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Summary 

Autonomous vehicles (AVs) are a hot topic today. It is generally accepted that the potential 

benefits of deploying these vehicles, are an increased road capacity, traffic safety and driving 

comfort. Companies like Waymo, Tesla, GM Cruise, Baidu, and Argo AI (Granath, 2020) are 

working on driverless technologies, and some of them are so far in the development that they 

claim to be safer than humans (Dow, 2019). However, AVs without backup drivers are still far 

from being deployed in the real world as there are still many technical, safety, legal, and ethical 

issues surrounding them. To tackle some of these issues, living labs for AVs in urban 

environments could be created. In these living labs the interaction between autonomous 

vehicles, infrastructure, conventional vehicles, and pedestrians can be studied. Additionally, 

there should be room to experiment with different infrastructure, driving behavior, and ways of 

communication to investigate how these factor influence the safety and operational efficiency 

of urban traffic networks. 

This study investigates the impact of introducing autonomous vehicles in an urban road 

network on traffic safety and operational efficiency, and how to mitigate the potential impact. 

The former Merwe- and Vierhavensgebied (M4H) in the Dutch city of Rotterdam was used as 

a use case. In 2035, this zone should be transformed to a vibrant new part of the city where 

new manufacturing industry, urban facilities, housing, and culture come together (Toekomst in 

de Maak - Ruimtelijk Raamwerk Merwe-Vierhavensgebied Rotterdam, 2019). It is believed that 

autonomous freight transport could play a part in the development of new manufacturing 

industry. The M4H case was used to answer the question: How could a safe mixed traffic area 

for autonomous last-mile delivery of cargo be designed while taking operational efficiency into 

account? 

To identify the research gaps, the literature of the problem was reviewed. It was learned that 

there are little to no combined urban microscopic simulation frameworks with AVs, human-

driven vehicles and Vulnerable Road Users (VRUs) where safety and operational efficiency 

are assessed. Also, no overview of what influence various measures that can be taken to 

improve safety and operational efficiency have in urban mixed-traffic (including VRUs) 

situations is available. Additionally, little AV research in microscopic simulators considers the 

impact of limited sensorial view caused by obstructions on safety and operational efficiency. 

Aside from identifying gaps, the literature review gave insights into traffic safety evaluation and 

operational efficiency assessment methods. A list of Surrogate Safety Indicators (SSIs) with 

their characteristics and their calculation procedure was composed, and a selection of SSIs 

was made to be used in the main experiment. It was learned that efficiency is commonly 

assessed using Macroscopic Fundamental Diagrams (MFDs) and time loss (delay), which 

were also taken in our study. 

A framework was proposed in which virtual AVs can be injected in the microscopic traffic 

simulator SUMO and be assessed in terms of safety and operational efficiency. These AVs 

use an Occlusion Aware Driving (OAD) principle which takes the occluded sensorial view of 

AVs caused by objects into consideration. At the border of the AV’s visibility range, Pseudo 

Vehicles (PVs) are added. By introducing these imaginary PVs, the AV should never be 

overwhelmed by a suddenly appearing entity. Although this driving principle is considered 

perfectly safe, it is also very conservative. To mitigate this conservative behavior, various 

countermeasures have been investigated by simulating the network in various scenarios. 
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The safety of a scenario was assessed by first identifying potential accidents using the Swedish 

TCT (STCT), PET and DRAC with relaxed thresholds. Then the potential accidents were 

subjected to tighter thresholds for the SSIs: STCT, TTC, TA, TIT, MTTC, CI, PET, PSD, DRAC, 

CrF and PRI. The number of threshold violations for an SSI was divided by the number of 

interactions in that scenario. These fractions gave a good approximation of the value of safety 

slack for the scenarios. MFDs were used to assess the network operational efficiency, and 

average time loss compared to free-flowing traffic was used to determine the operational 

efficiency on a vehicular level. 

A benchmark was made to verify the safety and operational efficiency assessment model. 

Several simulation scenarios were created where the desired time gap of the AVs was varied. 

This variation also affects how fast AVs approach an intersection. The results showed strong 

evidence that there is a trade-off between safety and efficiency when varying the car-following 

parameters. It was proven that the safety and efficiency analysis methods are sensitive enough 

to be influenced by driving parameters.  

In the main experiment a total of five additional scenarios with measures were investigated of 

which three were communication based: V2I, V2V and V2X. The other two were infrastructural 

based: reducing the maximum allowed speed for some lanes (SD) and keeping a certain area 

around intersections clear of obstructions (KC). The V2I, V2V, V2X and KC scenarios showed 

similar levels of safety for trailers, cars, and bikes, but pedestrian safety slightly decreased. 

The operational efficiency based on time loss of AVs experienced a performance gain of 7.2%, 

6.3%, 7.9%, and 3.0% for these scenarios respectively, the time loss of other entities was not 

affected. Due to the lowered allowed speed in certain lanes, the safety for all entities increased 

in the SD scenario, but at the cost of lower operational efficiency of all entities. 

To answer the main research question: the level of safety is mainly affected by the car-following 

time gap of the AVs as it adds extra time to execute potential evasive actions, but there is a 

trade-off between safety and efficiency when varying this parameter. To mitigate conservative 

behavior of the OAD principle, keeping a certain area around intersections clear could be a 

design requirement for new buildings as it improves the operational efficiency by 3%. But 

removing existing objects is not expected to be advantageous as the performance gain of 

adding any communication device is at least two times larger. Interestingly, the V2I and V2V 

show only a 0.9% difference in performance gain, favoring V2I. When considering costs, only 

implementing V2V could be considered as the AVs are already equipped with the correct 

sensors, but there have to be a certain number of AVs present in the zone to get the desired 

effect. A benefit of V2I is that they are always present and can collect valuable information of 

the traffic in zone. The highest performance gain has been achieved by the V2X scenario as it 

combines V2V and V2I. Other entities show no significant performance gain or reduction in the 

V2I, V2V, V2X and KC scenarios. In practice, lowering the speed limit is the absolute best way 

to avoid critical safety situations and reduce the severity of accidents. However, it significantly 

impacts the delay of all entities, which may provoke dangerous behavior. 
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1  

Introduction 

The first attempts of autonomous driving date back to the early 80s and started with the 

development of on-board vision systems. In 1987, Zapp (1988) successfully demonstrated 

autonomous driving on a closed part of the German autobahn at speeds up to 96 km/h. It was 

achieved by using a computer vision system based on control engineering methods and the 

developing general-purpose microprocessor technology (Dickmanns, 2002). This resulted in 

the inclusion of this research topic in the EUREKA-project Prometheus (Programme for a 

European traffic of highest efficiency and unprecedented safety). Simultaneously, in the USA 

the Defence Advanced Research Projects Agency (DARPA) was working on achieving artificial 

intelligence. One particular research objective was to create computer vision framework based 

on biological vision systems, which ultimately could be utilized by the guidance systems of 

autonomous vehicles. Nearly 20 years later, in 2004, DARPA held the first of the three so-

called DARPA Grand Challenges where all technologies from the different disciplines of 

computer science, electrical, robotics and control engineering used in autonomous driving 

should come together (Urmson et al., 2009). While the first two editions were mainly focused 

on off-road driving, the third edition in 2007 was centered around urban driving. This is 

considered a major milestone in the development of autonomous technologies by many 

researchers. At the time of writing, many companies (Waymo, Tesla, GM Cruise, Baidu, Argo 

AI, etc.) around the world are working on driverless technology and some already claim to drive 

safer than humans (Dow, 2019; Granath, 2020). Technical, safety, legal, and ethical issues 

surrounding autonomous vehicles is holding the mass deployment back.  

Autonomous driving in urban environments is significantly harder than driving on motorways 

as evidenced by the developments in legislation. The transport ministry of the UK announced 

the allowance of self-driving cars on the UK motorways in 2021 (Topham, 2020). Although they 

are only allowed to drive in the slow lane and may not overtake, it is a significant step in 

changing the way cars are driven. For the Netherlands to stay the leader in the autonomous 

vehicles market of the western world (KPMG, 2020), the need for living labs for autonomous 

vehicles in urban environments is greater than ever. In these living labs the interaction between 

autonomous vehicles, infrastructure, conventional vehicles, and pedestrians can be studied. 

There should be room to experiment with different infrastructure, driving behavior, and ways 

of communication. This way, guidelines can be created for road construction to future-proof 

them for the introduction of autonomous vehicles. As of now, not a lot attention is given to this 

topic. 

This research is contributes to the limited knowledge on the impact of introducing AVs in urban 

networks with respect to traffic safety and operational efficiency for all road users, and how to 

mitigate the potential impact. The aim of this research is to create a framework similar to the 

work of Tafidis et al. (2019) in which a simulated scenario with AVs, human-driven vehicles 
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and Vulnerable Road Users (VRUs) can be assessed on its safety with a large set of Surrogate 

Safety Indicators (SSIs), and operational efficiency with Macroscopic Fundamental Diagrams 

(MFDs) and travel time loss. SSIs describe the closeness to or the severity of a collision 

between two entities in an objective way. In the framework it is possible to experiment with 

different measures that should increase safety and/or operational efficiency. To ensure safety 

and realistic behavior of AVs at all times, the AVs in this research take limited sensorial view 

into consideration with the so-called Occlusion Aware Driving (OAD) principle. The framework 

will be applied to the former Merwe- and Vierhavensgebied (M4H) in the Dutch city of 

Rotterdam. In 2035, this zone should be transformed to a vibrant new part of the city where 

new manufacturing industry, urban facilities, housing, and culture come together (Toekomst in 

de Maak - Ruimtelijk Raamwerk Merwe-Vierhavensgebied Rotterdam, 2019). It is believed that 

autonomous freight transport could play a part in the development of new manufacturing 

industry. 

In this study the following research question will be answered:  

How could a safe mixed traffic area for autonomous last-mile delivery of cargo be designed 

while taking operational efficiency into account?  

The question is divided into five sub questions: 

1. How can safety be assessed in urban traffic? 

2. How can operational efficiency be measured in urban traffic? 

3. What elements should an accurate simulation model of the AV have? 

4. How does the network benchmark perform? 

5. What measures to increase safety and/or operational efficiency can be taken and what 

is their impact? 

To answer the first two questions a literature review is conducted to investigate the ways of 

defining safety and operational efficiency of urban road networks. Question three is answered 

by identifying elements necessary to create an accurate simulation model of autonomous 

vehicles in an urban road network and a simulation model is created which incorporates these 

elements. The fourth question is answered by varying the driving model parameters. This 

results in a benchmark of the zone as of now and verifies the safety and efficiency assessment 

methods. The last question is answered by creating a list of possible (safety) measures and 

implementing them in the simulation model. Then, the obtained data from the different 

scenarios is compared to the previously created benchmark. 

The rest of this report is organized as follows: In chapter 2 related work is presented. Chapter 

3 lists the identified SSIs, briefly explains the SSIs, and presents the calculation procedures. 

Urban traffic efficiency assessment methods are presented in chapter 4. The simulation model, 

including the M4H network and the virtual AV model is presented in chapter 5. In chapter 6, a 

benchmark is created to get an indication of the default performance on safety and efficiency 

of the network. In chapter 7, the proposed measures are introduced, implemented, and 

compared to the benchmark. Chapter 8 is intended for policymakers, and presents the lessons 

learned from this research. Finally, in chapter 9 conclusions are drawn, limitations are 

presented, and recommendations for the future research are given. 
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2  

Related work 

In this chapter, the literature body of the problem is reviewed., The research mainly fits in with 

three streams of the literature: urban traffic safety, operational efficiency, and occluded 

sensors. In the last subsection the identified research gaps are presented. 

2.1 Urban traffic safety 

In combination with the Surrogate Safety Indicator (SSI) assessment, microsimulation has 

proven to be a reliable prediction method for collision risk. Mahmud et al. (2017) and Johnsson 

et al. (2018) did excellent work in reviewing the developments in SSI research and provided 

an overview of existing SSIs. The work of Johnsson et al. (2018) is especially interesting since 

it focuses on indicators that are applicable to VRUs. SSI research is limited in this field.  

A lot of traffic safety research has already been conducted using SSIs. In the work of G. Guido 

et al. (2019) historical collision data were found to match with collision data coming from a 

microscopic simulation which was analyzed using SSIs, in particular the Surrogate Safety 

Assessment Model (SSAM) of the American Federal Highway Administration. Virdi et al. 

(2019) used the SSAM to investigate how market penetration of Connected Vehicles (CV) 

impact safety in a mixed urban and highway situation. They showed that at 90% CV market 

penetration, the number of conflicts at signalized, priority, roundabout, and diverging diamond 

intersections are accompanied with a −48%, −100%, −98%, and −81% change, respectively. 

By analyzing 60 hours’ worth of video footage, Essa et al. (2015) calibrated a microscopic 

simulation model using a genetic algorithm to match the actual behavior of the vehicles. Thirty 

driving behavior parameters representing the car-following model, lane-change, and signalized 

intersection parameters were tuned. Using the SSAM, conflict heat maps were generated to 

compare field-measured with simulated conflict locations. The results highlighted the 

importance of model calibration and identified several limitations of the SSAM. Li et al. (2016) 

used the Swedish Traffic Conflict Technique (STCT) to identify and analyze conflicts in video 

footage. They used the obtained real conflict data and the SSAM tool to successfully calibrate 

a microscopic traffic simulator. By using the Time-to-Collision (TTC) SSI, they attempted to 

estimate the Hourly Composite Risk Indexes (HCRI) of the real network with the simulated 

data by tuning the influencing parameters. The field HCRI and simulation predicted HCRI 

showed similarities, but were not a perfect match. The STCT in combination with a microscopic 

simulator was used by Axelsson et al. (2016) to investigate the traffic safety of an intersection 

in the city center of Stockholm. They compared real world data of two versions of the 

intersection (old and new) with simulated data to investigate vehicle-pedestrian conflicts. 

Several issues arose as their real-world data were collected by different observers using 

different classifications of conflicts. They concluded that with the differences between field 

observations and simulation evaluation methods in mind, the simulation method can still be 
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used as an indication for the level of traffic safety. Tafidis et al. (2019) mentioned that existing 

research is mainly focused on operational efficiency and safety gains of the autonomous 

vehicle technology without considering Vulnerable Road Users (VRU). In their work the safety 

(using SSAM) and network performance impact of the introduction of autonomous vehicles 

and cyclists was studied. They concluded that the average delay and speed in a 0% and 100% 

market penetration situation are almost the same. However, it was observed that the 

introduction of AVs in the road network reduced the total number and severity level of cyclist-

vehicle conflicts. Another approach to assess traffic safety is taken by Fancello et al. (2019). 

By using a set of subjective and objective indicators, they performed a multiple-criteria decision 

analysis (Viktor and Topsis) to rank individual intersections on safety. With this ranking 

obtained, a plan of priority interventions to improve road safety can be planned. In Table 1, an 

overview of the related work on safety is presented. 

Table 1 Literature table of urban safety assessment studies. 

Study 

 

Safety evaluation method Considered vehicle types Study area Data obtained by 

SSI AD MS AV CV BK PD UR HW SM RL 

Axelsson et al. 
(2016) 

x x x x x x x x  x x 

Bulla-Cruz et al. 
(2020) 

x x  x x   x  x x 

Essa et al. (2015) x    x   x  x x 

Fancello et al. (2019)  x   x  x x   x 

G. Guido et al. (2019) x x   x   x  x x 

Li et al. (2016) x x   x   x  x x 

Tafidis et al. (2019) x  x x x x  x  x  

Virdi et al. (2019) x  x x x   x x x  

This research x  x x x x x x  x  

SSI Surrogate safety indicators 
 PD Pedestrians 

AD Actual crash data  UR Urban 

MS Multiple scenarios 
 HW Highway 

AV Autonomous vehicles 
 SM Simulation 

CV Conventional vehicles 
 RL Real network 

BK Bikes     

 

2.2 Operational efficiency 

In the work of Budan et al. (2018) the impact of introducing connected autonomous vehicles 

at signalized intersections on operational performance was investigated. They concluded that 

at low congestion, First-Come-First-served (FCFS) scheduling reduces fuel consumption, 

average time loss, and queue length with 42%, 96%, and 93%, respectively. At higher 

congestion states, actuated traffic lights outperform the FCFS scheduling procedure. Wang et 

al. (2020) researched the effect of autonomous driving in urban environments by representing 

AVs as vehicles with Adaptive Cruise Control (ACC) and cooperative ACC. The authors 

generated the Macroscopic Fundamental Diagram (MFD) using a microscopic simulator for 

100% manual, 100% ACC, and 100% cooperative ACC driven vehicles in urban environments. 
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It was concluded that the performance increase in urban environments is significantly lower 

compared to highway environments. By using an urban grid network with actuated traffic lights, 

Lu et al. (2018) generated the MFD for six market penetration situations with a mixed fleet of 

autonomous cars with varying SAE automation levels. The results justified some regularity in 

the change of the urban MFD. In later research, they also considered a real network alongside 

the grid network (Lu et al., 2019). This time only SAE level 5 vehicles were considered, and 

the market penetration was varied. The resulting MFDs from both networks showed that there 

is a quasi-linear increase in network capacity with increasing market penetration rates. In Table 

2, an overview of the related work on operational efficiency is presented. 

Table 2 Literature table of simulation based urban efficiency assessment studies. 

Study 
Efficiency evaluation method Performance measures Considered vehicle types Study area 

TT FC FD IF TM VC PR AV CV BK PD UR HW 

Budan et al. (2018) x x  x x x  x x   x  

Lu et al. (2018) x  x     x x   x  

Lu et al. (2019) x  x     x x   x  

Tafidis et al. (2019) x       x x x  x  

Wang et al. (2020)   x   x x x x   x  

This research x  x x  x  x x x x x  

TT Travel time loss  AV Autonomous vehicles 

FC Fuel consumption  CV Conventional vehicles 

FD Fundamental diagram  BK Bikes 

IF Infrastructure  PD Pedestrians 

TM Traffic management  UR Urban 

VC Vehicle communication  HW Highway 

PR Prediction    

 

2.3 Occluded sensors 

Autonomous driving is always subjected to uncertainty in occluded regions. Several methods 

to aid AVs in the decision-process regarding occluded regions have been proposed. Galceran 

et al. (2015) created an estimation model to track previously unoccluded vehicles in an 

occluded area. This model was evaluated using a real-world data set obtained from an AV 

platform. Results showed that this model could estimate the position of an occluded vehicle 

accurately for a significant amount of time. However, their model relies on the vehicles to be 

observed before they went into the occluded area, which is often not possible in urban 

networks. Orzechowski et al. (2018) proposed a safety verification method for vehicle 

trajectories under occlusions by assuming incoming traffic at the edges of the visibility range 

and over-estimating their state. This way, safety is always guaranteed as long as evasive 

maneuvers are possible. A probabilistic approach is proposed by Lee et al. (2017). They used 

a precise map of an area to predict the motion and to probabilistically model the speed of 

potential occluded vehicles. With data on these vehicles available, they could calculate the 

collision risk of trajectories. Yu et al. (2019) extended the work of Orzechowski et al. (2018) 

and Lee et al. (2017) by researching how these approaches performed at crowed urban 

intersections. They extended the approach with up to five other vehicles per interaction and 

showed a significant reduction of collisions and an increase in ride comfort. Lin et al. (2019) 

used a modified Partial Observable Markov Decision Process (POMDP) in which probabilistic 

vehicle intensions are considered. The optimal solutions for occluded intersection problems 

were calculated with a customized POMDP solver, which updated its solutions as soon as new 
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information was available. This resulted in emulated human-like behavior and was effective in 

collision avoidance. 

2.4 Identified gaps 

The review of the literature reveals three main research gaps in the area which are listed as 

follows: 

▪ There is no combined urban microscopic simulation framework with AVs, human-driven 

vehicles and VRUs (bikes and pedestrians) where safety and operational efficiency is 

assessed.  

▪ There is no overview of what influence various measures that can be taken to improve 

safety and operational efficiency have in urban mixed-traffic (including VRUs) 

situations. 

▪ Little AV research in microscopic simulators consider the impact of limited sensorial 

view caused by obstructions on safety and operational efficiency. 

These research gaps are filled by proposing a framework in which virtual AVs can be injected 

in the microscopic traffic simulator SUMO, and be assessed in terms of safety with SSIs and 

operational efficiency with MFDs and time loss. In the simulated network, trailers, cars, bikes 

and pedestrians are present. The AVs use an Occlusion Aware Driving (OAD) principle which 

takes the occluded sensorial view of AVs caused by objects into consideration. At the border 

of the AV’s visibility range, Pseudo Vehicles (PVs) are added which emulate possible occluded 

vehicles. Although this driving principle is considered perfectly safe in simulated scenarios, it 

is also very conservative. To mitigate this, the impact of several countermeasures on traffic 

safety and operational efficiency is to be investigated by simulating the network under various 

scenarios.
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3   

Urban traffic safety assessment 

Traditionally, road safety is measured by crash rates and the severity of these crashes. 

Although the approach is well-established, it faces four major concerns. First, the relative 

infrequency and unpredictability of accidents result in small sample sizes often lacking details 

regarding failure mechanisms and crash avoidance behavior (Johnsson et al., 2018; Mahmud 

et al., 2017; Tarko et al., 2009). Second, more severe accidents, especially when insurance 

payments are involved, are more likely to be reported and small accidents, often involving 

VRUs are less likely to be reported (Elvik, 1988; Hauer et al., 1988). Similar to the previous 

concern, near misses and uncomfortable driving situations are expected not to be reported 

because these encounters are not severe enough. Lastly, ethical problems associated with 

long-term data collection without taking intermediate actions exist (Mahmud et al., 2017). 

Especially in the case of accidents involving AVs, it is hard to justify the lack of 

countermeasures to improve safety. 

When talking about traffic safety, it is important to understand the difference between an 

incident and an accident. An incident is defined as an instance of something happening (event 

or occurrence). Incidents are not necessarily bad; it just implies that multiple entities have to 

interact with each other. These interactions in the context of this research may result in actions 

like slowing down, speeding up, emergency braking and other evasive actions. An accident is 

an incident which typically results in damage or injury. In the context of this research, an 

accident is a collision between two entities with a certain severity. 

The traditional approach to measure road safety only considers data acquired from accidents. 

Another approach is the quantitative measurement of safety with the use Surrogate Safety 

Indicators (SSIs). In which surrogate implies that incident data are utilized instead of accident 

data (Johnsson et al., 2018). This method provides relative objective data which is based on 

closeness to collision of two or more entities. This closeness can be grouped in temporal, 

distance-based and deceleration-based, there are also some miscellaneous indicators. For 

surrogate safety indicators to be useful, it is important that there is some kind of relation 

between the indictors, crash rate, and severity. The process of determining the surrogate 

safety indicators if often automated with the use of video analysis tools as was demonstrated 

by Saunier et al. (2007), this allows rich data sets to be collected. 

In the following subsection the most-used SSIs are introduced. Thereafter the Swedish TCT is 

presented. In subsection 3.3, Table 3 an overview of the characteristics of the identified SSIs 

is given. 
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3.1 Surrogate safety indicators 

The objective of SSIs is to estimate the closeness to and magnitude of damages of a collision. 

Most indicators estimate crash rate and less estimate severity. There are also some indicators 

that combine the two. Ideally, there is a linear correlation between the indicator, severity and/or 

crash rate (Johnsson et al., 2018). It is important to note that there are typically no set 

thresholds that determine whether a situation is safe of unsafe. When it is not possible to 

correlate the value of the indicator to an hourly crash rate or crash severity the data becomes 

more abstract, but can still be an indicator for the safety slack of events. 

In this research, only three (crossing, merging, and following) of five possible conflict situations 

are determined as shown in Figure 1. The other two conflict types are: lane changing, which is 

similar to merging, and overtaking, which is similar to crossing. These are not specifically 

covered by any of the indicators presented in this paper, but some indicators can still be applied 

to these situations. In the next sections the most commonly and some uncommon surrogate 

safety indicators will be introduced. 

 

   

a. Crossing b. Merging c. Following 

Figure 1 Different conflict situations 

  



 

Urban traffic safety assessment  16 

16 
 

3.1.1 List of symbols 

Symbol Definition 

𝑡  Point in time [s] 

𝑡𝑎   Time of action [s] 

𝑡𝑐   Time of collision [s] 

𝑡0  Conflict starting time [s] 

𝑡𝑛   Conflict ending time [s] 

𝑚𝑖  Mass of vehicle 𝑖 [kg] 

𝑖  Following vehicle or second vehicle to reach conflict point  

𝑗  Leading vehicle or first vehicle to reach conflict point  

𝑧  Zebra crossing 

𝑐  Collision point 

𝑝  Pedestrian 

𝑉𝑖(𝑡)  Speed [m∙s-1] of vehicle 𝑖 

𝑎𝑖(𝑡)  Acceleration [m∙s-2] of vehicle i 

𝛥𝑋𝑖,𝑗 (𝑡)  Bumper-to-bumper distance [m] between entity 𝑖 and 𝑗 at time 𝑡 

𝛥𝑉𝑖,𝑗  (𝑡)  Relative speed [m∙s-1] between vehicle 𝑖 and 𝑗 at time 𝑡 

𝛥𝑎𝑖,𝑗 (𝑡)  Relative acceleration [m∙s-2] between vehicle 𝑖 and 𝑗 at time 𝑡 

𝑇𝑇𝐶∗  TTC threshold value [s] 

𝐷𝐷𝑆∗  DSS threshold value [m] 

𝜏𝑠𝑐   Small time step [s] 

𝑡𝑐𝑝,1  Arrival time of conflict point [s] 

𝑡𝑐𝑝,2  Leaving time of conflict point [s] 

𝑡𝑟   Reaction time [s] 

𝑑𝑖,𝑚𝑎𝑥   Maximum deceleration rate of vehicle 𝑖 [m∙s-2] 

𝛼  Impact angle [rad] 
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3.1.2 Temporal indicators  

A total of thirteen 3 temporal SSIs are identified including: Time-to-collisions (TTC), Minimum 

Time-to-Collision (TTCmin), Time-to-Accidents (TA), Time Exposed Time-to-Collisions (TET), 

Time Integrated Time-to-Collision (TIT), Modified Time-to-Collision (MTTC), Crash Index (CI), 

Time-to-Zebra (TTZ), Post-Encroachment Time (PET), Encroachment Time (ET), Initially 

Attempted Post Encroachment Time/Time Advantage (IAPET/TAdv), Conflict Index (CoI), 

Headway/Gap Time (H/GT). Next, these indictors will be briefly addressed. 

TTC (Time-to-Collision) 

TTC is defined as the time until an accident between two vehicles occurs if they do not alter 

their trajectory or velocity (Hydén, 1996) and is formulated as equation (3.1). Naturally, the 

lower the TTC the higher the risk of collision, but it does not give an indication for the severity 

of the collision. A critical TTC value (TTC∗) can be set as a threshold in order to classify the 

likelihood of a collision. Generally, this threshold value is the observation and reaction time of 

the driver and vehicle, while assuming the same deceleration capability. A drawback is that 

deceleration capability of various vehicle types can differ. Different TTC∗can be set for different 

conflict situations, from literature was learned that the TTC∗ used can wildly vary from 0.9 to 4 

seconds (Mahmud et al., 2017). It must be noted that it is possible to have a low TTC while the 

situation in reality is under excellent control, causing misleading results. This can be the case 

when connected platooning with a small time gap is deployed. 

 
𝑇𝑇𝐶𝑖(𝑡) =

𝛥𝑋𝑖,𝑗(𝑡)

𝛥𝑉𝑖,𝑗(𝑡)
 3.1 

 

Often all the TTCs in a given time window of a conflict are recorded, depending on the 

evaluation method, one or more TTCs are chosen for post-processing. This is shown in 

equation (3.2). 

𝑇𝑇𝐶𝑖,𝑠𝑝𝑎𝑛 = [

𝑇𝑇𝐶(𝑡0)

𝑇𝑇𝐶(𝑡1)
⋮

𝑇𝑇𝐶(𝑡𝑛)

] 3.2 

TTCmin
 (Minimum Time-to-Collision) 

Since a lower TTC increases the chance of collision, often the TTCmin) value is subjected to 

the TTC∗ value (equation (3.3)). If the value is lower that the threshold, the incident is reported 

as critical. 

   

𝑇𝑇𝐶𝑖,𝑚𝑖𝑛 = 𝑚𝑖𝑛(𝑇𝑇𝐶𝑖,𝑠𝑝𝑎𝑛) 3.3 

 

TA (Tim- to-Accident) 

Another interesting value to subject to the critical TTC value is the TA (equation (3.4)), which 

is the TTC value at the moment an entity takes action to avoid a collision (Åse Svensson et 

al., 2006). The advantage of using TA over TTCmin is that the safety level at the time an evasive 
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action is taken is recorded, instead of during or at the end of an evasive action. A disadvantage 

of TA is that it can be hard to identify the exact moment of the evasive action. 

 𝑇𝐴𝑖 = 𝑇𝑇𝐶𝑖(𝑡𝑎) 3.4 

 

TET (Time Exposed Time-to-Collision) 

The TET, calculated with (3.5) and (3.6), is the time an entity spends in a safety-critical situation 

during an encounter with other entities (Minderhoud et al., 2001). This is represented by the 

duration the TTC remains below the critical TTC value. A disadvantage of the TET indicator is 

that it not affected by the amount the TTC is lower than the threshold. Therefore, if the TTC is 

a little below the threshold value or if it is almost zero, it results in the same TET. 

 

𝑇𝐸𝑇𝑖
∗ = ∑ 𝛿𝑖(𝑡) ∙ 𝜏𝑠𝑐

𝑡𝑛

𝑡=𝑡0

  3.5 

 

 
𝛿𝑖(𝑡) = {

1, 𝑖𝑓 0 ≤ 𝑇𝑇𝐶𝑖(𝑡) ≤ 𝑇𝑇𝐶
∗,

0, 𝑒𝑙𝑠𝑒.
 3.6 

TIT (Time Integrated Time-to-Collision) 

To overcome the shortcomings of the TET, Minderhoud et al. (2001) also introduced the TIT 

indicator. The TIT indicator, computed with equation (3.7), takes the integral of the TTC profile 

and expresses the level of unsafety in s2. As long as the TTC remains below the threshold, the 

area between the TTC threshold and the TTC is calculated. A visual representation of the TIT 

and TET factor is presented in Figure 2. 

 

𝑇𝐼𝑇𝑖
∗ = ∑([𝑇𝑇𝐶∗ − 𝑇𝑇𝐶𝑖(𝑡)] ∙ 𝛿𝑖(𝑡) ∙ 𝜏𝑠𝑐)

𝑡𝑛

𝑡=𝑡0

  3.7 
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Figure 2 TTC profile with TIT and TET indicated, adapted from Minderhoud et al. (2001). 

 

MTTC (Modified Time-to-Collison) 

TTC assumes that both vehicles keep the same speed, and the current acceleration or 

deceleration is not considered. This neglects the evasive action that is already being taken by 

the entities. To overcome this shortcoming of TTC, Ozbay et al. (2008) introduced the MTTC. 

The MTTC takes relative distance, relative speed and relative acceleration into account and 

better represents the actual time until a collision occurs compared to TTC. MTTC is calculated 

with equations (3.8) to (3.10). 

 

𝑡𝑑1,𝑖(𝑡) =

−𝛥𝑉𝑖,𝑗(𝑡) − √𝛥𝑉𝑖,𝑗
2 (𝑡) + 2 ∙ 𝛥𝑎𝑖,𝑗(𝑡) ∙ 𝛥𝑋𝑖,𝑗(𝑡)

𝛥𝑎𝑖,𝑗(𝑡)
 

3.8 

 

 

𝑡𝑑2,𝑖(𝑡) =

−𝛥𝑉𝑖,𝑗(𝑡) + √𝛥𝑉𝑖,𝑗
2 (𝑡) + 2 ∙ 𝛥𝑎𝑖,𝑗(𝑡) ∙ 𝛥𝑋𝑖,𝑗(𝑡)

𝛥𝑎𝑖,𝑗(𝑡)
 

3.9 

 

 𝑀𝑇𝑇𝐶𝑖(𝑡)

=

{
 
 

 
 𝑚𝑖𝑛(

𝑡𝑑1,𝑖(𝑡)

𝑡𝑑2,𝑖(𝑡)
) , 𝑖𝑓 𝑡𝑑1,𝑖(𝑡) > 0 𝑎𝑛𝑑 𝑡𝑑2,𝑖(𝑡) > 0 𝑎𝑛𝑑 𝛥𝑎𝑖,𝑗(𝑡)  ≠ 0,

𝑡𝑑1,𝑖(𝑡), 𝑖𝑓 𝑡𝑑1,𝑖(𝑡) > 0 𝑎𝑛𝑑 𝑡𝑑2,𝑖(𝑡) ≤ 0 𝑎𝑛𝑑 𝛥𝑎𝑖,𝑗(𝑡)  ≠ 0,

𝑡𝑑2,𝑖(𝑡), 𝑖𝑓 𝑡𝑑1,𝑖(𝑡) ≤ 0 𝑎𝑛𝑑 𝑡𝑑2,𝑖(𝑡) > 0 𝑎𝑛𝑑 𝛥𝑎𝑖,𝑗(𝑡)  ≠ 0,

𝑇𝑇𝐶𝑖(𝑡), 𝑒𝑙𝑠𝑒.

 
3.10 
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CI (Crash Index) 

Since MTTC, like TTC and its counterparts, do not give an indication on the severity of a 

possible collision, the CI (equation ((3.11)) was also proposed by Ozbay et al. (2008). The CI 

is based on the idea taken from kinetics to consider the effect of speed on kinetic energy at 

impact. A shortcoming of this approach is that it neglects the mass of the entities as it assumes 

that different vehicles types do not differ much in mass. This can be misleading when 

considering conflicts between entities with a big mass difference (e.g. trailer-pedestrian 

conflict). 

 

C𝐼𝑖(𝑡) =
(𝑉𝑖(𝑡) + 𝑎𝑖(𝑡) ∙ 𝑀𝑇𝑇𝐶𝑖(𝑡))

2
− (𝑉𝑗(𝑡) + 𝑎𝑗(𝑡) ∙ 𝑀𝑇𝑇𝐶𝑖(𝑡))

2

2
∙

1

𝑀𝑇𝑇𝐶𝑖(𝑡)
 3.11 

 

TTZ (Time-to-Zebra) 

Várhelyi (1998) introduces a new indicator which is specially adapted for VRUs, in particular 

pedestrians. The TTZ describes the time until the entity reaches a zebra crossing if it does not 

change its velocity. It is calculated in the same way as TTC, but neglects the pedestrian’s 

velocity. TTZ is obtained with equation (3.12). 

 
𝑇𝑇𝑍𝑖(𝑡) =

𝛥𝑋𝑖,𝑧(𝑡)

𝑉𝑖(𝑡)
 

 

3.12 

PET (Post-Encroachment Time) 

First introduced by Allen et al. (1978), the PET (equation (3.13)) indicates the time difference 

between an offending vehicle leaving the conflict area and the arrival time of a vehicle that 

possesses right of way. The PET therefore represents how close in time the entities were to 

collision and successfully models the chance of a collision (Alhajyaseen, 2015). PET is 

considered a robust indicator since it only requires two points in time, and, unlike most TTC-

based indicators, does not rely on arrival time estimations.  

 𝑃𝐸𝑇𝑖 = 𝑡𝑐𝑝,2 − 𝑡𝑐𝑝,1  3.13 

 

ET (Encroachment Time) 

Another not so commonly used indicator is the ET; it is defined as the period that a right of way 

infringing vehicles spends in the conflict zone. 

IAPET/TAdv (Initially Attempted Post Encroachment Time/Time Advantage) 

IAPET or TAdv are two indicators that are calculated similarly to PET, but it estimate arrival 

and leaving times of the conflict zone during the conflict instead of calculating PET afterwards 

(Cooper, 1984; Hansson, 1975). TAdv/IAPET predicts the arrival times based on constant 

speed and trajectory of both entities (uses TTC). 
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CoI (Conflict Index) 

In an effort to estimate the severity of a potential crash using PET, Alhajyaseen (2015) 

introduced a new indicator that is based on speed, mass, and angle. The CoI is similar to CI 

in that it also uses kinetic energy to express severity, but CoI relies on PET instead of MTTC 

and does take mass and angle of impact into account. The α parameter is the fraction of kinetic 

energy that affects people inside the vehicles and the β parameter is an adjustment factor for 

different conflict types. In the original work both parameters were set to 1, but it was stated that 

the values for these parameters will significantly influence the estimation of the CoI. The CoI 

is calculated with equations (3.14) and (3.15), the impact angles 𝜃𝑥 are defined as shown in 

Figure 3. 

 

Figure 3 Definition of the impact angles, adapted from Alhajyaseen (2015) 

 

 
𝐶𝑜𝐼𝑖 =

𝛼𝛥𝐾𝑒𝑖,𝑗

𝑒𝛽𝑃𝐸𝑇𝑖
 3.14 

 

 𝛥𝐾𝑒𝑖,𝑗

= (
𝑚𝑖𝑣𝑖

2(𝑡𝑐) +𝑚𝑗𝑣𝑗
2(𝑡𝑐)

2
) −

1

2
(𝑚𝑖 +𝑚𝑗)

∙

(

 
 𝑚𝑖𝑣𝑖(𝑡𝑐) 𝑠𝑖𝑛(𝜃𝑖) +𝑚𝑗𝑣𝑗(𝑡𝑡𝑐) 𝑠𝑖𝑛(𝜃𝑗)

(𝑚𝑖 +𝑚𝑗) 𝑠𝑖𝑛 (𝑡𝑎𝑛−1
𝑚𝑖𝑣𝑖(𝑡𝑐) 𝑠𝑖𝑛(𝜃𝑖) + 𝑚𝑗𝑣𝑗(𝑡𝑐) 𝑠𝑖𝑛(𝜃𝑗)

𝑚𝑖𝑣𝑖(𝑡𝑐) 𝑐𝑜𝑠(𝜃𝑖) + 𝑚𝑗𝑣𝑗(𝑡𝑐) 𝑐𝑜𝑠(𝜃𝑗)
)
)

 
 

2

 

3.15 

 

H/GT (Headway/Gap Time) 

H/GT is the time gap between two vehicles, it is measured by calculating the time that has 

passed when two entities have reached the same point. 

θi 

mivi(tc) 

mjvj(tc) 

θj 
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3.1.3 Distance-based indicators 

Five distance-based indicators are identified including: Potential Index for Collision with Urgent 

Deceleration (PICUD), Proportion of Stopping Distance (PSD), Difference of Space distance 

and Stopping distance (DSS), Time Integrated Difference of Space distance and Stopping 

distance (TDSS) and Unsafety (U). These will be introduced in this subsubsection. 

PICUD (Potential Index for Collision with Urgent Deceleration) 

PICUD is an indicator used to analyze the crash likelihood for a rear-end collision when the 

leading vehicle applies its emergency brakes (Uno et al., 2002). It is the distance between two 

entities when they completely come to a stop, formulated as equation (3.16). 

 
𝑃𝐼𝐶𝑈𝐷𝑖(𝑡) =

𝑉𝑗
2(𝑡) − 𝑉𝑖

2(𝑡)

2𝑎𝑚𝑎𝑥
+ 𝛥𝑋𝑖,𝑗(𝑡) − 𝑉𝑖(𝑡) ∙ 𝑡𝑟 3.16 

 

PSD (Proportion of Stopping Distance) 

The PSD is defined as the ratio between the remaining stopping distance and minimum 

stopping distance, equation (3.17) (Allen et al., 1978). If the value is below 1, there is not 

enough room to stop before reaching the conflict point. 

 
𝑃𝑆𝐷𝑖(𝑡) =

𝑋𝑖,𝑐(𝑡)

𝑀𝑆𝐷𝑖(𝑡)
 3.17 

 

The acceptable minimum stopping distance (MSD) is calculated using 3.18. 

 
𝑀𝑆𝐷𝑖(𝑡) =

𝑉𝑖
2(𝑡)

2 ∙ 𝑑𝑖,𝑚𝑎𝑥
 3.18 

 

DSS (Difference of Space distance and Stopping distance) 

As introduced by Okamura et al. (2011), DSS (equation (3.19)) in the difference of available 

space and stopping distance. A value below 0 means the entities will collide. This indicator 

shares similarity with PSD. The DSS is not an indicator for the severity and does not take 

duration of conflict into account. 

 

𝐷𝑆𝑆𝑖(𝑡) = (
𝑉𝑗
2(𝑡)

2𝑑𝑗,𝑚𝑎𝑥
+ 𝛥𝑋𝑖,𝑗(𝑡)) − (𝑉𝑖(𝑡)𝑡𝑟 +

𝑉𝑖
2(𝑡)

2𝑑𝑖,𝑚𝑎𝑥
)  3.19 

 

TDSS (Time Integrated Difference of Space distance and Stopping distance)  

Okamura et al. (2011) also introduced the TDSS to overcome the shortcoming of DSS. Similar 

to TIT, the TDSS expresses the level of unsafety in m∙s-1. Equation (3.20) and (3.21) are 

adapted from the original research to be able to apply them in discrete time. 
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𝑇𝐷𝑆𝑆𝑖
∗ = ∑([𝐷𝑆𝑆∗ − 𝐷𝑆𝑆𝑖(𝑡)]𝛾𝑖(𝑡) ∙ 𝜏𝑠𝑐)

𝑡𝑛

𝑡=𝑡0

  3.20 

 

 
𝛾𝑖(𝑡) = {

1, 𝑖𝑓 0 ≤ 𝐷𝑆𝑆𝑖(𝑡) ≤ 𝐷𝑆𝑆
∗,

0, 𝑒𝑙𝑠𝑒.
 3.21 

U (Unsafety) 

The unsafety indicator developed by Barceló Bugeda et al. (2003). It is only applicable to car-

following situations and specially adapted for microscopic traffic simulation. The value does 

not represent a certain level of safety, it can wildly vary between different types of links. It can, 

however, be used to assess an increase or decrease in safety of a link. The unsafety is 

formulated as equation (3.22), 

 𝑢𝑛𝑠𝑎𝑓𝑒𝑡𝑦𝑖(𝑡) = 𝛥𝑉𝑖,𝑗(𝑡𝑐) ∙ 𝑉𝑖(𝑡) ∙ 𝑅𝑑,𝑗(𝑡) 3.22 

 

𝑅𝑑,𝑗(𝑡) is the ratio between the actual deceleration of the leader over its maximum deceleration, 

calculated using equation (3.23). 

 
𝑅𝑑,𝑗(𝑡) =

−𝑎𝑗(𝑡)

𝑑𝑗,𝑚𝑎𝑥
 3.23 

 

3.1.4 Deceleration-based indicators 

Four deceleration based indicators were found including: Deceleration Rate to Avoid the Crash 

(DRAC), Crash Potential Index (CPI),  Criticality index Function (CrF) and Deceleration to 

Safety Time (DST). These will be introduced next. 

DRAC (Deceleration Rate to Avoid the Crash) 

DRAC was introduced by Almqvist et al. (1991) and considers the impact of differential speed 

difference in a conflict situation. It is the ratio of the speed differential between leader and 

follower and their closing time, equation (3.24) (Giuseppe Guido et al., 2012). In urban traffic 

rapid deceleration is the most common evasive action taken, therefore many researchers 

recognized that DRAC is one of the most relevant indicators for safety in urban networks 

(Mahmud et al., 2017). However, many other researchers state that traditional DRAC fails to 

accurately identify potential conflict because it does not take deceleration capability over time 

for the current vehicle, road, and traffic conditions into account. 

 
𝐷𝑅𝐴𝐶𝑖(𝑡) =

𝛥𝑉𝑖,𝑗
2 (𝑡)

2 ∙ 𝛥𝑋𝑖,𝑗(𝑡)
 3.24 

 

CPI (Crash Potential Index) 

To mitigate the problems associated with DRAC, F. J. C. Cunto et al. (2007) introduced the 

CPI. The CPI is the probability that the DRAC exceeds the maximum braking capability of the 
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entity during its time in the network (F. Cunto, 2008). CPI takes the maximum deceleration of 

individual links during various conditions into account. The CPI is calculated with (3.25) and 

(3.26), in the original work the maximum deceleration (𝑑𝑖,𝑚𝑎𝑥) is represented by a truncated 

normal distribution. 

 

𝐶𝑃𝐼𝑖 =
∑ 𝑃 (𝑑𝑖,𝑚𝑎𝑥 < 𝐷𝑅𝐴𝐶𝑖(𝑡)) ∙ 𝜏𝑠𝑐𝑏𝑖(𝑡)
𝑡𝑛
𝑡0

𝑡0 − 𝑡𝑛
 3.25 

 

 
𝑏𝑖(𝑡) = {

0, 𝑖𝑓 𝑛𝑜 𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑤𝑖𝑡ℎ 𝑗,
1, 𝑖𝑓 𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑤𝑖𝑡ℎ 𝑗.

 3.26 

 

CrF (Criticality index Function) 

The CrF (equation (3.27)) as proposed by Ching-Yao (2006) is based on two principles. First, 

the higher the collision speed, the more severe the crash would be. Second, the longer the 

TTC, the more time to execute an evasive action is available. With these two principles in mind, 

he defined the CrF as the squared speed of the oncoming vehicle divided by the TTC. It is 

believed to be a meaningful index to assess severity of a collision, but lacks further evaluations 

(Mahmud et al., 2017).   

 
𝐶𝑟𝐹𝑖(𝑡) =

𝑉𝑖
2(𝑡)

𝑇𝑇𝐶𝑖(𝑡)
 3.27 

 

DST (Deceleration to Safety Time)  

First introduced by Hupfer (1997), the DST describes the minimum required deceleration to 

turn a possible collision situation into a near miss situation. DST does not take current 

deceleration rate into account and can only be used to assess collision risk, not severity. It is 

designed to be applied on pedestrian-vehicle conflicts, but can also be applied on vehicle-

vehicle conflicts. DST is calculated using equation (3.28). 

 

 

Figure 4 Values to calculate DST, adapted from Hupfer (1997) 

 

Xj,c 

Vj Vi 
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𝐷𝑆𝑇𝑖(𝑡) =
2 (𝑋𝑗,𝑐(𝑡) − 𝑉𝑗(𝑡) ∙ 𝑇𝑇𝐶𝑖(𝑡))

𝑇𝑇𝐶𝑖
2(𝑡)

 3.28 

 

3.1.5 Miscellaneous indicators 

Three miscellaneous indicators remain: DeltaV, Conflict Severity (CS) and Pedestrian Risk 

Index (PRI). 

DeltaV 

DeltaV is defined as the change in velocity between pre- and post-collision trajectories of a 

vehicle, it gives an indication for the severity of a collision (Shelby, 2011). It is considered to 

be the best single predictor of crash severity by some researchers. DeltaV assumes that 

momentum is conserved during an inelastic collision between two vehicles. The two 

dimensional DeltaV is calculated using equation (3.29) (Bagdadi, 2013). 

 𝐷𝑒𝑙𝑡𝑎𝑉𝑖 =
𝑚𝑗

𝑚𝑖 +𝑚𝑗
(𝑉𝑗(𝑡𝑐) + 𝑉𝑖(𝑡𝑐) ∙ 𝑐𝑜𝑠(𝛼)) 3.29 

 

CS (Conflict Severity) 

CS is a combination of DeltaV, TA and maximum deceleration as formulated in equation (3.30). 

It is a combined factor which captures crash risk and severity and is applicable for all conflict 

types (Johnsson et al., 2018). Because CS also considers mass, deceleration rate and impact 

angle of the vehicles, it estimates the dangerousness of all conflict types in a more realistic 

manner than the classical TA. (Bagdadi, 2013) 

 𝐶𝑆𝑖 = 𝐷𝑒𝑙𝑡𝑎𝑉𝑖 −
𝑚𝑗

𝑚𝑖 +𝑚𝑗
(𝑇𝐴𝑖 ∙ 𝑑𝑖,𝑚𝑎𝑥) 3.30 

 

PRI (Pedestrian Risk Index) 

The PRI is a measure for crash potential and severity on zebra crossings as introduced by 

Cafiso et al. (2011). PRI combines the TTZ with assumptions about reaction time and 

deceleration capability (Johnsson et al., 2018). The collision risk is defined by the difference in 

stopping time and TTZ and the severity by the squared impact speed. The calculations for the 

PRI has been adapted from Cafiso et al. (2011) to be homogenous with the rest of this paper. 

The stopping time of the approaching vehicle is calculated with (3.31). 

 
𝑡𝑖,𝑠𝑡𝑜𝑝(𝑡) = 𝑡𝑟 +

𝑉𝑖(𝑡)

𝑑𝑖,𝑚𝑎𝑥
 3.31 

 

Collision risk is estimated with equation (3.32). 

 

 𝛥𝑇𝑖(𝑡) = 𝑡𝑖,𝑠𝑡𝑜𝑝(𝑡) −  𝑇𝑇𝑍𝑖(𝑡) 3.32 
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The impact speed (severity) is calculated with equation (3.33) and takes reaction time and 

current deceleration into account. 

 
𝑉𝑖𝑚𝑝𝑎𝑐𝑡(𝑡) = √𝑉𝑖(𝑡)2 − 2𝑎𝑖(𝑡) ∙ (𝑋𝑖,𝑧(𝑡) − 𝑉𝑖(𝑡) ∙ 𝑡𝑟) 3.33 

 

To determine whether the pedestrian is in conflict with the vehicle, equation (3.34) is used. 

 
𝜅𝑖(𝑡) = {

1, 𝑖𝑓 𝑇𝑇𝐶𝑝(𝑡) < 𝑇𝑇𝐶𝑖(𝑡) < 𝑡𝑖,𝑠𝑡𝑜𝑝(𝑡),

0, 𝑒𝑙𝑠𝑒.
 3.34 

 

Finally, the PRI (equation (3.35))) is calculated by taking the sum of the squared impact speed 

times the difference between stopping time and TTZ with adjustments for simulation step size.  

 

𝑃𝑅𝐼𝑖 = ∑ ((𝑉𝑖𝑚𝑝𝑎𝑐𝑡
2 (𝑡) ∙ 𝛥𝑇𝑖(𝑡)) 𝜅𝑖(𝑡) ∙ 𝜏𝑠𝑐)

𝑡𝑛

𝑡=𝑡0

 

3.35 

 

3.2 Swedish TCT 

The Swedish Traffic Conflict Technique (TCT) was developed in the 1970s by the University 

of Lund. It is one of the oldest, well-tested and well-validated TCT, still being used by road 

safety assessors today (Laureshyn et al., 2018). The method can be used to identify and 

classify traffic conflicts based on TA and Conflicting Speed (CS), which is the speed of the 

vehicle when it takes an evasive action. As roads were becoming safer in the early 1990s, 

longer observation periods were required to obtain a sufficient amount of data. Therefore, the 

use of the technique became less frequent as most of these observations were done by 

humans. Then, with introduction of video and simulation tools, that can record and analyze 

these conflicts automatically, interest in the technique was revived. The Swedish TCT (STCT) 

is still being modified as the latest revision is from 2018. Although the method has been altered 

many times over its existence, the basics remained the same: 

- The requirement for a collision course in a conflict;  

- The definition of conflict severity based on the onset of an evasive action;  

- The distinction between serious and non-serious conflicts. The serious conflicts were 

found to be an indicator of a breakdown in the interaction – similar to a breakdown 

preceding an accident. 
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Figure 5 TA/CS graph with the severity levels as defined by the Swedish TCT indicated, adapted from Laureshyn 
et al. (2018) 

Figure 5 shows the relation between seriousness, CS and TA. This graph is used to determine 

the level of seriousness of an incident. If TA increases, the seriousness decreases as there is 

more time to execute the evasive action. If the CS increases, the required time to execute an 

evasive action increases and thereby the seriousness increases. When the level of severity is 

above 26, the conflict is considered serious (Laureshyn et al., 2017). There is a strong 

statistical relation between police-reported accidents and serious conflicts (Å Svensson, 1992). 

It is possible to convert these serious conflicts to an expected number of accidents with 

reasonable accuracy, even if these accidents happen rarely. 

The STCT can be applied to conflicts of the vehicle-vehicle (including bikes) type and vehicle-

pedestrian type as long as the pedestrian is not taking the evasive action (Axelsson et al., 

2016). Pedestrians can quickly stop or jump, and doing so makes it hard to determine how 

close the situation to an actual collision was. 

Due to its simplicity and objectivity the Swedish TCT is the most well-known TCT, but several 

alternative techniques from other countries do exist: the Austrian (Risser et al., 1991), 

Canadian (El-Basyouny et al., 2013), Czech (Kočárková, 2012), Dutch (Kraay et al., 2013), 

Finnish (Kulmala, 1984), French (Muhlrad et al., 1984), German (Erke et al., 1985), British 

(Baguley, 1984) and American (Parker Jr et al., 1989) TCT. These are well documented in 

literature, addressing those individually is out of the scope of this research. 
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3.3 Overview of SSI characteristics 

Table 3 The identified SSIs and their characteristics. 

SSI Conflict type Indicator type Span or one value 

D
is

ta
n
c
e
 

S
p
e
e
d
 

A
c
c
e
le

ra
ti
o
n
 

M
a
s
s
 

C
o
n
fl
ic

t 
a
n
g
le

 

R
e
a
c
ti
o
n
 t

im
e
 

C
o
n
fl
ic

t 
d
u
ra

ti
o
n
 

Interaction 

U
s
e

d
 i
n

 t
h

is
 

re
s
e

a
rc

h
 

 

C
a
r-

fo
llo

w
in

g
 

M
e
rg

in
g

 

C
ro

s
s
in

g
 

C
ra

s
h
 r

is
k
 

S
e
v
e
ri
ty

 

S
p
a
n
 m

a
x
im

is
e
 

S
p
a
n
 m

in
im

is
e
 

O
n
e
 v

a
lu

e
 

V
e
h
ic

le
-v

e
h
ic

le
 

V
e
h
ic

le
-

p
e
d
e
s
tr

ia
n

 

TTC x x x x   x  x x      x x x 

TA x x x x    x x x      x x x 

TET x x x x    x x x     x x x  

TIT x x x x    x x x     x x x x 

MTTC x x x x   x  x x x     x x x 

CI x    x x   x x x     x  x 

TTZ   x x   x  x x       x x 

PET  x x x    x        x x x 

CoI x x x  x   x  x  x x   x x  

H/GT x   x   x         x   

PICUD x   x  x   x x x   x  x   

PSD x x x x   x  x x x     x x x 

DSS x   x  x   x x x     x   

TDSS x   x    x x x x    x x   

U x   x  x    x x     x   
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SSI Conflict type Indicator type Span or one value 
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DRAC x x x x  x   x x      x x x 

CPI x x x x    x x x x     x x  

CrF x x x  x x   x x      x x x 

DST x x x x  x   x x      x x  

DeltaV x x x  x   x x x  x x   x x  

CS x x x x x   x x x x x x   x x  

PRI   x x x   x x x x   x x  x x 

STCT x x x x x   x x x      x x x 
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Urban traffic efficiency assessment 

This chapter is dedicated to urban traffic safety assessment. First, Macroscopic Fundamental 

Diagrams (MFDs) are introduced, and how to obtain MFDs is addressed. In the last subsection, 

efficiency assessment based on time loss is introduced and several concerns are mentioned. 

4.1 Macroscopic fundamental diagram 

The MFD was first described by Greenshields et al. (1935). They investigated the relation 

between traffic density and flow by analyzing a single unsignalized street in the state of Ohio. 

In the 1960s this idea was extended to complex urban networks (Godfrey, 1969; Payne, 1979; 

Smeed, 1968) and the relationship between traffic density, flow and speed was investigated. 

The first convincing empirical evidence of the existence of urban MFD was found by Daganzo 

et al. (2008). Later, several other studies with real world data were carried out in the networks 

of Shanghai and Rome (Zhang et al., 2020) confirming its existence.  

MFDs are widely used as a tool in the design process of highway road networks, but they can 

also be used to describe the aforementioned relation in urban networks. A typical MFD consists 

of a set of three plots: density-flow, density-speed, and speed-flow. All plots are related to the 

fundamental relationship given in equation 4.1 where 𝑄 denotes the flow [𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑠 ∙ ℎ−1], 𝑉 the 

average speed [𝑘𝑚 ∙ ℎ−1] and 𝜌 the vehicle density [𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑠 ∙ 𝑘𝑚−1]. In Figure 6 an example 

of a typical MFD is given. 

 𝑄 = 𝑉 ∙ 𝜌 4.1 
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Density-flow diagram 

 

Density-speed diagram 

 

Speed-flow diagram 

 

Figure 6 Typical MFD, adapted from Helbing (2009). 

4.2 MFD approximation methods 

There are two ways to obtain the MFD from a road network: the analytical derivation and 

experimental analysis from real or simulated data (Zhang et al., 2020). Among the analytical 

models, the most studied variant is based on variational theory (Daganzo, 2005) and practical 

cuts (Daganzo et al., 2008). These models are limited to homogenous (grid) networks and 

signalized intersections. Its application got extended with parallel roads and weak 

heterogeneity in the studies of Geroliminis et al. (2012) and Leclercq et al. (2013). However, 

they did not entirely overcome the earlier mentioned limitations. Another analytical approach 

for approximating the MFD is by linear programming as demonstrated by Daganzo et al. 

(2016). This model not only allows for the derivation of the MFD, but can also be used to 

optimize traffic signals lengths at intersections. The stochastic model as proposed by Laval et 

al. (2015) is based on variation theory and the cuts method. This model was verified with exact 

traffic data of the city of Yokohama, Japan. Furthermore, Helbing (2009) derived an analytical 

model to predict MFDs based on expected traffic flows on intersections. The average travel 

time and average vehicle speed can be expressed in terms of network utilization and/or the 

average number of delayed vehicles.  

Collecting good quality real-world data of traffic in an entire network is notoriously hard. There 

are several ways to collect real-world data, some examples are: the use of loop detectors, 

probe vehicles, camera footage and most recently Bluetooth/Wi-Fi/cellular sniffers (Gayah et 

al., 2013; Geroliminis et al., 2008; Leclercq et al., 2014; Shoufeng et al., 2013). This kind of 
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data are often combined with analytical data to fill in measurement gaps to ultimately get an 

estimation for the MFD of the entire network. 

4.3 Efficiency based on time loss 

From the related work section one can learn that aside from MFDs, time loss (or delay) is often 

used as a measure of efficiency. Where MFDs describe the performance on the network level 

over the entire congestion spectrum, time loss describes the performance on a vehicular level 

at a particular level of service. A benefit of using time loss is that it is easier to understand, and 

can be calculated per vehicle type. While MFDs are rather abstract, and always consider all 

entities in (a part of) the network or on a lane. When using time loss as an indicator for 

operational performance, it is essential to constantly have the same level of service (for 

instance the same number of running vehicles) in these comparison cases. 
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Simulation model of the M4H 

The former Merwe- and Vierhavensgebied (M4H) in the Dutch city of Rotterdam will be the use 

case in this research. This area has always been part of the port of Rotterdam, but as the 

industry grew over the years most of the port activities moved to the Maasvlakte area. This 

area has more physical space, can accommodate larger ships, is closer to the sea and has a 

better connection to the arterial (railway and road) networks of Europe. As the industry moved 

more and more from the city to the Maasvlakte, the port and city got separated. This left the 

municipality with large, partly unused areas close to the city center. To put these areas back 

into use and reconnect the port to the city, Rotterdam started the M4H project. The aim of the 

project is to repurpose the former port area by joining the so-called Makers District, which the 

former RDM area pioneered (Toekomst in de Maak - Ruimtelijk Raamwerk Merwe-

Vierhavensgebied Rotterdam, 2019). The Makers District consists of several sub-areas which 

all have a different mixture of new manufacturing industry, urban facilities, housing, and culture. 

These areas have to serve as an innovation environment for new manufacturing industry made 

possible by digitization and robotization without harming people and the environment. To 

accommodate this new industry the proximity of creative talent, the market and knowledge 

centers are essential. 

The spatial framework provided by the M4H team offers a glance into the future of M4H. The 

framework offers a map of the M4H in 2035 and a look ahead to 2050. The provided map 

serves as the basis of the use case. In the framework, an autonomous vehicle route is 

suggested which is specially designed for autonomous public transport. As autonomous freight 

transport will undoubtedly play a part in the development of new manufacturing industry, the 

idea is to extent the suggested route to support such autonomous transport. To investigate 

what infrastructure, driving behavior and communication systems are essential for safe and 

efficient transport, this research is conducted. Using the microscopic traffic simulator SUMO 

(Simulation of Urban MObility), the network as proposed in 2035 and the introduction of AVs 

will be subjected to safety and operational efficiency assessment.  

5.1 Introduction to SUMO 

The opensource microscopic traffic simulation package SUMO (Simulation of Urban MObility) 

is used to create a digital representation of the M4H zone in Rotterdam to study the impact of 

AVs with limited sensor range. SUMO was developed by the German Aerospace Center and 

its community members. It has been freely available since 2001.  

Traffic simulators can be grouped into three classes: macroscopic, microscopic and 

mesoscopic (Siegel et al., 2005). Macroscopic simulators represent traffic as an average 
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vehicle flow between links in a network. When simulating on a microscopic level all vehicles 

are considered as entities and behave in their own way, this comes at the cost of simulation 

speed. Lastly, mesoscopic simulation is combination of macroscopic and microscopic, where 

groups of vehicles are considered an entity and are modelled like a flow on links. As mentioned 

earlier, SUMO falls in the microscopic category. It is lightweight and therefore capable of 

simulating large complex networks on a microscopic level. 

Aside from the main simulation program, the SUMO suite is packed with useful tools such as 

netconvert, Duarouter and TraCI. Netconvert and NetEdit are the tools to convert various 

network formats to the SUMO format and edit networks. There is also the possibility to build 

traffic networks from OpenStreetMaps with the OSM Web Wizard tool. Duarouter is used to 

generate vehicle routes. It generates the shortest path from A to B via C. The last useful tool 

is TraCI. It is short for Traffic Control Interface and allows for on-line manipulation of the 

simulation, meaning it can retrieve and set variables. There is a python API available for TraCI 

which is used in this study. 

A network in SUMO consists of nodes and links between nodes. The nodes represent 

junctions, and the links are called edges. An edge can consist of one or more lanes, are always 

unidirectional and have a priority value. Various lane types are defined in SUMO: unrestricted 

lanes (all traffic is allowed) and restricted lanes (bike lanes, sidewalks, or any other vehicle 

exclusive lanes). For each lane, the width and maximum speed can be set. A junction in SUMO 

consists of connections between lanes and pedestrian crossings. There are two types of 

pedestrian crossings: unprioritized and prioritized. From now on, prioritized crossings will be 

referred to as zebra crossings. In Figure 7, one junction is shown with labeled key components. 

From this figure one can see that a junction quickly becomes complex even if there are a 

moderate number of lanes.  
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Figure 7 Part of the network with key components indicated. 

 

5.2 The M4H network 

What distinguishes this research from the others is the presence of buildings and other view 

obscuring elements. The proposed AV model takes the obstructed view caused by these 

objects into account when driving. The detailed map as provided in the spatial framework for 

the M4H in 2035 (Toekomst in de Maak - Ruimtelijk Raamwerk Merwe-Vierhavensgebied 

Rotterdam, 2019) was consulted to recreate the buildings and other obstructions in the 

simulated traffic network (Figure 7). 

There are a total of 13 exit and entrance points, 12 of them are for disturbance traffic and one 

is exclusively for AVs. Of course, not all entity types can enter or leave at all of these points. 

The entrance and exit points of each entity are shown in Figure 8. The entrance and exit points 

are weighted according to an assumed traffic inflow and outflow rate, the weights are presented 

in Table 4.  
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Table 4 Vehicle weights at entrance and exit points. 

Entrance/exit point Cars Trailers Bikes Pedestrians 

1 - - 1 - 

2 - - 1 - 

3 1 1 1 1 

4 0.5 1 1 1 

5 1 1 0.5 1 

6 - - 1 1 

7 - - 2 - 

8 - - 1 - 

9 0.5 0.5 - 2 

10 1 1 - 2 

11 0.5 2 - 1 

12 - - 2 - 

 

 

 Bikes only  
Bikes and 
pedestrians  

Motorized 
vehicles and 
pedestrians 

 All types 

 

Figure 8 The complete network of M4H in 2035, with entrance and exit points indicated. 
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The original network has been slightly altered to accommodate the proposed AVs. They enter 

and exit the network in a platoon. When they enter, they immediately go to their delivery 

location. Since not all deliveries take the same amount of time, three buffer lanes at the AV 

exits haven been added to allow the AVs to reform their platoon (Figure 9). 

 

 

Figure 9 Platoon buffer lanes. 

There are in total 6 possible delivery points for the AVs as indicated in Figure 10. These 

delivery points all have a weight of 1. 

SUMO offers a built-in feature to add actuated traffic lights based on time gap in a network. In 

total five of those traffic lights have been added (Figure 11), four at the major four-way 

intersections, and one to regulate the inflow of AVs. By using actuated traffic lights, the traffic 

in the network is somewhat balanced resulting in a reduced risk of partly gridlocking the 

network while other parts are still uncongested. 
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Figure 10 AV delivery points. 

 

 

Figure 11 Locations of actuated traffic lights. 
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5.3 The simulated environment 

In this subsection the simulation environment as used in the experiments is introduced. For all 

entities, the duarouter tool is used to generate all possible routes they can take (there are over 

1400 different routes). At time of entity injection, a random route is chosen based on entrance, 

exit and demand point weights. First the way disturbance traffic is injected is discussed. Then, 

the AV platoon injection and management are explained. 

5.3.1 Disturbance traffic  

Since AVs are the main subjects in this research, other road users are considered disturbance 

traffic. A distinction is made between VRUs and normal road users. VRUs are cyclists and 

pedestrians, and normal road users are cars, trailers, and AVs. Other vehicle types like 

mopeds, motorcyclists and busses are not considered, since they can be represented by 

bicycles, cars, and trailers with only minor differences in characteristics. In Appendix A, Table 

16 the default vehicle parameters are presented as used by SUMO version 1.7.0, the 

parameters of the AVs identical to the trailers.  

The potential impact of emergency vehicles is not investigated. It is important that AVs are 

able to swerve and give way to these entities, but this is not considered for now. Additionally, 

no random actions like suddenly braking to avoid hitting birds, performing a U-turn on the 

middle of the road, being distracted by a mobile phone, swaying across lanes, etc. which could 

result in collisions are simulated.  

Disturbance traffic is inserted at random Poisson distributed intervals. It is assumed that more 

critical conflicts happen at higher speeds. Therefore, the disturbance injection intervals are 

calibrated to be above a certain average vehicle speed. This way the simulated zone does not 

get too crowded and a low congestion state is guaranteed. The base number of vehicles per 

hour for the cars, trailers, bikes, and pedestrians are set to 130, 40, 70 and 70, respectively. It 

is assumed that this mix of traffic is sufficiently accurate for the purpose of this research. The 

aforementioned disturbance traffic ratio is always conserved but can be multiplied with the so-

called disturbance factor. In the experiment the disturbance factor will gradually increase to 

generate the MFDs for different scenarios. Once the MFDs are generated a suitable 

disturbance factor range will be determined to assess the safety and time loss at low congested 

states. 

5.3.2 AV management 

At random Poisson distributed intervals, a platoon containing three to five AVs is injected into 

the simulation. About 40 AVs are released in the system every hour, to achieve this the 

injection system is instructed to inject a platoon every 360 seconds on average. Once a platoon 

is injected, the AVs will perform their last-mile delivery task individually. After executing their 

task, they will halt in the first free platoon buffer lane to be reunited with the other AVs to form 

a platoon again. The AV dispatching system recognizes AVs with the help of induction loops 

in the buffer lanes. If all expected AVs are in the lane and standing still, the platoon is ready to 

be released from the simulation. The traffic lights turn green and it moves towards the 

dedicated AV exit point. 
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5.4 Virtual AV model 

In this subsection the virtual AV model is presented. The occlusion aware driving principle is 

explained first. Then, the speed controller logic of the AVs is introduced, and lastly the 

equipped SSI devices are presented. 

5.4.1 Occlusion aware driving principle 

What distinguishes this research from comparable microscopic traffic studies is the Occlusion 

Aware Driving (OAD) principle. The AVs are programmed in such a way, that their visibility 

range gets obstructed by obstacles such as buildings. Of all entities within the AV’s visibility 

range all information regarding position, speed, route, and intentions is assumed to be known. 

Because of high computing power requirements, view obstructions caused by other road users 

are not considered. If the view of the AV would be obstructed by a vehicle that is already on 

an intersection or in front of the AV, the AV would not be able to drive anyway. Hence, this 

trade-off between required computing power versus simulation speed was made. It is assumed 

that this only impacts the simulation results slightly. 

Because of the obstructed view caused by buildings, the AV might not be able to see certain 

entities hidden in the obstructed areas which makes it possible for dangerous and even fatal 

situations to occur. To mitigate this problem, OAD considers imaginary entities at the border 

of the visibility range, instead of only considering visible entities. These imaginary entities are 

from now on called Pseudo Vehicles (PVs) and can be divided into two groups. The first group 

are static PVs, which are modelled as a vehicle with zero speed and no intention to drive off. 

The second group is called dynamic PVs, which are modelled as the vehicles that drive the 

maximum allowed lane speed and have no intention to brake. This way, the AV should never 

be overwhelmed if an entity which was previously behind an occlusion appears. 

In Figure 12 an AV in the simulation is shown with all relevant elements indicated. From this 

figure it becomes clear that generally only one static PV on the AV trajectory is considered, but 

several dynamic PVs are present. A dynamic PV is not just one entity with one route, but all 

possible routes allowed to be taken need to be considered by the AV speed controller logic. 

Although this adds a lot of complexity which greatly increases the required computing power, 

it is an essential part of the OAD logic. To reduce required computing power, a lookup table 

with the lidar polygons and PV objects is available. 
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Figure 12 AV with all relevant elements indicated. 

5.4.2 AV speed controller logic 

This sub-subsection is based on, and adapted from earlier work of Pauwels (2020). To control 

the speed of the AVs, the AV speed controller is introduced. Lane keeping, steering, and 

determining the next position of the AV is managed by SUMO, the speed of AVs is controlled 

by the speed controller logic. It calculates the desired speed of the AV based on three models. 

The first model is the car-following model. It estimates the space gap between the AV and a 

vehicle in front, and calculates the required speed for the AV to respect the set time gap. The 

second model is the junction model that consists of decision logic to respect traffic rules 

(stopping for traffic lights, giving way, etc.) and determines whether it is safe for the AV to cross 

the intersection. It also calculates the speed it should take to be able to stop in time if it is not 

safe to cross the junction. The third model is the pedestrian model. It is focused on safe 

operation at pedestrian crossings. It makes sure that the AV does not collide with pedestrians 

and respects zebra crossings. When the safe speeds for all entities are calculated, the speed 

controller takes the minimum calculated speed as in equation (5.1) and instructs the AV to 

accelerate, decelerate or hold its speed. It also takes the maximum AV and allowed road speed 

into consideration.  
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𝑣𝑑𝑒𝑠𝑖𝑟𝑒𝑑 = 𝑚𝑖𝑛

[
 
 
 
 
 
 
 
 
 
𝑣𝑚𝑎𝑥,𝑟𝑜𝑎𝑑
𝑣𝑚𝑎𝑥,𝐴𝑉

𝑣𝑠𝑎𝑓𝑒𝑗,𝑣𝑒ℎ𝑖𝑐𝑙𝑒1
𝑣𝑠𝑎𝑓𝑒𝑐𝑓,𝑣𝑒ℎ𝑖𝑐𝑙𝑒1
𝑣𝑠𝑎𝑓𝑒𝑝,𝑝𝑒𝑑1

⋮
𝑣𝑠𝑎𝑓𝑒𝑗,𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑛
𝑣𝑠𝑎𝑓𝑒𝑐𝑓,𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑛

𝑣𝑠𝑎𝑓𝑒𝑝𝑚,𝑝𝑒𝑑𝑛 ]
 
 
 
 
 
 
 
 
 

 
5.1 

Car-following model 

The task of the car-following model is to prevent collisions with leading vehicles in following 

situations. It does this by keeping a constant time gap (𝜏) from the leading. Adaptive Cruise 

Control (ACC) systems make use of car-following models to estimate the safe following speed. 

Most manufacturers do not specify which model they use as they consider it a trade secret. If 

no intervehicular communication is available, there are no differences between AVs and 

vehicles with ACC in a leader-follower situation. Therefore, the same car-following models are 

applicable.  

Various car-following models are available in SUMO, an overview is available on the SUMO 

wiki ("SUMO - Definition of Vehicles, Vehicle Types, and Routes," 2020). The Krauß car-

following model (Krauß, 1998) is chosen for this application. The safe speed of the vehicle in 

the next simulation step is calculated with equation (5.2). The bumper to bumper gap is 

determined by drawing the AV trajectory and measuring the length of the segments between 

the AV and the leading vehicle. The leading vehicle’s speed is assumed to be available. 

In related work on AV research using SUMO (Lu et al., 2018; Lu et al., 2019) this car following 

model is also used. It is suspected that they used sub-second simulation steps as their desired 

time gap for AVs is set as low as 0.6 seconds. One must understand that this time gap is 

compensating for the reaction time of the AV. As the simulation step size is the lowest reaction 

time possible, time gaps lower than the simulation step size are undesirable and can result in 

collisions if the leader suddenly brakes. The simulation step size used in this research is 1 

second, therefore the minimum stable value for the time gap is 1 second. 

 
𝑣𝑠𝑎𝑓𝑒𝑐𝑓,𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑛 = 𝑣𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑛 +

𝑔𝐴𝑉,𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑛 − 𝑣𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑛 ∙ 𝜏𝐴𝑉  

𝑣𝐴𝑉 + 𝑣𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑛
2 ∙ 𝑏𝐴𝑉

+ 𝜏𝐴𝑉

 
5.2 

 where: 

 𝑣𝑥: Speed of 𝑥 [m∙s-1] 

 𝑔𝑥,𝑦: Gap between 𝑥 and 𝑦 [m] 

 𝜏𝑥: Time gap of 𝑥 [s] 

 𝑏𝑥: Maximum deceleration rate of 𝑥 [m∙s-2] 

 

 

Junction model 

The junction model manages the behavior of the AV when approaching an intersection. At 

signalized intersections, the model does not have to consider a lot of entities, but at 

unsignalized intersections the junction model has to consider lots of factors. The task of a 

junction model is to prevent collisions and respect traffic rules. The difference with this junction 
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model and the standard model in SUMO is that this logic is from the AV’s point of view, whereas 

the SUMO model is created from the junction’s perspective. 

It is clear to human drivers what the intentions of other road users are, but this is non-trivial for 

autonomous driving algorithms. In the survey of Yurtsever et al. (2020) on the state-of-art of 

autonomous driving systems (ADS), the recent developments of human driver intention 

prediction are presented. It states that researchers also focus on recognizing the individual 

driving styles of disturbance vehicles and suggests that it is a promising direction in ADS 

developments. This is because the possibility for driverless systems to recognize turn signals 

is already proven (Casares et al., 2012; Sathya et al., 2015). With the recent developments on 

intention prediction, it is assumed that the connection an observed vehicle takes on an 

intersection is predictable by the AV in 2035. Additionally, the driving speed of the disturbance 

vehicles is assumed to be available to the AV. 

The decision scheme as shown in Figure 13 is the main logic behind the junction model. This 

logic must be followed for each disturbance vehicle and all intersections in the breaking 

distance range of the AV as long as the outcome for the previous intersection is “go”. If the 

outcome for junction 𝑘 and vehicle 𝑛 is “stop”, the safe speed of the AV with respect to junction 

𝑘 is set to the maximum safe speed to brake in time (equations (5.3) and (5.4)) and subsequent 

junctions do not have to be checked. 

𝑣𝑠𝑎𝑓𝑒𝑗𝑘,𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑛 = {
𝑣𝑏𝑟𝑎𝑘𝑖𝑛𝑔𝑗𝑘 , if 𝑠𝑡𝑜𝑝

∞, if 𝑔𝑜
 

 

5.3 

The maximum safe speed for the AV to brake in time for junction 𝑘 is calculated using equation 

(5.4) (simplified Krauß method). Note that the junction approaching speed is influenced by the 

desired time gap (𝜏𝐴𝑉) of the AV. 

 
𝑣𝑏𝑟𝑎𝑘𝑖𝑛𝑔𝑗𝑘 =

𝑔𝑗𝑘,𝐴𝑉 −𝑚𝑖𝑛𝐺𝑎𝑝𝑗𝑘
𝑣𝐴𝑉
2 ∙ 𝑏𝐴𝑉

+ 𝜏𝐴𝑉
 

5.4 

 where: 
 𝑚𝑖𝑛𝐺𝑎𝑝𝑗𝑘: Minimum gap between AV and junction [m] 
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Figure 13 Junction model decision logic 

The stopping distance of vehicle 𝑛 is computed by equation 5.5. If this distance is greater than 

the distance to the junction, the approaching vehicle cannot safely stop. 

Go Stop 

The connection vehicle n takes intersects the 

connection the AV takes on junction 𝑘 
  

Should the AV stop or go 

at junction 𝑘 for vehicle 

𝑛? 

Approaching vehicle cannot safely 

stop for junction 𝑘 (equation 5.5). 

𝑝𝑟𝑖𝑜𝐴𝑉 < 𝑝𝑟𝑖𝑜𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑛 

A junction in the route of vehicle n intersects junction 

𝑘 and if junction 𝑘 has traffic lights, vehicle 𝑛 and AV 
have green simultaniously. 

  

𝑝𝑟𝑖𝑜𝐴𝑉 = 𝑝𝑟𝑖𝑜𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑛  and vehicle 𝑛 

approaches from the right. 
  

AV can clear junction 𝑘 before vehicle 𝑛 
arrives at the junction (equations 5.6 to 5.10). 

Junction 𝑘 has a traffic light and it is red 
for the AV at arrival. 

  

True 

True 

True 

True 

True 

True 

False 

False 

False 

False 

False 

False 

False 

True 
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𝑠𝑠𝑡𝑜𝑝𝑛 =

𝑣𝐴𝑉
2

2 ∙ 𝑏𝐴𝑉
 5.5 

To estimate the arrival time of vehicle 𝑛 at junction 𝑘 equations (5.6) to (5.10) are used. These 

calculations can only be used if there are no other junctions between vehicle 𝑛 and junction 𝑘 

or if the maximum allowed lane speed for all lanes on the trajectory are the same. If this is not 

the case, the arrival time for junction 𝑘 + 1 is calculated by first calculating the end speed (𝑣𝑒𝑛𝑑) 

at junction 𝑘 and setting 𝑣𝑥 to this value. Note that 𝑔𝑗𝑘+1,𝑥 needs to be set to the length of the 

approaching lane of junction 𝑘 + 1 plus the connection length at junction 𝑘. 

First, the speed difference between the current speed and allowed lane speed is calculated by 

equation (5.6).  

 𝛥𝑣 = 𝑣𝑎𝑙𝑙𝑜𝑤𝑒𝑑 − 𝑣𝑥 5.6 
 where: 

 𝑣𝑎𝑙𝑙𝑜𝑤𝑒𝑑: Maximum allowed speed at approaching lane [m∙s-1] 
 

 

Equation (5.7) determines the time it takes to accelerate or decelerate to this new speed. 

𝑡𝑎𝑐𝑐 =

{
 

 
𝛥𝑣

𝑎𝑥
, 𝛥𝑣 > 0

𝛥𝑣

𝑏𝑥
, 𝛥𝑣 ≤ 0

 5.7 

where: 

 𝑎𝑥: Maximum acceleration rate of 𝑥 [m∙s-2] 
 

 

Acceleration or deceleration distance is calculated by equation (5.8). This is necessary to 

determine whether the vehicle is done with accelerating or decelerating before it reaches the 

junction. 

 

𝑠𝑎𝑐𝑐 =

{
 

 𝑣𝑥𝑡𝑎𝑐𝑐 +
𝑎𝑥𝑡𝑎𝑐𝑐

2

2
, 𝛥𝑣 > 0

𝑣𝑥𝑡𝑎𝑐𝑐 −
𝑑𝑥𝑡𝑎𝑐𝑐

2

2
, 𝛥𝑣 ≤ 0

 5.8 

 

The approximated arrival time at junction 𝑘 is calculated using formula (5.9). To calculate the 

junction clear time (𝑡𝑐𝑙𝑒𝑎𝑟), the same calculations can be used with the connection length at 

junction 𝑘 and the vehicle length added to 𝑔𝑗𝑘,𝑥. 
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𝑡𝑎𝑟𝑟𝑖𝑣𝑎𝑙 =

{
 
 
 
 
 

 
 
 
 
 

𝑔𝑗𝑘,𝑥 − 𝑠𝑎𝑐𝑐

𝑣𝑎𝑙𝑙𝑜𝑤𝑒𝑑
+ 𝑡𝑎𝑐𝑐 , 𝑔𝑗𝑘,𝑥 − 𝑠𝑎𝑐𝑐 ≥ 0  

𝑚𝑎𝑥

(

 
−𝑣𝑥 ±√𝑣𝑥

2 + 2𝑎𝑔𝑗𝑘,𝑥

𝑎

)

 , 𝑔𝑗𝑘,𝑥 − 𝑠𝑎𝑐𝑐 < 0 𝑎𝑛𝑑 𝛥𝑣 > 0

𝑚𝑎𝑥

(

 
𝑣𝑥 ± √𝑣𝑥

2 − 2𝑑𝑔𝑗𝑘,𝑥

𝑑

)

 , 𝑔𝑗𝑘,𝑥 − 𝑠𝑎𝑐𝑐 < 0 𝑎𝑛𝑑 𝛥𝑣 ≤ 0

 5.9 

 where: 
 𝑔𝑗𝑘,𝑥: Gap between junction 𝑘 and 𝑥 [m] 

 

 

Finally, the speed at the end of the given gap is calculated by equation (5.10). 

 

𝑣𝑒𝑛𝑑 = {

𝑣𝑎𝑙𝑙𝑜𝑤𝑒𝑑 , 𝑔𝑗𝑘,𝑥 − 𝑠𝑎𝑐𝑐 ≥ 0  

𝑡𝑎𝑟𝑟𝑖𝑣𝑎𝑙 ∗ 𝑎𝑥 + 𝑣𝑥 , 𝑔𝑗𝑘,𝑥 − 𝑠𝑎𝑐𝑐 < 0 𝑎𝑛𝑑 𝛥𝑣 > 0

−𝑡𝑎𝑟𝑟𝑖𝑣𝑎𝑙 ∗ 𝑏𝑥 + 𝑣𝑥 , 𝑔𝑗𝑘,𝑥 − 𝑠𝑎𝑐𝑐 < 0 𝑎𝑛𝑑 𝛥𝑣 ≤ 0
 5.10 

 

Pedestrian model 

Due to limitations of SUMO, pedestrians can only cross roads at dedicated crossings which 

are located at junctions. As mentioned earlier, a distinction is made between prioritized and 

unprioritized crossings (Figure 7). The pedestrian model can be considered as a part of the 

junction model; but because of the different calculations and logic, a distinction is made 

between the two.  

In Figure 14, the decision scheme of the pedestrian model is given. Note that the arrival and 

clear time of the AV are calculated with equations (5.6) to (5.10). To prevent congestion on the 

junction, the allowed braking distance considered by the AV is the distance to the junction, 

which is not necessarily the distance to the crossing. To calculate accurate arrival and clear 

times for the pedestrian, equations (5.11) and (5.12) are used. Acceleration and deceleration 

rates of the pedestrians are very high in comparison to their maximum speed. Therefore, the 

calculations are simplified for the pedestrians. It is assumed that they can go from a standstill 

to maximum speed instantly and vice versa. 

The pedestrian model only has to be checked if the junction model for junction 𝑘 has resulted 

in “go”. If so, for each pedestrian and crossing on the junction the pedestrian model is 

evaluated. When the outcome of the decision scheme for a crossing on junction 𝑘 is “stop”, the 

safe speed (𝑣𝑠𝑎𝑓𝑒𝑝𝑚,𝑝𝑒𝑑𝑝) is set to the maximum speed for the AV to brake in time for junction 

𝑘, which is calculated by equation (5.4). 
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Figure 14 Pedestrian model decision logic 

 

 𝑡𝑎𝑟𝑟𝑖𝑣𝑎𝑙,𝑝𝑒𝑑 =
𝑔𝑐𝑟𝑜𝑠𝑠𝑖𝑛𝑔,𝑝𝑒𝑑 

𝑣𝑚𝑎𝑥,𝑝𝑒𝑑
= 𝑇𝑇𝑍𝑝𝑒𝑑 5.11 

 Where: 
 𝑔𝑐𝑟𝑜𝑠𝑠𝑖𝑛𝑔,𝑝𝑒𝑑: Gap between crossing and 𝑥 [m]  

 

 
𝑡𝑐𝑙𝑒𝑎𝑟,𝑝𝑒𝑑 =

𝑔𝑐𝑟𝑜𝑠𝑠𝑖𝑛𝑔,𝑝𝑒𝑑 + 𝑤𝑐𝑟𝑜𝑠𝑠𝑖𝑛𝑔

𝑣𝑚𝑎𝑥,𝑝𝑒𝑑
 5.12 

 Where: 
 𝑤𝑐𝑟𝑜𝑠𝑠𝑖𝑛𝑔: Width of the crossing and 𝑥 [m]  

 

True False 

Should the AV stop or go 

at junction 𝑘 for pedestrian 

𝑛? 

The crossing pedestrian 𝑛 takes is a zebra 

crossing 

𝑡𝑎𝑟𝑟𝑖𝑣𝑎𝑙,𝑝𝑒𝑑 > 𝑡𝑐𝑙𝑒𝑎𝑟,𝐴𝑉 or (and not both) 𝑡𝑎𝑟𝑟𝑖𝑣𝑎𝑙,𝐴𝑉 > 𝑡𝑐𝑙𝑒𝑎𝑟,𝑝𝑒𝑑 

Go Stop 

Pedestrian 𝑛 is on the crossing 

The crossing pedestrian p takes intersects 

the connection of the AV on junction 𝑘 

A junction in the route of pedestrian 𝑛 

intersects junction 𝑘 in the AV route 

False 

False 

True 

True 

False 

True 

False 

True 
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5.4.3 SSI devices 

To evaluate the safety of the network, the AVs are outfitted with SSI devices. These devices 

record the time, position, speed, route, and estimate the conflict point location of the vehicles 

within a straight-line distance of 100 meters. The standard SUMO SSI devices calculate DRAC, 

TTC and PET only for vehicles, not pedestrians. These indicators are not considered sufficient 

to evaluate the actual safety of the system. For example, reaction times are not taken into 

account and crash severity is not estimated. Because the time, position, speed, and conflict 

points are logged, other indicators can be calculated after the simulation has finished. The 

additional calculated indicators are: STCT, TA, TIT, MTTC, CI, PSD, and CrF. When 

considering the STCT SSI, the level of seriousness is estimated by linear interpolation using 

Figure 5.  

With the lack of pedestrian safety evaluation SSIs available in SUMO. An SSI device had to 

be created which logs the time, position, and route of the pedestrians within the straight-line 

distance of 100 meters. The same indicators are calculated, except for CS which has been 

substituted by the PRI. The PRI is a hybrid indicator that estimates both severity and crash 

rate for pedestrians. 

The only evasive action that can be taken by the AV in this microsimulation environment is 

braking. Swerving and accelerating (above the speed limit) is not modelled. Estimating the 

exact moment of the evasive action is non-trivial in microsimulations (in real life, too). An 

acceptable threshold for determining whether a braking event is considered an evasive action, 

is a deceleration of more than 2 m∙s-2 (Axelsson et al., 2016). This will be used to calculate the 

TA, STCT and other TA-based indicators. 
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6  

Benchmark of the M4H 

To verify the safety and efficiency evaluation methodology and to obtain a benchmark for the 

zone as it is designed now, multiple simulation scenarios are evaluated. In these scenarios the 

car-following time gap (𝜏) of the AVs is varied from 1 to 2.5 seconds with steps of 0.5. Note 

that this also affects the speed of the AVs when approaching junctions (section 5.4.2). For all 

scenarios, the same random seeds are used to ensure that the exact same traffic is injected. 

There will be two types of simulation sets. 

The first set of simulations, each set consisting of 30 seeds and each seed running for 12.000 

seconds (excluding 1.000 seconds warm-up time), are at low traffic densities. By doing this, 

more complicated interactions between AVs and other traffic components are expected 

compared to high densities. If the traffic density is high, the network is congested, and the AVs 

are simply following the vehicle in front until they reach an intersection and then decide at low 

speed how to act. Since the real network is almost never fully congested, it is believed that 

interactions at higher velocities and lower traffic densities are a better representation of the 

real network behavior. This first set of simulations is also used to evaluate the time loss caused 

by interaction with other traffic. Time loss is used to assess the operational efficiency of the 

AVs. It is thought that higher delays of the AVs cause other traffic partitioners to be more 

irritated resulting in a more aggressive driving style (Hennessy et al., 1999). 

In the second set of simulations the traffic density is steadily increased until the network is 

sufficiently gridlocked. The traffic flow, average speed, and density are recorded and the MFDs 

are generated for all scenarios. Then, the MFDs are used to confirm that there are no large 

differences in network performance due to randomness between runs or any modelling errors. 

As the fraction of AVs gets small at higher traffic densities, it is believed that the MFDs should 

converge. 

6.1 Safety benchmark 

Before the first set of simulations can be assessed on safety, all potential accidents must be 

identified. This is done by calculating STCT, PET, and DRACmax and subjecting them to the 

relaxed threshold values of Table 5. If one or more thresholds are violated, the incident is 

marked as a potential accident and it will be subjected to a full safety assessment. By using 

these three indicators, it is believed all typical safety critical situations are caught. STCT 

captures both the AV speed and time of the evasive actions. The PET indicator captures 

potentially critical conflicts without evasive actions. Finally, DRAC gives insight in the required 

braking capability. Time, distance, and deceleration is considered by judging all conflicts with 
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these SSIs. This preselection makes sure that the severity of a non-critical conflicts is not 

calculated. The thresholds are obtained by taking commonly used thresholds (Table 6) and 

relaxing them. If tighter thresholds were to be used, it is possible that STCT, PET, and DRACmax 

report the conflict as non-critical, while other SSIs might consider it to be critical.  

Table 5 SSI threshold values to determine if there is a potential accident. 

SSI Potential accident thresholds 

STCT > 21 

PET < 5 

DRACmax > 2 

 

Reasonable threshold values are set to determine if the potential accident should be marked 

as an actual accident. Potential accidents that violate the threshold for a certain SSI are 

reported as an accident for this SSI. Since the total number of incidents differ per scenario due 

to random chance, the number of accidents for a given SSI is divided by the total number of 

incidents of each scenario. The resulting fraction is used to compare the level of safety.  

The used threshold values are presented in Table 6. Threshold values for STCT, TTCmin, TA, 

MTTCmin, PET, PSDmin, and DRACmax come from literature (chapter 3), some adjustments are 

made to capture more SII accidents. Again, note that there are no set thresholds that determine 

whether a situation is safe or unsafe. So, adjusting these thresholds to capture more SSI 

accidents is possible, which is actually common practice in related studies. CImax, CrFmax, and 

PRI have no thresholds in literature because they describe the severity of conflicts. However, 

it is assumed the safety level can still be judged using thresholds. Thresholds to capture 

enough SSI accidents are determined by evaluating the obtained data. A similar approach is 

taken when determining a threshold for the TIT indicator. This way, the four indicators can still 

be useful for comparing the safety between different scenarios. 
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Table 6 SSI threshold values as used in the safety assessment. 

 

SSI 

Threshold  

 Vehicles and 
bikes 

Pedestrians 
Comment 

 
STCT > 25 > 25 

One level safer than the original work 
(Laureshyn et al., 2018). 

 TTCmin < 1.25 < 1.25 Commonly used (Mahmud et al., 2017). 

 TA < 1.5 < 1.5 Commonly used (Mahmud et al., 2017). 

 TIT > 0.35 > 0.35 Determined from data. 

 
MTTCmin < 4 < 3 

Commonly used, slightly tighter for 
pedestrians. (Ozbay et al., 2008) 

 CImax > 10 - Determined from data. 

 PET < 3 < 3 Slightly tighter (Alhajyaseen, 2015). 

 PSDmin < 1 < 1 Commonly used (Allen et al., 1978). 

 
DRACmax > 2.5 > 2.5 

Maximum braking acceleration, slightly tighter 
(Giuseppe Guido et al., 2012). 

 CrFmax > 50 > 50 Determined from data. 

 PRI - > 0.1 Determined from data. 

 

6.1.1 Results 

All SSIs of potential accidents are calculated using the appropriate equations from section 3 

and subjected to the thresholds from Table 6. The assessed incidents assessed involve AV-

AV, AV-bike, AV-trailer, AV-car, and AV-pedestrian. The combined results for cars, trailers and 

bikes are presented first and in the second subsection the results for pedestrians are 

presented. 

Vehicles and bikes 

The obtained data regarding accidents involving AVs, vehicles and bikes as determined by the 

SSI assessment are presented in Table 7 and graphically in Figure 15. Nearly all indicators 

show a reduction in the number of accidents as the car-following time gap increases, except 

the SSIs PET and PSD. 
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Table 7 Results of the SSI assessment for vehicles and bikes. 

Scenario  τ = 1  τ = 1.   τ = 2  τ = 2.  

No. indicidents 60376 58637 57455 57539 

SSI Percentage of accidents 

STCT 14.20% 11.96% 8.15% 2.81% 

TTCmin 4.11% 3.58% 2.34% 0.00% 

TA 7.49% 7.21% 6.72% 4.44% 

TIT 3.43% 3.13% 0.87% 0.00% 

MTTCmin 4.11% 3.53% 1.77% 0.56% 

CImax 3.49% 3.21% 1.50% 0.65% 

PET 0.91% 0.97% 0.88% 0.93% 

PSDmin 3.66% 2.31% 2.14% 2.27% 

DRACmax 4.92% 2.93% 0.43% 0.52% 

CrFmax 4.06% 3.24% 2.11% 0.67% 

 

 

Figure 15 Graphical representation of the results of the SSI assessment for vehicles and bikes. 

 

Pedestrians 

The results of the SSI assessment involving AVs and pedestrians are presented in Table 8 

and graphically in Figure 16. All SSIs show a decrease in accident frequency when the car-

following time gap of the AV increases. 
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Table 8 Results of the SSI assessment for pedestrians. 

Scenario  τ = 1  τ = 1.   τ = 2  τ = 2.  

No. indicidents 46777 47538 48545 49813 

SSI Percentage of accidents 

STCT 3.47% 2.23% 1.48% 1.15% 

TTCmin 16.36% 14.90% 11.13% 9.52% 

TA 1.85% 1.21% 0.90% 0.75% 

TIT 15.60% 13.58% 10.11% 8.80% 

MTTCmin 21.00% 18.14% 13.63% 11.81% 

PET 1.96% 1.78% 1.66% 1.58% 

PSDmin 6.17% 5.26% 3.56% 3.64% 

DRACmax 12.61% 9.01% 8.24% 7.50% 

CrFmax 19.77% 15.93% 8.93% 7.64% 

PRI 5.14% 3.09% 1.60% 1.11% 

 

 

Figure 16 Graphical representation of the results of the SSI assessment for pedestrians. 
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6.2 Efficiency benchmark 

With the second set of simulations, the MFDs for the different car-following time gaps are 

generated. The MFDs are used to evaluate the overall network performance of the scenarios 

and are generated using the data of the approaching lanes at locations 2 and 4 of the 

intersections with actuated traffic lights (Figure 11). Additionally, a scenario without AVs is 

simulated to investigate if a small ratio of AVs impacts the network performance. When 

generating the MFDs, the disturbance traffic is steadily increased, but the AV injection rate is 

constant. Therefore, with increasing traffic, the fraction of AVs gets smaller. It is suspected that 

in the low-density region, the effects of AVs are bigger and at higher density regions lower, 

resulting in converging MFDs at high traffic density states.  

To evaluate the time loss of the vehicles under the scenarios, the free flow time of all routes is 

required. This is generated by injecting the appropriate vehicle three times for each route while 

there are no other vehicles in the system and taking the average time in the system. Since 

there are over 1400 possible routes and generating these free flow times takes substantial 

computation power, it was assumed that three repetitions would be sufficiently accurate. For 

the AVs, the time-following gap was set to 2 seconds when generating the free flow times. The 

first set of simulation results is used to calculate the time loss fraction. Due to the random 

impact of traffic lights, it is possible that the time in system of certain entities is lower than the 

free flow time. Note that the time loss of pedestrians is not considered. 

6.2.1 Results 

MFD 

Figure 17 shows the MFDs of all scenarios; for comparison, a scenario without AVs was also 

added. From the density-flow and speed-flow diagram, it is observed that the scattered flow 

rates become chaotic at higher vehicle densities and lower average speeds, respectively. 

Interestingly enough, the density-speed diagram shows a relation with little scatter for all 

densities and speed compared to the other diagrams. In general, no major differences in MFDs 

are observed. In low scatter regions, the MFDs are almost identical and in higher scatter 

regions the uncertainty gets too high to be meaningful. In Appendix B, Figure 24 the flow, 

speed and densities obtained from the first set of simulations are plotted in the MFDs from 

Figure 17. 
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Figure 17 MFD of the benchmark scenarios. 

 

Time loss 

The results of the time loss analysis are presented as a boxplot in Figure 18 and the average 

delays are presented in Table 9. It is observed that the introduction of AVs increases the delay 

of all vehicles. The time loss of the AVs gets significantly higher as the car-following time gap 

increases (Table 9). Bikes do not show a change in delay by the varying car-following 

parameter. Cars seem to be slightly influenced by the more conservative driving of the AVs, 

which is confirmed by the t-test (Table 10). Trailers show an increase in delay caused by the 

car-following parameters of the AVs, but the H0 cannot be rejected. 
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Figure 18 Boxplots of the time loss percentage compared to free flow times per entity. 

 

Table 9 The average percentage of delay compared to free-flowing vehicles. 

 

 

Entity No AVs  τ = 1  τ = 1.   τ = 2  τ = 2.  

AVs - 27.4% 29.7% 32.7% 36.6% 

Bikes 2.8% 4.6% 4.6% 4.5% 4.6% 

Cars 15.8% 19.6% 20.0% 19.9% 20.6% 

Trailers 13.5% 18.0% 18.2% 18.2% 18.7% 
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Table 10 Results of independent t-test for delays of car-following time gap 1 and 2.5 seconds. 

Entity P-value H0 rejected (p < 0.05) 

AVs 4.45 x 10-115 Yes 

Bikes 0.865 No 

Cars 3.63 x 10-6 Yes 

Trailers 6.05 x 10-2 No 

 

6.3 Discussion 

In the previous subsection, a benchmark of the performance of the simulation model was 

created. This was done by running two sets of simulations. The first set kept the number of 

vehicles in the simulation constant and recorded the interactions. This was used to calculate 

SSIs and time loss compared to free-flowing vehicles. In the second set, the amount of 

disturbance traffic was steadily increased to a congested state. This set was initially used to 

generate MFDs. So, it could be confirmed that there are no large differences in network 

performance due to randomness between runs or any modeling errors. Although there is a 

fairly large scatter, the MFDs are considered sufficiently similar to conclude that a small fraction 

of AVs does not have an unrealistically large effect on the network performance. The MFDs 

are actually so similar, that the introduction of AVs may not have an impact on the MFD at all. 

It was observed that with increasing car-following time gap, the number and severity of 

accidents decreased according to most SSIs for AV-AV, AV-trailers, AV-cars, and AV-bikes 

interactions. The frequency of accidents for the PET and PSD SSIs did not or only slightly 

decrease. This can be caused by the disturbance vehicles instead of the AV, imperfections in 

the AVs driving model, or that they are simply not affected by the car-following time gap. 

The SSI assessment for AV-pedestrian interaction shows promising results. All SSIs 

decreased with increasing car-following time gap. The reductions in accidents is probably more 

profound in the pedestrian assessment since there is only one type of conflict (crossing). The 

PET decreased less than the other SSIs, which is likely caused by the same reasons as in the 

previous paragraph. 

From the time loss analysis, it is obvious that the introduction of AVs increases the delay of all 

vehicles. This can be because the AVs were just left out, resulting in fewer disturbance 

vehicles, and thereby lowering the level of service (LOS). To prevent this unfair comparison, 

the AVs could have been substituted by trailers. In Appendix B Figure 24 the flow, speed and 

densities obtained from the first set of simulations are plotted in the MFDs from Figure 18. The 

speed-flow diagram indeed hints towards a lower LOS for the no AVs scenario. If the reduced 

delays would indeed be caused by the lower LOS, the similarities in MFDs for the no AVs 

scenario compared to all other scenarios are justified. 

Furthermore, the results show that the time loss of the AVs gets higher as the car-following 

time gap increases. Cars are for certain slightly influenced by the more conservative driving of 

the AVs. For trailers this could not be confirmed but it is suspected. Longer delays could be 

dangerous as it could provoke aggressive driving behavior towards AVs resulting in less safe 

driving. The bikes did not show any change in delay by the varying car-following parameter. 
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This is probably because they are mostly separated from other traffic in their own dedicated 

lanes. 

In short, there is strong evidence that there exists a trade-off between safety and efficiency 

when varying the car-following parameters. It is proven that the safety and efficiency analysis 

methods are sensitive enough to be influenced by driving parameters and possibly by safety 

measures. In the next chapter, the AV’s desired time gap is set to 2 seconds, and the safety 

and operational efficiency results from this section are used for further investigation. 
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7  

Measures and impact on safety and 

efficiency 

From the benchmark, it is known that the AVs are subjected to critical safety situations and 

vehicle delays. In an effort to improve safety and reduce vehicle delays, five possible measures 

are investigated. Three of the five measures are communication-based: V2V, V2I, and V2X. 

The other two measures are infrastructural based: reducing the maximum allowed speed and 

keeping a certain area around intersections clear of obstructions. As the OAD principle should 

guarantee safe driving behavior in simulated environments, the safety parameters are not 

expected to change between scenarios. 

For each measure, a simulation scenario is created. Like the benchmark (chapter 6), two sets 

of simulation results are used for each scenario. The first set is used to evaluate the SSIs and 

time loss of the entities. This is done by simulating the network at low traffic densities for 12.000 

seconds (excluding 1000 seconds warm up) for 30 different seeds, where the same seeds are 

used for each scenario. In the second set, the number of disturbance vehicles is steadily 

increased until the network is sufficiently gridlocked. During these simulations the traffic flow, 

density and average speed are recorded and the MFDs are created. 

7.1 Possible measures 

As mentioned earlier, five scenarios will be evaluated on their level of safety and operational 

efficiency, and compared to the previously obtained benchmark. In Table 11, the different 

scenarios are listed and their variation compared to the benchmark is explained. It should be 

noted that introducing V2V communication between AVs is relatively cheap as it only requires 

an extra communication device on the AVs. The additional static sensors in the V2I scenario 

add range to the AVs at busy interactions and can collect valuable data of the traffic, but they 

are more expensive than V2V. An advantage of V2I is that there are always sensors present 

at a location, with V2V it depends on whether there are other AVs around.  
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Table 11 The different simulation scenarios and their variation on the benchmark. 

Scenario Variation 

Benchmark Default AV model, with car-following time gap of 2 seconds. 

V2V 

When V2V is enabled and the lidar polygons of two or more AVs 
intersect (the V2V communication range is the lidar range), the 
knowledge of all visible disturbance vehicles gets combined and 
obsolete pseudo vehicles get removed. Information of other AVs 
outside the lidar range is not be useful as the AV cannot rule out any 
pseudo vehicles. If the AV is following another AV, a shorter car-
following time gap of 1 second is set for the car-following model, the 
junction model will be left as is. Since disturbance vehicles will most 
likely not have V2V communication systems, only AVs are considered 
to have V2V available. 

V2I 

At the busiest and most occluded intersections in the zone, static lidars 
are placed (Figure 19) to observe entities in the same way AVs do. 
When the polygons of static lidar(s) and an AV intersect, the information 
the static lidar has on disturbance vehicles is send to the AV. Note that 
the AV does not (!) send its information back to the static lidars, this 
would result an undesirable limited type of V2V. With the combined 
information on disturbance vehicles, obsolete pseudo vehicles can be 
removed. 

V2X Combines the principles of V2V and V2I. 

Slow Down (SD) 
Certain non-arterial lanes are subjected to a lower speed limit. By 
default all AV/trailer/car lanes have a speed limit of 50 km/h, the lanes 
colored blue in Figure 19 are limited to 30 km/h. 

Keep Clear (KC) 

In an effort to reduce unnecessary conservative behavior of the AVs, 
building closer than 10 meters to intersections is forbidden. By doing 
this, the view of the AV should be less obstructed allowing it to approach 
junctions at higher (safe) velocities. 
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Figure 19 The M4H network with static lidar positions indicated with a black circle and the lower speed limit lanes 
colored blue. 

 

7.2 Safety results 

Safety is assessed in the same way as in the benchmark in chapter 6. Using the pre-selection 

thresholds presented in Table 6 the potential accidents are identified. All SSIs of potential 

accidents are calculated using the appropriate equations from section 3 and subjected to the 

thresholds from Table 6. The incident types assessed are AV-AV, AV-bike, AV-trailer, AV-car, 

and AV-pedestrian. The combined results for cars, trailers and bikes are presented first. In the 

second subsection the results for pedestrians are presented. 

7.2.1 Vehicles 

The obtained data regarding accidents involving AVs, vehicles and bikes as determined by the 

SSI assessment are presented in Table 12 and graphically in Figure 20. For the V2I, V2V, V2X 

and KC scenarios there is either a slight increase or a slight decrease in accidents according 

to the SSIs. It is observed in the SD scenario that there is a reduction in the recorded number 

of accidents for all SSIs, except MTTC and PET. MTTC is higher in the SD scenario compared 

to the benchmark and PET about equal. 



 

Measures and impact on safety and efficiency  62 

62 
 

Table 12 Results of the SSI assessment for vehicles and bikes. 

Scenario Bench V2I V2V V2X SD KC 

No. incidents 57455 56154 52976 56143 54534 57366 

SSI Percentage of accidents 

STCT 8.15% 8.22% 8.07% 8.70% 1.06% 8.40% 

TTCmin 2.34% 1.83% 2.21% 2.02% 0.00% 2.38% 

TA 6.72% 7.05% 6.36% 6.93% 5.51% 6.96% 

TIT 0.87% 1.05% 0.58% 1.04% 0.00% 1.16% 

MTTCmin 1.77% 2.08% 1.87% 1.66% 4.37% 1.73% 

CImax 1.50% 2.02% 1.66% 1.26% 1.19% 1.70% 

PET 0.88% 0.92% 0.86% 0.83% 0.87% 0.87% 

PSDmin 2.14% 2.06% 2.11% 2.73% 1.78% 2.03% 

DRACmax 0.43% 0.43% 0.46% 0.50% 0.34% 0.36% 

CrFmax 2.11% 1.92% 1.92% 3.16% 0.00% 2.04% 

 

 

 

Figure 20 Graphical representation of the results of the SSI assessment for vehicles and bikes. 
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7.2.2 Pedestrians 

The results of the SSI assessment involving AVs and pedestrians are presented in Table 13 

and graphically in Figure 21. All SSIs are relatively equal or higher compared to the benchmark 

for the scenarios V2I, V2V, V2X and KC. For the SD scenario the reported accidents according 

to the SSIs are about equal or lower than the benchmark. 

Table 13 Results of the SSI assessment for pedestrians. 

Scenario Bench V2I V2V V2X SD KC 

No. incidents 48545 51343 54165 58156 48198 47945 

SSI Percentage of accidents 

STCT 1.48% 1.73% 1.57% 1.62% 1.35% 1.61% 

TTCmin 11.13% 14.75% 12.74% 15.13% 10.83% 13.33% 

TA 0.90% 0.96% 0.92% 0.89% 1.00% 0.99% 

TIT 10.11% 13.37% 11.93% 13.88% 10.15% 12.22% 

MTTCmin 13.63% 17.94% 15.78% 18.74% 12.91% 17.20% 

PET 1.66% 1.52% 1.32% 1.29% 1.69% 1.86% 

PSDmin 3.56% 6.23% 4.98% 6.68% 2.37% 4.10% 

DRACmax 8.24% 12.22% 10.12% 13.02% 7.00% 9.62% 

CrFmax 8.93% 13.29% 10.96% 14.19% 7.06% 10.88% 

PRI 1.60% 1.63% 1.45% 1.60% 1.40% 2.01% 
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Figure 21 Graphical representation of the results of the SSI assessment for pedestrians. 

 

7.3 Efficiency results 

The efficiency assessment consists of two parts. In the first part MFDs are generated with the 

second set of simulation results using the traffic data of the approaching lanes at location 2 

and 4 of the intersections with actuated traffic lights (Figure 11). This is done to catch any 

potential modelling errors and to verify that there are no large differences in network 

performance due to randomness between runs. In the second part the average time loss 

(delay) fraction is calculated using the first set of stimulation results. Note that the time loss of 

pedestrians is not considered. 

7.3.1 MFD 

The MFDs for all simulation scenarios are presented in Figure 22. For compassion, a no AV 

scenario is added again. At higher vehicle densities and lower average speeds, the scattered 

flow rate become more chaotic in the density-flow and speed-flow diagram, respectively. The 

density-speed diagram shows a relation with little scatter across the whole spectrum. In the 

low scatter regions, the MFDs of the scenarios are almost identical, while in higher scatter 

regions the uncertainly is high. In Appendix C, Figure 25 the flow, speed and densities obtained 

from the first set of simulations are plotted in the MFDs from Figure 22. 
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Figure 22 MFD of scenarios with measures. 

7.3.2 Time loss 

The fraction of time in system and free flow time of all vehicles for the different scenarios are 

presented as a boxplot in Figure 23. Table 14 shows the performance gain, i.e. the reduction 

of time loss, compared to the benchmark scenario. In Table 15, the results of an independent 

t-test comparing the time loss fractions of each scenario to the benchmark are presented.  

It is observed that the AVs experience a significant (H0 rejected) and fairly large performance 

boost in the V2I, V2V, V2X and KC scenarios. Other entity types do not seem to be significantly 

affected in these scenarios. All vehicles are significantly affected in the SD scenario, resulting 

in a worse performance for this scenario.  
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Figure 23 Boxplots of the time loss percentage compared to free flow times per entity. 

 

Table 14 Performance gain (reduction of average time loss fraction) compared to the benchmark.  

 

Entity  V2I V2V V2X SD KC 

AVs  +7.2% +6.3% +7.9% -14.8% +3.0% 

Bikes  -0.1% -0.1% 0.0% -0.2% -0.1% 

Cars  -0.1% -0.1% +0.4% -12.0% -0.2% 

Trailers  +0.1% -0.3% -0.1% -6.2% -0.1% 
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Table 15 Results of independent t-test for delays of the benchmark compared to the scenarios. 

Scenario  AVs Bikes Cars Trailers 

V2I 

P-value 6,60 x 10-71 0,215 0,846 0,595 

H0 rejected  
(p < 0.05) Yes No No No 

V2V 

P-value 4,16 x 10-51 0,476 0,555 0,377 

H0 rejected  
(p < 0.05) Yes No No No 

V2X 

P-value 1,73 x 10-78 0,967 0,089 0,962 

H0 rejected  
(p < 0.05) Yes No No No 

SD 

P-value 1,8 x 10-292 2.75 x 10-2 0 4,16 x 10-71 

H0 rejected  
(p < 0.05) Yes Yes Yes Yes 

KC 

P-value 1,29 x 10-14 0,460 0,467 0,883 

H0 rejected  
(p < 0.05) Yes No No No 
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7.4 Discussion  

In this chapter several measures to improve safety and/or operational efficiency were 

introduced and investigated. Five measures were investigated of which three were 

communication based: V2I, V2V and V2X. The other two were infrastructural based: reducing 

the maximum allowed speed and keeping a certain area around intersections clear of 

obstructions. For all measures, a simulation scenario was created, and two sets of simulation 

results were generated.  

The first set of simulations kept the number of vehicles constant and recorded all conflict 

involving AVs. These conflicts were used to calculate the SSIs and the average time loss of 

the entities was determined. In the second simulation set, the number of disturbance entities 

was steadily increased until the network was in a congested state. This set was used to 

generate MFDs so it could be confirmed that there are no large differences in network 

performance due to randomness between runs or any modelling errors. Although there is a 

fairly large scatter, the MFDs are considered sufficiently similar to conclude that a small fraction 

of AVs does not have an unrealistically large effect on the network performance. The MFDs 

are actually so similar, that the introduction of AVs may not have an impact on the MFD at all. 

The results of the safety assessment for AV-AV, AV-trailer, AV-car, and AV-bike interactions 

showed that for the V2I, V2V, V2X and KC scenarios there is either a slight increase or a slight 

decrease in accidents according to the SSIs. This was actually expected since the OAD 

method should guarantee safe driving behavior in simulated environments. Again, with the 

introduction of PVs, collisions should never happen at the cost of operational efficiency. 

An unexpected finding was the increase in SSI accidents when considering AV-pedestrian 

interactions (except for SD scenario). All SSI accidents were equal or more frequent. A 

possible explanation for this is that in the benchmark more PVs are present, but when there 

are less of them, they are further away from intersections, or approaching slower in the other 

scenarios, the AV is less likely to slow down when approaching an intersection. This can result 

in a reduction of safety for pedestrians as AVs pass the crossings with higher velocities (this 

phenomenon can also explain certain deviations in SSI accident frequency of AV-AV, AV-

trailer, AV-car and AV-bike interactions). 

It was observed in the SD scenario that there are equal or less recorded number of accidents 

for all SSIs and all entities (except for MTTC in the vehficle SSI assessment). Although it was 

initially not expected, it is only logical that the number of SSI accidents drop as the SSIs are 

all somehow related to speed and the average speed is lowered. The increase in number of 

accidents for the MTTC SSI is likely caused by the later braking of AV as they approach slower. 

When the AV does not decelerate, the value for MTTC is equal to the TTC. The threshold for 

MTTC is more than three times as high as TTC, causing the number of threshold violations to 

drastically increase.  

When comparing the time loss of the AVs in the benchmark and the V2I, V2V, V2X and KC 

scenarios, it is clear that there is a considerable performance gain. These performance gains 

are statistically significant as confirmed by a t-test at the 0.05 significance level. Keeping a 

certain area around intersections clear could be a design requirement for new buildings as it 

improves the operational efficiency by 3%, but it is probably not economically viable to remove 

existing objects as the performance gain of adding communication devices is twice as big (6-

8%). Interestingly, the V2I and V2V show only a 0.9% difference in performance gain, favoring 

V2I. But when considering installation and operational costs, only implementing V2V could be 
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considered as the AVs are already equipped with these sensors and only require an extra 

communication device. However, the static sensors of the V2I scenario are always present 

and could also collect valuable information of the traffic in zone. The highest performance gain 

has been achieved by the V2X scenario as it combines V2V and V2I. Other entities show no 

significant performance gain or reduction in the V2I, V2V, V2X and KC scenarios. The 

significant reduction in performance in the SD scenario for all entities is a logical consequence 

of adjusting the speed limit. It may be fairer to calculate the time loss fraction with the free flow 

data from the SD scenario network. 

In short, lowering the allowed speed in the network results in a drastic reduction in occurrence 

of critical situations at the cost of efficiency for all road users. Adding any type of 

communication between AVs and/or infrastructure does not impact safety much, but drastically 

reduces the delay of the AVs, while other road users are not affected. Keeping a certain area 

around intersections clear of obstructions also does not impact safety, but results in a small 

reduction in delays of AVs.  
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8  
Lessons learned 

From this research some valuable lessons have been learned. This chapter is intended for 

policymakers in order to make well-informed decisions regarding the deployment of AVs. The 

eight major lessons learned in this this research are listed below: 

1. The urban MFDs suggest that introducing a small fraction of AVs does not affect the 

network performance;  

2. On the basis of time loss, introducing AVs does not affect the network performance; 

3. Speed controller parameters mostly influence the level of safety (when using a perfect 

OAD model), not necessarily the network layout; 

4. There is a trade-off between AV car-following time gap, average AV delay and safety 

slack; 

5. Operational efficiency of AVs is greatly improved with various means of intervehicular 

communication, the delay of other vehicles is not majorly affected; 

6. The safety performance is about equal when introducing communication devices; 

7. Disallowing building close to intersections not majorly improves the operational 

efficiency or safety, but can be considered for new objects; 

8. Lowering the speed limit is the best way to improve safety, but this may provoke other 

drivers to speed. Making the AV’s OAD less effective as it expects other driver to 

adhere to the speed limit.  

It is now known that introducing a small fraction of AVs will not result in any major changes in 

network performance or delay for conventional vehicles at the M4H. When designing a road 

network, minimizing the number of interactions between entities from different classes is the 

best practice from the safety perspective. Dividing traffic with exclusive lanes according to 

vehicle classes (bike lanes, sidewalks, etc.) is highly advised, but is already applied in the M4H 

network and in general in the Netherlands (Swov, 2020). Delaying entities because of 

conservative driving and simply lowering speed limits is not desired as it may provoke 

speeding, illegal overtaking, or other dangerous actions. Closely monitoring the vehicles and 

actively fining those who do not adhere to the rules could resolve these issues (Swov, 2016), 

but it is assumed that this will not benefit people's perception of AVs. It is therefore advised to 

adapt the roads in such a way that these actions are physically impossible. 

In the particular case study of the M4H, introducing V2I is highly recommended. Aside from 

adding extra eyes to the AVs, valuable long-term data can be gathered on the behavior of 

entities in the zone under different conditions. Additionally, any accidents involving AVs are at 

high risk of going viral, damaging the reputation of the AV industry. The data can serve as 

evidence against the bad behavior of the AV. In the case an accident is actually caused by the 
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AV, this data can be used to analyze the critical event in great detail and to ultimately improve 

the driving model. Since everything in this world will soon be interconnected, it is believed that 

it is important for the municipality of Rotterdam to start experimenting with V2X technology on 

these AVs right away. This way, as V2X technology slowly gets available to human-driven 

vehicles, the necessary developments regarding the AVs are already in full swing. Keeping a 

certain area around intersections clear could be a design requirement for new buildings as it 

improves the operational efficiency of AVs by 3% and improves the visibility for all road users. 

But removing existing objects is not expected to be worth it from the AVs perspective, as the 

performance gain of adding any communication device is at least twice as big. 
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9  

Conclusion 

This study investigates the impact of introduction autonomous vehicles in an urban road 

network on traffic safety and operational efficiency, and how to mitigate the potential impact. 

The former Merwe- and Vierhavensgebied (M4H) in the Dutch city of Rotterdam was used as 

a use case. In 2035, this zone should be transformed to a vibrant new part of the city where 

new manufacturing industry, urban facilities, housing, and culture come together (Toekomst in 

de Maak - Ruimtelijk Raamwerk Merwe-Vierhavensgebied Rotterdam, 2019). It is believed that 

autonomous freight transport could play a part in the development of new manufacturing 

industry. The M4H case was used to answer the question: How could a safe mixed traffic area 

for autonomous last-mile delivery of cargo be designed while taking operational efficiency into 

account? 

A framework was proposed in which virtual Autonomous Vehicles (AVs) can be injected in the 

microscopic traffic simulator SUMO, and be assessed in terms of safety with Surrogate Safety 

Indicators (SSIs) and operational efficiency. These AVs use an Occlusion Aware Driving (OAD) 

principle which takes the occluded sensorial view of AVs caused by objects into consideration. 

At the border of the AV’s visibility range, Pseudo Vehicles (PVs) are added. By introducing 

these imaginary PVs, the AV should never be overwhelmed if an entity, which was previously 

behind an occlusion, appears. Although this driving principle is considered perfectly safe, it is 

also very conservative. To mitigate this, various countermeasures have been investigated by 

simulating the network under various scenarios. 

The safety of a scenario was assessed by first identifying potential accidents using the Swedish 

TCT (STCT), PET, and DRAC with relaxed thresholds. Then, the potential accidents were 

subjected to tighter thresholds for the SSIs: STCT, TTC, TA, TIT, MTTC, CI, PET, PSD, DRAC, 

CrF, and PRI. The number of threshold violations for an SSI was divided by the number of 

interactions in that scenario. These fractions gave a good approximation of the amount of 

safety slack for the scenarios. Microscopic fundamental diagrams (MFDs) were used to assess 

the network operational efficiency. Furthermore, the average time loss compared to free-

flowing traffic was used to determine the operational efficiency on a vehicular level. 

A benchmark was made to verify the safety and operational efficiency assessment model. 

Several simulation scenarios were created, where the desired time gap of the AVs was varied. 

This variation also affects how fast AVs approach an intersection. The results showed strong 

evidence that there is a trade-off between safety and efficiency when varying the car-following 

parameters. It was proven that safety and efficiency analysis methods are sensitive enough to 

be influenced by driving parameters.  
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In the main experiment, a total of five additional scenarios with measures were investigated of 

which three were communication-based: V2I, V2V, and V2X. The other two were infrastructural 

based: reducing the maximum allowed speed for some lanes (SD) and keeping a certain area 

around intersections clear of obstructions (KC). The V2I, V2V, V2X, and KC scenarios showed 

similar levels of safety for trailers, cars, and bikes, but pedestrian safety slightly decreased. 

The operational efficiency based on time loss of AVs experienced a performance gain of 7.2%, 

6.3%, 7.9%, and 3.0% for these scenarios, respectively. The time loss of the other entities was 

not affected. Due to the lowered allowed speed in certain lanes, the safety for all entities 

increased in the SD scenario, but at the cost of decreased operational efficiency of all entities. 

Several limitations were identified during this study that could be the focus of future studies. 

On the simulations side, the relatively large time step of 1 second is good for approximating 

efficiency, but when assessing safety, it is suspected that lower discrete time steps would 

provide more accurate results. Aside from this limitation, the impact of emergency vehicles, 

the weather, lane changing, and overtaking is not investigated. Lane changing and overtaking 

is preventable in the real network, but emergency vehicles and weather changes are inevitable, 

and how to handle this should be thoroughly investigated before AV deployment. In this 

research, the safety is assessed using SSIs with braking as the evasive action, but in reality, 

swerving and accelerating also occur. By using the very conservative OAD principle, collisions 

cannot happen in the simulated environment as long as strange/random actions of actual 

drivers are not simulated. Therefore, a predicted crash rate cannot be given, and arbitrary 

values are used as thresholds for SSI collisions. This, however, still gives some indication of 

how much safety slack is in the network. As of now, no distinction was made between conflict 

location, conflict type, and vehicle types (except pedestrians) when assessing safety. To obtain 

a better understanding of the crash mechanisms, this could be considered. 

To answer the main research question: the level of safety is mainly affected by the car-following 

time gap of the AVs as it adds extra time to execute potential evasive actions. However, there 

is a trade-off between safety and efficiency when varying this parameter. To mitigate the 

conservative behavior of the OAD principle, keeping a certain area around intersections clear 

could be a design requirement for new buildings as it improves the operational efficiency by 

3%. But removing existing objects is not expected to be worth trying as the performance gain 

of adding any communication device is at least twice as big. Interestingly, the V2I and V2V 

show only a 0.9% difference in performance gain, favoring V2I. When considering costs, only 

implementing V2V could be considered as the AVs are already equipped with the correct 

sensors, but there have to be a certain number of AVs present in the zone to get the desired 

effect. A benefit of V2I is that they are always present and can collect valuable information 

about the traffic in the zone. The largest performance gain has been achieved by the V2X 

scenario as it combines V2V and V2I. Other entities show no significant performance gain or 

reduction in the V2I, V2V, V2X, and KC scenarios. In practice, lowering the speed limit is the 

absolute best way to avoid critical safety situations and reduce the severity of accidents, but it 

significantly impacts the delay of all entities, which may provoke dangerous behavior. 
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Appendix A  Vehicle parameters 

 

Table 16 Default vehicle parameters 
(Braam, 2018; Lekkerkerk, 2018; "SUMO - Vehicle Type Parameter Defaults," 2019). 

vClass Picture 
Length  
width amax b be vmax 

pedestrian 

 

0.22 m 
0.48 m 

1.5 m/s2 2 m/s2 5 m/s2 5.4 km/h 

bike 

 

1.6 m 
0.65 m 

1.2 m/s2 3 m/s2 7 m/s2 20 km/h 

car 

 

4.3 m 
1.8 m  

2.9 m/s2 
7.5 

m/s2 
9 m/s2 180 km/h 

trailer  

 

16.5 m 
2.55 m 

1.1 m/s2 4 m/s2 7 m/s2 130 km/h 
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vClass Picture 
Length  
width amax b be vmax 

AV 

 

16.5 m 
2.55 m 

1.1 m/s2 4 m/s2 7 m/s2 
50 km/h 
(in zone) 

amax = maximum acceleration 
bdecel = deceleration 

vmax = maximum speed  
be = emergency deceleration 
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Appendix B Additional MFDs (time gap) 

  

 

Figure 24 MFD of the benchmark scenarios with the results of the safety assessment indicated with (safety). 
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Appendix C Additional MFDs (measures) 

  

 

Figure 25 MFD of the main experiment scenarios with the results of the safety assessment indicated with (safety). 

 

 

 

  

 


