deviations of 𝜎 = 0.032 and 𝜎 = 0.043. The
mean values of the Performance factors (𝜂 & 𝑅𝐴/𝑅𝐴 ) as seen from figures 4.12a & 4.12b shows a
slightly higher value for 𝐷 = 2. However, on analyzing the uncertainty intervals based on the standard
deviation table 4.2 it can be seen that there is a significant overlap between the limits for 𝐷 = 1 and that
of 𝐷 = 2 surface. Therefore with the current data, it cannot be concluded that the fractal dimension
of the surface significantly impacts the performance factors and more data points are needed for the
same.

Table 4.2: Summary of Performance factors for fractal surfaces along with their mean and standard deviations.

Parameter Mean
Standard
deviation,
(𝜎)

Uncertainty
interval,
(𝑀𝑒𝑎𝑛 ± 3𝜎)

𝐸 1.45 0.046 [1.31 - 1.58]
𝐸 1.47 0.047 [1.32 - 1.61]
𝜂 , 1.58 0.018 [1.53 - 1.64]
𝜂 , 1.65 0.035 [1.54 - 1.75]
(𝑅𝐴/𝑅𝐴 ) 0.66 0.033 [0.56 - 0.76]
(𝑅𝐴/𝑅𝐴 ) 0.73 0.043 [0.6 - 0.85]
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Figure 4.10: (a) (b) . Here the hydraulic Reynolds number for both smooth and rough walls is
used. Dashed line indicates the (Kays & Krawford, 1993) and (Dittus & Boelter, 1985) correlation for smooth wall as defined in
eq. 4.16, 4.17 & 4.18. The symbols & indicate smooth wall Stanton numbers at corresponding rough wall values
Reynolds number.
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Figure 4.13: A schematic representing flow sheltering that occurs amidst flow over array of cuboids referred from Yang and
Meneveau [4]. Here represents the largest scale cuboids whereas represents the next lower generation. The shaded
area is the sheltered region with reduced momentum. is the convective velocity at the top of the roughness elements and
is the velocity scale of turbulent mixing.

4.2.4. Flow Sheltering for rough surfaces

As discussed previously, the roughness length (𝑧 ) for 𝐷 = 2 surface is on an average lower than that
of 𝐷 = 1 despite having larger number of cuboids than the latter. This is mainly attributed to the higher
packing density of 𝐷 = 2 as compared to 𝐷 = 1 which results in flow sheltering.

Randomly created rough surfaces with the same fractal dimension also have the same solidity. However,
large cuboids shelter small ones and the number of exposed cuboids may fluctuate due to the random
placement of cuboids. A schematic representation of flow sheltering occurring in flow over an array of
cuboids is shown in figure 4.13 [4]. As can be seen from figure 4.13, the larger generation cuboids
create a shelter zone (low momentum zone) which shields the smaller generation cuboids that are
directly within that zone (grey area indicated in the figure). This phenomenon results in a lesser drag
for the rough surface even though the cuboids on this surface are densely packed.

In chapter 2, geometric shelter factors were briefly mentioned wherein the length of the shelter zone, 𝐿
(also called fetch) was arbitrarily chosen to be a multiple of the cube height (𝐿 = ℎ , 2ℎ , 4ℎ &8ℎ ) and
the shelter area was predicted by multiplying it with the cuboid width. Based on this area, the cuboids
falling in this shelter were neglected in the calculation for solidity thereby introducing a variation in the
”sheltered” solidity of different realizations (whose ordinary solidity is a constant determined by the
fractal dimension 𝐷). However, an analytical estimate could also be made for the sheltering area based
on Yang and Meneveau [4] from the computed convective velocity (𝑈 ) above the largest generation
of roughness elements and the velocity scale for turbulent mixing (𝑢 ). Both the above parameters are
calculated a posteriori where 𝑈 is the spatially and temporally averaged velocity profile integrated over
a height of 0.2 times the maximum cube height above the largest cube generation and 𝑢 is the friction
velocity at the rough wall. From this we can estimate the fetch (𝐿 ) it takes for the low momentum
region to be consumed by equating the stream wise travel time (𝐿 /𝑈 ) to the available transverse
displacement time (ℎ /𝑢 ) where ℎ is the height of the largest generation of cuboids. Therefore, the
fetch can be given as below:

𝐿 ∼ ℎ 𝑈𝑢 (4.19)

From above, a preliminary value of the fetch length was computed for 𝐷 = 1 and 𝐷 = 2 which resulted
in a mean value of 𝐿 ≈ 6.4ℎ (or 3.2𝐿 where 𝐿:cuboid width) and 𝐿 ≈ 6.8ℎ (or 3.4𝐿). However,
in this estimation the fetch length was computed by considering 𝑈 above the largest generation of
cuboids which could be higher than the lower generations and thus the fetch of the lower generations
could be lower than the above mentioned values. Hence, the actual average fetch length will be lower
than the above values. Additionally, time averaged velocity contours over different slices in the 𝑥 − 𝑧
plane were compared for 𝐷 = 1 and 𝐷 = 2 surfaces to get an estimate for the shelter length in figure



42 4. Results & discussions

4.15 & 4.16. The elevation of the domain (z -dir) is limited only to a height of 4ℎ in order to capture
the details better. Figure 4.14 shows a three dimensional view of the slices taken over the cuboids for
one realization of both the fractal surfaces.

It can indeed be seen from figure 4.15 & 4.16 that due to the dense packing of the cuboids the
re-circulation regions of the windward side cuboids always encounter the leading edge of the cuboids
placed behind them before reattaching to the surface. This can be seen from the constant contour lines
shown in figures 4.15 & 4.16. However, from the scales marked along the domain edges the contours
for zero or negative velocities (representing re-circulation zones) could be estimated as 4−4.5ℎ (The
largest generation windward side cube for both 𝐷 = 1 & 𝐷 = 2 could be seen as example). Hence,
we will consider a re-circulation zone length of 4ℎ which equates to a shelter factor of 4 for further
analysis.

As discussed earlier, it was of interest to know if the fractal dimension of the surface was a representative
parameter and also if the different random realizations studied had any aerodynamic variation in them.
Estimation of roughness lengths did indeed enlighten about the variation in different realizations of a
fractal surface with an overlap obtained for few realizations as shown in figure 4.4. Another way to
distinguish between the surfaces is through the sheltering effect. Therefore, by considering a shelter
factor of 4, a plot is made for the performance factors (𝜂 & 𝑅𝐴/𝑅𝐴 ) as a function of the solidity (𝜆 ) as
shown in figure 4.17a. It can be seen that the two performance factors (𝜂 and 𝑅𝐴/𝑅𝐴 ) show a much
stronger correlation with the ”sheltered solidity” in the fluctuating realizations displaying an increasing
trend. The fractal dimension is not a significant parameter in dictating the heat enhancement even
though the two surfaces for 𝐷 = 1 and 𝐷 = 2 look very different.
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(a)

(b)

Figure 4.14: Representation of the slices evaluated to gauge the wake of the cuboids. Three planar (x-z) locations intersecting
the larger generation cuboids are selected.
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Figure 4.15: Averaged velocity profiles over cuboids to gauge the wake of the cuboids for (Case ) at three
locations. The re-circulation zone behind the cuboids tend to extend until a distance of . . The flow direction is from left
to right. Contour slices are taken in the x-z plane and the white patches indicate intersection with cuboids.

Figure 4.16: Averaged velocity profiles over cuboids to gauge the wake of the cuboids for (Case ) at three
locations. The re-circulation zone behind the cuboids tend to extend until a distance of . . The flow direction is from left
to right. Contour slices are taken in the x-z plane and the white patches indicate intersection with cuboids.
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5
Conclusion & recommendations

5.1. Conclusion
In this thesis, the role of fractal dimension of a rough surface in the heat transfer performance is studied
using DNS. The fractal surfaces are designed by randomly placing several generations of self-similar
cuboids with varying size distributions. The quantity of cuboids sprinkled for each generation follows
a fractal dimension (chapter 2). Two fractal dimensions i.e. 𝐷 = 1 and 𝐷 = 2 with eight random
realizations of each are studied to find the averaged effect of the heat performance factors over the
kinds of surfaces. A numerical model is designed to simulate the above (chapter 3) with the cubes being
modelled using an immersed boundary method [1] and the domain is made parallel in the x-direction.

Based on the analysis in this thesis, the results can be summarized as below:

1. Roughness lengths for the two types of surfaces were estimated and it was found that the mean
value for 𝐷 = 1 was higher than that of 𝐷 = 2. This may be attributed to the higher solidity of
𝐷 = 2 surface which creates more sheltering and thereby an overall lower drag for the surface.

2. The analysis for the performance factors (𝜂 and 𝑅𝐴/𝑅𝐴 ) and the enhancement factor (𝐸) was
done for the two types of surfaces. The enhancement factor, 𝐸 showed an insignificant increase
with the fractal dimension. For the case of the performance factors (𝜂 and 𝑅𝐴/𝑅𝐴 ), their mean
value was higher for 𝐷 = 2 as compared to 𝐷 = 1. However, based on analysis of the standard
deviation of these parameters for different realizations there was a significant overlap in the
uncertainty intervals of the two surfaces. Hence, it cannot be conclusively said that increasing
the fractal dimension of the surface significantly impacts the heat transfer performance for the
current cases.

3. For different realizations of a fractal dimension there is a variation in the number of sheltered
cuboids falling within the re-circulation zones of larger generation cuboids due to their random
placement. This produces a fluctuation in the ”sheltered” solidity for different realizations within
the same fractal dimension. The length of the shelter zones behind the cuboids was estimated
to be 4 − 4.5ℎ (ℎ : height of the cuboids, 𝑛: generation) which translates to a shelter factor of
4. Plots for performance factors as a function of the ”sheltered” solidity (Shelter factor = 4) were
made which showed an increasing trend. The plots also reveal a strong correlation between the
”sheltered” solidity and the heat transfer performance for the fluctuating realizations.

5.2. Recommendations

The present work can be extended with the following recommendations.
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1. The current thesis only explore self-similar cuboids of varying sizes, however, as per Forooghi
et al. [7] it is known that the shapes of roughness structures could also impact the heat transfer
performance. Hence, it will be interesting to study other shapes in a similar fractal arrangement.

2. As established in the above thesis, the ”sheltered” solidity (𝜆 ) of various realizations of the
fractal surfaces had a very strong correlation with the performance factors. Hence when selecting
different realizations to represent a fractal dimension, realizations with similar ”sheltered” solidity
must be chosen.

3. In the current thesis, inflow-outflow boundary conditions were used for temperature in the
stream-wise direction which resulted in higher heat fluxes. However, it will be interesting to
study the current cases with periodic boundary conditions for temperature in the stream-wise
direction which could simulate thermally fully developed flow.
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Appendix A

A.1. Turbulent flow over a single wall mounted cube

In order to validate the scalar turbulence code, a simple case of turbulent flow over a wall mounted cube
is conducted and validation is done with a corresponding simulation in ANSYS FLUENT. The domain
geometry used for the setup is as shown in the figure A.1.

The domain size is scaled according to the length of the cube (𝒟). In the streamwise (𝑥), lateral (𝑦)
and vertical (𝑧) directions, we have the domain size as 4𝒟 x 4𝒟 x 3.4𝒟 respectively. The grid resolution
is (100 x 100 x 80) in the three directions respectively. Grid stretching is used near the cube faces
and top and bottom walls with the first grid point being at a distance of 0.01𝒟. Periodic boundary
conditions are used for velocity and temperature in the stream-wise and lateral directions whereas, a
no-slip boundary condition is applied for velocity at the walls in the z-direction. For temperature, the
top and bottom walls are maintained at 𝑇 = 0 whereas the cube is maintained at a temperature of
𝑇 = 10.

The simulations were carried out at a bulk Reynolds number of 13000. First order statistics for the
turbulent flows were plotted along the vertical and lateral directions for 𝑈, 𝑊 and 𝑇. The velocities
in this case are normalized with respect to the bulk velocity in the channel, (𝑈 = 3.86) and the
temperature is normalized with respect to the temperature difference between the hot cube and the
cold wall, (𝑇 − 𝑇 = 10, where 𝑇 : Cube Temperature and 𝑇 : Wall temperature). Three stream-wise
locations are used for plotting the vertical and lateral profiles at distances 𝑥/ℎ = 1.2𝒟, 𝑥/ℎ = 1.8𝒟 and
𝑥/ℎ = 2.7𝒟 (ℎ: channel height, 3.4𝒟) which represent location in front of the cube, intersecting the
cube and behind the cube respectively. It can be seen from figures A.2, A.3 and A.4 that there is a
fair agreement between the two simulations. Certain discrepancies are observed, although it may be
attributed to the fact that a constant pressure gradient method was used for forcing periodic conditions
in ANSYS whereas a constant mass flow rate method was used in the DNS. Due to this, the mass flow
rate in DNS was constant at 52.7 while that in ANSYS fluctuated around 51.36. Moreover, the grid used
in ANSYS is a collocated one as against the staggered grid used in the DNS. Similarly, lateral profiles
are shown in figures A.5, A.6 and A.7.
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Figure A.1: Domain used for simulating a heat transfer in turbulent flow over a single cube. The origin is considered to be at
the bottom left corner.
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Figure A.2: Time averaged streamwise velocity ( ) along the vertical height at three locations in the mid plane of the domain
at / . , / . and / . . The three locations correspond to x-locations just in front of the cube, on top of the
cube and behind the cube. The velocity is normalized by the bulk velocity, .
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Figure A.3: Time averaged vertical velocity ( ) along the vertical height at three locations in the mid plane of the domain at
/ . , / . and / . . The three locations correspond to x-locations just in front of the cube, on top of the cube
and behind the cube. The velocity is normalized by the bulk velocity, .
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Figure A.4: Time averaged temperature ( ) along the vertical height at three locations in the mid plane of the domain at
/ . , / . and / . . The three locations correspond to x-locations just in front of the cube, on top of the cube
and behind the cube. Normalization is done by the temperature difference between the hot cube and the cold wall, ( ,
where : Cube Temperature and : Wall temperature)
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Figure A.5: Time averaged stream-wise velocity ( ) along the lateral width at three stream-wise locations of / . ,
/ . and / . and height of / . . The three locations correspond to x-locations just in front of the cube,
cutting through the cube and behind the cube. The velocity is normalized by the bulk velocity, .
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Figure A.6: Time averaged vertical velocity ( ) along the lateral width at three stream-wise locations of / . , / .
and / . and height of / . . The three locations correspond to x-locations just in front of the cube, cutting through
the cube and behind the cube. The velocity is normalized by the bulk velocity, .
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Figure A.7: Time averaged temperature ( ) along the lateral width at three stream-wise locations of / . , / . and
/ . and height of / . . The three locations correspond to x-locations just in front of the cube, cutting through
the cube and behind the cube. Normalization is done by the temperature difference between the hot cube and the cold wall,
( , where : Cube Temperature and : Wall temperature)
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