

Delft University of Technology

Deep learning methods for clinical workflow phase-based prediction of procedure duration
a benchmark study
Frassini, Emanuele; Vijfvinkel, Teddy S.; Butler, Rick M.; van der Elst, Maarten; Hendriks, Benno H.W.; van
den Dobbelsteen, John J.
DOI
10.1080/24699322.2025.2466426
Publication date
2025
Document Version
Final published version
Published in
Computer assisted surgery (Abingdon, England)

Citation (APA)
Frassini, E., Vijfvinkel, T. S., Butler, R. M., van der Elst, M., Hendriks, B. H. W., & van den Dobbelsteen, J.
J. (2025). Deep learning methods for clinical workflow phase-based prediction of procedure duration: a
benchmark study. Computer assisted surgery (Abingdon, England), 30(1), Article 2466426.
https://doi.org/10.1080/24699322.2025.2466426
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1080/24699322.2025.2466426
https://doi.org/10.1080/24699322.2025.2466426

Computer Assisted Surgery

ISSN: (Print) (Online) Journal homepage: www.tandfonline.com/journals/icsu21

Deep learning methods for clinical workflow phase-based
prediction of procedure duration: a benchmark study

Emanuele Frassini, Teddy S. Vijfvinkel, Rick M. Butler, Maarten van der Elst,
Benno H. W. Hendriks & John J. van den Dobbelsteen

To cite this article: Emanuele Frassini, Teddy S. Vijfvinkel, Rick M. Butler, Maarten van der
Elst, Benno H. W. Hendriks & John J. van den Dobbelsteen (2025) Deep learning methods for
clinical workflow phase-based prediction of procedure duration: a benchmark study, Computer
Assisted Surgery, 30:1, 2466426, DOI: 10.1080/24699322.2025.2466426

To link to this article: https://doi.org/10.1080/24699322.2025.2466426

© 2025 The Author(s). Published by Informa
UK Limited, trading as Taylor & Francis
Group.

Published online: 24 Feb 2025.

Submit your article to this journal

Article views: 393

View related articles

View Crossmark data

Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=icsu21

https://www.tandfonline.com/journals/icsu21?src=pdf
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/24699322.2025.2466426
https://doi.org/10.1080/24699322.2025.2466426
https://www.tandfonline.com/action/authorSubmission?journalCode=icsu21&show=instructions&src=pdf
https://www.tandfonline.com/action/authorSubmission?journalCode=icsu21&show=instructions&src=pdf
https://www.tandfonline.com/doi/mlt/10.1080/24699322.2025.2466426?src=pdf
https://www.tandfonline.com/doi/mlt/10.1080/24699322.2025.2466426?src=pdf
http://crossmark.crossref.org/dialog/?doi=10.1080/24699322.2025.2466426&domain=pdf&date_stamp=24%20Feb%202025
http://crossmark.crossref.org/dialog/?doi=10.1080/24699322.2025.2466426&domain=pdf&date_stamp=24%20Feb%202025
https://www.tandfonline.com/action/journalInformation?journalCode=icsu21

ReseaRch aRticle

Computer Assisted surgery
2025, VoL. 30, No. 1, 2466426

Deep learning methods for clinical workflow phase-based prediction of
procedure duration: a benchmark study

emanuele Frassinia, teddy s. Vijfvinkela,b, Rick M. Butlera, Maarten van der elsta,b,
Benno h. W. hendriksa,c and John J. van den Dobbelsteena

amechanical, maritime and materials engineering, delft university of technology, delft, the Netherlands; breinier de graaf Hospital,
delft, the Netherlands; cmedical systems, philips medical systems, Best, the Netherlands

ABSTRACT
this study evaluates the performance of deep learning models in the prediction of the end time
of procedures performed in the cardiac catheterization laboratory (cath lab). We employed only
the clinical phases derived from video analysis as input to the algorithms. Our results show that
inceptiontime and lstM-FcN yielded the most accurate predictions. inceptiontime achieves
Mean absolute error (Mae) values below 5 min and symmetric Mean absolute Percentage error
(sMaPe) under 6% at 60-s sampling intervals. in contrast, lstM with attention mechanism and
standard lstM models have higher error rates, indicating challenges in handling both long-term
and short-term dependencies. cNN-based models, especially inceptiontime, excel at feature
extraction across different scales, making them effective for time-series predictions. We also
analyzed training and testing times. cNN models, despite higher computational costs, significantly
reduce prediction errors. the transformer model has the fastest inference time, making it ideal for
real-time applications. an ensemble model derived by averaging the two best performing
algorithms reported low Mae and sMaPe, although needing longer training. Future research
should validate these findings across different procedural contexts and explore ways to optimize
training times without losing accuracy. integrating these models into clinical scheduling systems
could improve efficiency in cath labs. Our research demonstrates that the models we implemented
can form the basis of an automated tool, which predicts the optimal time to call the next patient
with an average error of approximately 30 s. these findings show the effectiveness of deep
learning models, especially cNN-based architectures, in accurately predicting procedure end
times.

1. Introduction

in cardiology, coronary artery disease is anticipated to
rise by 40% by 2040 [1]. this increase puts strain on
cardiac catheterization laboratories (cath labs), the pri-
mary treatment facility for minimally invasive cardiac
procedures. improving the workflow in the cath lab is
necessary to anticipate this problem. the estimation of
the duration of endovascular procedures is closely tied
to the workflow. Deviations, such as adverse events or
inefficiencies, can significantly influence procedure
duration. conversely, understanding and modeling the
workflow can provide valuable insights for predicting
the remaining duration. the workflow is influenced by
a variety of factors. One factor is the estimation of the
duration of endovascular procedures. Knowing the

expected time to the completion (etc) of a procedure
is a difficult task since duration can vary substantially
even across procedures of the same type. the exper-
tise of the cardiologist, the comorbidities of the
patient, or unexpected occurrences during the inter-
vention may lead to inaccurate etc estimates. accurate
real-time assessment of the duration can increase
scheduling efficiency by allowing administrators to
dynamically reschedule before a procedure has run
overtime.

currently, studies aiming for cath lab workflow opti-
mization through etc are lacking. in the past few
years, substantial attention has been paid to programs
aimed at minimizing ‘door-to-balloon’ time in the cath
lab. For example, the lean six sigma methodology has
been implemented to treat patients with acute

© 2025 the Author(s). published by informa uK Limited, trading as taylor & Francis group.

CONTACT emanuele Frassini e.frassini@tudelft.nl mechanical, maritime and materials engineering, delft university of technology, delft, the
Netherlands

https://doi.org/10.1080/24699322.2025.2466426

this is an open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted
use, distribution, and reproduction in any medium, provided the original work is properly cited. the terms on which this article has been published allow the posting of the
Accepted manuscript in a repository by the author(s) or with their consent.

KEYWORDS
Deep learning; time
series; cNN; regression

mailto:e.frassini@tudelft.nl
https://doi.org/10.1080/24699322.2025.2466426
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1080/24699322.2025.2466426&domain=pdf&date_stamp=2025-2-24
http://www.tandfonline.com

2 e. FRassiNi et al.

coronary syndromes more quickly [2]. although useful,
these kinds of solutions still rely on scheduling and
preparation. a continual understanding of the evolu-
tion of elective treatments, which are planned in the
hospital, might help to better accommodate the treat-
ment for emergency patients with acute coronary syn-
dromes. the scheduling process is complicated by the
presence of (semi-)urgent patients and the variability
in procedure durations [3]. it has been reported that
schedulers frequently obtain necessary information
through verbal interactions with the staff, leading to
unwanted interruptions in the procedure [4]. One
potential application of an accurate model for etc pre-
diction involves the creation of an automated tool that
informs hospital personnel when a procedure is near-
ing completion. the automation could optimize the
initiation of subsequent procedures, making the sched-
ule process more efficient.

surgical process modeling has proven to be helpful
in understanding procedure progression and predict-
ing the end time of a surgery [5]. Despite the empha-
sis on surgical processes, modeling of the actual
workflow in cath labs has been underexplored [6].
however, this time–critical environment might benefit
most from advances in workflow efficiency [7]. in
recent times, artificial intelligence algorithms have
increased the capabilities of these workflow analyses,
potentially making them suitable for real-time use in
clinical practice [8].

1.1. Related work

in the past years, estimated time to completion studies
assessed preoperative durations using data from sur-
geons, patients, or a combination of both [9,10]. later,
intraoperative estimates were developed, with some
studies depending on manual annotations or additional
external data [11–14]. Guédon et al. [4] used a support
Vector Machine to predict etc based on electrosurgical
device activation, achieving a Mean absolute error
(Mae) of 14 min, outperforming the estimates of the
surgeons of 19 min. twinanda [15] reported solid etc
findings utilizing just video-based approaches, exceed-
ing statistical studies of historical surgeon data.
Recently, ariel [16] employed a pre-trained Video
transformer Network as a feature extraction module to
predict etc from surgical steps, achieving best results
with a transformer model (symmetric Mean absolute
Percentage error (sMaPe) ≈ 20%).

in this work, we want to demonstrate that clinical
phases derived from video data can be reliably used
as input for deep learning models to accurately

predict the end time of a caG procedure in the cath
lab. Furthermore, we want to investigate the error
behavior of these models, with a focus on the final
minutes leading up to the end of the procedure. lastly,
we want to investigate how the dataset size influences
testing and training time, as optimizing these aspects
is fundamental for making our model fast and light-
weight, which is important for a clinical application.

2. Materials and methods

2.1. Data acquisition

the data used for training and testing our models con-
sists of video recordings of 222 coronary angiographic
(caG) procedures performed at Reinier de Graaf
hospital, a large regional hospital in the Netherlands.
the study received approval from the regional medical
ethics committee (Metc), and informed consent was
obtained from all patients and staff prior to recording
the catheterizations. During the observational study
period, diagnostic caGs were conducted by nine dif-
ferent cardiologists and recorded with four axis M1125
video cameras placed in the cath lab. the median
duration of a diagnostic caG in the dataset was
42.49 min (interquartile range: 34.25—52.54).

Figure 1 shows an example of the videos recorded
with four cameras at Reinier de Graaf hospital. a med-
ical doctor, t.V., annotated the clinical phase for every
second of each procedure in collaboration with an
experienced interventional cardiologist. the annotation
process has been performed with the with the anno-
tation software Noldus Observer Xt 15, Noldus
information technology, Wageningen, the Netherlands.
the annotators derived the phases by looking at visual
clues from the videos. Relevant clinical phases were
additionally checked and defined in consultation with
the expert cardiologists that performed the recorded
procedures. a total number of 14 different phases
were annotated. every procedure has been treated as
a time series, where each data point consists only of
the clinical phase, labeled with the time to the end of
the procedure, expressed in seconds.

table 1 presents a detailed description of each
annotated workflow phase and their relative duration,
expressed in minutes. the phases defined above con-
stitute the single-dimension input feature for the Dl
models. Phases Fa and ha are supplementary phases
that do not occur in all procedures. in particular, phase
Fa is observed in 17 procedures, representing 8% of
the total, while phase ha occurs in 46 procedures,
accounting for 21%.

cOMPuteR assisteD suRGeRy 3

2.2. Architectures

Deep learning (Dl) has emerged as a potent tool for
time series analysis, leveraging various architectures to
capture complex temporal dependencies and patterns.
it has been reported that sequential data can be effec-
tively processed using deep neural networks (DNNs) to
achieve state-of-the-art performance [17]. in this work,
we focus on three main areas of Dl for time series
analysis. these include Recurrent, convolutional, and
attention-based networks.

2.2.1. RNN models
Recurrent neural networks (RNNs) are the most com-
monly used NN architecture for sequence prediction
problems [18]. For instance, RNN encoder-Decoder
(RNN-eD) frameworks, which use long short-term
Memory (lstM) or Gated Recurrent units (GRus), effi-
ciently manage sequential data by making predictions
at each time step based on previous states and out-
puts [18]. this enables robust anomaly identification in
time series data, as demonstrated in multiple applica-
tions [19].

among the RNN models, we decided to employ a
long short-term Memory network. lstM are a type of
recurrent neural network particularly well-suited for
modeling sequential data and capturing temporal
dependencies [20]. the core of our model consists of
an lstM layer with a specified number of units. this
layer processes the input sequence and captures the
temporal dependencies within the data. an lstM layer
consists of multiple lstM units designed to produce
entire sequences of hidden states. this ensures the
preservation of temporal information throughout the
network. the internal state of the model is reset after
each procedure is analyzed. each input sequence is
therefore processed independently. a dropout regular-
ization layer is incorporated following the lstM layers
to prevent overfitting. a masking layer is used to skip
certain time steps in the input data, marked by a spec-
ified mask value (–1), to handle variable–length

Table 1. definition of the clinical phases of a CAg procedure.
Clinical
phase definition

mean (iQr) duration
[min]

A preparation prior to patient arrival 9.43 (3.84–12.87)
B patient arrival and transfer to table 0.56 (0.30–0.55)
C preparation with patient on table 10.89 (8.39–12.91)
D Acquiring endovascular access 5.92 (3.32–6.70)
E guidance of first catheter to aortic

root
0.39 (0.13–0.43)

F entering and recording of first
coronary artery

5.20 (2.57–6.35)

Fa Additional catheter required during
phase F

4.52 (1.18–2.85)

G guidance of second catheter to
coronary artery

1.01 (0.72–1.10)

H entering and recording of second
coronary artery

6.52 (3.72–7.97)

Ha Additional catheter required during
phase H

3.40 (0.91–4.81)

I preparation of wound closure 1.79 (1.19–2.08)
J Wound closure 3.46 (2.41–4.07)
K patient transfer off table and start

cleaning
0.64 (0.32–0.72)

L Cleaning after patient departure 1.33 (0.42–1.62)

Figure 1. example of anonymized video footage recorded during a diagnostic cardiac catheterization at reinier de graaf Hospital,
used to annotate workflow steps.

4 e. FRassiNi et al.

sequences. the output of the lstM layer is fed into a
dense layer with a Relu activation function [21]. this
layer reduces the dimensionality of the output to a
single prediction value per time step. together, these
layers constitute the lstM network.

2.2.2. CNN models
convolutional neural networks (cNNs) are employed
for time series analysis due to their effectiveness in
feature extraction from raw data. they also showed
efficiency in managing large networks with fully con-
nected layers that can be challenging to train. cNNs
decrease the number of parameters to be learned by
limiting connections to local input regions and apply
convolutional filters to extract hierarchical features
from raw time series data. Furthermore, techniques
like pooling provide translation invariance to the cNN,
enhancing the robustness of the extracted features
[22]. We employed two state-of-the-art cNN based
architecture for time series regression, namely
inceptiontime and lstM-Fully convolutional network
(lstM-FcN).

the inceptiontime model is designed to efficiently
capture multi-scale temporal patterns through parallel
convolutions of different kernel sizes [23]. the core
component of the architecture is the inception mod-
ule, which includes multiple layers. the bottleneck
layer employs a 1 × 1 convolution to reduce dimen-
sionality for input tensors with multiple channels.
Parallel convolutions with kernel sizes of 41, 20, and
10 capture features at multiple scales simultaneously.
each convolution uses 32 filters and a stride of 1. a
max pooling layer with a size of three captures domi-
nant features while reducing dimensionality, followed
by a convolution with 32 filters of size 1. Outputs
from parallel convolutions and the max pooling path
are concatenated along the feature dimension. Batch
normalization is applied to stabilize and accelerate
training, followed by a Relu activation function.
Residual connections are incorporated every three
inception modules to improve gradient flow and
learning efficiency, mitigating the vanishing gradient
problem and enabling the model to learn deeper rep-
resentations [24].

in the lstM-FcN architecture, the lstM network
was concatenated with a fully convolutional network.
three convolutional blocks were used, as initially pro-
posed by Karim [25], with batch normalization follow-
ing each convolutional layer. to prevent division by
zero, a constant epsilon of 0.001 was added to the
denominator of the batch normalization. the momen-
tum, an optimization technique to determine the

contribution of new batch statistics to the running
mean and variance, was set to 0.99. Relu activation
was applied after batch normalization. the first convo-
lutional block consists of a 1D convolutional layer with
128 filters and a kernel size of 8, followed by batch
normalization, a Relu activation function, and a
squeeze-and-excite block to recalibrate channel-wise
feature responses. the second convolutional block
includes a 1D convolutional layer with 256 filters and
a kernel size of 5, followed by batch normalization, a
Relu activation function, and another squeeze-and-
excite block. additionally, a modified squeeze-and-
excite block, originally proposed by Wu [26], was
implemented after the first two convolutional blocks
to adaptively adjust the input feature maps. this block
is crucial as different feature maps may affect subse-
quent layers differently during training. the original
global pooling layer, acting as a majority vote within
each time series, was removed from this block. the
third convolutional block features a 1D convolutional
layer with 128 filters and a kernel size of 3, followed
by batch normalization and a Relu activation function.
Finally, the outputs from the lstM and FcN branches
are concatenated, combining temporal and spatial fea-
tures. the concatenated features are passed through a
dense layer with a Relu activation function to produce
the final prediction.

2.2.3. Attention-based models
attention-based models are suitable for time series
analysis because they model dependencies without
regard for their location within the input or output
sequences. the attention mechanism enhances the
capacity to model intricate temporal relationships by
dynamically focusing on relevant parts of the input
sequence. For instance the transformer model, which
depends purely on attention mechanisms and elimi-
nates recurrence, allows for higher parallelization and
showed high performance in sequence modeling tasks
[27]. We implemented two attention-based models,
namely transformer and lstM with attention mecha-
nism (lstM-attention).

the transformer model, originally designed for nat-
ural language processing, has shown remarkable suc-
cess in various domains due to its ability to model
long-range dependencies through self-attention [28].
We adapted this architecture for time series prediction.
Our adapted architecture for time series prediction
incorporates multiple components. the transformer
encoder employs multi-head self-attention layers to
capture dependencies across different time points,
with each attention head focusing on a distinct

cOMPuteR assisteD suRGeRy 5

subspace of the input to simultaneously analyze vari-
ous aspects of the data. layer normalization and resid-
ual connections are applied to stabilize training and
improve gradient flow. additionally, a position-wise
feed-forward network, using 1D convolutions, intro-
duces nonlinearity and further processes the outputs
from the attention mechanism. this network, which
follows the multi-head self-attention layers, includes
two convolutional layers separated by a Relu activa-
tion function.

incorporating an attention mechanism into the
lstM network enhances its ability to focus on the
most relevant parts of the input sequence. here, we
concatenated the lstM layer, described in section
2.2.1., with a dot-product attention layer, as originally
proposed by luong [29]. the attention mechanism
picks information relevant to the current time step.
the context vector is a weighted sum of column vec-
tors from prior RNN hidden states. this mechanism
computes alignment scores using a trainable weight
matrix and bias. a softmax function [30] is then applied
to obtain attention weights. a context vector is calcu-
lated as a weighted sum of the input sequence ele-
ments. this approach is well-suited to activities where
each time step contains a single item of information
[31]. the output of the attention mechanism is passed
through a layer with a Relu activation function, reduc-
ing the dimensionality to a single prediction value per
time step.

2.2.4. Ensemble model
We employed an ensemble learning approach to
enhance the prediction accuracy and robustness of
our models. this technique combines the strengths of
multiple models by averaging their outputs, and previ-
ously showed to reduce the variance and improve the
accuracy of the predictions [32]. For our study, we
selected the two best-performing models based on
their validation performance and created an ensemble
model by averaging their outputs. the two models
selected for the ensemble were those with the lowest
validation loss during training. in our case, the models
were inceptiontime and lstM-FcN. We chose to
include only these two models since their performance
achieved outstanding results compared to the other
architectures. each base model was trained inde-
pendently using the same training and validation
datasets, with early stopping and learning rate reduc-
tion callbacks employed to prevent overfitting and
ensure optimal convergence.

after training, the predictions from each base model
on the test dataset were obtained, and the final

prediction for each time point in the time series was
calculated by averaging the outputs of the two mod-
els. the advantages of this ensemble approach include
increased robustness, since averaging the predictions
mitigates individual model weaknesses. it reduces
overfitting by combining models with different gener-
alization errors. Furthermore, it improves accuracy by
leveraging the complementary strengths of the indi-
vidual models. the ensemble model was implemented
by first training the selected models separately and
then computing and averaging their predictions for
the test set to obtain the final prediction.

2.3. Experimental setup

2.3.1. Implementation
the models were compiled using a sMaPe loss func-
tion. the loss function is computed as following:

 SMAPE=
pred

t

true

t

true

t

pred

t

1
100

0

1

T

y y

y yt

T

⋅
−

+

⋅

=

−

∑ , (1)

where T is the total duration of the procedure,
y ytrue

t

pred

t
and are the ground truth of the estimated

time to the end of the procedure and the predictions
of the models at the second t, respectively. sMaPe loss
is particularly suited for the prediction of time series
as it normalizes the absolute error by the sum of the
actual and predicted values [16]. as a result, sMaPe is
magnitude-invariant and maintains a consistent scale
across videos of varying durations, providing a more
comprehensive representation of etc performance
[33]. We evaluated our results considering both sMaPe
score and the Mae metric. the latter is calculated as:

 MAE= pred

t

true

t1

0

1

T
y y

t

T

⋅ −()
=

−

∑ (2)

a limitation of Mae is its dependence on the mag-
nitude of the values. this results in shorter videos typ-
ically exhibiting smaller errors, while longer videos
tend to show larger errors. Furthermore, Mae does not
account for the actual duration of the videos or the
specific temporal locations where the predictions
are made.

the adam optimizer [34] was employed to provide
an adaptive learning rate during training for efficient
convergence. to prevent overfitting, early stopping was
employed to end training if the validation loss did not
improve for a specified number of epochs, set to 100,
with the best weights restored. additionally, the learn-
ing rate was halved if the validation loss plateaued

6 e. FRassiNi et al.

within a factor of 0.001, for at least 50 epochs, enabling
fine-tuning of the learning process. the training sched-
ule consisted of a total of 100 different trials. in each
trial, we trained and tested the six different models
with a threefold cross validation approach. in each
fold, we considered a consistent split for training and
testing among all the different models. thus, we were
able to compare the performance without any bias
given by a specific split of the data. During every fold,
we computed the sMaPe and Mae of the models, and
we then averaged the results among the threefolds.
the repetition of this process for 100 times, each with
a different split, is aimed at investigating the robust-
ness of the models for the given task.

in our study, batches were constructed without
shuffling to preserve the temporal sequence of data,
which is critical for causal models designed for
time-series predictions. For most architectures, batch
normalization layers were not employed to avoid
potential performance degradation when batches con-
sist of continuous data points from the same sequence.
[35] instead, we used regularization techniques like
dropout to improve generalization. however, the
lstM-FcN model includes batch normalization layers.
to counteract potential issues, batches were con-
structed carefully to include diverse sequences rather
than consecutive data points from the same source.
this ensures that the statistics calculated by the batch
normalization layers remained representative.

2.3.2. Research framework
We first conducted an initial pilot study on phase rec-
ognition. in this study, we employed Dl models to
predict the phases within the same caG procedures
that are used as input in this work. Our pilot study
highlighted that a temporal window of five seconds in
the prediction enabled the models to achieve high
accuracy in phase recognition. specifically, we found
that analyzing one data point every 5 s was sufficient
for accurate phase detection. expanding the window
size to up to 2 min produced similar accuracy, whereas
increasing the frequency to one data point per second
resulted in a decline in performance. Given that larger
dataset sizes lead to longer computational times, we
opted to investigate the effect of data sampling start-
ing from one data point every 5 s.

therefore, we examined the impact of varying data-
set sizes on computational time to identify an optimal
balance between minimizing prediction error and the
time required for model training and testing.
specifically, we evaluated the effect of sampling
data points at intervals of 5, 10, 30, 60, and 120 s. this

leads to the analysis of five different datasets
{ | , , , , }D i

i
∈{ }5 10 30 60 120 , for which the following rela-

tionship holds:

 D D D D D120 60 30 10 5⊂ ⊂ ⊂ ⊂ (3)

Furthermore, our goal is to develop a model that
predicts procedure end times and lay the foundations
for an automated tool to inform hospital personnel,
optimizing the process of calling the next patient.
therefore, we investigated the prediction errors of the
models when 5, 10, 15, and 20 min are left to the end
of a procedure. Our aim is to assess the feasibility of
applying such a tool in real-life scenarios to reliably
detect when a procedure is about to end.

the implementation, and training and testing of the
algorithms has been done in Python programming
language (Python software Foundation, https://www.
python.org/) with tensorFlow version 2.10.0
(tensorFlow, https://www.tensorflow.org/) and Keras
version 2.10.0 (Keras, https://keras.io/). the computa-
tions were performed on a system equipped with a
NViDia GeForce RtX 3090 GPu with 24GB of memory.

3. Results

3.1. Performance analysis

this section investigates the performance of various
models in predicting the end time of a procedure. We
employed Mae and sMaPe as metrics. the models
assessed are inceptiontime, lstM, lstM-FcN, transformer,
lstM-attention, and an ensemble approach. a complete
list of all the performance metrics can be found in the
appendix. the notation “Mae_n” or “sMaPe_n” in the
plot indicates the Mae or sMaPe of the relative model
with one datapoint every n seconds.

Figure 2 shows the Mae of the models. here, we
report the metric with respect to the data sampling
strategy that ranges from 5 s up to 2 min. inceptiontime
and ensemble models exhibit the lowest error across
all prediction windows. the Mae of these models is
less than 5 min, regardless of the data sampling. the
inceptiontime model, in particular, significantly out-
performs other models like lstM-attention, which
shows the highest Mae values of around 20 min. the
lstM-FcN also performs well, consistently maintaining
Mae values lower than 5 min.

the sMaPe metric is depicted in Figure 3. the vari-
ability in the errors that can be noticed changing the
amount of data points reflect the importance of analyz-
ing such scenarios. inceptiontime, lstM-FcN, and the
ensemble continue to lead with the lowest percentage

https://www.python.org/
https://www.python.org/
https://www.tensorflow.org
https://keras.io

cOMPuteR assisteD suRGeRy 7

errors. this indicates optimal performances in both
absolute and relative terms. they consistently exhibit
error values lesser than 20% across all sampling rates,
despite some fluctuations. a slight decrease in sMaPe is
observed as the sampling interval widens. in contrast,
the sMaPe of the lstM model increases when the data-
set size decreases. the performance of the transformer
model is relatively stable, with a sMaPe of 20%.

the trends are consistent among both metrics.
inceptiontime, ensemble, and lstM-FcN maintain low
error values across all sampling intervals. conversely,
lstM model exhibits larger increases in sMaPe with
wider sampling intervals. the transformer model is the
most consistent in the metrics. the attention mecha-
nism concatenated to the lstM layer appears to
decrease the performance of the models.

Figure 2. mean absolute error in the predictions averaged over 100 different trials.

Figure 3. symmetric mean absolute percentage error in the predictions averaged over 100 different trials.

8 e. FRassiNi et al.

an example of the output of a model is presented
in Figure 4. here, we employed lstM-FcN on a caG
which took 49 min. the performance metrics stand at
1.07 min for Mae, with a sMaPe of 4.91%. it can be
observed that prediction accuracy improves as the
procedure is near completion. specifically, predictions
tend to underestimate the etc after the initial 10 min.
however, alignment between the model predictions
and ground truth significantly improves beyond the
first half-hour, achieving nearly perfect correspon-
dence. Moreover, the observed prediction jumps
appear to align with phase transitions.

table 2 shows the performance of all the models
with one data point every 60 s. the results are aver-
aged over 100 trials. inceptiontime stands out with an
average sMaPe below 6%. comparable performances
can be noticed with lstM-FcN and ensemble model,
with a sMaPe score of 12.3% and 7.2%, respectively.

3.2. Computational time analysis

the analysis of training and testing times for the mod-
els provides critical insights into their practical applica-
bility, especially in real-world scenarios where both

training efficiency and inference speed are important.
each model was trained with a specific routine, allow-
ing for a maximum of 1000 epochs and incorporating
early stopping criteria and learning rate adjustments
based on improvements in sMaPe. the notation
‘training time_n’ or ‘testing time_n’ in the following
plots indicate the training or testing time of the rela-
tive model with one datapoint every n seconds.

the training time for each model is presented in
Figure 5. the values represent the average training
time over onefold of data. inceptiontime shows a pro-
gressive increase in training time as the sampling
interval widens, with the longest training time
observed to be about 23 min at the 120-s interval.
lstM and lstM-attention models exhibit significantly
shorter training times compared to cNN-based mod-
els, with an average training time of around 5 min per
fold. lstM-FcN, despite being a hybrid model combin-
ing RNN and cNN features, demonstrates longer train-
ing times similar to pure cNN models. the transformer
model shows moderate training times across all sam-
pling intervals. however, the training time increases
substantially at longer intervals. the ensemble model,
which aggregates predictions from multiple models,
unsurprisingly exhibits the longest training times
across all sampling intervals.

the inference time of the models over onefold is
depicted in Figure 6. in real-life applications, testing
time, or inference speed, is critical. the testing times
for all models are much shorter than training times, as
expected. all the proposed models take, on average,
less than 1 s to be tested on onefold of data. since
onefold consists of 74 procedures, each procedure
took less than 0.015 s to be inferred.

inceptiontime maintains low testing times around
0.3 s per fold across all sampling intervals. lstM and
lstM-attention models also exhibit similar testing
times, with minor variations across different sampling
rates. lstM-FcN, while having longer training times,
maintains moderate testing times, indicating that the
convolutional layers do not significantly impact infer-
ence speed. the transformer model proved to be the
fastest model in inference phase, with an average test-
ing time of around 0.2 s per fold. the ensemble model,
while exhibiting the longest training times, maintains
reasonably low testing times across all sampling inter-
vals, with a maximum of around 1 s per fold.

3.3. Quantitative error analysis

the best tradeoff between computational cost and
performance has been found when sampling one data
point every 60 s. thus, here we focus on the absolute

Figure 4. example of end time prediction of the Lstm-FCN
model. the workflow phases are also marked. this procedure
was 49 min long and achieved a mAe of 1.07 min and smApe
of 4.91%.

Table 2. mAe and smApe of the models with one data point
every 60 s.
model mAe_60 [min] smApe_60 [%]

InceptionTime 0.53 ± 0.09 5.8 ± 1.2
LSTM 12.06 ± 2.44 44.5 ± 19.3
LSTM-FCN 2.35 ± 0.92 12.3 ± 5.3
Transformer 7.13 ± 2.31 19.3 ± 8.2
LSTM-Attention 17.33 ± 3.54 75.6 ± 21.1
Ensemble 1.32 ± 0.76 7.2 ± 1.9

cOMPuteR assisteD suRGeRy 9

difference between predicted and actual time to the
end of the procedure when 5, 10, 15, and 20 min are
left to the end, with a 60-s sampling method. the
notation ‘error @n’ in the plot indicates the error of the
relative model when n minutes are left to the end of
the procedure.

Figure 7 illustrates the absolute error of the models.
inceptiontime emerges as the standout performer in
this analysis, consistently achieving the lowest errors
across all prediction intervals. this cNN-based

architecture excels in capturing temporal features from
sequential data, with errors ranging from 25 s at 20 min
to 31 s at 5 min. similarly, lstM-FcN shows promising
performance (errors from 127 to 76 s), with a trend
comparable to the ensemble method. in contrast,
lstM and lstM-attention models showed worse
results. lstM struggles with higher errors, particularly
at shorter intervals (692 s when 20 min are left to 207 s
when 5 min are left). lstM-attention also faces similar
issues with errors ranging from 899 to 247 s. the error

Figure 5. onefold training time of the models averaged over 100 different trials.

Figure 6. onefold testing time of the models averaged over 100 different trials.

10 e. FRassiNi et al.

of the transformer model ranges from 482 to 183 s,
showcasing moderate proficiency in capturing proce-
dural dynamics.

Overall, all the models proposed seem to decrease
the error as the procedure progresses. this finding is
relevant and showcases the reliability of the predic-
tions. the models tend to make less mistakes as more
data becomes available during a procedure. however,
the inceptiontime model exhibits an inverted trend in
error rates, as shown in Figure 7. it is important to
note that the observed errors remain very low, in the
range of a few seconds.

4. Discussion

in this study, we implemented multiple Dl models to
predict the end time of caG procedures in the cath
lab. the inceptiontime, lstM-FcN, and ensemble mod-
els consistently exhibit superior performance across
both Mae and sMaPe metrics. inceptiontime, in par-
ticular, achieves the lowest error rates, with Mae val-
ues consistently below 5 min and sMaPe percentages
under 6% when sampling one data point every 60 s.
the good performance achieved by lstM-FcN and
ensemble models is reflected in a Mae lower than
5 min. On the other hand, the lstM-attention model
demonstrates the highest sMaPe and Mae values, sug-
gesting that the addition of an attention mechanism
may not always enhance performance, particularly in
scenarios requiring the integration of both long-term
and short-term dependencies. the standard lstM

model also shows relatively poor performance, with
significantly higher error rates than cNN-based mod-
els. this indicates the reliance of this model on more
granular temporal data to maintain accuracy. the
transformer model, while very stable in performance,
exhibits moderate proficiency, with consistent error
values around 20%.

all models evaluated in this study are inherently
causal, meaning they rely only on past data for predic-
tions. this property is crucial for real-time applications,
as it ensures the models make decisions based only
on information available at the time, without the need
for future data. Furthermore, the analysis of testing
times provides crucial insights into the practical appli-
cability of the models, as real-time predictions are
essential for integration into clinical workflows. training
times, while important, are less critical for practical use
since training is typically performed offline and infre-
quently. however, the environmental impact of train-
ing deep learning models should not be overlooked as
long training times contribute to increased energy
consumption. While cNN-based models excel in pre-
diction accuracy, this comes with a tradeoff in compu-
tational time. inceptiontime, for instance, showed a
progressive increase in training time, reaching up to
23 min per fold at the 120-s interval. this is signifi-
cantly longer compared to the average training times
of around 5 min per fold for RNN-based models.
however, the increased computational cost is justified
by the substantial reduction in prediction errors, mak-
ing cNN-based models more suitable for applications

Figure 7. Absolute difference between predicted and actual etC for all the models when 5 to 20 min are left to the end of the
procedure.

cOMPuteR assisteD suRGeRy 11

where accuracy is a priority. lstM-FcN, despite being
a hybrid model, exhibits longer training times similar
to pure cNN models, reflecting the additional compu-
tational cost of integrating convolutional layers.
Nonetheless, its moderate testing times and strong
performance metrics make it a robust choice for prac-
tical applications. the transformer model proves to be
the fastest in inference, with average testing times
around 0.2 s per fold, demonstrating its efficiency in
real-time applications. While this speed makes the
transformer particularly well-suited for real-time appli-
cations, it is important to note that all evaluated mod-
els have inference durations compatible with real-time
requirements. the ensemble model, while exhibiting
the longest training times, maintains reasonably low
testing times and balances the computational load
with predictive accuracy. the total training time of
every model seems to increase as the amount of data
points decrease. this result is due to the training
schedule of the models. On the one hand, less data is
available, which means less computations are needed.
On the other hand, fewer information is provided.
therefore, the training process takes more time as the
algorithms take more iterations to converge to a opti-
mal minimum value of loss function.

the quantitative error analysis further underscores
the practical applicability of these models. in this
study, we reported a sampling rate of one data point
per minute as a tradeoff between computational effi-
ciency and predictive accuracy. initial experiments
showed that this rate maintained consistent perfor-
mance across all the architectures while significantly
reducing the volume of data processed, simplifying
the input of the model. While the computational sav-
ings may seem minor in isolation, they could become
impactful when considering large-scale deployments
or multiple models, contributing to resource efficiency
and sustainability. lstM and lstM-attention models
struggle with higher errors, particularly at shorter
intervals. transformer showed moderate error rates
which reflect its stable performance in capturing pro-
cedural dynamics. On the other hand, inceptiontime
maintains low errors from 25 to 31 s as the procedure
progresses. this is a strong indicator of its reliability in
real-world settings. such precision ensures that predic-
tions become increasingly accurate as more data is
available. however, we observed a 25% increase in
error (from 25 s at a 20-min prediction interval to 31 s
at a 5-min interval). this behavior contrasts with other
models that show consistent decreases in error as pre-
diction intervals shorten. While this limitation does not
significantly impact the overall utility of the model,
one possible explanation is that shorter intervals may

amplify prediction noise or require the model to cap-
ture rapid transitions in workflow phases, which poses
additional challenges. the lstM-FcN model also
demonstrated robust performance with moderate
computational costs, making it a viable option when
balancing accuracy and efficiency. these findings high-
light the importance of adopting cNN-based models
in practical applications, where the high accuracy and
reliability of predictions can significantly impact oper-
ational efficiency and outcomes.

it is worth to notice that Mae provides insight into
the absolute prediction accuracy. as a result, this met-
ric can be biased by the length of the procedure, with
longer procedures potentially skewing the error mag-
nitude. sMaPe, on the other hand, normalizes the
error, offering a clearer picture of model performance
across varying procedure lengths. however, the consis-
tent performance of the models across both Mae and
sMaPe metrics underscores their robustness in pre-
dicting procedure durations. Our analysis of the stan-
dard deviation revealed an interesting trend: Models
exhibit higher standard deviations when the evalua-
tion metrics are higher, and lower standard deviations
when the metrics are lower. this pattern suggests that
variability in performance tends to align with the
absolute error magnitude. importantly, despite this
observed trend, the standard deviation values remain
well within an acceptable range across all models,
ensuring the reliability of the results. the robustness of
the results is indicator of the possibility of integrating
such models in a clinical setting. We showed that the
end time of a caG procedure can be predicted with
high accuracy. thus, the models could be employed in
the creation of an automated tool which could alert
the personnel when the procedure is going to end
without the need for any manual intervention. Possible
applications could target, for instance, an automated
call for the next patient in the room, leading to a
more efficient workflow.

in comparison with existing literature, this study
shows interesting results in the field of predicting etc
of procedures. unlike previous efforts primarily focused
on surgical environments [5,16], our work specifically
addresses the unique operational challenges of the
cath lab setting by relying on manually annotated
workflow phases that describe the specific characteris-
tics of this setting. Prior studies have predominantly
leveraged Machine learning techniques (sVM) and Dl
models (transformer, lstM) models for etc predictions
in surgical contexts, showing the potential of such
approaches [4,15,16]. cNN-based models, particularly
inceptiontime, showcases superior performance with
Mae values consistently below 5 min and sMaPe under

12 e. FRassiNi et al.

6%. this marks a substantial improvement over the
sVM-based prediction Mae of 14 min [4] and the mod-
erate performance of transformer models, with sMaPe
around 20% [15]. however, the comparison with other
studies is limited by differences in datasets and meth-
odologies. For example, ariel [15] used methods based
on the extraction of visual features, while our approach
relies on manually annotated workflow descriptions.
On the other hand, Meeuwsen et al. [5] employed a
laparoscopic dataset of 40 cases of hysterectomy while
we derived our input phases from videos showing a
comprehensive view of the entire cath lab. similarly,
Guédon [4] used as input the activation pattern of the
electrosurgical device measured during 57 laparo-
scopic cholecystectomies, while our dataset is based
only on clinical phase annotations. additionally,
twinanda [14] validated their results on a collection of
170 bypass videos without any manual annotations,
whereas our dataset consists of fully annotated videos.
Furthermore, our research emphasizes the practical
application of these models in enhancing the opera-
tional efficiency of cath labs. the automated tool envi-
sioned in this study, which alerts hospital personnel
when a procedure is nearing completion, represents a
novel application within this context. We showed that
the models we implemented could form the basis of
an automated tool, achieving an average error of
approximately 30 s in predicting the optimal time to
call the next patient.

this study has some limitations. the dataset
employed consists of caGs only, one specific type of
cardiac diagnostic procedure. however, in the cath labs
multiple types of procedures are performed, such as
percutaneous coronary intervention or loop recorder
implantation. therefore, the results would benefit from
further validation on other types of operations. While
the dataset used is derived from a single center, we
recognize that this could impact the generalizability of
the model, particularly in settings where the distribu-
tion of phases and procedures may differ. in real-world
clinical environments, different hospitals or regions may
have variations in procedural workflows and opera-
tional practices, which could influence phase distribu-
tions and, in turn, affect the performance of the model.
Furthermore, the Dl architectures employed here lack
interpretability. employing more transparent models
could enhance the trust of the clinical personnel toward
a medical application. While our approach relies on
manually annotated workflow descriptions, we recog-
nize that this method is not directly applicable to real
operating rooms due to the time and effort required
for manual annotation. the model was trained exclu-
sively on sequences starting from the beginning of

each procedure, as this approach ensured consistency
in the training data and allowed the model to learn
patterns comprehensively from the start of the work-
flow. however, we acknowledge the importance of
handling incomplete sequences for practical applica-
tions in real-world operating room (OR) settings, where
systems might be started late or restarted mid-procedure.

cNN-based models, particularly inceptiontime, out-
perform RNN-based and attention-based models in
predicting the end time of procedures. the architec-
tural design of cNNs allows for effective feature
extraction across different scales, which is crucial for
time-series predictions. in the presented study, the
accuracy can be attributed to the capability of convo-
lutional layers to identify and learn from patterns in
the sequential data. in contrast, RNN-based models
such as lstM and lstM-attention struggled with
higher error rates, particularly with increasing dataset
sizes, indicating their dependence on finer temporal
granularity and difficulty in maintaining accuracy over
longer sequences. the attention mechanism, intended
to enhance the performance of the lstM layer, did not
provide improvements, suggesting that the added
complexity might not translate to better predictive
accuracy.

5. Conclusion and future directions

the findings indicate that while inceptiontime and
lstM-FcN offer high accuracy and robust performance,
their higher computational costs necessitate a consid-
eration of the tradeoffs between accuracy and effi-
ciency in practical applications. the ensemble model,
by combining multiple predictions, yields low Mae
and sMaPe but at the cost of increased training time.
the consistent performance improvements as the pro-
cedure progresses underscore the importance of
real-time data integration for enhancing predictive
accuracy.

Future research could explore optimizing these
models for faster training times without sacrificing
accuracy, potentially through advanced optimization
techniques. this approach could become more resource-
efficient without compromising performance by mini-
mizing training time, especially in hospital settings
where advanced hardware could be not available. On
the other hand, additionally, investigating hybrid
models that combine the strengths of different archi-
tectures might yield even more accurate and compu-
tationally efficient solutions. Furthermore, it could be
interesting to investigate how these models could be
applied in a real scenario. Future work could target
the integration of such Dl models in a scheduling

cOMPuteR assisteD suRGeRy 13

scenario, where having reliable and real-time esti-
mates of the duration of a procedure could improve
the schedule planning of the cath labs. additionally,
future research should explore automated approaches
to workflow annotation, such as using computer vision
systems, to enable real-time integration and scalability
in clinical environments. Finally, extending this analy-
sis to diverse procedural contexts, such as other types
of surgeries performed in the hospital, would enhance
the generalizability and applicability of these predic-
tive models. On the ensemble approach, one potential
improvement involves dynamically weighting the con-
tributions of the underlying models based on their
performance at different stages of the procedure. For
example, models like inceptiontime could be given
higher weights during earlier stages, while other mod-
els better suited for later stages, such as lstM-based
architectures, could contribute more at that point.

in this work, we successfully demonstrated that
clinical phases derived from video data can reliably
inform deep learning models to predict the end time
of caG procedures in the cath lab with high accuracy.
the inceptiontime model, in particular, achieved out-
standing performance. Mae values consistently scored
below 5 min and sMaPe percentages under 6% when
sampling data every 60 s. the model consistently pre-
dicts the etc of a procedure with an average error of
approximately 30 s when there are between 20 and
5 min remaining. these findings highlight the efficacy
of cNN-based models for etc analysis.

Disclosure statement

the authors report there are no competing interests to declare.

Data availability

all the code and dataset used in this research is available at:
https://github.com/emanuelefrassini/prediction_procedure_
duration

Funding

the author(s) reported there is no funding associated with
the work featured in this article.

References

 [1] WhO. cardiovascular diseases; 2021. available from:
https://www.who.int/news-room/fact-sheets/detail/
cardiovascular-diseases-(cvds)

 [2] agarwal s, Gallo JJ, Parashar a, et al. impact of lean six
sigma process improvement methodology on cardiac
catheterization laboratory efficiency. cardiovasc Revasc
Med. 2016;17(2):95–101. doi: 10.1016/j.carrev.2015.12.011.

 [3] van heuven van staereling i. a. stochastic scheduling
techniques for integrated optimization of catheteriza-
tion laboratories and wards. Patat 2018 - Proceedings
of the 12th international conference on the Practice
and theory of automated timetabling; 2018. Vienna:
Patat. p. 313–329.

 [4] Guédon acP, Paalvast M, Meeuwsen Fc, et al. it is time to
prepare the next patient’ real-time prediction of proce-
dure duration in laparoscopic cholecystectomies. J Med
syst. 2016;40(12):271. doi: 10.1007/s10916-016-0631-1.

 [5] Meeuwsen Fc, van luyn F, Blikkendaal MD, et al. surgical
phase modelling in minimal invasive surgery. surg endosc.
2019;33(5):1426–1432. doi: 10.1007/s00464-018-6417-4.

 [6] Miller DD. Machine intelligence in cardiovascular
Medicine. cardiol Rev. 2020;28(2):53–64. doi: 10.1097/
cRD.0000000000000294.

 [7] anderson RD, Massoomi MR. efficiency improvements
in the catheterization laboratory: it’s all about the
team. Jacc cardiovasc interv. 2018;11(4):339–341. doi:
10.1016/j.jcin.2017.10.031.

 [8] Karalis VD. the integration of artificial intelligence into
clinical practice. appl Biosci. 2024;3(1):14–44. doi:
10.3390/applbiosci3010002.

 [9] ammori BJ, larvin M, McMahon MJ. elective laparo-
scopic cholecystectomy. surg endosc. 2001;15(3):297–
300. doi: 10.1007/s004640000247.

 [10] Macario a, Dexter F. estimating the duration of a case
when the surgeon has not recently scheduled the proce-
dure at the surgical suite. anesth anal. 1999;89(5):1241–
1245. doi: 10.1213/00000539-199911000-00030.

 [11] Dexter F, epstein Rh, lee JD, et al. automatic updating of
times remaining in surgical cases using bayesian analysis
of historical case duration data and "instant messaging"
updates from anesthesia providers. anesth analg.
2009;108(3):929–940. doi: 10.1213/ane.0b013e3181921c37.

 [12] Maktabi M, Neumuth t. Online time and resource man-
agement based on surgical workflow time series analy-
sis. int J comput assist Radiol surg. 2017;12(2):325–338.
doi: 10.1007/s11548-016-1474-4.

 [13] Marafioti a. a. cataNet: predicting remaining cataract
surgery duration. Medical image computing and com-
puter assisted intervention – Miccai 2021. strasbourg:
springer international Publishing; 2021. p. 426–435.

 [14] Padoy Na-O. On-line recognition of surgical activity for
monitoring in the operating room. Proceedings of the
20th National conference on innovative applications of
artificial intelligence - Volume 3; 2008. chicago: aaai
Press. p. 1718–1724.

 [15] twinanda aP, yengera G, Mutter D, et al. RsDNet: learn-
ing to predict remaining surgery duration from laparo-
scopic videos without manual annotations. ieee trans
Med imaging. 2019;38(4):1069–1078. doi: 10.1109/
tMi.2018.2878055.

 [16] ariel B. a. estimated time to surgical Procedure completion:
an exploration of Video analysis Methods. Medical image
computing and computer assisted intervention – Miccai
2023. Berlin, heidelberg: springer-Verlag; 2023. p. 165–175.

 [17] hassan iF-a. Deep learning for time series classification:
a review. Data Min Knowl Discov. 2019;33(4):917–963.

 [18] hewamalage h, Bergmeir c, Bandara K. Recurrent neural
networks for time series forecasting: current status and
future directions. int J Forecast. 2021;37(1):388–427. doi:
10.1016/j.ijforecast.2020.06.008.

https://github.com/emanuelefrassini/prediction_procedure_duration
https://github.com/emanuelefrassini/prediction_procedure_duration
https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds)
https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds)
https://doi.org/10.1016/j.carrev.2015.12.011
https://doi.org/10.1007/s10916-016-0631-1
https://doi.org/10.1007/s00464-018-6417-4
https://doi.org/10.1097/CRD.0000000000000294
https://doi.org/10.1097/CRD.0000000000000294
https://doi.org/10.1016/j.jcin.2017.10.031
https://doi.org/10.3390/applbiosci3010002
https://doi.org/10.1007/s004640000247
https://doi.org/10.1213/00000539-199911000-00030
https://doi.org/10.1213/ane.0b013e3181921c37
https://doi.org/10.1007/s11548-016-1474-4
https://doi.org/10.1109/TMI.2018.2878055
https://doi.org/10.1109/TMI.2018.2878055
https://doi.org/10.1016/j.ijforecast.2020.06.008

14 e. FRassiNi et al.

Appendix

 [19] yu W, Kim iy, Mechefske c. analysis of different RNN
autoencoder variants for time series classification and
machine prognostics. Mech syst sig Process.
2021;149:107322. doi: 10.1016/j.ymssp.2020.107322.

 [20] hochreiter s, schmidhuber J. long short-term memory.
Neural comput. 1997;9(8):1735–1780. doi: 10.1162/
neco.1997.9.8.1735.

 [21] Fukushima K. Visual feature extraction by a multilayered
network of analog threshold elements. ieee trans syst sci
cyber. 1969;5(4):322–333. doi: 10.1109/tssc.1969.300225.

 [22] Gamboa Jc. Deep learning for time-series analysis.
2017. arXiv, abs/1701.01887

 [23] ismail Fawaz h, lucas B, Forestier G, et al. inceptiontime:
finding alexNet for time series classification. Data Min
Knowl Disc. 2020;34(6):1936–1962. doi: 10.1007/
s10618-020-00710-y.

 [24] szegedy c. a. ieee conference on computer Vision and
Pattern Recognition (cVPR); Going deeper with convo-
lutions, Boston, Ma, usa; 2015. p. 1–9.

 [25] Karim F, Majumdar s, Darabi h, et al. Multivariate
lstM-FcNs for time series classification. Neural Netw.
2019;116:237–245. doi: 10.1016/j.neunet.2019.04.014.

 [26] Wu Jh. conference on computer Vision and Pattern
Recognition; 2019. squeeze-and-excitation Networks,
salt lake city, utah.

 [27] Vaswani a. a. advances in Neural information Processing
systems; 2017. attention is all you Need. curran
associates, inc. (30)

 [28] choi sR, lee M. transformer architecture and attention
mechanisms in genome data analysis: a comprehensive

review. Biology (Basel). 2023;12(7):1033. doi: 10.3390/
biology12071033.

 [29] luong t. a. effective approaches to attention-based neural
machine translation. Proceedings of the 2015 conference
on empirical Methods in Natural language Processing;
2015. p. 1412–1421. association for computational
linguistics. doi: 10.18653/v1/D15-1166.

 [30] Bridle Js. training stochastic model recognition algo-
rithms as networks can lead to maximum mutual infor-
mation estimation of parameters. Proceedings of the 2nd
international conference on Neural information
Processing systems; Morgan-Kaufmann; 1989. p. 211–217.

 [31] shih s-y, sun F-K, lee h-y temporal pattern attention for
multivariate time series forecasting. Mach learn. 2019;
108(8-9):1421–1441. doi: 10.1007/s10994-019-05815-0.

 [32] landassuri-Moreno VM. Neural network ensembles for
time series forecasting. Proceedings of the 11th annual.
conference on Genetic and evolutionary computation;
2009; New york, Ny, us: association for computing
Machinery. p. 1235–1242. doi: 10.1145/1569901.1570067.

 [33] armstrong J, collopy F. error measures for generalizing
about forecasting methods: empirical comparisons. int
J Forecast. 1992;8(1):69–80. doi: 10.1016/0169-2070
(92)90008-W.

 [34] Ba DP. adam: a Method for stochastic Optimization. 3rd
International Conference for Learning Representations;
san Diego, 2015. ithaca, Ny: arXiv.

 [35] Rivoir, D. a. (2024). On the pitfalls of Batch Normalization
for end-to-end video learning: a study on surgical
workflow analysis. Medical image analysis, 103126.

Table 4. performance one data point every 10 s.
model mAe_10 [min] smApe_10 [%]

InceptionTime 2.79 ± 0.87 10.45 ± 2.08
LSTM 10.17 ± 1.24 35.02 ± 5.12
LSTM-FCN 3.85 ± 0.98 18.53 ± 3.11
Transformer 7.19 ± 1.46 19.61 ± 4.53
LSTM-Attention 22.57 ± 4.11 98.79 ± 12.1
Ensemble 2.89 ± 1.13 10.65 ± 1.32

Table 5. performance one data point every 30 s.
model mAe_30 [min] smApe_30 [%]

InceptionTime 0.48 ± 0.12 4.60 ± 1.56
LSTM 10.48 ± 1.23 36.35 ± 9.14
LSTM-FCN 3.54 ± 0.57 17.63 ± 6.32
Transformer 7.13 ± 2.33 19.4 ± 5.49
LSTM-Attention 20.27 ± 4.82 86.80 ± 17.32
Ensemble 1.86 ± 0.62 8.42 ± 2.12

Table 6. performance one data point every 120 s.
model mAe_120 [min] smApe_120 [%]

InceptionTime 0.89 ± 0.42 7.37 ± 2.1
LSTM 12.11 ± 3.54 44.41 ± 12.1
LSTM-FCN 1.58 ± 0.76 9.33 ± 2.14
Transformer 7.23 ± 1.25 19.60 ± 3.84
LSTM-Attention 16.85 ± 4.32 72.42 ± 18.34
Ensemble 1.07 ± 0.64 7.21 ± 2.13

Table 7. error at different time points.

model
error @20

[s]
error @15

[s]
error @10

[s]
error @5

[s]

InceptionTime 25 ± 6 24 ± 7 27 ± 7 31 ± 5
LSTM 692 ± 73 564 ± 65 363 ± 54 207 ± 21
LSTM-FCN 127 ± 19 100 ± 15 76 ± 12 56 ± 11
Transformer 473 ± 34 482 ± 38 225 ± 21 183 ± 18
LSTM-Attention 899 ± 82 691 ± 77 471 ± 72 247 ± 29
Ensemble 70 ± 23 57 ± 21 46 ± 20 36 ± 26

Table 3. performance one data point every 5 s.
model mAe_5 [min] smApe_5 [%]

InceptionTime 4.53 ± 1.1 13.73 ± 2.35
LSTM 8.91 ± 0.88 28.19 ± 5.62
LSTM-FCN 4.20 ± 0.80 19.40 ± 1.24
Transformer 7.23 ± 0.79 19.98 ± 1.82
LSTM-Attention 22.71 ± 0.95 99.87 ± 14.2
Ensemble 3.75 ± 0.82 11.98 ± 1.91

https://doi.org/10.1016/j.ymssp.2020.107322
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1109/TSSC.1969.300225
https://doi.org/10.1007/s10618-020-00710-y
https://doi.org/10.1007/s10618-020-00710-y
https://doi.org/10.1016/j.neunet.2019.04.014
https://doi.org/10.3390/biology12071033
https://doi.org/10.3390/biology12071033
https://doi.org/10.18653/v1/D15-1166
https://doi.org/10.1007/s10994-019-05815-0
https://doi.org/10.1145/1569901.1570067
https://doi.org/10.1016/0169-2070(92)90008-W
https://doi.org/10.1016/0169-2070(92)90008-W

	Deep learning methods for clinical workflow phase-based prediction of procedure duration: a benchmark study
	ABSTRACT
	1. Introduction
	1.1. Related work

	2. Materials and methods
	2.1. Data acquisition
	2.2. Architectures
	2.2.1. RNN models
	2.2.2. CNN models
	2.2.3. Attention-based models
	2.2.4. Ensemble model

	2.3. Experimental setup
	2.3.1. Implementation
	2.3.2. Research framework

	3. Results
	3.1. Performance analysis
	3.2. Computational time analysis
	3.3. Quantitative error analysis

	4. Discussion
	5. Conclusion and future directions
	Disclosure statement
	Data availability
	Funding
	References

