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Benno H. W. Hendriksa,c and John J. van den Dobbelsteena

aMechanical, Maritime and Materials Engineering, Delft University of Technology, Delft, The Netherlands; bReinier de Graaf Hospital, 
Delft, The Netherlands; cMedical Systems, Philips Medical Systems, Best, The Netherlands

ABSTRACT
This study evaluates the performance of deep learning models in the prediction of the end time 
of procedures performed in the cardiac catheterization laboratory (cath lab). We employed only 
the clinical phases derived from video analysis as input to the algorithms. Our results show that 
InceptionTime and LSTM-FCN yielded the most accurate predictions. InceptionTime achieves 
Mean Absolute Error (MAE) values below 5 min and Symmetric Mean Absolute Percentage Error 
(SMAPE) under 6% at 60-s sampling intervals. In contrast, LSTM with attention mechanism and 
standard LSTM models have higher error rates, indicating challenges in handling both long-term 
and short-term dependencies. CNN-based models, especially InceptionTime, excel at feature 
extraction across different scales, making them effective for time-series predictions. We also 
analyzed training and testing times. CNN models, despite higher computational costs, significantly 
reduce prediction errors. The Transformer model has the fastest inference time, making it ideal for 
real-time applications. An ensemble model derived by averaging the two best performing 
algorithms reported low MAE and SMAPE, although needing longer training. Future research 
should validate these findings across different procedural contexts and explore ways to optimize 
training times without losing accuracy. Integrating these models into clinical scheduling systems 
could improve efficiency in cath labs. Our research demonstrates that the models we implemented 
can form the basis of an automated tool, which predicts the optimal time to call the next patient 
with an average error of approximately 30 s. These findings show the effectiveness of deep 
learning models, especially CNN-based architectures, in accurately predicting procedure end 
times.

1.  Introduction

In cardiology, coronary artery disease is anticipated to 
rise by 40% by 2040 [1]. This increase puts strain on 
cardiac catheterization laboratories (cath labs), the pri-
mary treatment facility for minimally invasive cardiac 
procedures. Improving the workflow in the cath lab is 
necessary to anticipate this problem. The estimation of 
the duration of endovascular procedures is closely tied 
to the workflow. Deviations, such as adverse events or 
inefficiencies, can significantly influence procedure 
duration. Conversely, understanding and modeling the 
workflow can provide valuable insights for predicting 
the remaining duration. The workflow is influenced by 
a variety of factors. One factor is the estimation of the 
duration of endovascular procedures. Knowing the 

expected time to the completion (ETC) of a procedure 
is a difficult task since duration can vary substantially 
even across procedures of the same type. The exper-
tise of the cardiologist, the comorbidities of the 
patient, or unexpected occurrences during the inter-
vention may lead to inaccurate ETC estimates. Accurate 
real-time assessment of the duration can increase 
scheduling efficiency by allowing administrators to 
dynamically reschedule before a procedure has run 
overtime.

Currently, studies aiming for cath lab workflow opti-
mization through ETC are lacking. In the past few 
years, substantial attention has been paid to programs 
aimed at minimizing ‘door-to-balloon’ time in the cath 
lab. For example, the Lean Six Sigma methodology has 
been implemented to treat patients with acute 
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coronary syndromes more quickly [2]. Although useful, 
these kinds of solutions still rely on scheduling and 
preparation. A continual understanding of the evolu-
tion of elective treatments, which are planned in the 
hospital, might help to better accommodate the treat-
ment for emergency patients with acute coronary syn-
dromes. The scheduling process is complicated by the 
presence of (semi-)urgent patients and the variability 
in procedure durations [3]. It has been reported that 
schedulers frequently obtain necessary information 
through verbal interactions with the staff, leading to 
unwanted interruptions in the procedure [4]. One 
potential application of an accurate model for ETC pre-
diction involves the creation of an automated tool that 
informs hospital personnel when a procedure is near-
ing completion. The automation could optimize the 
initiation of subsequent procedures, making the sched-
ule process more efficient.

Surgical process modeling has proven to be helpful 
in understanding procedure progression and predict-
ing the end time of a surgery [5]. Despite the empha-
sis on surgical processes, modeling of the actual 
workflow in cath labs has been underexplored [6]. 
However, this time–critical environment might benefit 
most from advances in workflow efficiency [7]. In 
recent times, artificial intelligence algorithms have 
increased the capabilities of these workflow analyses, 
potentially making them suitable for real-time use in 
clinical practice [8].

1.1.  Related work

In the past years, estimated time to completion studies 
assessed preoperative durations using data from sur-
geons, patients, or a combination of both [9,10]. Later, 
intraoperative estimates were developed, with some 
studies depending on manual annotations or additional 
external data [11–14]. Guédon et  al. [4] used a Support 
Vector Machine to predict ETC based on electrosurgical 
device activation, achieving a Mean Absolute Error 
(MAE) of 14 min, outperforming the estimates of the 
surgeons of 19 min. Twinanda [15] reported solid ETC 
findings utilizing just video-based approaches, exceed-
ing statistical studies of historical surgeon data. 
Recently, Ariel [16] employed a pre-trained Video 
Transformer Network as a feature extraction module to 
predict ETC from surgical steps, achieving best results 
with a Transformer model (Symmetric Mean Absolute 
Percentage Error (SMAPE) ≈ 20%).

In this work, we want to demonstrate that clinical 
phases derived from video data can be reliably used 
as input for deep learning models to accurately 

predict the end time of a CAG procedure in the cath 
lab. Furthermore, we want to investigate the error 
behavior of these models, with a focus on the final 
minutes leading up to the end of the procedure. Lastly, 
we want to investigate how the dataset size influences 
testing and training time, as optimizing these aspects 
is fundamental for making our model fast and light-
weight, which is important for a clinical application.

2.  Materials and methods

2.1.  Data acquisition

The data used for training and testing our models con-
sists of video recordings of 222 coronary angiographic 
(CAG) procedures performed at Reinier de Graaf 
Hospital, a large regional hospital in The Netherlands. 
The study received approval from the regional medical 
ethics committee (METC), and informed consent was 
obtained from all patients and staff prior to recording 
the catheterizations. During the observational study 
period, diagnostic CAGs were conducted by nine dif-
ferent cardiologists and recorded with four Axis M1125 
video cameras placed in the cath lab. The median 
duration of a diagnostic CAG in the dataset was 
42.49 min (interquartile range: 34.25—52.54).

Figure 1 shows an example of the videos recorded 
with four cameras at Reinier de Graaf Hospital. A med-
ical doctor, T.V., annotated the clinical phase for every 
second of each procedure in collaboration with an 
experienced interventional cardiologist. The annotation 
process has been performed with the with the anno-
tation software Noldus Observer XT 15, Noldus 
Information Technology, Wageningen, The Netherlands. 
The annotators derived the phases by looking at visual 
clues from the videos. Relevant clinical phases were 
additionally checked and defined in consultation with 
the expert cardiologists that performed the recorded 
procedures. A total number of 14 different phases 
were annotated. Every procedure has been treated as 
a time series, where each data point consists only of 
the clinical phase, labeled with the time to the end of 
the procedure, expressed in seconds.

Table 1 presents a detailed description of each 
annotated workflow phase and their relative duration, 
expressed in minutes. The phases defined above con-
stitute the single-dimension input feature for the DL 
models. Phases Fa and Ha are supplementary phases 
that do not occur in all procedures. In particular, phase 
Fa is observed in 17 procedures, representing 8% of 
the total, while phase Ha occurs in 46 procedures, 
accounting for 21%.
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2.2.  Architectures

Deep learning (DL) has emerged as a potent tool for 
time series analysis, leveraging various architectures to 
capture complex temporal dependencies and patterns. 
It has been reported that sequential data can be effec-
tively processed using deep neural networks (DNNs) to 
achieve state-of-the-art performance [17]. In this work, 
we focus on three main areas of DL for time series 
analysis. These include Recurrent, Convolutional, and 
Attention-based networks.

2.2.1.  RNN models
Recurrent neural networks (RNNs) are the most com-
monly used NN architecture for sequence prediction 
problems [18]. For instance, RNN Encoder-Decoder 
(RNN-ED) frameworks, which use Long Short-Term 
Memory (LSTM) or Gated Recurrent Units (GRUs), effi-
ciently manage sequential data by making predictions 
at each time step based on previous states and out-
puts [18]. This enables robust anomaly identification in 
time series data, as demonstrated in multiple applica-
tions [19].

Among the RNN models, we decided to employ a 
Long Short-Term Memory network. LSTM are a type of 
recurrent neural network particularly well-suited for 
modeling sequential data and capturing temporal 
dependencies [20]. The core of our model consists of 
an LSTM layer with a specified number of units. This 
layer processes the input sequence and captures the 
temporal dependencies within the data. An LSTM layer 
consists of multiple LSTM units designed to produce 
entire sequences of hidden states. This ensures the 
preservation of temporal information throughout the 
network. The internal state of the model is reset after 
each procedure is analyzed. Each input sequence is 
therefore processed independently. A dropout regular-
ization layer is incorporated following the LSTM layers 
to prevent overfitting. A masking layer is used to skip 
certain time steps in the input data, marked by a spec-
ified mask value (–1), to handle variable–length 

Table 1. D efinition of the clinical phases of a CAG procedure.
Clinical 
phase Definition

Mean (IQR) duration 
[min]

A Preparation prior to patient arrival 9.43 (3.84–12.87)
B Patient arrival and transfer to table 0.56 (0.30–0.55)
C Preparation with patient on table 10.89 (8.39–12.91)
D Acquiring endovascular access 5.92 (3.32–6.70)
E Guidance of first catheter to aortic 

root
0.39 (0.13–0.43)

F Entering and recording of first 
coronary artery

5.20 (2.57–6.35)

Fa Additional catheter required during 
phase F

4.52 (1.18–2.85)

G Guidance of second catheter to 
coronary artery

1.01 (0.72–1.10)

H Entering and recording of second 
coronary artery

6.52 (3.72–7.97)

Ha Additional catheter required during 
phase H

3.40 (0.91–4.81)

I Preparation of wound closure 1.79 (1.19–2.08)
J Wound closure 3.46 (2.41–4.07)
K Patient transfer off table and start 

cleaning
0.64 (0.32–0.72)

L Cleaning after patient departure 1.33 (0.42–1.62)

Figure 1. E xample of anonymized video footage recorded during a diagnostic cardiac catheterization at Reinier de Graaf Hospital, 
used to annotate workflow steps.
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sequences. The output of the LSTM layer is fed into a 
dense layer with a ReLU activation function [21]. This 
layer reduces the dimensionality of the output to a 
single prediction value per time step. Together, these 
layers constitute the LSTM network.

2.2.2.  CNN models
Convolutional neural networks (CNNs) are employed 
for time series analysis due to their effectiveness in 
feature extraction from raw data. They also showed 
efficiency in managing large networks with fully con-
nected layers that can be challenging to train. CNNs 
decrease the number of parameters to be learned by 
limiting connections to local input regions and apply 
convolutional filters to extract hierarchical features 
from raw time series data. Furthermore, techniques 
like pooling provide translation invariance to the CNN, 
enhancing the robustness of the extracted features 
[22]. We employed two state-of-the-art CNN based 
architecture for time series regression, namely 
InceptionTime and LSTM-Fully convolutional network 
(LSTM-FCN).

The InceptionTime model is designed to efficiently 
capture multi-scale temporal patterns through parallel 
convolutions of different kernel sizes [23]. The core 
component of the architecture is the Inception mod-
ule, which includes multiple layers. The bottleneck 
layer employs a 1 × 1 convolution to reduce dimen-
sionality for input tensors with multiple channels. 
Parallel convolutions with kernel sizes of 41, 20, and 
10 capture features at multiple scales simultaneously. 
Each convolution uses 32 filters and a stride of 1. A 
max pooling layer with a size of three captures domi-
nant features while reducing dimensionality, followed 
by a convolution with 32 filters of size 1. Outputs 
from parallel convolutions and the max pooling path 
are concatenated along the feature dimension. Batch 
normalization is applied to stabilize and accelerate 
training, followed by a ReLU activation function. 
Residual connections are incorporated every three 
Inception modules to improve gradient flow and 
learning efficiency, mitigating the vanishing gradient 
problem and enabling the model to learn deeper rep-
resentations [24].

In the LSTM-FCN architecture, the LSTM network 
was concatenated with a fully convolutional network. 
Three convolutional blocks were used, as initially pro-
posed by Karim [25], with batch normalization follow-
ing each convolutional layer. To prevent division by 
zero, a constant epsilon of 0.001 was added to the 
denominator of the batch normalization. The momen-
tum, an optimization technique to determine the 

contribution of new batch statistics to the running 
mean and variance, was set to 0.99. ReLU activation 
was applied after batch normalization. The first convo-
lutional block consists of a 1D convolutional layer with 
128 filters and a kernel size of 8, followed by batch 
normalization, a ReLU activation function, and a 
squeeze-and-excite block to recalibrate channel-wise 
feature responses. The second convolutional block 
includes a 1D convolutional layer with 256 filters and 
a kernel size of 5, followed by batch normalization, a 
ReLU activation function, and another squeeze-and-
excite block. Additionally, a modified squeeze-and-
excite block, originally proposed by Wu [26], was 
implemented after the first two convolutional blocks 
to adaptively adjust the input feature maps. This block 
is crucial as different feature maps may affect subse-
quent layers differently during training. The original 
global pooling layer, acting as a majority vote within 
each time series, was removed from this block. The 
third convolutional block features a 1D convolutional 
layer with 128 filters and a kernel size of 3, followed 
by batch normalization and a ReLU activation function. 
Finally, the outputs from the LSTM and FCN branches 
are concatenated, combining temporal and spatial fea-
tures. The concatenated features are passed through a 
dense layer with a ReLU activation function to produce 
the final prediction.

2.2.3.  Attention-based models
Attention-based models are suitable for time series 
analysis because they model dependencies without 
regard for their location within the input or output 
sequences. The attention mechanism enhances the 
capacity to model intricate temporal relationships by 
dynamically focusing on relevant parts of the input 
sequence. For instance the Transformer model, which 
depends purely on attention mechanisms and elimi-
nates recurrence, allows for higher parallelization and 
showed high performance in sequence modeling tasks 
[27]. We implemented two attention-based models, 
namely Transformer and LSTM with Attention mecha-
nism (LSTM-Attention).

The Transformer model, originally designed for nat-
ural language processing, has shown remarkable suc-
cess in various domains due to its ability to model 
long-range dependencies through self-attention [28]. 
We adapted this architecture for time series prediction. 
Our adapted architecture for time series prediction 
incorporates multiple components. The Transformer 
Encoder employs multi-head self-attention layers to 
capture dependencies across different time points, 
with each attention head focusing on a distinct 
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subspace of the input to simultaneously analyze vari-
ous aspects of the data. Layer normalization and resid-
ual connections are applied to stabilize training and 
improve gradient flow. Additionally, a position-wise 
feed-forward network, using 1D convolutions, intro-
duces nonlinearity and further processes the outputs 
from the attention mechanism. This network, which 
follows the multi-head self-attention layers, includes 
two convolutional layers separated by a ReLU activa-
tion function.

Incorporating an attention mechanism into the 
LSTM network enhances its ability to focus on the 
most relevant parts of the input sequence. Here, we 
concatenated the LSTM layer, described in Section 
2.2.1., with a dot-product attention layer, as originally 
proposed by Luong [29]. The attention mechanism 
picks information relevant to the current time step. 
The context vector is a weighted sum of column vec-
tors from prior RNN hidden states. This mechanism 
computes alignment scores using a trainable weight 
matrix and bias. A softmax function [30] is then applied 
to obtain attention weights. A context vector is calcu-
lated as a weighted sum of the input sequence ele-
ments. This approach is well-suited to activities where 
each time step contains a single item of information 
[31]. The output of the attention mechanism is passed 
through a layer with a ReLU activation function, reduc-
ing the dimensionality to a single prediction value per 
time step.

2.2.4.  Ensemble model
We employed an ensemble learning approach to 
enhance the prediction accuracy and robustness of 
our models. This technique combines the strengths of 
multiple models by averaging their outputs, and previ-
ously showed to reduce the variance and improve the 
accuracy of the predictions [32]. For our study, we 
selected the two best-performing models based on 
their validation performance and created an ensemble 
model by averaging their outputs. The two models 
selected for the ensemble were those with the lowest 
validation loss during training. In our case, the models 
were InceptionTime and LSTM-FCN. We chose to 
include only these two models since their performance 
achieved outstanding results compared to the other 
architectures. Each base model was trained inde-
pendently using the same training and validation 
datasets, with early stopping and learning rate reduc-
tion callbacks employed to prevent overfitting and 
ensure optimal convergence.

After training, the predictions from each base model 
on the test dataset were obtained, and the final 

prediction for each time point in the time series was 
calculated by averaging the outputs of the two mod-
els. The advantages of this ensemble approach include 
increased robustness, since averaging the predictions 
mitigates individual model weaknesses. It reduces 
overfitting by combining models with different gener-
alization errors. Furthermore, it improves accuracy by 
leveraging the complementary strengths of the indi-
vidual models. The ensemble model was implemented 
by first training the selected models separately and 
then computing and averaging their predictions for 
the test set to obtain the final prediction.

2.3.  Experimental setup

2.3.1.  Implementation
The models were compiled using a SMAPE loss func-
tion. The loss function is computed as following:
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pred
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time to the end of the procedure and the predictions 
of the models at the second t, respectively. SMAPE loss 
is particularly suited for the prediction of time series 
as it normalizes the absolute error by the sum of the 
actual and predicted values [16]. As a result, SMAPE is 
magnitude-invariant and maintains a consistent scale 
across videos of varying durations, providing a more 
comprehensive representation of ETC performance 
[33]. We evaluated our results considering both SMAPE 
score and the MAE metric. The latter is calculated as:

	 MAE= pred

t
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t1
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1

T
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T

⋅ −( )
=

−

∑ 	 (2)

A limitation of MAE is its dependence on the mag-
nitude of the values. This results in shorter videos typ-
ically exhibiting smaller errors, while longer videos 
tend to show larger errors. Furthermore, MAE does not 
account for the actual duration of the videos or the 
specific temporal locations where the predictions 
are made.

The Adam optimizer [34] was employed to provide 
an adaptive learning rate during training for efficient 
convergence. To prevent overfitting, early stopping was 
employed to end training if the validation loss did not 
improve for a specified number of epochs, set to 100, 
with the best weights restored. Additionally, the learn-
ing rate was halved if the validation loss plateaued 
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within a factor of 0.001, for at least 50 epochs, enabling 
fine-tuning of the learning process. The training sched-
ule consisted of a total of 100 different trials. In each 
trial, we trained and tested the six different models 
with a threefold cross validation approach. In each 
fold, we considered a consistent split for training and 
testing among all the different models. Thus, we were 
able to compare the performance without any bias 
given by a specific split of the data. During every fold, 
we computed the SMAPE and MAE of the models, and 
we then averaged the results among the threefolds. 
The repetition of this process for 100 times, each with 
a different split, is aimed at investigating the robust-
ness of the models for the given task.

In our study, batches were constructed without 
shuffling to preserve the temporal sequence of data, 
which is critical for causal models designed for 
time-series predictions. For most architectures, batch 
normalization layers were not employed to avoid 
potential performance degradation when batches con-
sist of continuous data points from the same sequence. 
[35] Instead, we used regularization techniques like 
dropout to improve generalization. However, the 
LSTM-FCN model includes batch normalization layers. 
To counteract potential issues, batches were con-
structed carefully to include diverse sequences rather 
than consecutive data points from the same source. 
This ensures that the statistics calculated by the batch 
normalization layers remained representative.

2.3.2.  Research framework
We first conducted an initial pilot study on phase rec-
ognition. In this study, we employed DL models to 
predict the phases within the same CAG procedures 
that are used as input in this work. Our pilot study 
highlighted that a temporal window of five seconds in 
the prediction enabled the models to achieve high 
accuracy in phase recognition. Specifically, we found 
that analyzing one data point every 5 s was sufficient 
for accurate phase detection. Expanding the window 
size to up to 2 min produced similar accuracy, whereas 
increasing the frequency to one data point per second 
resulted in a decline in performance. Given that larger 
dataset sizes lead to longer computational times, we 
opted to investigate the effect of data sampling start-
ing from one data point every 5 s.

Therefore, we examined the impact of varying data-
set sizes on computational time to identify an optimal 
balance between minimizing prediction error and the 
time required for model training and testing. 
Specifically, we evaluated the effect of sampling  
data points at intervals of 5, 10, 30, 60, and 120 s. This 

leads to the analysis of five different datasets 
{ | , , , , }D i

i
∈{ }5 10 30 60 120 , for which the following rela-

tionship holds:

	 D D D D D120 60 30 10 5⊂ ⊂ ⊂ ⊂ 	 (3)

Furthermore, our goal is to develop a model that 
predicts procedure end times and lay the foundations 
for an automated tool to inform hospital personnel, 
optimizing the process of calling the next patient. 
Therefore, we investigated the prediction errors of the 
models when 5, 10, 15, and 20 min are left to the end 
of a procedure. Our aim is to assess the feasibility of 
applying such a tool in real-life scenarios to reliably 
detect when a procedure is about to end.

The implementation, and training and testing of the 
algorithms has been done in Python programming 
language (Python Software Foundation, https://www.
python.org/) with TensorFlow version 2.10.0 
(TensorFlow, https://www.tensorflow.org/) and Keras 
version 2.10.0 (Keras, https://keras.io/). The computa-
tions were performed on a system equipped with a 
NVIDIA GeForce RTX 3090 GPU with 24GB of memory.

3.  Results

3.1.  Performance analysis

This section investigates the performance of various 
models in predicting the end time of a procedure. We 
employed MAE and SMAPE as metrics. The models 
assessed are InceptionTime, LSTM, LSTM-FCN, Transformer, 
LSTM-Attention, and an Ensemble approach. A complete 
list of all the performance metrics can be found in the 
Appendix. The notation “MAE_n” or “SMAPE_n” in the 
plot indicates the MAE or SMAPE of the relative model 
with one datapoint every n seconds.

Figure 2 shows the MAE of the models. Here, we 
report the metric with respect to the data sampling 
strategy that ranges from 5 s up to 2 min. InceptionTime 
and Ensemble models exhibit the lowest error across 
all prediction windows. The MAE of these models is 
less than 5 min, regardless of the data sampling. The 
InceptionTime model, in particular, significantly out-
performs other models like LSTM-Attention, which 
shows the highest MAE values of around 20 min. The 
LSTM-FCN also performs well, consistently maintaining 
MAE values lower than 5 min.

The SMAPE metric is depicted in Figure 3. The vari-
ability in the errors that can be noticed changing the 
amount of data points reflect the importance of analyz-
ing such scenarios. InceptionTime, LSTM-FCN, and the 
Ensemble continue to lead with the lowest percentage 

https://www.python.org/
https://www.python.org/
https://www.tensorflow.org
https://keras.io
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errors. This indicates optimal performances in both 
absolute and relative terms. They consistently exhibit 
error values lesser than 20% across all sampling rates, 
despite some fluctuations. A slight decrease in SMAPE is 
observed as the sampling interval widens. In contrast, 
the SMAPE of the LSTM model increases when the data-
set size decreases. The performance of the Transformer 
model is relatively stable, with a SMAPE of 20%.

The trends are consistent among both metrics. 
InceptionTime, Ensemble, and LSTM-FCN maintain low 
error values across all sampling intervals. Conversely, 
LSTM model exhibits larger increases in SMAPE with 
wider sampling intervals. The Transformer model is the 
most consistent in the metrics. The attention mecha-
nism concatenated to the LSTM layer appears to 
decrease the performance of the models.

Figure 2. M ean absolute error in the predictions averaged over 100 different trials.

Figure 3. S ymmetric mean absolute percentage error in the predictions averaged over 100 different trials.
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An example of the output of a model is presented 
in Figure 4. Here, we employed LSTM-FCN on a CAG 
which took 49 min. The performance metrics stand at 
1.07 min for MAE, with a SMAPE of 4.91%. It can be 
observed that prediction accuracy improves as the 
procedure is near completion. Specifically, predictions 
tend to underestimate the ETC after the initial 10 min. 
However, alignment between the model predictions 
and ground truth significantly improves beyond the 
first half-hour, achieving nearly perfect correspon-
dence. Moreover, the observed prediction jumps 
appear to align with phase transitions.

Table 2 shows the performance of all the models 
with one data point every 60 s. The results are aver-
aged over 100 trials. InceptionTime stands out with an 
average SMAPE below 6%. Comparable performances 
can be noticed with LSTM-FCN and Ensemble model, 
with a SMAPE score of 12.3% and 7.2%, respectively.

3.2.  Computational time analysis

The analysis of training and testing times for the mod-
els provides critical insights into their practical applica-
bility, especially in real-world scenarios where both 

training efficiency and inference speed are important. 
Each model was trained with a specific routine, allow-
ing for a maximum of 1000 epochs and incorporating 
early stopping criteria and learning rate adjustments 
based on improvements in SMAPE. The notation 
‘Training time_n’ or ‘Testing time_n’ in the following 
plots indicate the training or testing time of the rela-
tive model with one datapoint every n seconds.

The training time for each model is presented in 
Figure 5. The values represent the average training 
time over onefold of data. InceptionTime shows a pro-
gressive increase in training time as the sampling 
interval widens, with the longest training time 
observed to be about 23 min at the 120-s interval. 
LSTM and LSTM-Attention models exhibit significantly 
shorter training times compared to CNN-based mod-
els, with an average training time of around 5 min per 
fold. LSTM-FCN, despite being a hybrid model combin-
ing RNN and CNN features, demonstrates longer train-
ing times similar to pure CNN models. The Transformer 
model shows moderate training times across all sam-
pling intervals. However, the training time increases 
substantially at longer intervals. The Ensemble model, 
which aggregates predictions from multiple models, 
unsurprisingly exhibits the longest training times 
across all sampling intervals.

The inference time of the models over onefold is 
depicted in Figure 6. In real-life applications, testing 
time, or inference speed, is critical. The testing times 
for all models are much shorter than training times, as 
expected. All the proposed models take, on average, 
less than 1 s to be tested on onefold of data. Since 
onefold consists of 74 procedures, each procedure 
took less than 0.015 s to be inferred.

InceptionTime maintains low testing times around 
0.3 s per fold across all sampling intervals. LSTM and 
LSTM-Attention models also exhibit similar testing 
times, with minor variations across different sampling 
rates. LSTM-FCN, while having longer training times, 
maintains moderate testing times, indicating that the 
convolutional layers do not significantly impact infer-
ence speed. The Transformer model proved to be the 
fastest model in inference phase, with an average test-
ing time of around 0.2 s per fold. The Ensemble model, 
while exhibiting the longest training times, maintains 
reasonably low testing times across all sampling inter-
vals, with a maximum of around 1 s per fold.

3.3.  Quantitative error analysis

The best tradeoff between computational cost and 
performance has been found when sampling one data 
point every 60 s. Thus, here we focus on the absolute 

Figure 4. E xample of end time prediction of the LSTM-FCN 
model. The workflow phases are also marked. This procedure 
was 49 min long and achieved a MAE of 1.07 min and SMAPE 
of 4.91%.

Table 2. M AE and SMAPE of the models with one data point 
every 60 s.
Model MAE_60 [min] SMAPE_60 [%]

InceptionTime 0.53 ± 0.09 5.8 ± 1.2
LSTM 12.06 ± 2.44 44.5 ± 19.3
LSTM-FCN 2.35 ± 0.92 12.3 ± 5.3
Transformer 7.13 ± 2.31 19.3 ± 8.2
LSTM-Attention 17.33 ± 3.54 75.6 ± 21.1
Ensemble 1.32 ± 0.76 7.2 ± 1.9
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difference between predicted and actual time to the 
end of the procedure when 5, 10, 15, and 20 min are 
left to the end, with a 60-s sampling method. The 
notation ‘Error @n’ in the plot indicates the error of the 
relative model when n minutes are left to the end of 
the procedure.

Figure 7 illustrates the absolute error of the models. 
InceptionTime emerges as the standout performer in 
this analysis, consistently achieving the lowest errors 
across all prediction intervals. This CNN-based 

architecture excels in capturing temporal features from 
sequential data, with errors ranging from 25 s at 20 min 
to 31 s at 5 min. Similarly, LSTM-FCN shows promising 
performance (errors from 127 to 76 s), with a trend 
comparable to the Ensemble method. In contrast, 
LSTM and LSTM-Attention models showed worse 
results. LSTM struggles with higher errors, particularly 
at shorter intervals (692 s when 20 min are left to 207 s 
when 5 min are left). LSTM-Attention also faces similar 
issues with errors ranging from 899 to 247 s. The error 

Figure 5. O nefold training time of the models averaged over 100 different trials.

Figure 6. O nefold testing time of the models averaged over 100 different trials.
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of the Transformer model ranges from 482 to 183 s, 
showcasing moderate proficiency in capturing proce-
dural dynamics.

Overall, all the models proposed seem to decrease 
the error as the procedure progresses. This finding is 
relevant and showcases the reliability of the predic-
tions. The models tend to make less mistakes as more 
data becomes available during a procedure. However, 
the InceptionTime model exhibits an inverted trend in 
error rates, as shown in Figure 7. It is important to 
note that the observed errors remain very low, in the 
range of a few seconds.

4.  Discussion

In this study, we implemented multiple DL models to 
predict the end time of CAG procedures in the cath 
lab. The InceptionTime, LSTM-FCN, and Ensemble mod-
els consistently exhibit superior performance across 
both MAE and SMAPE metrics. InceptionTime, in par-
ticular, achieves the lowest error rates, with MAE val-
ues consistently below 5 min and SMAPE percentages 
under 6% when sampling one data point every 60 s. 
The good performance achieved by LSTM-FCN and 
Ensemble models is reflected in a MAE lower than 
5 min. On the other hand, the LSTM-Attention model 
demonstrates the highest SMAPE and MAE values, sug-
gesting that the addition of an attention mechanism 
may not always enhance performance, particularly in 
scenarios requiring the integration of both long-term 
and short-term dependencies. The standard LSTM 

model also shows relatively poor performance, with 
significantly higher error rates than CNN-based mod-
els. This indicates the reliance of this model on more 
granular temporal data to maintain accuracy. The 
Transformer model, while very stable in performance, 
exhibits moderate proficiency, with consistent error 
values around 20%.

All models evaluated in this study are inherently 
causal, meaning they rely only on past data for predic-
tions. This property is crucial for real-time applications, 
as it ensures the models make decisions based only 
on information available at the time, without the need 
for future data. Furthermore, the analysis of testing 
times provides crucial insights into the practical appli-
cability of the models, as real-time predictions are 
essential for integration into clinical workflows. Training 
times, while important, are less critical for practical use 
since training is typically performed offline and infre-
quently. However, the environmental impact of train-
ing deep learning models should not be overlooked as 
long training times contribute to increased energy 
consumption. While CNN-based models excel in pre-
diction accuracy, this comes with a tradeoff in compu-
tational time. InceptionTime, for instance, showed a 
progressive increase in training time, reaching up to 
23 min per fold at the 120-s interval. This is signifi-
cantly longer compared to the average training times 
of around 5 min per fold for RNN-based models. 
However, the increased computational cost is justified 
by the substantial reduction in prediction errors, mak-
ing CNN-based models more suitable for applications 

Figure 7.  Absolute difference between predicted and actual ETC for all the models when 5 to 20 min are left to the end of the 
procedure.
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where accuracy is a priority. LSTM-FCN, despite being 
a hybrid model, exhibits longer training times similar 
to pure CNN models, reflecting the additional compu-
tational cost of integrating convolutional layers. 
Nonetheless, its moderate testing times and strong 
performance metrics make it a robust choice for prac-
tical applications. The Transformer model proves to be 
the fastest in inference, with average testing times 
around 0.2 s per fold, demonstrating its efficiency in 
real-time applications. While this speed makes the 
Transformer particularly well-suited for real-time appli-
cations, it is important to note that all evaluated mod-
els have inference durations compatible with real-time 
requirements. The Ensemble model, while exhibiting 
the longest training times, maintains reasonably low 
testing times and balances the computational load 
with predictive accuracy. The total training time of 
every model seems to increase as the amount of data 
points decrease. This result is due to the training 
schedule of the models. On the one hand, less data is 
available, which means less computations are needed. 
On the other hand, fewer information is provided. 
Therefore, the training process takes more time as the 
algorithms take more iterations to converge to a opti-
mal minimum value of loss function.

The quantitative error analysis further underscores 
the practical applicability of these models. In this 
study, we reported a sampling rate of one data point 
per minute as a tradeoff between computational effi-
ciency and predictive accuracy. Initial experiments 
showed that this rate maintained consistent perfor-
mance across all the architectures while significantly 
reducing the volume of data processed, simplifying 
the input of the model. While the computational sav-
ings may seem minor in isolation, they could become 
impactful when considering large-scale deployments 
or multiple models, contributing to resource efficiency 
and sustainability. LSTM and LSTM-Attention models 
struggle with higher errors, particularly at shorter 
intervals. Transformer showed moderate error rates 
which reflect its stable performance in capturing pro-
cedural dynamics. On the other hand, InceptionTime 
maintains low errors from 25 to 31 s as the procedure 
progresses. This is a strong indicator of its reliability in 
real-world settings. Such precision ensures that predic-
tions become increasingly accurate as more data is 
available. However, we observed a 25% increase in 
error (from 25 s at a 20-min prediction interval to 31 s 
at a 5-min interval). This behavior contrasts with other 
models that show consistent decreases in error as pre-
diction intervals shorten. While this limitation does not 
significantly impact the overall utility of the model, 
one possible explanation is that shorter intervals may 

amplify prediction noise or require the model to cap-
ture rapid transitions in workflow phases, which poses 
additional challenges. The LSTM-FCN model also 
demonstrated robust performance with moderate 
computational costs, making it a viable option when 
balancing accuracy and efficiency. These findings high-
light the importance of adopting CNN-based models 
in practical applications, where the high accuracy and 
reliability of predictions can significantly impact oper-
ational efficiency and outcomes.

It is worth to notice that MAE provides insight into 
the absolute prediction accuracy. As a result, this met-
ric can be biased by the length of the procedure, with 
longer procedures potentially skewing the error mag-
nitude. SMAPE, on the other hand, normalizes the 
error, offering a clearer picture of model performance 
across varying procedure lengths. However, the consis-
tent performance of the models across both MAE and 
SMAPE metrics underscores their robustness in pre-
dicting procedure durations. Our analysis of the stan-
dard deviation revealed an interesting trend: Models 
exhibit higher standard deviations when the evalua-
tion metrics are higher, and lower standard deviations 
when the metrics are lower. This pattern suggests that 
variability in performance tends to align with the 
absolute error magnitude. Importantly, despite this 
observed trend, the standard deviation values remain 
well within an acceptable range across all models, 
ensuring the reliability of the results. The robustness of 
the results is indicator of the possibility of integrating 
such models in a clinical setting. We showed that the 
end time of a CAG procedure can be predicted with 
high accuracy. Thus, the models could be employed in 
the creation of an automated tool which could alert 
the personnel when the procedure is going to end 
without the need for any manual intervention. Possible 
applications could target, for instance, an automated 
call for the next patient in the room, leading to a 
more efficient workflow.

In comparison with existing literature, this study 
shows interesting results in the field of predicting ETC 
of procedures. Unlike previous efforts primarily focused 
on surgical environments [5,16], our work specifically 
addresses the unique operational challenges of the 
cath lab setting by relying on manually annotated 
workflow phases that describe the specific characteris-
tics of this setting. Prior studies have predominantly 
leveraged Machine Learning techniques (SVM) and DL 
models (Transformer, LSTM) models for ETC predictions 
in surgical contexts, showing the potential of such 
approaches [4,15,16]. CNN-based models, particularly 
InceptionTime, showcases superior performance with 
MAE values consistently below 5 min and SMAPE under 
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6%. This marks a substantial improvement over the 
SVM-based prediction MAE of 14 min [4] and the mod-
erate performance of Transformer models, with SMAPE 
around 20% [15]. However, the comparison with other 
studies is limited by differences in datasets and meth-
odologies. For example, Ariel [15] used methods based 
on the extraction of visual features, while our approach 
relies on manually annotated workflow descriptions. 
On the other hand, Meeuwsen et  al. [5] employed a 
laparoscopic dataset of 40 cases of hysterectomy while 
we derived our input phases from videos showing a 
comprehensive view of the entire cath lab. Similarly, 
Guédon [4] used as input the activation pattern of the 
electrosurgical device measured during 57 laparo-
scopic cholecystectomies, while our dataset is based 
only on clinical phase annotations. Additionally, 
Twinanda [14] validated their results on a collection of 
170 bypass videos without any manual annotations, 
whereas our dataset consists of fully annotated videos. 
Furthermore, our research emphasizes the practical 
application of these models in enhancing the opera-
tional efficiency of cath labs. The automated tool envi-
sioned in this study, which alerts hospital personnel 
when a procedure is nearing completion, represents a 
novel application within this context. We showed that 
the models we implemented could form the basis of 
an automated tool, achieving an average error of 
approximately 30 s in predicting the optimal time to 
call the next patient.

This study has some limitations. The dataset 
employed consists of CAGs only, one specific type of 
cardiac diagnostic procedure. However, in the cath labs 
multiple types of procedures are performed, such as 
percutaneous coronary intervention or loop recorder 
implantation. Therefore, the results would benefit from 
further validation on other types of operations. While 
the dataset used is derived from a single center, we 
recognize that this could impact the generalizability of 
the model, particularly in settings where the distribu-
tion of phases and procedures may differ. In real-world 
clinical environments, different hospitals or regions may 
have variations in procedural workflows and opera-
tional practices, which could influence phase distribu-
tions and, in turn, affect the performance of the model. 
Furthermore, the DL architectures employed here lack 
interpretability. Employing more transparent models 
could enhance the trust of the clinical personnel toward 
a medical application. While our approach relies on 
manually annotated workflow descriptions, we recog-
nize that this method is not directly applicable to real 
operating rooms due to the time and effort required 
for manual annotation. The model was trained exclu-
sively on sequences starting from the beginning of 

each procedure, as this approach ensured consistency 
in the training data and allowed the model to learn 
patterns comprehensively from the start of the work-
flow. However, we acknowledge the importance of 
handling incomplete sequences for practical applica-
tions in real-world operating room (OR) settings, where 
systems might be started late or restarted mid-procedure.

CNN-based models, particularly InceptionTime, out-
perform RNN-based and attention-based models in 
predicting the end time of procedures. The architec-
tural design of CNNs allows for effective feature 
extraction across different scales, which is crucial for 
time-series predictions. In the presented study, the 
accuracy can be attributed to the capability of convo-
lutional layers to identify and learn from patterns in 
the sequential data. In contrast, RNN-based models 
such as LSTM and LSTM-Attention struggled with 
higher error rates, particularly with increasing dataset 
sizes, indicating their dependence on finer temporal 
granularity and difficulty in maintaining accuracy over 
longer sequences. The attention mechanism, intended 
to enhance the performance of the LSTM layer, did not 
provide improvements, suggesting that the added 
complexity might not translate to better predictive 
accuracy.

5.  Conclusion and future directions

The findings indicate that while InceptionTime and 
LSTM-FCN offer high accuracy and robust performance, 
their higher computational costs necessitate a consid-
eration of the tradeoffs between accuracy and effi-
ciency in practical applications. The Ensemble model, 
by combining multiple predictions, yields low MAE 
and SMAPE but at the cost of increased training time. 
The consistent performance improvements as the pro-
cedure progresses underscore the importance of 
real-time data integration for enhancing predictive 
accuracy.

Future research could explore optimizing these 
models for faster training times without sacrificing 
accuracy, potentially through advanced optimization 
techniques. This approach could become more resource- 
efficient without compromising performance by mini-
mizing training time, especially in hospital settings 
where advanced hardware could be not available. On 
the other hand, additionally, investigating hybrid 
models that combine the strengths of different archi-
tectures might yield even more accurate and compu-
tationally efficient solutions. Furthermore, it could be 
interesting to investigate how these models could be 
applied in a real scenario. Future work could target 
the integration of such DL models in a scheduling 
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scenario, where having reliable and real-time esti-
mates of the duration of a procedure could improve 
the schedule planning of the cath labs. Additionally, 
future research should explore automated approaches 
to workflow annotation, such as using computer vision 
systems, to enable real-time integration and scalability 
in clinical environments. Finally, extending this analy-
sis to diverse procedural contexts, such as other types 
of surgeries performed in the hospital, would enhance 
the generalizability and applicability of these predic-
tive models. On the ensemble approach, one potential 
improvement involves dynamically weighting the con-
tributions of the underlying models based on their 
performance at different stages of the procedure. For 
example, models like InceptionTime could be given 
higher weights during earlier stages, while other mod-
els better suited for later stages, such as LSTM-based 
architectures, could contribute more at that point.

In this work, we successfully demonstrated that 
clinical phases derived from video data can reliably 
inform deep learning models to predict the end time 
of CAG procedures in the cath lab with high accuracy. 
The InceptionTime model, in particular, achieved out-
standing performance. MAE values consistently scored 
below 5 min and SMAPE percentages under 6% when 
sampling data every 60 s. The model consistently pre-
dicts the ETC of a procedure with an average error of 
approximately 30 s when there are between 20 and 
5 min remaining. These findings highlight the efficacy 
of CNN-based models for ETC analysis.
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Table 4. P erformance one data point every 10 s.
Model MAE_10 [min] SMAPE_10 [%]

InceptionTime 2.79 ± 0.87 10.45 ± 2.08
LSTM 10.17 ± 1.24 35.02 ± 5.12
LSTM-FCN 3.85 ± 0.98 18.53 ± 3.11
Transformer 7.19 ± 1.46 19.61 ± 4.53
LSTM-Attention 22.57 ± 4.11 98.79 ± 12.1
Ensemble 2.89 ± 1.13 10.65 ± 1.32

Table 5. P erformance one data point every 30 s.
Model MAE_30 [min] SMAPE_30 [%]

InceptionTime 0.48 ± 0.12 4.60 ± 1.56
LSTM 10.48 ± 1.23 36.35 ± 9.14
LSTM-FCN 3.54 ± 0.57 17.63 ± 6.32
Transformer 7.13 ± 2.33 19.4 ± 5.49
LSTM-Attention 20.27 ± 4.82 86.80 ± 17.32
Ensemble 1.86 ± 0.62 8.42 ± 2.12

Table 6. P erformance one data point every 120 s.
Model MAE_120 [min] SMAPE_120 [%]

InceptionTime 0.89 ± 0.42 7.37 ± 2.1
LSTM 12.11 ± 3.54 44.41 ± 12.1
LSTM-FCN 1.58 ± 0.76 9.33 ± 2.14
Transformer 7.23 ± 1.25 19.60 ± 3.84
LSTM-Attention 16.85 ± 4.32 72.42 ± 18.34
Ensemble 1.07 ± 0.64 7.21 ± 2.13

Table 7. E rror at different time points.

Model
Error @20 

[s]
Error @15 

[s]
Error @10 

[s]
Error @5 

[s]

InceptionTime 25 ± 6 24 ± 7 27 ± 7 31 ± 5
LSTM 692 ± 73 564 ± 65 363 ± 54 207 ± 21
LSTM-FCN 127 ± 19 100 ± 15 76 ± 12 56 ± 11
Transformer 473 ± 34 482 ± 38 225 ± 21 183 ± 18
LSTM-Attention 899 ± 82 691 ± 77 471 ± 72 247 ± 29
Ensemble 70 ± 23 57 ± 21 46 ± 20 36 ± 26

Table 3. P erformance one data point every 5 s.
Model MAE_5 [min] SMAPE_5 [%]

InceptionTime 4.53 ± 1.1 13.73 ± 2.35
LSTM 8.91 ± 0.88 28.19 ± 5.62
LSTM-FCN 4.20 ± 0.80 19.40 ± 1.24
Transformer 7.23 ± 0.79 19.98 ± 1.82
LSTM-Attention 22.71 ± 0.95 99.87 ± 14.2
Ensemble 3.75 ± 0.82 11.98 ± 1.91
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