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A B S T R A C T

The interactions of external disruptions and technical-human-organizational factors in emergency operations are 
usually observed. Resilience assessment of emergency systems can improve emergency response capability and 
system functional recovery. The increasing complexity and coupling of factors in emergency response systems 
need to be investigated from a system resilience perspective. In this paper, we propose to integrate a multi-stage 
System-Theoretic Accident Model and Processes (STAMP) with a dynamic Bayesian network (DBN) for the 
resilience assessment of emergency response systems. In the proposed methodology, emergency response systems 
are viewed as multi-step emergency operations for STAMP to analyze the hierarchical control and feedback 
structures. The output of multi-stage STAMP in controllers, actuators, sensors, and controlled processes is applied 
to develop a DBN for resilience assessment. For known external shocks (e.g., natural disasters), the effects of 
external shocks on the system are decomposed into subsystems or components. System degradation and recovery 
models are established. Regarding unknown external disruption (e.g., unforeseen failure modes), degeneration 
and recovery are temporally integrated into the analysis of system functionality. System performance is evalu
ated through the combination of socio-technical factors and external disasters. Eventually, the resilience of 
emergency response systems is obtained from the performance curves. The results demonstrate that the proposed 
model can evaluate system resilience after the system suffers from external disasters.   

1. Introduction

Emergency operations are usually vulnerable to external shocks [1].
During the post-disaster stage, emergency failures are characterized by 
frequent recurrence, strong derivatives, and secondary disasters that 
degenerate the safety status. This shows that emergency poses signifi
cant challenges to the operational efficiency and performance recovery 
of systems. The resilience-based emergency management emphasizes 
the response-ability of a system coping with risk and unexpected in
cidents. The system is able to cope, adapt and even achieve a new state 
of safety. To this aim, we define the resilience of the emergency system 
as the system performance to resist and recover from disasters in the 
process of multi-step emergency operations. 

To meet increasing energy demand, deepwater oil and gas 

exploration and production is highly advocated [2]. However, deep
water operations face challenges of harsh marine environments and 
complicated equipment [3]. Major accidents, such as a blowout in 
deepwater, lead to severe consequences including personal casualties, 
property losses, and environmental pollution [4,5]. For example, the 
Deepwater Horizon accident in the Gulf of Mexico, which is the largest 
oil spill disaster in offshore oil industry, caused 11 deaths and 7.79 × 105 

m3 spilled oil [6]. The direct or indirect economic losses caused by 
disruptive events require effective emergency response and system 
recovery. 

Emergency failure is prone to causing secondary injuries and 
extended destruction, after unexpected incidents. To manage the risk of 
emergency operations, risk evaluation in emergency techniques has 
been studied to develop emergency strategies. For instance, Meng et al. 
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[7] investigated the operation of the oil recovery technique for deep
water blowouts. This study evaluated the risk of hydrate formation and 
obtained the operability envelope of the oil recovery technique. Wang 
and Gao [8] analyzed the recoil response of deepwater drilling risers and 
assessed the influence of drilling mud discharge on the recoil response. 
Cai et al. [9] proposed a quantitative risk assessment model of the 
installation process for deepwater oil and gas equipment based on fuzzy 
Bayesian networks (FBNs). Meng et al. [10] used a dynamic Bayesian 
network (DBN) for risk assessment of managed pressure drilling. These 
works provide support for decision-makers to identify crucial risks in 
emergency operations to prevent and control accidents. 

However, risk assessment mainly focuses on analyzing known haz
ards during the pre-disruption stage and corresponding consequences 
[11,12]. Due to unknown emerging hazards and residual risk in the 
system, risk-based approaches are difficult to capture the change of 
system performance after a disruption. Therefore, more efforts need be 
devoted to transforming paradigms from risk-based strategies to 
resilience-based methods. Resilience assessment has been widely 
accepted in aerospace systems [13], energy systems [14], rail traffic 
[15], chemical process systems [16], and water transportation systems 
[17]. The application of resilience assessment to offshore and marine 
systems is also investigated. For instance, Wilkie and Galasso [18] 
proposed a methodology to evaluate offshore wind farm resilience by 
quantifying financial losses associated with offshore wind turbines. 
Ramadhani et al. [19] investigated offshore structure response to an ice 
load using a resilience assessment approach. Hu et al. [20] proposed 
marine liquefied natural gas (LNG) offloading systems’ dynamic resil
ience model considering weather-related hazards. Above resilience 
assessment studies in offshore and marine systems provide a framework 
for probabilistically quantifying the emergency hazard impacts on the 
resilient emergency systems. 

In emergency response systems, subsystems and components of 
emergency systems are highly coupled and interdependent [21]. Addi
tional socio-technical factors (e.g., human error, equipment failure, and 
inadequate safety controls) and their interactions with undesired di
sasters (e.g., typhoons, earthquakes, and unknown disruption) make 
emergency response failure. Linear chain failure analysis can cope with 
relatively simple systems but cannot sufficiently deal with increasingly 
complex sociotechnical systems [22]. Conventional methods, such as 
fault tree (FT) and event tree (ET), are not feasible for the failure analysis 
of complex emergency systems since they have not considered dynamic 
interactions and feedback among subsystems or components [23]. De
cision Making Trial and Evaluation Laboratory (DEMATEL) and 
System-Theoretic Accident Model and Processes (STAMP) are typical 
systematic structural modeling methods [24]. DEMATEL analyzes the 
cause-effect of accidents from the level of factors or the influence re
lationships among factors. DEMATEL needs to set thresholds relying on 
expert opinion or statistics to delete system redundancy information. 
Compared with DEMATEL, STAMP views the accidents generated by the 
possible degradation of system performance or complex interactions 
among components [22]. STAMP considers not only factor-level effects 
but also interactions among components. Consequently, STAMP has 
been extensively applied in complex systems. 

STAMP method is able to analyze the accidents generated by the 
degradation of system performance or complex interactions among 
components [22]. Accordingly, STAMP has been widely accepted in 
complex systems. For example, Read et al. [25] utilized STAMP to 
identify hazards, loss scenarios, and risk insights for effective manage
ment and control of the rail transport system. Antonello et al. [26] used 
STAMP to qualitatively investigate the threats and hazards of nuclear 
batteries in structures and components. To create a flexible and resilient 
process after a disruption in complicated socio-technical systems, some 
system-theory-based analysis models are proposed to evaluate the 
resilience of systems. For example, Leveson [27] employed STAMP to 
analyze the resilience of the system in the safety culture of the NASA 
Space Shuttle program. Sun et al. [21] utilized STAMP to develop a 

quantitative resilience assessment model for chemical process systems. 
These studies demonstrate the advantage of STAMP in modeling 
component interaction and assessing performance alteration of complex 
systems. Considering the multi-state transition and dynamic changes of 
the system, DBN-based resilience assessment models are developed. For 
instance, Zhang et al. [28] proposed a resilience assessment model for 
subsea wellhead connectors regarding mechanical structure failure 
based on finite element models and DBN. Cai et al. [9] applied DBN and 
Markov process to establish external disaster models for resilience 
assessment regarding power supply and control systems of subsea 
blowout preventers (BOP). The aforementioned resilience assessment 
approaches demonstrate the performance change of particular systems. 
However, due to the dependencies, interactivity, and dynamics in en
gineering systems with their complex subsystem network, it is difficult 
to determine a resilience evaluation model and acquire to accurate 
resilience assessment results. 

The interactions of undesired disruptions and technical-human- 
organizational factors in emergency operations lead to significant dif
ficulties and uncertainties when dealing with emergency scenarios. To 
achieve rapid emergency response with sound functions and coordina
tion in subsystems or components, the emergency response system can 
be viewed as multi-stage emergency processes. We use STAMP to 
consider the information feedback and determine the crucial variables 
and root constraints of the system. The output of STAMP is applied to 
develop a DBN for the resilience assessment of emergency systems. 
Emergency decision-making process needs to be rapidly planned, coor
dinated, and commanded in a limited time. Introducing resilience into 
emergency response evaluation can learn emergency systems’ adaptive 
and recovery capacity to undesired disruptions that appeared in emer
gency operations. Through the system resilience assessment, emergency 
schemes are optimized and emergency system performance is enhanced. 
To this end, we proposed a quantitative resilience assessment method
ology based on STAMP and DBN. 

The scientific contributions of this paper are summarized below. 
First, involving the complexity and interactivity of technical-human- 
organizational elements in emergency systems, utilize systemic models 
to characterize the multi-stage emergency operations response mecha
nisms of emergency systems. We quantify the resilience of emergency 
systems in a dynamic manner based on multi-stage STAMP and DBN. 
Second, emergency systems are regarded as a multi-stage emergency 
process. The control structure and functional relationships in STAMP are 
mapped into DBN, enhancing risk-influencing factors (RIFs) identifica
tion and potential loss scenarios derivation. Third, due to the uncer
tainty of undesired shocks, known and unknown disruptions are 
identified in different resilience assessment models. Components failure, 
human and organizational factors, and undesired disruptions are 
considered in the resilience assessment. By changing the system 
redundancy configuration and key parameters, we can optimize the 
system resilience. 

The remainder of this paper is organized as follows. Section 2 de
scribes the methodology for constructing resilience assessment models 
based on STAMP and DBN. Section 3 is devoted to conducting a resil
ience assessment for emergency response systems, taking deepwater 
blowout emergencies as a case study. Section 4 discusses the design of 
the resilience assessment model, the construction of the STAMP-DBN 
model, and the optimization of the system resilience. Eventually, Sec
tion 5 concludes this paper. 

2. Methodology 

Emergency operations suffer from undesired shocks and technical- 
human-organizational failures. Their interactions result in severe con
sequences and secondary injuries. Due to the uncertainty of disruption 
or abnormal events in suddenness, propagation, and nonlinear amplifi
cation, it is necessary to possess the ability of flexible and resilient 
emergency response during pre-disruption and post-disruption stages. 

X. An et al.                                                                                                                                                                                                                                       
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Risk-based approaches aim to consider specific events and failure 
probability to achieve accurate probability estimates during a pre- 
disruption stage [29]. Compared with risk assessment, resilience eval
uation is more suitable to handle emergency systems with unknown and 
uncertain disruptions. Such a method can resolve emerging threats and 
residue risks after a disruption to ensure the safety of emergency 
response systems. Thus, a proper resilience evaluation model is expected 
to enhance the emergency system’s capability to withstand and recover 
from undesired disruptions. In this study, we propose a hybrid model 
integrating STAMP with DBN for the resilience assessment of emergency 
response systems. The methodology is illustrated in five steps (see 
Fig. 1).  

(1) Step one relates to disruption identification by establishing the 
types of disruptions, analyzing the main function of the system 
that would be affected by the disruption, clarifying the physical 
structure of the system, and understanding the dynamic behavior 
of the system.  

(2) Step two amounts to the construction of a STAMP model, 
including the decision-making context, safety requirements and 
constraints (SRCs), inappropriate control actions (ICAs), and 
causal factors of ICAs.  

(3) Step three regards the establishment of a DBN model. Integrating 
physical information with the STAMP model to develop a DBN 
model. We obtain prior probability and conditional probability 
table (CPT) through equation-based BN models, membership 
functions, and related references.  

(4) Step four refers to the system resilience assessment. The system 
performance is determined according to whether the external 
disturbance is identifiable. The performance variation of system 
components and the system resilience optimization is calculated. 
Three axioms are performed to verify the DBN model.  

(5) The final step is sensitivity analysis for the identification of the 
key influencing factors to resilience. The system can be optimized 
to a more resilient state through the recovery phase learning. 

2.1. Disruption identification 

Interdependency and interactions between subsystems and their 
components increase the opportunity for system module failure, which 
can lead to accidents. Such failure may randomly occur under undesired 
disruptions [30]. These disruptions are induced by known external 
shocks (e.g., natural disasters) and unknown unexpected hazards (e.g., 
unforeseen failure modes). After disruptions occur, system functions are 

Fig. 1. The procedure for the development of the emergency system resilience assessment model.  
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affected either in malfunction states or impaired function states. These 
two states are regarded as low-performance states. When a system re
stores to its normal functional state, it will have high-performance states 
to ensure system operations. If the system is able to maintain a 
high-performance state or restore to a high-performance state from a 
low-performance state, it can be viewed as more resilient. 

2.2. STAMP modeling 

STAMP is based on control theory and systems theory. It is an 
effective technique to model a process system. STAMP was coined by 
Leveson [31] to investigate the complex socio-technological interactions 
of components or subsystems. In the STMAP model, system safety is 
regarded as a control issue from interactions among components rather 
than individual component failure. Such external interference, compo
nent failure, and abnormal interaction in complex systems are viewed as 
crucial causes resulting in an accident. To ensure system safety, it is 
advisable to conduct proper control and constraints on the coupling and 
interactions among different components. 

STAMP provides hierarchical structures with multiple levels to 
identify and manage the safety design of human-machine control, and 
component interactions of the system. This method aims to identify risk- 
inducing factors and hazardous scenarios to prevent accidents. A STAMP 
model is established by three steps including safety constraint, hierar
chical safety control structure (SCS), and process model [27]. A basic 
control and feedback loop of STAMP is shown in Fig. 2. The process of 
the STAMP model development is illustrated as below.  

(i) The safety constraint is a basic concept of the STAMP model. 
Safety constraints are measures, which are imposed on a system 
to ensure safety. When accidents occur in the system, the safety 
constraints fail. That is, inappropriate control action (ICA) is 
regarded as a primary cause to lead to the emergence of hazards. 

(ii) SCS constructs the framework of the STAMP model. The SCS in
cludes four elements: controllers, actuators, sensors, and 
controlled processes. Controllers made automatedly or artificially 
utilize control algorithms to acquire information on the 
controlled process by sensor feedback. The actuator takes actions 
to control system states to ensure safety.  

(iii) Controlled process establishes the hierarchical structure of a 
system. Control algorithms guide process models and variables to 
ensure the safety states of the controlled process. Through 
capturing the causal factors of ICAs, inadequate feedback, and 
poor execution, we can grasp the states and responsibilities of 
each entity of a system. 

2.3. DBN modeling 

Bayesian network (BN) is an inference-based probabilistic model that 
quantitatively describes causal relationships among variables. The 
structure of BN is a Directed Acyclic Graph (DAG) involving nodes, arcs, 
and conditional probability tables (CPTs). In the BN model, after 
acquiring the prior and conditional probability of nodes, the joint 
probability P(U) of a set of nodes U=(X1, X2, X3, …Xn) is computed [32]: 

P(U) =
∏n

i=1
P(Xi|Pa(Xi)) (1)  

where Pa(Xi) indicates the parent nodes of node Xi. 
Given new evidence E, posterior probability P(U|E) can be obtained 

by probability updating based on Bayes’ theory [33]: 

P(U|E) =
P(U,E)

P(E)
=

P(U,E)
∑

UP(U,E)
(2) 

By considering the uncertainty and variability of nodes over time, BN 
is extended as DBN with the temporal dimension to explicitly model the 
system dynamic changes based on the Markov process. A typical struc
ture of DBN is demonstrated in Fig. 3. 

In the DBN model, Xi
t→Zt stands for the intra-slice arc, which shows 

the influences of different parent nodes on child nodes in the same time- 
slice t. Xi

t→Xi
t+1 and Zt→Zt+1 are two inter-slice arcs, which represent the 

developing relations for the same nodes at successive time steps. 
Through giving a set of random variables U=(X1, X2, X3, …, Xn), the joint 

Fig. 2. Basic control and feedback loop of STAMP.  

Fig. 3. The change process of DBN with different time slices.  
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probability can be calculated [34]: 

P(X1:T) =
∏T

t=1

∏N

i=1
P(Xt

i |Pa(Xt
i )) (3)  

where Xi
t expresses the i th node at time t (i = 1, 2, …, N), Pa(Xi

t) is the 
parent node of Xi

t, and T denotes the total time slice in DBN. 

2.3.1. Conditional probability tables 
Assuming that there are n parent nodes X1, X2, X3, …, Xn of the child 

node Z, the Noisy-OR function can be utilized to calculate the CPT of Z 
[35]. 

P(Z|X1,X2,X3, ...,Xn) = 1 −
∏

1≤i≤n
(1 − pi) (4)  

where pi is the occurrence probability of Xn. 
For human error-causing system failure, it is difficult to determine 

human factor nodes’ CPT when it has multi-state RIFs. In this paper, a 
membership function (MF) is introduced to map each state in the input 
space into a membership value between 0 and 1 [36]. Assuming that 
human factor node Z has four parents. Each parent node includes three 
states: high, medium, and low, with corresponding numbers assigned as 
2, 1, and 0 respectively. To obtain a numerical value for the child node, a 
global relative value x (x∈[0, 1]) for the child node is determined: 

x =

∑n

i=1
yi

∑n

i=1
maxi

=

∑n

i=1
yi

n⋅max
(5)  

where x is the global relative value of the child node, n denotes the 
number of parent nodes, yi stands for the value of the parent nodes’ state 
i, max i represents the maximum value of a parent node state i. 

To obtain CPTs of child nodes, three states are defined as x2, 2x(1-x), 

and (1- x)2. A set of continuous numbers is selected to assign parent 
nodes’ states. The CPT of the child node Z can be calculated by Eq. (5), as 
shown in Table 1. Notably, Table 1 provides partial results, and the total 
number of combinations is 81 (i.e., 34). 

2.3.2. Transition probability tables 
By considering dynamic nodes’ change over time in the DBN model, 

the Markov process is usually adopted to describe state transition re
lationships. Assuming that the current time is t, the time of the next step 
is t+△t. Transition probabilities of dynamic nodes can be acquired by 
failure rate (λ) and repair rate (µ) from related datasets and literature. 
This calculation process is expressed as follows [63]: 

P
(
Xt+Δt

i = no|Xt
i = no

)
= e− λΔt (6)  

P
(
Xt+Δt

i = yes|Xt
i = no

)
= 1 − e− λΔt (7)  

P
(
Xt+Δt

i = no|Xt
i = yes

)
= 1 − e− μΔt (8)  

P
(
Xt+Δt

i = yes|Xt
i = yes

)
= e− μΔt (9)  

where P(Xt+Δt
i = no|Xt

i = no) indicates the probability that Xt+Δt
i is a 

working state given that Xt
i is working. P(Xt+Δt

i = yes|Xt
i = yes) means the 

probability that Xt+Δt
i is a failure state given that the state of Xt

i is not 
working. 

2.3.3. Construct DBN models 
In this study, the DBN model is constructed based on the STAMP 

model. For the construction of DAG mapped from the hierarchical 
control structure, the following assumptions are made:  

(1) The controller is denoted as a combination of automation and 
human, which guides actuators and sensors to operate, monitor, 
and reflect on the controlled process. Thus, the controlled process 
failure is viewed as a critical factor to cause system accidents. It 
represents the last child node in the constructed BN model.  

(2) Based on relationships of physical structures, the directions of 
arcs are considered that lower-level element (e.g., components) is 
pointed to a higher-level element (e.g., a subsystem). RIFs of SCS 
are pointed to each element failure.  

(3) Actuators and monitors send controlled variables to the 
controlled process via corresponding sensors. Through informa
tion feedback, actuators take measures to protect the normal 
operation of controlled processes. Sensors transmit the signal to 
the controller again. Anomalies and failures in the controlled 
process can be detected and repaired. States of controllers, ac
tuators, and sensors would affect the failure probability of the 
controlled process on the condition of their states [37]. 

Table 1 
The CPT of a child node Z with three states given four parent nodes.  

Parent node Global 
value 

States distribution of the child 
node Z 

X1 

(2, 1, 
0) 

X2 

(2, 1, 
0) 

X3 

(2, 1, 
0) 

X4 

(2, 1, 
0) 

x =
∑n

i=1yi

n × max  

High 
x2 

Medium 
2x(1-x) 

Low 
(1- x)2 

2 2 2 2 1.000 1.0000 0 0 
2 2 2 1 0.8750 0.7656 0.2188 0.0156 
2 2 2 0 0.7500 0.5625 0.3750 0.0625 
2 2 1 2 0.8750 0.7656 0.2188 0.0156 
2 2 1 1 0.7500 0.5625 0.3750 0.0625 
… … … … … … … … 
0 0 0 0 0 0 0 1.0000  

Fig. 4. The mapping procedure from a control loop into a BN.  
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Accordingly, the arcs in DBN point from the failures of control
lers, actuators, and sensors to the emergency failure. 

Based on the above assumptions, a DBN mapped from the control 
loop is shown in Fig. 4. Each element corresponds to a node. The 
controlled process is the child node. The directions of arcs regarding 
controllers, actuators, and sensors are pointed to the controlled process. 
In the control structure, controllers, sensors, and the controlled process 
of the control system are referred to as elements. These elements are 
mapped into BN as nodes. The arc represents appropriate relationships 
of components or subsystems in complex systems. RIFs of SCS are con
nected to each element failure by arcs. To quantify dependency re
lationships among node variables, each directed edge should be assigned 
CPTs. 

2.4. Resilience assessment 

Resilience indicates a system’s ability to recover quickly after 
external disruptive situations [38]. By evaluating the system’s resil
ience, the system’s capability to resist disruption, absorb changes and 
restore to its initial state can be measured. Thus, resilience assessment is 
viewed as an effective method to manage system safety. In this study, 
various known external shocks with specific forms are mapped into DBN 
to develop a resilience assessment model, as shown in Fig. 5. t0-t1 phase 
represents the natural degradation of the system in pre-disruptions. Due 
to the aging effect of emergency equipment, the system performance 
reduces gradually from 100% to P1. t1-t2 indicates that the system is 
subjected to undesired disruptions and its ability to absorb the shock is 
gradually reduced. By the adaptation at the t2-t3 phase and external 
restoration at the t3-t4 phase, system performance is restored. The system 
performance is enhanced to the normal functional state through the 
system optimization at the t4-t5 phase. 

The unknown external shocks are defined as a total disruption to 
construct a macroscopic resilience framework based on systems’ resil
ience attributes including absorption, adaptation, restoration, and 
learning. Finally, according to the enhancement of the systems’ adaptive 

ability and emergency response from accident retrospection and 
learning, optimization of the system can be achieved. 

2.4.1. Known external shock 
When a system is attacked by known external shocks, the impact 

level and effect location on systems cannot be established [39]. To 
reflect the influence of external disasters on systems, the change in 
failure probabilities of the system elements after disturbance is denoted 
as evaluation metrics. The resilience assessment is based on the per
formance change of the involved elements in systems. According to the 
change of component failure probability, a degradation model of the 
system subjected to external shocks is established. Integrating the re
covery model, the system’s resilience is evaluated. 

When the system is attacked, the influence of external shocks on the 
components is decomposed into specific factors, such as pressure, tem
perature, and humidity [39]. The degradation under the external shocks 
amounts to that with the accelerated test of systems’ components using 
the same failure mechanism. Based on the same failure mechanism, the 
acceleration model is mapped into BN to obtain the failure time of the 
system’s components under external disruptions. 

Suppose that the effect of an external shock on the system is 
decomposed into two factors Y and Z, the single degradation model of 
two factors Y and Z is shown as: 

f1(x) = f (y1, y2, ..., yi) (10)  

f2(x) = f (z1, z2, ..., zi) (11)  

where f1(x) and f2(x) stand for the failure time of the system’s 
components. 

When a disruption impacts the system, the failure rate of the system’s 
components will increase. For certain components without related fail
ure rate data, Eqs. (10) to (12) are mapped into BN for acquiring failure 
time distribution and corresponding failure rate and probability. For 
components with initial failure rates, the failure rate of such nodes after 
disruptions can be determined by [40]: 

Fig. 5. The resilience concept curve of the emergency system.  
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λd = ωi⋅λ0 (12)  

where λd stands for the failure rate of system components under 
disruption conditions, λ0 denotes the initial failure rate of components, 
wi indicates the score of disruption. 

Human performance plays a significant role in maintaining systems’ 
normal operation and handling abnormal events [41]. When the system 
is subject to an external shock, operators’ actions are affected by phys
ical stress, complex operations, and environmental change [42]. To 
quantify the effect of human performance, a cognitive reliability and 
error analysis method (CREAM) is introduced to estimate human error 
probabilities, as shown in Eq. (14) adapted from [64]. 

HEP = HEPi⋅100.25α⋅ψ (13)  

β =
∑9

i
αi (14)  

where HEP indicates the final human error probability under disruption 
conditions, HEPi is the initial human error probability, and β stands for 
influence coefficients of external disruptions on human performance. α 
indicates the performance shaping factor under different performance 
conditions, which can be acquired from references [43,44]. ψ represents 
the correction factor, which is acquired by experts. 

2.4.2. Unknown external shock 
System resilience in the event of an external disaster or shock is 

expressed as disturbance, absorption, adaption, and restoration to 

ensure system safety. Thus, absorption, adaptation, restoration, and 
learning capabilities are regarded as four attributes of a system, which 
constitute the system resilience assessment framework, as shown in 
Fig. 6. In the proposed framework, absorption is viewed as an inherent 
ability of a system to resist and survive from a disruption. Adaptation 
refers to the capacity of a system to adapt itself to a disrupted situation. 
Restoration is the capability to restore with the involvement of external 
efforts. The system repairs itself from disruptive damages to a new 
normal state. Considering its uncertainties in the type, form, and in
tensity, external shock affecting the system is defined as a total disrup
tion. Learning provides external effort action integrating accident 
experiences with prior information to respond to external disruptions. 
Finally, by evaluating the probability of system functionality state 
change, the system’s resilience is measured.  

(1) System functionality state 

The DBN of resilience includes six nodes in which four nodes 
represent the states of functionalities (disruption, absorption, adapta
tion, and restoration), with a learning node, as shown in Fig. 6. In the 
DBN model, the system functionality state node is the child node with 
four states, and the rest represents the parent nodes with two states. To 
model the time-varying system functionality, four states of the child 
node are identified as corresponding to four functionalities state nodes. 
The transition relationships are shown in Fig. 7. Based on the Markov 
process, the transition rate of each state in the system functionality state 
(absorption, adaptation, restoration, and disruptions) is calculated as λ1, 
λ2, μ0, and μ1 [12]. This state transition and CPT are expressed in Fig. 8 
and Fig. 9. It is worth noting that λ and μ are assumed as parameters of 
the negative exponential distribution. λ1 is computed by 1/MTBF (MTBF 
represents the mean time between failure at disruption conditions). λ2 is 
calculated by 1/MTBF (MTBF represents the mean time at normal con
ditions). μ1 is obtained by 1/RT (RT is the time for self-repair). μ2 is 
acquired by 1/MTTR (MTTR stands for mean time to external repair). 

Disruption, absorption, adaptation, and restoration are regarded as a 
dynamic process that affects system functionality. When the system is 
attacked by an external shock at time t = 1, the functionality state de
pends on its own state at time t = 0 and t = 1. The state transition can be 
calculated by transition probability. For example, the transition proba
bility of state 1 to state 2 can be quantified by λ1. Through self-response 
and external repair, the state of functionality can vary from State 1 to 
State 4, arriving at its initial stable state. To obtain more information to 
transfer the Markov chain model into the DBN, interested readers can 
read [65].  

(2) Uncertainty of disruption 

An external shock is regarded as a random event. It is only related to 
the state of the previous moment but not the state of the last moment 
[45]. Assume that this random variable is a counting process that obeys 
Poisson distribution and possesses two states (yes and no). Given that 
the average number of disruption occurrences per unit time is λ, the 
probability that disruption occurs n times is [46]: 

P{N(t+Δt) − N(t) = n} = e− λt(λt)n

n!
(15)  

where P represents the failure probability of random events, λ stands for 
the number of failures per unit time, and n is the total quantity of events 
failure in time Δt. 

When disruption occurs n times till t, the probability that disruption 
doesn’t occur from t to t+Δt can be computed [47]: 

Fig. 6. A generic resilience assessment framework.  

Fig. 7. A DBN resilience assessment model based on Fig. 5.  
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P(N(t + Δt) = no|N(t) = yes)

=
P(N(t) = n,N(t + Δt) − N(t) = 0)

P(N(t) = n)

=
P(N(t) = n)P(N(t + Δt) − N(t) = 0)

P(N(t) = n)

= e− λΔt

(16) 

Assuming the present state of disruption is no, the occurrence 
probability of disruption at t + 1 can be obtained from [48]: 

P(Xt+1= yes|Xt = no) = P(Xt+1 = yes,Xt+1 = no) = λe− λ (17) 

Similarly, other state transition probabilities can be calculated [48]: 

P(Xt+1= no|Xt = no) = 1 − λe− λ (18)  

P(Xt+1= no|Xt = yes) = e− λ (19)  

P(Xt+1= yes|Xt = yes) = 1 − e− λ (20)  

whereP(Xt+1= yes|Xt = no) stands for the probability that the disruption 
occurs (Xt+1 =yes) at time t + 1 on the condition that it does not occur 
(Xt =no) at time t. Similarly,P(Xt+1= no|Xt = yes) is the probability that 
the disruption does not occur (Xt+1 =no) at time t + 1 when it occurs (Xt 
=yes) at time t. 

A DBN-based resilience assessment model can be verified by directly 
confirming the correctness of the DBN model [39]. Since model vali
dation requires long-term monitoring of the used parameters, a 
three-axiom sensitivity analysis validation method is applied to partially 
validate the proposed resilience evaluation model. If the proposed 
model is reasonable, the sensitivity analysis for validation of the resil
ience assessment should reflect at least any one of the following three 

axioms [49].  

(1) A slight increase/decrease in the prior probability of parent nodes 
can cause a corresponding increase/decrease in the posterior 
probability of child nodes.  

(2) The variation of probability distributions of parent nodes should 
keep a consistent influence magnitude to the child nodes’ values. 

(3) Total impact magnitudes of the combination of probability vari
ations from m attributes on the values should be always greater 
than that from the set of m − n (n∈m) attributes. 

2.5. Sensitivity analysis 

Sensitivity analysis aims to identify the crucial contributing factors 
to system resilience. By investigating the effect of small changes in nu
merical parameters (i.e., probabilities) on the output parameters (e.g., 
posterior probabilities), highly sensitive parameters that affect the 
reasoning results can be obtained. Based on the identified sensitive 
factors and their maximum range of variation, effective emergency 
measures can be generated to enhance the system’s performance. 

Many scholars have conducted a sensitivity analysis for the created 
model and acquired valuable results. For example, Tong et al. [12] 
determined the accurate parameter values for improving the estimation 
of the system’s resilience based on sensitivity analysis. Yazdi et al. [50] 
conducted a sensitivity analysis to capture the critical parameters in the 
subsea system, and the contribution of parameters to the resilience 
variation was evaluated. For system modeling, more attention needs to 
be devoted to sensitivity analysis. This can help decision-makers identify 
the most critical factors in the system and provide some intervention 
actions for improvement. 

Fig. 8. The Markov chain model illustrates translation relationships of system functionality states.  

Fig. 9. The calculation process of transition rates based on the Markov chain [12].  
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3. Case study 

The emergency operation of deepwater blowout accidents is widely 
regarded as a typical complex tech-social system in which multiple 
operation stages and various sector elements are involved. Tremendous 
difficulties and uncertainties arise when coping with emergency sce
narios in a deepwater blowout accident. Lower Marine Riser Package 
(LMRP) cap is regarded as an efficient subsea oil collection technique, 
which can collect about 60% of the recovered oil from the wellhead (i.e., 
around 10% of the total spilled oil) [7]. The resilience assessment 
methodology is demonstrated using the LMRP emergency system. To 
manage emergency failure risks and enhance the system’s resilience in 
the process of emergency operations, we proposed a hybrid model 
integrating STAMP with DBN to develop a resilience model. 

This section is organized as follows. Firstly, we established the sce
nario of an assumed blowout accident emergency as a case study. Sec
ondly, we applied STAMP to simulate the scene of multi-stage 
emergency operations in deepwater blowout accidents. Thirdly, we 
mapped STAMP into DBN to construct a risk assessment model for 
identifying RIFs of emergency operations. Fourth, general resilience 
evaluation models for emergency systems subjected to known and un
known external shocks are constructed. Finally, we utilized three axioms 
to verify the designed resilience assessment model and employed 
sensitivity analysis to determine the crucial factors of the system’s 
resilience. 

3.1. Disruption identification 

Oil recovery operations are a multi-stage emergency operation pro
cess including lowering, installing, cutting emergency equipment, and 
inhibiting gas hydrate formation. The LMRP cap technique can be 
operated in three steps:  

(1) In the running process of emergency equipment, the cap and 
diamond cutter is lowered onto the seabed. Based on the con
nected risers, a new LMRP of the rescue platform runs. The drill 
pipe then lifts up the cap.  

(2) In the installation of emergency equipment, the riser of the 
former LMRP is cut off by diamond cutters. The cap is connected 
with the former LMRP. Riser assembly, drill pipe connection, and 
control valve installation are finished in this step.  

(3) To prevent hydrate formation, hot seawater is injected into the 
annular space between the riser and drill pipe. Nitrogen (N2) is 
pumped into the drill pipe to isolate seawater. Methanol (CH3OH) 
is filled into the cap [7]. 

In the working process, emergency systems are attacked by various 
known external shocks, such as typhoons, thunder, and earthquake. We 
decompose the impact of external disasters on the components of the 
system into specific physical characteristic factors. For example, the 
influencing factors are temperature and humidity when systems are 
influenced by earthquakes. Considering the uncertainty of undesired 
disruptions, unknown shocks are viewed as unforeseen failure modes. 
Such disruptions to the system are modeled to represent changes in the 
system’s functional states. 

3.2. STAMP modeling 

A multi-stage STAMP model of the LMRP cap emergency operations 
is established by considering human factors, machine software, and 
equipment component, as shown in Fig. A1, Fig. A2, and Fig. A3. These 
models describe the responsibilities involved in human controllers, 
automated controllers, actuators, and sensors in emergency operations. 
The human controller includes emergency managers, drillers, and 
emergency workers. The automated controller consists of workstations 
and driller’s computers. The actuator consists of emergency equipment 
and ROV. The sensor involves ROV, flowmeters, pressure and temper
ature sensors. These components are responsible for ensuring the 
controlled process is in line with the safety requirement. By determining 
the potential ICAs, the control and feedback loop among different 
components and process variables are identified. 

Fig. A1 shows the running process of emergency equipment which is 
expressed in the STAMP model. Down arrows stand for control actions 
that enforce safety constraints to the level below. Up arrows indicate 
feedback information regarding whether the control actions are effec
tively implemented. For example, after a kick or a blowout occurs, 
lowering emergency equipment is executed first. When emergency 
workers send the command to the workstation, actuators began to lower 
diamond cutters, LMRP, riser, and drill pipe under the guidance of the 
ROV. Through the ROV feedback lowering process operations situations, 
human and automated controllers take corresponding measures. 

Once the lowering of emergency equipment has been successfully 
deployed, emergency equipment began to be installed through the cut
ting operation. Fig. A2 represents the SCS of the installation and cutting 
system. The controllers include the operators (e.g., manager, driller, and 
worker), the controlled workstations, and computers. The actuators 
provide an emergency response to the installation of emergency 
equipment. ROV-based sensors pass the information on equipment 
installation status back and forth between controllers and actuators. For 
instance, human and automated controllers covey control commands, 
and then the actuator starts to conduct cutting operations by diamond 
cutters. The connection and installation of LMRP, riser, and drill pipe are 
finished. By providing feedback on emergency equipment connections 
and installations, the controller sends instructions to the actuator again 
to ensure the normal installation of emergency equipment. 

Since the subsea environment is high-pressure and low-temperature, 
the risk of hydrate formation needs to be evaluated. Fig. A3 denotes the 
SCS of the hydrate formation. In the constructed STAMP model, oper
ators are the highest-level controllers to manage the controlled process 
and the running state of the controlled computers. The human and 
automated controller sends a control command based on the current 
process model (hydrate layer pressure and temperature) to actuators 
(inhibitor injection and hot seawater circulation). The actuator then 
implements a controlled process to prevent hydrate formation. The 
completion of the controlled process is returned by the flowmeter, 
pressure, and temperature sensors. And the sensor transmits information 
about the controlled process to the controller and the actuator to operate 
again. 

3.3. DBN modeling 

3.3.1. Conditional probability tables 
During the construction of DBN, the relationships from the parent 

nodes to the end child node via the intermediate nodes are determined 
by CPTs. When the input nodes are connected in series, the child node 
will fail in case of any node’s failure. For example, when at least one of 
the input nodes X27, X28, and X29 occurs, the “running drill pipe” node 
will fail. The CPT of the intermediate node running drill pipe failure is 
shown in Table 2. 

When the input nodes are connected in parallel, the child node will 
fail in case of all node failures. For instance, when input nodes “Work
station” and “Driller’s computer” occurs, the “automated controller” 

Table 2 
The CPT of running drill pipe failure with input X27, X28, and X29 connected in 
series.  

X27 Yes No 

X28 Yes No Yes No 

X29 Yes No Yes No Yes No Yes No 
Yes 1 1 1 1 1 1 1 0 
No 0 0 0 0 0 0 0 1  
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node will fail. The CPT of the child node automated controller failure is 
demonstrated in Table 3. 

Operators’ errors sometimes do not directly lead to accidents. The 
relationships among the child node and input nodes may be neither 
parallel nor series. Thus, CPTs of human controllers are difficult to 
define due to the fuzzy uncertainties of human beings. We define the 
human controller failure node with three states (high, medium, and low) 
to indicate the probability of occurrence. CPT of this type of node can be 
determined by Eq. (5) and Table 1 in Section 2.3. 

3.3.2. Transition probability tables 
In this section, we utilize Eqs. (6) to (11) to calculate the transition 

probability of dynamic nodes. These reliability data (λ, μ) used in the 
DBN model were employed from the literature review and databases, as 
is shown in Table A1. 

3.3.3. Construction of the DBN model 
After the SCS of multi-stage emergency operations is established, we 

identify the ICAs from the control and feedback loop. Based on the RIFs 
in Fig. 10, Fig. 11, Fig. 12, and Table A1, a DBN model is constructed for 
emergency operations in deepwater blowout accidents considering 
natural degradation, as shown in Fig. 10. This model is built on GeNIe 
software. In the selection of dynamic nodes, not only dynamic charac
teristics but the availability of data sources need to be concerned. In this 
study, partial nodes are modeled as dynamic nodes because these nodes 
belong to the natural degradations effect and their reliability parameters 
(λ and μ) can be determined. Human factors and organizational factors 
are difficult to be described with quantitative failure parameters over 
time. The influence of these factors is instantaneous and they are 

Table 3 
The CPT of automated controller failure with input Workstation and Driller’s 
computer connected in parallel.  

Workstation failure Yes No 

Driller’s computer failure Yes No Yes No 
Yes 1 0 0 0 
No 0 1 1 1  

Fig. 10. Mapping multi-stage STAMP into DBN model for emergency failure.  

Fig. 11. Mapping thunder model into BN (Left figure is adopted from [39]).  
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consequently viewed as static nodes. Additionally, since the parameter 
data is unavailable, some nodes with dynamic behaviors are also 
considered static nodes. Thus, it is necessary to demonstrate how their 
changes over time can affect the system’s performance. The DBN of 
emergency failure is generated by the failure of the lowering process, the 
failure of the installation and cutting process, and the hydrate forma
tion. Each subsystem has three categories of causal factors, namely 
control systems (controllers), LMRP collection oil systems (actuators), 
and sensors. They are directly related to emergency failure and can be 
further connected by intermediate and root nodes. 

Based on the established DBN model, we predict dynamic failure 
probabilities of emergency failure, the running failure of emergency 
equipment, the installation failure of emergency equipment, and hy
drate formation within one month (30 days). On the 30th day, their 
failure probabilities are 2.002E− 01, 3.264E− 01, 3.068E− 01, and 
8.208E− 02. When “the running failure of emergency equipment”, “the 
installation failure of emergency equipment”, and “hydrate formation” 
are set as evidence nodes, the emergency failure probability is changed 
as 7.793E− 01, 6.524E− 01, 6.702E− 01, respectively. We conclude that 
the lowering failure of emergency equipment is a crucial factor leading 
to emergency failure. Compared with other stages, lowering operations 
spend more time, which can reduce risk in emergency operations. 

3.4. Resilience assessment 

3.4.1. Known external shock 
When external shock can be identified as specific disasters to affect 

system performance, we can map actual physical models to establish an 
external disaster model for resilience assessment. In this study, emer
gency system resilience is studied based on the assumed external di
sasters, namely, thunder. 

When influenced by thunder, system components are affected by 
electrical stress. Failure time of the electronic component under elec
trical stress can be obtained by the inverse power law model in the en
gineering system [51]: 

L = L0V − n (21)  

where L is the failure time of the component, L0 is a constant and is 
determined by the characteristics of the component, n is an index, and V 
is the electrical stress. These parameter values are demonstrated in 
Table 4. L0 is the mean time to failure and its value is 100 h. V follows a 
normal distribution and its mean and variance are 5 and 0.8, respec
tively. n is 0.35, which represents the influence coefficient between 
component failure time and electrical stress. 

Equations (22) and Table 4 are mapped into BN for acquiring the 
distribution of the failure time of the system component, as shown in 
Fig. 11. By multiplying the total of the intermediate value of the failure 
time period with the corresponding probability, the failure rate of the 
electronic components in the actuator under the influence of thunder is 
computed as 0.017. 

For components with initial failure rates, it is assumed that external 
disruption can accelerate equipment degradation. Under the influence 
of thunder, the score of disruption wi is determined as 2 by experts. The 
probability of human error in this condition is calculated, as shown in 
Table A2. We take X1 as an example to explain our approach. X1 (Poor 
emergency scheme) is viewed as a set of the inefficient adequacy of 
organization, inappropriate availability of procedures, and temporary 

Fig. 12. A DBN model of system resilience assessment based on the known shock.  

Table 4 
Parameters of equation (22) [39].  

Parameter Distribution Mean Variance 

L0 (kV) Deterministic 100 – 
V (kV) Normal 5 0.8 
n Deterministic 0.35 –  
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inadequate available time. The probability of X1 can be obtained as: 
2.50E-03 × (3.0×100.25) × 2 = 2.81E-02. 

According to the obtained parameters, the DBN model for system 
degradation and recovery is established in Fig. 12. The performance of 
the emergency system under the influence of the known external shock 
(thunder) is shown in Fig. 13. The result shows that performance de
creases to 79.98% from 100% because of component degradation. Under 
the influence of thunder, system performance reduces from 79.98% to 
29.87%. When the emergency system is repaired within 20 h after the 
disaster, the performance gradually increases to 69.40%. During the 
maintenance process, the system performance still declines slowly from 
29.87% to 28.66%. By assuming physical relationships between system 

components and improving human reliability, the system performance is 
optimized, as shown in Fig. 14 and Fig. 15. The original configuration 
represents the initial configuration of the system. Configuration 1 is the 
parallel configuration among components of the automated controller in 
the lowering system. Configuration 2 is the parallel configuration among 
components of the automated controller in the installing system. 
Configuration 3 is the parallel configuration among components of the 
automated controller in hydrate formation. 

In the automated controller failure process, X11, X12, and X13 are in 
parallel on the workstation failure and X14, X15, and X16 are also in 
parallel on the driller’s computer failure. In Configuration 1, the system 
performance is improved by 11.92% from 69.40% to 77.67% when the 

Fig. 13. System performance change under the influence of thunder.  

Fig. 14. System performance is enhanced under different configurations.  

Fig. 15. System performance is improved under different maintenance strategies.  
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physical relations of workstation failure and the driller’s computer 
failure are changed in lowering system failure. With the above- 
mentioned relationships in installation failure and hydrate formation 
being changed into a parallel, the performance is enhanced by 9.20% 
from 69.40% to 75.78% and 5.80% from 69.40% to 73.43% in Config
uration 2 and Configuration 3. Based on the acquired results, the 
probability of risk factors is reduced by 10% leading to human controller 
failure in each subsystem. Strategy 1, 2, and 3 is the combination of 
changing automated controller configuration and human controller 
failure probabilities in different subsystems. Compared with only 
changing the logic relations among components, the combination of 
changing the physical relationship of components and reducing the 
probability of human error optimized the system performance by 
12.84%, 9.71%, and 6.40% in Strategy 1, 2, and 3, respectively. 
Compared to the operational installation and hydrate formation phase, 
this can be explained that the lowering system is a key emergency stage 
with high influences of component structure and human factors. When 
the reliability of emergency operations in the running system is 
improved, the system performance can be quickly restored to the normal 
state for handling the blowout oil spill. 

We conclude that system performance decreases rapidly when the 
systems are attacked by external shocks. After the system is repaired, the 

system performance noticeably increases, as shown in the performance 
curve of the 60–80 time slice of Figs. 13, 14, and 15. This can be 
explained by changing the redundant configuration of the system. The 
capability of the system to absorb external shocks can be improved. 
Maintenance strategies can enhance the system’s repair rates. Conse
quently, the system performance significantly increases. Due to resource 
and technical response constraints in the repairing process, system 
performance is not fully restored to the previous state. Given the 
appropriate fix, the system can recover from low performance to higher 
performance or initial performance state. Changing the system structure 
and human error failure probability in the lowering operation enhances 
the system performance restoration. 

3.4.2. Unknown external shock 
When the system suffers an unknown external shock, a novel system 

resilience assessment model is developed, as shown in Fig. 15. The main 
contributing factors to the system functionality state include absorption, 
adaptation, restoration, and disruption. Absorption, adaptation, and 
restoration ability are determined by learning from the lowering, 
installation, and hydrate formation subsystem. We assume that condi
tional probabilities of learning node on nodes absorption, adaptation, 
and restoration are 0.4 from different subsystems. This system has lower 

Fig. 16. A DBN model of system resilience assessment based on the unknown shock.  

Fig. 17. The variation of states’ probability based on the time-dependent.  
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Fig. 18. The resilience assessment of emergency systems over time.  

Fig. 19. System performance is improved under different repair strategies.  

Fig. 20. System performance loss under different external shocks.  

Fig. 21. System performance loss with the change of λ and μ.  
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adaptation and restoration abilities. The average number of external 
disruptions per unit time is assumed as 1 within one month (720 h). The 
time-dependent change of functionality states’ probability is provided in 
Fig. 16. The resilience assessment of emergency systems is shown in 
Fig. 17. 

The results show that the resilience of emergency systems decreases 
dramatically from 79.98% to its lowest value of 25.99% at 5 h. In this 
study, 65% of system performance is considered to be in a normal state. 

According to Fig. 18, the 65% recovery of performance loss from the 
lowest point is equal to 74.97% (i.e., 65% × (1–25.99%) + 25.99%). The 
system continues to improve even after a 65% recovery of performance 
loss and is stabilized at 68.18%. However, this stable value does not 
reach the initial performance state of 79.98%. Different maintenance 
strategies are adopted to enhance system performance, as shown in 
Fig. 19. The original strategy is general maintenance with assumed self- 
repair rates μ1=0.15, external repair rates μ2=0.25, and steady-state 

Fig. 22. Time-dependent performance loss with the change of λ and μ.  

Fig. A1. SCS of the running system.  
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performance 68.18%. In strategy 1, μ1 is changed to 0.25, increasing the 
system performance by 8.64% from 68.18% to 74.07%. In strategy 2, the 
value of μ2 is set as 0.35 and the performance of the system rises by 
3.53% from 68.18% to 70.59%. μ1 and μ2 are simultaneously changed in 
strategy 3. The system performance is thus enhanced by 15.41% from 
68.18% to 78.69%. 

According to the obtained results, it is concluded that the perfor
mance of the system deteriorates dramatically after the system is 
affected by external shocks. The adaption ability makes the system not 
directly collapse or fail. Under the impact of adaptation and restoration, 
the system performance can be restored. However, system performance 
cannot be improved to the initial state due to the low adaptation and 
recovery capability. Compared to external repair, the increase in self- 

repair rates can reduce system degradation. This is because the repair 
of the system itself is resistant to external shocks. At this time, an 
appropriate external repair cannot be conducted. After a system has 
suffered a shock, external repairs are more likely to restore system 
performance to a better state than self-repair. By raising the value of 
both μ1 and μ2 at the same time in strategy 3, the system performance is 
better restored than adopting strategy 1 and strategy 2. 

According to the prior probability of nodes, the high-probability 
nodes are selected for partial validation of the proposed model. We 
take three child nodes X2 (Emergency manager negligence), X41 (Op
erations are not prompt), and X67 (Emergency schemes are unreason
able) in different emergency operational stages as examples. Their 
failure probabilities are subject to a change of ±10%, when the system is 

Fig. A2. SCS of the installation and cutting system.  

Fig. A3. SCS of the hydrate formation.  
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Table A1 
Probability and related parameter of root nodes.  

Symbol Risk factor Initial prior 
probability 

Initial 
failure 
rate (λ) 

Initial 
repair 
rate 
(μ) 

References 

X1 Poor emergency 
scheme 

2.50E− 03 — — [52] 

X2 Emergency 
manager 
negligence 

1.00E− 01 — — [53] 

X3 Inadequate 
judgments 

9.80E− 03 — — [52] 

X4 Driller lack of 
experiences and 
skills 

4.00E− 03 — — [53] 

X5 Driller fails to 
interpret warning 
signals 

5.85E− 02 — — [10] 

X6 Driller with poor 
work attitude 

4.00E− 04 — — [52] 

X7 Emergency 
worker lack of 
experiences and 
skills 

3.00E− 03 — — [53] 

X8 Emergency 
worker with poor 
execution and 
supervision 

1.20E− 03 — — [9] 

X9 Emergency 
worker with 
heavy workload 

6.88E− 02 — — [53] 

X10 Control circuit 
failure 

6.70E− 03 — — [9] 

X11 Power failure 7.45E− 06 — — [9] 
X12 Control program 

for workstation 
error 

6.26E− 04 — — [53] 

X13 Hardware of 
workstation 
failure 

5.00E− 03 — — [53] 

X14 Loss 
communication 
to the human 
controller 

3.90E− 03 — — [9] 

X15 Automatic 
control panel 
failure 

6.67E− 06 — — [9] 

X16 Control program 
for driller’s 
computer error 

8.85E− 04 — — [53] 

X17 Hardware of 
driller’s 
computer failure 

7.00E− 03 — — [53] 

X18 Diamond cutter is 
not firmly fixed 

5.39E− 03 — — [54] 

X19 The running 
speed of the 
diamond cutter is 
too fast 

1.50E− 04 — — [54] 

X20 Insufficient 
tensile strength of 
the traction rope 

7.69E− 05 — — [54] 

X21 The running 
speed of the 
LMRP is too fast 

3.57E− 03 — — [54] 

X22 The Running of 
LMRP is unsteady 

7.81E− 03 — — [54] 

X23 LMRP connector 
failure 

1.24E− 05 1.24E− 05 — [53] 

X24 Riser joint is 
broken 

1.50E− 04 1.24E− 05 — [54] 

X25 The Running 
speed of riser is 
too fast 

2.30E− 03 — — [54] 

X26 Low reliability of 
single riser 

3.57E− 03 — — [54]  

Table A1 (continued ) 

Symbol Risk factor Initial prior 
probability 

Initial 
failure 
rate (λ) 

Initial 
repair 
rate 
(μ) 

References 

connection 
system 

X27 Hook break 6.40E− 04 8.92E− 05 — [54] 
X28 The lowering 

speed of the drill 
pipe is too fast 

2.45E− 03 — — [54] 

X29 The threaded 
connection part 
of the drill pipe is 
broken 

7.69E− 05 — — [54] 

X30 Improper setting 
of running speed 

1.50E− 03  — [54] 

X31 ROV direction 
guide failure 

5.79E− 03 8.45E− 04 — [54,55] 

X32 ROV direction 
guide 
insensitivity 

2.60E− 01 8.45E− 04 — [54,55] 

X33 ROV feedback 
failure 

6.26E− 03 8.45E− 04 — [54,55] 

X34 ROV feedback 
insensitivity 

2.82E− 01 8.45E− 04 — [54,55] 

X35 Poor decision 
process 

4.90E− 03 — — [52] 

X36 Emergency 
manager 
negligence 

1.00E− 01 — — [53] 

X37 Improper 
assignment of 
tasks 

8.10E− 04 — — [9] 

X38 Driller lack of 
experiences and 
skills 

4.00E− 03 — — [53] 

X39 Driller with poor 
communication 

2.00E− 02 — — [53] 

X40 Over-lift 
calculation error 

1.10E− 03 — — [9] 

X41 Operations are 
not prompt 

1.50E− 01 — — [9] 

X42 Poor physical 
condition 

7.70E− 04 — — [9] 

X43 Emergency 
worker with high 
working pressure 

4.30E− 03 — — [9] 

X44 Warning display 
failure 

9.00E− 04 1.30E− 07 0.333 [52] 

X45 Operation panel 
failure 

7.00E− 04 9.22E− 08 0.125 [52] 

X46 Control program 
for workstation 
error 

6.26E− 04 — — [53] 

X47 Not high 
detection 
accuracy of 
driller’s 
computer 

3.00E− 04 — — [56] 

X48 Control program 
for driller’s 
computer error 

8.85E− 04 — — [53] 

X49 Control circuit 
failure 

6.70E− 03 3.36E− 06 — [10] 

X50 Diamond cutting 
blade broken 

2.45E− 03 — — [54] 

X51 Damage to the 
clamping device 
of the diamond 
cutter 

2.45E− 03 — — [54] 

X52 Diamond cutter 
with heavy load 

6.41E− 03 — — [54] 

X53 Damaged sealing 
gasket 

1.01E− 02 — — [54] 

X54 Check valve 
installation 
failure 

3.83E− 03 — — [54] 

(continued on next page) 
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affected by the thunder. If the prior probability of X2 was increased by 
10%, the emergency failure probability will increase by 3.069% from 
0.7134 to 0.7156. When the prior probability of X2 decreased by 10%, 
the emergency failure probability reduced by 3.078% from 0.7134 to 
0.7112. The prior probabilities of X1 and X41 increased by 10%, which 
will rise the emergency failure probability by 4.867% from 0.7134 to 
0.7169. When the failure rates of X16, X26, and X28 were increased by 
10%, the emergency failure probability accordingly increase by 5.383% 
from 0.7134 to 0.7172. Similarly, the decrease in the prior probability of 
the child nodes will reduce the emergency failure probability. The 
sensitivity analysis reveals that changes of failure probabilities of child 
nodes will lead to the variation of emergency failure probability. The 
results satisfy all the three axioms described in Section 2.5, thus the 
developed model is verified. 

To validate the proposed resilience assessment model for systems 
subjected to unknown shocks, functionality nodes (adaptation and 
restoration) are crucial factors in recovery, which are selected as ex
amples to conduct a three-axiom-based sensitivity analysis. The 
increased 10% of adaptation probability led to a 1.841% growth of the 
probability of the system functionality state from 0.6818 to 0.6944. 
When the probability of adaptation and restoration is increased by 10%, 
the probability of the system functionality state is raised by 2.979% from 
0.6818 to 0.7021. Similarly, the reduction in the probability of the 
functionality nodes will decrease the probability of the system func
tionality state. The result shows that a slight decrease (increase) in the 
probability of functionality nodes can result in the effect of a relative 
decrease (increase) to the system functionality state node. Therefore, the 
proposed model is partially validated for satisfying the three axioms 
defined in Section 2.5. 

3.5. Sensitivity analysis 

The systems are assumed to be attacked by external disasters 
including thunder, typhoon, and, earthquake. The failure rates of system 
components under the above-mentioned disasters are obtained as 0.017, 

Table A1 (continued ) 

Symbol Risk factor Initial prior 
probability 

Initial 
failure 
rate (λ) 

Initial 
repair 
rate 
(μ) 

References 

X55 Abnormal 
connection 
between oil 
collecting cover 
and original 
LMRP 

1.25E− 02 — — [54] 

X56 Riser assembly 
failure 

6.27E− 03 — — [54] 

X57 Cutting LMRP 
upper riser failed 

7.81E− 03 — — [54] 

X58 Riser adapter 
failure 

3.57E− 03 — — [54] 

X59 Drill pipe body 
fatigue 

7.69E− 05 — — [54] 

X60 Drill pipe thread 
connection 
failure 

3.47E− 04 — — [54] 

X61 Drilling pipe in 
compression 

7.25E− 04 — — [53] 

X62 Poor installation 
quality 

1.02E− 04 — — [57] 

X63 ROV direction 
guide failure 

5.79E− 03 — — [54,55] 

X64 ROV direction 
guide 
insensitivity 

2.60E− 01 — — [54,55] 

X65 ROV feedback 
failure 

6.26E− 03 — — [54,55] 

X66 ROV feedback 
insensitivity 

2.82E− 01 — — [54,55] 

X67 Emergency 
schemes are 
unreasonable 

1.12E− 02 — — [45] 

X68 Well integrity 
information or 
documents are 
not 
comprehensive 

2.00E− 02 — — [58] 

X69 Pressure and time 
required for the 
well-killing are 
misjudged 

1.00E− 03 — — [45] 

X70 Procedure for 
testing and 
inspections are 
not conducted 

6.00E− 02 — — [58] 

X71 Failed to start the 
shut-in procedure 

1.00E− 03 — — [45] 

X72 Misjudging the 
level of leakage 
and location 

3.84E− 04 — — [45] 

X73 Engine shutdown 4.63E− 03 — — [59] 
X74 Software failure 4.66E− 03 — — [59] 
X75 Failed to initiate 

the procedure 
properly 

3.84E− 04 — — [45] 

X76 Wellbore 
integrity file 
transfer error 

3.90E− 02 — — [59] 

X77 Nitrogen pipe 
control valve 
cannot be opened 

3.00E− 05 3.15E− 05 0.0230 [54] 

X78 Blocked nitrogen 
line 

3.00E− 05 — — [54] 

X79 The broken drill 
pipe body 

1.25E− 03 — — [54] 

X80 Methanol pipe 
control valve 
cannot be opened 

2.32E− 03 5.27E− 05 0.020 [54] 

X81 Oil collecting 
cover check valve 
cannot be opened 

3.57E− 03 4.97E− 05 0.013 [57]  

Table A1 (continued ) 

Symbol Risk factor Initial prior 
probability 

Initial 
failure 
rate (λ) 

Initial 
repair 
rate 
(μ) 

References 

X82 The leak in the oil 
collection 
pipeline 

2.32E− 04 2.08E− 05 0.083 [60] 

X83 The low flow of 
injected hot 
seawater 

5.25E− 03 — — [54] 

X84 The low 
temperature of 
injected hot 
seawater 

1.01E− 02 — — [54] 

X85 The hot seawater 
inlet valve is 
blocked 

1.32E− 05 — — [54] 

X86 The hot seawater 
pipeline leak 

3.00E− 05 1.04E− 05 0.017 [61] 

X87 Flowmeter 
insensitivity 

6.88E− 03 5.72E− 05 — [62] 

X88 Flow controller 
failure 

1.78E− 03 5.72E− 05 0.020 [62] 

X89 Temperature 
controller failure 

1.98E− 03 5.72E− 05 0.020 [62] 

X90 Temperature 
monitor failure 

1.46E− 03 4.66E− 05 0.023 [62] 

X91 Temperature 
alarm failure 

1.58E− 03 6.54E− 05 0.022 [62] 

X92 Pressure monitor 
failure 

2.42E− 03 4.66E− 05 0.023 [62] 

X93 Pressure alarm 
failure 

1.67E− 03 6.54E− 05 0.022 [62]  
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0.023, and 0.047 stemming from [39]. The performance change of the 
emergency systems under the impact of various disasters is shown in 
Fig. 20. Because of the multiple influencing factors and direct shock to 
emergency operations, typhoons and earthquakes have higher impacts 
on system performance than thunders. These two shocks decreased the 
system performance to the lowest point at 0.269 and 0.249. Fig. 21(a) 
shows system performance loss with the change of λ under the impact of 
thunders. We can find that system components have higher failure rates, 
which can lead to larger performance losses in such scenarios. For 
example, when λ is changed by 40%, system performance is decreased 
by 4.041% from 0.2866 to 0.2750. When λ is changed by 60% and 80%, 
system performance is dropped by 9.310% and 14.417%, respectively. 
By enhancing the repair rate of system components, the system perfor
mance is restored to a stable state to ensure normal system operation, as 
shown in Fig. 21(b). For instance, when system components’ repair rates 
are increased by 40%, system performance is improved by 2.839% from 
0.6940 to 0.7137. When μ changed by 60% and 80%, the performance 
curve increased by 5.169% and 7.276%. These results indicate the 
importance of enhancing system maintenance capacities. In the process 
of emergency operations, it is vital to conduct reliable repair strategies 
to recover system performance when the system is attacked by an 
external shock. 

When the system suffers an unknown external shock, we utilize 
sensitivity analysis to identify the effects of parameter changes on sys
tem resilience. Results of the sensitivity analysis are shown in Fig. 22. 
We can conclude that the increase of the failure rate (λ1) under dis
ruptions leads to a decrease in the system performance. For example, 
when λ1=0.25, system performance is reduced to the lowest 3.409E− 01 
in Fig. 22(a). As λ1 increases to 0.35, the system performance is degraded 
to 0.2599. Similarly, when λ1 increases to 0.45 and 0.55, system per
formance is changed by 23.762% and 39.040% from 0.3409 to 0.2213 
and 0.3409 to 0.2078, respectively. We also discuss that changes in the 
failure rate (λ2) under normal conditions affect system performance. The 
final system performance reaches different stable states with the varia
tion of λ2. The larger value of λ2 caused a lower state value that the 
system performance returns to, as shown in Fig. 22(b). Additionally, 
influences of system self-repair rate (μ1) and external repair rate (μ2) on 
system performance are established in Fig. 22(c) and (d). The results 
show that the increase of μ1 and μ2 can improve the system performance. 
For example, when the value of μ2 increases by 2.5% in turn, the system 
performance gradually increases to a stable state of 0.6818 to 0.7018 to 

0.7175. When μ2 changes by 40%, the system degradation is changed by 
1.027% from the lowest point 0.2599 to 0.2994. A variation of λ2 and μ1 
is concluded to significantly affects the final stable value which system 
performance returns to. Changes in λ1 and μ2 are critical in the process of 
system degradation and rapid repair after the degradation. Thus, when 
emergency systems suffer a shock, timely and effective external main
tenance strategies can restore rapidly system performance. To enhance 
the final stable state of the system recovery, system self-repair is sup
posed to be strengthened by optimizing system design. 

4. Discussion 

In presence of limited prior information for external shocks, it is hard 
to evaluate emergency system resilience. For conducting a resilience 
assessment of the system subjected to known and unknown external 
disruptions, a multi-step STAMP is proposed to develop DBN models. 
The proposed methodology aims to decompose emergency systems into 
various sector elements and emergency stages, which are used to eval
uate the emergency system’s performance. Such a method can be 
applied to other emergency response systems to enhance the reliability 
of fault detection and resilience evaluation. Additionally, since non- 
linear real systems are difficult to model, a linear approximation of 
the model may introduce unacceptable errors in assessing the system 
performance. The proposed resilience evaluation methodology is also 
extended to evaluate performance loss of  engineering system. We dis
cussed the design of multi-stage emergency operations, the construction 
of resilience assessment models, and the optimization of system 
resilience.  

(1) Design of multi-stage emergency operations 

Complex systems are held together by local relationships. The com
ponents respond locally to the received information. In this paper, an 
emergency system is regarded as a multi-stage emergency process. 
STAMP is proposed to model the LMRP emergency system including the 
lowering process, installation process, and hydrate formation. 
Compared with conventional modeling methods, such as FT, ET, and BT, 
the proposed approach can consider more comprehensive aspects of 
emergency operations (e.g., human factors, software, and mechanical 
components) as an integrated whole and recognizes safety constraints 
related to interactions among these dimensions. To quantify a failure in 

Table A2 
Probabilities of human error under various external shocks.  

Node α P (Thunder) α P (Typhoon) α P (Earthquake) α P (Repair) 

X1 3.0 2.81E− 02 3.4 3.54E− 02 4.8 7.92E− 02 − 3.2 7.92E− 04 
X2 2.4 7.96E− 01 2.4 7.96E− 01 2.4 7.96E− 01 − 2.0 6.32E− 02 
X3 1.8 5.52E− 02 1.8 5.52E− 02 2.8 9.82E− 02 − 2.0 6.20E− 03 
X4 0.6 1.13E− 02 1.8 2.25E− 02 1.8 2.25E− 02 − 1.4 3.57E− 03 
X5 1.8 3.30E− 01 3.2 7.38E− 01 3.2 7.38E− 01 − 2.6 2.62E− 02 
X6 0.6 1.13E− 03 0.6 1.13E− 03 1.0 1.42E− 03 − 0.6 5.66E− 04 
X7 1.8 1.69E− 02 1.8 1.69E− 02 1.8 1.69E− 02 − 1.4 2.68E− 03 
X8 0.6 3.39E− 03 1.0 4.27E− 03 1.0 4.27E− 03 − 0.6 1.70E− 03 
X9 2.8 6.90E− 01 3.2 8.68E− 01 3.2 8.68E− 01 − 3.2 2.18E− 02 
X35 1.8 2.76E− 02 2.4 3.90E− 02 2.4 3.90E− 02 − 2.0 3.10E− 03 
X36 2.4 7.96E− 01 2.4 7.96E− 01 2.4 7.96E− 01 − 2.0 6.32E− 02 
X37 2.4 6.45E− 03 2.8 8.12E− 03 2.8 8.12E− 03 − 2.0 5.12E− 04 
X38 0.6 1.13E− 02 1.8 2.25E− 02 1.8 2.25E− 02 − 1.4 3.57E− 03 
X39 1.8 1.13E− 01 3.2 2.52E− 01 3.2 2.52E− 01 − 2.6 8.95E− 03 
X40 1.2 4.39E− 03 1.2 4.39E− 03 1.2 4.39E− 03 0 2.20E− 03 
X41 1.0 5.33E− 01 1.0 5.33E− 01 1.0 5.33E− 01 − 0.6 2.12E− 01 
X42 1.0 2.74E− 03 1.0 2.74E− 03 1.0 2.74E− 03 − 0.6 1.09E− 03 
X43 2.0 2.72E− 02 2.0 2.72E− 02 3.4 6.09E− 02 − 2.0 2.72E− 03 
X67 3.8 2.00E− 01 4.2 2.51E− 01 4.2 2.51E− 01 − 3.2 3.55E− 03 
X68 1.4 8.95E− 02 1.4 8.95E− 02 1.4 8.95E− 02 − 1.2 2.00E− 02 
X69 1.8 5.64E− 03 1.8 5.64E− 03 1.8 5.64E− 03 − 1.4 8.93E− 04 
X70 1.4 2.69E− 01 1.4 2.69E− 01 1.4 2.69E− 01 − 1.2 6.01E− 02 
X71 2.4 7.96E− 03 2.4 7.96E− 03 2.4 7.96E− 03 − 1.8 7.10E− 04 
X72 2.4 3.06E− 03 2.8 3.85E− 03 2.8 3.85E− 03 − 1.8 2.72E− 04  
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one or more parts and their interactions causing consequences on the 
system’s functioning, the constructed STAMP model is mapped into DBN 
for capturing local relationships (e.g., information flow, control loop) as 
the failure propagation between nodes to infer the system reliability.  

(2) Construction of resilience assessment models 

A DBN-based resilience assessment model is proposed to evaluate the 
resilience of an emergency system suffering known and unknown dis
ruptions. Effects of categories and strengths of disruptions, and system 
maintenance strategies on the resilience of the systems are investigated. 
Earthquakes have higher effect than thunder and typhoon on the 
emergency system. System performance decreases with the increase in 
failure rates of system components. By enhancing the repair rate with 
external efforts, system performance gradually increases and finally 
reaches a stable state. When the system is subject to an unknown shock, 
the system’s absorption, adaptation, restoration, and learning abilities 
are mapped into the system functionality state for modeling system 
resilience. Through analyzing the influences of change of contributing 
factors on the change of system performance, the changes of λ2 and μ1 
have significant influence on the recovery of the system performance to 
the stable state after disruptions. The changes of λ1 and μ2 affect system 
performance degradation to values of the lowest point and the rapid rise 
of the recovery curve after degradation. This indicates the importance of 
obtaining accurate values of λ and μ in making a proper estimation of 
system resilience.  

(3) Optimization of system resilience 

By comparing the performance curves generated by Configurations 1 
and 2, we find that the parallel system can improve the system resil
ience. The redundant configuration of the running system has greater 
impact on the performance change of emergency systems than that of 
the installation and hydrate formation stages. This is because the 
redundant configuration of the system improves the ability of the system 
to absorb external disruptions in the lowering process. Based on the 
obtained results, the system performance is optimized by reducing the 
probability of human errors. When the system is attacked by unknown 
shocks, we assume that the system design is changed to improve the 
system self-repair rates and resource allocation to increase external 
repair rates. As the system self-repair rates grow, the range of system 
performance degradation decreases gradually. When the external repair 
rate is increased, the final restored performance stable state is contin
uously improved. By changing the two cases mentioned above, the 
resilience of the system is optimized. 

5. Conclusion 

In this paper, we integrated multi-stage STAMP and DBN to develop 
a resilience assessment model for emergency response systems. By 
identifying hierarchical control and feedback in emergency operations, 
a multi-stage STAMP model is constructed to determine emergency 
failure scenarios. When the system suffers a known external shock, 
external disasters are decomposed into specific RIFs that affect system 
components to generate reliability parameters. The system performance 
is evaluated by the degradation and recovery models based on DBN. 
When undesired disruptions to the system cannot be recognized, un
certain shock is expressed as a random event with the Poisson distri
bution. A DBN-based resilience evaluation model is established by 
mapping temporal processes of disruption, absorption, adaption, and 
restoration into the analysis of system functionality. Eventually, we 
conduct a sensitivity analysis to capture the crucial contributing factors 
for system resilience. By improving the safety of components and the 
capability of system learning, system performance is optimized into a 
safer state than its initial state. From the above results and discussion, 
we draw the following conclusions.  

(1) The proposed DBN model takes advantage of STAMP to consider 
the information feedback, establish inadequate safety con
straints, and model multi-stage emergency processes of the sys
tem. By evaluating the vulnerable components and interactions of 
system accidents, the complexity of systems is decomposed. 
Further, the nonlinear coupling between components is resolved.  

(2) A resilience assessment model is proposed to evaluate system 
resilience when the system suffers from known and unknown 
shocks. When the system is attacked by known shocks, earth
quakes have more significant impacts than thunder and typhoon 
on emergency systems. When the system is subject to unknown 
disruptions, the changes in the failure rate (λ1) under disruptions 
and the repair rate (μ2) with external efforts affect much more on 
the system performance than the failure rate (λ2) under normal 
conditions and the self-repair rate (μ1). 

(3) By adjusting the redundancy configuration of emergency sys
tems, the ability of the systems to absorb external disruptions is 
enhanced and the resilience of the systems is increased. Addi
tionally, we assume that the system design is changed to improve 
the system’s self-repair rates. Combined with the improvement of 
external repair rates, the intensity of system performance 
degradation after the system is subjected to external impact is 
mitigated. The resilience of the system is therefore optimized. 

The proposed resilience assessment model can help to resist un
foreseen disruptions and manage system resilience. By optimizing sys
tem resilience, we can improve the system design and provide proper 
maintenance strategies to prevent accidents. In future research, it de
serves to consider the dynamic-coupling mechanisms of disruptions. To 
grasp the impact of real-time disruptions on system performance, a 
digital twin model can be integrated into the proposed framework. 
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