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Abstract

In this thesis, sensitivity analysis is used to study the influences of parameters on specific outputs in the
hydrodynamic model 3D DCSM-FM of the North Sea. The sensitivity analysis is the study of how uncertainty
in the outputs of a model can be divided and allocated to different sources of uncertainty in its inputs. The
software Delft3D FM is used to simulate the model, which is developed by Deltares. This thesis is supported
by German pilot of the UNITED project, which studies the possibilities of combing blue mussel and sugar
kelp cultivation with wind energy. The investigation is conducted at FINO3 platform, 80 km off Sylt.

In this thesis project, temperature and current velocity are selected as outputs in sensitivity analysis, which
are influential factors of blue mussel and sugar kelp growth. Specific parameters in the hydrodynamic model
are selected as inputs respectively. Three sensitivity methods are conducted: Morris, copula-based and
variance-based method. Among them, copula-based and variance-based consider the independency infor-
mation, while parameters are assumed dependent in Morris method. To generate samples, parameters are
transformed into a unit hypercube in Morris method and run on the contour of the grid cell, composing
paths. Between two steps within the paths, only one parameter changes at a time (OAT method). The input
domain is scanned with a better strategy to separate the paths maximizing the dispersion. Each parameter’s
elementary effects are calculated within paths, evaluating the changes in outputs contributed by the single
parameter. Then (absolute) mean and variance of elementary effects are used as sensitivity indices. Copula-
based method uses similar sampling and the same measurements, but it gathers parameters into copulas
before sampling to include the dependency information. In variance-based method, the variance of the out-
puts’ conditional expectations is used to measure the sensitivity. Only random samples are needed in this
method.

Morris and copula-based method prove the temporal and spatial similarities of parameters’ sensitivity behav-
ior. Convective and evaporative heat flux are the most influential parameters of temperature, and they also
show correlations with other parameters. Air density influences current velocity the most, while Smagorinsky
factor is the most correlated parameter of current velocity. Variance-based method gives similar results about
rankings of influences. Correlations are proved to exist among parameters. Uniform horizontal eddy viscosi-
ty/viscosity in definition files have no impacts, as they are overwritten. Three methods are compared. Except
the differences in independency, sampling and measurement, there are some other differences. Much more
samples are required in variance-based method and it is used mainly to decide the existence of significant
correlations and whether a parameter can be neglected. While Morris and copula-based method ranks the
influences and correlations.
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Notations

Generally used

Xi Parameter
Y Outputs
k Number of parameters

Morris method

n Number of inputs
p The level in the hypercube
r The number of elementary effects being calculated
s s ∈ {1,2, . . . , p −1}
δ Morris step
d j Elementary effects
µ j Elementary mean
µ∗

j Absolute elementary mean

σ j Standard deviation
dml The distance between a couple of trajectories m and l

Copula-based method

C /u Copulas
ρ Correlations
R j [i ] The rank statistics, representing the order of the samples
celli [ j ] The vector containing the coordinated of the origin of the target cell

Variance-based method

f0, fi , fi j , . . . Functions of the factors in the index
Vi The first-order effect of Xi on Y
Si The first-order sensitivity index
V c

i j The joint effect of the pair (Xi , X j ) on Y

Vi j The joint effect of Xi and X j , V c
i j minus the first order of Xi and X j

Si j ,Si j l The higher-order sensitivity index
ST i The total effect index

Inputs and timepoints

The abbreviations can be found in table 3.2.

The abbreviations of timepoints can be found in table 3.7.
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1
Introduction

1.1. Background and basic information of the project

Covering approximately 71 percent of the Earth’s surface, sea has abundant resources and potential to explore
and use. Humans have a long history of exploring the ocean. Austronesians on Taiwan have begun spreading
into maritime Southeast Asia by 3000 BC [20]; the ancient Egyptians and Phoenicians explored the Mediter-
ranean and Red Sea around 2750 BC [5]; the Chinese Ming Dynasty sailed the Indian and Pacific Oceans in the
early fifteenth century [47]; in the late fifteenth century, Western European mariners started making longer
voyages. Compared to the history of exploring the ocean itself, the scientific study of oceanography started
much later, from approximately 1768 with the voyages describing the Pacific [47]. Nowadays, oceanographic
research ranges wide, including marine lifeforms, conservation, the marine environment, the chemistry of
the ocean, the studying and modelling of climate dynamics, the air-sea boundary, weather patterns, ocean
resources, renewable energy, waves and currents, and the design and development of new tools and tech-
nologies for investigating the deep [6]. Through the scientific research, humans can understand more about
the ocean and conduct various industries to obtain resources from the ocean, including aquaculture, power
generation by ocean waves, tides and salinity differences, extractive industries to obtain minerals, freshwater
production, etc.

Among all the resources from the ocean, fish and other fishery products are one of the earliest and most
widely obtained sources from the ocean. Fish and fishery products are the main sources of protein and other
essential nutrients [47]. In 2011, the total world production of fish, including aquaculture, was estimated to
be 154 million tonnes, of which most was for human consumption. The harvesting of wild fish accounted for
90.4 million tonnes, while others are from annually increasing aquaculture [29].

According to the Food Agriculture Organization (FAO), aquaculture “is understood to mean the farming of
aquatic organisms including fish, molluscs, crustaceans and aquatic plants. Farming implies some form of
intervention in the rearing process to enhance production, such as regular stocking, feeding, protection from
predators, etc. Farming also implies individual or corporate ownership of the stock being cultivated.” [46]
Although there are some issues of aquaculture, such as environmental problems, impacts on wild fish, coastal
ecosystems [35], freshwater ecosystems [38], etc., the importance of aquaculture cannot be denied. From a
report of FAO, in 2014 output from global aquaculture in 2014 supplied over one half of the fish and shellfish
that is directly consumed by humans [4]. To improve the operations of aquaculture, different techniques are
investigated, including combination of aquaculture and other industries to increase the efficiency, which is
applied in the UNITED project.

This thesis project is part of the UNITED project, which is a research project financed by the European Union
Horizon 2020 programme. [1] The acronym UNITED stands for “Multi-Use offshore platforms demoNstra-
tors for boostIng cost-effecTive and Eco-friendly production in sustainable marine activities”. The UNITED
project runs from 2020 to 2023 and provide evidence for the viability of ocean multi-use, which is the inter-
national shared use of marine resources in close geographic proximity by two or more maritime activities,
besides the joint use of installations. The UNITED activities will enhance the viability and study current chal-
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2 1. Introduction

lenges across five key pillars: technical, economic, environmental, society and legal, policy and governance
pillars. To study the large-scale multi-use, the UNITED activities will be based in five pilot sites, including
German, Dutch, Belgian, Danish and Greek pilots, where different combinations of activities are carried out.

This thesis project focuses on the German pilot of the UNITED project. The German pilot investigates the
possibility of combining offshore wind energy and aquaculture. To be more specific, the blue mussels, or
Mytilus edulis, and the seaweeds, or specifically Saccharina latissima (which is also called sugar kelp) are
grown. In this thesis project, sensitivity analysis will be carried out in a hydrodynamic model called the 3D
Dutch Continental Shelf Model developed in D-HYDRO Flexible Mesh (3D DCSM-FM). The model can sim-
ulate the hydrodynamic process within the Northwest European Shelf, including the North Sea and adjacent
shallow seas and estuaries such as the Wadden Sea and the Eastern and Western Scheldt [57]. The model has
been validated with respect to water levels, water temperature, sea surface salinity and residual currents [57].
To simulate the model, the software Delft3D Flexible Mesh Suite (Delft3D FM) is used. The details of German
pilot, 3D DCSM-FM model and Delft3D FM software will be introduced in Chapter 3 Methodology.

The aim of sensitivity analysis is to study the influences of parameters to outputs. This thesis will especially
take the dependencies and correlations between parameters into consideration and apply it to Delft3D FM.
The theoretical details of sensitivity analysis will be introduced in chapter 2.

The simulations at several observation points in North Sea are carried out and two outputs with correspond-
ing inputs in 3D DCSM-FM model are chosen. Three methods of sensitivity analysis are performed and com-
pared to study the influence of inputs to outputs.

1.2. Objectives

As a powerful model, 3D DCSM-FM model has complex relations between parameters and output variables.
To investigate the relations between inputs and outputs of the model, sensitivity analysis is adopted in this
thesis project. Instead of giving the concrete physical formulas, which is hard to obtain with abundant pa-
rameters, sensitivity analysis evaluates the relations through the indicators showing how much influence the
inputs have on outputs. Besides, in the physical process, the correlations between parameters can always be
assumed, which is a problem needs to be tackled in sensitivity analysis. On the other word, the main goal of
this thesis project is to use sensitivity analysis to study the impacts of parameters to outputs in 3D DCSM-FM
model, considering the correlations and dependencies between the parameters.

Around the main goal, some specific goals follow:

• Select the target outputs and corresponding inputs in 3D DCSM-FM to apply sensitivity analysis.

• Find the indices to measure the sensitivity of parameters.

• Find the proper way to include the independence and correlations between parameters into sensitivity
analysis.

• Investigate different methods to do sensitivity analysis and compare the differences.

1.3. Research questions

Following the objectives of the thesis, some questions need to be answered. They will be studied around
the keywords, sensitivity analysis and independence of parameters. Corresponding to the main goal of the
thesis in chapter 1.2, the main question will be, how the uncertainty in the output of the hydrodynamic model
can be divided and allocated to the uncertainty of the parameters in the model, which is also the definition of
sensitivity analysis [42]. Considering the application of sensitivity in the case, the following detailed questions
will be answered:

• Sensitivity measurement: which indices can be selected to measure the sensitivity of parameters and
how to explain them?

• Research prioritization: which factors are the most deserving of further analysis or measurement?

• Model simplification: can some factors or compartments of the model be fixed or simplified?
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• In the physical process, independence is rare to see, and parameters can be imagined to be depen-
dent and interact with each other, which is also the highlights of the thesis. Some questions related to
dependencies and correlations need to be answered:

– Why do we need to consider the dependencies of the parameters?

– How to include the dependency information into sensitivity analysis?

– Which parameters are correlated together?

• From the aspects of different methods, what are the differences between the logic and results of the
methods?

1.4. Innovations and related study

This project uses three existed sensitivity analysis methods to study the parameters in 3D DCSM-FM model.

There are some previous studies about sensitivity analysis on models simulated by Delft3D. Zhijie Li et al. [27]
developed a two-dimensional algae dynamic model in Taihu Lake in China, using Delft3D-BLOOM based on
the results from Delft3D-FLOW, and Morris screening was used to analyze the sensitivity of parameters. In a
previous master thesis at TUDelft [52], sensitivity analysis was carried out in fine sediment transport in the
humber estuary, which was simulated by Delft3D-Delwaq. In a research by Bastidas et al. [7], a model param-
eter sensitivity analysis was presented, for the simulation of storm surge and wave by Delft3D. In a paper by
Ţene et al. [51], a creative sensitivity analysis method, copula method, was carried out on the simulations of
Delft3D-WAQ in North Sea.

The existing studies have some common concerns with the thesis project on studying sensitivity analysis
based on the simulations by Delft3D. However, there are still some unique innovations in this project. The
choices of temperature and current velocities as outputs in sensitivity analysis are barely seen in the previ-
ous studies. About the software, the existing studies include some other models of Delft3D, such as BLOOM,
Delwaq, WAQ, etc., while Delft3D FM module is used in this project. From the aspects of sensitivity analysis
methods, three different methods are carried out in this project, which will be compared to each other, dis-
tinguishing whether to consider independence, while previous research lacks application and comparison of
different methods at the same time.

Focusing on the German pilot, this thesis contributes to the UNITED project. Promoting the combination
of aquaculture and wind energy is one of the goals of the UNITED project. If the operation is proved to be
feasible on the experience platform, it can be promoted to other location. Sensitivity analysis can simplify
the research of different sites, allowing us focus mainly on influential parameters, which can be distinguished
through sensitivity analysis.

From the aspect of 3D DCSM-FM model, the project can also give some clues for the physical process. The
real process of the hydrodynamic movements is complicated, affected by a lot of factors. With the results of
sensitivity analysis, we can have an impression of which factors are related to the physical process, and how
important they are.

1.5. Thesis structure

The first chapter gives the general introduction of the project, including the motivation, questions and objec-
tives, and related study.

In the second chapter, the theoretical explanation of three methods used to carry out sensitivity analysis is
given, along with other literature review about the mussels and seaweeds aquaculture, which is related to the
choices of outputs in the analysis.

Chapter 3 describes the methodology used in the thesis project, corresponding to the theoretical part in chap-
ter 2. In the details, this chapter introduces Delft3D FM model used to simulate results, the choices of outputs,
inputs, and observation points. Furthermore, the operations of different methods and specific problems met
in the process will be mentioned.



4 1. Introduction

Chapter 4 presents the results of the analysis, including sampling, sensitivity indices and analysis. It will
separate three different methods apart.

In the last chapter, the conclusions of the studies are summarized and the comparison between different
observation points and methods will be discussed about.



2
Literature review

In this chapter, techniques and influential factors of mussel and seaweed aquaculture will be introduced first,
as German pilot of the UNITED project adopted longline technique in the growth of the blue mussels called
Mytilus edulis, and the seaweeds called Saccharina latissimi (which is also called sugar kelp).

Then the theoretical concepts and three different methods of sensitivity analysis will be presented.

2.1. Mussel and seaweed aquaculture

2.1.1. Techniques adopted in mussels and seaweeds cultivation

Cultivation of mussels and seaweeds provides opportunities for food production while removing excess nu-
trients in eutrophic coastal water [53].

Two main approaches are used in mussel aquaculture, bottom culture and suspended culture, where ‘bottom’
means the ocean floor. A bottom culture method means the mussels are growing on the ocean bottom, and in
suspended culture the mussels grow without touching the bottom [3]. In 2006, approximately 15% of mussel
aquaculture takes bottom culture and suspended culture accounts for 85% [31].

In bottom culture, the mussels grow on natural mussel beds, which are similar to wild growth. There are three
main approaches performed in suspended culture, bouchots (or poles, driving poles or stakes into the ground
in regions with high tidal regime and mussels grow on the poles), raft (suspending mussels attached on ropes
or in socks from a moored rafts with cylindrical floats), and longline system [31]. The first two techniques

Figure 2.1: Schematic of a basic mussel longline system. The two most common systems used in Canada are
shown. Longline systems may also be used for the culture of other species in nets, trays, etc. [31]

5



6 2. Literature review

(a) Off-bottom method (b) Floating method

(c) Longline method

Figure 2.2: Three different cultivation methods of seaweeds [16]

are only conducted in a small number of areas, while longline is suitable for many environments and used
around the world. As shown in figure 2.1, a series of lines are anchored at ends, and buoys float in the water
hanging a series of dropper lines with weights at their ends. Mussels are hung along the lines in socks (or
dropper lines) [31].

There are at least three methods applied in seaweed aquaculture, off-bottom (fixed bottom) method, raft
or floating method and longline method [16], which are correspondingly similar to the three methods in
suspended culture of mussels cultivation.

The off-bottom method is similar with bouchots (poles) techniques in mussel cultivation. Wooden stakes are
driven into the sea bottom and seaweeds are planted along the ropes between stakes. In the floating method,
seaweed is attached to floating rafts, rising and falling with tidal changes [16], similar to raft technique in
mussel cultivation. The longline method is the same as in mussel aquaculture.

Garen et al. [18] compared the growth of mussel on longline, pole and bottom cultures, and observed a
clear seasonal growth pattern, similar for all the three cultural type. Also, length and weight growth appeared
different in the three type, longline mussels exhibiting the highest performance and bottom-type showed the
lowest.

2.1.2. Influential factors of blue mussels

A lot of factors influence the growth of mussels, meat content being the main indicator, such as food avail-
ability, seawater velocity, distribution of diarrheic shellfish toxins (DST), temperature, suspended sleeves, etc.
Some of the factors have correlation with each other.

Growth of mussels depends largely on food availability [8, 48, 55], which is influenced by seston concentra-
tion, composition and transport rate [9, 17, 22].

Seawater velocity and crowdedness will influence transport rate of seston, which in turn affects mussel growth.
In the study performed [48], as current velocity and Chlorophyll a concentration decreased, the calculated
food availability was reduced by more than 80% within the first 30 m of the farm and from 30 m the food
availability remained low throughout the farm. It is observed by farmers that meat content along the edges of
the farm is higher than the mid-section, which is a probable result of lower seawater velocity, higher crowd-
edness and friction in the mid-section, and the structure of farms.
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A significant negative correlation between meat content and DST is observed [48]. It is suggested that depu-
ration of DST was faster in areas with high food availability.

Temperature is another factor of mussel growth. Higher temperature increased the growth fates of blue mus-
sels, where 16 °C is a proper temperature in experiments [39]. The temperature is also correlated with seston
and nutrients in water, which affect the growth directly. Mussels growth was higher during summer at high
exposure sites, probably due to a seasonal increase in nutrients [19].

Cultivation methods and the set of tools also influence mussel growth. Longline mussels performed the high-
est growth among all the techniques [18]. In longline method, the spacing of suspended sleeves is related to
seston uptake. Different spacings have no significant effect on the condition index of mussels (the condition
index is calculated by the ratio of dry tissue weight and dry shell weight times 100). However, high spacing
positively affected shell growth and abundance for small seeds packed within sleeves. High spacing will also
increase farm productivity and seston uptake at bay scale [14].

2.1.3. Influential factors of seaweeds

The yield and quality of seaweeds are largely controlled by environmental factors, such as light, salinity, nu-
trients (such as bioavailable phosphorus), temperature and water velocity.

Light is a main positive-corelated factor for growth of S. latissima in spring [10]. Salinity also showed a pos-
itive influence on frond length of seaweeds [36]. Phosphorus availability appeared to control the primary
production [10]. Temperature generally shows positive control on the growth and development of juvenile
filter-feeders [54].

Water velocity substantially affects the seaweed production, directly increasing the uptake of nutrients and
carbon dioxide. Productivity of macrophytes are generally believed to be higher at moderate levels of water
velocity compared to slower water speed [40].

2.2. Introduction of sensitivity analysis

According to the definition, sensitivity analysis is the study of how uncertainty in the output of a model (nu-
merical or otherwise) can be apportioned to different sources of uncertainty in the model input [42].

Sensitivity analysis can be categorized into local and global sensitivity analysis. Local sensitivity analysis is
the assessment of the local impact of input factors’ variation on model response by concentrating on the
sensitivity in vicinity of a set of factor values [43]. Gradients or partial derivatives of the output functions
are commonly used to evaluate local sensitivity, where the values of other input factors are kept constant
while the target input factor is changed. However, local sensitivity has severe restrictions of uncertainty and
linearity. In other words, the results are only effective at a point and cannot be proved in the whole space of the
input factors. As a solution, global sensitivity is introduced to use large number of data points over the whole
input space. The average results will be obtained from different sets of points in the input space, avoiding the
local limitations. In this project, all the methods belong to global sensitivity analysis, and ‘sensitivity analysis’
in the thesis refers to global sensitivity by default.

A lot of methods can be adopted to carry out sensitivity analysis, depends on the requirements of the prob-
lems, such as linearity, dependency, calculation time, etc. In this project, three methods will be used to do
sensitivity analysis: Morris method, copula-based method and variance-based method. Among them, all the
input factors are assumed to be independent in Morris method, while copula-based method and variance-
based method take dependency of input factors into consideration.

2.3. Morris method

In this section, Morris method will be introduced, which is also called Elementary Effects (EE) method. The
fundamental idea was innovated by Morris in 1991. Two sensitivity measures are used to determine which
input factors may have effects which are (a) negligible, (b) linear and additive, or (c) non-linear or involved in
interactions with other factors. The sensitivity measures will be introduced in chapter 2.3.2. Morris method
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is one of the most fundamental and powerful method, especially when the number of input factors is very
large. However, it is worth noting that the input factors are assumed independent with each other in Morris
method, which is also a disadvantage of the method. The improvements to this problem will be presented in
the next two methods, copula-based method and variance-based method.

2.3.1. One-at-a-time (OAT) sampling

The sampling strategy’s main core of Morris method is One-at-a-time (OAT) sampling. Generally, in every
two adjacent samples, only one parameter changes at a time, therefore the change in output is only affected
by the parameter changing in adjacent samples. In this way, the influences of each parameter will be easier
to distinguish.

To explain OAT sampling in details, first an equation will be presented:

Y = b0 +
k∑

r=1
br Xr

= b0 +b1X1 +b2X2 +·· ·+bk−1Xk−1 +bk Xk

(2.1)

Usually in the analysis where the relationship between inputs and outputs is unknown, each parameter can
be assumed to be linear to the output. In the formula (2.1), Y is the output, X1 to Xk are the k variables, and
br are all constants assumed unknown at the start of the sensitivity analysis.

To analysis the sensitivity, the data points are provided. With N simulations, where N ≥ k + 1, the formula
(2.1) can be written in the form of matrix, and br can be solved with the value of data points:


1 x11 . . . x1k

1 x21 . . . x2k
...

...
. . .

...
1 xN 1 . . . xN k




b0

b1
...

bk

=


y1

y2
...

yN

 (2.2)

Using matrix notation, the formula (2.2) can be abbreviated as

XN k Bk = YN (2.3)

The matrix XN k has 1 in the first column, and values for the k parameters in N simulations in other columns.
Bk contains the k +1 unknown coefficient corresponding to the intercept b0 and the k parameters. YN con-
tains outputs from N simulations.

After introducing the linear equation, OAT sampling is easier to understand.

The equation (2.2) can be rewritten as



1 0 0 0 0 . . . 0
1 1 0 0 0 . . . 0
1 1 1 0 0 . . . 0
1 1 1 1 0 . . . 0
1 1 1 1 1 . . . 0
...

...
...

...
...

. . .
...

1 1 1 1 1 . . . 1




b0

b1
...

bk

=


y1

y2
...

yk+1

 (2.4)

where the variables are assigned the value of 0 and 1, and between two adjacent rows, only one variable
changes its value. To make the system more simplified, subtract the entries from the previous row in every
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row but the first, and the following can be obtained:

1 0 0 0 0 . . . 0
0 1 0 0 0 . . . 0
0 0 1 0 0 . . . 0
0 0 0 1 0 . . . 0
0 0 0 0 1 . . . 0
...

...
...

...
...

. . .
...

0 0 0 0 0 . . . 1




b0

b1
...

bk

=



y1

y2 − y1

y3 − y2

y4 − y3
...

yk+1 − yk


(2.5)

The equation (2.5) shows that if there is any change in value between yi and yi+1, it can only be attributed to
a change in parameter Xi . The change in outputs ∆yi = yi+1 − yi is an estimate of the effect on y of changing
Xi from 0 to 1.

OAT sampling provides an idea of how to evaluate the effect of one parameter at one time, without the influ-
ence of other parameters. However, in real analysis, more specific sampling strategy should be considered,
including the distribution of the input samples in each simulation.

Also, there is disadvantage of OAT sampling. OAT sampling is inefficient when the number of parameters k
is large and only a few of them influence the outputs. In this situation, most of the simulations are used to
find noninfluential parameters, where the outputs keep the same, and only a few of the outputs will include
the information of influential parameters. In this project, the number of parameters is limited, allowing us to
dismiss the disadvantage.

2.3.2. Elementary effects and sensitivity measurements

Elementary effects are the indicators and measures of factors’ sensitivity in Morris method. Therefore, Morris
method is also called Elementary Effect method. Consider a model with k independent inputs Xi , i = 1, . . . ,k,
and the ranges of the parameters are divided into p selected levels. The region of experimentation Ω is thus
a k-dimensional p-level hypercube. In order to eliminate the influences of different ranges of parameters,
evaluating elementary effects independently of parameter ranges, each x j is first scaled uniformly to [0,1].

Figure 2.3: Unit hypercube of the parameter space for n = 3 parameters and p = 4 discretization levels. [51]

Elementary effects d j are defined as

d j =
M

(
x1 . . . x j−1, x j +δ, x j+1 . . . xn

)
−M

(
x1 . . . xn

)
δ

(2.6)

The Morris step

δ= s

p −1
s ∈ {1, . . . , p −1} (2.7)
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represents the magnitude of the variation and is chosen as a multiple of the grid cell size, 1
p−1 . A commonly

used choice of p and δ is that p is even and delta equal to p
2(p−1) . The advantage of this choice is that although

the sampling strategy does not guarantee sampling with equal probability from distributions of each param-
eter, a certain symmetric treatment in inputs can be ensured. For example, when p = 8, all the possible values
for a parameter ranging within [0, 1] are from {0, 1

7 , 2
7 , 3

7 , 4
7 , 5

7 , 6
7 ,1}, and the Morris step is 4

7 . Then there will be
4 pairs for inputs: {0, 4

7 }, { 1
7 , 5

7 }, { 2
7 , 6

7 }, { 3
7 ,1}, as a symmetric treatment in inputs.

To measure the average effect of the parameter variation on the model output, elementary effects are cal-
culated r times for each parameter. Morris proposed two sensitivity measures, the elementary mean and
standard deviation:

µ j = 1

r

r∑
i=1

d (i )
j (2.8)

σ j =
√

1

r −1

r∑
i=1

(
d (i )

j −µ j

)2
(2.9)

The absolute elementary mean is also recommended [11]:

µ∗
j =

1

r

r∑
i=1

∣∣∣d (i )
j

∣∣∣ j = 1, . . . ,n (2.10)

Combing the three measurements, we can conclude the influence of parameter x j on the model output. The
interpretation is as follows.

The mean µ j evaluates the overall influence of the factor on the output. If µ j has a high amplitude, it implies
the parameter is influential on the output. At the same time, the sign of this effect deos not vary significantly
over model simulations.

However, µ j is not effective to solve type II errors (failing to identify a factor with considerable influence on
the model) [42]. Type II errors might occur when both positive and negative elements are included, i.e., when
the model is nonmonotonic or has interaction effects. In these cases, some influences may cancel each other
when calculating µ j , thus resulting a low mean value even for an important factor. One solution is to check µ
and si g ma at the same time.

If the parameter is influential but with different signs, it will have a low value of µ but a considerable value of
σ. In other words, if σ is high, then the elementary effects relative to this parameter are significantly different
from each other [51]. This means that the value of x j ’s elementary effects is strongly dependent on the choice
of the point in the input space where it is evaluated, i.e., by the choice of the other parameter values. There-
fore, it can be generally concluded that this parameter has a high interaction with other parameters. On the
other hand, a low value of σ indicates nearly constant values of the elementary effect, therefore implying that
the model is almost linearly dependent on x j .

Another better way to solve the problem is to consider the absolute mean µ∗
j . Compared to µ j , the absolute

mean µ∗
j captures elementary effects of opposing sign, cancelling each other out in the calculation of µ j . In

the case that µ j and µ∗
j are both high, the factor not only has a large effect on the output, but also the sigh of

this effect is always the same. If µ j is low while µ∗
j is high, the factor has effects of different signs depending

on the point of the space at which the effect is computed.

2.3.3. Sampling strategy

In the previous sections, the core idea of sampling strategy, One-at-a-time (OAT) method has been intro-
duced, and the sensitivity measurements has been chosen. In this section, the details of sampling in a [0,1]k

input hypercube will be introduced.

The elementary measurements above require a total of 2kr model simulations, for example in 2.4(a) (k: the
number of inputs; r : the number of elementary effects being calculated): each site of sensitivity measure-
ments needs two sample points to do the subtraction in d j , with k input parameters, calculated r times to
do the average. By sharing endpoints on the hypercube, for example in 2.4(b), the sampling scheme can be
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(a) randomly sampled elementary effects (b) elementary paths with sharing points

Figure 2.4: Efficient sampling in Morris method (n = 2, p = 4, r = 3, s = 1): random sampling results in 12 models (left); the number of
samples can be reduced if some points are shared (right). [51]

simplified and more efficient, leading to (k +1)r samples. Each factor is moved in a random order at a time.
Then the samples connected make up the elementary paths, which can also be called trajectories. In this
case, r can also be seen as the number of the trajectories.

The choices for p, r and s have a significant impact on the results of the sensitivity analysis [51]. A high num-
ber of levels p may indicate higher accuracy of sampling. A relatively low value of r , the number of sensitivity
measurement calculations, will leave many of the levels in the hypercube unexplored. According to Morris
[33], a convenient choice is s = p

2 (assuming p is even), while Campolongo et al. [11] have demonstrated that
p = 4 and r = 10 produce valuable results in many cases.

2.3.4. Method of optimized trajectories: enhancing the sampling strategy

From the previous section, after simplifying the sampling strategy by sharing endpoints, Morris Method con-
structed r trajectories in the input space, which is a hypercube. However, this strategy could lead to a non-
optimal coverage of the input space, especially for models with a large number of input factors [11]. In this
section, an enhanced method of optimized trajectories will be introduced to improve the sampling strategy,
aiming at a better scanning of the input domain without increasing the model simulations. The idea is to
separate the r trajectories to maximize their dispersion in the input space.

To explain the operations, a high number of different trajectories are selected first, between 500 and 1000,
and then a small number of trajectories will be chosen as the highest ‘spread’ scheme, for example r = 10.
The concept of ‘spread’ is based on the following definition of ‘distance’. The distance dml between a couple
of trajectories m and l is defined by Campolongo et al [11]. as:

dml =


∑k+1

i=1

∑k+1
j=1

√∑k
z=1

[
X m

i (z)−X l
j (z)

]2
for m 6= l

0 otherwise
(2.11)

where k is the number of input factors and X m
i (z) indicates the zth coordinate of the i th point of the mth

Morris trajectory. As the trajectories used as a starting sample are all different, the distance between two of
them is always not zero. Nevertheless, the concept of ‘zero’ distance is still included to force d to fulfil all the
properties of a metric. The space of all possible trajectories with the metric d is thus a metric space [11].

By maximizing the distance dml , the best r trajectories can be selected out of the starting sample M . To
find the best scheme, each possible combination of r trajectories out of M are considered. The quantity D
is defined, which is the sum of all the distances dml between couples of trajectories in this combination.
For example, if we consider the combination 2, 4, 5, 8 (i.e. r = 4) out of the possible M = {1,2,3,4,5,6,7,8},

D2,4,5,8 is calculated as D2,4,5,8 =
√

(d 2
2,4 +d 2

2,5 +d 2
2,8 +d 2

4,5 +d 2
4,8 +d 2

5,8). After calculating D of all the possible

combinations, the combination with the highest value of D will be selected out as the best r trajectories.

The enhanced method of optimized trajectories to improve the sampling strategy is to be preferred to the
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original one not considering the ‘distance’, as it has a better scan of the input space, while keeping the number
of simulations the same.

2.4. Copula-based method

2.4.1. The consideration of dependencies and correlations between parameters

Morris method is the fundamental method in sensitivity analysis, under the assumption of parameter inde-
pendence. Although the correlation information can be explained roughly from sigma (see chapter 2.3.2),
the independent sampling of Morris method might break the underlying assumptions in physical systems,
where model parameters are usually related to each other. Thus, the explanation of correlations might be
inaccurate. The correlation information refers to how related a parameter is with other parameters.

To handle dependency relationships between model parameters, copula-based method and variance-based
method are applied. In this section, the concepts and theories of copula-based method will be introduced;
variance-based method will be introduced in 2.5.

Copula-based method can be seen as the enhanced version of Morris method, gathering parameters into
groups according to the correlations between each other. The main idea of copula-based method is to con-
sider the correlations as the prior factors before sampling. In contrast, variance-based method explains cor-
relations after getting the outcomes of sensitivity measurements and does not need to consider dependencies
in sampling. The details will be discussed in 5.1.

2.4.2. Copula

A copula is a joint distribution, defined on an n-dimensional unit hypercube with uniform marginal distribu-
tions [34]. It separates the influence of marginal distributions from the influence of parameter dependencies
[11].

The joint cumulative distribution function F (x1, . . . , xk ) of random variables X = (x1, . . . , xk ) with marginal
distributions denoted as Fi (xi ), i = 1, . . . ,k can be represented with copula C as follows,

F (x1, . . . , xk ) =C (F1(x1), . . . ,Fn(xk )) (2.12)

which is unique if (x1, . . . , xk ) are continuous [34].

There are different kinds of copulas, such as Gaussian, Student-t and copulas from the Archimedean family.
Among them, the most popular copulas are Gaussian [11]. Ţene et al. [51] presented an example of a three
dimensional Gaussian copula with correlations ρ(x1, x2) = ρ(x1, x3) =−0.7 and ρ(x2, x3) = 0.7 (see figure 2.5).
The larger concentration of points close to the (1,0,0) and (0,1,1) is due to the negative correlation between
the first parameter and the remaining two.

Figure 2.5: Scatter plot of 500 samples from a Gaussian copula with correlations
ρ(x1, x2) = ρ(x1, x3) =−0.7 and ρ(x2, x3) = 0.7. [51]
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(a) the whole grid (b) zoom on the cell

Figure 2.6: Geometric reinterpretation of an elementary path (n = 3, p = 3, s = 1). [51]

(a) the whole grid (b) zoom on the cell

Figure 2.7: Geometric reinterpretation of an elementary path (n = 3, p = 4, s = 2). [51]

2.4.3. Sampling strategy

Elementary effects with three sensitivity measurementsµ, µ∗, σ are also used to evaluate the sensitivity of pa-
rameters in Copula-based method. The main differences between Morris method and Copula-based method
are sampling strategies, where Copula-based method considers the dependence. [51] presented a sampling
strategy for Copula-based method as follows.

As discussed in chapter 2.3.3, the elementary paths of Morris method are built in the hypercube. Consider
the Morris step equal to one cell, i.e., δ = 1

p−1 , with three parameters and three levels, then each trajectory
runs on the contour of a grid cell (see figure 2.6), from one of its corners and ending in the opposite (since
all coordinates change with ±δ). Consider the Morris step higher than one grid cell, trajectories run on a s×s
grid cell, starting from one corner and ending at the opposite.

In figure 2.7, the trajectory runs on the contour of the blue gird cell, and the lower-right corner is chosen as
the starting point. The same as Morris method, one parameter changes at a time. In this case, x3 changes
first, making the path go up, then x1 changes, making the path go left, at last x2 changes, the path going back
one step. The order of the traversal is equivalent to choosing a permutation of the set {1,2,3}. There are 3! = 6
different ways to choose the path in the grid cell.

To conclude the example above, the sampling strategy of Copula-based method follows the three steps [51]:

1. Choosing the target grid block.

2. Choosing the starting point as one of the corners of the grid block.

3. Choosing the traversal order of the contour segments, in order to reach the opposite corner.
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The total number of possible paths on the unit hypercube can be calculated:

Ncells = (p − s)n , Ncorners = 2n , Norders = n (2.13)

Npaths = Ncells ·Ncorners ·Norders /2 (2.14)

where k is the number of parameters, p is the number of discretization levels, and s is the Morris step size.
Through dividing the sampling strategy into three steps, now the dependence constraints can be introduced.
The details of the three steps will be introduced in the next sections.

2.4.4. Choosing the target block

As illustrated in figure 2.6 and 2.7, the grid block contains the elementary paths and gives the range of param-
eters’ values. In the grid block, the path runs from one point to the opposite one. This section introduces a
method considering dependency constraint.

To choose the grid block, first the copulas should be defined to capture dependencies. As discussed in chapter
2.3.2, each parameter is first scalded to [0,1] to get rid of the influences of different parameters’ ranges. A
copula between parameters can be extracted from the joint distribution by transforming the margins to be
uniform on [0,1]. If the parameters are uniformly distributed over the original ranges, it can be done simply
by linear scaling. Otherwise, marginal distributions need to be applied. Latin Hypercube Sampling (LHS)
[30] is then performed on the copula to ensure a good coverage of the parameter space. However, to choose
the grid bock, the points generated by LHS should fall in the hypercube uniformly according to the levels.
To achieve this, Latin Hypercube Sampling with Dependence (LHSD) [37] is applied. The difference between
LHS and LHSD is that LHSD ranks the copulas to ensure the points fall in the grid cells.

First, figure 2.8 gives a short impression of how LHS operates. By dividing the intervals according to levels in
Morris method, the points can also be located in the cells (compared with figure 9.a). However, the problem
is that the value will be continuous, thus the general expression of the grid blocks will be difficult to organize.

Figure 2.8: Example of LHS: Random stratified sampling of variables x1 and x2 at 5 intervals (top) and random
painting of sampled x1 and x2 forming a Latin hypercube (bottom). [51]

LHSD is operated as follows. Considering a hypercube of l n grid cells, take l samples from the copula,
u(1),u(2), . . . ,u(l ) ∈ Rn , and arrange them to get one sample in each row and column, while preserving their
ranking. The rank statistics of the i th sample of parameter j are computed as

R j [i ] =
l∑

k=1
1{

u(k)[ j ]≤u(0] j ]
} i = 1, . . . , l j = 1, . . . ,n (2.15)

where 1s denotes the indicator function of set S. R j [i ] effectively represents the order of the sample in
(u(1)[ j ], . . . ,u(l )[ j ]). Finally, the vector containing the coordinates of the origin of the target cell (i.e. its lower-
left corner) is determined as:

cell(i )[ j ] = R j [i ]−1

l
i = 1, . . . , l j = 1, . . . ,n (2.16)
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(a) Copula samples (b) Latin hypercube reordered samples

Figure 2.9: Using LHSD to ensure an even spread of the copula samples within the parameter space (n = 2, p = 11, s = 1). [51]

The cells are the target grid blocks selected. To relate to Morris method, n is the same as k in Morris method,
representing the number of parameters; the number of grid blocks are the times of calculating elementary
effects (which is r in Morris method, see chapter 2.3.3). The number of grid blocks can be adjusted, which is
explained as follows.

Ţene et al. [51] gave the notification about the number of samples. By the nature of LHSD, the number of
samples generated by LHSD, which means the grid blocks here instead of samples to calculate the elementary
effects, should be a multiple the size of hypercube. However, sensitivity analysis may require an arbitrary
number of samples. To meet the flexible requiments, the LHSD algorithm can be repeated several times, if
the number of samples are not enough. If the number exceeds the requiement, part of the samples can be
discarded.

To explain it more clearly, figure 2.9 is illustrated. Figure 2.9 gives an example with the parameter space,
where k = 2, p = 11, s = 1. Figure 2.9(a) shows 10 copulas selects. In figure 2.9(b), the copulas are located in
the cells, ensuring each row and column in each direction has one points. The grids with the red cross are the
gird blocks chosen. The coordinates of the points are the lower-left coordinates of the red cross in the figure.
There being 10 blocks means the elementary effects are calculated 10 times to do the average, r equal to 10.

2.4.5. Choosing the starting point

After having the grid blocks where the trajectories run on the contour, the starting points should be decided.
The ending points will automatically be the opposite point, as each parameter needs to change once in each
dimension within the grid block.

For each grid block, cell(i ), the starting corner of the path is randomly sampled. To choose the starting point,
the probability of each point being selected will be calculated. The basic idea is that each corner in the grid
is a realization of an n-dimensional discrete distribution with p possible values, namely 0,1,2, . . . , p −1, for
each factor.

After marginal transformation or linear scaling, the marginal distributions of the factors are removed. The
marginal probability of each factor xi as value j ∈ 0,1,2, . . . , p −1 is Pr ob(xi = j ) = 1

p . Using the finite differ-
ence formula [34], the probability of each point being selected on the grid can be computed,

Prob
(
X1 = j1, . . . , Xn = jn

)=∆b1
a1
∆

b2
a2

. . .∆bn
an

C (2.17)

where ai = ji
p , bi = ji+1

p and

∆
bk
ak

C =C
(
u1, . . . ,uk−1,bk ,uk+1, . . . ,un

)
(2.18)

−C
(
u1, . . . ,uk−1, ak ,uk+1, . . . ,un

)
(2.19)
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Hence, when n = 3,

Prob
(
X1 = x1, X2 = x2, X3 = x3

)
=C

(
b1,b2,b3

)−C
(
a1,b2,b3

)−C
(
b1, a2,b3

)
+C

(
a1, a2,b3

)−C
(
b1,b2, a3

)+C
(
a1,b2, a3

)
+C

(
b1, a2, a3

)−C
(
a1, a2, a3

) (2.20)

Take n = 3 and p = 2 as an example. In this case, the hypercube contains only one cell with eight corners.
Each factor can take only two possible values xi = 0,1. P0,0,0 = Pr ob(X1 = 0, X2 = 0, X3 = 0) = C ( 1

2 , 1
2 , 1

2 ),
with ai = 0, bi = 1

2 , i = 1,2,3, since any copula evaluated at point zero is 0. Using a normal copula with the
correlation matrix in Section 2.4.2 (ρ(x1, x2) = ρ(x1, x3) = −0.7 and ρ(x2, x3) = 0.7). P0,0,0 = 0.0633. Similarly,
p0,1,0 = p0,0,1 = p1,1,0 = p1,0,1 = p1,1,1 = 0.0633. However, the probability of the point (0,0,1) and (1,1,0) is
much higher with p1,0,0 = C (1, 1

2 , 1
2 )–C ( 1

2 , 1
2 , 1

2 ) = 0.3101, with ai = 0, bi = 1
2 , i = 2,3 and a1 = 1

2 , b1 = 1. After
having the distribution as calculated above, the starting point is sampled. In the case above, there is a much
larger chance to choose point (1,0,0) or (0,1,1) as starting points over the other points.

This procedure can be applied to compute the distribution of each corner as starting points for each other grid
in the hypercube. However, it needs a lot of calculations when p is large. It is suggested that one can compute
the distribution only once and assumed that it applies to all grid cells [51]. The simplified procedure would
be sufficient for Gaussian copula; for more complicated copulas such as copulas with asymmetries and tail
dependencies, the assumption would not hold.

The ending point is always the opposite corner of the starting point, as each parameter should move one step
in the grid block to calculate the elementary effects. The number of all possible paths between the starting
and the ending points are 2n . The choice of the path will be explained in the following section.

2.4.6. Choosing the traversal order

After deciding the starting point, along with the ending point, the differences between paths can be under-
stood as the differences of the traversal orders. The order of traversal is given by a randomly sampled permu-
tationπi describing the path running from the start point to the end point by changing one factor at one time.
For example, the path in figure 2.7 was obtained using the permutation {3, 1, 2}. It means the third parameter
changes first, then the first parameter changes, finally the second parameter changes.

x y z
1 0 0
1 0 1
0 0 1
0 1 1

 (2.21)

2.4.7. Sensitivity measurements

After getting the samples from the hypercube, sensitivity measurements should be defined. The measure-
ments in Copula-based method are the same as in Morris method, usingµ,µ∗ andσ to indicate the influences
of parameters on outputs, the details can be seen in chapter 2.3.2.

2.5. Variance-based method

2.5.1. General idea of using variance

The same as copula-based method, variance-based method is also used to deal with the dependence prob-
lems. However, the way of dealing with the dependency problem is totally different between copula-based
method and variance-based method. In copula-based method, copulas are used to contain the dependency
information, influencing the sample generation. The dependency can be seen as the prior information to
evaluate the sensitivity. While in variance-based method, we don’t need to consider dependency before cal-
culating the sensitivity measurements. Through a lot of samples and variance, the correlation information
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can be interpreted from the sensitivity measurements. Although we can do the same in Morris method, the
nature of Morris method, assuming each parameter being independent, will lead to bias in the results.

Why do we choose variance? Speaking of variance, we naturally think of using mean to calculate sensitiv-
ity measurements. In fact, mean is used in some cases, for example in risk analysis the model output may
happen to be itself a mean [42]. In the case, the outputs are deterministic, and risk level is to be modified by
eliminating the uncertainty in the input. However, the elimination is not suggested, and the uncertainty is
preferred to be maintained. Then the variance is naturally considered to keep the uncertainty information.

As variance requires a large number of samples, the sensitivity measurement is not constrained by the form
of models. In other words, the parameters in the model can be dependent. However, it also means the com-
putational tasks of variance-based method is heavy.

2.5.2. The setting of the model and the first-order sensitivity index

The Russian mathematician I. M. Sobol’ provided a concept to compute sensitivity measurements for arbi-
trary groups of factors. The setting is based on a square integrable function f overΩk , the k-dimensional unit
hypercube,

Ωk = (
X | 0 ≤ xi ≤ 1; i = 1, . . . ,k

)
(2.22)

The function f is expanded into terms of increasing dimensions:

f = f0 +
∑

i
fi +

∑
i

∑
j>i

fi j + . . .+ f12...k (2.23)

in which each individual term is also square integrable over the domain. Each term is a function of the factors
in its index, i.e., fi = fi (Xi ), fi , j = fi , j (Xi , X j ), and so on. The decomposition has a finite number of 2k terms.

Among them, one is constant ( f0), k are first-order functions ( fi ), C 2
k = k !

(k−2)!2! are second-order functions
( fi j ), and so on. The expansion is called high-dimensional model representation (HDMR) and is not unique.
There can be infinite choices for the terms of a given f.

Sobol’ proved that if each term in the expansion has zero mean, i.e.,
∫

f (xi )d xi = 0, then all the terms of the
decomposition are orthogonal in pairs, i.e.

∫
f (xi ) f (x j )d xi d x j = 0. Thus, using the conditional expectations

of the model output Y , the terms can be calculated. For example,

f0 = E(Y ) (2.24)

fi = E
(
Y | Xi

)−E(Y ) (2.25)

fi j = E
(
Y | Xi , X j

)
− fi − fi −E(Y ) (2.26)

The variance of the conditional expectation can be considered to measure the sensitivity. As f0 is constant,
V ( fi (Xi )) is V [E(Y |Xi )]. V [E(Y |Xi )] can be denoted by Vi , which is called the first-order effect of Xi on Y . By
dividing this by the unconditional variance V (Y ), the first-order sensitivity index is defined:

Si =
V

[
E

(
Y | Xi

)]
V (Y )

(2.27)

The first-order index evaluates the main effect contribution of each input factor to the variance of the output,
which is also described as an ‘importance measure’.

2.5.3. Internal effects

Two factors are said to interact when their effect on outputs cannot be expressed as a sum of their single
effects [42]. Similarly, interactions between more factors can be defined. The extreme values of outputs can
be uniquely associated with combinations of inputs, which cannot be described by the first-order effects. In
other words, dependency information cannot be interpreted from the first-order index. To investigate the
interaction effects between parameters, higher-order effects should be calculated.
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From the formulas above, the following equations can be obtained:

Vi =V
(

fi
(
Xi

))=V
[

E
(
Y | Xi

)]
(2.28)

Vi j =V

(
fi j

(
Xi , X j

))
=V

(
E

(
Y | Xi , X j

))
−V

(
E

(
Y | Xi

))−V

(
E

(
Y | X j

))
(2.29)

In the equation 2.29, V

(
E

(
Y | Xi , X j

))
describes the joint effect of the pair (Xi , X j ) on Y , which will be de-

noted by V c
i j . The term Vi j is the joint effect of Xi and X j , V c

i j , minus the first-order effects of Xi and X j . V ( fi j )

is known as a second-order, or two-way, effect. Similar formulas can be written for higher-order effects.

By simplifying the notations of the variance, i.e., V ( fi ) =Vi , V ( fi j ) =Vi j , etc., and by square integrating each
term in the formula 2.23, the ANOVA-HDMR decomposition can be obtained:

V (Y ) =∑
i

Vi +
∑

i

∑
j>i

Vi j + . . .+V12...k (2.30)

Dividing both sides of the equation by the unconditional variance V (Y ), we have∑
i

Si +
∑

i

∑
j>i

Si j +
∑

i

∑
j>i

∑
l>i

Si j l + . . .+S123...k = 1 (2.31)

Si j , Si j l , etc., are the higher-order sensitivity index, indicating the interaction between factors.

2.5.4. Total effects

As illustrated in formula 2.31, S123. . . k is the total effect index, accounting for the total contribution to the
output variance due to factor Xi , i.e., its first-order effect plus higher-order effects resulting from interactions
with other factors.

Take a three-factor model as an example, the total effect index has the following expression:

ST 1 = S1 +S12 +S13 +S123 (2.32)

where all the terms involving the factor X1 are considered. Including the first-order sensitivity index S1, the
second-order sensitivity index S12, S13, and the third-order sensitivity index S123.

We can calculate the total effect index according to 2.31 by computing the difference between all the terms
and 1, but the computation will be a heavy task. Here a technique is introduced to calculate the total indices,
demanding only the same cost of first-order indices [21]. First the unconditional variance can be decomposed
into main effect and residual:

V (Y ) =V
(
E

(
Y | Xi

))+E
(
V

(
Y | Xi

))
(2.33)

Another way to find the total index is to decompose V (Y ) conditioning with respect to all the factors but one,
i.e. X i :

V (Y ) =V
(
E

(
Y | X∼i

))+E
(
V

(
Y | X∼i

))
(2.34)

The measure V (Y )−V
(
E

(
Y | X∼i

))= E
(
V

(
Y | X∼i

))
is the remaining variance of Y that would be left, on av-

erage, if the true values of X i can be determined. The average is calculated over all possible combinations of
X i , since X i are uncertain factors and the ‘true values’ are unknown. The total effect index for Xi is obtained,
dividing by V (Y ):

STi =
E

[
V

(
Y | X∼i

)]
V (Y )

= 1−
V

[
E

(
Y | X∼i

)]
V (Y )

(2.35)

Total effect index is meaningful to sensitivity analysis. Total effect index gives information on the nonfeatures
of the model. According to formula 2.31, for a given factor Xi , a significant difference between Si and ST i

shows important interaction involving this factor. Total effect index can also give the answer that which factor
can be fixed anywhere over the range without affecting the output. ST i = 0 is necessary and sufficient for Xi to
be noninfluential on the output. If ST i ' 0, then Xi can be fixed at any value within its range, without obviously
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affecting the value of the output variance V (Y ). Total effect indices are suitable for factor fixing setting (FF),
which is used to identify which parameters have no significant contribution to the variance of the outputs.
The name of the setting can be understood from the question ‘which factor can be fixed anywhere over its
range of variability without affecting the output?’ [42]

2.5.5. Computation strategy of the sensitivity indices

In the last three sections, the formulas of sensitivity indices are introduced. However, the computation for
the conditional variance such as V (E(Y |Xi )) and V (E(Y |Xi , X j )) are very heavy. For example, to calculate
V (E(Y |Xi )), a set of 1000 Monte Carlo points are first used to calculate the conditional mean E(Y |Xi ). Then
the procedure needs to be repeated 1000 times to estimate the variance. In this section, a simpler strategy
introduced by [42] will be described, based on the same formulas above. First, a (N ,2k) matrix of random
numbers (k is the number of inputs) and two matrices A and B are defined to contain half of the sample
each. N is called a base sample, varying from a few hundred to a few thousands. Sequences of quasi-random
numbers are suggested by Sobol’ [45].

A =


x(1)

1 x(1)
2 . . . x(1)

i . . . x(1)
k

x(2)
1 x(2)

2 . . . x(2)
i . . . x(2)

k
· · · . . . . . . . . .

x(N−1)
1 x(N−1)

2 . . . x(N−1)
i . . . x(N−1)

k
x(N )

1 x(N )
2 . . . x(N )

i . . . x(N )
k

 (2.36)

B =


x(1)

k+1 x(1)
k+2 . . . x(1)

k+i . . . x(1)
2k

x(2)
k+1 x(2)

k+2 . . . x(2)
k+i . . . x(2)

2k
. . . . . . . . . . . . . . . . . .

x(N−1)
k+1 x(N−1)

k+2 . . . x(N−1)
k+i . . . x(N−1)

2k
x(N )

k+1 x(N )
k+2 . . . x(N )

k+i . . . x(N )
2k

 (2.37)

Then define a matrix Ci . In Ci , all the columns are kept the same with matrix B , except the i th column, which
is the same with the i th column of matrix A.

Ci =


x(1)

k+1 x(1)
k+2 . . . x(1)

i . . . x(1)
2k

x(2)
k+1 x(2)

k+2 . . . x(2)
i . . . x(2)

2k
· · · . . . . . . . . . . . . . . .

x(N−1)
k+1 x(N−1)

k+2 . . . x(N−1)
i . . . x(N−1)

2k
x(N )

k+1 x(N )
k+2 . . . x(N )

i . . . x(N )
2k

 (2.38)

The model outputs can be simulated based on the sample matrices A, B and Ci . The output vectors of di-
mension N ×1 are demoted as

y A = f (A) yB = f (B) yCi = f
(
Ci

)
(2.39)

Having all the results, the first- and total-effect indices Si and ST i for the vector Xi can be obtained. The
first-order sensitivity indices are estimated as follows:

Si =
V

[
E

(
Y | Xi

)]
V (Y )

= y A · yCi − f 2
0

y A · y A − f 2
0

=
(1/N )

∑N
j=1 y ( j )

A y ( j )
Ci

− f 2
0

(1/N )
∑N

i=1

(
y ( j )

A

)2 − f 2
0

(2.40)

where

f 2
0 =

 1

N

N∑
j=1

y ( j )
A

2

(2.41)

is the mean, and the symbol (·) denotes the scalar product of two vectors. The total-effect indices are esti-
mated as follows:

STi = 1−
V

[
E

(
Y | X∼i

)]
V (Y )

= 1− yB · yCi − f 2
0

y A · y A − f 2
0

= 1−
(1/N )

∑N
j=1 y ( j )

B y ( j )
Ci

− f 2
0

(1/N )
∑N

j=1

(
y ( j )

A

)2 − f 2
0

(2.42)
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The total computational cost of this strategy is much lower. For A and B , it cost N +N runs of the models; for
Ci , as there are k inputs, it needs k ×N simulations. In total the cost will be N (k +2), while the strategy in the
first paragraph needs N 2 simulations.
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Methodology

3.1. The hydrodynamic model and the software used for simulations

3.1.1. The hydrodynamic model: 3D DCSM-FM model

The sensitivity analysis is conducted in the three-dimensional hydrodynamic model called the 3D Dutch
Continental Shelf Model developed in D-HYDRO Flexible Mesh (3D DCSM-FM). The model is originally setup
as part of Deltares’ strategic research funding and has been used for numerous studies. It is developed in
D-HYDRO Flexible Mesh and is based on the horizontal schematization of the 2D DCFM-SM model [57]. 3D
DCSM-FM can simulate the hydrodynamic process within the Northwest European Shelf, including the North
Sea and adjacent shallow seas and estuaries such as the Wadden Sea and the Eastern and Western Scheldt.
Specifically, it covers the area between 15° W to 13° E and 43° N to 64° N. The model divides the area into the
computational gird. The network has a resolution that increases with decreasing water depth, and the shapes
of the grid can change with the area. The areas of refinement were specified with smooth polygons; areas
with different resolution are connected with triangles. Also, the cell size can vary with the square root of the
depth. In the case of this thesis project, the grids are uniformly polygons, and the grid size is chosen as 0.5
nm. The model has been validated with respect to water levels, sea surface temperature, sea surface salinity
gradients and current velocities in different areas [57].

Figure 3.1: Overview (left) and (right) of the DCSM-FM model network with the colours indicating the grid size
(yellow: ∼ 4 nm; green: ∼ 2 nm; blue: ∼ 1 nm; red: ∼ 0.5 nm). [57]

3.1.2. The simulation software: Delft3D FM

The software Delft3D Flexible Mesh Suite (Delft3D FM) is used in this thesis project to run the model. Specifi-
cally, the hydrodynamic module D-Flow Flexible Mesh (D-Flow FM) is used, which is part of Delft3D FM. The

21
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D-Flow FM module is built with use of the Delta Shell framework. There are also other modules compliant
with the framework, for example, D-Waves, D-Water Quality, D-Real Time Control and D-Rainfall Runoff.

D-Flow FM can simulate the process of hydrodynamic flow, waves, water quality and ecology. It is a multi-
dimensional (1D, 2D and 3D) hydrodynamic (and transport) simulation program which calculated non-
steady flow and transport phenomena that results from tidal and meteorological forcing on structured and
unstructured, boundary fitted grids. The term Flexible Mesh in the name refers to the flexible combination
of unstructured grids consisting of triangles, quadrangles, pentagons, and hexagons [15].

3.1.3. The files and operation process of the model in the thesis project

Input files are needed to set up the hydrodynamic model. All parameters originate from the physical process.

All the input data required in the physical phenomenon and simulation process is collected in the Master
Definition Unstructured file, called a mdu-file. Also, some attribute files where relevant data is stored can be
defined and referred to in the mdu-file, such as ext-file containing external forcing files, net.nc-files contain-
ing grid information, pli-file containing boundary condition location information, etc. The mdu-file mainly
has the following sections: [General] containing the name and version, [geometry], [numerics], [physics],
[wind], [time], [restart], [external forcing] and [output].

In this thesis project, all the changes of parameters occur in mdu-file, where the parameters are constant
values. The attribute files keep the same. Instead of running the models locally by using GUI, the models are
uploaded in the cluster in Linux to run, after only changing the parameters in the mdu-files.

The results are exported in the his- and/or map-files. In the his-file, outputs’ results of different layers and
locations at various timepoints are stored.

Figure 3.2: The example of his-file opened in Panoply, showing part of the outputs.
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3.2. The choices of observation points

3D DCSM-FM can give the simulation results within a large area. However, we would like to know the sen-
sitivity of parameters at some specific points. Thus, some observation points are selected properly to do the
sensitivity analysis in this section.

As introduced in chapter 1, the German pilot tests the potential for the cultivation of blue mussels, or Mytilus
edulis, and the seaweeds, or specifically Saccharina latissima (which is also called sugar kelp), in combination
with wind energy production. The experiment is conducted at a platform called FINO3. In January 2002,
three research platforms named FINO were decided to be established in three potential suitable areas in the
North and Baltic Seas for the demands of larger offshore wind farms. In 2009, the construction of FINO3 was
completed and the platform has been operated since then by the Research & Development (R&D) Centre Kiel
University of Applied Science (FuE-Zentrum FH Kiel GmbH) [2].

Before the construction, a variety of meteorological, hydrological and soil investigation were conducted to
decide the best location. The FINO3 research platform stands 80 km off Sylt, in the midst of German offshore
wind farms Butendiek, DanTysk and Sandbank [2].

Figure 3.3: The FINO3 research platform stands 80 km off Sylt, in the midst of German
offshore wind farms Butendiek, DanTysk and Sandbank. [2]

(a) Locations of observation points (b) Observation points-zoomed in

Figure 3.4: The six observation points are located 80 km off Sylt.

The FINO3 platform is chosen as an observation point. As comparisons of the point, several other observation
points around FINO3 are also selected in the model to conduct sensitivity analysis (see figure above). They
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are in the different directions of FINO3, also in the different locations towards the wind farms, considering
the influences of the wind farms on the water currents. The exact coordinates of the six observation points
are displayed in the following table:

Table 3.1: Locations of six observation points.

Observation points Latitude Longitude
Point01 (FINO3) 54°11’34.52"N 7° 9’45.66"E
Point02 54°13’28.83"N 6°56’56.73"E
Point03 54° 6’3.41"N 7° 3’27.55"E
Point04 54° 1’12.28"N 7° 4’29.02"E
Point05 54°11’46.73"N 6°54’6.66"E
Point06 54°22’43.67"N 7° 8’50.74"E

3.3. The choices of outputs and inputs

In the simulations of the model are a lot of parameters and outputs. Two outputs relative to mussel and
seaweed cultivation are chosen in this thesis project. Based on the output variables, specific inputs related to
the outputs are selected, as described below.

3.3.1. Choices of outputs

Influential factors of blue mussels and seaweeds cultivation are discussed in chapter 2.1.2 and 2.1.3. Current
velocity and temperature are main factors to both blue mussels and seaweeds. Nutrients are also important
to both, but this variable is covered by the water quality model and does not appear in the hydrodynamic
model.

As a result, current velocity and temperature are selected in 3D DCSM-FM model as outputs in sensitivity
analysis, which largely influence the growth of blue mussels and seaweeds.

3.3.2. Choices of inputs

A large number of parameters exist in the model. In this thesis project, the parameters of the model are
considered as ‘inputs’, and the inputs in sensitivity analysis are all selected from mdu-file (chapter 3.1.3). The
inputs corresponding to temperature and current velocity are illustrated as follows, which are confirmed by
the scientists from Deltares.

Table 3.2: Ranges of inputs and corresponding outputs.

Parameters Explanations
Corresponding

outputs
Ranges

Baseline Min Max

Vicouv
Uniform horizontal

eddy viscosity (m2/s)
Temperature,

current velocity
0,1 0,1 2

Dicouv
Uniform horizontal

eddy diffusivity (m2/s)
Temperature,

current velocity
0,1 0,1 2

Vicoww
Uniform vertical

eddy viscosity (m2/s)
Temperature,

current velocity
0,00005 0,000001 0,0001

Dicoww
Uniform vertical

eddy diffusivity (m2/s)
Temperature,

current velocity
0,00002 0,000001 0,0001

Smagorinsky
Smagorinsky factor

in horizontal turbulence
Temperature,

current velocity
0,2 0,05 0,3

Stanton Convective heat flux Temperature 0,0013 0,001 0,0016
Dalton Evaporative heat flux Temperature 0,0013 0,001 0,0016
Rhoair Air density (kg/m3) Current velocity 1,2265 1,1639 1,3669
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In the details, some definitions in the explanations are listed below:

• Eddy viscosity is the proportionality factor describing the turbulent transfer of energy as a result of
moving eddies, giving rise to tangential stresses [23].

• Eddy diffusivity is the coefficient describing any diffusion process by which substances are mixed in
the atmosphere or in any fluid system due to eddy motion [32].

• The Smagorinsky model [44] is considered as the pioneer subgrid-scale model for Large Eddy Simula-
tion (LES), which is a method less computationally expensive than direct flow simulation that can give
a high-resolution transient solution for an aerodynamic problem [56]. Smagorinsky Constant is used
to calculate the eddy viscosity in the model.

• Convection (or convective heat transfer) is the transfer of heat from one place to another due to the
movement of fluid.

• Latent heat flux (He) comprises energy lost (gained) by the stream during evaporation (condensation)
as water moves from a higher to lower energy state (or vice versa) [50].

In this table, the baseline value are the default values in the mdu-file; the minimum and the maximum of
the ranges are based on it, suggested by the experts from Deltares. And all the parameters are assumed to
distribute uniformly within the ranges. According to the table, seven inputs are selected for temperature, and
six inputs are for current velocity, and among them five parameters are overlapped.

It is worth noting that the minimum values of the parameters are set as zero at first except Stanton, Dalton and
Rhoair. However, some simulations crashed due to the value of zero. The possible explanations can be found
in chapter 5.1. After changing zero into the values very close to zero, all simulations can run successfully. In
chapter 3.4, an example solution of results with crashed files partly will be introduced.

3.4. Morris method

In the 2, the theories of different methods are introduced, mainly including the concepts, sampling strategies
and sensitivity measurements. In the methodology part, the sections of the three methods will be organized
in the similar structures, but this part will focus on the real operations in the thesis project, along with the
tools used and solutions of problems.

3.4.1. Sample generation

According to chapter 2.3, in a hypercube, several settings decide the sampling strategy of Morris method:
number of levels, Morris step size, number of trajectories and number of factors. The number of samples are
decided by the number of trajectories and number of factors.

The settings for Morris method are as follows:

Table 3.3: Settings in Morris method.

Number of levels (p) 8
Morris step size (δ= p/[2(p −1)]) 4/7
Number of trajectories (r ) 10

Number of factors (k)
Temperature: 7
Current velocity: 6

Number of samples (k +1)∗ r
Temperature: (7+1)*10=80
Current velocity: (6+1)*10=70

To generate the samples for Morris method according to the ranges in chapter 3.3.2, the Elementary Effects
(EE) Sampling Package is used, which is developed by Drs. Yogesh Khare and Rafael Muñoz-Carpena [24].
The main function of this package, ‘Fac_Sampler.m’, generates input factor samples into a unit hypercube,
and transforms them properly according to the input distributions.
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To use this sampling package, the ‘.fac’ file is compulsory in the codes. The file contains the following in-
formation: (a) the number of input factors; (b) default distribution truncation values; (c) distribution type
and distribution characteristics for each input factor. The ‘.fac’ file can be generated from SimLab v2.2.1 [42],
which can be downloaded from the references part in the Sampling Package page [24]. The manual can also
be found in this page. Truncated distributions perform better to get accurate results consistent with variance-
based method, when parameter distributions have long tails (Normal, LogNormal, Weibull, Gamma, Expo-
nential). Different distributions of parameters can be generated via SimLab, and in this thesis project, all
the parameters are assumed as uniformly distributed within the ranges. The detailed examples are in the
appendix.

Besides the ‘.fac’ file, the main function ‘Fac_Sampler.m’ asks for other setting in the table, along with the
sampling strategies. Five sampling strategies can be chosen in this package: (a) the method of Optimized
Trajectories [OT] [11]; (b) the Modified Optimized Trajectories [MOT] [41]; (c) Sampling for Uniformity [SU]
[26]; and (d) Enhanced Sampling for Uniformity [eSU] [12]; and (e) RadialeSU/ReSU [12]. Among them the
method of Optimized Trajectories [OT] [11] introduced in chapter 2.3.4 is used in this thesis project. The
samples can be generated in the form of ‘Excel’ or ‘Text’.

In the following sections, including the copula-based method and variance-based method, the two systems,
temperature and current velocity will be discussed about separately.

temperature

First, part of the samples with ranges starting from zero are shown in the table.

Table 3.4: Samples simulated for temperature in Morris method, ranging from zero.

Vicouv Dicouv Vicoww Dicoww Smagorinsky Stanton Dalton
1,142857 2 4,29E-05 4,29E-05 0,3 0,001171 0,001343
1,142857 2 4,29E-05 4,29E-05 0,3 0,001171 0,001
0 2 4,29E-05 4,29E-05 0,3 0,001171 0,001
0 2 4,29E-05 0,0001 0,3 0,001171 0,001
0 2 4,29E-05 0,0001 0,3 0,001514 0,001
0 0,857143 4,29E-05 0,0001 0,3 0,001514 0,001
0 0,857143 0,0001 0,0001 0,3 0,001514 0,001
0 0,857143 0,0001 0,0001 0,128571 0,001514 0,001
2 1,714286 5,71E-05 2,86E-05 0 0,001514 0,0016
2 1,714286 0 2,86E-05 0 0,001514 0,0016
2 0,571429 0 2,86E-05 0 0,001514 0,0016
2 0,571429 0 8,57E-05 0 0,001514 0,0016
2 0,571429 0 8,57E-05 0 0,001171 0,0016
2 0,571429 0 8,57E-05 0 0,001171 0,001257
0,857143 0,571429 0 8,57E-05 0 0,001171 0,001257
0,857143 0,571429 0 8,57E-05 0,171429 0,001171 0,001257
0 1,142857 4,29E-05 7,14E-05 0,128571 0,001257 0,0016
0 1,142857 0,0001 7,14E-05 0,128571 0,001257 0,0016
0 0 0,0001 7,14E-05 0,128571 0,001257 0,0016
0 0 0,0001 7,14E-05 0,3 0,001257 0,0016
0 0 0,0001 1,43E-05 0,3 0,001257 0,0016
1,142857 0 0,0001 1,43E-05 0,3 0,001257 0,0016
1,142857 0 0,0001 1,43E-05 0,3 0,0016 0,0016
1,142857 0 0,0001 1,43E-05 0,3 0,0016 0,001257

The ranges starting from 0 will result in a problem in simulations. The problem and one possible solution
with these ranges will be discussed in chapter 3.4.3. However, to keep the consistency and avoid different
possible troubles in following steps, the ranges will be changed to non-zero for all the systems in this thesis
project. The new ranges are shown in chapter 3.3.2. The following table gives part of the new samples.

In the table 3.5, each eight lines form a trajectory. Within each eight lines, one parameter only changes once.
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Table 3.5: Samples simulated for temperature in Morris method.

Vicouv Dicouv Vicoww Dicoww Smagorinsky Stanton Dalton
0,642857 0,1 8,59E-05 0,0001 0,192857 0,001343 0,001343
0,642857 0,1 8,59E-05 0,0001 0,192857 0,001 0,001343
0,642857 0,1 8,59E-05 0,0001 0,192857 0,001 0,001
1,728571 0,1 8,59E-05 0,0001 0,192857 0,001 0,001
1,728571 0,1 2,93E-05 0,0001 0,192857 0,001 0,001
1,728571 0,1 2,93E-05 0,0001 0,05 0,001 0,001
1,728571 0,1 2,93E-05 4,34E-05 0,05 0,001 0,001
1,728571 1,185714 2,93E-05 4,34E-05 0,05 0,001 0,001
2 2 2,93E-05 5,76E-05 0,157143 0,0016 0,001171
2 2 2,93E-05 0,000001 0,157143 0,0016 0,001171
2 2 2,93E-05 0,000001 0,3 0,0016 0,001171
2 2 2,93E-05 0,000001 0,3 0,0016 0,001514
2 2 8,59E-05 0,000001 0,3 0,0016 0,001514
2 2 8,59E-05 0,000001 0,3 0,001257 0,001514
2 0,914286 8,59E-05 0,000001 0,3 0,001257 0,001514
0,914286 0,914286 8,59E-05 0,000001 0,3 0,001257 0,001514
0,1 1,457143 1,51E-05 0,0001 0,05 0,001257 0,001343
0,1 1,457143 1,51E-05 0,0001 0,05 0,001257 0,001
0,1 1,457143 7,17E-05 0,0001 0,05 0,001257 0,001
0,1 1,457143 7,17E-05 0,0001 0,05 0,0016 0,001
0,1 0,371429 7,17E-05 0,0001 0,05 0,0016 0,001
0,1 0,371429 7,17E-05 4,34E-05 0,05 0,0016 0,001
0,1 0,371429 7,17E-05 4,34E-05 0,192857 0,0016 0,001
1,185714 0,371429 7,17E-05 4,34E-05 0,192857 0,0016 0,001

Between each two line, only one parameter changes, which meets the idea of One-at-a-time (OAT) strat-
egy in a hypercube explained in chapter 2.3. Also, within each eight lines, the endpoints of samples are joint
together, making the samples a complete connected path, this is also the idea of reducing the number of sam-
ples introduced in chapter 2.3.3. Note that in chapter 2.3.2, the Morris step is corresponding to the ranges of
[0, 1]. In the table, the ‘steps’ of parameters in trajectories, which means the changes of a parameter within
one trajectory, are transferred into the real scale of parameters from [0 ,1]. The normalization will be oper-
ated automatically in the analysis package. To illustrate the samples related to the ranges and real physical
phenomenon, the unnormalized samples are shown.

Current velocity

Current velocity has six inputs, which are introduced in chapter 3.3.2. Table 3.6 shows part of the samples
for current velocity in Morris method. The explanations of the table are very similar to the explanations for
temperature’s samples. Here in table 3.6, seven lines form a trajectory.

3.4.2. Simulations of the models and time series of outputs

After having the samples, the Matlab codes are written to replace the values in mdu-files and generate new
ones. Besides the values of parameters, there are some other settings in the models. All the files including
the grid and map information, external information, etc. are provided by Deltares. The coordinates of six
observation points are written in xyn-files, and the simulation periods are set from 2004-12-25 02:24:00 to
2005-01-25 02:24:00, lasting for one month. The time interval is 30 minutes, and there are 1489 timepoints
in total. Specifically, 2004-12-25 02:24:00 is the 1st timepoint, 2004-12-25 02:54:00 is the 2nd timepoint, 2004-
12-25 03:24:00 is the 3r d , and so on.

To simplify the simulations, files for each model are saved in a subfolder, and an overall shell file is created
to upload the models to the Linux-based cluster together. In the cluster, seven models can run at the same
time. Totally there are 150 models needed in Morris method, among them 80 are for temperature and 70 are
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Table 3.6: Samples simulated for current velocity in Morris method.

Vicouv Dicouv Vicoww Dicoww Smagorinsky Rhoair
0,914286 0,642857 0,000001 4,34E-05 0,157143 1,2509
0,914286 0,642857 0,000001 4,34E-05 0,157143 1,3669
2 0,642857 0,000001 4,34E-05 0,157143 1,3669
2 1,728571 0,000001 4,34E-05 0,157143 1,3669
2 1,728571 0,000001 0,0001 0,157143 1,3669
2 1,728571 0,000001 0,0001 0,3 1,3669
2 1,728571 5,76E-05 0,0001 0,3 1,3669
2 0,914286 0,0001 5,76E-05 0,05 1,2799
2 0,914286 0,0001 5,76E-05 0,05 1,1639
2 0,914286 0,0001 0,000001 0,05 1,1639
0,914286 0,914286 0,0001 0,000001 0,05 1,1639
0,914286 2 0,0001 0,000001 0,05 1,1639
0,914286 2 0,0001 0,000001 0,192857 1,1639
0,914286 2 4,34E-05 0,000001 0,192857 1,1639
1,185714 1,185714 0,000001 7,17E-05 0,3 1,1639
0,1 1,185714 0,000001 7,17E-05 0,3 1,1639
0,1 0,1 0,000001 7,17E-05 0,3 1,1639
0,1 0,1 0,000001 1,51E-05 0,3 1,1639
0,1 0,1 0,000001 1,51E-05 0,157143 1,1639
0,1 0,1 5,76E-05 1,51E-05 0,157143 1,1639
0,1 0,1 5,76E-05 1,51E-05 0,157143 1,2799

for current velocity. All the simulations took about one week to complete in total.

In the outputs file, the vertical directions are divided into different layers. The data of top layer closest to the
sea surface, where the blue mussel and seaweed cultivation are conducted, is used in sensitivity analysis. At
each observation points, there are 80/70 model results for each output. After doing the average to the models,
we can have one time series for each output at each observation points. According to the time series plots,
several timepoints were selected to do sensitivity analysis.

Temperature

Figure 3.5 shows the time series plot of temperature simulated in Morris method at six different observation
points.

In the plot we can see the trends of the temperature show similar patterns in different observation points. The
up-and-down changes indicate daily variations. Also, there is an overall downward trend, meeting the gradual
coldness in January. First two timepoints having obvious characteristics are chosen, one crest and one trough.
These two will be compared to study if the crests and troughs keep the same patterns in sensitivity analysis.
Then to prove if the crests keep the same patterns, and if the trough keeps the same, one more crest and one
more trough are selected. They are separated far on the time scale, from which the influences of simulation
time can also be understood roughly.

The two crests are marked as red lines in the figure 3.5: the 693r d timepoint at 2005-01-08 12:24:00, the 1159th

timepoint at 2005-01-18 05:24:00. The two troughs are marked as blue lines in the figure: the 130th timepoint
at 2004-12-27 18:54:00, the 750th timepoint at 2005-01-09 16:54:00.

Current velocity

Figure 3.6, 3.7 and 3.8 show the time series plots of current velocity in x-, y- and z-directions simulated in
Morris method at six different points.

The figures all show up-and-down perturbations, which represent the direction changes of tides. Changes in
x- and y-direction are more regular around a comparatively fixed value, while the median of the ‘waves’ in
y-direction have a changing trend. It can be understood if the wind is strong in this direction. The data of
winds in this period is lost, but this assumption is reasonable. The numerical instability can be seen at first,



3.4. Morris method 29

Figure 3.5: Average temperature of 80 models at six observation points in Morris method. The lines from left to
the left: the 130th timepoint at 2004-12-27 18:54:00, the 693rd timepoint at 2005-01-08 12:24:00, the 750th

timepoint at 2005-01-09 16:54:00, the 1159th timepoint at 2005-01-18 05:24:00. The blue lines are located in
troughs, red lines are in crests.

Figure 3.6: Average x-direction velocity of 50 models at six observation points in copula-based method. The left
red line is 380th timepoint, 2005-01-01 23:54:00, located in crest; the right blue line is 396th timepoint,

2005-01-02 07:54:00, located in trough.
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Figure 3.7: Average y-direction velocity of 50 models at six observation points in copula-based method. The left
red line is 372nd timepoint, 2005-01-01 19:54:00, located in crest; the right blue line is 381st timepoint,

2005-01-02 00:24:00, located in trough.

Figure 3.8: Average z-direction velocity of 50 models at six observation points in copula-based method. The left
red line is 378th timepoint, 2005-01-01 22:54:00, located in crest; the right blue line is 391st timepoint, 2005-01-02

05:54:00, located in trough.
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where the strong fluctuations take place. It can be understood as the boundary conditions are set first, and
the locations within the domain take time to be stable.

Similar to temperature, crests and troughs are selected to conduct sensitivity analysis in all three directions.
They are marked as red and blue lines separately. In x-direction, the crest is selected at 380th timepoint,
2005-01-01 23:54:00; the trough is selected at 396th timepoint, 2005-01-02 07:54:00. In y-direction, the crest
is selected at 372nd timepoint, 2005-01-01 19:54:00; the trough is selected as 381st timepoint, 2005-01-02
00:24:00. In z-direction, the crest is selected at 378th timepoint, 2005-01-01 22:54:00; the trough is selected at
391st timepoint, 2005-01-02 05:54:00.

Notations

To make the timepoints easier to be marked, the timepoints chosen to do sensitivity analysis at will be noted
in table 3.7.

Table 3.7: Notations of different timepoints selected to simulate the model.

Outputs Crests/troughs Timepoints Notations

Temperature
Crests

693rd: 2005-01-08 12:24:00 TC1
1159th: 2005-01-18 05:24:00 TC2

Troughs
130th :2004-12-27 18:54:00 TT1
750th :2005-01-09 16:54:00 TT2

Current velocity:
x-direction

Crests 380th :2005-01-01 23:54:00 VXC
Troughs 396th :2005-01-02 07:54:00. VXT

Current velocity:
y-direction

Crests 372nd :2005-01-01 19:54:00 VYC
Troughs 381st :2005-01-02 00:24:00 VYT

Current velocity:
z-direction

Crests 378th :2005-01-01 22:54:00 VZC
Troughs 391st :2005-01-02 05:54:00 VZT

3.4.3. Sensitivity measurements

As mentioned in chapter 3.3.2, in the simulations of temperature with parameters ranging from zero, some
simulations crashed: 10th , 11th , 12th , 14th , 15th , 16th and 77th . Among them, the first six samples are within
the 2nd trajectories, and the 77th sample is in the 10th trajectory. Before changing the ranges not from zero,
a solution was tried first to solve the problem. ten trajectories are included in the samples, and it is assumed
that deleting two trajectories where crashed files existed is tolerated. Thus, the remaining eight trajectories
are used to calculate the sensitivity indices. The idea and the calculations are the same, and the results will
be showed in chapter.

However, this strategy losses the generality, as we don’t know which trajectories will have the failed simula-
tions. It will be complex to distinguish out the incomplete trajectories every time, and it is not clear whether
there will be too much incomplete trajectories. Therefore, the solution of deleting part of the paths is not
suggested.

To calculate the sensitivity measurements, the Elementary Effects (EE) Measures and Plots Package is used
in Matlab, which is developed by Drs. Yogesh Khare and Rafael Muñoz-Carpena [24]. The main function
‘EE_SenMea_Calc.m’ calculated the elementary mean µ, the absolute mean µ∗ and standard deviation σ in-
troduced in chapter 2.3.2. Several files are needed in the function. The ‘.fac’ file is also needed in this function,
which is the same as the sampling package (chapter 3.4.1). The sample files and the corresponding outputs in
‘.xlsx’ files are also compulsory. Besides these, the function needs the ‘Fac_Sam_Char’ file, which is generated
along with the samples in the sampling package. It is a ‘.txt’ file, containing the following information: (a)
sampling strategy; (b) over sampling size; (c) number of factor levels; (d) number of trajectories; (e) number
of factors.

The package will generate several files as outputs. ‘EE_SA_Measures.txt’ contains the information ofµ,µ∗ and
σ. ‘Raw_EE.txt’ and ‘Raw_EE.mat’ save raw elementary effects for all outputs, introduced in chapter 2.3.2. The
package also gives two figures for each model output. The first plot is of µ∗ and σ while the second consists
of µ and σ. Besides the dots in the plots, µ∗ = σ line is plotted in the first plot, and µ=±2σ/

p
r is plotted in

the second one (where r is the number of sampling trajectories, and σ/
p

r is noted by SEM, which means the
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standard error of the mean). The µ∗ = σ line threshold in the first plot is based on Chu-Agor et al. [13] and
Khare et al. [25]. The µ=±2σ/

p
r lines were proposed by Morris [33] to identify factors with dominant non-

linear effects. Factors above the lines in both plots are considered to have dominant interactions effects [24].
Also, in the second plot, if the coordinates lie outside of the wedge formed by the two lines, the expectation
of the factor’s distributions can be seen as non-zero with significant evidence [33]. Note that the lines are not
strict standards to evaluate the interaction effects, for example, parameters below them but close to the lines
might also include correlation information. Additionally, the monotonicity information of the effects can be
found in the plots. The factors are recognized with perfectly monotonic effects whenµ∗ = |µ| holds true. They
are indicated by solid red circles otherwise they are indicated by blue asterisk. In addition, bootstrapping
based 95% CI for µ∗ and µ are indicated on the subplots by horizontal error bars.

Also, to check the results of the package, another codes are recreated according to the logic and formulas in
chapter 2.3. The codes can be found in the appendix. The codes find the ‘steps’ where the differences of
each parameter contribute to the changes in the results. Then the elementary effects and sensitivity indices
are calculated according to the formulas. The codes only export the values, without the plots produced like
above. After testing, the two codes have the same outputs.

3.5. Copula-based method

In chapter 2.4, the theories of copula-based method are introduced. In this chapter, the operations of this
method will be presented, and the general steps are similar to Morris method in chapter 3.4.

3.5.1. Copula decision

The copulas including the correlation information will be defined before sample generation, to make the
samples more reasonable to the real physical process. The factors related will be gathered within the same
copula, and the correlations are within the ranges of [-1, 1]. To simplify the sample generation, in this thesis
project, each copula will only have two parameters, and the correlations will be defined as 1 or -1. The copulas
containing different number of parameters, with correlations other than 1 and -1 can be studied further (see
chapter 5.1). The copulas used in this thesis project are suggested by experts from Deltares.

Table 3.8: Copula defined before simulations.

Copulas Corresponding outputs Correlations
Vicouv – Dicouv Temperature, current velocity 1

Vicoww – Dicoww Temperature, current velocity 1
Stanton – Dalton Temperature 1

Smagorinsky Temperature, current velocity -
Rhoair Current velocity -

The explanations of the parameters can be found in chapter 3.3.2.

As illustrated in chapter 3.1.3, all the parameters changed are background constant values in mdu-file. The
horizontal and vertical background eddy viscosity/diffusivity are used to simulate the effects of the mixing of
respectively velocity that cannot be resolved by the numerical grid. Therefore, in most cases the rank corre-
lation between Vicouv and Dicouv is positive. The similar situation holds for Vicoww and Dicoww. However,
note that these background values in mdu-files and the eventually used viscosity/diffusivity values can be dif-
ferent. Thus, the resulting temperature and current velocity can be different. In vertical direction, the eventu-
ally used values are determined by the K−ε turbulence model; in horizontal direction, the horizontal viscosity
is the result of background value combined with the contribution of the Smagorinsky (subgrid) model. One
might doubt that it is not the ‘real’ connection between viscosity/diffusivity and temperature/current veloc-
ity, but in this thesis project, the parameters in mdu-files are studied, instead of the real values, therefore the
differences are tolerated.

Convection and evaporation are different processes, but the values Stanton and Dalton are for the transfer
between the same substances. A positive rank correlation between the two parameters can be expected. In
practice, the two values are set to the same value in numerical models. If needed, one or the other can be
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increased or decreased slightly during calibration, so a negative correlation is also possible. To simplify the
operation and keep the same as in practice, the correlation between Stanton and Dalton is set as 1.

As explained above, the eventually used viscosity is contributed to by Smagorinsky horizontal turbulence,
and a positive rank correlation can be seen in the computation. Smagorinsky is useful in case of spatially
varying grid cell sizes, as the effects of mixing cannot be resolved by the numerical grid which depends on the
grid cell size, and a uniform Vicouv value will not be sufficient to capture this correctly. However, there is not
a clear relation between the model input keywords Smagorinsky and Vicouv, which serves as the background
value.

A similar reason holds for RhoAir and Vicouv/Vicoww: they are background values. However, increasing
RhoAir and increasing Vicoww can be understood to have a similar effect on the model results. For example,
both will breakdown temperature stratification when the values are increased. Increasing RhoAir (air density)
results in more wind stress, generating more vertical shear, and then more vertical mixing and increasing
Vicoww will appear.

3.5.2. Sample generation

Based on chapter 2.4, the settings of sample generation in copula-based method are as follows:

Table 3.9: Settings in Copula-based method.

Number of levels (p) 8
Morris step size (δ= p/[2(p −1)]) 4/7
Number of trajectories (r ) 10

Number of segments (k)
Temperature: 4
Current velocity: 4

Number of samples (k +1)∗ r
Temperature: (4+1)*10=50
Current velocity: (4+1)*10=50

In the table 3.9, the segments include copulas and independent factors. The details of the copulas can be
found in table, and the ranges of the factors is in table.

To generate the samples, the Matlab codes developed by Ţene et al. [51] were used. It is part of Deltares
OpenEarthTools, and it is specifically used to do copula-based sensitivity analysis. The ‘step1_sampling.m’
function contains related functions and information, where the settings will be declared, including the infor-
mation in table above, parameter ranges, correlations and groups. The function assumes each parameter is
uniformly distributed within the ranges. In ‘step1_sampling.m’, ‘extended_morris.m’ function distinguishes
copulas and dependent parameters, and generates the samples based on the three steps in chapter 2.4: first
choose the target cells, then compute rank statistics; in each cell, the corner and the order are decided to
construct the paths. The samples will be saved in xlsx-file; the settings and paths will be saved respectively in
‘setup.mat’ and ‘paths.mat’ files, which will be used later in sensitivity measurements codes.

The following tables give examples of samples in temperature and current velocity.

Temperature

In the table 3.10, there are seven parameters with four segments, each five forming a trajectory. Each param-
eter changes only once within one trajectory, and only one parameter changes within two adjacent samples.
In each trajectory, the first sample and the last sample represents the starting and ending points in a cell re-
spectively, which are on the opposite corner of the chosen cell. The values of Vicouv and Dicouv are always
the same as the correlation is 1. It holds the same for Vicoww and Dicoww, Stanton and Dalton.

Current velocity

Table 3.11 gives the first three trajectories as an example. For current velocity, there are six parameters with
four segments, each five forming a trajectory. The characteristics are similar with table above. In current
velocity, the values of Vicouv and Dicouv, Vicoww and Dicoww are always the same as the correlations are 1.
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Table 3.10: Samples simulated for temperature in copula-based method.

Vicouv Dicouv Vicoww Dicoww Smagorinsky Stanton Dalton
2 2 1,51429E-05 1,51429E-05 0,15714 0,00126 0,00126
1,72857 1,72857 1,51429E-05 1,51429E-05 0,15714 0,00126 0,00126
1,72857 1,72857 0,000001 0,000001 0,15714 0,00126 0,00126
1,72857 1,72857 0,000001 0,000001 0,15714 0,00117 0,00117
1,72857 1,72857 0,000001 0,000001 0,19286 0,00117 0,00117
1,45714 1,45714 2,92857E-05 2,92857E-05 0,26429 0,001 0,001
1,45714 1,45714 2,92857E-05 2,92857E-05 0,26429 0,001086 0,001086
1,45714 1,45714 1,51429E-05 1,51429E-05 0,26429 0,001086 0,001086
1,18571 1,18571 1,51429E-05 1,51429E-05 0,26429 0,001086 0,001086
1,18571 1,18571 1,51429E-05 1,51429E-05 0,3 0,001086 0,001086
1,18571 1,18571 7,17143E-05 7,17143E-05 0,22857 0,001257 0,001257
1,18571 1,18571 7,17143E-05 7,17143E-05 0,19286 0,001257 0,001257
1,18571 1,18571 7,17143E-05 7,17143E-05 0,19286 0,001343 0,001343
0,91429 0,91429 7,17143E-05 7,17143E-05 0,19286 0,001343 0,001343
0,91429 0,91429 5,75714E-05 5,75714E-05 0,19286 0,001343 0,001343

Table 3.11: Samples simulated for current velocity in copula-based method.

Vicouv Dicouv Vicoww Dicoww Smagorinsky Rhoair
0,37143 0,37143 5,75714E-05 5,75714E-05 0,19286 1,2219
0,37143 0,37143 5,75714E-05 5,75714E-05 0,22857 1,2219
0,37143 0,37143 4,34286E-05 4,34286E-05 0,22857 1,2219
0,1 0,1 4,34286E-05 4,34286E-05 0,22857 1,2219
0,1 0,1 4,34286E-05 4,34286E-05 0,22857 1,2509
1,18571 1,18571 0,000001 0,000001 0,3 1,3669
1,18571 1,18571 0,000001 0,000001 0,26429 1,3669
0,91429 0,91429 0,000001 0,000001 0,26429 1,3669
0,91429 0,91429 0,000001 0,000001 0,26429 1,3379
0,91429 0,91429 1,51429E-05 1,51429E-05 0,26429 1,3379
2 2 1,51429E-05 1,51429E-05 0,05 1,2799
1,72857 1,72857 1,51429E-05 1,51429E-05 0,05 1,2799
1,72857 1,72857 1,51429E-05 1,51429E-05 0,08571 1,2799
1,72857 1,72857 2,92857E-05 2,92857E-05 0,08571 1,2799
1,72857 1,72857 2,92857E-05 2,92857E-05 0,08571 1,3089

3.5.3. Simulations of the models and time series of outputs

The same as chapter 3.5.2, values of parameters in mdu-files are changed through Matlab codes, and each
model with different parameters is located in subfolders. Other files including the grid and map information,
external information, etc. keep the same for all the models. The same observation points, simulation periods
and time intervals are used (see chapter 3.2 and chapter 3.5.2). In the total, there are 100 models needed in
copula-based method, where 50 are for temperature and 50 are for current velocity. They are uploaded in the
cluster to run, taking approximate four days to finish.

The top layer closest to the sea surface is chosen to be studied. After doing the average on 50 models at each
observation points, we can have the time series plots for the outputs, temperature and current velocity.

Temperature

Table 3.9 shows the time series plot of temperature simulated in Morris method at six different observation
points.

The plot shows similar features to the time series in Morris method. The trends of the curves are similar at
different observation points; the up-and-down changes were from the changes of day and night; the overall
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Figure 3.9: Average temperature of 50 models at six observation points in copula-based method. The lines from
left to the left: the 130th timepoint at 2004-12-27 18:54:00, the 693rd timepoint at 2005-01-08 12:24:00, the 750th

timepoint at 2005-01-09 16:54:00, the 1159th timepoint at 2005-01-18 05:24:00. The blue lines are located in
troughs, red lines are in crests.

downward trend could be understood in January.

The two crest timepoints chosen in Morris method, TC1 and TC2, also meets the crests in table 3.10. Thus,
these two timepoints are chosen for sensitivity analysis in copula-based method. It holds the same for TT1
and TT2, which are at troughs.

Current velocity

Table 3.10, 3.11 and 3.12 show the time series plots of current velocity in x-, y- and z-directions simulated in
Morris method at six different points.

The features of the plots 3.10, 3.11 and 3.12 are similar to the simulation results in Morris method. The up-
and-down perturbations indicate the change of tides; the changes in x- and z-directions are comparatively
around a fixed value, while the changes in y-direction have different trends, which can be understood as the
influences of wind directions. As the boundary conditions are set first and it takes time for the locations
within the domain to be stable, the numerical instability can be seen at first.

All the points chosen in Morris method are all located exactly in the crests and troughs. Thus, the same
timepoints are chosen for copula-based methods: VXC, VXT; VYC, VYT; VZC, VZT. The explanations of the
notations can be found in chapter 3.5.2.

3.5.4. Sensitivity measurements

Ţene et al. developed the Matlab package to calculate sensitivity indices in copula-based method [51], as a
follow-up step of sample generation codes introduced in chapter 3.5.2. The main function is ‘step2_sensitivity.m’.
After loading ‘setup_copula.mat’ and ‘paths_copula.mat’ created by ‘step1_sampling.m’ introduced in chap-
ter 3.5.2, where the information of settings, copulas and paths are saved, combining the outputs of simula-
tions, the elementary effects and three sensitivity indices are calculated according to the definition. The cop-
ulas and independent parameters will be distinguished before calculation. The codes for plotting in chapter
3.4.3 will be adjusted, and similar plots will be created.
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Figure 3.10: Average x-direction velocity of 50 models at six observation points in copula-based method. The left
red line is 380th timepoint, 2005-01-01 23:54:00, located in crest; the right blue line is 396th timepoint,

2005-01-02 07:54:00, located in trough.

Figure 3.11: Average y-direction velocity of 50 models at six observation points in copula-based method. The left
red line is 372nd timepoint, 2005-01-01 19:54:00, located in crest; the right blue line is 381st timepoint,

2005-01-02 00:24:00, located in trough.
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Figure 3.12: Average z-direction velocity of 50 models at six observation points in copula-based method. The left
red line is 378th timepoint, 2005-01-01 22:54:00, located in crest; the right blue line is 391st timepoint, 2005-01-02

05:54:00, located in trough.

3.6. Variance-based method

In chapter 2.5, the general idea of using variance in variance-based method is introduced, along with the
sensitivity indices and the computation strategy. In this methodology part, the operations of variance-based
method will refer to the strategy in chapter 2.5.5.

3.6.1. Sample strategy

Two matrices A and B are compulsory for both temperature and current velocity. The size of A and B is
(N ,2k), where k is the number of inputs, and N is called a base sample, which is suggested to vary from a
few hundred to a few thousands. Besides, the number of matrices Ci are decided by k, where all the columns
are kept the same with matrix B , except the i th column being the same with the i th column of matrix A.
Therefore, the number of samples in total is N ∗ (k +2). To reduce the simulations of the model, N is chosen
as small as possible. From the previous two methods, the background value Vicouv and Dicouv have no
influence on the outputs (it will be discussed in chapter 5.1), thus, to simplify the models, these two values are
abandoned in variance-based method. For temperature, Vicoww and Dicoww are also skipped. The following
table shows the parameters used in variance-based method:

Table 3.12: Inputs and corresponding outputs in variance-based method

Outputs Inputs

temperature
Smagorinsky

Stanton
Dalton

Current velocity

Vicoww
Dicoww

Smagorinsky
Rhoair
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Temperature

In temperature, the matrix samples and results are provided by colleagues from Deltares. N is chosen as 100.
Thus, there are 100∗ (2+3) = 500 samples in temperature.

Current velocity

In current velocity, SimLab v2.2.1 [42] introduced in chapter 3.4 is used to generate the random matrices A
and B . Through SimLab v2.2.1, quasi-random sampling is used to generate A; random sampling is used to
generate B . As SimLab v2.2.1 has default numbers of samples, N is decided as 128 in current velocity, leading
to totally 128∗ (2+4) = 768 models.

Under certain conditions, largely governed by the method of compiling the sampling frame or list, a system-
atic sample of every nth entry from a list will be equivalent for most practical purposes to a random sample.
This method of sampling is sometimes referred to as quasi-random sampling [28]. In random sampling, each
sample has an equal probability of being chosen.

3.6.2. Simulations of the models and choosing timepoints

The results of temperature are provided by colleagues from Deltares. Thus, only models for current velocity
were needed to simulate.

The 768 models are divided into six matrices, and the following procedures are the same: changing the values
in mdu-files, creating subfolders to save each model, creating overall shell file to submit the models together
to the cluster.

As similarities appear between different timepoints, which will be discussed in the details in chapter 4, to
simplify the analysis and avoid duplication, only one timepoint was chosen for each system in variance-based
method. Timepoint VXC, VYC and ZYC were picked for current velocity in x-, y- and z-directions respectively.

3.6.3. Sensitivtiy measurements

The first-order sensitivity index and total effect index are calculated according to the formulas in chapter
2.5.5, using Matlab. The codes can be found in the appendix.
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Results

In this chapter the results of sensitivity analysis are discussed. The results are presented per methods: Mor-
ris method, copula-based method and variance-based method. In each method, two different outputs are
selected: temperature and current velocity, and current velocity data are available in three directions, which
will be discussed separately. In Morris method, four timepoints are selected for temperature; two timepoints
are selected for each direction in current velocity. In copula-based method, the same timepoints are selected.
In variance-based method, one timepoint is selected for temperature, and one timepoint is selected for each
direction in current velocity. Besides, six observation points are studied, including FINO3 platform.

4.1. Morris method

In this section, the results of temperature and three directions of current velocities are discussed respectively.
The values of elementary mean µ, absolute mean µ∗ and standard deviation σ are listed in tables. To present
more directly and clearly, the plots of µ∗ vsσ, and µ vsσ are created. Only part of the results will be illustrated
in the report, the full information can be found in appendix.

4.1.1. Temperature

As introduced in chapter 3.5, first, the ranges from zero are used in temperature’s simulations in Morris
method. Afterwards, the analysis will be based on the samples not ranging from zero. As a solution to crashed
files, incomplete trajectories are abandoned. This operation is only adapted as a possible solution on temper-
ature in Morris method. In details, the 2nd and 10th trajectories were deleted among the total ten trajectories.
To simplify the process, time series plots was not made in this strategy, and TC1 was chosen directly from the
analysis in chapter 3.5.2.

Table 4.1 shows the sensitivity analysis results at timepoint TC1. The interpretation of the table will be dis-
cussed later, combined with the results without ranging from zero.

Table 4.1: Morris method: sensitivity indices for temperature at timepoint TC1, parameters ranging from zero

Point1 Point2
facname mu* mu sigma facname mu* mu sigma

Dalton 0,20190 -0,20190 0,00822 Dalton 0,19798 -0,19798 0,00780
Smagorinsky 0,03066 -0,03066 0,01985 Stanton 0,02108 -0,02108 0,00493
Stanton 0,02347 -0,02347 0,00563 Smagorinsky 0,00193 -0,00118 0,00209
Vicoww 0,00092 -0,00090 0,00049 Vicoww 0,00063 -0,00063 0,00032
Dicoww 0,00028 0,00018 0,00034 Dicoww 0,00020 0,00012 0,00028
Vicouv 0 0 0 Vicouv 0 0 0
Dicouv 0 0 0 Dicouv 0 0 0

39
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Point3 Point4
facname mu* mu sigma facname mu* mu sigma

Dalton 0,20694 -0,20694 0,01235 Dalton 0,19684 -0,19684 0,00830
Smagorinsky 0,16594 -0,16594 0,03530 Smagorinsky 0,01883 -0,00503 0,02052
Stanton 0,01183 -0,01024 0,00995 Stanton 0,00529 -0,00245 0,00546
Vicoww 0,00182 0,00132 0,00185 Vicoww 0,00131 -0,00083 0,00118
Dicoww 0,00042 -0,00009 0,00062 Dicoww 0,00031 0,00020 0,00038
Vicouv 0 0 0 Vicouv 0 0 0
Dicouv 0 0 0 Dicouv 0 0 0

Point5 Point6
facname mu* mu sigma facname mu* mu sigma

Dalton 0,19720 -0,19720 0,00825 Dalton 0,17375 -0,17375 0,00745
Stanton 0,02663 -0,02663 0,00532 Smagorinsky 0,09701 -0,09701 0,02336
Smagorinsky 0,01001 -0,01001 0,00667 Stanton 0,03009 -0,03009 0,00600
Vicoww 0,00081 -0,00081 0,00025 Vicoww 0,00093 -0,00077 0,00068
Dicoww 0,00012 0,00008 0,00013 Dicoww 0,00037 0,00029 0,00030
Vicouv 0 0 0 Vicouv 0 0 0
Dicouv 0 0 0 Dicouv 0 0 0

In the following parts, all the results are based on the ranges in table 3.2. Table 4.2 shows the three sensitivity
indices at timepoint TC1: 2005-01-08 12:24:00. To compare the differences between observation points, the
table presents the complete results at TC1. Table ranks the parameters according to the values of µ.

Table 4.2: Morris method: sensitivity indices for temperature at timepoint TC1

Point1 Point2
facname mu* mu sigma facname mu* mu sigma

Dalton 0,20232 -0,20232 0,00673 Dalton 0,19813 -0,19813 0,00620
Smagorinsky 0,02255 -0,02255 0,01616 Stanton 0,01904 -0,01904 0,00442
Stanton 0,02114 -0,02114 0,00478 Smagorinsky 0,00160 -0,00054 0,00213
Vicoww 0,00050 -0,00008 0,00061 Vicoww 0,00024 -0,00024 0,00015
Dicoww 0,00026 0,00017 0,00025 Dicoww 0,00018 0,00009 0,00019
Vicouv 0 0 0 Vicouv 0 0 0
Dicouv 0 0 0 Dicouv 0 0 0

Point3 Point4
facname mu* mu sigma facname mu* mu sigma

Dalton 0,20648 -0,20648 0,00945 Dalton 0,19713 -0,19713 0,00695
Smagorinsky 0,13774 -0,13774 0,01996 Smagorinsky 0,01663 -0,00038 0,01951
Stanton 0,01057 -0,00831 0,01085 Stanton 0,00330 -0,00002 0,00395
Vicoww 0,00294 0,00261 0,00285 Vicoww 0,00173 0,00094 0,00199
Dicoww 0,00033 -0,00013 0,00046 Dicoww 0,00019 0,00009 0,00030
Vicouv 0 0 0 Vicouv 0 0 0
Dicouv 0 0 0 Dicouv 0 0 0

Point5 Point6
facname mu* mu sigma facname mu* mu sigma

Dalton 0,19771 -0,19771 0,00668 Dalton 0,17507 -0,17507 0,00652
Stanton 0,02452 -0,02452 0,00472 Smagorinsky 0,07982 -0,07982 0,01367
Smagorinsky 0,00726 -0,00726 0,00535 Stanton 0,02874 -0,02874 0,00644
Vicoww 0,00069 -0,00069 0,00018 Vicoww 0,00117 -0,00117 0,00061
Dicoww 0,00016 0,00010 0,00019 Dicoww 0,00046 0,00046 0,00018
Vicouv 0 0 0 Vicouv 0 0 0
Dicouv 0 0 0 Dicouv 0 0 0
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Generally, Dalton is the most influential parameter to temperature, showing highest µ∗, while Vicoww and
Dicoww have the least influences except Vicouv and Dicouv. Smagorinsky has medium influences among
parameters. The rankings of Stanton and Smagorinsky may exchange the orders at different observation
sites.

Although each parameter is assumed as independent in Morris method, leading to the possible irrationality in
simulation results and correlations, we can still have a rough interpretation of correlations from the values of
sigma. Except Vicouv and Dicouv having no influences, Vicoww and Dicoww has smallest values of sigma, in-
dicating the least correlations with other parameters. Generally, Smagorinsky has the biggest value of sigma,
representing the most correlations with other parameters. Slight differences at one or two observation points
can be tolerated.

Three sensitivity indices of Vicouv and Dicouv all show as zero. The parameters are selected from mdu-file,
however, Vicouv and Dicouv are also specified in the ext-file. The values in mdu-file are set as a background
value, but they are overwritten and adjusted by the values in external files. Therefore, the values we changed
have no impact on the computation.

Different observation points show similarities in the results, as interpretated above. Also, in the first table,
the solution of deleting incomplete trajectories have similar results with table below, such as the orders, the
values, the characteristics of the signs, and so on. It indicates the solution of deleting part of the trajectories
is also feasible.

Besides the table containing the specific values, the sensitivity indices are presented in coordinates as illus-
trated in chapter 3.5.3. Figure 4.1 shows the results at timepoint TC1 at observation point 1 (FINO3).
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Figure 4.1: Morris method: temperature’s sensitivity indices of FINO3 at TC1

The left plot shows the value of µ∗ vs σ. Dicouv and Vicouv are exactly located at the origin (0, 0); Vicoww and
Dicoww are very close to the origin, the distance being almost zero; Dalton is far away from other parameters;
Smagorinsky and Staton are very close to each other. The sigma value of all the parameters are close to zero,
and the differences are not obvious. Besides, all the parameters are below the µ∗ = σ line, which means the
evidence is not strong enough to consider the parameters having dominant interactions effects.

µ and σ are showed in the right. Similar to the left, Dicouv and Vicouv are located at the origin; Dalton is far
away from other parameters; others are very close to the origin. Except Dicouv and Vicouv being zero, other
parameters all lie out of the wedge formed by the two lines. Two conclusions can be made roughly made
from this evidence: first, their expectations of distributions are non-zero; second, they don’t have strong
correlation effects with other parameters. The first conclusion is what is expected according to the ranges of
parameters.

The types of the markers show the monotonicity of the parameters. The solid red points indicate the param-
eters are all monotonic to temperature. The factors are recognized with perfectly monotonic effects when
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µ∗ = |µ| holds true.

The results of the table and figures above are at the same timepoint. To compare the properties at different
timepoints, results at TC2, TT1, TT2 are also necessary to be illustrated. In order to avoid repeat and redun-
dancy, only the observation point 1 (FINO3) will be stated in the results.

Table 4.3: Morris method: temperature’s sensitivity indices of FINO3 at TC2

facname mu* mu sigma
Dalton 0,27572 -0,27572 0,01065
Smagorinsky 0,04705 -0,04705 0,02651
Stanton 0,00710 0,00394 0,00769
Vicoww 0,00136 0,00136 0,00121
Dicoww 0,00043 0,00027 0,00057
Vicouv 0 0 0
Dicouv 0 0 0

Table 4.4: Morris method: temperature’s sensitivity indices of FINO3 at TT1

facname mu* mu sigma
Dalton 0,04600 -0,04600 0,00016
Stanton 0,02368 -0,02368 0,00015
Smagorinsky 0,00440 -0,00440 0,00141
Vicoww 0,00014 0,00005 0,00016
Dicoww 0,00006 0,00005 0,00005
Vicouv 0 0 0
Dicouv 0 0 0

Table 4.5: Morris method: temperature’s sensitivity indices of FINO3 at TT2

facname mu* mu sigma
Dalton 0,22732 -0,22732 0,00976
Smagorinsky 0,12205 -0,12205 0,02409
Stanton 0,01598 -0,01598 0,00952
Vicoww 0,00098 0,00041 0,00133
Dicoww 0,00044 0,00034 0,00038
Vicouv 0 0 0
Dicouv 0 0 0

The µ∗ vs σ and µ vs σ plots of FINO3 at TC2, TT1 and TT2 are shown is figure 4.2 4.3 and 4.4.

At each timepoint, the analysis on six observation points is conducted, and they show similar properties. The
details are illustrated as follows.

Comparing the results of TC2 with TC1, the order of parameters’ µ is the same, and Smagorinsky still has the
highest sigma, indicating the most correlations with other parameters. Dalton and Smagorinsky are below the
lines µ∗ =σ and µ=±2SE M both in the left and right, showing no dominant interactions in the simulations,
and the expectations of Dalton and Smagorinsky are significantly non-zero. Divoww and Vicoww are non-
monotonic at TC2, while all parameters are monotonic at TC1. The differences can be tolerated, considering
the value being very close to 0, and the bias of simulations.

Looking at TT1 and TT2, the orders of µ∗ are similar, and the orders of Smagorinsky and Stanton may ex-
change. Smagorinsky shows highest sigma. Dalton and Smagorinsky are below the lines and the distances
between the lines and these two parameters are much more obvious than other parameters, which can be
interpreted as significant evidence of being non-zero. Stanton, Vicoww and Dicoww are close to the lines and
the origin. Except Dicouv and Vicouv at the origin, other parameters don’t show strong correlation informa-
tion. All the parameters are monotonic to the output. However, note that the value of sensitivity indices at
TT1 are much smaller than the values at other 3 timepoints. It can be understood as caused by being close to
the starting point when the system is not stable enough as the timepoints further away.
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Figure 4.2: Morris method: temperature’s sensitivity indices of FINO3 at TC2
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Figure 4.3: Morris method: temperature’s sensitivity indices of FINO3 at TT1

After comparing the different timepoints, it can be concluded that different timepoints at a fixed observation
point have similarities.

4.1.2. Current velocity

The results of current velocity will be divided into three directions.

X-direction

Table 4.6 shows the sensitivity indices at VXC (2005-01-01 23:54:00) in x-direction.

Generally, Rhoair is the most influential parameter. Vicoww might have bigger influence than Dicoww and
Smagorinsky, but the differences are very limited at point 5 and 6. The µ∗ values of Dicoww and Smagorinsky
are very close to each other except point 3 and 4. Considering the values of µ∗ and the differences are small,
the three parameters, Vicoww, Dicoww and Smagorinsky can be considered to have the similar influences on
current velocity in x-direction.

From σ, we can have a rough impression of the dependency information. Rhoair shows the highest σ at
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Figure 4.4: Morris method: temperature’s sensitivity indices of FINO3 at TT2

Table 4.6: Copula-based method: x-direction velocity’s sensitivity indices at VXC

Point1 Point2
facname mu* mu sigma facname mu* mu sigma

Rhoair 0,09341 -0,09341 0,03582 Vicoww 0,04083 0,04083 0,03679
Vicoww 0,02710 0,02652 0,02742 Rhoair 0,03107 -0,03069 0,03504
Dicoww 0,01443 -0,01068 0,01793 Dicoww 0,01790 -0,00205 0,02529
Smagorinsky 0,01294 0,00394 0,01696 Smagorinsky 0,01121 0,00359 0,02036
Vicouv 0 0 0 Vicouv 0 0 0
Dicouv 0 0 0 Dicouv 0 0 0

Point3 Point4
facname mu* mu sigma facname mu* mu sigma

Rhoair 0,02066 0,02066 0,00231 Rhoair 0,02558 0,02558 0,00297
Vicoww 0,00371 0,00371 0,00192 Vicoww 0,00420 0,00408 0,00353
Smagorinsky 0,00213 0,00167 0,00204 Dicoww 0,00152 0,00148 0,00171
Dicoww 0,00058 0,00054 0,00042 Smagorinsky 0,00078 -0,00057 0,00083
Vicouv 0 0 0 Vicouv 0 0 0
Dicouv 0 0 0 Dicouv 0 0 0

Point5 Point6
facname mu* mu sigma facname mu* mu sigma

Rhoair 0,02342 0,00906 0,02690 Rhoair 0,01511 0,00421 0,01810
Vicoww 0,01522 0,01279 0,01892 Dicoww 0,01496 -0,01248 0,01405
Smagorinsky 0,01310 0,00792 0,01828 Vicoww 0,01348 0,00623 0,01560
Dicoww 0,01189 -0,01063 0,01523 Smagorinsky 0,01157 -0,00095 0,01661
Vicouv 0 0 0 Vicouv 0 0 0
Dicouv 0 0 0 Dicouv 0 0 0
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four observation points, and σ of Rhoair are very close to the highest at the other two observation points. It
indicates that Rhoair is correlated most with other parameters. In fact, the differences of parameters’ σ are
limited, showing no significant differences in correlation information.

The sensitivity indices of Vicouv and Dicouv are all zero at six observation points. As explained in chapter
4.1.1, The values changed in mdu-file will be overwritten by external files, having no impact in simulations.

It can be concluded from the table that different observation points have similar properties.
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Figure 4.5: Morris method: x-direction velocity’s sensitivity indices of FINO3 at VXC

Figure 4.5 shows the µ∗ vs σ and µ vs σ plots of current velocity in x-direction at timepoint VXC.

The left shows the values of µ∗ vs σ. Dicouv and Vicouv are exactly located at the origin. Rhoair is far away
from other parameters, showing highest µ∗. Dicoww, Vicoww and Smagorinsky are close to each other.

µ∗ = σ is used to evaluate the correlations involving the parameters. Dicoww, Vicoww and Smagorinsky are
all above but very close to the line, while Rhoair is below it and the distance is more significant. The evidence
is not strong enough for significant correlations within parameters.

µ vsσ is presented in the right. Dicouv and Vicouv are at the origin. Rhoair is far away from other parameters.
Considering the two lines, Rhoair lies outside of the wedge; Vicoww, Dicoww and Smagorinsky are close to
the lines and the last two are above the lines. It can be interpreted that the parameters are not significantly
correlated, and the expectation of Rhoair and Vicoww’s distributions are significantly non-zero.

The blue asterisks of Dicoww, Vicoww and Smagorinsky show non-monotonicity, while Rhoair is monotonic
to the current velocity in x-direction.

In order to verify whether the properties keep the same at other timepoints, timepoint VXT (2005-01-02
07:54:00) is selected. The table shows the sensitivity indices of FINO3 at timepoint VXT.

Table 4.7: Morris method: x-direction velocity’s sensitivity indices at VXT

facname mu* mu sigma
Rhoair 0,02458 0,02458 0,00393
Vicoww 0,00441 0,00389 0,00358
Smagorinsky 0,00280 -0,00207 0,00285
Dicoww 0,00258 -0,00104 0,00390
Vicouv 0 0 0
Dicouv 0 0 0

As presented, Rhoair has the highest µ∗, being the most influential parameter. The differences between µ∗ of
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Vicoww, Dicoww and Smagorinsky’s are not significant. It is the same in sigma, where the values of parame-
ters are very close. Vicouv and Dicouv still have all the indices as zero.
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Figure 4.6: Morris method: x-direction velocity’s sensitivity indices of FINO3 at VXT

The sensitivity indices are presented directly in figure 4.6. The properties keep the same at timepoint VXC. As
seen in the left, parameters are in a cluster expect Rhoair, which is located at bottom right; Dicoww, Vicoww
and Smagorinsky can be seen as in a cluster and are all close to the line µ∗ =σ; Dicouv and Vicouv are at the
origin. In the right plot, Rhoair is outside the wedge, keeping the distance with other parameters; Dicouww,
Vicoww and Smagorinsky are in a cluster and approximately have the property µ = ±2SE M ; Dicouv and
Vicouv are located at the origin. Two conclusions can be generated: first, the evidence is not significant to
prove the parameters have strong correlations; second, Rhoair is significantly non-zero. Except Dicouv and
Vicouv, Rhoair is monotonic, while other parameters are non-monotonic.

Generally, different timepoints show similar results.

Y-direction

The same analysis is applied in y- and z-directions. In each direction, two timepoints are selected to conduct
sensitivity analysis at six observation points. To check the differences between observation points, the results
of four observation points at one timepoint will be presented; to compare between timepoints, the result of
FINO3 at another timepoint will be presented. To avoid redundancy and repetition, only part of the results
will be presented in this chapter. The complete results can be found in the appendix.

Table 4.8 shows the sensitivity indices of four observation points at VYC.

The results are similar at different observation points. The µ∗ value of Rhoair is much higher than other
parameters, while the µ∗ values of the Vicoww, Dicww and Smagorinsky are close to each other. It shows
Rhoair is the most influential parameter to current velocity in y-direction, Vicoww, Dicoww and Smagorinsky
can be seen to have the similar influence on the output. Smagorinsky has the highest sigma, indicating the
most correlation with others.

The figure 4.7 shows the sensitivity indices of current velocity in y-direction. In both the plots, Rhoair is not in
the cluster and located at bottom right; Divcoww, Vicoww and Smagorinsky can be seen as a cluster, and all of
the three parameters approximately meet µ=±2SE M ; Dicouv and Vicouv are located at the origin. It can be
concluded from the evidence that none of the parameters are significantly correlated with others, and Rhoair
is significantly non-zero. From the type of the dots, Rhoair is monotonic, Dicoww, Vicoww and Smagorinsky
are non-monotonic.

The properties above keep the same with that in x-direction. Then to prove if it is the same at different time-
points, the results of FINO3 at VYT are listed in table 4.9. The rankings of µ∗ show similar patterns as in
y-direction.
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Table 4.8: Morris method: y-direction velocity’s sensitivity indices at VYC

Point1 Point2
facname mu* mu sigma facname mu* mu sigma

Rhoair 0,03099 0,03099 0,00178 Rhoair 0,04735 0,04735 0,00730
Vicoww 0,00262 -0,00255 0,00208 Vicoww 0,01049 -0,00895 0,01033
Dicoww 0,00243 0,00159 0,00265 Dicoww 0,00371 -0,00062 0,00553
Smagorinsky 0,00218 0,00092 0,00280 Smagorinsky 0,00311 -0,00139 0,00480
Vicouv 0 0 0 Vicouv 0 0 0
Dicouv 0 0 0 Dicouv 0 0 0

Point3 Point4
facname mu* mu sigma facname mu* mu sigma

Rhoair 0,01515 0,01515 0,00077 Rhoair 0,01688 0,01688 0,00161
Smagorinsky 0,00171 -0,00152 0,00136 Vicoww 0,00202 0,00195 0,00251
Vicoww 0,00056 0,00034 0,00078 Dicoww 0,00153 -0,00075 0,00249
Dicoww 0,00037 0,00022 0,00048 Smagorinsky 0,00110 0,00070 0,00117
Vicouv 0 0 0 Vicouv 0 0 0
Dicouv 0 0 0 Dicouv 0 0 0
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Figure 4.7: Morris method: y-direction velocity’s sensitivity indices of FINO3 at VYC

As can be seen above in figure 4.8, Rhoair is far away from other parameters; Vicoww, Dicoww and Smagorin-
sky are above but also very close to the lines µ∗ =σ and µ=±2SE M . The same conclusions can be obtained:
the correlations are not significant, and Rhoair is non-zero; except Dicouv and Vicouv, only Rhoair is mono-
tonic, and others are non-monotonic.

The similarity between different timepoints in y-direction is proved.
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Table 4.9: Morris method: y-direction velocity’s sensitivity indices of FINO3 at VYT

facname mu* mu sigma
Rhoair 0,04127 0,04127 0,01179
Smagorinsky 0,00756 -0,00530 0,00998
Dicoww 0,00608 0,00333 0,00851
Vicoww 0,00573 -0,00418 0,00973
Vicouv 0 0 0
Dicouv 0 0 0
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Figure 4.8: Morris method: y-direction velocity’s sensitivity indices of FINO3 at VYT

Z-direction

Similarly, the results of four observation points at VZC are presented first, to test the consistency between
observation points. Then the results of FINO3 at VZT are shown to prove the similarity between timepoints.

From table 4.10, the ranking of µ∗ values are similar with in x- and y-directions: Rhoair is the most influ-
ential parameter, Vicoww, Dicoww and Smagorinsky can be seen in a cluster; Vicouv and Dicouv keep zero.
Smagorinsky has the highest value of σ, indicating most correlations with others. However, the values of
sensitivity indices in z-direction are much smaller than in x- and y-directions, while the values in x- and y-
directions are within the same scale. It will be discussed in chapter 5.1.

Note that the scale in the figure is much smaller than in x- and y-directions. Similarly, Rhoair is not in the
cluster and located underneath the lines; the µ∗ and µ value of Smagorinsky is larger than σ and 2SE M more
significantly than in x- and y-directions; Vicoww and Dicoww can be seen as in the same cluster; Dicouv and
Vicouv are at the origin. Except Dicouv and Vicouv, only Rhoair is monotonic, and others are non-monotonic.

The properties keep the same as the explanations of table 4.10.

In the figure, the properties of parameters are similar to the explanations of the figure 4.9.

It can be concluded that different timepoints show similarities in sensitivity indices.
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Table 4.10: Morris method: z-direction velocity’s sensitivity indices at VZC

Point1 Point2
facname mu* mu sigma facname mu* mu sigma

Rhoair 1,09E-05 1,09E-05 3,21E-06 Rhoair 1,07E-05 1,07E-05 2,55E-06
Vicoww 2,39E-06 -1,3E-06 3,14E-06 Vicoww 3,41E-06 -3,3E-06 3,61E-06
Smagorinsky 1,68E-06 -7,8E-07 1,92E-06 Smagorinsky 1,59E-06 -7,2E-07 1,87E-06
Dicoww 1,2E-06 -3,2E-07 1,95E-06 Dicoww 5,11E-07 5,82E-08 6,1E-07
Vicouv 0 0 0 Vicouv 0 0 0
Dicouv 0 0 0 Dicouv 0 0 0

Point3 Point4
facname mu* mu sigma facname mu* mu sigma

Rhoair 9,9E-06 9,9E-06 2,76E-06 Rhoair 9,04E-06 9,04E-06 3,12E-06
Vicoww 3,65E-06 1,48E-06 3,98E-06 Vicoww 2,4E-06 -8,2E-07 3,3E-06
Smagorinsky 2,65E-06 9,93E-07 3,51E-06 Smagorinsky 2,38E-06 -1,3E-06 2,59E-06
Dicoww 1,5E-06 -4,4E-07 2,14E-06 Dicoww 1,06E-06 -3,6E-07 1,29E-06
Vicouv 0 0 0 Vicouv 0 0 0
Dicouv 0 0 0 Dicouv 0 0 0
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Figure 4.9: Morris method: z-direction velocity’s sensitivity indices of FINO3 at VZC

Table 4.11: Morris method: z-direction velocity’s sensitivity indices of FINOE3 at VZT

facname mu* mu sigma
Rhoair 1,09E-05 1,09E-05 3,21E-06
Vicoww 2,39E-06 -1,3E-06 3,14E-06
Smagorinsky 1,68E-06 -7,8E-07 1,92E-06
Dicoww 1,2E-06 -3,2E-07 1,95E-06
Vicouv 0 0 0
Dicouv 0 0 0
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Figure 4.10: Morris method: z-direction velocity’s sensitivity indices of FINO3 at VZT

4.2. Copula-based method

In this section, the results of sensitivity analysis will be illustrated in the same structure as Morris method. The
results will be separated into temperature and current velocity and the current velocity will be divided into
three directions. In each part, the results of different observation points at one timepoint will be presented
first, to check if the properties keep the same at different observation points. Then the results of FINO3 at
different timepoints will be shown to prove if the results are similar at different time.

4.2.1. Temperature

Table show the results of µ∗, µ and σ of six observation points at the timepoints TC1.

The six observation points all show the same ranking of µ∗: the copula of Stanton and Dalton is the most
influential copula, having the highest value of µ∗; Smagorinsky and the copula of Vicoww and Dicoww are
the second and third influential copula (parameter); the copula of Vicouv and Dicouv has zero in all the
indices, which can be explained from the same reason of being overwritten by ext-file. These results can be
seen in every system. To avoid duplication, the analysis of Vicouv and Dicouv will be skipped in the following
parts. From σ, the copula of Stanton and Dalton has the most correlation with other parameters.

In the µ∗ vs σ plot, the distance between Stanton-Dalton and Smagorinsky are significant, while Dicoww-
Vicoww is very close to the origin. Considering the line µ∗ =σ, the µ∗ value of Stanton-Dalton and Smagorin-
sky are slightly larger than theσ value. In the right plot, Stanton-Dalton and Smagorinsky are within the edge.
Two conclusions can be obtained: first, Stanton-Dalton and Smagorinsky have comparatively significant ev-
idence of having correlations with other parameters; second, Stanton-Dalton and Smagorinsky do not have
strong evidence of being non-zero. Besides this, all the copulas except Vicouv-Dicouv are non-monotonic.

To prove the similarity of different timepoints, the tables show the results of FINO3 at different timepoints.

The rankings of µ∗ at TC2, TT1 and TT2 keep the same as TC1. Stanton-Dalton also shows the most cor-
relation information with the highest σ. Note that the values at TT1 are much smaller than the other three
timepoints. It might be caused by the instability when it is too close to the starting points.

The µ∗ vs σ and µ vs σ plots of FINO3 at TC2, TT1 and TT2 are as follow:

The figures 4.12 4.13 AND 4.14 all show similar patterns with 4.11. As shown on the left, Stanton-Dalton and
Smagorinsky are far away from each other, and the µ∗ values are approximately equal to σ values. In the right
plots, Stanton-Dalton and Smagorinsky are within the edge. Vicoww-Dicoww is very close to the origin in
every plot. We can conclude that Stanton-Dalton and Smagorinsky is correlated with other parameters, but
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Table 4.12: Copula-based method: temperature’s sensitivity indices at TC1

Point1 Point2
facname mu* mu sigma facname mu* mu sigma

Stanton-Dalton 0,22660 0,04470 0,23458 Stanton-Dalton 0,21960 0,04370 0,22724
Smagorinsky 0,02570 -0,00730 0,03468 Smagorinsky 0,00220 -0,00044 0,00400
Vicoww-Dicoww 0,00110 -0,00083 0,00155 Vicoww-Dicoww 0,00061 -0,00018 0,00075
Vicouv-Dicouv 0 0 0 Vicouv-Dicouv 0 0 0

Point3 Point4
facname mu* mu sigma facname mu* mu sigma

Stanton-Dalton 0,22030 0,04750 0,22748 Stanton-Dalton 0,20020 0,03820 0,20766
Smagorinsky 0,14180 -0,06190 0,13987 Smagorinsky 0,02720 0,00800 0,02871
Vicoww-Dicoww 0,00290 -0,00180 0,00363 Vicoww-Dicoww 0,00140 -0,00094 0,00196
Vicouv-Dicouv 0 0 0 Vicouv-Dicouv 0 0 0

Point5 Point6
facname mu* mu sigma facname mu* mu sigma

Stanton-Dalton 0,22490 0,04410 0,23292 Stanton-Dalton 0,20760 0,04230 0,21462
Smagorinsky 0,00860 -0,00270 0,01223 Smagorinsky 0,08370 -0,03510 0,08349
Vicoww-Dicoww 0,00072 0,00004 0,00087 Vicoww-Dicoww 0,00120 -0,00003 0,00201
Vicouv-Dicouv 0 0 0 Vicouv-Dicouv 0 0 0
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Figure 4.11: Copula-based method: temperature’s sensitivity indices of FINO3 at TC1

Table 4.13: Copula-based method: temperature’s sensitivity indices of FINO3 at TC2

facname mu* mu sigma
Stanton-Dalton 0,275603 0,052237 0,286039
Smagorinsky 0,049533 -0,01531 0,061593
Vicoww-Dicoww 0,001838 -0,00088 0,003204
Vicouv-Dicouv 0 0 0

Table 4.14: Copula-based method: temperature’s sensitivity indices of FINO3 at TT1

facname mu* mu sigma
Stanton-Dalton 0,069726 0,013886 0,072026
Smagorinsky 0,004609 -0,00171 0,004902
Vicoww-Dicoww 0,000184 3,67E-05 0,000257
Vicouv-Dicouv 0 0 0
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Table 4.15: Copula-based method: temperature’s sensitivity indices of FINO3 at TT2

facname mu* mu sigma
Stanton-Dalton 0,247049 0,051891 0,25522
Smagorinsky 0,126597 -0,05187 0,127966
Vicoww-Dicoww 0,001969 -0,00175 0,003057
Vicouv-Dicouv 0 0 0
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Figure 4.12: Copula-based method: temperature’s sensitivity indices of FINO3 at TC2
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Figure 4.13: Copula-based method: temperature’s sensitivity indices of FINO3 at TT1
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Figure 4.14: Copula-based method: temperature’s sensitivity indices of FINO3 at TT2

it is not very significant. Also, the evidence is not strong enough to prove Stanton-Dalton and Smagorinsky
non-zero. Besides, except Vicouv-Dicouv, all the copulas (parameters) are non-monotonic.

It can be concluded that the results are similar at different timepoints.

4.2.2. Current velocity

In this section, three directions will be discussed separately.

X-direction

In order to avoid redundancy, only four observation points will be listed in the table.

Table 4.16: Copula-based method: x-direction velocity’s sensitivity indices of FINO3 at VXC

Point1 Point2
facname mu* mu sigma facname mu* mu sigma

Rhoair 0,089006 -0,01655 0,130262 Rhoair 0,031911 0,003403 0,061886
Vicoww-Dicoww 0,071166 0,008456 0,133734 Vicoww-Dicoww 0,01483 0,002484 0,028163
Smagorinsky 0,036161 -0,00616 0,070105 Smagorinsky 0,008138 -0,0061 0,01341
Vicouv-Dicouv 0 0 0 Vicouv-Dicouv 0 0 0

Point3 Point4
facname mu* mu sigma facname mu* mu sigma

Rhoair 0,023324 -2,52E-05 0,02504 Rhoair 0,031515 0,001889 0,03358
Vicoww-Dicoww 0,004208 0,000853 0,006418 Vicoww-Dicoww 0,005652 0,002675 0,009602
Smagorinsky 0,001749 -0,00048 0,002378 Smagorinsky 0,002478 -0,00091 0,003459
Vicouv-Dicouv 0 0 0 Vicouv-Dicouv 0 0 0

The ranking of µ∗ values are the same at each observation point. Rhoair is the most influential parameter,
having the largestµ∗, Vicoww-Dicoww and Smagorinsky are the second and third influential copula (parame-
ter). Generally, Rhoair has the highest value of σ, indicating that it contains the most correlation information
with others.

The sensitivity indices are coordinated in the figure 4.15. In both the left and right plot, Rhoair and Vicoww-
Dicoww are close to each other, compared with Smagorinsky. The three copulas/parameters are all located
above the lines. It can be concluded that all the three segments have significant correlations with other pa-
rameters, and they don’t have strong evidence to be non-zero. Besides, the three segments are non-monotonic.



54 4. Results

0 0.05 0.1 0.15
*

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Point01

Smagorinsky

Rhoair

Vicouv-Dicouv

Vicoww-Dicoww

* =

non-monotonic
monotonic

95% CI for *

threshold

-0.15 -0.1 -0.05 0 0.05 0.1 0.15
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Point01

Smagorinsky

Rhoair

Vicouv-Dicouv

Vicoww-Dicoww

  = 2SEM = -2SEM 

non-monotonic
monotonic
95% CI for 
threshold

Figure 4.15: Copula-based method: x-direction velocity’s sensitivity indices of FINO3 at VXC

The results of FINO3 at timepoint VXT are as follow.

Table 4.17: Copula-based method: x-direction velocity’s sensitivity indices of FINO3 at VXT

facname mu* mu sigma
Rhoair 0,027455 -0,00153 0,029899
Smagorinsky 0,002746 0,000163 0,004433
Vicoww-Dicoww 0,002581 -0,00092 0,004029
Vicouv-Dicouv 0 0 0

The ranking of µ∗ is the same: Rhoair > Smagorinsky > Vicoww-Dicoww. Also, Rhoair has the largest σ,
indicating the most correlation information. The details are the same as at VXC.
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Figure 4.16: Copula-based method: x-direction velocity’s sensitivity indices of FINO3 at VXT

In figure 4.16, the distance between Rhoair and the origin is more significant than the distance between
Vicoww-Dicoww/Smagorinsky and the origin. Rhoair, Smagorinsky and Dicoww-Vicoww are all above the
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lines. The same conclusions can be generated: all the three segments have significant correlations with
other parameters, and they don’t have strong evidence to be non-zero. Besides, the three segments are non-
monotonic.

The similarity between different timepoints in x-direction can be proved.

Y-direction

The same procedures as in x-direction will be applied to y- and z-directions. The table show the results of 4
observation points at VYC.

Table 4.18: Copula-based method: y-direction velocity’s sensitivity indices at VYC

Point1 Point2
facname mu* mu sigma facname mu* mu sigma

Rhoair 0,028365 -0,00029 0,030891 Rhoair 0,04836 -0,00158 0,055153
Vicoww-Dicoww 0,005691 -0,0012 0,009712 Vicoww-Dicoww 0,011492 0,003091 0,01894
Smagorinsky 0,002366 0,000526 0,004609 Smagorinsky 0,003784 0,002019 0,007049
Vicouv-Dicouv 0 0 0 Vicouv-Dicouv 0 0 0

Point3 Point4
facname mu* mu sigma facname mu* mu sigma

Rhoair 0,013604 -7,23E-05 0,014411 Rhoair 0,017925 0,000991 0,018991
Smagorinsky 0,001977 0,000859 0,002406 Smagorinsky 0,001799 0,000417 0,002079
Vicoww-Dicoww 0,001703 0,000809 0,001815 Vicoww-Dicoww 0,001425 -0,00092 0,0016
Vicouv-Dicouv 0 0 0 Vicouv-Dicouv 0 0 0

The ranking ofµ∗ values is a little different on the orders of Vicoww-Dicoww and Smagorinsky. At observation
point 1 and 2, Vicoww-Dicoww is more influential than Smagorinsky; at observation point 3 and 4, the orders
are exchanged. The differences can be tolerated as the values are close. Rhoair is the most influential param-
eter, and also the parameter having the most correlation information, which is the same as in x-direction.
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Figure 4.17: Copula-based method: y-direction velocity’s sensitivity indices of FINO3 at VYC

The figure 4.17 has the similar patterns as figure 4.16, but Rhoair, Vicoww-Dicoww and Smagorinsky are more
far away from each other compared to figure 4.16. The conclusions can be generated similarly: all the three
segments have significant correlations with other parameters, and they don’t have strong evidence to be non-
zero. Besides, the three segments are non-monotonic.

It can be concluded that the results at different observation points are similar.
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The results of FINO3 at timepoint VYT are as follow.

Table 4.19: Copula-based method: y-direction velocity’s sensitivity indices of FINO3 at VYT

facname mu* mu sigma
Rhoair 0,039005 0,001252 0,05227
Vicoww-Dicoww 0,023641 -0,00351 0,047239
Smagorinsky 0,013843 0,002952 0,02965
Vicouv-Dicouv 0 0 0

The ranking of µ∗ is the same as FINO3 at VYC. The sigma value of Rhoair is the highest.
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Figure 4.18: Copula-based method: y-direction velocity’s sensitivity indices of FINO3 at VYT

Figure 4.18 shows the results of FINO3 at VYT, similar to figure VYC.

The similarity between different timepoints in x direction can be proved.

Z-direction

Table 4.20 shows the results of four observation points at VZC.

Table 4.20: Copula-based method: z-direction velocity’s sensitivity indices at VZC

Point1 Point2
facname mu* mu sigma facname mu* mu sigma

Rhoair 7,86E-06 1,37E-06 9,12E-06 Rhoair 4,09E-06 -2,3E-06 4,6E-06
Vicoww-Dicoww 2,19E-06 -2E-07 3,33E-06 Smagorinsky 3,46E-06 3,46E-06 2,64E-06
Smagorinsky 1,81E-06 9,18E-07 2,16E-06 Vicoww-Dicoww 2,04E-06 -1,1E-06 2,46E-06
Vicouv-Dicouv 0 0 0 Vicouv-Dicouv 0 0 0

Point3 Point4
facname mu* mu sigma facname mu* mu sigma

Rhoair 6,22E-06 -2E-06 7,32E-06 Rhoair 8,84E-06 -6,1E-06 8,11E-06
Vicoww-Dicoww 2,57E-06 7,75E-07 3,47E-06 Vicoww-Dicoww 3,49E-06 1,06E-06 5,16E-06
Smagorinsky 1,69E-06 -3,7E-07 2,22E-06 Smagorinsky 2,6E-06 2,5E-06 2,86E-06
Vicouv-Dicouv 0 0 0 Vicouv-Dicouv 0 0 0

The ranking and the highest sigma generally keep the same as in x and y directions. However, the values are
much smaller than in x and y directions, which also appears in Morris method.
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Figure 4.19: Copula-based method: z-direction velocity’s sensitivity indices of FINO3 at VZC

The properties of figure 4.19 are similar to VYC, while the scale is much smaller.

Table 4.21: Copula-based method: z-direction velocity’s sensitivity indices of FINO3 at VZT

facname mu* mu sigma
Rhoair 8,45E-06 1,38E-07 9,54E-06
Vicoww-Dicoww 5,3E-06 -3,5E-06 6,4E-06
Smagorinsky 2,27E-06 1,12E-06 3,19E-06
Vicouv-Dicouv 0 0 0
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Figure 4.20: Copula-based method: z-direction velocity’s sensitivity indices of FINO3 at VZT

The table and the figure are all similar to VZC.

Thus, in z-direction, the similarities between different observation points and timepoints are also proved.
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Table 4.22: Variance-based method: first-order and total-order sensitivity indices for temperature

Factor First-order indices Total-order indices Differences (total - first)
Dalton 0.9215 0.5157 -0,4058
Smagorinsky 0.4734 -0.2091 -0,6825
Stanton 0.0926 -0.2159 -0,3085

4.3. Variance-based method

In this section, according to chapter 3.6.2, only one timepoint will be selected to do sensitivity analysis for
temperature and three directions in current velocity. First-order indices and total-order indices of selected
parameters are presented as results. As illustrated in chapter 2.5.2, the first-order sensitivity indices indicate
the main effect contribution of each input, where dependency information are not included. Two conclusions
can be obtained from total-order sensitivity indices. First, important interaction involving the factors can be
concluded if the differences between first-order and total-order sensitivity indices are significant. Second, the
factors can be considered to have no significant influences on the outputs if the total-order indices ST i ' 0.
However, note that the standards of ‘significant differences’ and ‘approximately equal to zero’ are vague, and
the conclusions should be considered in real cases.

4.3.1. Temperature

Dalton, Stanton and Smagorinsky are selected for temperature.

From the first-order indices, we can get the information of influence degrees. Dalton is the most influential
factor and Stanton is the least influential factor. However, the first-order indices do not include the influences
of combinations involving the corresponding factors.

The correlation information can be generated from the total-order indices. To evaluate if the differences
between total-order and first-order indices are significant, the values of first-order indices are used as refer-
ences. As the differences and the first-order indices are in the same order of magnitude, the differences are
evaluated as significant. Thus, important interactions are involved in the three factors.

The total-order sensitivity indices of the three parameters are not approximately equal to zero. Therefore, all
the three factors cannot be neglected.

In Morris and copula-based method, the rankings of correlation involved in parameters can be concluded by
comparing the values of sigma. However, in variance-based method, the values of differences are only used
to evaluate if the interactions are important. The rankings of correlations are not considered in the reference
[42]. It will be discussed in chapter 5.1.

4.3.2. Current velocity

The results of first-order and total-order indices in three directions are listed below (x, y, z). The timepoints
chosen for x, y and z are respectively VXC, VYC, VZC.

Table 4.23: Variance-based method: first-order and total-order sensitivity indices for x-direction velocity

Factor First-order indices Total-order indices Differences (total - first)
Vicoww -1.0000 2.1257 3,1257
Dicoww -1.0954 2.2195 3,3149
Smagorinsky -1.2016 2.3364 3,5380
Rhoair 1.4164 1.6710 0,2546

The value smaller than zero means the effects of the parameters to the outputs are negative. To evaluate the
influences, we will consider the absolute value, no matter the influences are positive or negative.

Considering the first-order indices, in x- and y-direction, Rhoair is the most influential parameter. Smagorin-
sky is the most influential parameter in z-direction.
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Table 4.24: Variance-based method: first-order and total-order sensitivity indices for y-direction velocity

Factor First-order indices Total-order indices Differences (total - first)
Vicoww -0.6196 1.3177 1,9373
Dicoww -0.6781 1.3761 2,0542
Smagorinsky -0.7157 1.4150 2,1307
Rhoair 0.8404 1.8118 0,9714

Table 4.25: Variance-based method: first-order and total-order sensitivity indices for z-direction velocity

Factor First-order indices Total-order indices Differences (total - first)
Vicoww 14.8289 -14.1139 -28,9428
Dicoww -5.4503 5.9601 11,4104
Smagorinsky 17.6466 -17.0058 -34,6524
Rhoair -5.6954 8.1310 13,8264

Considering the differences between the total-order and the first-order indices, the values can not be con-
sidered as unsignificant compared to the values of first-order indices. Therefore, the parameters cannot be
considered unrelated to others. As the total-order is significantly not equal to zero, all the parameters cannot
be neglected.

Note that the values in z direction are ‘unnormal’, while the values in x- and y-directions are in the same order
of magnitude. It can probably be explained by the simulation results. In x- and y-directions, the values of
simulation outputs are between 0 and 1, while the current velocity in z- direction (in vertical direction) is
very small, around 0,0003. The calculation formulas in chapter 2.5.5 may lead to the big differences using the
small values in variance.





5
Discussions, conclusions and

recommendations

5.1. Discussions

In this section, some assumptions and settings are mentioned first, which may vary in other possible cases.
Then the results are discussed. Last the limitations of different methods and the applications are suggested.

Assumptions

In this thesis project, all the data are generated from Delft 3D. To keep consistency in comparisons, the simu-
lation periods are set the same from 2004-12-25 02:24:00 to 2005-01-25 02:24:00, lasting for one month, with
the same time intervals. All other parameters, influential factors and external files, besides the target param-
eters studied, are set the same. The same observation points are chosen (see chapter 3.2). The simulations
are assumed to have no errors.

The data of temperature in Variance-based method (chapter 4.3.1) is offered by the colleagues from Deltares.
The timepoint of the simulation is lost, but the results is assumed to apply to all timepoints, as in the first two
methods, Morris and copula-based method, different timepoints show similarities in sensitivity results.

Also, in chapter 4, four timepoints are selected for temperature and two are selected for each direction in cur-
rent velocity, then the temporal consistency is concluded from the similarities of chosen timepoints. Avoiding
the repeat and reducing calculation costs, the conclusion from the limited timepoints is assumed to be con-
vincible.

Discussions of results

In the results of Morris and copula-based method, the parameters Vicouv and Dicouv (horizontal viscosity
and diffusivity) show no impacts on both temperature and current velocity, while Vicoww and Dicoww (ver-
tical viscosity and diffusivity) have influences on outputs. The reasons are briefly explained in chapter 4.1.1,
that the values in horizontal directions in mdu-files are overwritten by the values in the external files. In the
details, if spatially varying values of horizontal viscosity/diffusivity are prescribed in the external files, the uni-
form values specified in mdu-files are not used. The spatial values are prescribed to be 0.1 m2/s everywhere,
except a small band along the open boundaries. In the horizontal direction, the total viscosity/diffusivity is a
combination of the specific background values and the values computed with Smagorinsky.

In the vertical direction, the viscosity/diffusivity is computed with a k-eps model. A background value can
also be specified in mdu-file. However, the background values will not have any contributions if the back-
ground value is lower than what is computed with the k-eps model. In the tidal systems, the vertical viscos-
ity/diffusivity values computed with the k-eps model are expected to be usually higher than the prescribed
background values in mdu-files. But it is not always the case, which can be seen from the non-zero results of
Vicoww/Dicoww. The resulting vertical viscosity/diffusivity in the simulations can be checked and compared
with the specific background values to prove the assumption.

61
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In chapter 3.5.3, some simulations crashed when the ranges of the parameters started from zero. It might re-
sult from viscosity. In the model, viscosity tends to stabilize the numerical solution. When the unrealistically
low value of zero was used, the problems might arise from instability. The zero value of viscosity might result
from Smagorinsky being zero.

In the results of Morris and copula-based method, the values of sensitivity indices in z-direction are much
smaller than in x- and y-directions. For example, in Morris method, mu* value of Rhoair at FINO3 in x-
direction is about 0.09, while the value is about 0.00001. Flows on these scales are strongly anisotropic. Ve-
locities and viscosities in vertical (z-) direction are much lower than in horizontal (x- and y-) directions. It can
also cause the ‘unnormal’ variance-based method results in z-direction.

Limitations and application of different methods

In the thesis projects, three different methods are used to conduct sensitivity analysis: Morris, copula-based
and variance-based methods. They can be applied in different cases according to the properties of parame-
ters. In other words, limitations of the methods should be considered.

First, dependency information is not included in Morris method. Correlation can be interpreted from the
sensitivity index sigma. However, bias and unreasonableness may occur in the results, as Morris method
assume every parameter independent before sampling, and the samples may not conform to the physical
process. While copula-based and variance-based include the independency information within parameters.

Second, in copula-based method, the correlations need to be described roughly before sampling. As men-
tioned in the first point, both copula-based and variance-based method take independency into considera-
tion, but the way of including the information is different. In variance-based method, the dependency is con-
cluded from the variance, and it does not need to be considered in sampling. While in copula-based method,
the correlations need to be decided before generating the samples (the details can be found in chapter 2.4).
The relations between parameters are not clear in many cases, especially when there are various parameters
in a complex physical process. In addition, the correlations might be difficult to measure. For example, in
the case of this thesis project, the parameters are defined roughly in the copulas of two parameters, and the
correlations are only decided as 1 or -1, indicating the positive or negative relations (see chapter 3.6.1). As
illustrated in chapter 3.6.1, the vague decisions are not the only possibilities. While this limitation increases
the complexity of operating sensitivity analysis, it might also cause uncertainty in the results.

Third, the calculation costs of variance-based method are very high. In Morris method and copula-based
method, the number of samples is (k + 1)∗ r , where k is the number of segments (including copulas and
parameters) and r is the number of paths. In variance-based method, the number of samples is (k +2)∗N ,
where k is the number of parameters and N is the number of random samples in each matrix, varying from
hundreds to thousands. Take temperature in this thesis project as an output example: there are 80 samples
in Morris method with seven parameters, 50 samples in copula-based method with four copulas and single
parameters, while variance-based method requests at least 500 samples with only three parameters.

Fourth, variance-based method does not compare the correlation information between different parame-
ters, but only makes the judgements whether the parameter is strongly correlated with other parameters.
In other words, variance-based method is suitable for factor fixting setting (FF), to identify uninfluential
factors. For example, through Morris method, Smagorinsky contains the most correlation information in
temperature, while the parameters are only concluded to have important interactions with other factors in
variance-based method. It may be able to be explained from the strategies of different methods. In Mor-
ris and copula-based method, other parameters are fixed when the elementary effects of one parameter
are calculated. They correlations between the parameter and all other parameters are considered together,
which means the correlations are not distinguished between specific parameters. In variance-based method,
the interaction effects are divided into different combinations. Take a three-factor model as an example,
ST 1 −S1 = S12 +S13 +S123 = 1+2+1 = 4, indicating all the interaction effects of X1. Similarly, we can have
ST 2 −S2 = S12 +S23 +S123 = 1+ (−3)+1 =−1. The values are chosen as a simple example. As different combi-
nations may have different signs, it cannot be simply concluded that X1 is more correlated than X2 according
to values of the differences.

In addition, the standards in variance-based method are vague. Significant differences between the total-
order and first-order sensitivity indices are evidence for important interaction involving the factors. The total-
order sensitivity indices approximately equal to zero indicates the factor having no significant influences on
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the outputs. However, it is hard to define ‘significant differences’ and ‘approximately equal to zero’. In this
thesis project, first-order indices are used as a reference to evaluate the magnitude.

After comparing the limitation of the three methods, some suggestions are given to decide which method to
use in different cases.

If the dependency correlations are not significant in the case, Morris method is suggested to use. If corre-
lations cannot be ignored, copula-based and variance-based method is preferred. Considering the heavy
simulation and calculation costs, with the vague standards in variance-based method, copula-based method
is better to choose, if the relations between the parameters do not need to be defined strictly. Otherwise
variance-based method can be used.

5.2. Summary and conclusions

In this section, first the summary of the results will be presented. Then answers to the questions in chapter
1.3 will be given.

Summary

Three methods are adopted to conduct sensitivity analysis on the hydrodynamic model in this thesis project:
Morris, copula-based and variance-based method. Temperature and current velocity in three directions are
selected as outputs, and Delft3D is used to simulated the models. In Morris method, 80 and 70 samples are
generated respectively for temperature and current velocity; 50 samples are generated respectively in copula-
based method; 500 and 768 models are generated respectively in variance-based method. 1518 models were
simulated in total, and the simulations took about one month to run. In the simulations, parameters are
changed, subfolders and shell files are created to submit the models to the Linux cluster. Besides codes from
packages are used for sensitivity analysis, some codes are created to check the results. As sensitivity results,
120 tables and 120 plots are created, including 6 observation points, each one corresponding to one point.As
similarities show in chapter 4, the data are not listed in the report.

In Morris and copula-based method, different observation points and timepoints are selected. The parame-
ters show temporal and spatial similarities in sensitivities. In other words, the sensitivity indices show similar
properties, such as values and rankings, at different observation points and timepoints. But the values of sen-
sitivity indices are smaller when the timepoints are close to the start point, as the system is not stable enough
at the beginning.

As the sensitivity indices are the same in Morris and copula-based method, the evaluations using the two
methods can be compared as follows, divided into temperature and current velocity.

Table 5.1: Comparisons between Morris and copula-based method on temperature results

Temperature Morris method Copula-based method
Rankings of influences Dalton >Stanton, Smagorinsky >Vi-

coww, Dicoww >Vicouv, Dicouv
Stanton-Dalton >Smagorinsky
>Vicoww-Dicoww >Vicouv-Dicouv

Correlation information
Smagorinsky contains the most corre-
lation information with other param-
eters

Stanton-Dalton is the most correlated
copula

The correlations are not significant in
all parameters

Stanton-Dalton is significantly corre-
lated, while other don’t have signifi-
cant information

Expectations of param-
eters’ distributions

Dalton and Smagorinsky are non-zero Stanton-Dalton and Smagorinsky
can’t be proved non-zero significantly

Monotonicity All parameters are monotonic All parameters are non-monotonic

From the table, the rankings are similar, while some differences appear in other aspects. As the difference
between the values of sigma is small, the most correlated parameter being different can be tolerated. The sig-
nificance of correlations and expectations of parameters’ distributions are concluded by comparing mu, mu*
and sigma (the details can be seen in chapter 3.5.3), but the standards are not absolute, and the conclusions
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can be vague if the results are similar to the equations in chapter 3.5.3. Thus, the differences of correlations
and expectations in table 5.1 can be tolerated. The bias can occur in simulations, which might lead to the
differences in monotonicity. As this thesis project focuses on sensitivity, rankings and correlations are paid
more attention on.

In current velocity, the properties in three directions are similar, thus they are combined in the following
table. However, note that the values in z-direction are much smaller than in x- and y-direction. It is discussed
above in chapter 5.1.

Table 5.2: Comparisons between Morris and copula-based method on current velocity results

Temperature Morris method Copula-based method
Rankings of influences Rhoair >Vicoww, Dicoww, Smagorin-

sky >Vicouv, Dicouv
Rhoair >Vicoww-Dicoww >Smagorin-
sky >Vicouv-Dicouv

Correlation information
Rhoair contains the most correlation
information with other parameters

Rhoair is the most correlated parame-
ter

The correlations are not significant in
all parameters

The correlations are significant in all
parameters

Expectations of param-
eters’ distributions

Rhoair is significantly non-zero All parameters can’t be proved non-
zero significantly

Monotonicity
Rhoair is monotonic; Vicoww, Dicoww,
Smagorinsky non-monotonic

All parameters are non-monotonic

The rankings and the most correlated parameter are similar, while there are some differences in other as-
pects. The significance of correlations and expectations are also concluded by comparing different sensitivity
indices. As discussed in temperature, the standards are not absolute, possibly leading to vague conclusions.
Thus, the differences between Morris and copula-based method in correlation information and expectations
of parameters’ distributions can be tolerated. The differences in monotonicity can be caused by the bias in
simulations.

Variance-based method uses different sensitivity indices. Different higher-order sensitivity indices can be
possible evaluations in this method, but in this thesis project, only first-order and total-order sensitivity in-
dices are calculated. The main effect contribution of parameters can be interpreted from the first-order sen-
sitivity indices. Two conclusions can be obtained from the total-order indices. First, important interaction
involving in the factor can be concluded from significant differences between the total-order and first-order
sensitivities. Second, if the total-order index is approximately equal to zero, the factor can be considered to
have no influences on the outputs and neglected, which is factor fixing setting (FF) (see chapter 2.5.4).

Table 5.3: Comparisons of variance-based method on temperature and current velocity results

Temperature x-/y-direction veloc-
ity

z-direction velocity

Ranking of influences Dalton >Smagorin-
sky >Stanton

Rhoair >Smagorin-
sky >Vicoww, Di-
coww

Smagorinsky >Vi-
coww >Dicoww,
Rhoair

Correlation information
Correlations exist in
each parameter

Correlations exist in
each parameter

Correlations exist in
each parameter

No parameter can
be neglected

No parameter can
be neglected

No parameter can
be neglected

In the ranking of influences, the most influential factors of temperature and x-/y-direction current velocity
keep the same as Morris and copula-based method. As the results in z-direction is biased due to the small
values of outputs, the differences in z-direction between variance-based method and other two methods can
be tolerated.

The correlation information generated from variance-based method is different from Morris and copula-
based method. Considering the limitation of vague standards in variance-based method and, the correlation
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results of variance-based method are not suggested compared to copula-based method.

Conclusions

Some questions are listed in chapter 1.3. To conclude the report, the answers corresponding to the questions
will be presented.

• Sensitivity measurement: which indices can be selected to measure the sensitivity of parameters and
how to explain them?

In Morris and copula-based method, the elementary effects are used to calculate elementary mean,
absolute elementary mean and standard deviation. The absolute mean gives the information of influ-
ence degree and standard deviation gives the correlation information. In variance-based method, the
first-order and total-order effect indices are used. First-order effect indices gives the information of
influence degree; the differences between first-order and total-order effect indices show if the signifi-
cant correlation exists; the total-order effect indices not being zero indicated the parameter’s influences
cannot be neglected.

• Research prioritization: which factors are the most deserving of further analysis or measurement?

It can be answered from the tables above.

• Model simplification: can some factors or compartments of the model be fixed or simplified?

Dicouv and Vicouv can be abandoned in sensitivity analysis, as the parameters changed will be over-
written, thus have no influence on outputs.

• In the physical process, independence is rare to see, and parameters can be imagined to be depen-
dent and interact with each other, which is also the highlights of the thesis. Some questions related to
dependencies and correlations need to be answered:

* Why are the dependencies of the parameters needed to be considered?

Because independence is rare to see in physical process. In this thesis project, the parameters
have correlations between each other. Before creating copulas in chapter 3.6.1, some examples
are explained.

* How to include the dependency information into sensitivity analysis?

In this thesis project, copula-based and variance-based method are used to include the depen-
dency information. In copula-based method, the dependency is included in the copulas to gener-
ate the sample, making the samples more reasonable. In variance-based method, the dependency
is included in the variance, specifically embodied in first-order and higher-order indices, includ-
ing the total-order indices.

* Which parameters are correlated together?

It can be answered in copula-based method. For temperature, Stanton and Dalton, Vicoww and
Dicoww, Vicouv and Dicouv are correlated together; for current velocity, Vicoww and Dicoww,
Vicouv and Dicouv are correlated together. However, note that the correlations are not interpreted
from the results, but are from the experience and physical processes. It is difficult for indicators to
specifically indicate which variables are relevant. It can be obtained generally from higher-order
indices in variance-based method, for example second-order indices for specific parameters can
give us a cognition of how big the correlation is. The computation tasks are heavy for this, which
can be done in further study.

• From the aspects of different methods, what are the differences between the logic and results of the
methods?

The answers to the questions can also be found in the limitations in the discussions. First, Morris
method assume every parameter independent before sampling, which may cause the bias and un-
reasonableness in results, while copula-based and variance-based method include the independency
information within parameters.
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Second, Morris method and variance-based method use the same sensitivity indices: elementary mean,
absolute mean, which indicating the influence degree, and standard deviation indicating the corre-
lation degree. Variance-based method uses first-order indices to indicate the influential degree, and
higher orders including the total-order indices to show the correlations.

Third, the dependency information is included differently in copula-based and variance-based meth-
ods. In copula-based method, the correlations need to be decided roughly before sampling, which may
be unclear in many cases. In variance-based method, the correlations do not need to be considered
manually in operations. Also, the correlations are hard to define in copula-based method. In this thesis
project, the correlation is only considered as 1 or -1, which is very rough.

Fourth, the calculation time is different between the methods. In Morris method and copula-based
method, the number of samples is (k+1)*r, where k is the number of segments (including copulas and
parameters) and r is the number of paths. In variance-based method, the number of samples is (k+2)*N,
where k is the number of parameters and N is the number of random samples in each matrix, varying
from hundreds to thousands. The calculation costs of variance-based method is much higher than
Morris method and copula-based method, which is a disadvantage of variance-based method.

Last, Morris and copula-based method can rank the correlation information of parameters, in other
words, which parameters are correlated more with others. However, variance-based method is mainly
used to decide if the parameters are involved in significant interactions.

5.3. Recommendations

In this section, some recommendations for future work will be given.

First, the codes of Morris method use the files created by SimLab. However, the software is not updated any
more. The codes not relying on SimLab are suggested to investigate.

Second, the settings of copulas in copula-based method are just one rough possibility. In this thesis project,
only two parameters are included in one copula. But in other cases, it is possible that more than 2 parameters
are concluded together. The logic and steps of the general idea are the same, but it will be a difficult task
to adjust the codes to extend the copulas. Besides the number of parameters in the copulas, more possible
correlations can be tried. The correlation of 1 or -1 is very rough are unrealistic in most physical processes.
The values between -1 and 1 can be used in further study.

Third, in variance-based method, more higher-order indices can be tried. In this thesis project, only the first-
order and the total-order indices are calculated. The first-order indices are used to show the influence degree,
and the differences of the first-order and the total-order indices are used to indicate the correlation degree of
the parameter. As mentioned in the last point of the answers to the fourth questions in conclusions, higher-
order indices can show the correlations between specific parameters. Saltelli [42] didn’t give the calculation
strategy for the higher-order indeices, it is worth investigating the calculations and codes based on the same
settings for the first-order and the total-order indices.

Fourth, in variance-based method, the approximation error are produced in calculations. A method is pro-
vided by Sobol’ et al. to estimate the approximation error when fixing unessential factors in global sensitivity
analysis [49]. It is suggested to apply the method in the model.

Different time periods, input parameters and outputs in the model are suggested to try.

What’s more, more methods of sensitivity analysis can be tried, besides the three methods used in this thesis
project.



A
Codes: pretreatments

Change files containing observation point coordinate

1 % change the files in mdu -file containing the information of observation points.
2 % capable to other files need to be changed in mdu -files
3 new_obs = ’ObsFile = /p/11205216 - united /04- MSc_students/Ni_Ye

/DCSM_4nm_current /3D-DCSM -FM_4nm_20191129_obs.xyn # Points file *.xyn with
observation stations with rows x, y, station name’;

4 for k = 1:70;
5 old_file = [’DCSM_4nm_current_ ’ num2str(k.’,’%04d’) ’/DCSM_4nm_current.mdu’];
6 new_file = [’DCSM_4nm_current_ ’ num2str(k.’,’%04d’) ’/DCSM_4nm_current.mdu’];
7 text_modify_wholeline(old_file ,new_file ,new_obs ,259);
8 % replace line 259 with ’new_obs ’ in old_file , saved as ’new_file ’
9 end

1 function text_modify(filename_ini ,filename_new ,new_contents ,line)
2 % read the file ’filename_ini ’, replace the whole ’line ’ with ’new_contents ’, output

file is ’filename_new ’
3

4 %% read the file and adjust
5 fileID = fopen(filename_ini ,’r+’);
6 % open the file in readable and writable way
7 i=0;
8 while ~feof(fileID)
9 tline=fgetl(fileID);

10 % read the original file line by line
11 i=i+1;
12 newline{i} = tline;
13 % create new lines to accpect original file ’s contents in each line
14 if i==line
15 % determine whether the row to be modified is reached
16 newline{i} = strrep(tline ,tline ,new_contents);
17 % strrep: replace ’old ’ with ’new_contents ’
18 end
19 end
20 fclose(fileID);
21 % close the file
22

23 %% export the file
24 fileID = fopen(filename_new ,’w+’);
25 % open the output file in readable and writable way.
26 % if the file exists , clear the file contents and write from the beginning;
27 % if not , create the new file with the name and open only writable
28 for k=1:i
29 fprintf(fileID ,’%s\t\n’,newline{k});
30 % write newline line by line
31 end
32 fclose(fileID);
33 % close the file
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34

35 end

Change parameters in mdu-file

1 % after having the samples , generate the mdu -files in different sub -folders
2 % to run the models (example: copula -based method: temperature)
3 samples = readmatrix(’parameters_temperature_simulations.xlsx’,’Range’,’A1:G50’);
4 % rows: number of samples; columns: number of parameters;
5 line = [157 ,158 ,159 ,160 ,163 ,190 ,191]; % the lines of different parameters
6 for m = 1:50 % m: the number of samples
7 output_filename = [’temperature_copula_ ’ num2str(m.’,’%04d’) ’/

DCSM_temperature_copula.mdu’];
8 % the mdu -files are located in sub -folders
9 text_modify(’DCSM -FM_4nm_adjusted.mdu’,output_filename ,num2str(samples(m,1)),line

(1,1));
10 % replace the parameters ’ values of line m in ’output_filename ’ with
11 % ’line (1,1) ’, saved as the new file ’DCSM -FM_4nm_adjusted.mdu ’
12 for n = 2:7 % n: roop for parameters
13 new_value = num2str(samples(m,n)); % new values for parameters
14 text_modify(output_filename ,output_filename ,new_value ,line(1,n));
15 % the new file will cover the old one with the same name
16 end
17 fprintf(’%d\n’,m);
18 end

1 function text_modify(filename_ini ,filename_new ,new_contents ,line)
2 % read the file ’filename_ini ’, replace contents in ’line ’ with ’new_contents ’, output

file is ’filename_new ’
3

4 %% read the file and adjust
5 fileID = fopen(filename_ini ,’r+’);
6 % open the file in readable and writable way
7 i=0;
8 while ~feof(fileID)
9 tline=fgetl(fileID);

10 % read the original file line by line
11 i=i+1;
12 newline{i} = tline;
13 % create new lines to accpect original file ’s contents in each line
14 if i==line
15 % determine whether the row to be modified is reached
16 value_par = str2num(cell2mat(regexp(tline ,’\d(\.\d)?’,’match’)));
17 % extract the values in this row , using regular expression in Matlab
18 old = num2str(value_par);
19 % transform values into string
20 newline{i} = strrep(tline ,old ,new_contents);
21 % strrep: replace ’old ’ with ’new_contents ’
22 end
23 end
24 fclose(fileID);
25 % close the file
26

27 %% export the file
28 fileID = fopen(filename_new ,’w+’);
29 % open the output file in readable and writable way.
30 % If the file exists , clear the file contents and write from the beginning; if not ,

create the new file with the name and open only writable
31 for k=1:i
32 fprintf(fileID ,’%s\t\n’,newline{k});
33 % write newline line by line
34 end
35 fclose(fileID);
36 % close the file
37

38 end



69

Create subfolders to save the models

1 % create subfolders to run models together
2 for k = 1:50
3 folderName{k} = [’temperature_copula_ ’,num2str(k.’,’%04d’)];
4 mkdir(folderName{k});
5 end

Copy files into subfolders

1 % copy xml -file and sh -file to subfolders in order to run the models
2 for k = 1:50
3 copyfile(’dimr.xml’,[’temperature_copula_ ’ num2str(k.’,’%04d’)]);
4 copyfile(’run_dimr_h6 -c7.sh’,[’temperature_copula_ ’ num2str(k.’,’%04d’)]);
5 fprintf(’%d\n’,k);
6 end





B
Codes: read the outputs and create time

series plots

Read the outputs

Take temperature in copula-based method as an example.

1 %% read outputs from the simulations and save as mat -file
2 output_temperature = zeros (50 ,6 ,1489);
3 % 1st dimension: 50 models
4 % 2nd dimension: 6 observation points
5 % 3rd dimension: 1489 timepoints
6 for k = 1:50
7 ncFilePath = [’temperature_copula_ ’ num2str(k.’,’%04d’) ’/

DFM_OUTPUT_DCSM_temperature_copula/DCSM_temperature_copula_0000_his.nc’];
8 % get the file containing target information in each subfolder
9 temperature = ncread(ncFilePath ,’temperature ’);

10 % size: 50*6*1489. for one model , 50 layers , 6 points , 1489 timepoints
11 temperature_top = reshape(temperature (50,:,:) ,6,1489);
12 % choose 50th layer , after reshape each row is a time series for a site
13 output_temperature(k,:,:) = temperature_top;
14 % save all the models together
15 fprintf(’%d\n’,k);
16 end
17 save(’temperature.mat’,’output_temperature ’,’k’);
18

19 %% write the outputs into excel: 693
20 % the same to other timepoints
21 % find the timepoint in the time series plot
22 output_temperature_693 = reshape(output_temperature (:,:,693) ,50,6);
23 writematrix(output_temperature_693 ,’output_temperature_simulations_693.xlsx’,’Sheet’,1,

’Range ’,’A1:F1489’);

Create time series plots

Take temperature in Morris method as an example.

1 %% first plot with x_label as timepoint , to decide the timepoints used in sensitivtiy
analysis.

2 load(’temperature.mat’);
3 output_avr = mean(output_temperature);
4 % 3D data
5 temperature_avr = reshape(output_avr (1,:,:) ,6,1489);
6 % transform into 2D data
7 plot(temperature_avr ’);
8 title(’Average temperature of 80 models at different observation sites ’);
9 xlabel(’time’);
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10 ylabel(’temperature ’);
11 legend(’Point1 ’,’Point2 ’,’Point3 ’,’Point4 ’,’Point5 ’,’Point6 ’);
12

13 %% x_label: date
14 load(’temperature.mat’);
15

16 num_st=datenum(’2004 -12 -25 02:24:00 ’);
17 num_et=datenum(’2005 -01 -25 02:24:00 ’);
18 x=linspace(num_st ,num_et ,1489);
19 % change x label into date
20 timepoint693=datenum(’2005 -01 -08 12:24:00 ’);
21 timepoint1159=datenum(’2005 -01 -18 05:24:00 ’);
22 timepoint750=datenum(’2005 -01 -09 16:54:00 ’);
23 timepoint130=datenum(’2004 -12 -27 18:54:00 ’);
24 % decide the timepoints from above
25 output_avr = mean(output_temperature);
26 % calculate the average values of 6 observation points
27 temperature_avr = reshape(output_avr (1,:,:) ,6,1489);
28 % transform into 2D data
29

30 set(gcf ,’unit’,’normalized ’,’position ’ ,[0.1 ,0.1 ,0.8 ,0.8]);
31 plot(x,temperature_avr ’);
32 xline(timepoint693 ,’--r’,{’2005 -01 -08 12:24:00 ’},’fontsize ’ ,18);
33 xline(timepoint1159 ,’--r’,{’2005 -01 -18 05:24:00 ’},’fontsize ’ ,18);
34 xline(timepoint750 ,’--b’,{’2005 -01 -09 16:54:00 ’},’fontsize ’ ,18);
35 xline(timepoint130 ,’--b’,{’2004 -12 -27 18:54:00 ’},’fontsize ’ ,18);
36

37 datetick(’x’,’yyyy -mm-dd’,’keepticks ’)
38 xtickangle (60)
39 title(’Average temperature of 50 models at different observation sites ’,’fontsize ’ ,18);
40 set(gca ,’fontsize ’ ,18);
41 xlabel(’time’,’fontsize ’ ,18);
42 ylabel(’temperature ’,’fontsize ’ ,18);
43 legend(’Point1 ’,’Point2 ’,’Point3 ’,’Point4 ’,’Point5 ’,’Point6 ’,’fontsize ’ ,18);



C
Codes: Morris method

Codes used to double check

1 %% read inputs and outputs: 80 samples , 6 observation points
2 normlized = readmatrix(’normlized_inputs.xlsx’);
3 % in this codes , the inputs should be normalized before
4 output = readmatrix(’temperature_time697 ’);
5 % the way of read outputs has different possibilities
6

7 %% calculate elementary elements
8 diff_between_samples = zeros (79,6);
9 % calculate the differences between samples

10 for i = 1:79;
11 diff_between_samples(i,:) = output(i+1,:) - output(i,:);
12 end
13 EE = zeros (10,7,6);
14 % 10 trajectories , 7 parameters , 6 observation points
15 % in each trajectory (10 totally), there is a EE for each parameter
16 for j = 1:7
17 % 7 parameters
18 k = 1;
19 for ii = 1:79
20 % in each trajectory , find the two sample points where the difference is
21 old = normlized(ii,j);
22 new = normlized(ii+1,j);
23 if old ~= new && mod(ii ,8) ~= 0
24 % the first statement: EE lies on the step where the parameter
25 % changes , which occurs only once for one parameter within one
26 % trajectory
27 % the second statement indicates: the difference is not included
28 % if ’old ’ and ’new ’ show over the gap of two trajectories
29 for num_obs = 1:6
30 % save the EE in the matrix
31 EE(k,j,num_obs) = diff_between_samples(ii ,num_obs) / (new - old);
32 end
33 k = k+1;
34 end
35 end
36 end
37

38 %% mean , absolute mean , standard deviation
39 mu = reshape(mean(EE) ,7,6);
40 mu_star = reshape(mean(abs(EE)) ,7,6);
41 sigma = reshape(std(EE) ,7,6);
42

43 %% save the measurements in txt -file
44 par_name = [" Vicouv", "Dicouv","Vicoww","Dicoww"," Smagorinsky ","Stanton","Dalton "];
45 fileID = fopen(’EE_measurement.txt’,’w’);
46 for num_obs = 1:6
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47 fprintf(fileID ,’Point%d\n’,num_obs);
48 fprintf(fileID ,’parameter mu* mu sigma\n’);
49 for j = 1:7
50 fprintf(fileID ,’%s %.4e %.4e %.4e\n’,par_name(j),mu_star(j,

num_obs),mu(j,num_obs),sigma(j,num_obs));
51 if j == 7
52 fprintf(fileID ,’-------------------------------------------------\n’);
53 end
54 end
55 end
56 fclose(fileID);

Morris method package[24]

The codes from the package introduced in chapter 3.4.1 and 3.4.3 can be downloaded from [24].



D
Codes: copula-based method

The codes for copula-based method are created by Ţene et al. Some adjustments are made according to the
cases in the project, thus the main function are listed. The library of the full codes can be found from [51]

Sampling

1 % take the example of temperature
2 % Use Morris method to sample model runs
3

4 clear all;
5 close all;
6 % add library folder , containing the necessary functions
7 addpath(fullfile(pwd ,’lib’));
8

9 % model parameter definition (index and name)
10 Vicouv = 1; var_names{Vicouv} = ’Vicouv ’;
11 Dicouv = 2; var_names{Dicouv} = ’Dicouv ’;
12 Vicoww = 3; var_names{Vicoww} = ’Vicoww ’;
13 Dicoww = 4; var_names{Dicoww} = ’Dicoww ’;
14

15 Smagorinsky = 5; var_names{Smagorinsky} = ’Smagorinsky ’;
16

17 Stanton = 6; var_names{Stanton} = ’Stanton ’;
18 Dalton = 7; var_names{Dalton} = ’Dalton ’;
19

20 % parameter ranges (in the order of the indices defined above)
21 low = [ 0.1, 0.1, 0.000001 , 0.000001 , 0.05, 0.001 , 0.001 ];
22 high = [ 2 , 2 , 0.0001 , 0.0001 , 0.3 , 0.0016 , 0.0016 ];
23

24 % Sensitivity analysis settings (Morris method)
25 p = 8; % Morris grid points
26 k = 1; % Morris step size (in # ofgrid

cells)
27 r = 10; % number of Morris paths
28 n = 7; % number of variables
29 corr = diag(ones(1,n)); % n x n correlation matrix
30 c = 1;
31 % Define the rank correlations between parameters: -1 (fully inversely correlated) <=

corr(i,j) <= 1 (fully positively correlated)
32 % The correlations may be different and will define the copula.
33 corr(Vicouv ,Dicouv) = c; corr(Dicouv ,Vicouv) = c;
34 corr(Vicoww ,Dicoww) = c; corr(Dicoww ,Vicoww) = c;
35 corr(Stanton ,Dalton) = c; corr(Dalton ,Stanton) = c;
36

37 index_freevar = [5];
38 % Define the index matrix of free var , used in extended_morris.m to
39 % replace the samples of free var by end of the cube
40
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41 % Define groups
42 groups (1).indices = [Vicouv ,Dicouv ];

% variables in this group
43 groups (1).name = [var_names{Vicouv} ’-’ var_names{Dicouv }]; % also their

names , for plotting
44 groups (1).prob = [0.5 1; 0 0.5]; % upper triangular probability matrix
45 % prob(i,j) = P(Xi increases | Xj

increases)
46 % prob(i,i) = P(Xi increases)
47 % lower triangular part will be filled

in automatically , according to
Bayes ’ rule

48 % type = 2, to determine sensitivity of the group (as one entity)
49 % type = 1, to determine individual parameter sensitivities

50 groups (1).type = 2;
51

52 groups (2).indices = [Vicoww ,Dicoww ];
53 groups (2).prob = [0.5 1; 0 0.5];
54 groups (2).type = 2;
55 groups (2).name = [var_names{Vicoww} ’-’ var_names{Dicoww }];
56

57 groups (3).indices = [Stanton ,Dalton ];
58 groups (3).prob = [0.5 1; 0 0.5];
59 groups (3).type = 2;
60 groups (3).name = [var_names{Stanton} ’-’ var_names{Dalton }];
61

62 % use Morris to generate the paths
63 [paths ,vars] = extended_morris(p,k,r,corr ,groups ,index_freevar);
64

65 % extract model evaluations
66 A = cell2mat(paths (:));
67

68 % remove duplicates (highly unlikely to have duplicates)
69 [A_unique ,~,map] = unique(A,’rows’);
70 [nPaths ,nPoints] = size(paths);
71 map = reshape (1: nPaths*nPoints , nPaths , nPoints);
72

73 % scale to parameter ranges
74 A = bsxfun(@times , A, high) + bsxfun(@times , 1-A, low);
75

76 % rewrite A in the order of paths
77 for i = 1:10
78 for j = 1:5
79 A_order ((i-1)*5+j,:) = A((j-1) *10+i,:);
80 end
81 end
82

83 % these files save the configuration and the paths , in Matlab format
84 save(’setup_temperature.mat’,’var_names ’,’low’,’high’,’groups ’,’p’,’k’,’r’,’n’,’corr’,’

index_freevar ’);
85 save(’paths_temperature.mat’,’paths’,’vars’,’map’,’A’,’A_unique ’,’A_order ’);
86

87 % write the inputs into excel
88 writematrix(A,’parameters_temperature_simulations.xlsx’,’Sheet’,1,’Range’,’A1:G50’);
89 writematrix(A_order ,’parameters_temperature_in_order.xlsx’,’Sheet ’,1,’Range’,’A1:G50’);

Sensitivity measurements

1 % Use model results to do sensitivity analysis
2

3 % clear all;
4 % close all;
5

6 % load configuration and paths
7 load(’setup_temperature.mat’,’var_names ’,’var_names ’,’low’,’high’,’groups ’,’p’,’k’,’

index_freevar ’);
8 load(’paths_temperature.mat’,’paths’,’vars’,’map’);
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9 step = k / (p-1);
10 [nPaths ,nPoints] = size(paths);
11 nSegments = nPoints -1;
12

13 % get model results
14 M_all = importdata(’output_temperature_simulations_130.xlsx’);
15 for j=1:6
16 M = M_all(:,j);
17 % compute elementary effects
18 % iVars = [groups ([ groups.type] ~= 2).indices ];
19 % iVars = [iVars setdiff (1: length(var_names), [groups.indices ])];
20 iVars = 1;
21 iGroups = find([ groups.type] == 2);
22 Effects = zeros(nPaths ,nSegments);
23 for iPath =1: nPaths
24 for iPoint =2: nPoints
25 iSegment = iPoint -1;
26 l1 = map(iPath ,iPoint -1);
27 l2 = map(iPath ,iPoint);
28

29 iVar = vars(iPath ,iSegment);
30 if iVar > 0
31 iEntity = find(iVars == iVar);
32 else
33 iEntity = length(iVars) + find(iGroups == -iVar);
34 end
35 Effects(iPath ,iEntity) = (M(l2) - M(l1)) / step;
36 end
37 end
38 % compute mu, mu_star , sigma
39 mu(j,:) = mean(Effects);
40 mu_star(j,:) = mean(abs(Effects));
41 sigma(j,:) = std(Effects);
42 names = [var_names(index_freevar) {groups(iGroups).name }];
43 % save the effects
44 struct_value{j} = transpose(Effects);
45 end
46 EERaw = struct(’Point01 ’,{struct_value {1}},’Point02 ’,{struct_value {2}},’Point03 ’,{

struct_value {3}},’Point04 ’,{struct_value {4}},’Point05 ’,{struct_value {5}},’Point06 ’
,{struct_value {6}});

47

48 %%
49 % plot
50 for j=1:6
51 mu_star1 = mu_star(j,:);
52 sigma1 = sigma(j,:);
53 figure(j);
54 % h=figure(’units ’,’normalized ’,’outerposition ’,[0 0 1 1]);
55 set(gcf ,’unit’,’normalized ’,’position ’ ,[0.1 ,0.1 ,0.8 ,0.8]);
56 plot(mu_star1 ,sigma1 ,’*’,’MarkerSize ’ ,6);
57 xlim ([0 5]);
58 title(strcat ({’Sensitivity indices at Point’},num2str(j)));
59 xlabel(’Absolute mean’);
60 ylabel (’Standard deviation ’);
61 lim = xlim();
62 text(mu_star1 +0.01*( lim(2)-lim(1)), sigma1 , names);
63 xlim ([ -0.1 0.5]);
64 ylim ([ -0.1 0.5]);
65 end
66

67 %%
68 save(’EE_copula_temperature_timepoint130_new.mat’,’names ’,’mu_star ’,’mu’,’sigma’,’EERaw

’);





E
Codes: variance-based method

1 %% read matrix , the result is on FINO3 , x: 380; y: 372; z: 378
2 A = readmatrix(’current_A.xlsx’,’Sheet’,1,’Range ’,’A2:D129’);
3 B = readmatrix(’current_B.xlsx’,’Sheet’,1,’Range ’,’A2:D129’);
4 C1 = readmatrix(’current_C1.xlsx’,’Sheet’,1,’Range ’,’A2:D129’);
5 C2 = readmatrix(’current_C2.xlsx’,’Sheet’,1,’Range ’,’A2:D129’);
6 C3 = readmatrix(’current_C3.xlsx’,’Sheet’,1,’Range ’,’A2:D129’);
7 C4 = readmatrix(’current_C4.xlsx’,’Sheet’,1,’Range ’,’A2:D129’);
8 % where the input matrixes are saved
9

10 load(’current_A.mat’);
11 load(’current_B.mat’);
12 load(’current_C1.mat’);
13 load(’current_C2.mat’);
14 load(’current_C3.mat’);
15 load(’current_C4.mat’);
16 % where the simulation results of different matrixed are saved
17

18 xdir_f_A = x_velocity_A (:,1,380);
19 xdir_f_B = x_velocity_B (:,1,380);
20 xdir_f_C1 = x_velocity_C1 (:,1 ,380);
21 xdir_f_C2 = x_velocity_C2 (:,1 ,380);
22 xdir_f_C3 = x_velocity_C3 (:,1 ,380);
23 xdir_f_C4 = x_velocity_C4 (:,1 ,380);
24

25 ydir_f_A = y_velocity_A (:,1,372);
26 ydir_f_B = y_velocity_B (:,1,372);
27 ydir_f_C1 = y_velocity_C1 (: ,1 ,372);
28 ydir_f_C2 = y_velocity_C2 (: ,1 ,372);
29 ydir_f_C3 = y_velocity_C3 (: ,1 ,372);
30 ydir_f_C4 = y_velocity_C4 (: ,1 ,372);
31

32 zdir_f_A = z_velocity_A (:,1,378);
33 zdir_f_B = z_velocity_B (:,1,378);
34 zdir_f_C1 = z_velocity_C1 (: ,1 ,378);
35 zdir_f_C2 = z_velocity_C2 (: ,1 ,378);
36 zdir_f_C3 = z_velocity_C3 (: ,1 ,378);
37 zdir_f_C4 = z_velocity_C4 (: ,1 ,378);
38 % extract the results of current velocities in different directions
39

40 var_name = {’Vicoww ’,’Dicoww ’,’Smagorinsky ’,’Rhoair ’};
41

42 save(’current_variance.mat’);
43

44 %% x direction
45 xdir_f0 = mean(xdir_f_A);
46

47 xdir_y_AC1 = mean(xdir_f_A .* xdir_f_C1);
48 xdir_y_AC2 = mean(xdir_f_A .* xdir_f_C2);
49 xdir_y_AC3 = mean(xdir_f_A .* xdir_f_C3);
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50 xdir_y_AC4 = mean(xdir_f_A .* xdir_f_C4);
51

52 xdir_y_BC1 = mean(xdir_f_B .* xdir_f_C1);
53 xdir_y_BC2 = mean(xdir_f_B .* xdir_f_C2);
54 xdir_y_BC3 = mean(xdir_f_B .* xdir_f_C3);
55 xdir_y_BC4 = mean(xdir_f_B .* xdir_f_C4);
56

57 xdir_y_AA = mean(xdir_f_A .* xdir_f_A);
58

59 % first -order sensitivity indices
60 xdir_S (1,1) = (xdir_y_AC1 - xdir_f0 ^2)/( xdir_y_AA - xdir_f0 ^2);
61 xdir_S (2,1) = (xdir_y_AC2 - xdir_f0 ^2)/( xdir_y_AA - xdir_f0 ^2);
62 xdir_S (3,1) = (xdir_y_AC3 - xdir_f0 ^2)/( xdir_y_AA - xdir_f0 ^2);
63 xdir_S (4,1) = (xdir_y_AC4 - xdir_f0 ^2)/( xdir_y_AA - xdir_f0 ^2);
64

65 % total -effect indices
66 xdir_ST (1,1) = 1 - (xdir_y_BC1 - xdir_f0 ^2)/( xdir_y_AA - xdir_f0 ^2);
67 xdir_ST (2,1) = 1 - (xdir_y_BC2 - xdir_f0 ^2)/( xdir_y_AA - xdir_f0 ^2);
68 xdir_ST (3,1) = 1 - (xdir_y_BC3 - xdir_f0 ^2)/( xdir_y_AA - xdir_f0 ^2);
69 xdir_ST (4,1) = 1 - (xdir_y_BC4 - xdir_f0 ^2)/( xdir_y_AA - xdir_f0 ^2);
70

71 save(’xdir_sensitivity_indices.mat’,’xdir_S ’,’xdir_ST ’,’var_name ’);
72

73 %% y direction
74 ydir_f0 = mean(ydir_f_A);
75

76 ydir_y_AC1 = mean(ydir_f_A .* ydir_f_C1);
77 ydir_y_AC2 = mean(ydir_f_A .* ydir_f_C2);
78 ydir_y_AC3 = mean(ydir_f_A .* ydir_f_C3);
79 ydir_y_AC4 = mean(ydir_f_A .* ydir_f_C4);
80

81 ydir_y_BC1 = mean(ydir_f_B .* ydir_f_C1);
82 ydir_y_BC2 = mean(ydir_f_B .* ydir_f_C2);
83 ydir_y_BC3 = mean(ydir_f_B .* ydir_f_C3);
84 ydir_y_BC4 = mean(ydir_f_B .* ydir_f_C4);
85

86 ydir_y_AA = mean(ydir_f_A .* ydir_f_A);
87

88 % first -order sensitivity indices
89 ydir_S (1,1) = (ydir_y_AC1 - ydir_f0 ^2)/( ydir_y_AA - ydir_f0 ^2);
90 ydir_S (2,1) = (ydir_y_AC2 - ydir_f0 ^2)/( ydir_y_AA - ydir_f0 ^2);
91 ydir_S (3,1) = (ydir_y_AC3 - ydir_f0 ^2)/( ydir_y_AA - ydir_f0 ^2);
92 ydir_S (4,1) = (ydir_y_AC4 - ydir_f0 ^2)/( ydir_y_AA - ydir_f0 ^2);
93

94 % total -effect indices
95 ydir_ST (1,1) = 1 - (ydir_y_BC1 - ydir_f0 ^2)/( ydir_y_AA - ydir_f0 ^2);
96 ydir_ST (2,1) = 1 - (ydir_y_BC2 - ydir_f0 ^2)/( ydir_y_AA - ydir_f0 ^2);
97 ydir_ST (3,1) = 1 - (ydir_y_BC3 - ydir_f0 ^2)/( ydir_y_AA - ydir_f0 ^2);
98 ydir_ST (4,1) = 1 - (ydir_y_BC4 - ydir_f0 ^2)/( ydir_y_AA - ydir_f0 ^2);
99

100 save(’ydir_sensitivity_indices.mat’,’ydir_S ’,’ydir_ST ’,’var_name ’);
101

102 %% z direction
103 zdir_f0 = mean(zdir_f_A);
104

105 zdir_y_AC1 = mean(zdir_f_A .* zdir_f_C1);
106 zdir_y_AC2 = mean(zdir_f_A .* zdir_f_C2);
107 zdir_y_AC3 = mean(zdir_f_A .* zdir_f_C3);
108 zdir_y_AC4 = mean(zdir_f_A .* zdir_f_C4);
109

110 zdir_y_BC1 = mean(zdir_f_B .* zdir_f_C1);
111 zdir_y_BC2 = mean(zdir_f_B .* zdir_f_C2);
112 zdir_y_BC3 = mean(zdir_f_B .* zdir_f_C3);
113 zdir_y_BC4 = mean(zdir_f_B .* zdir_f_C4);
114

115 zdir_y_AA = mean(zdir_f_A .* zdir_f_A);
116

117 % first -order sensitivity indices
118 zdir_S (1,1) = (zdir_y_AC1 - zdir_f0 ^2)/( zdir_y_AA - zdir_f0 ^2);
119 zdir_S (2,1) = (zdir_y_AC2 - zdir_f0 ^2)/( zdir_y_AA - zdir_f0 ^2);
120 zdir_S (3,1) = (zdir_y_AC3 - zdir_f0 ^2)/( zdir_y_AA - zdir_f0 ^2);
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121 zdir_S (4,1) = (zdir_y_AC4 - zdir_f0 ^2)/( zdir_y_AA - zdir_f0 ^2);
122

123 % total -effect indices
124 zdir_ST (1,1) = 1 - (zdir_y_BC1 - zdir_f0 ^2)/( zdir_y_AA - zdir_f0 ^2);
125 zdir_ST (2,1) = 1 - (zdir_y_BC2 - zdir_f0 ^2)/( zdir_y_AA - zdir_f0 ^2);
126 zdir_ST (3,1) = 1 - (zdir_y_BC3 - zdir_f0 ^2)/( zdir_y_AA - zdir_f0 ^2);
127 zdir_ST (4,1) = 1 - (zdir_y_BC4 - zdir_f0 ^2)/( zdir_y_AA - zdir_f0 ^2);
128

129 save(’zdir_sensitivity_indices.mat’,’zdir_S ’,’zdir_ST ’,’var_name ’);
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