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Abstract
Deformable Image Registration (DIR) is a medical imaging process involving the spatial alignment of two or
more images using a transformation model that can account for non-rigid deformations. B-spline-based trans-
formation models have emerged as a common approach to express such spatial alignments. However, without
additional measures, their flexibility can lead to physically implausible deformations. This flexibility has moti-
vated the inclusion of penalty terms to improve the smoothness and regularity of the transformation. Deter-
mining an appropriate weight for this penalty term is difficult, as each registration problem requires a different
trade-off between this penalty term and the quality of the transformed image.

Gradient-based methods are commonly used as optimization methods in medical image registration tool-
boxes due to their computational efficiency and fast convergence rates. However, due to their gradient-based
approach, they may converge prematurely in local minima. In this thesis, we investigate the efficacy of a
gradient-less alternative: the Real-Valued Gene-pool Optimal Mixing Evolutionary Algorithm (RV-GOMEA), a
population-based method that can exploit the problem structure of optimization problems through explicit map-
pings of dependencies between problem variables. To improve the computational efficiency of RV-GOMEA
when applied to DIR, we show how to apply partial evaluations for common image similarity metrics and penalty
terms when using B-spline-based transformation models.

We test RV-GOMEA on a synthetic registration problem to better understand its performance in the context
of DIR. Based on our findings, we propose several methods that hybridize RV-GOMEA with a gradient-based
method and impose specific constraints on the B-spline-based transformation model. We validate the perfor-
mance of these methods on clinical registration problems and find that RV-GOMEA with a gradient-based local
search operator can provide significant benefits over purely gradient-based methods for DIR problems. Addi-
tionally, placing specific constraints on the transformation model can increase the regularity of transformations
without requiring a penalty term.
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1
Introduction

In the medical field, imaging data is often collected from patients to guide the treatment. This involves vari-
ous imaging techniques, including Computed Tomography (CT), Cone Beam Computed Tomography (CBCT),
Positron Emission Tomography (PET), and Magnetic Resonance Imaging (MRI). While a single image is of-
ten sufficient for diagnosis or treatment, in some cases, analyzing a pair of images of the same anatomical
region can provide valuable information. For instance, comparing follow-up scans can help track the progress
of multiple treatment iterations. These images may be taken at different time frames (multi-temporal), using
different imaging devices (multi-modal), or of different patients (multi-subject). As a result, it is unlikely that
a pair of images will immediately provide a perfect correspondence between the anatomical structures found
in both images. In other words, the same voxel in different images may not refer to the same position in the
body due to unintentional or intentional misalignments. Unintentional misalignments may occur due to slightly
shifting organs or minor differences in patient positions during image capture [45]. Intentional misalignments
can occur when certain positions or actions can provide specific insights when compared. For example, it is
easier to delineate the tumor in images taken with the patient in the prone position in diagnosing breast cancer;
the surgery is performed with the patient in the supine position [64].

Figure 1.1: Spatial alignment of two brain MRI images.

Anymisalignment can increase the difficulty of an-
alyzing pairs or sets of images, making it essential to
align the images spatially before any comparison is
made. Figure 1.1 provides an example of an align-
ment requiring only a global source image transla-
tion. Such an alignment can be done through rigid
registration, which is limited to six degrees of free-
dom through translations and rotations. However, if
the images contain non-rigid differences, a transfor-
mation model that allows for non-rigid and elastic de-
formations is needed. In Deformable Image Registra-
tion (DIR), pairs of images are systematically aligned
or ‘registered’ using a transformation model capable
of modeling these deformations.

Medical deformable image registration has shown potential for various applications in clinical practice. For
instance, in the diagnosis of Chronic Obstructive Pulmonary Disease (COPD), the detection of trapped air in
local lung regions could be assisted by registering an inspiration-expiration CT scan pair [38]. In Radiation
Therapy (RT), registration could be used to estimate dose accumulation more accurately from treatment to
treatment [60]. Additionally, organ or tumor contours could be propagated from one scan to another by applying
the transformation found from their registration, making follow-up checkups easier [46].

Despite numerous potential applications, the state-of-the-art in DIR still is not mature enough for many
critical clinical applications. For instance, a recent survey revealed that most clinical centers worldwide have
yet to adopt DIR for dose accumulation due to the uncertainty and variability of registration results produced by
current commercial DIR packages [46]. In general, it remains challenging to validate DIR algorithms for critical
clinical applications [46, 60, 61, 68].

1



2 1. Introduction

1.1. Deformable Image Registration
In this thesis we will restrict the scope of DIR to pairs of images, which can formally be described as the process
of spatially aligning a moving image 𝐼𝑀 with a fixed image 𝐼𝐹 through a nonlinear transformation 𝑇𝜇:

argmin
𝜇

𝐶(𝑇𝜇; 𝐼𝐹; 𝐼𝑀) (1.1)

𝐶(𝑇𝜇; 𝐼𝐹; 𝐼𝑀) = 𝑆(𝐼𝐹 , 𝐼𝑀 ∘ 𝑇𝜇) + 𝜆𝑅(𝑇𝜇) (1.2)

Here, 𝜇 contains the transformation parameters, and 𝐶 is the objective value, with 𝑆 denoting the similarity
between 2 images according to a registration quality metric, and 𝑅 denoting the deformation magnitude which
is weighted by the parameter 𝜆. Ultimately, this formulation balances 2 objectives, the quality of alignment and
the magnitude of deformation needed to achieve this quality.

Figure 1.2: A fixed image (A) and moving image (B) that are
registered by the 2D Deformation Vector Field (C), resulting in the

deformed moving image (D) [60]

In DIR, the transformation model is responsible
for defining the space of possible deformable trans-
formations that can alter the anatomical structure dis-
played on the underlying images. While rigid transfor-
mations can only translate, scale, or rotate an imaged
object, deformable transformations can alter the ob-
ject’s shape in non-linear ways. Figure 1.2 shows an
example of such a transformation as part of a trivial
registration problem, where the transformation is vi-
sualized using a Deformation Vector Field (DVF). B-
splines are a commonly used transformation model
in DIR because they can model these transforma-
tions while also providing computational tractability,
smoothness, and a degree of physical plausibility. As
a result, analytic derivations of the gradient are typi-
cally available, allowing for the use of gradient-based
optimizers in the registration process. More specif-
ically, B-splines are piecewise polynomial functions
that can approximate smooth and continuous trans-
formations, and they have been shown to provide
good results in various applications of DIR [50, 84].
Additional properties of B-splines will be discussed in
Section 3.1.5.

Gradient-based optimizers are commonly used in
current open-source medical image registration tool-

boxes [49, 78]. However, DIR as an optimization problem is usually highly non-convex, containing local minima
to which gradient-based optimizers are susceptible. Figure 1.3 shows the contours of an example function that
contains such local minima or “valleys” where gradient-based optimizers could prematurely converge. Regis-
tration is often done using multi-resolution schemes to decrease the likelihood of premature convergence. In
a multi-resolution scheme, the image and transformation grid are iteratively refined from coarse to fine to cap-
ture global transformations in the former stages and local transformations in the latter stages of these schemes.
Although effective in many cases [48], these schemes do not guarantee to resolve the susceptibility of gradient-
based optimizers to local optima.

Moreover, the registration objective is usually posed as a weighted combination of objectives, including
the deformation magnitude as a regularization term to penalize transformations that require a large amount of
energy to perform and are often less likely to be anatomically feasible. In essence, these weights allow the
user to define preferences for each objective, and with each unique set of preferences, the objective function
landscape changes. In other words, with each set of preferences, the optimizer could find a different solution to
the same registration problem. For example, if the preference for a minimal deformation magnitude is too high,
the transformations might be too constrained, leading to insufficient registration. Alternatively, if this preference
is too small, the optimizer might find transformations that result in highly similar images but using high bending
energy, which could be anatomically infeasible. The optimal set of weights depends on the structure of each
registration problem, as some only require minor adjustments, but others include disappearing structures (e.g.,
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tumors removed by surgery). As such, estimating the optimal set of weights has proven to be a difficult challenge
in practice [63, 64].

If the problem is viewed without the weights, it becomes a multi-objective optimization problem. With multi-
objective optimization, the goal is no longer to find a single (near-)optimal solution to a problem. Instead, we
would like to find a set of non-dominating (near-)optimal solutions that provide varying trade-offs between the
different objectives. They are non-dominating, as each solution is equal to, or better than, the other solutions for
all objectives. The goal of multi-objective optimization is to closely approximate the theoretically optimal set of
solutions, called the Pareto set. Gradient-based optimizers are usually incapable of multi-objective optimization
as they optimize a single solution at a time. Moreover, if the posed problem is highly non-convex, gradient-
based optimizers might leave the more promising regions in objective space unexplored due to premature
convergence in local minima.

−1.5
−1.0

−0.5
0.0

0.5
1.0

1.5
−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

−150

−100

−50

0

50

100

150

200

1Figure 1.3: 3D contour plot of Shubert function
containing multiple local minima.

A class of optimizers called Evolutionary Algorithms (EA)
have proven robust and effective at solving non-convex black-
box optimization problems [15, 40]. Moreover, they are a natural
fit for multi-objective optimization due to their population-based
approach in combination with effective exploration operators, re-
sulting in near-optimal and well-spread solutions across both the
convex and concave regions of the objective function domain
[31]. Accordingly, these EAs have seen an increase in applica-
tions for multi-objective DIR over the past decade [3, 5, 19].

1.2. Real-Valued Gene-pool Optimal Mix-
ing Evolutionary Algorithm
In this thesis, the application of a model-based EA, the Real-
Valued Gene-pool Optimal Mixing Evolutionary Algorithm [20]
(RV-GOMEA) is explored for its efficacy and applicability in DIR.
RV-GOMEA is the real-valued extension of GOMEA [18], a
model-based EA that can be used to solve discrete optimization problems. It can efficiently exploit the structure
of a problem by using a so-called linkage structure, which describes dependencies between problem variables
of an optimization problem. GOMEA can estimate these dependencies during optimization using various spe-
cialized operators, or a static structure can be specified in advance. The latter fits with the application of this
algorithm to DIR since static parameters locality is present in the B-spline transformation model. Furthermore,
the real-valued extension enables continuous optimization by using parameter sampling using normal distribu-
tions. A more detailed description of GOMEA and RV-GOMEA is given in Sections 3.2.2 and 3.2.3.

Other model-based EAs, such as the Covariance Matrix Adaptation Evolutionary Strategy [39] (CMA-ES),
have been applied to DIR before, but with limited success. Klein et al. compared its performance against
gradient-based methods on various CT images and magnetic resonance (MR) scans, using B-splines as the
transformation model, and found it underperforming in both convergence rates and registration precision [48].
However, CMA-ES and RV-GOMEA differ significantly in their method of exploiting problem structure. CMA-ES
uses a covariance matrix that is reduced in size to keep the optimization computationally tractable by parame-
terizing it with a smaller set of parameters that account for the most variance. Although successful at solving
other optimization problems [40], it is hard to determine how this affects the underlying dependent variables to
be optimized, especially for high dimensional problems such as in DIR. Using an explicit mapping of problem
dependencies—which RV-GOMEA allows—could prove more effective at solving DIR problems.

Additionally, the variation operator used in GOMEA to explore the solution space can be exploited to sub-
stantially improve computational performance since it allows for the partial evaluation of compatible objective
functions when only a subset of the problem variables is manipulated. Common B-spline transformation models
naturally align with this methodology since the transformation of a local patch of voxels is evaluated using only
a subset of surrounding control points. Any alteration of the coefficients of these control points would require
only a re-evaluation of the corresponding influenced voxels. For a more formal and complete description of
B-splines and their use in transformation models, see Section 3.1.

In order to utilize these techniques in the context of multi-objective optimization, Bouter et al. proposed
an extension of Multi-Objective GOMEA [52] (MO-GOMEA), the Multi-Objective RV-GOMEA [21] (MO-RV-
GOMEA). It combines MO-GOMEA with aspects of the Multi-objective Adapted Maximum Likelihood Gaussian
Model [16] (MAMaLGaM), which simultaneously advances mutually exclusive sets of solutions towards the
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Pareto front by making use of clustering, a discretized elitist archive and similar methods for Gaussian esti-
mation and adaptation as found in RV-GOMEA. Thus far, it has seen only limited use in Multi-Objective DIR
(MODIR), including a recent application using a 3D dual-dynamic grid based on simplex meshes as a transfor-
mation model for registering images including large deformations and content mismatches [5].

1.3. Research Topics
In this thesis, the following topics are explored:

1. The application of (MO)-RV-GOMEA to deformable image registration of 3D medical images when using
common B-spline-based transformation models. Does it offer improvements in registration quality over
more traditional gradient-based methods? Does explicitly mapping problem dependencies offer benefits
over current state-of-the-art model-based EAs?

2. Partial evaluations are well suited to (MO)-RV-GOMEA and can improve computational performance dra-
matically. How can these be applied when using B-spline-based transformation models in combination
with commonly used similarity metrics and penalty terms?

3. How does themapping of problem dependencies defined by the linkage structure affect registration results
when using B-spline-based transformation models? Can the principles of multi-resolution schemes used
in DIR also be applied to these mappings?

We aim to implement our added functionality in Elastix [49], a popular medical image registration toolbox
that includes implementations for common B-spline-based transformation models, a multi-resolution image
registration framework, and various image similarity metrics and penalty terms.

1.4. Overview
The rest of this thesis is structured as follows. First, Chapter 2 provides an overview of relevant academic
literature. Then, in Chapter 3, formal definitions and informal explanations are given for the theoretical concepts
discussed throughout this thesis. Next, chapter 4 details the design of the implemented solutions, whereas
Chapter 5 describes their actual implementation. In Chapter 6, the experimental design and their results and
discussion are given. Lastly, the thesis is concluded in Chapter 7 with a summary and recommendations for
future work.



2
Literature Review

The problem of Deformable Image Registration (DIR) is multi-faceted and can be solved in many ways. We
review relevant existing literature to gain a solid understanding of the problem in general and its related fields.

The review is structured as follows: Section 2.1 describes the methods and process used in conducting the
literature review, Section 2.2 gives an overview of the topic of DIR, Section 2.3 gives an overview of optimization
methods relevant for this project, and Section 2.4 gives an overview on multi-objective DIR.

2.1. Methodology
The goal of the literature review is to gain a solid understanding of the problem and its related fields and a
clearer understanding of the goal of the thesis by identifying a possible gap in the existing literature. This
section gives a brief overview of the process.

As a first step, we find relevant surveys on the DIR field, as they already review the existing literature. We
consider nine surveys from 1992 to 2020 on varying sub-topics within DIR. We distill the typical registration
framework as depicted in Section 2.2. For this framework’s individual components, further literature reviews
are done using similar principles. Next, we examine relevant optimization methods to this thesis. Namely:
RV-GOMEA [20], UHV-Adam [32], and UHV-GOMEA [56]. This is done in Section 2.3 by reviewing the original
papers for these techniques and other papers on their efficacy and applicability to particular problems. Lastly, a
review is done on applying the abovementioned methods to multi-objective DIR in Section 2.4. This is done by
first identifying active authors in this field, after which publications from these authors are searched for directly.
Forty-seven publications are included, of which 37 are referenced in this review. Table 2.1 gives an overview
of the number of publications per related field.

2.2. Deformable Image Registration
DIR refers to spatially aligning a moving image 𝐼𝑀 with a fixed image 𝐼𝐹 through some nonlinear transformation
𝜇. It is a subset of Image Registration (IR), where the nature of the transformation can be rigid, affine, projective,
or deformable [55].

In general, registration can be performed using two or more images, but in the interest of simplicity, we will
only focus on pairs of images. The typical framework for registration can be formally defined as the optimization
problem defined in Section 1.1 [49]. Furthermore, we can classify a registration method using the deforma-
tion model, similarity metric, and optimization method. These classifications will be discussed in the following
sections.

2.2.1. Deformation Model
Although many deformations models exist [80], in this work, we will be focusing on B-spline deformation [72].
This model has received wide acceptance in the medical imaging community [80] due to its simplicity, smooth
local deformations, and fast computation due to the B-spline basis functions having local support [49]—i.e., any
point on a B-spline curve is only affected by a limited number of control points.

In general, any deformation model can be classified according to its properties. These include, but are not
limited to: inverse-consistency, symmetry, topology conservation, and diffeomorphism [80]. Inverse consistent

5
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Category Publications

Evolutionary Algorithms 11

Image Registration

Surveys 9

Techniques Deep learning 5

Evolutionary Algorithms 9

Gradient-based 1

B-splines 6

Tools 1

Other 5

Total 47

Table 2.1: Literature review: overview of publications per category.

transformations simultaneously estimate both a forward and backward transformation and constrain these as
inverse mappings. Symmetric transformations employ objective functions that are by nature symmetric or use
two transformation functions that map to a common domain. One is then inverted and composed with the
other. Topology-preserving transformations produce a continuous, onto, and locally one-to-one mapping with
a continuous inverse. Finally, diffeomorphic transformations preserve topology, are invertible, and the function
and inverse are differentiable. For a detailed explanation of these properties, see [80].

The B-spline deformation model is inherently asymmetric, but in [59], an inverse-consistent symmetric B-
spline deformation model is proposed. It simultaneously optimizes two transformations, both a forward mapping
from the moving image to the fixed image and a backward mapping from the fixed image to the moving im-
age. Moreover, they use additional penalty terms in the objective function, which enforce inverse consistency,
symmetry, and topology conservation.

Another improvement to the B-spline deformation model was made in [84], where the authors identified an
issue with the gradient of the objective function when using uniform B-spline basis functions. These functions
inherently create long, narrow valleys in the landscape of the objective function (see Eq. 1.2) due to the control
points being weighted differently. This can lead to bad performance of typical gradient descent algorithms due
to “hemstitching” – the oscillation of the gradient direction as the search zig-zags between valley walls [7]. They
proposed a solution to this problem by fitting the gradient field to a prescribed space of B-spline transformations
at each iteration, thereby projecting the gradient field onto a more restricted domain less prone to hemstitching.

2.2.2. Similarity Metric
The function 𝑆 from Eq. 1.2 describes the similarity between two images, but there are many ways of calculating
it, depending on the nature of the registration. In 1998, a classification framework for medical registration meth-
ods was proposed [55], which divides possible natures of registration as either landmark-based, segmentation-
based, or voxel-based. We also include contour-based metrics here, which are similar to segmentation-based
metrics but defined using sets of points around the contours of regions of interest instead of binary masks.

Landmark-based
Landmark-based methods use significant anatomical locations on the images to define similarity. For each
image, a set of corresponding landmarks is defined. The goal is to achieve correspondence between these sets
by spatially transforming the moving image. Given the sets of corresponding landmarks on both images, the
problem can be solved using some optimization method. However, reliably locating these landmarks remains
an open research question [80].

Segmentation-based
Segmentation-based methods use predefined or learned segmentations of the image to define similarity. For
example, given two segmentations 𝑋, 𝑌 on both the moving and fixed image, respectively, the similarity can be
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defined using the Dice similarity coefficient:

𝐷𝑆𝐶(𝑋, 𝑌) = 2|𝑋 ∩ 𝑌|
|𝑋| + |𝑌|

where | ⋅ | refers to the number of voxels in a given segmentation.
Predefined segmentations are usually not readily available in clinical practice due to the labor-intensive

annotation process required to acquire them. Therefore, approaches have been proposed [71, 87] that learn
segmentations using deep convolutional neural networks (CNNs), which can then be used in registration.

Contour-based
Contour-based methods use sets of points 𝐶𝑀 , 𝐶𝐹 defined for both the moving and fixed images. These points
delineate the contours of specific organs or other regions of interest in both images. Distances between pairs
of sets of points 𝐶𝑀𝑖 and 𝐶𝐹𝑖 from the moving and fixed image can be calculated to measure the registration
quality regarding how well the contours match. This is done by comparing the transformed points of the moving
image contour set 𝑇𝜇(𝐶𝑀𝑖) with the points in 𝐶𝐹𝑖 using some distance measure.

Contour sets have been used in several registration approaches. One of these, the Thin-Plate Splines
Robust Point Matching approach (TPS-RPM), deforms contours using a thin-plate spline model [37]. This
method has been shown to perform well in modeling large deformations [10], but it does require regularization
weights to be set prior to registration. It does not guarantee the physical plausibility of the found transformations.
Another approach, called MORFEUS, provides these guarantees using a bio-mechanical model. They model
the organs of interest using a tetrahedral mesh and then perform a Finite Element Analysis (FEA) to perform the
registration [26]. While this increases the likelihood of finding physically plausible transformations, their method
does not consider individual voxels’ image intensity values and solely relies on (user-supplied) contours.

Recent methods propose a combined approach in which both contour- and voxel-based methods are used,
such as the ANAtomically CONstrained Deformation Algorithm (ANACONDA) [86], which uses the quasi-
Newton algorithm to optimize a weighted combination of both metrics, which introduces an additional parameter
which needs to be set in advance by the user.

Voxel-based
Voxel-basedmethods are the easiest to apply since no pre-segmentation or landmark identification is necessary
to perform the registration. These methods rely on voxel intensity information to compare the images according
to some similarity metric. The chosen metric depends on the registration problem’s modality, which can be
mono- or multi-modal.

A) Mono-modal: When registration is mono-modal, both images are captured using the same image acqui-
sition method. The sum of squared or absolute differences (SSD, SAD) can be used as a similarity metric when
it can be assumed that the same anatomical structures correspond to similar intensity values. If a linear rela-
tionship between the signal intensities can be assumed, cross-correlation (CC) and the correlation coefficient
(CCoef) are suitable metrics [80].

B) Multi-modal: The images are captured using differing image acquisition methods when registration is
multi-modal. This leads to the choice of similarity metric becoming less straightforward. Mutual information is
often used due to its generality [80]. It does not assume any relationship between the absolute voxel intensities,
thus making it a useful metric for multi-modal registration.

Mutual information for two images 𝐴, 𝐵 can be defined using Shannon Entropy [76]:

𝐼(𝐴, 𝐵) = 𝐻(𝐴) + 𝐻(𝐵) − 𝐻(𝐴, 𝐵). (2.1)

Finding a registration is then equivalent to maximizing this mutual information. However, this formulation can
lead to situations in which increasing misregistration leads to increasing mutual information. This can occur
when the marginal entropies 𝐻(𝐴), 𝐻(𝐵) increase faster than the joint entropy 𝐻(𝐴, 𝐵) [69]. Studholme et
al. propose a less sensitive method for this issue [81], called the Normalized Mutual Information (NMI). This
measure has since been used in numerous studies with promising results [69].

Further improvements to this metric can be made by, for example, considering spatial dependencies of
neighboring voxel intensities. Rodriguez et al. show that this is possible by using Jumarie entropy [70], which
considers the intensity differences of neighboring voxels in an image.

The interpolation method used during entropy-based registration can negatively affect the optimization pro-
cess due to interpolation artifacts [67]. In addition, sudden changes in the mutual information measure can
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occur when grid-aligned transformations cause local extrema. It has been shown that a slight re-sampling of
one of the images can improve the smoothness of the mutual information [67].

Lastly, a hybridization of any of these types of metrics is also possible. For example, we can combine a
voxel-based similarity metric with corresponding landmarks to guide the registration. Most straightforwardly,
this can be done by taking a weighted combination of the combined metrics.

2.2.3. Optimization Method
Given a deformation model and similarity metric, a method needs to be specified to optimize this metric. Meth-
ods exist for both the discrete and continuous domain [80]. The deformation model in this work is defined
continuously; thus, we will focus on continuous methods here. Broadly, these can be classified into three main
categories: gradient-based, deep learning-based, and evolutionary-based.

Gradient-based
Gradient-based methods use the gradient of the transformation parameters, w.r.t. to the objective function, to
guide the search towards an optimum. A distinction can bemade based on themethod being either deterministic
or stochastic. Deterministic methods assume that the gradient can be computed directly, while stochastic
methods only need stochastic approximations of the gradient.

In [48], a comparative study was done between both methods when using mutual information as a sim-
ilarity metric and cubic B-splines as the deformation model. The authors compared deterministic gradient-
basedmethods (Gradient Descent, Quasi-Newton, and Nonlinear Conjugate Gradient) with stochastic gradient-
based methods (Kiefer-Wolfowitz, Simultaneous Perturbation, and Robbins-Monro). They found the stochastic
Robbins-Monro method to be the preferred approach. Experiments were done across differing image modali-
ties, image sizes, and hyperparameters. The Robbins-Monro method decreases the needed computation time
by only using a subset of the voxels to calculate the gradient of the mutual information [48].

Deep learning-based
The previous approach still requires an iterative, slow optimization method. This motivated the development
of approaches that directly predict transformations using neural networks. Deep learning-based methods have
shown promising results in the field of DIR [8, 30, 41, 83]. A recent survey divides the methods into three
categories: deep iterative registration, supervised transformation estimation, and unsupervised transformation
estimation. We briefly describe these categories below; for an in-depth overview of these methods, see [41].

Deep iterative registration methods use deep learning methods to learn a similarity metric. This metric is
then used in a traditional registration framework (e.g., Elastix [49]) to perform registration. Supervised ap-
proaches require ground truth labels to train the networks, which are challenging to obtain [41]. Unsupervised
approaches use some existing similarity metric to train the network in estimating transformations directly, there-
fore not requiring any ground truth labels. These methods can also be feature-based by extracting features
frommoving and fixed images. In [30], a deep learning framework for unsupervised affine and DIR is introduced
that is comparable in performance to conventional methods on tested problems while being several orders of
magnitude faster.

Evolutionary-based
Evolutionary-based methods can be broadly classified as being either single- or multi-objective. All previously
discussed methods are single-objective. Multi-objective approaches are less prevalent in the literature, but due
to the often conflicting trade-offs in DIR problems, they provide a more complete approach at solving them.

A) Single-objective: In the single-objective setting, a single objective is defined, which the evolutionary
algorithm uses during optimization to optimize a population of solutions. CMA-ES [39] is generally considered
state-of-the-art in this area. However, Klein et al. compared it to gradient-based methods in [48], which showed
that it provides substantially lower convergence rates when applied to typical DIR problems.

B) Multi-objective: From Eq. 1.2, we can see that the DIR problem is inherently multi-objective. In all
previous methods, some 𝜆 must be chosen before the optimization process. There is, however, no theoretical
basis on which to choose this parameter [2]. Multi-objective evolutionary-based algorithms remove the need
for this predetermination (see Section 2.4). They have shown to be effective at solving many MO problems
[52]. In [2, 3], they are applied to 2D DIR problems using both the MO-GOMEA [52], and iMAMaLGaM-X+ [17]
algorithms. These algorithms deliver good results but are computationally inefficient, and thus improvements
are proposed in [19, 25] by making use of the GPU and tailored linkage models. This leads to considerable
speed-ups while finding approximation sets with comparable quality. A recent method extends this approach
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for 3D DIR problems using a 3D dual-dynamic grid transformation model based on simplex meshes, capable
of modeling large deformations while still supporting the incorporation of annotated guidance information and
multi-resolution schemes [5].

2.3. Optimization Methods
Three optimization methods are discussed in this review. First, a single-objective real-valued EA, which utilizes
Gene-pool Optimal Mixing. Second, a multi-objective method that derives the gradient from the Uncrowded
Hypervolume (UHV) of a set of solutions to solve the problem by gradient descent. Third, a multi-objective EA
in a hybrid approach with the UHV gradient ascent method.

For a more detailed overview of these methods and related background material, see Chapter 3.

2.3.1. RV-GOMEA
RV-GOMEA [20] refers to the real-valued version of the original GOMEA [18], which incorporates techniques
from the real-valued Estimation of Distribution Algorithm (EDA) AMaLGaM [15]. RV-GOMEA is especially
competent at solving Gray-Box Optimization (GBO) problems for which some structure can be inferred from
the problem definition. This structure is formalized as dependencies between the problem variables, allowing
for partial evaluation of the objective value, improving the computational performance dramatically [23]. RV-
GOMEA has been used to solve many black- and GBO problems efficiently [20].

2.3.2. UHV-Adam
In [32], gradient expressions for the UHV [56] are derived and used to solve multi-objective problems using
traditional gradient ascent methods. This method calculates the direction to improve a solution, which most
efficiently increases the UHV (see Section 3.3.2).

This method was compared to UHV-GOMEA [56] and was found to be more sample efficient; it showed
improved performance when the budget for evaluations was small but comparable performance when this
budget was large. In a black-box setting, finite differences can be used to approximate the gradient, but in this
setting, the method was found to be only slightly more efficient [32].

2.3.3. Hybrid
Multi-objective EAs are inherently robust against local minima due to their stochastic population-based ap-
proach. Gradient-based methods, however, are effective at exploiting local problem structures efficiently.
Ideally, we would combine these strengths into a single hybrid approach. This could be done by combin-
ing UHV-GOMEA [56] with UHV-GA [32]. UHV-GOMEA is comparable to RV-GOMEA, with the main difference
being that the UHV is used as the objective function, as well as some minor modifications to better align it with
indicator-based multi-objective optimization problems [56].

2.4. Multi-Objective Deformable Image Registration
Gradient-based and deep-learning-based methods provide state-of-the-art performance when it comes to DIR
[8, 30, 49, 89]. However, these methods all require some combination of weights for the objectives to be
determined a priori, which has been shown to be hard [63, 64].

An approach that can circumvent this issue is to solve the DIR problem from a multi-objective perspective.
This does not require the predetermination of weights and instead returns an approximation of the Pareto
set: a set of solutions providing some (near) optimal trade-off between the differing objectives. This gives the
decision-maker insightful context to decide on the optimal trade-off a posteriori.

In [65], an intermediate approach was taken, in which sets of weights for specific DIR problems were learned
in an offline training phase using a multi-objective EA. An approximation of the Pareto front can be found by
performing registrations for each of the weights in such a set. However, doing this online for each DIR instance
would typically be too computationally intensive. Nevertheless, they found the approach effective for cases
with limited deformations; cases with large deformations typically still require per-patient tuning of the weights.

In [62], gradient information was used with the multi-objective EDA iMAMaLGAM [17] when trying to solve
DIR problems using a dual-dynamic B-spline transformation model. The gradient information was used by
improving each solution in the population using gradient descent after each iteration. This method, however,
does not use the ”true” multi-objective gradient but instead performs gradient descent for one objective randomly
at each iteration [62]. Still, the method showed improved results over both methods independently.
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To further improve upon this approach, the UHV-GA [32] method could be used to perform gradient descent
after each iteration of the EA. However, it is not immediately clear how to best integrate EAs with a gradient
ascent method since both incorporate information from past iterations [32].



3
Background

This chapter provides a theoretical foundation for the rest of this thesis. First, we provide amore formal definition
and explanation of B-splines and how they are used in a deformation model. Second, we give an overview of
the applied evolutionary optimization methods. Third, we provide a primer on multi-objective optimization,
which includes Pareto-dominance, hypervolume, and uncrowded hypervolume. Fourth, partial evaluations are
formally defined.

3.1. B-spline Deformation Model
B-splines provide a tool to create complex smooth curves using only a set of control points. Their basis lies in
parametric curves and, more specifically, Bézier curves.

3.1.1. Bézier curves
Bézier curves are parametric curves defined by a small set of control points 𝑐0, ..., 𝑐𝑛, and a corresponding
polynomial order 𝑛. For example, given two control points 𝑐0 and 𝑐1, the corresponding parametric equation is
given by

𝑝1(𝑡) = (1 − 𝑡)𝑐0 + 𝑡𝑐1.

Here, 𝑝𝑑 refers to a polynomial of order 𝑑. This equation shows that the linear Bézier curve corresponds to a
linear interpolation between two control points. Given three control points 𝑐0, 𝑐1, 𝑐2, we can create two linear
Bézier curves:

𝑝11(𝑡) = (1 − 𝑡)𝑐0 + 𝑡𝑐1
𝑝21(𝑡) = (1 − 𝑡)𝑐1 + 𝑡𝑐2.

These two curves can then be linearly interpolated for 𝑡 ∈ [0, 1] to obtain a quadratic Bézier curve as follows:

𝑝2(𝑡) = (1 − 𝑡)2𝑐0 + 2𝑡(1 − 𝑡)𝑐1 + 𝑡2𝑐2.

We can obtain the cubic Bézier curve by linearly interpolating two quadratic Bézier curves. We can repeat this
process recursively to obtain any Bézier order 𝑛 by linearly interpolating two Bézier curves of order 𝑛 − 1. See
Figure 3.1 for a more intuitive visualization of this process.

3.1.2. B-splines
B-splines naturally follow from Bézier curves since they can be seen as Bézier curves joined together. Besides
this, additional constraints must be imposed for the curve to be considered a B-spline curve. First, 𝐶0 continuity
states that for any Bézier curve in the sequence, the last control point must be the same as the first control
point of the next curve in the sequence, if any. Second, 𝐶1 continuity states that the first derivatives at these
points must be the same. Third, 𝐶2 continuity states that the second derivatives at these points must be the
same.
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A 𝑑 degree B-spline is a piecewise polynomial of degree 𝑑. When defined by 𝑛 control points, it will consist
of 𝑛 − 𝑑 Bézier curves. It can be defined as

𝑝𝑑(𝑡) =
𝑛

∑
𝑖=1
𝐵𝑖,𝑑(𝑡)𝑐𝑖 , (3.1)

where 𝐵𝑖,𝑑(𝑡) are the basis spline functions. These are defined using the Cox-de Boor recursion formula [12].
Intuitively, B-splines can be seen as a linear combination of control points, where the basis functions give

the weights. These basis functions are defined so that their combination approximates 𝑑-degree Bézier curves.
The contribution of a particular control point 𝑐𝑖 to a point on the curve depends on the parameter 𝑡. This could
be zero (see [12]) due to B-spline basis functions having only local support; any point on the curve of a B-spline
of degree 𝑑 is only defined by 𝑑 + 1 control points.

There are multiple advantages of B-splines over Bézier curves. First, the number of control points is not
determined by the degree of the curve. With an increasing number of control points, the degree of a Bézier
curve would increase too, which poses computational problems. Second, Bézier curves are always changed
globally, i.e., if one control point changes, the entire curve changes, further decreasing the applicability of
deformation models, especially when local deformations are required.

As stated before, only 𝑑 + 1 terms in Eq. 3.1 are non-zero for any given 𝑡. Using this fact, we can simplify
the recursive formulation into a simpler one. It is reformulated as a linear combination of only the 𝑑 + 1 basis
functions and control points, which define the current point 𝑡 on the curve. The range of each basis function is
now [0, 1]. With 𝑖 = ⌊𝑡⌋, the new formulation is given by

𝑝𝑑(𝑡) =
𝑑

∑
𝑛=0

𝐵𝑛,𝑑(𝑡 − 𝑖)𝑐𝑖+𝑛 . (3.2)

With this formulation, the basis functions can be defined non-recursively. For example, Table 3.1 gives simplified
definitions for the linear, quadratic, and cubic degrees.

3.1.3. Patches & Grids
We need to generalize our current B-splines to a multivariate setting to arrive at a functional deformation model.
In the current setting, a single parameter 𝑡 and some control points generate a curve in 2D space. In deformable
image registration, however, we need to have some way of transforming a grid of 2D/3D image voxels from
one image space to another.

The previous univariate case can be transformed into a multivariate one by recursively replacing the control
points from Eq. 3.2 with B-splines defined on control points indexed by one more variable [53]. Given that
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Degree Basis functions

Linear 𝐵0,1(𝑡) = 1 − 𝑡
𝐵1,1(𝑡) = 𝑡

Quadratic 𝐵0,2(𝑡) = 𝑡2/2
𝐵1,2(𝑡) = (−2𝑡2 + 2𝑡 + 1)/2
𝐵2,2(𝑡) = (𝑡2 − 2𝑡 + 1)/2

Cubic 𝐵0,3(𝑡) = (−𝑡3 + 3𝑡2 − 3𝑡 + 1)/6
𝐵1,3(𝑡) = (3𝑡3 − 6𝑡2 + 4)/6
𝐵2,3(𝑡) = (−3𝑡3 + 3𝑡2 + 3𝑡 + 1)/6
𝐵3,3(𝑡) = 𝑡3/6

Table 3.1: Simplified B-spline basis functions for linear, quadratic, and cubic degrees.

𝑖 = ⌊𝑥⌋, 𝑗 = ⌊𝑦⌋, the bi-variate case can then be rewritten as

𝑝𝑑(𝑥, 𝑦) =
𝑑

∑
𝑚=0

𝑑

∑
𝑛=0

𝐵𝑚,𝑑(𝑥 − 𝑖)𝐵𝑛,𝑑(𝑦 − 𝑗)𝑐𝑖+𝑚,𝑗+𝑛 . (3.3)

The resulting B-spline no longer defines a curve but a patch using a set of 2D control points.
Given that 𝑘 = ⌊𝑧⌋, grids can similarly be defined as

𝑝𝑑(𝑥, 𝑦, 𝑧) =
𝑑

∑
𝑚=0

𝑑

∑
𝑛=0

𝑑

∑
𝑙=0
𝐵𝑚,𝑑(𝑥 − 𝑖)𝐵𝑛,𝑑(𝑦 − 𝑗)𝐵𝑙,𝑑(𝑧 − 𝑘)𝑐𝑖+𝑚,𝑗+𝑛,𝑘+𝑙 . (3.4)

We can deform any 2D or 3D image using these patches and grids by overlaying it with control points. Then,
by shifting the control points, a deformation field is defined by the B-spline patch/grid. Figure 3.2 shows how
a 2D grid can deform patches locally when control points are moved after initializing them with zero displace-
ments.

3.1.4. Deformation model
We now define the used deformation model using B-spline patches. A frequent confusion with this model is the
direction in which it is defined. Previously we have stated that in the image registration problem, the moving
image 𝐼𝑀 is deformed to match the fixed image 𝐼𝐹. To this end, the deformation has to be defined as a coordinate
mapping from the fixed image domain to the moving image domain: 𝑇 ∶ Ω𝐹 ⊂ ℝ𝑑 → Ω𝑀 ⊂ ℝ𝑑. This ensures
that the deformed image is fully defined for all voxels; if the mapping is defined in the other direction, undefined
voxels are possible due to the mapping not being one-to-one.

Given the coordinate mapping 𝑇, the deformed image can be computed as follows: for each voxel position
𝑥 ∈ {𝑥1, ..., 𝑥𝑛} in the fixed image domain Ω𝐹, compute its mapped position 𝑦 ∈ {𝑦1, ..., 𝑦𝑛} = 𝑇𝜇(𝑥), interpolate the
moving image voxel intensity at 𝑦, and use this value in the output image at 𝑥. Here, 𝑇𝜇 refers to a parameterized
transformation using, e.g., cubic B-spline patches/grids as defined in Equations 3.3, 3.4:

𝑇𝜇(𝑥) = 𝑝𝑑,𝜇(𝑥). (3.5)

This notation differs somewhat from the notation used by authors of the Elastix toolbox [49] as they use a
specific cubic B-spline polynomial definition [85]. This toolbox and its implemented deformation models are
used in this thesis; thus, the notation defined above primarily provides intuitive insight into the construction of
a B-spline deformation model.

3.1.5. Properties
B-spline-based transformation models provide the following beneficial properties [11]:
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Figure 3.2: Examples of cubic B-spline patches defined by 9x9 grids of control points, indicated by the red crosses. On the left, the control
points have not been moved from their initial positions. On the right, some control points are moved, which deform the patch locally.

• Computational Tractability: They are computationally tractable because they have local support - i.e.,
the basis functions are non-zero for a subset of their domain; even though their formulation might seem
complex, they are by definition just a linear combination of polynomials.

• Smoothness: Due to their overlap in line segments, the resulting linear combination of B-splines pro-
duces a smooth spline curve of degree 𝑑, which has 𝑑 − 1 continuous derivatives. For example, a cubic
spline curve has continuous first and second derivatives (called 𝐶2 continuity). 𝐶2 continuity makes them
well-suited for DIR optimization when gradient-based methods are used.

• Physical plausibility: Cubic splines minimize the ”strain energy” or the euclidean norm of the second
derivative of the transformation [50].

3.2. Evolutionary Optimization
Evolutionary Algorithms are nature-inspired methods for optimization, which iteratively apply variation and se-
lection to a population of candidate solutions. In this thesis, we will focus on model-based EAs, which aim
to exploit the structure of the optimization problem in some way to solve it more efficiently. We discuss two
relevant techniques: Estimation of Distribution Algorithms (EDA) and Gene-pool Optimal Mixing Evolutionary
Algorithms (GOMEA).

Given is an optimization problem
argmin

𝑥
𝑓(𝑥),

where 𝑓 is some objective function and 𝑥 ∈ 𝕏 ⊂ ℝ𝑑 with 𝑑 the problem dimensionality.

3.2.1. EDA
An EDA aims to solve this optimization problem by identifying and using dependencies between the decision
variables {𝑥1, ..., 𝑥𝑑} during the search, estimating a probability distribution of the subset of solutions of fixed
size 𝑆 ⊂ 𝑋 with minimal ∑𝑥∈𝑆 𝑓(𝑥) for the entire population at each iteration. New solutions are then sampled
using this probability distribution at the next iteration.

The AMaLGaM EDA [15] uses Maximum-Likelihood (ML) estimates of Gaussians to estimate the probabil-
ity distributions. Besides this, it uses several improvements to negate some of the drawbacks of using only
ML estimates. First, Adaptive Variance Scaling (AVS) and the Standard Deviation Ratio (SDR) are used to
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ensure that the variance does not decrease too rapidly, which would lead to premature convergence. Second,
Anticipated Mean Shift (AMS) preserves a sense of direction across iterations.

iAMaLGaM [15] improves upon AMaLGaM by combining decreasingly weighted estimations of previous
generations with the current estimation. This lowers the required population size, as information from past
iterations can be reused and is not discarded.

3.2.2. GOMEA
EDAs such as the AMaLGaM [15] or CMA-ES [39] make use of multivariate Gaussians to model problem
dependencies. However, while effective, these models provide an unnecessarily high model complexity for
specific optimization problems, e.g., problems that do not require rotational invariance. Thus, performance in
these cases can be increased using a model that narrowly fits the problem’s complexity. GOMEAs provide the
flexibility to do so.

GOMEAs use a linkage model described by a Family of Subsets (FOS), denoted ℱ, to model dependencies
between decision variables explicitly. This FOS contains subsets of the set of all variable indices {0, 1, .., 𝑑 −1},
and can be written as ℱ = {𝐹0, 𝐹1, .., 𝐹|ℱ|−1}, with 𝐹𝑖 ⊆ {0, 1, .., 𝑑 − 1}. These subsets, named linkage sets,
specify groups of decision variables that should be updated simultaneously during the variation phase of the
EA. Using a linkage model allows for dependencies between decision variables to be modeled and the problem
structure to be exploited when these are modeled correctly.

GOMEA can use a linkage tree (LT) FOS built hierarchically bottom-up. This can be done using the Un-
weighted Pair Grouping Method with Arithmetic-mean [34] (UPGMA). This method starts with subsets contain-
ing only one decision variable each and consecutively merges the two closest subsets until a set containing all
decision variables are formed. This is done using some distance metric, e.g., Mutual information. This process
can be done in 𝑂(𝑛𝑙2) time [34] and must be performed at each generation’s start.

Variation occurs through a method called Optimal Mixing (OM). For each candidate solution 𝑥, this method
iterates randomly over all 𝐹𝑖 ∈ ℱ, then randomly selects a donor 𝑑 from the population and applies the decision
variables 𝑑𝐹𝑖 to 𝑥𝐹𝑖 . If this results in an improved solution, the change is accepted; otherwise, it is reverted.
This operation is called optimal since the quality of solutions during variation monotonically improves.

Using an explicit linkage model described by a FOS and optimal mixing allows for partial evaluations, which
can substantially improve performance if the problem is known to a certain degree [23].

3.2.3. RV-GOMEA
RV-GOMEA provides an adaptation of GOMEA using techniques from AMaLGaM to target real-valued opti-
mization problems. In short, this is done by estimating a |𝐹𝑖|-variate Gaussian for each 𝐹𝑖 ∈ ℱ. Then, during
OM, proposals are sampled from these distributions instead of obtaining them from donor solutions in the popu-
lation. Again, AVS, SDR, and AMS are used as in AMaLGaM, but now for each distribution individually. Lastly,
when a linkage model is learned every generation, distribution parameters are passed along from generation
to generation through a matching algorithm, which finds a one-to-one mapping of FOS elements that are most
similar between generations. This procedure is not necessary for static linkage models.

Consequently, RV-GOMEA combines the exploitation of linkage structure from GOMEA with the exploration
by sampling multivariate Gaussians from AMaLGaM to cover the search space of a real-valued optimization
problem efficiently.

3.3. Multi-objective Optimization
The previously described methods are all single-objective, but some problems are multi-objective. These prob-
lems specify multiple optimization objectives of interest, often posing conflicting trade-offs between possible
solutions. These can be solved using single-objective methods by specifying weights in advance to optimize
a linear combination of the objectives. However, it is often hard to express in advance what trade-off between
the objectives would ultimately be desirable. A set of high-quality solutions, with different trade-offs between
the objectives, could give the necessary context to decide on the preferred solution. Finding such a set is the
goal of multi-objective optimization.

More formally, we can define a multi-objective optimization problem as

min(𝑓1(𝑥), 𝑓2(𝑥), ..., 𝑓𝑘(𝑥)) s.t. 𝑥 ∈ 𝑋, (3.6)

where 𝑘 ≥ 2, 𝑋 is the set of feasible solutions, and 𝑓1, ..., 𝑓𝑘 some objective functions to be minimized, repre-
senting the conflicting objectives. The goal of multi-objective optimization is to find the Pareto set 𝑃𝑆 ∈ 𝑋, or an
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approximation to it 𝐴(𝑆) ∈ 𝑋. In the following sections, we provide theoretical background for these concepts.

3.3.1. Pareto-dominance
A solution 𝑥1 is said to (Pareto) dominate another solution 𝑥2 (denoted 𝑥1 ≻ 𝑥2), if and only if

∀(𝑖 ∈ {1, 2, .., 𝑘}) : 𝑓𝑖(𝑥1) ≤ 𝑓𝑖(𝑥2) ∧
∃(𝑖 ∈ {1, 2, .., 𝑘}) : 𝑓𝑖(𝑥1) < 𝑓𝑖(𝑥2).

Its objective values are better or equal for all objectives and strictly better for at least one objective. A solution
𝑥1 is considered Pareto optimal if and only if ∄𝑥2 : 𝑥2 ≻ 𝑥1. Then we can define the set of all Pareto optimal
solutions as 𝑃𝑆 = {𝑥1 ∈ 𝑋 ∣ ∄𝑥2 : 𝑥2 ≻ 𝑥1}. Lastly, the Pareto front 𝑃𝐹 of all objective function values corre-
sponding to the solutions in 𝑃𝑆 is defined as 𝑃𝐹 = {𝑓(𝑥) = (𝑓1(𝑥), 𝑓2(𝑥), .., 𝑓𝑘(𝑥)) ∣ 𝑥 ∈ 𝑃𝑆}. We visualize these
concepts in Figure 3.3.

Figure 3.3: Pareto front of a minimization problem concerning
two objectives.

A multi-objective optimization problem can be optimally
solved if 𝑃𝑆 can be found. However, in many cases, this is
intractable due to the dimensionality and complexity of the
problem and the fact that 𝑃𝑆 may be infinitely large. The
aim then is to find an approximation to 𝑃𝑆. However, the
problem of finding such an approximation is multi-objective
on its own since the solutions in this set should be close to
the Pareto front but evenly spread out across it as well; that
is, we aim for proximity and diversity.

We can solve a multi-objective problem single-
objectively by using performance indicators. Many perfor-
mance indicators have been proposed to capture multiple
objectives into a single function. Domination-based meth-
ods also exist, but they suffer from stagnation whenmost of
the population becomes non-dominated, preventing con-
vergence to the Pareto set [56]. The Hypervolume indi-
cator is the only known measure that is strictly monotonic
with respect to Pareto-dominance [56]. Thus, an approx-
imation set with optimal Hypervolume has to be a subset
of the Pareto set. A limitation of Hypervolume is that there
is no selection pressure from dominated solutions toward
non-dominated solutions. To combat this, Uncrowded Hy-
pervolume [56] was introduced.

3.3.2. (Uncrowded) Hypervolume
Domination-based optimization methods are applied by viewing the solutions separately; a solution can be
improved locally by finding a solution that dominates it. Hypervolume-based methods view the problem from
the perspective of the entire solution set.

The hypervolume 𝐻𝑉(𝑆) for a solution set 𝑆 measures the volume dominated in objective space by all
𝑥 ∈ 𝑆, bounded by a reference point 𝑟. The hypervolume improvement 𝐻𝑉𝐼(𝑥, 𝑆) is defined as the increase in
Hypervolume when 𝑥 is added to 𝑆, i.e., 𝐻𝑉𝐼(𝑥, 𝑆) = 𝐻𝑉(𝑆 ∪ {𝑥}) − 𝐻𝑉(𝑆). The approximation set 𝐴(𝑆) is the
most significant subset of 𝑆 that contains only non-dominated solutions, i.e., 𝐴(𝑆) = {𝑥 ∣ 𝑥 ∈ 𝑆, ∄𝑦 ∈ 𝑆 : 𝑦 ≻ 𝑥}.

For any dominated solution 𝑥 ∈ 𝑆, the hypervolume improvement 𝐻𝑉𝐼(𝑥, 𝑆) = 0. This means there is no
difference between a dominated solution close to the approximation boundary (the boundary between domi-
nated and non-dominated region in objective space, also see Figure 3.4) and a dominated solution that lies far
from it. This results in inefficient use of the population during optimization since an EA will not know if it has
improved dominated solutions.

For this reason, the uncrowded distance 𝑢𝑑(𝑥, 𝑆) is introduced [56]. It measures the shortest Euclidean
distance between a dominated solution 𝑥 ∈ 𝑆 and the approximation boundary of 𝑆. If 𝑥 is non-dominated,
𝑢𝑑(𝑥, 𝑆) = 0. The uncrowded hypervolume improvement (UHVI) can then be defined as𝑈𝐻𝑉𝐼(𝑥, 𝑆) = 𝐻𝑉𝐼(𝑥, 𝑆)−
𝑢𝑑(𝑥, 𝑆). With this, we can define the uncrowded Hypervolume (UHV), which measures the quality of the entire
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solution set. It is defined as
𝑈𝐻𝑉(𝑆) = 𝐻𝑉(𝑆) − 1

|𝑆| ∑
𝑥∈𝑆
𝑢𝑑(𝑥, 𝑆)𝑚 , (3.7)

where 𝑚 is the dimensionality of the objective space. The exponentiation with 𝑚 ensures that the uncrowded
distance is in the same unit scale as the Hypervolume. 1

|𝑆| is used to ensure that an improvement in Hyper-
volume does not lead to a more negative influence of the increased uncrowded distances. UHV, in contrast to
HV, is not strictly monotonic w.r.t Pareto dominance [56].

← 𝑓1

←
𝑓 2

Approximation boundary
Uncrowded distance 𝑢𝑑(𝑥, 𝑆)

Dominated Hypervolume 𝐻𝑉(𝑆)
Hypervolume improvement 𝐻𝑉𝐼(𝑥, 𝑆)

Approximation set 𝐴(𝑆)
Reference point 𝑟
Solutions 𝑥 ∈ 𝑋

Figure 3.4: Visualization of the hypervolume (improvement), uncrowded distance, approximation set and boundary for an example
solution set 𝑆 ∈ 𝑋.

3.4. Partial Evaluations
In a Gray-Box Optimization (GBO) setting, some problem structures can allow partial evaluation of the objective
function based on the changed problem variables since the last evaluation. These evaluations can be utilized in
specific optimization algorithms for improved computational efficiency. More specifically, these can be utilized
when the optimization procedure applies variation to (small) subsets of variables, as is the case for the GOMEA
variation procedure as discussed in Section 3.2.2. A partial evaluation efficiently calculates the objective value
after modifying a subset of problem variables, subtracting their contribution from the overall objective value
before the modification and adding their contribution after it.

3.4.1. Definition
Formally, partial evaluations can be applied to an optimization problem when the objective function is known
to be constructed from 𝑘 subfunctions, for which it is known on which problem variables they depend. These
indices are defined by 𝐼 = {ℐ0, ℐ1, ..., ℐ𝑘−1}, where ℐ𝑗 defines the indices on which the subfunction 𝑓𝑀𝑗 depends.
Given 𝑘 subfunctions 𝑓𝑀0 , ..., 𝑓𝑀𝑘−1 and 𝐼, partial evaluations can be formulated in the following manner [22]:

𝑓(𝑥) = 𝑓𝑃(𝑓𝑀0 (𝑥|ℐ0) ⊕ ... ⊕ 𝑓𝑀𝑘−1(𝑥|ℐ𝑘−1)) = 𝑓𝑃(
𝑘−1

⨁
𝑗=0

𝑓𝑀𝑗 (𝑥|ℐ𝑗)), (3.8)

where for each 𝑗 ∈ [0, ..., 𝑘 − 1], 𝑓𝑀𝑗 ∶ ℝ|ℐ𝑗| → ℝ defines a function with as input a subset of the indices of 𝑥,
which are defined in ℐ𝑗. The ⊕ can be any commutative binary operator for which an inverse operator exists.
𝑓𝑃 can either be the identity function or some non-invertible function, but in this thesis, we will only consider
the former. A complete definition of partial evaluations is given in [22].

Most interestingly, for this thesis, we can define the new objective value for a particular solution 𝑥, given a
modification to index 𝑖, resulting in 𝑥′ as follows:

𝑓part(𝑥, 𝑓𝑥 , 𝑥′, 𝑖) = 𝑓𝑥⊖⨁
ℐ𝑗∋𝑖

𝑓𝑀𝑗 (𝑥|ℐ𝑗) ⊕⨁
ℐ𝑗∋𝑖

𝑓𝑀𝑗 (𝑥′|ℐ𝑗), (3.9)
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with 𝑓𝑥 the previous objective value for 𝑥, and ℐ𝑗 ∋ 𝑖 shorthand for {ℐ𝑗 ∈ 𝐼|𝑖 ∈ ℐ𝑗}, i.e. all sets of indices ℐ𝑗 in
which index 𝑖 occurs. With this equation, we can partially evaluate certain similarity metrics and penalty terms
in DIR when using common B-spline-based transformation models. This is explained in detail in Section 4.1.

3.4.2. Variable Interaction
In order to model the dependencies between problem variables, a Variable Interaction Graph (VIG) can be
constructed. A VIG 𝐺 = (𝑉, 𝐸) contains a vertex 𝑢 ∈ 𝑉 for each problem variable 𝑋𝑢 ∈ 𝑋, and an edge
(𝑢, 𝑣) ∈ 𝐸 for each pair of problem variables 𝑋𝑢 , 𝑋𝑣 that are specified to be dependent. A dependency between
problem variables 𝑋𝑖 , 𝑋𝑗 exists if they jointly occur in the required input of at least one subfunction.

For a B-spline transformation model, we can describe the dependencies more naturally by aggregating the
problem variables for each control point. For example, the VIG for a 6x6 grid is shown in Figure 3.5, indicating
many overlapping dependencies between problem variables for these transformation models.
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Figure 3.5: Variable Interaction Graph (VIG) with each node a control point in a 6𝑥6 B-spline grid. The underlying (fixed) image is
visualized by the region shaded in blue. The outermost control points are added so that the transformation of each region of voxels is

supported by the required number of control points (4𝑑 with 𝑑 the dimensionality of the voxels).

A traditional linkage tree (LT), as used in GOMEA, is inherently less suited for these overlapping dependen-
cies due to its hierarchical construction in a bottom-up fashion. This limits the overlapping dependencies that
can be modeled since two sets must always be merged completely. To address this issue, different linkage
models have been proposed. In [18], Bosman et al. propose the linkage neighbors (LN) model, which aims
to model for each problem variable its closest neighbors in terms of linkage. These neighbors can be learned
from the population data using various proposed methods. A method must form sets for each problem variable
𝑋𝑖 of limited size with only its closest neighbors that meet some linkage criterium or threshold. Another method
is proposed by Bouter et al. [24], leveraging the conditional linkage between problem variables. It does so by
sampling new solutions for a subset of variables by conditioning on the variables not contained in this set. This
can be done efficiently by viewing the VIG as a Gaussian Markov Field (GMF) between problem variables.

Although Figure 3.5 displays many overlapping dependencies, it does not say anything about the magnitude
of these dependencies in terms of their linkage in practice. It is essential to measure these linkages first for
various registration problems when using common B-spline transformation models; applying specific overlap-
ping linkage models might not provide their theoretic benefits in practice if most dependencies can be filtered
based on empirical evidence.
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Design

This work is the first to apply partial evaluations to common B-spline transformation models in deformable
image registration (DIR). In this chapter, we provide our design for this application. Section 4.1 first provides
the framework required for partial evaluations when using common B-spline transformation models in general
and subsequently provides the design for their implementation when used during registration with specific
similarity metrics or penalty terms. Then, in Section 4.2, we provide definitions for the linkage models used in
this thesis.

4.1. Partial Evaluations in Common B-spline Transformation Models
As stated in Section 3.1.2, B-spline basis functions have local support, which means that a limited set of sur-
rounding control points influence any point on a B-spline curve. In common B-spline transformation models,
the surrounding control points only influence the transformation of a patch or block of voxels.

When using uniform cubic B-splines, 16 and 64 control points define the transformation of either a patch or
block of voxels in 2D or 3D, respectively (see Figure 4.1). Consequently, this allows for the partial evaluation of
similarity metrics or penalty terms if these can be defined as a commutative combination of calculations based
on these sets of voxels (see Section 3.4). If the coefficients of a control point of the B-spline grid are altered,
we will only have to recalculate the similarity metric for the voxels influenced by this point (see Figure 4.1).

(a) The transformation of the highlighted 2D patch of voxels is
influenced only by the surrounding 16 control points.

(b) If the coefficients of the highlighted control point (red) are
altered, the highlighted patches of voxels will need to be

re-evaluated.

Figure 4.1: A transformation grid using uniform cubic B-splines is shown, which can transform the moving image by moving the control
points. This visualization demonstrates the local support of B-spline basis functions when they are used in 2D transformation models.

19
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For example, the sum of absolute differences (SAD) is the sum of absolute voxel-to-voxel differences be-
tween the moving image 𝐼𝑀 and fixed image 𝐼𝐹. Formally, it can be defined as

𝑆𝐴𝐷(𝐼𝑀 , 𝐼𝐹) = ∑
𝑥∈𝐼𝐹

|𝐼𝐹(𝑥) − 𝐼𝑀(𝑇(𝑥, 𝜇))| (4.1)

𝑇(𝑥, 𝜇) transforms a voxel 𝑥 using a parameterized transformation model defined by 𝜇, and 𝐼 is the evaluated
voxel intensity at a voxel from the moving or fixed image. Instead, we can also take this summation over the
set 𝑃 = {𝑃1, ..., 𝑃𝑛} of 𝑛 mutually exclusive subsets of voxels as defined by the grid of a B-spline transformation
model. Then, the SAD can be calculated by taking 𝑆𝐴𝐷(𝐼𝑀 , 𝐼𝐹) = ∑𝑃𝑖∈𝑃 ∑𝑥∈𝑃𝑖 |𝐼𝐹(𝑥) − 𝐼𝑀(𝑇(𝑥, 𝜇))|, a double
summation over the absolute differences between patches of voxels. Suppose a change is made to a control
point 𝑐 such that it becomes 𝑐′. In that case, we only need to take the old SAD for the whole image, and subtract
from it the SAD for the patches of voxels influenced by 𝑐, after which we add the SAD for the same patches
but now with the updated transformation parameters from 𝑐′ incorporated in 𝜇. This significantly improves the
computational performance of the registration when using sufficiently large grid sizes since it removes the need
for a full re-evaluation each time a small subset of control points is changed. Full evaluations will always need
to be done for newly generated solutions to obtain their initial objective values.

4.1.1. Definitions
To allow for the formal and concise formulation of partial evaluations when applied to the individual metrics, we
have defined the following:

• 𝐼𝑀 and 𝐼𝐹, the moving and fixed image respectively, with 𝐼𝐹|𝑀(𝑥) the evaluated voxel intensity at point 𝑥
on either image. Here a point can lie between voxels, in which case some form of interpolation is used.
Each image is defined on its spatial domain: Ω𝐹 ⊂ ℝ𝑑 and Ω𝑀 ⊂ ℝ𝑑 with 𝑑 the image dimension. As
stated before, the set 𝑃 = {𝑃1, ..., 𝑃𝑛} defines the total 𝑛 mutually exclusive regions of voxels covering the
entirety of the fixed image as defined by the B-spline grid.

• 𝜇 parameterizes the B-spline transformation model, defined by the set of control points 𝐶 with size |𝐶| =
𝐶1 × ... × 𝐶𝑑 with 𝐶1, ..., 𝐶𝑑 the number of control points along each axis. With this, the B-spline parameters
in the 2D case are composed as follows: 𝜇 = {𝑐1𝑥 , 𝑐2𝑥 , ..., 𝑐|𝐶|𝑥 , 𝑐1𝑦 , 𝑐2𝑦 , ..., 𝑐|𝐶|𝑦} with 𝑐𝑖 individual control
points. 𝑇 ∶ ℝ𝑑 × ℝ|𝐶|𝑑 → ℝ𝑑 defines a mapping from any point on the fixed image to a point either on or
outside the moving image.

• To simplify further formulations, we define the mapping 𝑃 ∶ 𝒫(𝐶) → 𝒫(𝑃), which maps any subset of
control points {𝑐1, ..., 𝑐𝑥} to the corresponding subset of influenced regions of voxels {𝑃1, ..., 𝑃𝑥}. And the
mapping 𝐶 ∶ 𝒫(𝑃) → 𝒫(𝐶), which maps any subset of voxel regions to the control points that influence it.

4.1.2. Mean Squared Difference
Similar to the SAD, the mean squared difference (MSD) is based on the voxel-to-voxel difference between two
images. It is defined as follows:

𝑀𝑆𝐷(𝜇; 𝐼𝐹; 𝐼𝑀) =
1
|Ω𝐹|

∑
𝑥𝑖∈Ω𝐹

(𝐼𝐹(𝑥𝑖) − 𝐼𝑀(𝑇𝜇(𝑥𝑖))2 (4.2)

Now, to allow for partial evaluations, the division by the total number of voxels in the fixed image domain
needs to be taken into the summation so that partial evaluations for subsets of voxels can be added and
subtracted from each other; i.e., all summations are in the same scale:

𝑀𝑆𝐷(𝜇; 𝐼𝐹; 𝐼𝑀) = ∑
𝑥𝑖∈Ω𝐹

(𝐼𝐹(𝑥𝑖) − 𝐼𝑀(𝑇𝜇(𝑥𝑖))2
|Ω𝐹|

. (4.3)

With this, we can formulate how to partially update a given solution 𝜇 with current MSD 𝑚 of which the
subset of control points 𝐶′ ∈ 𝒫(𝐶) were altered such that it resulted in 𝜇′:
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𝑀𝑆𝐷part(𝜇; 𝜇′, 𝐶′; 𝑚; 𝐼𝐹; 𝐼𝑀) = 𝑚−( ∑
𝑃𝑖∈𝑃(𝐶′)

∑
𝑥𝑖∈𝑃𝑖

(𝐼𝐹(𝑥𝑖) − 𝐼𝑀(𝑇𝜇(𝑥𝑖))2
|Ω𝐹|

)+( ∑
𝑃𝑖∈𝑃(𝐶′)

∑
𝑥𝑖∈𝑃𝑖

(𝐼𝐹(𝑥𝑖) − 𝐼𝑀(𝑇𝜇′(𝑥𝑖))2
|Ω𝐹|

) .

(4.4)

4.1.3. Thin-plate Bending Energy
The thin-plate bending energy measures any given deformation field’s deformation magnitude (or smoothness).
When uniform cubic B-splines parameterize this deformation field, we can calculate the bending energy directly
from the coefficients of the control points using an analytical derivation [75], which expresses it as a linear
combination of bending energies for each region of voxels 𝑃𝑖. The smoothness of a single region is calculated
as a summation of squared second-order partial derivatives using the coefficients of the control points that
support the region. By taking 𝑐𝑥, 𝑐𝑦 and 𝑐𝑧 to be vectors containing the ordered coefficients of all control points
for each dimension, respectively, we can define the smoothness of 𝑆 of a region 𝑃𝑖 as:

𝑆𝑃𝑖(𝐶) = ∑
(𝑐𝑥 ,𝑐𝑦 ,𝑐𝑧)∈𝐶(𝑃𝑖)

(𝑐𝑥𝑉(𝑐
𝑖𝑥 ,𝑐𝑖𝑦 ,𝑐𝑖𝑧)𝑐𝑇𝑥 + 𝑐𝑦𝑉(𝑐

𝑖𝑥 ,𝑐𝑖𝑦 ,𝑐𝑖𝑧)𝑐𝑇𝑦 + 𝑐𝑧𝑉(𝑐
𝑖𝑥 ,𝑐𝑖𝑦 ,𝑐𝑖𝑧)𝑐𝑇𝑧 ), (4.5)

Where 𝑐𝑖𝑥, 𝑐𝑖𝑦 and 𝑐𝑖𝑧 correspond to the grid indices of a control point, and 𝑉(𝑥,𝑦,𝑧) a specialized matrix
operator derived in [75]. The definition was constructed in this manner—using vectors and matrix operators—
to optimize for computational performance. Now the smoothness of the entire fixed image becomes

𝑆(𝐶; 𝑃) = ∑
𝑃𝑖∈𝑃

𝑆𝑃𝑖(𝐶). (4.6)

To partially update a solution with control points 𝐶 (parameterized in 𝜇) with current smoothness 𝑠, given
that a subset of control points 𝐶′ ∈ 𝒫(𝐶) were altered, we have to calculate

𝑆part(𝐶; 𝑃; 𝐶′; 𝑠) = 𝑠 − ( ∑
𝑃𝑖∈𝑃(𝐶′)

𝑆𝑃𝑖(𝐶)) + ( ∑
𝑃𝑖∈𝑃(𝐶′)

𝑆𝑃𝑖(𝐶|𝐶′)) , (4.7)

with 𝐶|𝐶′ corresponding to the set of all control points with the updated coefficients from 𝐶′.

4.1.4. Zero-Normalized Correlation Coefficient
The zero-normalized correlation coefficient (ZNCC) is calculated as a summation of the voxel-to-voxel corre-
lations, normalized by the product of both the image’s standard deviations in terms of voxel intensities. It is
defined as

𝑍𝑁𝐶𝐶(𝜇; 𝐼𝐹; 𝐼𝑀) =
∑

𝑥𝑖∈Ω𝐹
(𝐼𝐹(𝑥𝑖) − 𝐼𝐹) ⋅ (𝐼𝑀(𝑇𝜇(𝑥𝑖)) − 𝐼𝑀)

√ ∑
𝑥𝑖∈Ω𝐹

(𝐼𝐹(𝑥𝑖) − 𝐼𝐹)2 ⋅ ∑
𝑥𝑖∈Ω𝐹

(𝐼𝑀(𝑇𝜇(𝑥𝑖)) − 𝐼𝑀)2
, (4.8)

with 𝐼𝐹 =
1
|Ω𝐹|

∑
𝑥𝑖∈Ω𝐹

𝐼𝐹(𝑥𝑖) and 𝐼𝑀 =
1
|Ω𝐹|

∑
𝑥𝑖∈Ω𝐹

𝐼𝑀(𝑇𝜇(𝑥𝑖)) the average voxel intensity values. This formulation

does not allow for partial evaluations due to the 𝐼𝑀 term appearing in every addend for two summations. Thus,
if only a subset of voxels is changed, these summations must be reevaluated for all voxels from the fixed image.
To remedy this, we have to rewrite the equation slightly so that it no longer uses 𝐼𝑀 in these individual addends.
First, we rewrite the numerator:
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= ∑
𝑥𝑖∈Ω𝐹

(𝐼𝐹(𝑥𝑖) − 𝐼𝐹) ⋅ (𝐼𝑀(𝑇𝜇(𝑥𝑖)) − 𝐼𝑀) (4.9)

= ∑
𝑥𝑖∈Ω𝐹

𝐼𝐹(𝑥𝑖) ⋅ 𝐼𝑀(𝑇𝜇(𝑥𝑖)) − 𝐼𝑀 ⋅ ∑
𝑥𝑖∈Ω𝐹

𝐼𝐹(𝑥𝑖) − 𝐼𝐹 ⋅ ∑
𝑥𝑖∈Ω𝐹

𝐼𝑀(𝑇𝜇(𝑥𝑖)) + ∑
𝑥𝑖∈Ω𝐹

𝐼𝐹 ⋅ 𝐼𝑀 (4.10)

= ∑
𝑥𝑖∈Ω𝐹

𝐼𝐹(𝑥𝑖) ⋅ 𝐼𝑀(𝑇𝜇(𝑥𝑖)) − 2 ⋅
∑𝑥𝑖∈Ω𝐹 𝐼𝐹(𝑥𝑖) ⋅ ∑𝑥𝑖∈Ω𝐹 𝐼𝑀(𝑇𝜇(𝑥𝑖))

|Ω𝐹|
+ ∑
𝑥𝑖∈Ω𝐹

∑𝑦𝑖∈Ω𝐹 𝐼𝐹(𝑦𝑖) ⋅ ∑𝑦𝑖∈Ω𝐹 𝐼𝑀(𝑇𝜇(𝑦𝑖))
|Ω𝐹|2

(4.11)

= ∑
𝑥𝑖∈Ω𝐹

𝐼𝐹(𝑥𝑖) ⋅ 𝐼𝑀(𝑇𝜇(𝑥𝑖)) −
∑𝑥𝑖∈Ω𝐹 𝐼𝐹(𝑥𝑖) ⋅ ∑𝑥𝑖∈Ω𝐹 𝐼𝑀(𝑇𝜇(𝑥𝑖))

|Ω𝐹|
= 𝑆𝐹𝑀 − 𝑆𝐹 ⋅ 𝑆𝑀 ⋅

1
|Ω𝐹|

, (4.12)

with 𝑆𝐹𝑀 , 𝑆𝐹 , and 𝑆𝑀 being shorthand notation for the individual summations. With this, we have reduced
the numerator such that it no longer depends on 𝐼𝑀 within any of the summations addends. It can be calcu-
lated using just three summations that do not depend on any globally changing term so that it can be partially
evaluated. We can rewrite the summations from the denominator in a similar fashion:

= ∑
𝑥𝑖∈Ω𝐹

(𝐼𝑀(𝑇𝜇(𝑥𝑖)) − 𝐼𝑀)2 (4.13)

= ∑
𝑥𝑖∈Ω𝐹

𝐼𝑀(𝑇𝜇(𝑥𝑖))2 − 2𝐼𝑀 ⋅ ∑
𝑥𝑖∈Ω𝐹

𝐼𝑀(𝑇𝜇(𝑥𝑖)) + ∑
𝑥𝑖∈Ω𝐹

𝐼𝑀
2

(4.14)

= ∑
𝑥𝑖∈Ω𝐹

𝐼𝑀(𝑇𝜇(𝑥𝑖))2 − 2 ⋅
∑𝑥𝑖∈Ω𝐹 𝐼𝑀(𝑇𝜇(𝑥𝑖)) ⋅ ∑𝑥𝑖∈Ω𝐹 𝐼𝑀(𝑇𝜇(𝑥𝑖))

|Ω𝐹|
+ ∑
𝑥𝑖∈Ω𝐹

∑𝑦𝑖∈Ω𝐹 𝐼𝑀(𝑇𝜇(𝑦𝑖)) ⋅ ∑𝑦𝑖∈Ω𝐹 𝐼𝑀(𝑇𝜇(𝑦𝑖))
|Ω𝐹|2

(4.15)

= ∑
𝑥𝑖∈Ω𝐹

𝐼𝑀(𝑇𝜇(𝑥𝑖))2 −
∑𝑥𝑖∈Ω𝐹 𝐼𝑀(𝑇𝜇(𝑥𝑖)) ⋅ ∑𝑥𝑖∈Ω𝐹 𝐼𝑀(𝑇𝜇(𝑥𝑖))

|Ω𝐹|
= 𝑆𝑀𝑀 − 𝑆𝑀 ⋅ 𝑆𝑀 ⋅

1
|Ω𝐹|

, (4.16)

again, with 𝑆𝑀𝑀 as shorthand notation. Now, we can formulate the ZNCC as follows:

𝑍𝑁𝐶𝐶(𝜇; 𝐼𝐹; 𝐼𝑀) =
𝑆𝐹𝑀 −

𝑆𝐹⋅𝑆𝑀
|Ω𝐹|

√(𝑆𝐹𝐹 −
𝑆2𝐹
|Ω𝐹|

) ⋅ (𝑆𝑀𝑀 −
𝑆2𝑀
|Ω𝐹|

)
(4.17)

Which only consists of summations without any terms that necessitate a reevaluation of the entire sum
whenever they are changed. By keeping track of these five summations for every solution, we can similarly
evaluate them as with the MSD by removing the old addends from the summations and adding the new ones.
For convenience, we define

𝑆𝑀(𝜇; 𝐶′; 𝜇′) = ∑
𝑥𝑖∈Ω𝐹

𝐼𝑀(𝑇𝜇(𝑥𝑖)) − ∑
𝑃𝑖∈𝑃(𝐶′)

∑
𝑥𝑖∈𝑃𝑖

𝐼𝑀(𝑇𝜇(𝑥𝑖)) + ∑
𝑃𝑖∈𝑃(𝐶′)

∑
𝑥𝑖∈𝑃𝑖

𝐼𝑀(𝑇𝜇′(𝑥𝑖)) (4.18)

As the partial evaluation of the sum of fixed image voxel intensities 𝑆𝑀 given changed control points in 𝐶′
resulting in parameters 𝜇′, as well as similar definitions for the summations 𝑆𝐹 , 𝑆𝐹𝑀 , 𝑆𝐹𝐹 , and 𝑆𝑀𝑀 (with 𝐼𝐹 , 𝐼𝑀
implicit). With this, the full, partial evaluation of the ZNCC becomes

𝑍𝑁𝐶𝐶part(𝜇; 𝐶′; 𝜇′; 𝐼𝐹; 𝐼𝑀) =
𝑆𝐹𝑀(𝜇; 𝐶′; 𝜇′) −

𝑆𝐹(𝜇;𝐶′;𝜇′)⋅𝑆𝑀(𝜇;𝐶′;𝜇′)
|Ω𝐹|

√(𝑆𝐹𝐹(𝜇; 𝐶′; 𝜇′) −
𝑆𝐹(𝜇;𝐶′;𝜇′)2

|Ω𝐹|
) ⋅ (𝑆𝑀𝑀(𝜇; 𝐶′; 𝜇′) −

𝑆𝑀(𝜇;𝐶′;𝜇′)2
|Ω𝐹|

)
. (4.19)
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4.2. Linkage Models
GOMEA allows any linkage model to be set and used for optimization. In this thesis, we focus on four specific
models when considering registration problems in 3D. Let 𝐼(𝑖) = {𝜇(𝑖−1)𝑑 , 𝜇(𝑖−1)𝑑+1, 𝜇(𝑖−1)𝑑+2} for 𝑖 = 1, ..., |𝐶|
be the decision variables corresponding to the B-spline coefficients of control point 𝑐𝑖. We can then define the
following linkage models:

ℱ𝑈𝑛𝑖 = {𝜇1, 𝜇2, ..., 𝜇3|𝐶|}, (4.20)
ℱ𝑀𝑃 = {𝐼(1), 𝐼(2), ..., 𝐼(|𝐶|)}, (4.21)
ℱ𝑆𝐿𝑇 = 𝑈𝑃𝐺𝑀𝐴(𝐼(1), 𝐼(2), ..., 𝐼(|𝐶|)), (4.22)
ℱ𝐹𝑢𝑙𝑙 = {𝐼(1) ∪ 𝐼(2) ∪ ... ∪ 𝐼(|𝐶|)}. (4.23)

The univariate linkage model ℱ𝑈𝑛𝑖 consists of one set for each of the decision variables independently
and does not consider there to be any dependencies between them. In the marginal linkage model ℱ𝑀𝑃, only
the decision variables corresponding to the same coordinates of one control point are considered dependent.
Then, in the bounded static linkage tree model ℱ𝑆𝐿𝑇, the sets of individual control points are merged bottom-up
using the unweighted pair group method with arithmetic mean (UPGMA) algorithm [34]. The distance matrix
this routine uses is calculated using the Euclidean distances between each pair of control points. With this
distance matrix, the two closest sets are merged iteratively until a single set contains all control points. This
tree is computed once at the start of optimization and can be bounded by filtering sets with sizes falling outside
some range. Lastly, in the full linkage model ℱ𝐹𝑢𝑙𝑙, all the variables are considered to be dependent as defined
by one subset with all decision variables in it. A visualization of each linkage model for a 4x4 2D grid is given
in Figure 4.2.

Control points
X coordinates
Y coordinates

(a) Linkage sets when using the
univariate linkage model ℱ𝑈𝑛𝑖; the X

and Y coordinates—or more
accurately, displacements—for each
point are shown explicitly to illustrate

the separation of individual
coordinates into singleton sets.

(b) Linkage sets when using the
marginal linkage model ℱ𝑀𝑃. We

create a linkage set for each control
point with all its coordinates.

Level 0
Level 1
Level 2
Level 3
Level 4

(c) Possible linkage sets when using
the static linkage model ℱ𝑆𝐿𝑇. This is
an example since the order in which
linkage sets are merged can differ as
the distances between all adjacent

control points are equal.

(d) Linkage set when using the full
linkage model ℱ𝐹𝑢𝑙𝑙.

Figure 4.2: Visualization of linkage models when using a 4x4 2D B-spline grid. The linkage sets are visualized for each linkage model
using purple-colored rectangular regions.





5
Implementation

Open-source image registration frameworks which facilitate the rapid prototyping of new registration algorithms
and ideas are readily available, e.g., the Insight Toolkit (ITK) [58], Elastix [49], and Plastimatch [77]. In this
thesis, we have implemented RV-GOMEA within the Elastix framework due to its modular design and readily
available set of transformation models, similarity metrics, and support for multi-resolution registration. It is
written in C++ and uses ITK for the underlying image representations and transformations.

This chapter gives an architectural overview of Elastix and our implementation of RV-GOMEA within it. First,
we provide a more detailed description of ITK in Section 5.1 since Elastix heavily relies on it. Then, in Sec-
tion 5.2, we show how RV-GOMEA is ported from its source code in C [20] to an ITK-compatible component
usable in registration frameworks. Besides this, further additions and improvements, in the form of, e.g., opti-
mizations or additional inspection output, are also described. Section 5.3 shows how RV-GOMEA is integrated
into Elastix. Most importantly, we show how the support for partial evaluations was implemented and how this
has affected several components of the registration framework.

5.1. ITK
The Insight Toolkit (ITK) is a library of well-tested software components that can be used to develop image
segmentation and registration programs. Its code base is in C++ with the generic programming paradigm in
mind. This means most classes and functions are templated and can be instantiated at compilation using either
native types (e.g., a float or int) or user-defined types (e.g., a class). Its components are used extensively in
Elastix, so its most relevant concepts are described briefly. A more detailed overview is given in [47].

5.1.1. Image representation
Images from the medical domain are taken using devices of varying modality, but ultimately they all aim to
capture and visualize something from the real-world physical domain. As such, it makes sense to describe
images using their inherent ”object” domain as described by their resolution in terms of voxels and by mapping
from this object domain to the physical domain. This is done by specifying each image’s spacing, origin, and
direction according to some real-world coordinate system. The spacing specifies the distance per dimension
between each voxel inmm. The origin specifies the displacement of the origin of the image, also inmm. Finally,
the direction allows for the mirroring of the image w.r.t. physical space.

With this representation, medical images can be registered, manipulated, and compared in the physical
domain, providing a shared frame of reference. Then, the actual interpolation and voxel-specific operations
can be done by mapping the actions back to the object domain of a specific image. Any image lacking this
spatial information cannot reliably be used in a clinical context since the results will rely on the mapping of the
image in the object domain, which can be altered at will by, e.g., down-sampling the image to a lower resolution
(a common occurrence in registration frameworks).

5.1.2. Data representation
In ITK, two main types of objects exist: data and process objects. Data objects represent data (e.g., images,
meshes, masks), while process objects are used to produce or process data. Process objects, also commonly
called filters, can take data objects as input and can produce data objects as output. If either the internal state
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of a filter or its input changes, it is updated automatically. This way, data, and process objects can be chained
together to form a data processing pipeline with automatic updates. Filters are used extensively in Elastix, e.g.,
for downscaling images or upsampling the B-spline parameters.

5.2. RV-GOMEA
The source code of RV-GOMEA [20] provides an implementation in C usable as a command-line executable.
For integration into the Elastix framework, it needs to be implemented as a class according to ITK standards.
To this end, the code was first stripped from code relevant only for the publication at the time [20]. This includes
bounds checking, built-in objective functions, and specific output for debugging purposes written to files. Next,
the code was refactored as a class within the optimizers framework of ITK. Besides this, some minor additions
and alterations have been made to either increase performance or ease of use.

5.2.1. Shrinkage
Cholesky factorizations are used to efficiently sample new solutions from the estimated normal distributions,
[44]. However, these require a positive definite covariance matrix estimated from the generated solutions within
a generation of RV-GOMEA. If the covariance matrix’s dimensionality is too high or the population size used
for estimating this matrix is too low, the Cholesky factorization is likely to fail. In this case, the algorithm falls
back on a univariate factorization using only the diagonal of the covariance matrix, which is undesirable.

Solving DIR using B-spline-based transformation models poses a high-dimensional optimization problem.
If it is solved using RV-GOMEA using linkage sets containing many problem variables, large population sizes
are necessary to estimate the covariance matrices accurately. Estimating covariance matrices is done using
the unbiased sample estimate, which does not minimize the mean-squared error (MSE) [28]. In some cases,
using other estimators that introduce some bias in exchange for a lower required population size might make
more sense. Unlike the sample estimate, the oracle approximating shrinkage (OAS) estimator [28] minimizes
the MSE when samples are normally distributed. It is based on previous shrinkage estimators well suited to
high-dimensional problems with small sample sizes.

Within RV-GOMEA, the estimated covariance matrices are subsequently used to sample new solutions.
Then, these samples are used in the next generation to estimate new covariancematrices that are shrunk again.
Shrinkage is thus applied to the covariance matrices at each generation that was already shrunk in the previous
generation. This leads to covariance matrices with increasingly large values for the individual variances of
the variables (along the diagonal) and decreasingly small values for the covariances between variables. As
such, using such a shrinkage algorithm at each generation will make RV-GOMEA function increasingly more
like it is using a univariate linkage model. Besides this, it will also lead to enormous variances over time,
leading to proposed transformations with large displacements that map to positions outside of the moving
image completely. Naturally, this behavior is not desired, so we do not recommend the application of shrinkage
estimators within RV-GOMEA for B-spline-based DIR.

5.2.2. Inspection Output
Some extra features are implemented, which provide additional insights into the optimization process by track-
ing several metrics. These do not inherently change the functionality of GOMEA but merely allow us to under-
stand how it produced a certain outcome more efficiently. These implemented inspection features include:

• Distribution Multipliers: At each generation, the distribution multipliers for each linkage set are written
to a file, and an average of these values is computed and included in the iteration output of Elastix so that
it can be tracked during optimization.

• Control points: The B-spline parameters form a grid of control points that starts in a uniformly aligned
setting but, during the optimization process, shifts towards some set that minimizes the objective function.
To better understand the trajectory of the control points over time, their average across the population is
taken and written to a file for each generation.

• Cholesky factorization: To sample new solutions at each generation, a Cholesky factorization of the
estimated covariance matrices is used. If this factorization fails due to the covariance matrices not being
positive definite, the algorithm reverts to a more trivial factorization using only the diagonal of the covari-
ance matrices. Thus, tracking the success rate of these factorizations for each generation makes sense.
For each generation, we aggregate the matrix orders reached by the underlying factorization procedure



5.3. Elastix 27

as a percentage of the covariance matrix order. The average of these percentages is included in the
iteration output of Elastix.

• Mutual Information: The linkage between the problem variables can be measured at the end of each
generation by calculating their Mutual Information. If enabled, a full Mutual Information matrix is written
to a file at the end of each generation.

5.2.3. Optimizations
The original C code makes use of manual memory allocations and stored pointers for the used data structures
required in GOMEA. In C++, more modern constructs exist, which increase the overall readability of the code
while reducing the potential of introducing bugs. As such, all of the arrays were replaced with vectors from
the C++ Standard Template Library, and the matrices were replaced with similar constructs from Eigen [35],
which provides optimized matrix operations. A procedure from LAPACK [4] specific to real symmetric positive
definite matrices is used for the Cholesky factorization. Similarly, a LAPACK routine specific for lower triangular
matrices calculates their inverse.

5.3. Elastix
Elastix aims to improve ITK by providing a modular and user-friendly framework for image registration. Sev-
eral new optimizers are introduced, and existing ones are enhanced with improvements such as better error
handling and integrated support for calculating second-order spatial derivatives (used in regularization terms).
In addition, the generic implementation of transformation models allows for the effective use of the compact
support of many transformations [48, 49].

As stated earlier in this thesis, Elastix can perform registration in a multi-resolution or hierarchical setting.
This allows the user to specify any subsequent stages in which the registration has to occur. These stages
can be defined in any way the user seems relevant. However, the fixed and moving images are usually taken
from coarse to fine through some pyramid down-sampling scheme to counteract the non-convexity of most
registration problems. An overview of possible pyramid schemes available within Elastix is given in Figure 5.2.
The registration process (Figure 5.1) can be defined with the following key components:

Resolution 1..*

pyramid

pyramid

sampler

interpolator

fixed image op

moving image   op

mask

mask

cost function 

transform

optimizer

Figure 5.1: Overview of the registration process in Elastix. The dashed lines indicate that either a component or action is optional.

• Image and mask: The fixed image 𝐼𝐹 and moving image 𝐼𝑀 are taken as input for the registration
process. Possibly, these include image masks, which indicate which voxels of the images to include in
the cost function evaluation.

• Gaussian pyramid: To increase the coarseness of either image, a Gaussian pyramid scheme can be
used. These can apply a Gaussian blur with or without downsampling. By downsampling, the number of
voxels is reduced so that less time is required for costly function evaluations.
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• Image Sampler: To evaluate the cost function, several sampling strategies can be used: the use of all
voxels from the image, a subset of voxels selected on a uniform grid, random sampling of voxels, and
random sampling of coordinates in the physical domain with values between voxels being interpolated.

• Interpolator: The transformation maps voxels from the fixed image to positions in coordinate space
on the moving image. Often, these positions lie between voxels, and thus some form of interpolation is
required to evaluate the image intensity 𝐼𝑀(𝑇𝜇𝑘(𝑥)) at these positions. Several interpolation methods are
available, with varying trade-offs in speed and quality, including nearest neighbor, linear, and 𝑛th order
B-spline interpolation.

• Cost function: The cost function 𝐶 evaluates a similarity metric or a weighted combination of metrics
and penalty terms on the fixed and warped moving image. It can return both the value and derivative
w.r.t. 𝜇.

• Transform: The transformation model is used to transform the moving image. It is parameterized by
𝜇 and provides 𝑇𝜇𝑘(𝑥) at iteration 𝑘, which the interpolator uses to evaluate the voxel intensity at that
location.

• Optimizer: The optimizer iterates on the transformation parameters 𝜇 with the goal of minimizing the cost
function 𝐶. After all resolutions are finished, it returns �̂�: the estimated optimal transformation parameters
for the given registration problem.

(a) Source image. (b) scheme using only down-scaling. (c) scheme using only smoothing. (d) scheme using both down-scaling
and smoothing.

Figure 5.2: application of different pyramid schemes to a source image using Elastix. Down-scaling or smoothing using a Gaussian blur
can be applied at various scales at any resolution level. We use the default isotropic schedule for both the re-scaling and smoothing

factors.

These components consist of an ITK-style class and an Elastix-style wrapper class which connects it with
the general framework (Figure 5.3). To integrate RV-GOMEA as an optimizer within the registration process,
we thus have to use ITK-style implementation of RV-GOMEA as discussed in Section 5.2 and extend with
an Elastix-style wrapper to make it usable as an optimizer for registration within the framework. The wrapper
class of RV-GOMEA is responsible for reading and applying the parameters of RV-GOMEA as specified in a
parameter file for each resolution, registering and writing to the iteration output, as well as error handling and
logging termination conditions.

5.3.1. Analytic Regularization
To regularize the transformations, Elastix provides several regularization terms which can be used conjointly
with a similarity metric as part of a weighted cost function. One of these, the thin-plate bending energy penalty,
penalizes sharp deviations in the transformation and is calculated as a summation of partial second-order
spatial derivatives w.r.t. the transformation parameters. In Elastix, this term is implemented using numerical
differencing and approximates the bending energy by iterating over the fixed image voxels. This technique is
generally applicable independent of the used transformation model, but it suffers from reduced computational
efficiency. When B-spline-based transformation models are used, this term can be calculated analytically using
only the B-spline coefficients as input [75]. This method has been implemented in the 3D volumetric registration
tool Plastimatch [77]. Using this implementation, we re-implemented this method as a penalty term within
Elastix, again using the class hierarchy shown in Figure 5.3. This required some adaptions of the original
implementation due to a difference in the parameterization of the B-spline transformation model.
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Figure 5.3: The ITK-style classes contain the actual functionality of the components, whereas the Elastix-style classes act as wrappers
that ”glue” the individual ITK-style components together in the overall framework.

5.3.2. Sobol Sequence
Some of the image samplers within Elastix require using a random number generator (RNG) to sample voxels
or coordinates of the fixed image, which defaults to the Mersenne twister [57], a pseudo-random RNG. This
generator outputs numbers used to select samples in a seemingly random fashion. If a more uniform but still
pseudo-random distribution of samples is desired, other RNGs, such as those using a Sobol sequence [79],
can be used. This could improve the predictability of the cost function from iteration to iteration when a sub-
sampling strategy is used. As such, we have implemented a Sobol sequence generator within Elastix as part
of the relevant image samplers.

5.3.3. Partial Evaluations
Understandably, Elastix does not naturally allow for the application of partial evaluations, as only some of the
built-in optimizers can selectively update only a subset of problem variables. To allow for their application, we
implement some functionality to the core components of both ITK and Elastix.

At the start of every resolution, the regions of pixels defined by the grid of control points in the B-spline
transformation model must be computed. See Section 3.1 for a detailed overview, including visualizations. For
each of these regions, an image sampler is constructed of the type defined in the parameter file by the user.
In addition, image masks are considered: if the region of pixels falls entirely outside the bounding box of the
provided mask, it is no longer considered during registration. Lastly, a mapping from linkage sets to regions of
pixels they influence is computed.

As shown in Chapter 4, an objective function can be evaluated partially if it is known to be constructed from
𝑘 subfunctions. In short, a partial evaluation is performed by taking the previous objective value, subtracting
the relevant subfunctions using the old parameter values, and adding the same subfunctions using the updated
parameter values. For example, the Sum of Absolute Differences (SAD) (see Equation 4.1) can be evaluated
partially by taking the previous sum, subtracting the sum for each changed patch of voxels calculated using
the previous parameters, and adding the sum for each changed patch of voxels calculated using the updated
parameters. However, in some cases, the evaluation is more involved, requiring a subtraction and addition for
multiple operands of each subfunction. As such, we construct a helper class IntermediateResults compatible
with the binary addition and subtraction operators, which can contain any number of operands. For example, an
instantiation of this class could contain the individual summations of the Zero-Normalized Correlation Coefficient
(ZNCC) (Section 4.1.3).

Two functions need to be defined and overridden to implement the functionality to evaluate any given metric
in Elastix partially. First, GetValuePartial, which calculates for a subset of regions of pixels the partial evalua-
tion which is returned as an IntermediateResults object (See Figure 5.4). Second, GetValue, which takes as
input an updated IntermediateResults object, and from it calculates the new metric value. With these methods
implemented successfully for a metric, GOMEA can partially evaluate solutions during registration.

5.3.4. Missed Voxels
In order to calculate the value of a similarity metric, we interpolate themapped voxel values of themoving image.
However, these mappings may fall outside the moving image when using a deformation model based on B-
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IntermediateResults

-operands: double[]
-numberOfOperands: int

+operatorAdd(IntermediateResults lhs, IntermediateResults rhs)
+operatorSubtract(IntermediateResults lhs, IntermediateResults rhs)
+operatorSubscript(int index)

Figure 5.4: UML diagram of IntermediateResults class. It provides public operator methods that allow for the addition and subtraction of
individual instances. Specific operands of an instance can be accessed using the subscript operator.

splines. In Elastix, this is handled by only counting the voxels mapped inside the moving image, terminating the
registration if the number of missed voxels is greater than 75% of the total number of voxels used in calculating
the similarity metric. It is not immediately clear how this would affect the optimization, as it increases the
space of possible transformations; e.g., excluding specific voxels from the metric calculation could be more
beneficial. In Elastix, these voxels are set to some default value in the final deformed image. This behavior is
undesired, but due to the complexity of adding hard constraints for gradient-based optimizers, this seems like
a logical solution. Fortunately, most medical image registration problems include masks of the tissue/organ
to be registered; the similarity metric is calculated only for the voxels within this mask, making it unlikely that
the transformation maps them outside the moving image. Still, it is a limitation of the gradient-based optimizer,
which does not exist for GOMEA.

We have implemented two solutions for GOMEA, which guide the optimizer towards solutions with fewer
missed voxels. First, it is possible to enable constrained selection, which requires a threshold for the maximum
allowed ratio 𝑟 of missed pixels per solution as input. Any solution with a ratio above this threshold will have a
constraint value 𝑐 = 𝑟 and 0 otherwise. GOMEA will favor solutions with 𝑐 < 𝑟 over solutions with 𝑐 ≥ 𝑟 without
considering their objective values. Next, we have implemented a missed voxel penalty, which considers the
maximal difference 𝑑𝑚𝑎𝑥 between the voxel values of each image. With the number of missed voxels 𝑛𝑚𝑖𝑠𝑠𝑒𝑑
and the ratio 𝑟 interpreted as a percentage, we can calculate the penalty 𝑃𝑚𝑖𝑠𝑠𝑒𝑑 for a particular solution 𝑥 as:

𝑃𝑚𝑖𝑠𝑠𝑒𝑑(𝑥) = (𝑛𝑚𝑖𝑠𝑠𝑒𝑑 ∗ 𝑑𝑚𝑎𝑥 ∗ 𝑑𝑚𝑎𝑥) ∗ 2𝑟 . (5.1)

The factor 2𝑟 is added to increasingly make the penalty severe as it gets more significant to make sure the
optimizer is guided away from these solutions.

5.3.5. Fold Constraints
The B-spline control points can move freely during optimization, making it possible for them to move far from
their initial position. As a result, it can occur that adjacent control points move past each other in opposite
directions, creating an ”overlap”, which could lead to a fold in the parameterized transformation. Figure 5.5
shows examples of overlaps for a 2D B-spline grid, highlighting the area in which control points are considered
to overlap in relation to their neighbors. These overlaps do not necessarily create folds in the transformation,
but if we constrain the optimization by not allowing any overlaps, we can ensure there will be no folds.

We implement overlap constraints in Elastix by determining for each control point if it overlaps with any of
its neighbors. The total number of folds is calculated and used as a constraint value by GOMEA, if enabled. An
overlap is only counted as such in the dimension where the points differ, according to their initial grid positions.
For example, two horizontally adjacent points in a 2D grid need only overlap in the horizontal direction; if they
overlap in the vertical direction, no overlap is registered. If they differ in both directions, they must overlap in
both (see Figure 5.5).

It is possible to use a multi-resolution schedule for the B-spline grid next to schedules for re-scaling and
smoothing the moving and fixed image. At the end of each resolution, the parameters must be up-sampled
if the subsequent resolution’s grid is larger. During this process, the grid of the current resolution is used to
calculate the deformation field for the subsequent resolution. This deformation field is then used to estimate
the new B-spline parameters using a decomposition filter. Unfortunately, this filter can introduce inaccuracies,
so overlaps may be introduced that did not occur in the coarser grid. To remedy this, we implement a repair
procedure that simply “fixes” control points that overlap by moving them just outside the invalid region. Multiple
passes over all control points are done until no overlap exist or until a threshold of passes is met. The repair
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Figure 5.5: Examples of control point overlaps when either two horizontally (left) or diagonally (right) adjacent control points are
considered.

procedure is applied to the up-sampled parameters at the start of each resolution if the overlap constraints are
enabled.

5.3.6. Hybrid Local Search
We combine the explorative operators of GOMEA with the exploitative operators from ASGD by applying gradi-
ent descent on a subset of solutions at the end of each generation. This combination of an EA with a gradient-
based method is not novel, and has been applied succesfully in numerous settings [1, 6, 13, 14, 82]. Several
parameters can be set, which dictate how many solutions gradient descent is applied to and for how many iter-
ations per solution. Additionally, a redistribution method and iteration schedule can be set, which dictate how
the solutions are chosen and how the number of generations affects the number of applied iterations. More
specifically, we can set the following:

• 𝜏𝑔: A percentage specifying how many solutions of the population gradient descent is to be applied at the
end of each generation.

• Iteration Schedule: Can be set as either static or logarithmic. When static, a fixed number of iterations 𝑖𝑔
of gradient descent is applied to each solution at the end of each generation. When using the logarithmic
schedule, several parameters can be set: 𝑖𝑚𝑎𝑥, 𝑖𝑚𝑖𝑛, 𝑖𝛿, 𝛼, and 𝛽. With these parameters, the user can
define a logarithmic schedule that increasingly applies more iterations to solutions based on the current
generation number. If we take 𝑥 as the current number of generations, we can define the logarithmic
schedule function 𝐿(𝑥) as:

𝐿(𝑥) = {
0 𝑥 < 𝑖𝛿
𝑖𝑚𝑎𝑥 − (𝑖𝑚𝑎𝑥 − 𝑖𝑚𝑖𝑛)

1
1−𝛼(𝑥−𝑖𝛿)ln𝛽

𝑥 ≥ 𝑖𝛿 (5.2)

The default logarithmic schedule is shown in Figure 5.6.

• Redistribution Method: The redistribution method specifies how the solutions to which the local search
is applied are chosen at the end of each generation. We implement a method that chooses solutions
randomly and a method that chooses the best ⌊𝜏𝑔𝑛⌋ solutions according to the objective values and con-
straints, with 𝑛 the total number of solutions in the population.

5.3.7. OpenMP
Elastix’s similarity metrics and penalty terms can be evaluated in parallel using a thread pool implementation
from ITK. This implementation, however, requires multiple functions with callbacks and specialized data struc-
tures to keep track of the partial evaluations. To simplify this, we replaced it with procedures from OpenMP
[27], which includes specific compiler directives that can be used to orchestrate high-level parallelism intuitively.
In addition, it abstracts away all the low-level logic of spawning and managing threads and makes it easy to
parallelize existing code by adding only a few lines. This has reduced the architectural complexity of the code
while increasing its computational efficiency.
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1Figure 5.6: Default logarithmic iteration schedule with on the horizontal axis the current number of generations done by GOMEA, and on
the vertical axis the number of gradient descent iterations that will be applied to each solution.

5.3.8. Inspection Output
To increase the transparency of the registration process, some minor features are implemented:

• Image Samples: When using sub-sampling of voxels to evaluate the cost function, it could help validate
that these chosen samples are distributed as expected. Therefore, we have implemented an optional
feature for the image samplers, which, if enabled, writes the chosen samples to a file at the end of each
iteration.

• Full Evaluation: Similarly, when using sub-sampling, it could be helpful if, at the end of the registra-
tion process, the cost function is evaluated using all of the voxels instead of a subset. This can make
comparing runs with different seeds easier since they are ultimately evaluated similarly. Again, this is
implemented and enabled by default.

• Missed Voxels: The average percentage of missed voxels across all solutions in an iteration is measured
and added as a column to the iteration output when the similarity metrics 𝑀𝑆𝐷 or 𝑁𝐶𝐶 are used.

• Control Points: To track the positions of the control points over time, we write their coordinates in physical
space to a file at the end of each iteration. This is done for the best solution for that iteration.

5.3.9. Build Process
To build the executable of our implementation, several specific dependencies are required. First, a specific
patched version of ITK 5.3 with altered interfaces for partial evaluations. Next, a specific patched version of
Plastimatch, with the required alterations to make it compatible with Elastix and partial evaluations. Lastly,
there are some additional unpatched and more common dependencies, such as Eigen [35], CBLAS/LAPACK
[4], and Boost [74]. To make the build process more accessible, we have implemented it as a superbuild
that automatically retrieves and builds ITK, Plastimatch, and Eigen as part of the build process. Due to the
wide availability of both CBLAS/LAPACK implementations and Boost, it is up to the user to provide these
independently.



6
Analysis

This thesis aims to explore the potential of applying EA-based algorithms for the DIR problem. More specifically,
we have implemented RV-GOMEA—from here on referred to as just GOMEA, an evolutionary algorithm capable
of exploiting the structure of optimization problems through specialized operators. This chapter analyzes its
efficacy in solving synthetic and clinical DIR problems when using common B-spline-based transformation
models. First, we provide the general experimental setup in Section 6.1. Subsequently, experiments and results
are discussed chronologically in Section 6.2. Lastly, in Section 6.3, we discuss the results of all experiments
jointly.

6.1. Experimental Setup
The general experimental setup is outlined in this section by describing the datasets, validation metrics, and
specifications of the hardware on which the experiments are run.

6.1.1. Datasets
Synthetic
A synthetic registration problem is constructed using geometric shapes to create a simple test case that is both
fast to run (dimensions are small) and easy to understand. The registration consists of shrinking a sphere
contained in a fixed-size cube. The total volume consists of 24x24x24 voxels. The images contain a padding
of voxels around the cube to increase the difficulty of finding transformations that correctly map the voxels just
in and outside the cube. Landmarks, surface points, and a ground truth Deformation Vector Field (DVF) are
generated to validate registration outcomes. The landmarks are placed at specific points on both the surfaces
of the cube and sphere; e.g., for the sphere, landmarks are placed at the six positions on its surface where
the distance to the edge of the cube is smallest. A visual representation of the synthetic registration problem
is given in Figure 6.1. Baseline values for the validation metrics when an identity transform is applied to the
moving image are given in Table 6.2.

LEARN
The LEARN Lung CT dataset [43] consists of 30 pairs of intra-patient chest CT scans from the Department of
Radiology at the Radboud University Medical Center. With each pair consisting of two scans of a lung after both
maximal inspiration and expiration, respectively. The expiration scans do not fully contain the lungs, making
the registration more difficult. Additionally, the breathing motions of the patients are large, further increasing
the difficulty of finding their correct deformation. The 30 pairs are subdivided into 20 training and 10 test pairs.
This thesis only considers patients 1-3, as they include landmarks. See Table 6.1 for pairs of slices of each
patient. The resolution of all scans is 192x192x208 with voxel sizes 1.75x1.75x1.75 mm. Baseline values for
the validation metrics when an identity transform is applied to the moving image are given in Table 6.2.

6.1.2. Validation Metrics
Target Registration Error
The Target Registration Error (TRE) is defined as the mean Euclidean distance between corresponding pairs
of landmarks after registration. The transformation is defined as a mapping of points from the fixed image to
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(a) Moving image slice. (b) Fixed image slice.
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(c) Ground truth DVF slice.

0:5

1:0

1:5

2:0

2:5

3:0

3:5

4:0

4:5
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Figure 6.1: Synthetic registration problem: A sphere within a cube is shrunk while the cube stays fixed.

points on the moving image. With the transformation 𝑇𝜇 after registration and the fixed and moving landmark
points 𝐿𝐹 , 𝐿𝑀, we can calculate the TRE as follows:

𝑇𝑅𝐸(𝑇𝜇 , 𝐿𝐹 , 𝐿𝑀) =
1
|𝐿𝐹|

|𝐿𝐹|

∑
𝑖=1
|𝑇𝜇(𝐿𝐹(𝑖)) − 𝐿𝑀(𝑖)|, (6.1)

with 𝐿𝐹(𝑖), 𝐿𝑀(𝑖) the 𝑖th point of the fixed and moving landmarks respectively.

Average Surface Distance
The average surface distance (ASD) measures the average distance between the surfaces of the fixed and
deformed moving image, respectively. This is done by first generating points that approximate the surfaces of
shapes in the fixed and moving image. The ASD is then calculated by measuring the average of the distances
between the deformed points of the fixed image surfaces with their closest point on the moving image surfaces,
as well as the average of the distances between the points on the moving image surfaces with their closest
points of the deformed fixed image surfaces. If we take 𝑆 a set of surface points, and 𝑇𝜇(𝑆) the transformed
surface points from 𝑆 using parameters 𝜇, and �̄�(𝑆′, 𝑆) to be the average of distances between points from 𝑆′
with their closest point in 𝑆, we can define the ASD as:

𝐴𝑆𝐷(𝑇𝜇 , 𝑆𝑀 , 𝑆𝐹) =
1
2(�̄�(𝑇𝜇(𝑆𝐹(𝑖)), 𝑆𝑀(𝑖)) + �̄�(𝑆𝑀 , 𝑇𝜇(𝑆𝐹))). (6.2)

Hausdorff Distance
The Hausdorff distance (HD), similar to the ASD, uses surface points to measure the alignment of shapes after
registration. Instead of taking the average of the minimum distances, the Hausdorff distance is calculated by
taking the maximum of the minimal distances between points for a particular surface. Intuitively, it measures
the worst-case distance between two surfaces. If we take 𝑑(𝑥, 𝑆) = min𝑦∈𝑆 𝑑(𝑥, 𝑦) to be the distance from
point x to its closest point in Y, and 𝑆𝑀 , 𝑆𝐹 the sets of surface points, we can define the HD as:

𝐻𝐷(𝑇𝜇 , 𝑆𝑀 , 𝑆𝐹) =max{ max
𝑥∈𝑇𝜇(𝑆𝐹(𝑖))

𝑑(𝑥, 𝑆𝑀(𝑖)), max
𝑦∈𝑆𝑀(𝑖)

𝑑(𝑦, 𝑇𝜇(𝑆𝐹(𝑖)))}. (6.3)
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Instance Moving Fixed

Patient 1

Patient 2

Patient 3

Table 6.1: Slices of instances 1-3 from the LEARN [43] dataset.

Dice Similarity Coefficient
The Dice similarity coefficient (DSC) measures the spatial overlap between the ground truth segmentation of
the fixed image, with the segmentation that follows from the deformation of the moving image. It is defined as:

𝐷𝑆𝐶(𝑋, 𝑌) = 2|𝑋 ∩ 𝑌|
|𝑋| + |𝑌| , (6.4)

with, in the image registration case, 𝑋 and 𝑌 as sets of voxels defining the segmentations.

Bending Energy
The bending energy measures the sum of second-order spatial derivatives for transforming the moving image,
as defined by the DVF. It does not necessarily measure the overall magnitude of the transformation but rather the
smoothness or regularity of the transformation locally. Any sudden changes or sharp turns in a transformation
are undesirable, as they are often not anatomically feasible.

The bending energy can be calculated from the DVF by summing over the spatial Hessians in each dimen-
sion for each deformation vector. These Hessians are approximated using finite differencing with the vectors
of nearby voxels in each direction. If we take 𝑏(𝑣, 𝐹) to be the bending energy of vector 𝑣 from the DVF 𝐹, we
can define the bending energy as:
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Metric SYN LEARN-1 LEARN-2 LEARN-3

𝑇𝑅𝐸 1.50 20.18 15.60 8.14

𝐴𝑆𝐷 Cube: 0.00
Sphere: 3.00 - - -

𝐷𝑆𝐶 Cube: 0.88
Sphere: 0.40 0.84 0.86 0.92

�⃗�𝜖 0.49 - - -

Table 6.2: The baseline values of the validation metrics for both the synthetic registration problem (labeled SYN) and patients 1-3 of the
LEARN [43] dataset (labeled LEARN-[1-3]). The baselines are calculated for the identity transform; we can exclude 𝐵𝐸, 𝑆𝐷𝐿𝑜𝑔𝐽, and
𝐻𝐷 since 𝐵𝐸 = 𝑆𝐷𝐿𝑜𝑔𝐽 = 0.0 and 𝐻𝐷 = 𝐴𝑆𝐷 (for the synthetic problem). The 𝐴𝑆𝐷, 𝐻𝐷, and �⃗�𝜖 cannot be calculated for the LEARN

cases as no surface points or ground truth DVF is available. The 𝑇𝑅𝐸, 𝐴𝑆𝐷, and 𝐻𝐷 are calculated in mm using the respective spacing
of each instance.

𝐸𝑏(𝐹) =
1
|𝐹| ∑

𝑣∈𝐹
𝑏(𝑣, 𝐹), (6.5)

|𝐹| is the total vector amount in 𝐹, which equals the number of voxels in the fixed image.

DVF Error
The registration of a moving and fixed image is ultimately performed using a Deformation Vector Field (DVF),
which maps the voxels of the fixed image domain to the voxels of the moving image domain. It is defined by
storing a displacement in each dimension for each voxel of the fixed image and can be used to produce the
deformed moving image. The DVF error �⃗�𝜖 can be calculated if a ground truth DVF for the registration problem
is available, i.e., a physically plausible transformation that accurately approximates the fixed image. The DVF
error measures the difference between a provided DVF with the ground truth DVF for any registration problem.
For example, if we have a registration problem and a corresponding ground truth DVF 𝐹ref, we can calculate
the error of any given DVF 𝐹 as:

�⃗�𝜖(𝐹) =
1

|𝐹ref|√
∑
𝑣𝑖∈𝐹

(𝐹ref(𝑖) − 𝑣𝑖)2. (6.6)

6.1.3. Hardware
The experiments are executed on the SHARK computing cluster of the Leiden University Medical Center
(LUMC). For each experiment, a workload with access to 8 Central Processing Unit (CPU) cores and 6 gi-
gabytes (GB) of Random Access Memory (RAM) is reserved—most execution nodes in the SHARK cluster run
on either an Intel E5-2690 or E5-2697.

6.2. Experiments
6.2.1. Single-resolution Comparison to Gradient-based Optimization
Gradient-based optimizers are commonly used in DIR due to their robust performance, and computational
efficiency for high-dimensional registration problems [48]. As a baseline comparison, we will compare the per-
formance of GOMEA with the recommended Adaptive Stochastic Gradient Descent (ASGD) optimizer available
in Elastix.

Due to its population-based approach, it is expected that GOMEA will outperform ASGD in terms of the
objective value; ASGD optimizes a single solution iteratively using stochastic gradient descent, which makes
it more prone to local minima traps. The population-based approach of GOMEA has a higher likelihood of
“jumping” over these local minima, enabling it to outperform in terms of the objective value. However, this does
not necessarily mean that it will outperform in terms of the validation metrics, which are not optimized directly.

Setup We register the synthetic registration problem (Figure 6.1) using no regularization to keep the compari-
son straightforward. The Mean Squared Difference (MSD) is used as the similarity metric. To analyze the effect
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of increasing flexibility in the transformation, mesh sizes of 6x6x6, 7x7x7, and 8x8x8 B-spline control points are
used. No scalability analyses are done, as it is not expected that GOMEA will outperform the gradient-based
optimizer in terms of computational efficiency due to its population-based approach. GOMEA uses the marginal
linkage model ℱ𝑀𝑃 for this experiment. Each run is repeated ten times using different seeds.

Results In Figure 6.2, the convergence of both optimizers regarding the MSD is plotted for each mesh size.
For the smaller mesh sizes of 6x6x6 and 7x7x7, we can visually see that GOMEA and ASGD perform almost
equally. For the largest mesh size, we can see that GOMEA outperforms in terms of the MSD. Intuitively,
it makes sense that an increase in the flexibility of the deformation model would make it more likely for a
gradient-based optimizer to get stuck in local optima. Suppose there are more degrees of freedom in solving
the registration problem. In that case, the landscape of its objective value as a function of the parameters can
only become more complex and harder to optimize. From this, we can see that even for a simple synthetic
registration problem, GOMEA can provide a marked difference in the objective value when using a B-spline-
based deformation model. We additionally calculate the T-Test statistics for the differences in metric values for
each mesh size to confirm that GOMEA provides a significant improvement in terms of the metric value also
for the smaller mesh sizes (𝑡(18) = −10.69, 𝑝 = 2.04 ⋅10−6; 𝑡(18) = −6.97, 𝑝 = 7.31 ⋅10−5; 𝑡(18) = −29.73, 𝑝 =
2.25 ⋅ 10−10 for the mesh sizes 6x6x6, 7x7x7, and 8x8x8 respectively).
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The results in terms of the validation metrics are shown in Table 6.3. Only for the smallest mesh size,
6x6x6, we can see that GOMEA outperforms ASGD in all metrics except the 𝐷𝑆𝐶sphere. On the other hand,
for the larger mesh sizes, ASGD consistently outperforms in all validation metrics except for the 𝐷𝑆𝐶sphere.
This can be explained by returning to its definition previously defined in Section 6.1.2. From it, we can see
that the 𝐷𝑆𝐶 measures the overlap of segmentations between the target and deformed source image. For the
synthetic registration problem, these segmentations can be calculated using amulti-level thresholding algorithm
to discretize the images into voxels of 3 distinct values. The MSD, in a sense, can be seen as a more granular
version of this metric, as it measures not the overlap but the difference in voxel values on a per-voxel basis;
if the difference between two voxel values is small enough, they will get discretized into the same level and
provide a positive contribution towards the 𝐷𝑆𝐶. Given that GOMEA outperforms ASGD for all mesh sizes in
terms of the 𝑀𝑆𝐷, it makes sense that it also outperforms in the 𝐷𝑆𝐶.

Combined with the validation metrics, the results indicate that a lower value in terms of the MSD does not
necessarily improve the registration outcome. A lower value in terms of the MSD will lead to outcomes that
look visually appealing. However, the required underlying transformation becomes increasingly complex and
anatomically infeasible to get these outcomes. This relates to the overfitting problem often encountered in the
field of Machine Learning [42] when a model is used to solve a problem that is more flexible than it needs to be.
Our model uses a common B-spline-based deformation model combined with the MSD as the similarity metric.
This model, as we now can see, also provides too much flexibility, which can lead to registration outcomes
that are overfitting to the MSD. As such, it makes sense that GOMEA outperforms the validation results for the
smallest mesh size of 6x6x6 as it provides fewer degrees of freedom, decreasing the amount of overfitting.

In Figure 6.3, visualizations of specific run results are shown for both optimizers when the largest mesh
size is used. From the deformed source images, we can see that GOMEA does provide the best result, as we
expected from the values of the MSD and DSC. From the slices of the control points, deformation vector field
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Metric
6x6x6 7x7x7 8x8x8

GOMEA ASGD GOMEA ASGD GOMEA ASGD

𝑇𝑅𝐸 0.73 ± 1.1e−1 1.04 ± 1.6e−3 2.10 ± 2.8e−1 0.84 ± 1.5e−1 1.97 ± 1.5e−1 1.08 ± 2.3e−3
𝐴𝑆𝐷cube 0.39 ± 7.1e−3 0.52 ± 4.8e−4 0.43 ± 1.4e−2 0.36 ± 7.3e−3 0.57 ± 2.1e−2 0.46 ± 2.0e−3
𝐴𝑆𝐷sphere 0.31 ± 9.2e−3 0.31 ± 4.2e−5 0.28 ± 1.3e−2 0.26 ± 1.4e−2 0.28 ± 6.1e−3 0.31 ± 5.6e−5
𝐷𝑆𝐶sphere 0.92 ± 3.2e−3 0.94 ± 2.3e−16 0.98 ± 1.9e−3 0.97 ± 5.1e−3 0.97 ± 7.8e−3 0.95 ± 2.7e−3
𝐸𝑏 0.08 ± 1.1e−2 0.20 ± 7.5e−4 0.62 ± 1.8e−1 0.11 ± 1.6e−2 0.76 ± 6.4e−2 0.19 ± 1.7e−3
�⃗�𝜖 0.68 ± 3.4e−2 0.70 ± 5.1e−4 1.13 ± 1.5e−1 0.74 ± 2.4e−2 1.11 ± 3.7e−2 0.76 ± 1.0e−3

Table 6.3: Validation metrics comparison for mesh sizes 6x6x6, 7x7x7, and 8x8x8 between GOMEA and ASGD on the synthetic instance
when no multi-resolution scheme is used. Bold values indicate a statistically significant improvement (𝑝 value < 0.05).
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Figure 6.3: Visualization of specific run results from comparing GOMEA with ASGD using a mesh size of 8x8x8 and no multi-resolution
scheme.

(DVF), and Jacobian determinant, we see why ASGD outperforms in terms of the validation metrics. Firstly,
the final configuration of control points seems a lot more natural and almost symmetric for ASGD. In contrast,
the configuration of control points for GOMEA contains huge outliers and overall seems more erratic.

Similarly, the Jacobian determinant shows that the transformation found by ASGD does not contain any
folds, whereas the transformation found by GOMEA does (indicated by negative values in the Jacobian deter-
minant). Moreover, from Table 6.3, we find the average DVF error �⃗�𝜖 to be 0.76 for ASGD and 1.11 for GOMEA,
which is quite a significant difference; note that this error is calculated by taking the root mean squared error
(RMSE) with the ground truth as presented in Figure 6.1. Furthermore, the bending energy, which measures
the overall complexity of the transformation by summing over its second-order derivatives, is also significantly
higher for GOMEA; this indicates that the transformation contains many sudden changes and sharp turns, fur-
ther decreasing the likelihood of its anatomic feasibility. Overall, we can conclude that GOMEA is overfitting on
the MSD for the synthetic registration problem, which suggests that the use of a regularization term can prove
beneficial. Opposedly, we can also state that ASGD underperforms as it converges prematurely in local min-
ima. In DIR, a multi-resolution scheme is often used to overcome the issue of premature convergence. As such,
in our next experiment, we analyze the efficacy of such a scheme when applied to the synthetic registration
problem.
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6.2.2. Multi-resolution Comparison to Gradient-based Optimization
To decrease the likelihood of the premature convergence local optima, it is common to optimize the registration
problem using a multi-resolution scheme [51, 54]. These schemes consist of hierarchical levels which apply an
increasing level of down-sampling or a gaussian blur. This creates a hierarchy of images with details ranging
from coarse to fine. The registration is then performed top-down, starting by registering the most global image,
thereby hopefully avoiding local minima traps. In this experiment, we test this hypothesis for the synthetic
registration problem and compare the performance of a gradient-based algorithm with GOMEA.

Setup We register the synthetic registration problem without regularization using mesh sizes of 6x6x6, 7x7x7,
and 8x8x8 control points. Again, we use the𝑀𝑆𝐷 as the similarity metric, and for GOMEA, the marginal linkage
model ℱ𝑀𝑃. We use a multi-resolution scheme of three levels in which only smoothing is applied according to
a linearly decreasing schedule. Each run is repeated ten times using different seeds.

Results A comparison with the single-resolution results in terms of the 𝑀𝑆𝐷 is given in Table 6.4. For each
mesh size, using a multi-resolution scheme significantly improves the found 𝑀𝑆𝐷. Convergence plots of the
final resolution for each mesh size show that, on average, both optimizers converge on similar values for the
MSD (Figure 6.4). Visually, we see a wide confidence interval for GOMEA and a narrow interval for ASGD. This
is possibly caused by GOMEA relying much more on stochasticity than ASGD, as new solutions are sampled
using estimated normal distributions. For the mesh sizes of 6x6x6 and 8x8x8, the differences in final mean
MSD values are not statistically significant, whereas the differences in mean MSD values for the mesh size of
7x7x7 are. The t-test statistics are 𝑡(18) = 2.78e−2, 𝑝 = 0.98; 𝑡(18) = −2.34, 𝑝 = 0.04; 𝑡(18) = 0.93, 𝑝 = 0.38
for the mesh sizes of 6x6x6, 7x7x7, and 8x8x8 respectively.

Metric
6x6x6 7x7x7 8x8x8

𝑅𝑛 = 1 𝑅𝑛 = 3 𝑅𝑛 = 1 𝑅𝑛 = 3 𝑅𝑛 = 1 𝑅𝑛 = 3

GOMEA 0.12 ± 1.9e−3 0.05 ± 2.5e−3 0.06 ± 1.2e−3 0.02 ± 1.9e−3 0.07 ± 3.8e−3 0.02 ± 7.3e−3
ASGD 0.13 ± 5.9e−6 0.05 ± 9.6e−5 0.07 ± 2.3e−3 0.02 ± 4.3e−6 0.11 ± 2.8e−4 0.02 ± 1.5e−4

Table 6.4: Comparison of the final optimized MSD values for either 𝑅𝑛 = 1, i.e. no multi-resolution scheme is used. Or 𝑅𝑛 = 3, i.e., a
multi-resolution scheme of 3 levels is used. Bold values indicate a statistically significant improvement (𝑝 value < 0.05).
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In terms of the validation results, Table 6.5 shows that ASGD outperforms GOMEA for all mesh sizes.
Notably, the registration results found by ASGD with a mesh size of 7x7x7 are with the smallest ground truth
error �⃗�𝜖 measured thus far. One of these runs is visualized in Figure 6.5 and compared to a run with the same
settings optimized using GOMEA. With a multi-resolution scheme, the final configuration of control points for
ASGD almost seems perfectly symmetrical. This was already visible when no multi-resolution scheme was
used. However, now with the addition of consecutive levels consisting of a decreasing amount of gaussian
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blur, this effect seems reinforced. In part, this should also be attributed to the inherent symmetrical nature of
the synthetic registration problem, but the effect is interesting nonetheless.

On the other hand, the result found by GOMEA in Figure 6.5 seems worse in all aspects, which is confirmed
by and attests to the validity of the validation metrics in Table 6.5. Overall, these results show that using a multi-
resolution scheme can improve the registration results significantly when using a gradient-based optimizer. For
GOMEA, we see improved results for the MSD but not necessarily for the validation metrics.
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Figure 6.5: Visualization of specific run results from the comparison of GOMEA with ASGD when using a mesh size of 8x8x8 and a
multi-resolution scheme consisting of 3 levels using only a linearly decreasing gaussian blur.

It is also interesting that for the MSD, both optimizers find values that are mostly not significantly different,
whereas the validation metrics are. This further demonstrates that a similarity metric alone is not enough to
guide GOMEA towards high-quality transformations. From Figure 6.5 and Table 6.5, we can conclude that
ASGD is inherently better at finding more regular and natural-looking transformations when applied to the
synthetic registration problem, probably due to its gradient-based operation.

Metric
6x6x6 7x7x7 8x8x8

GOMEA ASGD GOMEA ASGD GOMEA ASGD

𝑇𝑅𝐸 0.83 ± 1.7e−1 0.44 ± 1.4e−3 1.23 ± 5.0e−1 0.31 ± 9.9e−4 1.92 ± 2.5e−1 0.74 ± 2.9e−3
𝐴𝑆𝐷cube 0.38 ± 9.3e−3 0.39 ± 1.8e−3 0.36 ± 2.2e−2 0.21 ± 1.6e−3 0.45 ± 9.3e−3 0.42 ± 3.5e−3
𝐴𝑆𝐷sphere 0.30 ± 3.7e−3 0.33 ± 1.0e−4 0.26 ± 2.1e−2 0.29 ± 2.1e−4 0.28 ± 1.2e−2 0.27 ± 6.1e−4
𝐷𝑆𝐶sphere 0.92 ± 4.3e−3 0.95 ± 1.2e−16 0.97 ± 3.9e−3 0.98 ± 1.2e−16 0.98 ± 5.9e−3 1.00 ± 0.0
𝐸𝑏 0.09 ± 1.6e−2 0.05 ± 1.6e−4 0.23 ± 1.9e−1 0.05 ± 3.4e−5 0.69 ± 1.7e−1 0.28 ± 2.9e−3
�⃗�𝜖 0.70 ± 3.7e−2 0.53 ± 1.5e−4 0.86 ± 1.9e−1 0.56 ± 1.4e−4 1.15 ± 1.6e−1 0.76 ± 2.9e−3

Table 6.5: Validation metrics comparison for mesh sizes 6x6x6, 7x7x7, and 8x8x8 between GOMEA and ASGD on the synthetic instance
when a multi-resolution scheme of three levels is used. Bold values indicate a statistically significant improvement (𝑝 value < 0.05).

6.2.3. Linkage Models
GOMEA can use a linkage model to exploit the dependencies between specific problem variables during opti-
mization (see Section 3.2.2). In Section 4.2, we defined four specific models appropriate for deformable image
registration when using a B-spline-based transformation model.
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Setup This experiment aims to compare their performance when given an evaluation budget. The compo-
sition of each linkage set determines the number of voxels for which the similarity metric needs to be partially
evaluated; thus, it makes sense to limit the optimizations using a budget of total voxel evaluations. We also
measure the impact of the number of parameters by using grids of 8x8x8, 11x11x11, and 13x13x13 control
points. An increasing number of parameters should affect the full linkage model ℱ𝐹𝑢𝑙𝑙 negatively, as it will
require increasingly bigger population sizes to estimate the dependencies successfully. We expect the univari-
ate model ℱ𝑈𝑛𝑖 to provide the worst objective values when given an evaluation budget due to increased voxel
evaluations. ℱ𝑈𝑛𝑖 models each of the parameters as independent, i.e., for each control point, a linkage set
exists in each dimension. For the static linkage model ℱ𝑆𝐿𝑇, we use linkage sets with sizes between 3 and 24.
Experiments are repeated ten times using different seeds.
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1Figure 6.6: Average MSD with error bands plotted against evaluations for runs using various linkage models and grids of 8x8x8,
10x10x10, and 12x12x12 control points (left). We also compare each linkage model’s average run-time in seconds and mesh size (right).

Results Figure 6.6 show the results for each mesh size by plotting the 𝑀𝑆𝐷 against the number of voxel
evaluations. We also compare their run times in seconds. The univariate, marginal, and static linkage models
seem to perform similarly, with the full linkage model outperforming for the smallest mesh size. However, for
the largest mesh size, the full linkage model is outperformed due to the budget of voxel evaluations. Probably
due to the large population size required for the Cholesky factorizations [44] of the full covariance matrix—
which scales by a factor of 𝑙1.5 with 𝑙 the number of parameters [15]. Between the univariate, marginal, and
static linkage models, we see a significant improvement for the 𝑀𝑆𝐷 when using either the marginal or static
model. Both model dependencies between the parameters of each control point without considering these
independently, which leads to fewer evaluations of the same region of voxels per generation. Moreover, they
are capable of exploiting the linkage that may exist between these variables.

Metric
Linkage Model

ℱ𝑈𝑛𝑖 ℱ𝑀𝑃 ℱ𝑆𝐿𝑇 ℱ𝐹𝑢𝑙𝑙

𝑇𝑅𝐸 1.81 ± 0.03 1.45 ± 0.09 1.64 ± 0.17 3.31 ± 0.31

𝐴𝑆𝐷cube 0.64 ± 0.01 0.49 ± 0.02 0.49 ± 0.01 0.74 ± 0.03

𝐴𝑆𝐷sphere 0.29 ± 0.01 0.28 ± 0.01 0.27 ± 0.01 0.46 ± 0.04

𝐷𝑆𝐶sphere 0.94 ± 0.00 0.96 ± 0.01 0.97 ± 0.01 0.98 ± 0.00

𝐸𝑏 0.50 ± 0.02 0.39 ± 0.03 0.45 ± 0.04 1.98 ± 0.31

�⃗�𝜖 0.58 ± 0.01 0.59 ± 0.05 0.61 ± 0.06 1.75 ± 0.16

Table 6.6: Validation metrics if we use GOMEA with various linkage models and a mesh size of 8x8x8. Bold values indicate a (joint)
statistically significant improvement over all other models. The average surface distance (ASD) and Hausdorff distance (HD) are given

for the sphere and cube separately.

We have included the validation metrics for the lowest mesh size of 8x8x8 in Table 6.6. We omitted the
results from the larger mesh sizes for brevity; the validation results are similar across all mesh sizes. The
marginal linkage model ℱ𝑀𝑃 performs best overall. The full linkage model ℱ𝐹𝑢𝑙𝑙 finds the lowest 𝑀𝑆𝐷 value
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within the evaluation budget for this mesh size but has the worst value for each validation metric. Similar to
the results from Section 6.2.1, this suggests that the model is over-fitting in some way, either because of its
increased population size or the exploitation of dependencies between all problem variables at once. Overall,
the marginal model seems the most practical and cost-efficient; it is computationally scalable regarding the
number of parameters and can find decent solutions in terms of the objective value and validation metrics.
The static model performs reasonably well but will have the same problems as the full linkage model when the
maximum linkage set size increases.

(a) Progression of mutual information matrices over generations when using the full linkage model ℱ𝐹𝑢𝑙𝑙.
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Figure 6.7: The linkage between control points visualized using heatmaps of the mutual information for specific generations. Also, the
relationship between the euclidean distance and mutual information of control points—here, the euclidean distances are binned, and

standard confidence intervals are shown.

Figure 6.7 additionally gives some insight into the linkage between problem variables for the synthetic reg-
istration problem. After some generations, a clear pattern emerges in the heatmaps with dependencies along
the diagonal. The plot on the right (b) shows these dependencies mainly exist between adjacent control points.
Moreover, the dependencies are mostly visible for control points around the center of the grid; this makes
sense, as these are most influential in transforming the voxels inside the cube.

6.2.4. Missed Voxels
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1

(a) Trivial 2D registration problem in
which a cube is mapped to a circle.
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Figure 6.8: Visualization of a registration for a trivial 2D problem using ASGD as the optimizer. The optimizer converges on a
transformation that maps voxels from each cube corner to positions outside the moving image.

In order to calculate the value of a similarity metric, such as the MSD, we need to interpolate the mapped
voxel values from the moving image. However, these mappings may fall outside the moving image when using
a deformation model based on B-splines. In Elastix, this is handled by only counting the voxels that are mapped
inside of the moving image, terminating the registration if the number of missed voxels is greater than 75% of
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the total number of voxels set to be used in calculating the similarity metric. It is not immediately clear how this
would affect the optimization, as it can only increase the space of possible transformations; it could be more
beneficial to exclude specific voxels from the metric calculation.

We created a trivial 2D synthetic registration problem consisting of a cube mapped to a circle for demonstra-
tion purposes. The problem is registered using ASGD on amesh size of 7x7x7, which results in a transformation
with 70% missed pixels that may visually look correct but ultimately ”solves” the problem by mapping voxels
that differ in value to positions outside the moving image, see Figure 6.8. Of course, this is a stylized example
designed to elicit this behavior. Still, it does show that missed voxels can have an undesired impact on the
registration outcome. Therefore, we implement both a missed voxel threshold and penalty to guide GOMEA
towards solutions with reduced or no missed voxels; for implementation details, see Section 5.3.4.

Setup We test the implemented methods from Section 5.3.4 by registering the synthetic registration problem
when either constrained selection with various percentage thresholds ∈ {0.0, 0.5, 2, 5, 10} or the missed pixel
penalty is used. Registrations are done using GOMEA, a mesh size of 7x7x7, without any multi-resolution
scheme or regularization. We use the 𝑀𝑆𝐷 as the similarity metric. Each run is repeated ten times with
different seeds.
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1Figure 6.9: Mean iteration output of the 𝑀𝑆𝐷 and missed voxels percentage for runs using GOMEA on the synthetic registration problem.
A mesh size of 7x7x7 with either constrained selection or a missed voxel penalty is used.

Results Figure 6.9 shows convergence plots for the𝑀𝑆𝐷 and the average missed voxel percentage. The out-
comes clearly show that by using increased thresholds for the constrained selection, we can improve outcomes
in terms of the MSD. It suggests that the optimizer exploits the additional freedom given by larger thresholds
to find solutions with lower objective values. The convergence plots show an initial impulse in the average
of missed voxels during the early stages of each run, indicating that some of the increased search space is
exploited there. After this initial impulse, each run seems to converge to some equilibrium at a value lower than
the chosen threshold. This suggests that the lower metric values are not simply achieved by the decreased
number of voxels used to calculate it; if this were true, missed voxel percentages for each run would converge
to each of their respective thresholds. Instead, they converge to some lower percentage but with significantly
lower MSD values.

Figure 6.10 shows the difference in registration outcomes between two runs with different missed pixels
thresholds. We can see that when we use a lower threshold, the optimizer struggles more with finding suitable
mappings for the voxels of the sphere and around the cube. This suggests that with a larger margin for missed
pixels, the optimizer can find better registration outcomes with fewer mismatches in voxel mappings. The
artifacts around the cube indicate that the differences mainly come from the outer control points. By giving
these control points more freedom to move farther away from their initial positions at the start, the optimizer
can converge to equilibria where voxels just in and outside the cube are mapped correctly. The inner control
points can move around more freely if the outer control points are sufficiently far away, ultimately leading to
configurations that result in better registration outcomes. The DVFs also show some interesting differences: the
lower threshold has some cyclical characteristics, whereas the higher threshold is straighter and more regular.
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(a) DVF when using a threshold of 0%.
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(b) DVF when using a threshold of
10%.

(c) Deformed source when using a
threshold of 0%.

(d) Deformed source when using a
threshold of 10%.

Figure 6.10: Deformation Vector Fields (DVF) and registration outcomes when using either a missed voxels threshold of 0% or 10%.

For the lower threshold, the inner control points are cramped by the outer control points and, in turn, forced into
a more cyclic pattern.

Generation = 0 Generation = 10 Generation = 100 Generation = 300

1

Figure 6.11: Slices of the control point configurations at the end of specific generations when using no constrained selection or missed
voxel penalty. All other settings are the same as for the runs from Figure 6.9.

To gain additional insight into the optimizer’s behavior, we save the configuration of control points for the
best solution from the population at the end of each generation. Figure 6.11 shows configuration slices for four
specific generations, illustrating their positions’ progression over time. We use a different coloring scheme in
which the control points are grouped by their minimal distance to the center in either direction to differentiate
the outer and inner control points. We can label these by their level ordered inwards to outwards— i.e., the
center control point is level 0, and the outermost control points are level 3. As expected, the plots show the
level 3 points moving from their initial position towards some final configuration. More interestingly, we can
see that some level 2 control points converge towards the center, whereas the level 1 control points move past
them in the other direction. If the control points move sufficiently past each other in reverse directions, they
can create folds locally in the transformation, which is undesired behavior in a clinical context. Here, the outer
control points are sufficiently spaced outwards so that no folds exist. Nevertheless, it shows that it could be
beneficial to further constrain the optimizer by not allowing control points to overlap.

Overall, it has become clear that the missed voxels can provide substantial improvements by increasing the
space in which optimizers can configure the control points. It will vary depending on the registration problem; if
an image mask is used—which is the case in most clinical contexts, missed voxels will not be an issue. Still, the
additional freedom for the outer control points could prove beneficial even if an image mask is used. Therefore,
we suggest not using a missed voxel constraint or penalty for most registration problems.
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6.2.5. Fold Constraints
We can additionally constrain the registration by not allowing local overlaps regarding the control points. From
Figure 6.11, we can see that this happens when the inner control points at two consecutive levels move past
each other in opposite directions (the blue and green control points). These overlaps do not necessarily create
folds in the transformation, but there will be none if there are no overlapping control points. It could be the
case that these overlaps are ultimately necessary to find adequate registrations due to the nature of B-spline-
based transformation models. In any case, it will be interesting to see the impact of such a constraint on the
optimizer. We expect it to lead to more regular transformations, as it removes the possibility of a negative spatial
Jacobian value at any position in the transformation. We also expect it leads to worse outcomes in terms of
the similarity metric—and, in turn, the visual outcome of the registration, as it strictly decreases the space of
possible transformations. Nevertheless, the increased regularity of the underlying transformations could lead
to an improvement in the validation metrics.

Setup We measure the impact of constraining the control points for registrations of the synthetic registration
problem using mesh sizes of 7x7x7, 8x8x8, and 9x9x9. The results are compared to registrations without
constraints; in both cases, no regularization or multi-resolution scheme is used. We use the 𝑀𝑆𝐷 as the
similarity metric, and each run is repeated ten times using different seeds.
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Figure 6.12: Comparison of the 𝑀𝑆𝐷 convergence for the mesh sizes 7x7x7, 8x8x8, and 9x9x9 using GOMEA with and without fold

constraints—GOMEA with constraints is referred to as GOMEA-FC. No regularization or other constraints are used.

Mesh Size Method �⃗�𝜖 𝑇𝑅𝐸 𝐴𝑆𝐷cube 𝐴𝑆𝐷sphere 𝐸𝑏

7x7x7
GOMEA 0.77 ±0.24 1.89 ±0.59 0.42 ± 0.02 0.28 ±0.01 0.57 ± 0.27
GOMEA-FC 1.24 ± 0.04 2.80 ± 0.07 0.40 ±0.01 0.44 ± 0.04 0.38 ± 0.04

8x8x8
GOMEA 0.84 ± 0.04 1.96 ± 0.08 0.58 ± 0.02 0.28 ±0.01 0.80 ± 0.05
GOMEA-FC 0.34 ±0.06 0.80 ±0.12 0.40 ±0.00 0.29 ± 0.00 0.12 ±0.02

9x9x9
GOMEA 1.58 ± 0.07 4.23 ± 0.23 0.59 ± 0.02 0.36 ± 0.02 3.12 ± 0.16
GOMEA-FC 0.82 ±0.03 1.49 ±0.08 0.42 ±0.01 0.28 ±0.01 0.47 ±0.04

Table 6.7: Comparison of validation results for the mesh sizes 7x7x7, 8x8x8, and 9x9x9 for the synthetic registration problem between
GOMEA and GOMEA-FC. No regularization or missed voxel constraints are used.

Results Figure 6.12 shows how the constraints impact the optimization of the similarity metric. We see that
GOMEA-FC converges to solutions with significantly worse𝑀𝑆𝐷 values. This is expected since the constraints
heavily restrict the search space by not allowing adjacent control points to overlap. We can say that the search
space with constraints is a strict subset of the space without constraints, which means that GOMEA-FC can
never outperformGOMEA in terms of the similarity metric. However, it can outperform in terms of transformation
quality. This becomes clear from the validation results in Table 6.7, which show that GOMEA-FC outperforms
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for the mesh sizes 8x8x8 and 9x9x9. The smaller bending energies show that the constraints inherently reg-
ularize the transformation by keeping the control points from overlapping. It limits the possible transformation
complexity but does enforce more natural transformations with improved results for the ground truth error, target
registration error, and average surface distances. The underperformance for the smallest mesh size is likely
due to the larger spacing between the control points. Increasing the mesh size decreases the spacing between
control points and the region of voxels they influence. This increased freedom left unconstrained leads to worse
outcomes for the validation metrics, likely due to overfitting. If we constrain the optimizer for these larger mesh
sizes, it can find transformations of higher quality that adequately transform the source using lower bending
energy.

Figure 6.13 shows a visual comparison between two runs using either GOMEA or GOMEA-FC with a mesh
size of 8x8x8. When constrained, the optimizer finds solutions with more naturally aligned control points sim-
ilar to configurations found by ASGD. The Jacobian determinant and DVF are more regular, containing less
abrupt and sharp changes with significantly smaller magnitudes. Moreover, the negative values in the Jacobian
determinant for GOMEA indicate that folds exist in the transformation. However, these mainly lie around the
edges of the transformation and do not impact the cube or sphere. Still, these results confirm that constraining
the control points eliminates the possibility of folds in the transformation. Whenever we know this to be a hard
requirement, we can restrict the search space by imposing overlap constraints.
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Figure 6.13: Visual comparison of two runs using either GOMEA or GOMEA-FC to optimize the synthetic registration problem with no
regularization or missed voxel constraints/penalty and a mesh size of 8x8x8.

6.2.6. Hybridization using Gradient-based Local Search
From our experiments thus far, we can argue for either GOMEA or ASGD to optimize registration problems.
ASGD is fast, naturally provides more regular results, and is less prone to overfitting. GOMEA, on the other
hand, is objectively better at optimizing the similarity metric but is much slower in its operation. If left un-
constrained, GOMEA will likely find physically implausible transformations with high bending energy, possibly
including folds and sharp changes. Therefore, it makes sense to combine both methods to leverage the global
exploration of EAs, such as GOMEA, with the efficient local exploitation of a gradient-based method, such
as ASGD. We can exploit each basin of interest more efficiently across the search space by optimizing solu-
tions using a local gradient-based search method. By maintaining a population of solutions across the search
space, we decrease the likelihood of converging to local optima while improving the convergence rate by re-
quiring fewer generations to iteratively improve the solutions towards the ”bottom” of each basin. We have
implemented a basic hybridization in Elastix of GOMEA with local search (GOMEA-LS) with two redistribution
methods and two iteration schedules (see Section 5.3.6).

Setup We estimate the effect these parameters have on registration outcomes by conducting a standard grid
search for 𝜏𝑔 ∈ {0.0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3} and 𝑖𝑔 ∈ {5, 10, 20, 30, 50, 100, 200, 500} when a mesh size of
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Figure 6.14: 𝑀𝑆𝐷 plotted against the number of ASGD iterations for each 𝜏𝑔 (left) and a heatmap with the average ground truth error �⃗�𝜖

for each combination of parameter values (right). For reference, the result found by GOMEA (𝜏𝑔 = 0) has an average �⃗�𝜖 of 1.02.

8x8x8 and a budget of 5e10 pixel evaluations are used for the synthetic registration problem. We use the static
iteration schedule and random redistribution method—i.e., gradient descent is applied to a random subset of
solutions for a fixed number of iterations at the end of each generation.

Additionally, we compare GOMEA and GOMEA-LS for the mesh sizes 6x6x6, 7x7x7, and 8x8x8 in terms
of the ground truth error �⃗�𝜖, 𝑇𝑅𝐸, and bending energy 𝐸𝑏. Registrations are performed without constraints or
regularization and are repeated ten times with different seeds. For GOMEA-LS, we use 𝜏𝑔 = 0.1 and 𝑖𝑔 = 20.
For the calculation of the �⃗�𝜖 and 𝐸𝑏, we use a mask to only consider the region of the ground truth deformation
vector field (DVF) with non-zero entries. We ignore the outliers around the edges of the transformation as these
have minimal to no impact on the transformation of the cube or sphere itself.

Results Figure 6.14 shows a negative correlation between the number of ASGD iterations 𝑖𝑔 and the objective
value. With increased iterations, the optimizer finds lower values for the 𝑀𝑆𝐷 by aggressively exploiting the
local search method. The heatmap shows that these improved results are likely overfitting since they are
worse regarding the ground truth error. We must remember that no regularization was used, so these results
do not necessarily suggest that using more iterations at the end of each generation is not a good idea. It only
shows that it increases the likelihood of optimizing the similarity metric more effectively. More interestingly, the
heatmap shows an area of improved �⃗�𝜖 values around the center when a moderate amount of ASGD iterations
is applied to a small portion of the population at the end of each generation.

Mesh Size Method �⃗�𝜖 𝑇𝑅𝐸 𝐸𝑏

6x6x6
GOMEA 0.34 ± 0.05 0.73 ± 0.10 0.08 ± 0.01
GOMEA-LS 0.19 ±0.01 0.51 ±0.02 0.06 ±0.00

7x7x7
GOMEA 0.85 ± 0.14 2.10 ± 0.27 0.62 ± 0.17
GOMEA-LS 0.31 ±0.12 0.67 ±0.29 0.08 ±0.02

8x8x8
GOMEA 0.81 ± 0.04 1.97 ± 0.14 0.76 ± 0.06
GOMEA-LS 0.71 ±0.09 1.46 ±0.15 0.64 ±0.15

Table 6.8: Comparison of validation results for the mesh sizes 6x6x6, 7x7x7, and 8x8x8 for the synthetic registration problem between
GOMEA and GOMEA-LS (𝜏𝑔 = 0.1, 𝑖𝑔 = 20). No regularization or constraints are used.

Table 6.8 shows that hybridization positively impacts the validation metrics with significant improvements
for all mesh sizes. The difference is most notable when using a mesh size of 7x7x7. A visual comparison of
run results between the two methods for this mesh size is shown in Figure 6.15. From it, we see from both
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(a) Run result using GOMEA.
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(b) Run result using GOMEA-LS.

Figure 6.15: Visual comparison of two runs when using either GOMEA or GOMEA-LS to optimize the synthetic registration problem with
no regularization or constraints and a mesh size of 7x7x7.

the DVF and Jacobian determinant slices that the transformation found by GOMEA-LS has more regularity and
smoothness.
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Figure 6.16: Comparison of the convergence rates for the mesh sizes of 6x6x6, 7x7x7, and 8x8x8 between GOMEA and GOMEA-LS

(𝜏𝑔 = 0.1, 𝑖𝑔 = 20) measured by the 𝑀𝑆𝐷 over time in seconds.

Lastly, we show the impact on the convergence rate by visualizing the metric value as a function of time for
each mesh size. Figure 6.16 shows that the hybrid method achieves quicker convergence rates for each mesh
size. We can conclude that the hybrid method should be considered when solving other registration problems.
It can find solutions with lower objective values that are also better regarding the validation metrics and is
quicker to converge. The recommended parameter settings will depend on the registration problem, but we
recommend starting with small values for 𝜏𝑔 and 𝑖𝑔, e.g., 𝜏𝑔 ≤ 0.1 and 𝑖𝑔 ≤ 50; setting these too aggressively
might lead to premature convergence or overfitting.

6.2.7. Regularization Weight
Regularization is used in deformable image registration to prevent overfitting and to ensure the transformation
between the two images is smooth and physically plausible. The bending energy is a common regularization
term that is used to penalize large deformations and to encourage the transformation to be smooth and con-
tinuous. This is particularly important when working with medical images, as large, unrealistic deformations
can lead to inaccurate results and severe consequences in clinical applications. In Elastix, the bending energy
can be included in a weighted combination with any similarity metric—weights for each term will have to be
specified. As such, we still have a single-objective optimization problem, but now with an infinite number of
possible weight combinations to choose from, which only adds to the complexity of these problems.

By increasing the weight for the bending energy term, we limit the space of possible transformations by
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penalizing those which include large deformations. We have already seen that gradient-based optimizers are
more prone to premature convergence in local optima due to their exploitative approach. It would be interesting
to see how regularization affects this phenomenon, as it might decrease the number of local optima through
its restrictive effect on the search space. Oppositely, the bending energy could also increase the number of
local optima due to its added complexity in the objective function. GOMEA has shown to be more capable at
avoiding local optima, which might mean it is also less sensitive to the chosen regularization weight. A known
issue is that it is hard to a priori estimate the weights that adequately solve the registration problem. If the
optimizer can find these solutions given a broader range of weights, it becomes less of a guessing game for
practitioners.
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Figure 6.17: Approximated Pareto fronts and validation results when using either GOMEA, GOMEA-LS, or ASGD for the synthetic
registration problem using a mesh size of 8x8x8. To approximate the fronts, we optimize the problem using a range of regularization

weights for the bending energy. The color scheme shows the ground truth error �⃗�𝜖 achieved by each run.

Setup We use a geometrically increasing sequence of weights ∈ [0.0, 10.0] to measure the impact of regu-
larization on registration outcomes for the synthetic registration problem. Both optimizers are given the same
sequence, and a mesh size of 8x8x8 is used. We use a weighted combination of the analytic bending energy
and the 𝑀𝑆𝐷.

Results Figure 6.17 visualizes the approximated Pareto fronts for both optimizers. From this figure, we can
see that GOMEA’s results span a much broader range of the bending energy than ASGD. If we plot the fronts
jointly, we can see that they look very similar. The most significant difference comes from the left side of the
front, where GOMEA achieves smaller values for the 𝑀𝑆𝐷 but with decreasingly smooth transformations and
higher ground truth errors. These transformations are likely overfitting to the registration problem; however,
they show that GOMEA is more capable as an optimizer as it finds a range of solutions that dominates ASGD.
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Figure 6.18: An approximation to the Pareto front
when sub-sampling is used when optimizing the

synthetic registration problem with ASGD. We use the
same sequence of weights as in Figure 6.17.

Due to the overlap of the approximated fronts, it does not im-
mediately become clear what optimizer outperforms in terms of
transformation quality. Figure 6.17 shows more precisely what
both optimizers achieved regarding the ground truth error and
𝑇𝑅𝐸. We see that GOMEA dominates the results of ASGD for
both metrics. To achieve comparably good results with ASGD,
we need to set the regularization weight to a rather small range
of values, whereas, with GOMEA, we can permit a much broader
range of weights. Consequently, if we have no prior knowledge
of the registration problem and what weights might be suitable,
it would be better to use GOMEA to optimize it using a series of
weights since it is more likely we will find a good result. How-
ever, ASGD operates magnitudes faster than GOMEA; in set-
tings where time is a constraint, it might still make more sense
to use ASGD.

Lastly, we note that the approximated Pareto fronts are somewhat atypical in their shape, as they come close
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to looking like a smooth curve; we expect more variance in the range of values towards the top of the front, where
registrations are least constrained by the penalty term. The synthetic registration problem is possibly simple
enough so that both optimizers can converge to near-optimal solutions across the front for each combination of
weights. Otherwise, it could also be explained by the fact that we do not use sub-sampling but instead include
all of the image voxels when calculating the objective function. If we use sub-sampling, we get a front as shown
in Figure 6.18. With sub-sampling, a new set of voxels is chosen for each iteration. The set of voxels for the
last iteration will determine the final output for the bending energy and 𝑀𝑆𝐷. As such, if we use a different
seed for each chosen regularization weight, we will end up with a different set of voxels at the end of each run,
leading to increased variance in the results.

6.2.8. LEARN
The synthetic registration problem provides an easy-to-understand and computationally tractable registration
problem. Moreover, by creating it ourselves, we can specify landmarks, surface points, and a ground truth
DVF, allowing us to validate the results quantitatively. Still, this thesis aims to find out if the application of EAs
in DIR is feasible in practice. That is, the application of GOMEA—with prior modifications, e.g., fold constraints
or hybrid local search—to real-world clinical registration problems. To this end, we compare results between
variants of GOMEA and ASGD when applied to three cases of the LEARN challenge. In this challenge, pairs of
CT scans for each patient are taken for both maximally inspired and expired lungs. By registering these pairs
of images, the large lung motion can be estimated and used by practitioners for diagnosis (e.g., COPD, see
Section 1).

Setup We register cases 1-3 of the LEARN challenge using a mesh size of 8x8x8 with and without regulariza-
tion. To optimize the registration problems, we use a weighted combination of the Zero-Normalized Correlation
Coefficient (ZNCC) (see Section 4.1.3) with the bending energy. Due to the increased computational load, we
use a small set of regularization weights {0.0001, 0.001, 0.01, 0.1}; initial sample runs indicate that these weights
are sufficient to provide a diverse set of results across all three cases. A mask of the expired lungs is used to
limit the calculation of the similarity of only those voxels between the fixed and deformed moving image. We
compare the following methods: ASGD, GOMEA, GOMEA-LS, GOMEA-FC, and use an evaluation budget of
3e11 voxels for each run. A multi-resolution scheme of three levels with down-sampling and smoothing is used,
with the final level at half the resolution of the original image and no smoothing. We repeat each run ten times
using different seeds. For GOMEA-LS, we use the static iteration schedule and random redistribution method.

To validate the results, provided landmarks are used to calculate the TRE. We also calculate the 𝐷𝑆𝐶
between the transformed moving image mask and the fixed image mask, indicating howmuch the lungs overlap
after registration. To measure the regularity of the transformation, we calculate the bending energy 𝐵𝐸. Finally,
tomeasure the diversity and quality of the approximated Pareto fronts, we calculate the dominated Hypervolume
(HV), as defined in Section 3.3.2.

Results Figure 6.19 shows approximated Pareto fronts for each patient and method used. Runs per reg-
ularization weight and method are aggregated by taking the average of the 𝑍𝑁𝐶𝐶, 𝐵𝐸, and 𝑇𝑅𝐸. Across all
patients, we see that the solutions found by GOMEA-LS are both non-dominated and diverse, likely due to
the explorative capabilities of GOMEA in combination with the exploitative capabilities of ASGD. We see that
GOMEA finds similar fronts but with worse values for the 𝑍𝑁𝐶𝐶, which reaffirms that the combined approach of
GOMEA-LS has merit. Solutions found by ASGD and GOMEA-FC are quite concentrated but are more regular
and with lower values for the 𝐵𝐸. For GOMEA-FC, this is expected, as the additional constraints restrict the
search space by not allowing the control points to overlap; the additional regularization from the penalty term
probably has minimal impact due to the already strong regularization effects from the constraints. For ASGD,
it seems that even with a multi-resolution approach, it converges to solutions with significantly lower similarity
scores than GOMEA-LS.

Not taking into account 𝑇𝑅𝐸 and 𝐷𝑆𝐶, we can evaluate the performance of these methods by trying to
understand the process from a practitioner’s perspective. For any deformable image registration problem, it is
often not known a priori what kind of registration is required. In some cases, a significant degree of deformation
is required, while in others, small, subtle deformations are sufficient. As such, the problem is inherently multi-
objective and should be considered as such when evaluating the performance of tested methods. The goal
in multi-objective optimization is to find sets of solutions that approximate the Pareto set, a set of solutions
with objective values both well-spread along and close to the Pareto front. Given such a set, a practitioner
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Figure 6.19: Approximated Pareto fronts for patients 1-3 of the LEARN dataset by ASGD, GOMEA, GOMEA-LS, and GOMEA-FC when
using a mesh size of 8x8x8, a 3-level multi-resolution scheme and regularization weights ∈ {0.0001, 0.001, 0.01, 0.1}. We plot the 𝑍𝑁𝐶𝐶

on the horizontal axes and the 𝐵𝐸 on the vertical axes. The 𝑇𝑅𝐸 in mm is embedded as the color of each point.

Patient Method 𝑇𝑅𝐸 𝐷𝑆𝐶 𝐵𝐸 𝐻𝑉

Patient 1

ASGD 1.97 ± 0.01 0.94 ± 0.00 0.07 ± 0.00 0.83

GOMEA 1.94 ± 0.02 0.94 ± 0.00 0.17 ± 0.01 0.88

GOMEA-LS 1.89 ± 0.01 0.93 ± 0.00 0.20 ± 0.01 0.89

GOMEA-FC 2.02 ± 0.03 0.94 ± 0.00 0.06 ± 0.00 0.83

Patient 2

ASGD 3.65 ± 0.01 0.91 ± 0.00 0.12 ± 0.00 1.71

GOMEA 4.00 ± 0.13 0.90 ± 0.00 0.06 ± 0.00 1.71

GOMEA-LS 4.11 ± 0.04 0.90 ± 0.00 0.15 ± 0.00 1.75

GOMEA-FC 4.03 ± 0.12 0.90 ± 0.00 0.06 ± 0.00 1.55

Patient 3

ASGD 2.27 ± 0.00 0.94 ± 0.00 0.09 ± 0.00 1.17

GOMEA 2.33 ± 0.04 0.94 ± 0.00 0.08 ± 0.00 1.21

GOMEA-LS 2.25 ± 0.00 0.94 ± 0.00 0.10 ± 0.00 1.24

GOMEA-FC 2.58 ± 0.07 0.94 ± 0.00 0.05 ± 0.00 1.1

Table 6.9: Validation metrics for patients 1-3 of the LEARN [43] dataset when ASGD, GOMEA, GOMEA-LS, and GOMEA-FC is used with
a mesh size of 8x8x8, a multi-resolution scheme and regularization weights ∈ {0.0001, 0.001, 0.01, 0.1}. For each method, we only show

the average values for the weight which provided the best results (except for the 𝐻𝑉). A bold value indicates a (joint) statistically
significant improvement over all other methods for a specific metric and patient. The HVs are scaled up for improved readability.

can decide on their preference regarding the trade-off between the objectives. Qualitatively, we can see from
Figure 6.19 that GOMEA-LS approximates sets of solutions that are most diverse and with the highest 𝑍𝑁𝐶𝐶.
Quantitatively, the quality of approximated sets can be measured using the 𝐻𝑉, which refers to the total volume
dominated in objective space by the solutions in the set w.r.t. to a reference point. The 𝐻𝑉 for each method
and patient is shown in Table 6.9.

In Table 6.9, we also compare the best results for each method by inversely scaling the 𝑇𝑅𝐸 by the 𝐷𝑆𝐶
(i.e., 𝑇𝑅𝐸𝐷𝑆𝐶 ). In terms of the 𝑇𝑅𝐸, we see comparable results for all methods, with ASGD outperforming slightly
for patient 2 and GOMEA-LS for patients 1 and 3. GOMEA-FC finds the most regular transformations with the
lowest bending energies. Figure 6.20 shows the inversely scaled 𝑇𝑅𝐸 distribution for all patients, methods,
and regularization weights. Most interestingly, we see a significant outlier for patient 2 and GOMEA-LS when
the largest regularization weight is used. From Figure 6.19, it becomes clear that this is due to GOMEA-LS
converging on solutions with the lowest bending energy but with significantly lower 𝑍𝑁𝐶𝐶. This is not necessarily
undesired behavior; it only further shows that GOMEA-LS is better at optimizing the objective function and
provides sets of solutions with a broader range of trade-offs.

The bending energy measures the regularity of transformations as the sum of second-order spatial deriva-
tives. For patient 1, we see that GOMEA and GOMEA-LS find solutions with competitive 𝑇𝑅𝐸 and 𝐷𝑆𝐶 scores
but with transformations that contain considerably higher bending energies (by a factor of ≈ 3). To understand
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Figure 6.20: Distribution of the 𝑇𝑅𝐸 inversely scaled by the 𝐷𝑆𝐶 for each patient, method and used regularization weight.
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Figure 6.21: Normalized bending energy maps for both ASGD and GOMEA-LS for registrations of Patient 1 when using a regularization
weight of 0.001. Only voxels within the lung mask of the fixed image are shown.

the differences, we calculate the bending energy per voxel using the DVF and normalize by dividing it with
the maximum bending energy across all voxels within the lung mask. Figure 6.21 compares these normalized
energies mapped onto the voxels within the lungs for both ASGD and GOMEA when a regularization weight of
0.001 is used. From it, we see several areas in which the intensities of the bending energy differ. For example,
GOMEA-LS has a concentration of high bending energies at the left lower side of the lung. In comparison,
ASGD has a concentration of higher bending energies at a similar slice of voxels but a bit more inward towards
the center of the body. Overall, the distribution of bending energies seems smoother for ASGD with gradual
increments up until extrema. On the other hand, the mapped bending energies of GOMEA-LS are more con-
centrated, as we see two prominent regions with high bending energies and most other voxels being almost
the same shade of dark blue. We have seen this behavior for ASGD and GOMEA across all experiments thus
far. The transformations found by ASGD are generally smoother and have fewer sudden changes. In contrast,
GOMEA can find more specific transformations that are better fit to the similarity metric but often of higher
bending energy.

We compare the registration results in more detail by visualizing the DVF and re-sampled voxels for two
slices with the most significant differences in bending energies between ASGD and GOMEA-LS. First, a hori-
zonal slice taken at the lowest part of the lung is compared in Figure 6.22. The top row visualizes the difference
in the DVFs using deformed uniform meshes, whereas the bottom row visualizes the difference in the regis-
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Figure 6.22: Deformed uniform meshes and color difference plots for two registration results by ASGD and GOMEA-LS for patient 1 of
the LEARN dataset. The highlighted yellow rectangles indicate areas of interest. In the color difference plots, the green color displays the
fixed image, and the purple color the deformed moving image. Only the voxels within the fixed image mask are used during registration.
However, after registration, the moving image is re-sampled using all voxels, which can lead to inaccurate results outside of the mask.

tration outcome using a color difference plot between the deformed and fixed images. Important to note: only
the voxels within the fixed image mask are used during registration, but after registration, the moving image is
re-sampled using all voxels, which leads to erroneous results outside of the mask in the re-sampled images.

The deformed meshes show that the transformation of ASGD is more smooth and more regular, whereas
the mesh of GOMEA-LS contains more local variability and overall seems more flexible. The highlighted area
in the top-right corner contains the voxels with the large bending energies found for GOMEA-LS in Figure 6.21.
The deformation does show a sudden curve upward; however, the bending energy is calculated in all three
dimensions—the contribution in the vertical direction is left out. In terms of the registration outcomes, we see
relatively similar results. A notable difference is in the highlighted area (left), where the movement around the
edges of the lungs is better estimated by GOMEA-LS.

In Figure 6.23, we compare the same registration results from ASGD and GOMEA-LS for a vertical slice as
seen from the side of the lungs. In the bottom area of the deformed mesh, ASGD’s DVF contained considerable
bending energies compared to the rest of the deformations according to the normalized map from Figure 6.21.
In this area, we do see deformations with the most significant magnitude in this slice, but not necessarily a large
amount of bending—again, some of this could be explained by the deformation in the horizontal direction. Also,
ASGD generally finds transformations that are more smooth and more regular, as stated before. Similar to the
previous slice, we see from the highlighted area in Figure 6.23 that GOMEA-LS more accurately estimates the
range of motion around the edges of the lungs.

Overall, we show that GOMEA(-LS/FC) is competitive to ASGD on the tested clinical cases from the LEARN
[43] dataset. For patients 1 and 3, GOMEA-LS achieved the best registration results in terms of the 𝐷𝑆𝐶
and 𝑇𝑅𝐸. For patient 2, 𝐴𝑆𝐺𝐷 achieved the best result. However, given that the problem is inherently multi-
objective, GOMEA-LS has outperformed overall, as it delivered the best results regarding the diversity and
quality of the approximation set. In terms of computational efficiency, ASGD is magnitudes faster and capable of
performing many registrations with different regularization weights when GOMEA performs a single registration,
even though this does not mean it can achieve similar image similarities. Lastly, this experiment has been
somewhat limited, as we only use a single mesh size and a reasonably small set of weights in the interest of
run times. To validate and expand on our findings, more experiments with larger mesh sizes and finer sets of
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Figure 6.23: Deformed uniform meshes and color difference plots for two registration results by ASGD and GOMEA-LS for patient 1 of
the LEARN dataset. The highlighted yellow rectangles indicate areas of interest. The magnitude of the deformation is visualized using a
color scheme with the same scaling for both methods. In the difference plots, the green color displays the fixed image, and the purple

color the deformed moving image.

weights are required.

6.3. Discussion
In this chapter, we analyze and evaluate the performance of GOMEA when applied to synthetic and clinical DIR
problems. In our initial experiments on the synthetic registration problem, we find that GOMEA outperforms
ASGD in the objective value but struggles to find solutions with equal transformation quality. Without a regu-
larization term, GOMEA tends to overfit on the similarity metric, producing solutions that look good visually but
with anatomically unlikely transformations. Multi-resolution schemes are often used in DIR to overcome local
minima traps. When such a scheme is applied to the synthetic registration problem, we observe that GOMEA
no longer outperforms ASGD in either the similarity metric or the quality of the transformation. However, when
applied to more complex cases of the LEARN [43] dataset, we see that ASGD converges prematurely and
cannot approximate Pareto fronts as well as GOMEA can. Overall, ASGD finds reasonable solutions to the
tested registration problems, but quite specific tuning of the multi-resolution scheme and regularization weight
is often necessary to achieve those solutions.

We use the synthetic registration problem to explore GOMEA’s operation on registration problems when
using a B-spline-based transformation model, hoping to understand better how it works and what improvements
can be made. We test various linkage models (see Section 4.2) and find that the marginal and static models
outperform in all aspects. Furthermore, the full linkage model can be considered when using a small mesh
size, but for larger mesh sizes, it becomes computationally infeasible.

We also test various constraints to see if GOMEA can be guided towards more regular solutions without
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using a regularization term. Both the missed voxel threshold and penalty hinder optimization by limiting the
outer control points from expanding too far outside the area of the fixed image, resulting in worse outcomes
in terms of similarity and transformation quality. Overlap constraints on the control points provide a benefit by
inherently regularizing the transformation. In the synthetic registration problem, this leads to improved quality
of transformations when the chosen mesh size is sufficiently large. However, when applied to clinical cases, the
constraints are too limiting for the mesh size used. Further experiments with larger mesh sizes are necessary
to determine if overlap constraints work well in practice.

Lastly, we combine ASGD and GOMEA by applying gradient descent to a subset of solutions at the end
of each generation, resulting in improved registration results for both the synthetic and clinical registration
problems. Our results suggest that the explorative population-based approach of GOMEA is a good fit with the
exploitative gradient-based approach of ASGD.

To evaluate the efficacy of our implemented methods in practice, we run registrations on the first three
clinical cases from the LEARN challenge. Preliminary findings indicate that GOMEA(-LS/FC) is capable of
registration results competitive with ASGD in terms of the 𝑇𝑅𝐸 and 𝐷𝑆𝐶, with improved results for patients 1
and 3. Moreover, we see that the sets of solutions found by GOMEA-LS are more diverse and of higher quality.
The results suggest that using GOMEA-LS on clinical registration problems can provide significant benefits
over ASGD when considering the problem is inherently multi-objective. However, due to the computational
complexity of the current GOMEA implementation in Elastix, a moderately small mesh size of 8x8x8 was used
for the clinical cases. More experiments with larger mesh sizes and a finer set of regularization weights are
required to validate our findings.





7
Conclusion and Future Work

In this thesis, we analyze the performance of hybrid evolutionary algorithms when applied to deformable image
registration using common B-spline-based methods. To this end, we implement the Real-Valued Gene-pool
Optimal Mixing Evolutionary Algorithm (RV-GOMEA) [20] and specific variants in Elastix [49], with support for
the partial evaluation of common similarity metrics and penalty terms. The implemented methods are tested
on both synthetic and clinical registration problems. In this chapter, we summarize our findings, reflect on the
research topics, and give recommendations for future work.

7.1. Conclusion
Several contributions are made in this work. First, we provide an implementation of (RV-)GOMEA [20] within
Elastix [49]. We show how partial evaluations can be applied to any objective function using a B-spline-based
transformation model to drastically improve the computational efficiency of the registration process. For three
commonly used similarity metrics and penalty terms, we provide formal derivations and implementations for
partial evaluations during optimization. We also implement several versions of GOMEA with specific alter-
ations or additions based on initial findings from experiments on a synthetic registration problem. Furthermore,
we implement fold constraints so that control points from the B-spline grid cannot overlap in GOMEA-FC, to
improve the regularity of the transformation without using a regularization term. In GOMEA-LS, we implement
an operator that applies gradient-based local search to a subset of solutions at the end of each generation to
combine the explorative capabilities of GOMEA with the exploitative qualities of gradient-based optimization.
Lastly, we integrate an analytic implementation of the bending energy [75] to improve the existing implemen-
tation in Elastix, which computes the bending energy by estimating the spatial Hessian at each voxel in all
dimensions.

To gain an understanding of Adaptive Stochastic Gradient Descent’s (ASGD) and GOMEA’s performance on
different Deformable Image Registration (DIR) problems, we create a simple 3D synthetic registration problem
in which a sphere within a cube shrinks. We add surface points, landmarks, and a ground truth DVF so that
we can validate the transformation quality after each registration. We find that GOMEA is more capable of
optimizing the similarity metric but often overfits if no regularization term is used. However, if a regularization
term is used, we find that GOMEA-LS outperforms in the approximated Pareto front, but most notably in the
transformation quality, as it dominates the results of ASGD for the majority of used regularization weights.
Subsequently, we test several linkage models and find that both the marginal linkage model ℱ𝑀𝑃 and static
linkagemodelℱ𝑆𝐿𝑇 outperform. Furthermore, in Elastix, voxelsmapped outside of themoving image are omitted
in the calculation of similarity metrics, which can lead to locally undefined transformations. To measure the
effect of this formulation on registration quality, we implement a missed voxel threshold and penalty that can
be used during registration to limit the amount of missed voxels per solution. We find that such a threshold
or penalty can significantly inhibit the registration by too heavily restricting the outer control points from the B-
spline model. In contrast, the constraints introduced in GOMEA-FC lead to significantly improved regularity of
transformations; with a sufficiently large mesh size, it can outperform GOMEA in transformation quality. Lastly,
applying gradient descent in GOMEA-LS significantly improves convergence rates, found objective function
values, and transformation qualities when applied to the synthetic registration problem.

Given a better understanding of GOMEA’s and ASGD’s operation within the context of DIR, we validate
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the implemented methods using clinical registration problems from the LEARN [43] dataset. We state that the
DIR problem is inherently multi-objective, as it is often not known a priori how much deformation is required.
Therefore, multiple registrations are done using a set of regularization weights to choose a suitable solution a
posteriori. Viewed as such, GOMEA-LS outperforms on all three tested patients as it approximates solution
sets that are close to and well spread across the Pareto front. Quantitatively, this is confirmed by the fact that
for each patient, GOMEA-LS dominates the most Hypervolume in terms of the similarity metric and penalty
term. We additionally compare the best solutions found by each method and find mixed results regarding the
transformation quality. For patients 1 and 3, GOMEA-LS outperforms in the 𝑇𝑅𝐸 and 𝐷𝑆𝐶. However, for patient
2, ASGD outperforms. From visualizations of the DVF and registration outcomes, we find that GOMEA-LS is
capable of deforming local patches more flexibly, which could be the reason for its improved similarity scores.
Overall, we conclude that GOMEA-LS provides significant benefits over ASGD when applied to the LEARN
dataset.

In closing, the application of hybrid evolutionary algorithms is certainly to be considered in the context of
DIR when using common B-spline-based transformation models. More specifically, the application of GOMEA,
an evolutionary algorithm capable of exploiting the structure of optimization problems through explicit mappings
of dependencies between problem variables. We show that with these mappings, partial evaluations can be
applied to common similarity metrics and penalty terms, improving the registration’s computational efficiency.
Moreover, we combine the population-based approach of GOMEA with the exploitative capabilities of ASGD in
GOMEA-LS and find that it improves convergence rates and similarity scores. Additionally, given the conflicting
trade-offs in DIR, we find that GOMEA-LS approximates sets of higher quality solutions better spread along
the Pareto front compared to ASGD. Overall, GOMEA-LS has proven to be effective at optimizing the metrics
of the DIR problem; consequently, its application should be done with caution to avoid overfitting to these
optimization metrics. Moreover, in time-critical scenarios, GOMEA’s slower operation may negatively impact
registration performance compared to the faster ASGD. To conclude, we see promising future possibilities for
hybrid evolutionary algorithms in the context of DIR. However, more research is needed before they can be
applied in critical clinical settings.

7.2. Future Work
While we hope this thesis provides valuable insights and clear interpretative results, we find many avenues for
further research. This section broadly aggregates these areas and provides recommendations for future work.

Dynamic Resource Allocation In Section 6.2.6, we analyze the impact of the hybridization of GOMEA with
gradient descent-based local search (GOMEA-LS) when applied to DIR problems. Due to time constraints,
we implement this functionality with limited options regarding the iteration schedule and redistribution method.
For example, suppose the static iteration schedule is used. In that case, gradient descent is applied to a fixed
percentage of the population for a fixed number of iterations at the end of each generation. It would be more
efficient if we determine a schedule dynamically based on the benefits of applying local search at any point
during the registration. As such, we recommend investigating the application of a resource allocation scheme
for the distribution of resources in GOMEA-LS. Recent work implements such a scheme to dynamically allocate
resources between a multi-objective variant of GOMEA with UHV-Adam, a method capable of optimizing multi-
objective problems using the gradient of the Uncrowded Hypervolume (UHV) (see Section 3.3.2), and provides
analysis on possible reward functions and distribution schedules [36].

Constrained Differential Optimization We introduced GOMEA-FC, which uses overlap constraints on the
B-spline control points to regularize the registration without using a penalty term. Due to the constraints, it
is not straightforward to combine this approach with a gradient-based local search operator as implemented
in GOMEA-LS. To include constraints in gradient-based optimization, we can use penalty-based approaches
that replace the constraints in constrained optimization problems with various penalty terms. For example, a
penalty term adding ±∞ to infeasible solutions. An exhaustive overview of various penalties is given in [88].

Similarly, Lagrange multipliers [9] can convert the constrained optimization problem into an unconstrained
optimization problem [33]. The Basic Differential Multiplier Method [66] is one example of an approach that uses
Lagrange multipliers to solve constrained optimization problems using gradient descent. Lastly, the Resultant
Gradient Descent Algorithm (RGDA) [29] does not transform the constrained optimization problem but iteratively
moves solutions out of infeasible regions using gradients w.r.t. the individual constraints. The Gradient-Based
Genetic Algorithm (GGA) [29] uses RGDA in a hybrid evolutionary approach to solve constrained optimization
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problems. It can be interesting to apply one of these methods within GOMEA-FC to determine if it improves
the convergence rate and registration results for DIR problems.

Multi-objective Optimization In Section 2.4, we argue for applying multi-objective optimization for DIR prob-
lems due to the trade-off between image similarity and deformation magnitude. DIR problems are inherently
multi-objective, but in this thesis, we implement and apply a single-objective optimizer and reformulate the multi-
objective optimization problem by weighting the individual objectives. Most medical registration toolboxes—
including Elastix—use this formulation as it allows for gradient-based optimization of the weighted objective
function. As such, we first implement the single-objective optimizer RV-GOMEA in Elastix and evaluate its per-
formance at solving DIR problems. A logical next step would be to implement the Multi-Objective Real-Valued
Gene-pool Optimal Mixing Evolutionary Algorithm (MO-RV-GOMEA) [21] in Elastix as well. Moreover, similar
to GOMEA-LS, an implementation, and hybridization with UHV-Adam [32] could provide MO-RV-GOMEA with
an efficient local search operator that improves convergence rates towards the Pareto front.

Hardware Acceleration Our implementation of RV-GOMEA in Elastix is multi-threaded but solely runs on the
CPU. For registration problems with large resolutions (e.g., LEARN) with decently sized B-spline grids (e.g.,
8x8x8), individual runs can take up to 2 days to complete. In a practical sense, this is not ideal as it increases
the feedback loop for researchers and practitioners. Recent work has drastically improved the run times of
evolutionary optimization algorithms by utilizing the GPU and parallelization of independent subfunctions [22].
Such an approach can be used in Elastix to drastically improve the computational efficiency of RV-GOMEAwhen
applied to DIR problems. For example, implementing a dual-dynamic triangulated grid shows speedup factors
of up to 111 when applied to various 2D DIR problems [25]. Such speedups would improve the practicality of
RV-GOMEA within Elastix by reducing run times significantly.

Further Linkage Models Analysis In Section 6.2.3, we analyze registration results for the synthetic registra-
tion problem for various linkage models. We find that linkage mainly exists between adjacent control points and
that the marginal and static linkage models outperform. However, for other registration problems, we might find
different outcomes due to a difference in linkage structure and magnitude. As such, we recommend a further
analysis of linkage models when they are used to solve more complex and real-world registration problems
(e.g., the LEARN dataset).

Concatenation of Transformations In Elastix, it is possible to specify a grid schedule for the B-spline param-
eters in a multi-resolution setting. A smaller grid size is often used for the first resolutions to capture the large
deformations and to avoid local minima traps. The parameters from the previous resolution are up-sampled
using a decomposition of the parameterized deformation field. This decomposition can lead to inaccuracies and
possibly introduces overlaps in the control point configuration of the up-sampled grid. An alternative method
is possible in which subsequent B-spline transformations are concatenated—i.e., at a specific resolution, the
deformation is given by concatenating the previous deformations with the current deformation.

Interestingly, a study found that combining such a concatenated transformation and specific constraints on
the control point displacements can lead to diffeomorphic—meaning smooth and invertible—registrations [73].
Ensuring diffeomorphism can improve the regularity and physical plausibility of the transformation, which is
desirable if it is known that similar structures exist in both images, and no large deformations are required.
Concatenating B-spline deformations only introduces new possibilities and simultaneously removes the possi-
bly inaccurate up-sampling step from the registration.
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