
 
 

Delft University of Technology

Assessing the Performance of the Phase Difference Bathymetric Sonar Depth Uncertainty
Prediction Model

Mohammadloo, Tannaz H.; Geen, Matt ; Sewada, Jitendra S. ; Snellen, M.; Simons, D.G.

DOI
10.3390/rs14092011
Publication date
2022
Document Version
Final published version
Published in
Remote Sensing

Citation (APA)
Mohammadloo, T. H., Geen, M., Sewada, J. S., Snellen, M., & Simons, D. G. (2022). Assessing the
Performance of the Phase Difference Bathymetric Sonar Depth Uncertainty Prediction Model. Remote
Sensing, 14(9), Article 2011. https://doi.org/10.3390/rs14092011

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.3390/rs14092011
https://doi.org/10.3390/rs14092011


����������
�������

Citation: Mohammadloo, T.H.;

Geen, M.; Sewada, J.S.; Snellen, M.;

Simons, D.G. Assessing the

Performance of the Phase Difference

Bathymetric Sonar Depth Uncertainty

Prediction Model. Remote Sens. 2022,

14, 2011. https://doi.org/10.3390/

rs14092011

Academic Editors: Jaroslaw

Tegowski, Fantina Madricardo,

Philippe Blondel and Jens Schneider

von Deimling

Received: 8 April 2022

Accepted: 19 April 2022

Published: 22 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

Assessing the Performance of the Phase Difference Bathymetric
Sonar Depth Uncertainty Prediction Model

Tannaz H. Mohammadloo 1,* , Matt Geen 2, Jitendra S. Sewada 2, Mirjam Snellen 1 and Dick G. Simons 1

1 Acoustics Group, Faculty of Aerospace Engineering, Delft University of Technology,
2629 HS Delft, The Netherlands; m.snellen@tudelft.nl (M.S.); d.g.simons@tudelft.nl (D.G.S.)

2 ITER Systems, 3 Rue du Lac Mont-Cenis, Batiment Est Supernova Savoie Technolac,
73290 La Motte-Servolex, France; matt.geen@iter-systems.com (M.G.);
jitendra.sewada@iter-systems.com (J.S.S.)

* Correspondence: t.hajimohammadloo@tudelft.nl

Abstract: Realistic predictions of the contribution of the uncertainty sources affecting the quality of
the bathymetric measurements prior to a survey is of importance. To this end, models predicting these
contributions have been developed. The objective of the present paper is to assess the performance
of the bathymetric uncertainty prediction model for Phase Difference Bathymetric Sonars (PDBS)
which is an interferometric sonar. Two data sets were acquired with the Bathyswath-2 system with
a frequency of 234 kHz at average water depths of around 26 m and 8 m with pulse lengths equal
to 0.0555 ms and 0.1581 ms, respectively. The comparison between the bathymetric uncertainties
derived from the measurements and those predicted using the current model indicates a relatively
good agreement except for the across-track distances close to the nadir. The performance of the
prediction model can be improved by modifying the term addressing the effect of footprint shift,
i.e., spatial decorrelation, on the bottom due to fact that at a given time the footprints seen by different
receiving arrays are slightly different.

Keywords: predicted bathymetric uncertainty; baseline decorrelation; spatial decorrelation; additive
noise contribution; measured bathymetric uncertainty; Phase Difference Bathymetric Sonars

1. Introduction

Currently MultiBeam EchoSounder (MBES) systems are widely used for conducting
bathymetric surveys [1–3]. They allow for efficient surveying of large areas and offer the
possibility of complete bottom coverage. An MBES sends out an acoustic pulse along
a wide swath perpendicular to the sailing direction. Beam steering at reception allows
for determining the travel-time of the signal for a set of predefined beam angles [4]. For
each ping, water depths along the swath are derived from the combination of travel times
and beam angles, provided that the local Sound Speed Profile (SSP) in the water column is
known [5].

However, surveys with MBES systems in shallow water are typically inefficient and
thus costly due to the limited swath width. For an MBES system, data acquisition capa-
bility is typically limited to 3–5 times water depth. This does not pose a major limitation
until working in waters shallower than 10 m–15 m where attaining a full bottom coverage
becomes difficult. This has promoted the use of Phase Differencing Bathymetric Sonars
(PDBS), also known as interferometric sonars, where the wide swath range of the sonar
decreases the survey time and reduces the cost for a large survey area. PDBS use the phase
difference of the backscattered signal at two closely spaced receivers for determining the
Angle(s) of Arrival (AoA) [6].

Similar to any measurement system, PDBS measurements are affected by uncertainties.
Thus, the derived depths are affected by uncertainties induced by the interferometer system,
sound speed in the water column, and position, motion and attitude sensors. Obtaining
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a realistic a priori estimate of the depth uncertainties is of importance for a number of
applications [7,8] including survey planning.

Over the past decades, approaches have been developed for the estimation of the
bathymetric uncertainties. Regarding an MBES system, references [9,10] developed an a pri-
ori vertical uncertainty prediction model to quantify the contribution of various sources.
The model has been improved by [11,12] to account for different types of transmitted
pulse shapes and has been validated by [13] using measurements acquired for different
environmental conditions and MBES settings. Reference [4] proposed a unified definition
of a quality factor for sonar bathymetry measurements (both MBES and PDBS), which is
an a posteriori estimator of the local depth uncertainty estimated based on the measured
signal features. Reference [14] discusses the influence of the phase difference estimation
uncertainties using a theoretical physic based framework of the backscattered signals.
Different uncertainty sources inherent to the backscattered signal structure are considered
and the performance of the developed model is assessed using various numerical simu-
lations scenarios, see also [15] for quantification of the contribution of different sources.
Reference [16] quantified the uncertainties discussed in [14] for the Bathyswath-2 system
(manufactured by ITER Sytems) [17] which is a phase differencing system and addressed
the effect of varying transmitted pulse length on the bathymetric uncertainties. The author
did not account for the uncertainty sources induced by ancillary sensors and SSP in the
water column. The objective of this contribution is to quantify the total PDBS bathymetric
uncertainties accounting for different sources such as the interferometer, sound speed in
the water column, motion and positioning sensors for a PDBS system and to compare
the predictions to those encountered in reality. The contribution of this paper is thus to
assess and validate the current available method for predicting the PDBS measured depth
uncertainties. For the comparison use is made of the Bathyswath-2 system for different en-
vironmental conditions and sonar settings. This paper is organized as follows. In Section 2,
a brief theory of interferometer systems is given followed by discussing the bathymetric
uncertainties induced by the interferometer. Next, the approach taken for predicting total
bathymetric uncertainty is briefly explained. The description of the data sets is given in
Section 3. We present and discuss the results in Section 4. Concluding remarks are given in
Section 5.

2. Interferometric Bathymetry Undertainty Prediction Model
2.1. Interferometry

The interferometry principle is based on constructive and destructive interference
between acoustic waves (or electromagnetic waves). Considering two waves from coherent
sources, the resulting intensity depends on the phase difference between both waves [18].
Shown in Figure 1 is the geometry of angle and bathymetry measurements using interfer-
ometry. The angle ψ is the tilt angle relative to the x-axis and the angle θ is defined as the
angle between the direction of propagation and the y-axis, i.e., depth axis (wavefront and
x-axis). For an array made of two receivers equally distanced with δL, the phase difference
can be written as

∆ϕ =
2π

λ
δr =

2π

λ
δL sin γ, (1)

with λ the acoustic wavelength equaling c/f and f and c the frequency of the acoustic
signal and sound speed respectively. γ = θ − ψ is the angle between the direction of
propagation and the interferometer axis. δr is the difference in range from the source to the
two receivers.
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1

2

Figure 1. Geometry of interferometry. θ is the direction of the incoming signal relative to the
surface normal.

Thus, by measuring the phase difference, the angle of arrival can be determined. In
practice, the phase difference ∆ϕ at a given time sample is estimated using an interfero-
metric estimator based on the two complex signal envelopes received on the two array
elements, s1 and s2, as [19]

∆̂ϕ = arg(s1s∗2) , (2)

with * the complex conjugate operator. The values given by the complex arg operator are
between [−π, π]. Thus, the relation between ∆ϕ and ∆̂ϕ is ∆̂ϕ = mod

( 2π
λ δL sin γ, 2π

)
.

A counter of phase rotations m̂ is thus introduced and ∆̂ϕ is related to ∆ϕ as

∆̂ϕ± 2πm̂ =
2π

λ
δL sin γ m̂ ∈ N , (3)

with m̂ the integer phase ambiguity. The estimated phase difference thus becomes am-
biguous and discontinuous, referred to as phase jumps. To address the phase ambiguity
problem, occurring as soon as δL (commonly referred to as the baseline length in interfer-
ometry) is larger than λ

2 , a number of approaches exist [20,21]. The widely used method
for solving the phase ambiguity is the Vernier method [15,22]. The Vernier method does
not require extra equipment or hardware change. The method requires at least three sen-
sors (i.e., two receiver pairs) and creates artificial receiver pairs with a separation of λ

2
by subtracting the phase difference of two pairs [23,24]. For the Bathyswath system, four
transducers are used at different spacings. For four transducers A, B, C and D, we can create
an artificial λ

2 spacing by subtracting the AB phase difference from the BC phase difference,
and thus an unambiguous but uncertain angle is obtained. With this unambiguous estimate
of the angle, the uncertainty is decreased by choosing a larger element spacing. Repeating
the process to increasingly larger pairs, gives a more certain estimate of the angle.

2.2. Bathymetry Uncertainty Prediction Model for PDBS Systems

In this subsection we will discuss the different sources of uncertainty affecting the
bathymetric measurements obtained from the PDBS systems (interferometric systems).
Except for the contribution of the interferometer, the uncertainty sources are similar to
those for MBES system [10,13] and can be categorized as [25]

1. Interferometer contribution σdInt ;
2. Angular motion sensor contribution, σdAngMot , due to the uncertainties in roll and pitch

measurements and imperfectness of their corrections;
3. Motion sensor and echosounder alignment contribution, σdAlign

, due to the discrep-
ancies between roll and pitch angle measurements at the motion sensor and the
PDBS transducer;
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4. Sound speed contribution, σdSS
, due to the sound speed uncertainties at the transducer

array and those in the water column. In case of not using GNSS, a measurement of
the height of the water surface relative to chart datum is needed (i.e., tide height);

5. Heave contribution, σH , due to the uncertainties in the heave measurements and
those induced due to the vertical motion of the transducer with respect to the vertical
reference unit caused by the angular motions of the vessel. In case of using the Global
Navigation Satellite System (GNSS) for vertical positioning, the uncertainty of the
heave measurements is replaced by the uncertainty of the vertical component of
the GNSS.

Assuming the above uncertainty sources are uncorrelated and have equal contribution
to the final bathymetry uncertainty (this will be discussed later on in Section 4), the total
depth uncertainty relative to the interferometer is expressed as

σd =
√

σ2
dInt

+ σ2
dAngMot

+ σ2
dAlign

+ σ2
dSS

+ σ2
H (4)

The equations for quantifying the contributions of σdAngMot , σdAlign
, σdSS

, σH are not
presented here and the interested reader can refer to [9,10]. Here, we briefly discuss the
contribution of the interferometer, σdInt . Before proceeding further, it should be highlighted
that here we have considered the main uncertainty sources arising from the physics of the
interaction of the acoustic environment and the measurement components and algorithms
of the PDBS system. It is assumed that the sonar system has been designed such that
internal sources of noise (and thus the corresponding bathymetry uncertainty) have been
reduced to levels well below the contribution of the uncertainty sources mentioned above.
For example, the front-end receiving pre-amplifiers are selected such that they have very
low self-noise, and signal processing algorithms chosen do not add uncertainty to the
processed data [26]. It is sometimes found that the electronic systems external to the sonar
can introduce electrical noise which adds to the depth measurement uncertainty. System
test procedures are available and to detect and address this issue. As an example, operating
the system while the sonar transmit signal is turned off should provide an amplitude signal
close to zero. Manufacturers often provide advice for solving any such problems.

A bathymetry measurement uncertainty induced by the interferometer is a combina-
tion of uncertainty in the time of arrival (σt) and angle of arrival (σθ) and is given as

σdInt

d
=

σt

t
+ σθ tan θ (5)

with t the two way travel time of the signal an d the depth below the PDBS transducer.
Assuming that the time of arrival measurement is sufficiently accurate, the first term in
Equation (5) can be neglected. This assumption is based on the high sampling frequency of
the received signal.

The angular uncertainty (σθ) is obtained from a differentiation of Equation (1), replac-
ing γ by θ − ψ as

σθ =
σ∆ϕ

2π

λ

δL
1

cos(θ − ψ)
(6)

Angular measurement uncertainty is proportional to the phase difference uncertainty
and is minimum for large values of δL

λ (a wide receiver spacing compared to signal wave-
length), and cos(θ − ψ) (a target close to the interferometer axis).

Substituting σθ from Equation (6) in Equation (5) gives σdInt as

σdInt

d
=

σ∆ϕ

2π

λ

δL
tan θ

cos(θ − ψ)
(7)
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Different uncertainty sources affect the phase difference uncertainty and thus the
resulting bathymetry. The uncertainty of the phase measurements is approximated by [27]

σ∆ϕ = 2
[ 12

π2 + SNR
]− 1

2
[
1− 0.05

SNR
SNR + 1

ln SNR]−1 (8)

with SNR the Signal-to-Noise Ratio of the received backscatter signal. Equation (8) provides
an important relation between the SNR and the phase difference measurement uncertainty.
Using Equation (8) in Equation (7), one can determine the bathymetric measurement
uncertainty induced by the interferometer.

The uncertainty sources affecting the SNR may be either additive noise, or degrada-
tion related to the structure of the backscattered signal and are briefly described in the
following subsection.

2.2.1. Additive Noise Contribution

Additive noise is a major limiting factor for interferometric sonars. Large additive
noise can limit the attainable range and reduce the accuracy of angular measurements.
Additive noise and its various causes can be assessed using the sonar equation [18,28]. In
the calculation of the SNR due to the additive noise (referred to as SNRAdd) information
regarding the ambient noise (NL0 in Table 1), defined as any noise source present in the
environment in the absence of the sonar, is required. Potential sources for this noise are
sea-state (induced from the waves and wind), thermal (thermal agitation of the molecules
of water producing pressure fluctuations at the face of the hydrophone), biological (from
marine mammals and shrimps) and man-made (such as ships). Some of these sources
can show impulsive nature instead of Gaussian [29]. This means that the performance
of the signal processor designed assuming Gaussian noise, might be degraded in case of
encountering impulsive noise. Studies have shown that at the high frequencies used by
interferometric sonar systems (higher than 200 kHz), thermal noise is dominant [18,28,30]
which does not show impulsive characteristic. Sea-state noise and ship noise are usually
below the frequency of operation of the sonar, and are removed by band-pass filters.

Here we do not discuss the sonar equation, however we will use it to illustrate the ef-
fect of the pulse length on the SNR. In the sonar equation, the angular backscatter response
is approximated by Lambert’s law [31]. This rule provides a specific incident angle depen-
dency of the backscatter strength according to which many surfaces behave [28]. Figure 2
presents the evolution, with across-track distance, of the SNR and the corresponding phase
difference uncertainty for three different pulse lengths (see Table 1). For the simulation, we
use three different pulse lengths equal to 0.0342 ms, 0.0555 ms and 0.1580 ms which are rep-
resentative of the frequently used pulse lengths in PDBS systems. As seen, using a longer
pulse length results in higher SNR and consequently a smaller phase difference uncertainty.

a) b)

Figure 2. Illustrations of the effect of additive noise on (a) computed SNR, (b) phase measurement
uncertainty versus range. Input parameters are found in Table 1.
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Table 1. Input parameters for calculating the contribution of the various uncertainty sources.

Parameter Value

Source Level 273.06 [dB re 1 µPa at 1 m]
Pulse Shape Continuous Wave
Noise level NL0 + 20 log10 B(Hz) [dB]

Frequency ( f ) 234 [kHz]
Bandwidth (B) 100 [kHz]

Interferometer Tilt Angle (ψ) 30 [◦]
Depth 10 [m]

Absorption Coefficient 17 dB/km
Backscatter strength at nadir for fine sand −35 dB

2.2.2. Spatial Decorrelation Contribution

Ideally, the signals received on elements 1 and 2 in Figure 1 should only differ by
their propagation range. Thus, theoretically their phase difference is only a function of
the two path lengths at a given time, i.e., the two synchronous echoes should come from
exactly the same scatterers [14,20,32].

However, at a given time, the footprints (instantly ensonified area) seen by different
receiving arrays are slightly different. This difference depends on the receiver spacing (δL in
Figure 1), depth d, incident angle θ and the transmitted pulse duration T (for a continuous
wave signal shape) or equivalent duration after the pulse compression (for a frequency
modulated signal shape). The phenomenon of receiving slightly different signals on the
receiving elements is referred to as spatial decorrelation (sliding footprint) and contributes
to the degradation of phase measurements due to a lower signal coherence (i.e., the degree
of similarity between the two signals) [16].

The common part of the two individual footprints, referred to as the effective signal
footprint, is used in the phase difference measurement. A Parasite contribution intervening
as noise arises from the noncommon parts of the two individual footprints (which leads to
decorrelation) [14]. The equivalent SNR is referred to as SNRSD and in linear scale (non dB
values) is expressed as

SNRSD =
cT

δL| sin γ| − 1. (9)

The spatial decorrelation is penalizing for

• A short continuous wave pulse or a short pulse compressed pulse duration for a fre-
quency modulated signal;

• Directions away from the interferometer axis; for the situation θ = ψ, SNRSD goes to
infinity and the spatial decorrelation disappears;

• A large interferometer spacing.

Shown in Figure 3a,b are the SNRs due to the spatial decorrelation (SNRSD) and the
corresponding phase difference uncertainty, respectively. For the situation considered
here with the interferometer tilt angle of 30°, the highest SNR (lowest phase difference
uncertainty) occurs for the across-track distance of 17.35 m which corresponds to the across-
track distance for the situation where θ = ψ. Similar to the additive noise contribution,
one can see that an increase in the pulse length results in a higher SNR and smaller
corresponding phase difference uncertainty.
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a) b)

Figure 3. Illustrations of the effect of spatial decorrelation on (a) computed SNR, (b) phase measure-
ment uncertainty versus range. Input parameters are found in Table 1.

2.2.3. Baseline Decorrelation Contribution

Signals arriving from scatterers located in the signal footprint overlap in time, i.e., the
signals received at one instant of time result from contributions of all scatterers within the
signal footprint. Hence, the footprint can be considered as a source dimension with its
own directivity pattern [11]. This fluctuation and the fact that the two receivers observe
the bottom along slightly different angular directions result in a decorrelation between the
two received signals. This decorrelation is referred to as baseline decorrelation which is
an intrinsic noise origin (i.e., inherent component of the acoustical signal) [4,14,33], and
increases as the size of the footprint gets larger. The decorrelation process corresponds to
an equivalent SNR, SNRBD, expressed as [14,32]

SNRBD =
µ

1− µ
(10)

with µ the coherence coefficient which for a system transmitting a CW squared pulse is
expressed as [27,32]

µ = sinc(
2πδL

λd
cT
4

cos θ cot θ cos γ) (11)

with sinc(x) = sin x
x the sinc function. Shown in Figure 4 is the SNR due to the baseline

decorrelation and corresponding uncertainty of the phase measurements. For distances
away from nadir, the SNRBD is usually high enough and has low impact on the phase mea-
surements. This is due to the fact that the coherence between the received signals increases
toward the outer part of the swath. For angles between nadir and the interferometry axis,
the SNRBD is comparatively low.

a) b)

Figure 4. Illustrations of the effect of baseline decorrelation noise on (a) computed SNR, (b) phase
measurement uncertainty versus range. Input parameters are found in Table 1.
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2.2.4. Overal Signal-to-Noise Ratio

The final SNR should account for the contribution of additive noise (Section 2.2.1),
spatial decorrelation (Section 2.2.2) and baseline decorrelation (Section 2.2.3). For now,
we will only consider the degradation sources from the signal processing point of view,
ignoring external factors impacting the measurement quality. These factors are denoted in
Section 2.2 as σdAngMot , σdAlign

, σdSS
and σH . Reference [27] proposes the following approach

to account for different sources affecting SNR as

1
SNRTot

= Gd
( 1

SNRAdd
+

1
SNRSD

+
1

SNRBD

)
, (12)

where SNRTot is the output SNR in linear units (non dB) due to the additive noise, baseline
decorrelation and spatial decorrelation. Gd is the array directivity index (array gain) [14,27].
The SNR due to the combined effect of additive noise (gray), spatial decorrelation (cyan)
and baseline decorrelation (magenta) is shown with black in Figure 5a for a pulse length of
0.0555 ms. The corresponding phase measurement uncertainty is shown in Figure 5b.

The corresponding depth uncertainty due to SNRTot is calculated substituting Equation (12)
in Equation (8). σ∆ϕ as obtained is then used in Equation (7) for the calculation of σdInt .

a) b)

Figure 5. Illustration of the combined effect (black) of additive noise (gray), baseline decorrelation
(magenta) and spatial decorrelation (cyan) for the situation with the pulse length equaling 0.0555 ms
on (a) computed SNR, (b) phase measurement uncertainty versus range. Input parameters are found
in Table 1.

3. Description of the Data Sets

For validating the depth uncertainty model for the PDBS system, use is made of a
Bathyswath-2 transducer, supplied by ITER Systems on a fixed platform with minimal motion.

A critical element for accurate estimation of the depth below the transducer is the
Sound Speed Profile (SSP) in the water column which varies both spatially and temporally.
Therefore, sufficient and accurate measurements of SSPs are required. To ensure the former
a new SSP was taken in case of a difference of more than 2 m/s between the surface sound
speed value and the sound speed from the latest full SSP [34]. The sound velocity profiler
(miniSVP) was manufactured by Valeport and the uncertainty of its measurements as
indicated by the manufacturer in a laboratory is 0.02 m/s [35]. However, from measure-
ments at different locations (The Ministry of Infrastructure and Water Management of
the Netherlands (Rijkswaterstaat) took 10 SSP measurements at 10 different location in
inland waterways and the North Sea), the practical uncertainty was found to be 0.2 m/s,
and hence this value was chosen as a practical value for the description of the system’s
uncertainty and is used to quantify the resulting depth uncertainty.

The data sets were acquired using the “Swath Processor” (developed by ITER Systems)
and GNSS sensors received the correction signal from Real-time Kinematic (RTK) services.
GNSS RTK provides accurate position and ellipsoidal height of the GNSS antenna with
an accuracy of a few centimeters in the WGS84 reference frame. The seafloor depth relative
to the chart is then derived using the ellipsoidal height, GNSS antenna and transducer
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offsets from the vessel’s center of gravity (COG) and chart datum shift, obtained from chart
datum models, an example of this is given in [36,37]. Thus, the uncertainty induced by the
chart datum has been already included in the vertical positioning uncertainty, and hence
there is no need to add this as a separate contributor to the total bathymetry uncertainty.
Using GNSS for calculating the bathymetry implies that accounting for height offsets, such
as dynamic draft, height above draft reference and tide, is not necessary for the depth
calculation. Heave measurements are used within the processing software to calculate
the height of the vessel’s center of gravity between two position updates (because the
sonar system and Inertial Navigation Sensor (INS) have higher update rate than many
GNSS system) [38]. Therefore, the accuracy of heave measurements acquired by the INS
contributes to the uncertainty in the estimate of the depth. Ekinox-E manufactured by SBG
Systems [39] was used for providing position, true heading, attitude, speed, and heave.
The roll and pitch uncertainties of the system with RTK aiding are 0.02° (similarly the
misalignment uncertainties are assumed to be 0.02°).

Two areas with different bottom morphology, bathymetry and sonar settings were
considered. The surveys were carried out in Annecy Lake, France (Figure 6), and Gomti
River, India (Figure 7). Annecy Lake is a lake in Haute-Savoie region in France and is
the second largest lake in France. The sound speed in the water column was varying
between 1434.17 m/s and 1491.42 m/s with the average value of 1463.07 m/s. The Gomti
River is an alluvial river of the Ganga Plain and is one of the important tributaries of the
Ganga, originating near Mainkot, from Fulhar Jheel (also known as Gomat Taal) Lake in
Madhotanda. The survey was carried out 30 km from the city of Lucknow. The constant
sound speed of 1489 m/s was used for this survey.

For both surveyed areas, the centre frequency of transducer was 234 kHz with around
100 kHz bandwidth. A complete Bathyswath-2 interferometric system consists of a dual
transducer set looking to both port and starboard sides [17] with a tilt angle equaling 30°.
For the data sets acquired in the Annecy Lake and Gomti River the pulse lengths were
0.0555 ms and 0.1581 ms, respectively. The other sonar related parameters are presented in
Table 1.

Bathymetry [m]

Deep: 47.5263

Shallow: 13.362

0 0.1 0.2 0.3 0.4
km

Sources: Esri, HERE, Garmin, Intermap, increment P Corp., GEBCO,

USGS, FAO, NPS, NRCAN, GeoBase, IGN, Kadaster NL, Ordnance
Survey, Esri Japan, METI, Esri China (Hong Kong), (c) OpenStreetMap
contributors, and the GIS User Community

0 2 4 6 8
km

Easting [m]

N
o
rt

h
in

g
 [

m
]

Figure 6. Study area: (a) Annecy Lake, France, with the black rectangle showing the study area (b)
the actual study area is indicated in the displayed bathymetry. Areas indicated as A, B, C, D and E
are investigated further.
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Bathymetry [m]

Deep: 40.30

Shallow: 4.60Shallow =   4.60

0 0.04 0.08 0.12 0.160.02
km

A

D

E
C

B

Sources: Esri, HERE, Garmin, USGS, Intermap, INCREMENT P,

NRCan, Esri Japan, METI, Esri China (Hong Kong), Esri Korea, Esri
(Thailand), NGCC, (c) OpenStreetMap contributors, and the GIS User
Community; Sources: Esri, HERE, Garmin, Intermap, increment P

Corp., GEBCO, USGS, FAO, NPS, NRCAN, GeoBase, IGN, Kadaster
NL, Ordnance Survey, Esri Japan, METI, Esri China (Hong Kong), (c)
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Figure 7. Study area: (a) Gomti River, India, with the black rectangle showing the study area (b) the
actual study area is indicated in the displayed bathymetry. Areas indicated as A, B, C, D and E are
investigated further.

It should be noted that we take the approach presented in [13] to account for the
effect of potential along- and across-track slopes. However, the bottom morphology might
change from one patch to another. Therefore, it is decided to consider small areas consisting
of a number of patches (5 areas indicated as A, B, C, D and E with different colors in
Figures 6 and 7), i.e., not the full survey area, to minimize the variations of the bottom
morphology when calculating the measured bathymetric uncertainties. In the present
contribution it is assumed that the effect of potentially remaining small-scale bathymetry
variations can be neglected in the modeling.

4. Results and Discussion

The size of the surface patch on the bottom is of importance. If a too large surface
patch is considered, the variations of the measured uncertainties within a patch cannot be
solely associated to the PDBS as the small-scale roughness affects the vertical uncertainties.
On the other hand, if a too small patch is considered, the number of measurements within
a patch is not enough for a robust estimate of the uncertainty [13]. We thus considered the

Figure 7. Study area: (a) Gomti River, India, with the black rectangle showing the study area (b) the
actual study area is indicated in the displayed bathymetry. Areas indicated as A, B, C, D and E are
investigated further.

It should be noted that we take the approach presented in [13] to account for the
effect of potential along- and across-track slopes. However, the bottom morphology might
change from one patch to another. Therefore, it is decided to consider small areas consisting
of a number of patches (5 areas indicated as A, B, C, D and E with different colors in
Figures 6 and 7), i.e., not the full survey area, to minimize the variations of the bottom
morphology when calculating the measured bathymetric uncertainties. In the present
contribution it is assumed that the effect of potentially remaining small-scale bathymetry
variations can be neglected in the modeling.
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4. Results and Discussion

The size of the surface patch on the bottom is of importance. If a too large surface
patch is considered, the variations of the measured uncertainties within a patch cannot be
solely associated to the PDBS as the small-scale roughness affects the vertical uncertainties.
On the other hand, if a too small patch is considered, the number of measurements within
a patch is not enough for a robust estimate of the uncertainty [13]. We thus considered the
patch size of 7 pings in the along-track direction by 0.5 m in the across-track direction. The
minimum (sufficient) number of measurements within a patch for the estimation of the
slopes and the uncertainties depends on various parameters such as water depth and beam
angle. For the two surveys considered here, this number was assumed to be 10. For the
deepest part of the data set acquired in Annecy Lake and Gomti River and the most outer
beam, the Two-way Travel Time (TWTT) equals 0.17 s and 0.06 s respectively (i.e., ping
rates of 6 Hz and 16 Hz). Therefore, 7 pings in the along-track direction with the survey
speed of 4.11 m/s correspond to 4.84 m and 1.77 m for the Annecy Lake and Gomti River
surveys respectively.

The calculation of the measured bathymetric uncertainties was carried out by fitting
a bi-quadratic or planar function (in 2 directions) to the measurements within each surface
patch. The degree of the fit function (linear or bi-quadratic) was chosen based on the
curvature, which is a measure of the surface patch deviation from a flat plane. For a surface
patch with a curvature smaller than 0.5 °/m a linear function was used for the fit, otherwise
a bi-quadratic fit was employed.

4.1. Trends Visible in Measured Bathymetric Uncertainties

Before comparing the modelled and measured uncertainties, the latter as obtained
from the measurement with varying pulse lengths and environmental conditions is pre-
sented in Figures 8a and 9a for Annecy Lake and Gomti River, respectively. Shown in
Figures 8b and 9b are the corresponding bathymetry profiles. Different colors correspond
to the five different areas indicated as A, B, C, D and E in Figures 6 and 7 to provide a better
understanding of the variations of the morphology and uncertainty over the surveyed
areas. For the shallower surveyed area, Figure 9, the swath width on the starboard side is
smaller than that of the port due to limitations by the riverbank. The comparison between
bathymetric uncertainties for the two areas indicates that for the deeper area, Figure 8,
larger uncertainties are derived by a factor of around 1.7, in agreement with [13]. The
authors showed that increasing the water depth from 10 m to 30 m without changing the
pulse length resulted in an increase in the MBES bathymetric uncertainties by a factor
of around 2.5 [13]. We intuitively expected to see such an increase in the bathymetric
uncertainties for the measurements acquired with PDBS system. However, the smaller
increase observed can be explained by a smaller pulse length used in Annecy Lake com-
pared to that of Gomti River. In Figure 8, for the across-track distances close to nadir the
bathymetric uncertainties are around 0.30 m. As the across-track distance increases, the
bathymetric uncertainty decreases and reaches its minimum at around 50 m across-track
distance. Larger bathymetric uncertainties close to nadir followed by a decrease also holds
for Figure 9 (for a smaller portion of the swath compared to Figure 8).
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a) b)

Figure 8. (a) Standard deviation of bathymetric measurements for the five areas indicated as A,
B, C, D and E by rectangles with varying colors in Figure 6b and (b) the corresponding mean
bathymetric profiles.

a) b)

Figure 9. (a) Standard deviation of bathymetric measurements for the five areas indicated as A,
B, C, D and E by rectangles with varying colors in Figure 7b and (b) the corresponding mean
bathymetric profiles.

4.2. Comparing Modelled and Measured Uncertainties

The modelled bathymetric uncertainties are determined using the characteristics of
the PDBS and its setting during the data acquisition (see Table 1), uncertainties of the sound
speed measurements and motion sensors, environmental and survey related parameters
(such as the average depth, transducer draft and vessel speed). It should be highlighted
that the uncertainty predictions presented here are for this special situation and are not to
be viewed as the uncertainty predictions applicable to a different scenario.

Shown in Figure 10a,b are the modelled and measured bathymetric uncertainties
for the areas indicated as A, B, C, D and E with rectangles with varying colors in
Figures 6 and 7 respectively. Both the measured and predicted uncertainties increase
with increasing depth. As mentioned in Section 2.2, the total predicted uncertainty
(Equation (4)) assumes equal contribution of all factors which might not be a valid as-
sumption. As an example, the contribution of the beam opening angle largely depends on
the bottom morphology. This means that while for the flat bottom might overestimate the
uncertainties, for a bottom with morphology probably underestimation of the uncertainties
occurs. Including weight factors to capture phenomena which have not been taken into
account in the model can be advantageous and can improve the agreement between the
model predictions and measurements. This has not been considered in the present paper
and can be a topic for further research.

In general, the uncertainties derived from the prediction model are in a good agreement
with those encountered in reality with larger discrepancies for the beams close to nadir for
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the data set acquired in the Annecy Lake. The measured bathymetric uncertainty increases
for the outer parts of the swath which is captured by the prediction model.

As can be seen, the most dominant source of uncertainty is predicted to be the interfer-
ometer contribution (black circle marker) contribution. As discussed in Sections 2.2.1–2.2.3
this contribution is composed of three parts, i.e., additive noise, spatial decorrelation and
baseline decorrelation. The contribution of the motion sensor measurements, correction
accuracy for misalignment, sound speed and heave is negligible and thus the total bathy-
metric uncertainty almost coincides with the uncertainty induced by the interferometer
system. For the distances close to nadir, where the largest discrepancies occur, the most
dominant error source is the spatial decorrelation. Comparing the measured and predicted
uncertainties suggests that this term requires modification.

PredictedMeasured

a) b)

Figure 10. Bathymetric uncertainties derived from the measurement for the areas indicated as A, B,
C, D and E with rectangles with varying colors in (a) Figure 6, Annecy Lake and (b) Figure 7, Gomti
River and those predicted.

5. Conclusions

Predicting the uncertainty of PDBS bathymetric measurements is an important and
almost standard step in the planning of a survey. Models have been developed to fulfill
such a purpose enabling one to assess whether the required survey standards can be met
in a specific measurement campaign for a given combination of measurement equipment,
PDBS and environmental settings.

This paper has focused on assessing the performance of a PDBS bathymetric uncer-
tainty prediction model. To this end, the predicted uncertainties are compared to those
measured using different pulse lengths and water depths. To obtain the measured bathy-
metric uncertainties such that a fair comparison can be made with those modelled, areas
with minimum variation in the water depth are selected. The potential remaining small
scale variation in the bathymetry has been taken into account by fitting either a linear or
bi-quadratic function (depending on the curvature) to the measurements within a surface
patch of size 7 pings in the along-track direction (corresponding to 4.84 m and, 1.77 m for the
Annecy Lake and Gomti River surveys respectively) by 0.5 m in the across-track direction.

Regarding the measured bathymetric uncertainties, it is seen that an increase in the
bathymetry (from Gomti River to Annecy Lake) results in an increase in the corresponding
uncertainties. However, with such an increase in depth, one would expect a larger increase
in bathymetric uncertainties. This discrepancy can be explained by the fact that as a shorter
pulse length was used for the data set in Annecy Lake (deeper part), where the increase in
the uncertainty is partly compensated.
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In general, the magnitude of the bathymetric uncertainties derived from the un-
certainty prediction model are in good agreement with those measured. However, dis-
crepancies have been observed for across-track distances close to nadir with the model
underestimating the measured uncertainties. For this part of the swath, the most dominant
uncertainty source is the spatial decorrelation. Thus, modification of this term to reflect the
impact of receiving different signals on the receiving elements in a more realistic manner
will improve the agreements between the predicted and measured uncertainties. Addi-
tionally, the performance of the model might be improved by including weight factors for
phenomena which have not been accounted for in the uncertainty prediction model.
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