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It is well known that the quasinormal modes (or resonant states) of photonic structures can be associated
with the poles of the scattering matrix of the system in the complex-frequency plane. In this work, the
inverse problem, i.e., the reconstruction of the scattering matrix from the knowledge of the quasinormal
modes, is addressed. We develop a general and scalable quasinormal-mode expansion of the scattering
matrix, requiring only the complex eigenfrequencies and the far-field properties of the eigenmodes. The
theory is validated by applying it to illustrative nanophotonic systems with multiple overlapping
electromagnetic modes. The examples demonstrate that our theory provides an accurate first-principles
prediction of the scattering properties, without the need for postulating ad hoc nonresonant channels.

DOI: 10.1103/PhysRevX.7.021035 Subject Areas: Photonics

I. INTRODUCTION

Scattering matrices have been playing a ubiquitous role
in physics since the early history of quantum field theory
[1]. Nowadays, scattering-matrix techniques represent an
irreplaceable tool for scientists working in nuclear physics
[2], electronic transport [3], or classically chaotic systems
[4], just to mention some of the several fields of application.
Scattering matrices also enjoy a well-deserved popularity in
electromagnetic modeling, ranging from microwave devi-
ces [5] to nanophotonics applications, such as scattering
and transmission from nanostructured objects [6–8].
Most of the systems that are usually investigated with

scattering-matrix techniques display a highly structured
resonant response as a function of the excitation frequency
(or energy), with the resonances in the spectrum being
directly related to the poles of the analytical continuation
of the scattering matrix in the complex-frequency plane
[9,10]. For electromagnetic systems, such poles correspond
to quasinormal modes (also called resonant states), i.e.,
complex-frequency solutions of Maxwell’s equations with
outgoing-wave boundary conditions [11–15]. In a sense,
quasinormal modes represent the bare skeleton around
which the frequency-dependent response of the system
is built. The interplay among different electromagnetic
modes has proven to be crucial for explaining several
intriguing phenomena, such as Fano resonances in optical
systems [16], scattering dark states [17,18], and the optical
analog of electromagnetically induced transparency and

superscattering [19], and for designing new optical materi-
als, such as optical metasurfaces for wave front shaping
[20]. For these reasons, it is desirable and extremely
interesting to be able to reconstruct ab initio the entire
scattering matrix of a system from the knowledge of its
quasinormal modes. Not only would such quasinormal-
mode expansion contribute to the understanding of com-
plicated spectral features in terms of interference and
superposition of resonant states, but it would also offer
practical advantages from the numerical point of view,
since a full eigenmode calculation is generally faster and
more comprehensive than a large number of single-
frequency simulations.
A promising theoretical platform in which to carry out

this program is represented by temporal coupled-mode
theory for optical resonators. Such a framework has been
fruitfully employed to study the transmission of layered
photonic-crystal structures [16,21,22], gratings [23],
coupled cavities and waveguides [24,25], and the scattering
cross section of nanoparticles [17,26,27]. For the moment,
however, coupled-mode theory has been typically restricted
to a selection of only one or two modes of the optical
system. The residual spectral response is accounted for by a
slowly varying frequency-dependent background, which is
typically fitted from simulation data [16,21,22,24]. Part of
the difficulty in expanding coupled-mode theory by includ-
ing an arbitrary number of modes lies in estimating the
coupling coefficients that relate the resonant states with the
input-output channels. For a small number of modes, these
can be obtained from symmetry considerations [16,24] or
from the temporal decay rates [22]. However, in order to
address the general case of multiple modes and an arbitrary
configuration of input-output channels, a direct connection
between the parameters of coupled-mode theory and the
far-field properties of quasinormal modes is required.
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In this work, we establish such a connection and we
present a general theory to expand the scattering matrix on
the quasinormal modes of photonic systems, which can be
directly scaled to any number of eigenmodes and incoming
or outgoing channels. The theory, based on the far-field
asymptotic behavior of the modes and the unitarity property
of the scattering matrix, represents a fully predictive tool
that does not require the fitting of an additional nonresonant
background. There are formal similarities between our
results and the expansion of the electromagnetic Green
function on normalized quasinormal modes, which is a
well-known result from classical electrodynamics
[11,28,29]; of course, when the expansion of the Green
function is known for any point in space, the scattering
properties of the system can also be obtained [29,30]. The
theory that we present is formulated in a basis of input and
output channels and it differs from these approaches in
requiring only the far-field behavior of the modes at the
input-output ports, as opposed to the full spatial distribution
of the eigenfield. Moreover, our theory is independent of
the choice of the normalization of the quasinormal modes.
Modal methods offer a deeper physical insight into the

properties of resonant systems, because they allow us to
draw a connection between the origin of complicated
spectral features and the characteristics of the underlying
quasinormal modes. For these reasons, they are particularly
suitable for describing, understanding, and optimizing
complex photonic systems. Notably, since the formalism
that we present is derived on the basis of general coupled-
mode theory, its range of applicability goes beyond that of
classical electrodynamics.
The work is organized as follows. In Sec. II, we derive

the quasinormal-mode expansion of the scattering matrix,
whereas in Sec. III, we numerically validate the theory in
the illustrative cases of photonic crystal slabs and multi-
layered metallic nanoparticles.

II. THEORY

A. Quasinormal modes

In order to provide a rigorous motivation for the
application of the formalism of coupled-mode theory to
optical systems, we begin our analysis by establishing a
direct connection with the theory of quasinormal modes.
We consider a system of dielectric or absorbing photonic
structures, described by a spatially inhomogeneous distri-
bution of the dielectric function εðr;ωÞ. We assume that in
the limit r → ∞, the dielectric function εðr;ωÞ tends to the
constant value εb and we define Δεðr;ωÞ ¼ εðr;ωÞ − εb
[31]. The system supports a discrete number of quasinor-
mal modes (also called resonant states), which are defined
as the transverse complex-frequency solutions ð ~Ej; ~HjÞ of
Maxwell’s equations,

−
i
μ0

∇ × ~EjðrÞ ¼ ~ωj
~HjðrÞ;

i
ε0εðr; ~ωjÞ

∇ × ~HjðrÞ ¼ ~ωj
~EjðrÞ; ð1Þ

with outgoing radiation boundary conditions [12–15]. This
linear system of equations is equivalent to a quadratic
eigenproblem for the electric field:

∇ × ∇ × ~EjðrÞ − εðr; ~ωjÞ
~ω2
j

c2
~EjðrÞ ¼ 0: ð2Þ

As a consequence of the complex eigenfrequency ~ωj,
quasinormal modes are characterized by a diverging
amplitude in the far field.
The same considerations also apply to systems that are

periodic in one or two dimensions and radiating in the
remaining dimensions. In this case, the one- or two-
dimensional crystalline momentum k is conserved and it
is possible to define a family of quasinormal modes of the
form

~Ek;jðrÞ ¼ eik·rEk;jðrÞ; ð3Þ

where the function Ek;jðrÞ has the same periodicity of the
system and the field satisfies the outgoing radiation
boundary conditions along the nonperiodic dimensions.
To keep the notation general, we assume the reciprocal
wave vector to be fixed and omit the index k.
For one-dimensional dielectric media and three-

dimensional spheres, it has been proven that the modal
eigenfields form a complete basis inside the structure, i.e.,
in the region where Δεðr;ωÞ ≠ 0, provided that Δεðr;ωÞ or
any order of its derivative is discontinuous at the boundary
of its domain [11]. In this work, we make the assumption
that the completeness hypothesis holds for arbitrary reso-
nant systems as well [15,28].
Following the usual scattering theory, we suppose that

the system is illuminated by an incident field Eb, which,
in turn, is a solution of the wave equation (2) with only
the background dielectric constant εb. Splitting the total
field in the incident and scattered components, EðrÞ ¼
EbðrÞ þ EsðrÞ, the latter can be shown to satisfy the
inhomogeneous wave equation in the presence of a source
term proportional to the incident radiation; i.e.,

∇ ×∇ × EsðrÞ − εðr;ωÞω
2

c2
EsðrÞ ¼ Δεðr;ωÞω

2

c2
EbðrÞ:

ð4Þ

Limiting ourselves to the region where Δε ≠ 0, in the
assumption that quasinormal modes ~Ej form a complete
basis, we can expand the scattered field on them:
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EsðrÞ ¼
X

j

aj ~EjðrÞ: ð5Þ

The exact expression for the coefficients aj depends on the
incident field. Eventually, the knowledge of Es in a finite
region is sufficient to extract the far-field properties of the
scattered field, as it is described by the same Eq. (4), which
becomes

∇ ×∇ × EsðrÞ − εb
ω2

c2
EsðrÞ

¼ Δεðr;ωÞω
2

c2
½EbðrÞ þ EsðrÞ�:

This equation has the formal solution

EsðrÞ ¼
Z

d3r0
�
Δεðr0;ωÞω

2

c2

�
Ebðr0Þ

þ
X

j

aj ~Ejðr0Þ
�
~Gbðr; r0;ωÞ

�
; ð6Þ

with ~Gbðr; r0;ωÞ being the dyadic Green tensor of the
background electromagnetic environment with homo-
geneous dielectric constant εb. Since the integral in
Eq. (6) is limited to the region where Δε ≠ 0, we are able
to replace the field expansion of Eq. (5).
At this point, we expand the input field over a set of

incoming waves (or, more generally, ports), EbðrÞ ¼P
αsþαE

ðþÞ
α , and total electric field over a corresponding

set of outgoing waves, E ¼ P
αs−αE

ð−Þ
α , whose detailed

expression depends on the specific geometry of the system.
Equation (6) clearly shows that the amplitude of each
outgoing wave s−α can be written as the sum of a direct
channel, which is directly proportional to the incoming
amplitudes sþα, and a resonance-mediated channel, which
is proportional to the quasinormal-mode amplitudes aj. In
turn, the latter amplitudes are related to the incoming field
through Eq. (4). From the linearity of Maxwell equations,
it follows that all these relations can be written in terms
of linear operators. This is the basis of the coupled-mode
formalism, which we illustrate in the following.

B. Coupled-mode equations

Seeking a more general formulation, we write the
characteristic equation of quasinormal modes, Eq. (1), as
an eigenvalue problem for the effective “Hamiltonian”
Ωþ iΓ:

ðΩþ iΓÞaj ¼ ~ωjaj: ð7Þ

Here and in the following, we assume the convention
expðiωtÞ for the temporal dependence of the field. The
components of the vectors aj are interpreted as the

coefficients of the expansion of the electric field in terms
of quasinormal modes, according to Eq. (5). Because of
the inherently dissipative nature of quasinormal modes, the
Hamiltonian operator Ωþ iΓ is non-Hermitian and it has
been split into Hermitian and skew-Hermitian parts, which
are expressed in terms of the two Hermitian operators Ω
and Γ. Using the same language of Eq. (7) and following
our previous considerations, we relate the incoming and
outgoing amplitudes of the electromagnetic field (which we
express in vector form as sþ and s−) by means of a system
of coupled-mode equations:

iωa ¼ iðΩþ iΓÞaþ KTsþ; ð8Þ

s− ¼ Csþ þDa: ð9Þ

The operator C represents the direct-coupling channel,
whereas the operators K and D account for coupling
between quasinormal modes and the incoming and out-
going ports, respectively. Although there might be in
principle infinitely many quasinormal modes and ports,
for practical reasons we assume that the number of modes
and ports is truncated to the finite values n and m,
respectively. In this way, all the operators reduce to
finite-size matrices. The set of Eqs. (8) and (9) is summa-
rized by the scheme in Fig. 1.
As originally demonstrated in Refs. [16,24], some

relations among the quantities that appear in Eqs. (8)
and (9) can be directly deduced from some very general
physical properties of the system. First, electromagnetic
reciprocity and energy conservation imply that

K ¼ D ð10Þ

and

Γ ¼ 1

2
D†Dþ Γnr; ð11Þ

respectively. In Eq. (11), we straightforwardly extend the
theory to include the (Hermitian) decay matrix Γnr, which

FIG. 1. Schematic of m ports coupled to n quasinormal modes
with amplitudes aj (j ¼ 1;…; n) and linked by a direct-coupling
term C. The notation spþ and sp− (p ¼ 1;…; m) refers to the
amplitude of incoming and outgoing waves, respectively.
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accounts for absorption and other potential nonradiative-
dissipation channels. Moreover, by comparing the dynam-
ics described by Eqs. (8) and (9) with the time-reversed
case and employing time-reversal symmetry, it can be
shown that

CD� ¼ −D: ð12Þ

The system in Eqs. (8) and (9) has been extensively used
to model the scattering properties of various photonic
structures [17,21,22,24,27], proving itself particularly
valuable for investigating the physical mechanism at the
basis of various phenomena, such as the formation of Fano
line shapes in the spectrum as a consequence of the
interference between the resonant and the direct-coupling
channels [16]. In all these cases, however, the number of
modes included in the equations is limited to one or two,
and the direct-coupling channel, if present, is accounted
for by fitting a specific frequency-dependent background
response obtained from independent numerical simulations
of the spectrum (see, for instance, Refs. [16,24,27]). The
need for independent frequency-by-frequency simulations
restricts the suitability of coupled-mode theory as a first-
principles computational tool. Moreover, accurately fitting
the direct-coupling background typically requires some
additional assumptions which are difficult to interpret on
physical grounds (for instance, the need for a frequency-
dependent effective dielectric constant). In a broader sense,
the actual separation between the resonant states and the
frequency-dependent background is somewhat arbitrary,
since the latter is also made up of a number of broad
resonances associated with additional quasinormal modes.
In light of our assumption about the completeness of
quasinormal modes (Sec. II A), we expect that by enlarging
the set of electromagnetic modes, so as to include the
resonances usually associated with the background, we
could remove the need for fitting the direct-coupling
background and treat all resonant states on equal ground.
In this way, in addition to getting a more transparent
physical picture, we could also better elucidate the modal
structure at the basis of resonant systems. Implementing
this strategy represents one of the main motivations for the
formalism that we present in the next section, which is
easily scalable to multiple modes with varying decay rates.

C. Expansion of the scattering matrix

The scattering matrix of the system connects the ampli-
tude of the outgoing waves with the amplitude of the
incoming waves:

S ¼ C − iDðωI − Ω − iΓÞ−1DT; ð13Þ

where we use the identity in Eq. (10). Here, we derive an
expression for the expansion of the scattering matrix on

quasinormal modes, on the basis of the system of
Eqs. (8) and (9).
To this purpose, in addition to the complex eigenfre-

quencies of the quasinormal modes, ~ωj (j ¼ 1;…; n), we
also assume the knowledge of the asymptotic behavior of
the quasinormal-mode eigenfield in the output ports, which
is equivalent to the knowledge of the relative complex
amplitudes of the vectors

bj ≐ s−jω¼ ~ωj
¼ Daj: ð14Þ

For simplicity, we refer to the vectors bj as the “scattering
eigenvectors” of the system. As it is the case for all
eigenproblems, the (complex) normalization constant of
the eigenvectors can be set arbitrarily; however, as proven
in Appendix B, the final expression for the scattering
matrix does not depend on the choice of such constant. As a
consequence, our approach is inherently normalization-
free, at variance with other works dealing with the
expansion of the dyadic Green function, which require
the quasinormal modes to be normalized in a specific
fashion [13–15].
In practice, the complex eigenvalues and the scattering

eigenvectors need to be computed by numerical eigensolv-
ers. The specific method depends on the definition of the
input-output ports, but, in general, it involves calculating
the electric field at a point or on a surface in the far-field
region of the system, and, possibly, computing the projec-
tion integral of the field with the modal profile of the port.
Some examples are provided in Sec. III. We stress that,
since the scattering eigenvectors depend only on the far-
field behavior of the resonant states, they can be obtained
without computing the full distribution of the electromag-
netic field over all space. This characteristic is particularly
helpful, for instance, when quasinormal modes are calcu-
lated with numerical techniques such as the boundary-
element method or the multipole expansion method, which
typically benefit from a faster rate of convergence for
far-field calculations.
Since the matrix Ωþ iΓ is not Hermitian, the right

eigenvectors alone are not orthogonal. However, as it is
known from the theory of complex Hamiltonians [32], right
eigenvectors (aj in our case) form a biorthogonal basis
together with left eigenvectors, which are defined by the
equation

l†jðΩþ iΓÞ ¼ ~ωjl
†
j : ð15Þ

To simplify the notation, we introduce the n × n matrix A
whose columns are the right eigenvectors aj and the
corresponding matrix L of the column left eigenvectors
lj. With this new notation, Eq. (7) becomes

ðΩþ iΓÞA ¼ A ~Ω; ð16Þ
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with ~Ω being the diagonal matrix of the complex eigen-
values ~ωj. Moreover, we define the m × n matrix B whose
columns are the vectors bj.
The complex Hamiltonian of Eq. (7) can then be

expanded on the biorthogonal basis as follows [32]:

ωI −Ω − iΓ ¼ AðωI − ~ΩÞL†: ð17Þ

Even if the right eigenvectors are not orthogonal, they are,
however, linearly independent [32]; thus, we can formally
write L ¼ ðA†Þ−1. Replacing Eq. (17) into Eq. (13), we
obtain the quasinormal-mode expansion of the scattering
matrix,

S ¼ C − iB
1

ωI − ~Ω
Λ−1BT; ð18Þ

where we define Λ ≐ ATA and we use the relation
B ¼ DA, which comes directly from Eq. (14). For the
moment, Eq. (18) represents only a formal result, which can
also be seen as a special case of the Mittag-Leffler theorem
on the pole expansion of meromorphic functions [33]. For
all practical purposes, it is crucial to derive an expression
for the matrix Λ. This latter matrix plays a fundamental
physical role, because the amplitude and phase of its terms
determine the oscillator strength of each resonance and
affect the degree of interference among the modes, which,
in turn, has been found responsible for the appearance of
interesting spectral features, such as Fano line shapes [16]
or the optical analogue of electromagnetically induced
transparency [19].
First, it can be shown that Λ is diagonal. This result

follows from the symmetry of the complex Hamiltonian
Ωþ iΓ, which can be proven by combining Eqs. (11) and
(12). The same result can also be derived from the
requirement that the resulting scattering matrix must be
symmetric [24]. Next, by multiplying each side of Eq. (12)
by A� and after some algebraic manipulations, we obtain
CB� ¼ −BΛ−1ðA†AÞ�, which we can recast in the more
compact form

CB� þ BΛ−1Q� ¼ 0; ð19Þ

which defines the matrix Q ¼ A†A.
Multiplying Eq. (16) by A† on the left, taking the

difference with its Hermitian conjugate, and employing
Eqs. (11) and (14), we arrive at

Q ~Ω − ~Ω�Q ¼ 2iA†ΓA ¼ iB†Bþ 2iA†ΓnrA: ð20Þ

In general, the solution forQ cannot be written explicitly in
terms of matrix products; however, it is straightforward to
express it componentwise. First, in the case of no absorp-
tion (Γnr ¼ 0), we can write

Qij ¼ i
b†i bj

~ωj − ~ω�
i
: ð21Þ

This latter equation allows us to clarify the physical
meaning of Eq. (19). With the aid of Eqs. (18) and (21),
it can be shown that Eq. (19) is equivalent to the condition

S†ð ~ωjÞbj ¼ 0: ð22Þ

From the inversion of the scattering matrix, on the other
hand, we obtain that S−1ð ~ωjÞbj ¼ 0, since quasinormal
modes are defined as the self-sustaining solution of
Maxwell’s equations in the absence of any input radiation.
Comparing the two results, it is clear that Eq. (19)
guarantees that the scattering matrix is unitary at the modal
eigenfrequencies, as required by energy conservation.
In the presence of absorption (Γnr ≠ 0), the energy

balance must also account for the additional dissipation.
In a broad sense, nonradiative processes represent a number
of input-output channels that it is impractical to take into
account directly. It is possible, however, to quantify their
total effect on the decay rate of each quasinormal mode,
for instance, by calculating the shift of the imaginary part
of the eigenfrequency with respect to the case when all
losses are turned off. An example of this approach is
discussed in Sec. III D. When the nonradiative decay rate
is small compared to the frequency of the mode, the
nonradiative term Γnr can be treated as a first-order
perturbation of the total Hamiltonian; i.e., we can assume
A†ΓnrA≃ A†A ~Γnr ¼ ~ΓnrA†A, where ~Γnr is the diagonal
matrix of the first-order nonradiative decay rates, γnr;j
(j ¼ 1;…; n). In this way, we can write the following
generalized expression for Q:

Qij ¼ i
b†i bj

~ωj − iγnr;j − ~ω�
i − iγnr;i

: ð23Þ

Equations (19) and (21) [or Eq. (23) for absorbing
systems] allow us to fully determine the matrix Λ, and,
hence, the quasinormal-mode expansion of Eq. (18).
However, a closer inspection of Eq. (19) reveals that the
system has m × n equations (the dimension of B) and only
n unknowns (the diagonal of Λ). Thus, for a given direct-
coupling matrix C, the system is generally overdetermined
and a solution is not always guaranteed to exist. From a
different perspective, the direct matrix C cannot be chosen
freely, but it must satisfy some constraints that depend on
the properties of the resonant states. In practice, it might be
difficult to choose a direct matrix with a simple analytical
form and, at the same time, consistent with Eq. (19),
especially when a large number of quasinormal modes is
involved.
For all these reasons, it is essential to develop a general

theory that also encompasses the case when the matrix C is
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an approximation of the exact direct-coupling matrix. To
this end, instead of looking for an exact solution of
Eq. (19), we search for an approximate solution in the
least-squares sense. To be more precise, having defined the
vectors xj (j ¼ 1;…; n) as the columns of the matrix

X ¼ CB�ðQ�Þ−1; ð24Þ

we look for the diagonal matrix Λ in Eq. (19) whose
diagonal terms λj minimize the objective function

fðλ1;…; λnÞ ¼
Xn

j¼1

jλjxj þ bjj2: ð25Þ

This reformulation of the problem does not affect the
generality of the theory, because, if Eq. (19) has an exact
solution, then such a solution must coincide with the least-
squares one [34].
A simple calculation of the stationary points of the

objective function leads to the result λj ¼ −x†jbj=ðx†jxjÞ,
which, once replaced into Eq. (18), provides us with the
final expression

S ¼ Cþ i
Xn

j¼1

x†jxj
x†jbj

bjbTj
ω − ~ωj

: ð26Þ

Equation (26), together with Eqs. (24) and (21), is the
desired expansion of the scattering matrix and it represents
the main result of the present work. Using Eq. (24), the
expansion coefficients can be explicitly written as

1

λj
¼ −

x†jxj
x†jbj

¼ −
P

nn0Q
−1
nj ðQ−1

n0jÞ�bTnC†Cb�n0P
nQ

−1
nj b

T
nC†bj

: ð27Þ

The denominator of the coefficient can be regarded as a
modified inner product that renormalizes the scattering
eigenvectors in order to guarantee the total scattering
matrix to be unitary. In the limiting case when the off-
diagonal elements of Q are negligible, the expression in
Eq. (26) reduces to a modified version of the prominent
Breit-Wigner formula of nuclear physics [2,4], as shown in
Appendix A. In addition, in Appendix B we also show that
the result in Eq. (26) is independent of the normalization of
the scattering eigenmodes.

III. APPLICATIONS

A. Photonic crystal slab

As an illustrative example, we consider a photonic
crystal slab composed of a square lattice of circular holes
etched in a silicon membrane (ε ¼ 12.1). Indicating with a
the lattice constant, we assume the slab thickness and the
hole radius t ¼ 0.4a and r ¼ 0.2a, respectively. For nor-
mally incident light polarized along one of the lattice axes,

we can limit ourselves to a single polarization of light;
moreover, in the range of frequency ω < 2π=a, only the
zeroth order of diffraction is available. As a consequence,
the system can be effectively described with two ports,
corresponding to the plane waves E1;þ ¼ s1;þe−iωz=c and
E2;þ ¼ s2;þeiωz=c, propagating along the normal direction
to the slab, which we indicate as the z axis.
In Fig. 2(a), we show the complex eigenfrequencies of

the quasinormal modes of the system for normally incident
light. Although all the modes represent equally valid
solutions of the same characteristic equation (2) and they
are treated on equal ground in the expansion of the
scattering matrix Eq. (26), it is useful from a physical
point of view to distinguish between two categories of
quasinormal modes: weakly dissipating quasiguided modes
and leaky modes with much larger radiation rates. As it
appears from Fig. 2(a), the threshold between the two
families can be set around Im ~ω ≈ 10−2ð2πc=aÞ, with a
difference of more than 1 order of magnitude between the

(a)

(b)

FIG. 2. Application of the theory to a photonic crystal slab
composed of a square lattice of air holes etched in a suspended
silicon membrane. (a) Real and imaginary part (log scale) of the
quasinormal-mode complex eigenfrequencies, together with the
corresponding symmetry of the modes (even, odd) by inversion
with respect to the slab middle plane. (b) Transmission intensity
computed by expanding the scattering matrix on the quasinormal
modes (red solid line) compared with the exact result by the
Fourier modal method (dashed line) [35].
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corresponding imaginary parts of the eigenfrequencies. The
leaky modes (Im ~ω > 10−22πc=a) have strong similarities
with the Fabry-Pérot resonances of a homogeneous dielec-
tric slab with an average refractive index nav, displaying a
roughly constant frequency spacing of the order of the free
spectral range δω ¼ πc=ðnavtÞ. The deviation from the
equal spacing behavior grows when the frequency
increases, due to the wavelength becoming more sensitive
to the dielectric-function inhomogeneity in the system [21].
Quasiguided modes can be easily computed in various

ways, including, e.g., frequency-domain [14] or time-
domain [13,28] methods, or by determining the poles of
the scattering or transmission coefficient in the complex
frequency plane [9]. These techniques can also be com-
bined, in order to exploit specific advantages. For instance,
in the present example, the modes with Re ~ωj > 0 have
been computed by solving a linearized version of the
eigenproblem in Eq. (2) with a commercial finite-element
package [36], whereas, for better numerical accuracy, leaky
modes have been obtained separately by looking for the
complex-frequency poles of the transmission amplitude
computed with the Fourier modal method using a freely
available solver [35]. Since the wave equation (2) is second
order in the frequency, for each quasinormal mode with
Re ~ωj > 0 there exists a corresponding state with ~ωj0 ¼
− ~ω�

j and ~Ej0 ðrÞ ¼ ~E�
jðrÞ [11], which has been included in

the calculations, raising the total number of quasinormal
modes under consideration in this example to n ¼ 33.
Because of numerical difficulties in performing the calcu-
lations near the imaginary axis of the complex-frequency
plane, the decay rate of the Re ~ωj ¼ 0 mode has been
estimated using the analytical formula for a homogeneous
dielectric slab with an averaged refractive index [12].
The asymptotic behavior of the eigenfield is entirely

determined by the inversion symmetry of the system with
respect to the middle plane of the slab. Since the electric
field amplitude is either even or odd with respect to the
inversion, as indicated in Fig. 2(a), we can directly assume
the scattering eigenvectors

b� ¼ 1ffiffiffi
2

p
�

1

�1

�
ð28Þ

for even (“þ”) and odd (“−”) modes. As we already
remarked, since the scattering matrix expansion is inde-
pendent of the eigenfield normalization, any other choice of
the normalization in Eq. (28) would be equally suitable.
Finally, in agreement with our assumption about the com-
pleteness of quasinormal modes for photonic systems, we
take the 2 × 2 identity matrix as the direct-coupling matrix:

C ¼ I2×2: ð29Þ

In this way, we can derive the expression of the scattering
matrix of the photonic crystal slab by applying Eq. (26)

with the complex eigenfrequencies of Fig. 2(a) and the
scattering eigenvectors of Eq. (28). The transmission
intensity obtained from the resulting scattering matrix is
shown by the solid curve in Fig. 2(b), and it is compared
with an independent calculation by the Fourier modal
method (dashed line) [35]. The agreement between the
curves is excellent, highlighting the validity of the quasi-
normal-mode expansion of the scattering matrix. The
comparison confirms that the first-principles description
of the optical properties of the system provided by the
theory is complete and accurate; moreover, we stress that
such a description does not require any ad hoc assumptions
on the direct coupling channel and is based only on the
complex eigenfrequencies of the quasinormal modes.

B. Asymmetric photonic crystal structure

A specific advantage of the scattering-matrix expansion
is the straightforward applicability to generic systems
lacking any particular symmetry. In order to illustrate this
point, we consider a square lattice of L-shaped void
structures partially patterned in a silicon slab. The shape
and size of the structures is schematized in the inset of
Fig. 3(a). The height of the patterned region (h ¼ 0.2a) is
one-half of the total thickness of the slab (t ¼ 0.4a),
resulting in a configuration that is not symmetric by
inversion along z. Moreover, for incident light polarized
along one of the lattice main axes, the transmitted and
reflected radiation will include a cross-polarized fraction.
Therefore, we can model the system by defining four ports,
corresponding to plane waves propagating above and below
the slab and polarized along the two in-plane crystal axes
(which we indicate as x and y). In agreement with the
assumption that quasinormal modes form a complete basis,
we also assume the identity matrix as the direct-coupling
matrix; i.e., C ¼ I4×4.
The complex eigenfrequencies of the quasinormal

modes, computed with the finite-element method [36],
are presented in Fig. 3(a). Even in this case we can
distinguish between a set of quasiguided modes and a
set of roughly equispaced leaky modes with a larger
dissipation rate. Similarly to the previous example, the
decay rate of the pair of modes with Re ~ωj ¼ 0 is estimated
using the analytical results for a homogeneous dielectric
slab, and, moreover, we also explicitly include the modes
with ~ωj0 ¼ − ~ω�

j . However, in this case, the scattering
eigenvectors bj must be obtained from the asymptotic
behavior of the calculated quasinormal-mode eigenfield
[37]. To this purpose, we consider the x and y electric-field
components of each quasinormal mode in two planes
located above and below the silicon slab at a sufficiently
large distance to make the near-field contributions negli-
gible. The specific choice of the distance does not affect the
results, since only the relative amplitudes among the field
components are relevant for the theory. It is interesting to
note that the scattering eigenvector can also be computed
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with a near-to-far-field transformation of the quasinormal
modes [38].
From the expansion of the scattering matrix in Eq. (26),

we compute the total transmission intensity T and the
cross-polarized transmission intensity Txy (i.e., intensity
of x-polarized transmitted light for y-polarized incident
radiation). These quantities are shown (solid curves) in
Figs. 3(b) and 3(c) and they are compared with the exact
results (dashed curves) obtained from the Fourier modal
method [35]. There is good agreement between the curves,
especially in the vicinity of multiple narrow resonances,

further confirming the validity of our approach as a
predictive tool for computing the scattering matrix of
electromagnetic systems. The small deviation from the
exact result in the high-frequency region of Fig. 3(b) is
likely due to the lower number of leaky modes included in
this example with respect to the case of Sec. III A. The large
radiative width of leaky modes (with a quality factor of the
order of 10) implies that additional states beyond the
frequency range under consideration may still have a small
effect on the transmission in Fig. 3(b). To corroborate this
hypothesis, we verify that the agreement with simulation
data can be further improved when an additional pair of
leaky modes at Re ~ωj ≃ 1.1ð2πc=aÞ is included in the
scattering matrix expansion [37].
Computing the eigenvalues of Fig. 3(a) with the finite-

element method takes about 1 h on a multiprocessor
workstation. By comparison, on the same workstation
the time required by a single frequency-point calculation
of the transmission using the same finite-element solver
and the same mesh is about 3 min, implying that computing
the transmission spectrum of Fig. 3(b) (roughly 1000
points) would require about 50 h with the finite-element
method. This 50-fold reduction of computational time
highlights the computational advantage of modal methods
over frequency-domain full-wave simulations using the
same electromagnetic solver.

C. Hybrid plasmonic system

Hybrid nanophotonic devices combining different
photonic elements hold great promise for enhancing the
functionality and the performance of various optical
elements [39]. For instance, hybrid photonic-plasmonic
systems made of plasmonic nanostructures coupled to
optical resonators have been demonstrated to combine
strong localization of light with precise control of the
emission properties, enhancing the interaction with quan-
tum emitters and the optical biosensing capabilities [40,41].
In order to exemplify the applicability of our theory to

this class of systems, we consider the example of a square
array of 60-nm-diameter metallic particles embedded in
200-nm-thick dielectric slab. For simplicity, we assume
the metal dielectric function follows the dissipationless
Drude model, εðωÞ ¼ 1 − ω2

p=ω2, with plasma frequency
ℏωp ¼ 6 eV. The complex eigenfrequencies of the quasi-
normal modes are computed with the finite-element method
and are shown in Fig. 4(a). In addition to the Fabry-Pérot
resonances of the slab, the calculation reveals the presence
of a number of narrower modes. Such modes originate from
the hybridization of the multipolar modes of the metallic
particle due to the interaction with the polarizable dielec-
tric. Similarly to the case of Sec. III A, the modes can be
classified as even or odd with respect to inversion sym-
metry along the direction perpendicular to the slab.
The transmission spectrum of the system is derived from

the quasinormal-mode expansion of the scattering matrix

FIG. 3. (a) Circles: real and imaginary part (log scale) of the
quasinormal-mode eigenfrequencies of a square lattice of L-
shaped patterned structures in a silicon membrane. The unit cell
of the structure is represented in the inset (t ¼ 0.4a, l1 ¼ 0.6a,
and l2 ¼ 0.3a). Note that the structure is not symmetric by
inversion along the z axis. (b) Total transmittance T and (c) cross-
polarized transmittance Txy computed by expanding the scatter-
ing matrix on the quasinormal modes (solid line) compared with
the exact result by the Fourier modal method (dashed line) [35].
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[Eq. (26)], and it is shown by the solid curve in Fig. 4(b).
Like the previous examples, we include the Fabry-Pérot
zero-frequency mode with Re ~ωj ¼ 0 and we assume the
unitary direct coupling matrix C ¼ I2×2. The presence of a
large number of modes results in a highly structured
spectrum with several closely spaced minima and maxima
of transmission, resulting from the reciprocal interference
of light scattered by the polarization currents in the metal
and the dielectric.
The transmission computed from the modal expansion

of the scattering matrix is in very good agreement with
the results of a frequency-by-frequency calculation with
the finite-element method (dashed curve in Fig. 4). The
calculation of the complex eigenvalues in Fig. 4(a) takes a
few hours on a multiprocessor workstation, comparing
very favorably with the frequency-by-frequency computa-
tion, which requires about 30 h using the same mesh.
Furthermore, the modal expansion of the scattering matrix
allows us to accurately resolve even the narrowest reso-
nances, as demonstrated in the inset of Fig. 4(b), displaying

a close-up of the spectrum in a small frequency range. This
characteristic emphasizes an advantage of modal methods
over the direct frequency-by-frequency computation, where
a reduction of the frequency resolution over the whole
extent would be highly impractical on grounds of the
increased computational cost.
All these considerations can be directly extended to more

realistic devices, such as metallic nanoparticles in inter-
action with large optical resonators and photonic cavities.
In these cases, the systems are expected to benefit even
further from the advantages of the modal expansion
method, due to the increased size and complexity.
Notably, the interest of determining the quasinormal modes
is not limited to accessing the scattering properties of the
system. For instance, it has been demonstrated that the
quasinormal modes of an array of metallic particles can
interact with molecular excitons, giving rise to plasmon-
exciton polaritons [42]. Thus, in addition to providing
access to the scattering matrix, the modal information is
also essential for describing and understanding the polari-
tonic effects.

D. Layered metallic particle

In order to highlight the generality of the theory, we
consider a very different example. As demonstrated in
Refs. [17,26,27], coupled-mode theory can be used to
model the scattering and absorption cross sections of
spatially confined scatterers, such as metallic nanoparticles.
Although in these works only one or two quasinormal
modes are included in the application of the theory, our
formalism allows the extension of the number of modes and
channels in a straightforward way. Moreover, we also use
this example to illustrate the application of the theory to
absorbing materials.
For three-dimensional scattering objects, the ports cor-

respond to incoming and outgoing spherical waves of
degree l, order m, and both transverse electric and trans-
verse magnetic polarization [6]. For simplicity, we consider
a spherically symmetric system, where we can limit
ourselves to only multipole terms with m ¼ 1 and l > 0
[6,17]. The scattering and absorption cross section can be
expressed as a function of the reflection coefficients, i.e.,
the diagonal terms of the scattering matrix, as follows [43]:

σsca ¼
X

σ

X∞

l¼1

λ2

8π
ð2lþ 1Þj1 − Slσ;lσj2; ð30Þ

σabs ¼
X

σ

X∞

l¼1

λ2

8π
ð2lþ 1Þð1 − jSlσ;lσj2Þ ð31Þ

(the index σ indicates polarization: σ ¼ TE, TM). These
expressions can be generalized to nonspherical scatterers
by including the additional dependence on the order m of
the modes [27].

(a)

(b)

FIG. 4. (a) Circles: real and imaginary part (log scale) of the
complex eigenfrequencies of a square lattice (lattice constant
a ¼ 200 nm) of 60-nm-diameter metallic particles embedded in a
200-nm dielectric slab (ε ¼ 12.1). (b) Transmission intensity
computed from the quasinormal-mode expansion of the scatter-
ing matrix (red solid line) compared with a finite-element
frequency-by-frequency calculation (dashed line) [36]. The inset
shows a close-up of the spectrum in the highlighted frequency
region. The dots indicate the frequency-by-frequency calculation.
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For the sake of illustration, we consider a multilayered
spherical particle with alternating layers of dielectric
(ε ¼ 2.1) and metallic materials, according to the structure
sketched in the inset of Fig. 5. Core-shell metallic nano-
particles are a viable and well-established platform for
obtaining a significant local field enhancement together
with a broad frequency tunability in the spectral response
[44]. Here, we are mainly interested in the presence of
multiple modes in each scattering channel, which under-
lines the advantages of our theoretical treatment in dealing
with complex electromagnetic systems. Since we are
considering a subwavelength particle sustaining plasmonic
resonances, we limit ourselves to the lowest-order TM-
polarized modes (l ¼ 1 and l ¼ 2). We assume the metal
dielectric function to follow Drude’s model,

εðωÞ ¼ 1 −
ω2
p

ωðωþ iκnrÞ
; ð32Þ

with plasma frequency ωp and nonradiative damping rate
κnr. In all calculations, we assume κnr ¼ 0.01ωp. This value
is in agreement with those obtained from the fitting of
the dielectric function of noble metals (e.g., gold) at
frequencies lower than the onset of interband transitions

[14]. The complex eigenfrequencies of the modes are
extracted from the position of the poles of the exact
reflection coefficient in the complex-frequency plane
[43], and they are presented in Fig. 5(b).
In the presence of absorbing materials, the theory

requires the knowledge of the nonradiative decay rate of
the modes, which is not directly available from our
calculations, since the imaginary part of the complex
eigenfrequency includes both the radiative and nonradiative
components. In the case of low absorption, it is possible to
distinguish the two contributions in an approximate way, by
computing the complex eigenfrequencies twice, the second
time upon setting Drude’s damping rate to zero, and by
taking the difference between the imaginary parts of the
frequency in both calculations:

γnr;j ¼ Im ~ωj − Im ~ωðκnr¼0Þ
j : ð33Þ

The absorption cross section of the multilayered particles
as calculated with our theory [Eqs. (26) and (23)] is depicted
in Fig. 5(a) and it is compared with the exact result of
generalized Mie theory [6,43]. The agreement of the curves
is excellent, especially considering the additional level of
approximation involved in estimating the nonradiative decay
rates. Notable spectral features, such as the dip around ω ¼
0.33ωp, which is due to the interference between partially
overlapping l ¼ 1 modes, or the significantly different
oscillator strengths of l ¼ 1 and l ¼ 2 modes, are well
reproduced by the scattering matrix expansion. These results
demonstrate that the theory can be easily extended to
nonunitary systems, when an estimate of the radiative
efficiency of each quasinormal mode is available [37].

IV. DISCUSSION AND CONCLUSIONS

In this work, we derive a general approach to expand
the scattering matrix of optical systems on the basis of
quasinormal modes and we validate it with illustrative
examples. The theory is directly scalable to any number of
modes and input-output channels. This particular feature
allows us to treat all resonant modes on equal ground, going
beyond the traditional partition of a system in a small set
of narrow modes and a frequency-dependent background
fitted from simulation data. In this way, we achieve a more
transparent picture of the modal structure of the system and,
at the same time, we solve the ambiguity that could arise
in defining the background channel in complex optical
structures with a wide distribution of resonance widths.
Eliminating the need for fitting a frequency-dependent
background allows us to turn the quasinormal-mode
expansion into a first-principles and self-consistent com-
putational tool, which requires only the knowledge of the
complex eigenfrequencies and the far-field behavior of the
electromagnetic modes.
Creating artificial optical materials is an important goal

in current nanophotonic research [45]. Such materials

(a)

(b)

FIG. 5. (a) Absorption cross section of a multilayered spherical
nanoparticle constitued of a dielectric core and alternating layers
of a Drude metal and a dielectric (ε ¼ 2.1), as shown in the inset.
The red solid line is obtained from the quasinormal-mode
expansion, whereas the dashed curve is the exact result from
generalized Mie theory. The values of the radii of the different
layers, starting with the inner one, are r1 ¼ 0.012λp, r2 ¼
0.0186λp, r3 ¼ 0.138λp, r4 ¼ 0.18λp, with all lengths being
expressed in units of the plasma wavelength λp ¼ 2πc=ωp.
(b) Real and imaginary part of the quasinormal-mode eigenfre-
quencies included in the expansion. All modes are TM polarized.
Circles and crosses refer to l ¼ 1 and l ¼ 2 modes, respectively,
where l is the azimuthal number.
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allow us to precisely control the intensity, phase, and
polarization of scattered and transmitted light and to
enhance light-matter interaction at the nanoscale. Spatial
arrangements of optical resonators have been used, for
instance, to realize high-contrast gratings [46], photonic
metasurfaces [20,47,48], and zero-refractive-index meta-
materials [49]. When the constituting optical resonators are
chiral, several intriguing effects can be observed, such as
the asymmetric transmission of circularly and linearly
polarized light [50,51]. Even for a single optical resonator,
like a multilayered particle, the interference of different
resonant states gives rise to interesting phenomena, such
as, for instance, the optical analog of electromagnetically
induced transparency and superscattering [19] and the
formation of scattering dark states [17,18]. Multiple-
resonance effects can also be exploited to tailor the
scattering cross section of a scatterer, making it transparent
to an outside observer [52]. Furthermore, hybrid photonic-
plasmonic systems allow us to tailor the interaction with
quantum emitters [40,41] and evidence polaritonic effects
[42]. All these optical systems are typically characterized
by a complex spectral structure, due to the presence of
multiple electromagnetic modes coupled to the environ-
ment via various incoming and outgoing channels.
Our theory establishes a direct connection between the

electromagnetic modes and the spectral properties of
photonic resonant systems. The expression for the quasi-
normal-mode expansion that we derive is reminiscent of
the Breit-Wigner formula [2,4], albeit with some notable
distinctions. A crucial difference is that the coefficient
of each resonant term in the expansion depends on the
frequencies and the amplitudes of all the other modes via a
specifically introduced coupling matrix Q. This additional
dependence reflects the fact that, whereas the application of
the Breit-Wigner formula is restricted to nonoverlapping
resonances, no such limitation applies to the present theory,
which accounts, in a natural way, for the effective inter-
action among different states originating from the coupling
to a common external environment.
Typically, as an alternative to modal expansion, the

scattering matrix and the derived quantities (such as
transmission or scattering intensities) can also be computed
with a full-wave solver on a frequency-by-frequency basis.
The expansion on quasinormal modes, however, offers
several advantages over direct frequency-domain compu-
tations in several aspects. In the first place, modal methods
allow for a significant reduction of computational times
[15,29], especially when the presence of narrow resonances
dictates a very fine frequency resolution. The most com-
putationally demanding phase of the modal expansion is
the calculation of the quasinormal modes. After that, the
method allows us to arbitrarily reduce the frequency
resolution at no further computational cost.
More importantly, the scattering matrix expansion pro-

vides a more complete amount of information and offers a

deeper physical insight with respect to a frequency-by-
frequency calculation. This aspect is especially helpful, for
instance, in the process of designing and optimizing optical
materials. Building upon the connection between quasi-
normal modes and scattering properties established by the
theory, instead of looking for a specific spectral feature
among a large number of simulated spectra with varying
parameters, one could equivalently search for a quasinor-
mal mode with specific attributes. This strategy is generally
faster, more transparent, and more suggestive of the relation
among the physical parameters. For all these reasons, the
quasinormal-mode expansion of the scattering matrix is
particularly suitable for investigating the physical mecha-
nisms at the heart of highly structured spectra, such as those
arising from the interference of several closely spaced
modes. Indeed, as we note above, this is the case for many
photonic systems that are currently the subject of intense
research efforts. At the same time, the theory also repre-
sents a powerful and predictive tool for the first-principles
calculation of the scattering behavior of general physical
systems.
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APPENDIX A: CASE OF ORTHOGONAL MODES

If the scattering amplitudes of the quasinormal modes are
orthogonal (i.e., b†i bj ¼ 0 for i ≠ j), or the spectral overlap
between the modes can be neglected, the coupling matrixQ
of Eq. (21) becomes diagonal. The least-squares solutions
of Eq. (19) can, then, be written as λj ¼ −bTj C†bj=ð2Im ~ωjÞ.
As a result, the scattering-matrix expansion of Eq. (26)
assumes the simpler expression:

S ¼ Cþ 2i
Xn

j¼1

Im ~ωj

ω − ~ωj

bjbTj
bTj C

†bj
: ðA1Þ

This equation can be understood as a modified version of
the Breit-Wigner formula [2,4], in which the interaction
between overlapping modes is neglected, but where the
relation between the phase of each resonant term and the
direct-coupling matrix C is retained.

APPENDIX B: FREE CHOICE OF
THE NORMALIZATION OF THE
SCATTERING AMPLITUDES

Here, we show that the result in Eq. (26) is independent
of the normalization of the scattering amplitudes of the
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quasinormal modes. To this end, we consider a different set
of amplitudes b0j, which differ from the original bj by some
complex multiplicative constants ϕj (which can be different
for different modes):

b0j ¼ ϕjbj: ðB1Þ

Introducing the diagonal matrix Φ ¼ diagðϕjÞ and the
matrix Q0, defined by the expression in Eq. (21) with
the modified eigenvectors, it is straightforward to verify
that Q ¼ Φ�−1Q0Φ−1. In a similar fashion, we observe that
Eq. (19) retains exactly the same form provided that Q, B,
and Λ are replaced by Q0, the column matrix of the new
eigenvectors, B0, and Λ0 ¼ ΦΛΦ, respectively. Then, sub-
stituting these replacements in Eq. (18), we obtain that

S ¼ C − iB
1

ωI − ~Ω
Λ−1BT ¼ C − iB0 1

ωI − ~Ω
Λ0−1B0T ;

ðB2Þ

i.e., the expansion of the scattering maintains exactly the
same formal expression independently of the choice of the
eigenvector normalization constants.
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