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Abstract

In vivo cell tracking of therapeutic, tumor, and endothelial cells is an emerging field and a

promising technique for imaging cardiovascular disease and cancer development. Site-spe-

cific labeling of endothelial cells with the MRI contrast agent superparamagnetic iron oxide

(SPIO) in the absence of toxic agents is challenging. Therefore, the aim of this in vitro study

was to find optimal parameters for efficient and safe SPIO-labeling of endothelial cells using

ultrasound-activated CD31-targeted microbubbles for future MRI tracking. Ultrasound at a

frequency of 1 MHz (10,000 cycles, repetition rate of 20 Hz) was used for varying applied

peak negative pressures (10–160 kPa, i.e. low mechanical index (MI) of 0.01–0.16), treat-

ment durations (0–30 s), time of SPIO addition (-5 min– 15 min with respect to the start of

the ultrasound), and incubation time after SPIO addition (5 min– 3 h). Iron specific Prussian

Blue staining in combination with calcein-AM based cell viability assays were applied to

define the most efficient and safe conditions for SPIO-labeling. Optimal SPIO labeling was

observed when the ultrasound parameters were 40 kPa peak negative pressure (MI 0.04),

applied for 30 s just before SPIO addition (0 min). Compared to the control, this resulted in

an approximate 12 times increase of SPIO uptake in endothelial cells in vitro with 85% cell

viability. Therefore, ultrasound-activated targeted ultrasound contrast agents show great

potential for effective and safe labeling of endothelial cells with SPIO.

Introduction

In vivo cell tracking is a very promising technique to visualize cells of interest inside the body.

It allows tracking of motile therapeutic cells like immune cells, stem cells, and endothelial pro-

genitor cells to sites of inflammation, cancer, or ischemia [1–5]. Additionally, this technique

can be used to track tumor cells [6], tumor vasculature [7, 8], or endothelial cells in tissue engi-

neered valves [9] and vascular grafts [10].
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After labeling the cells of interest with an imaging probe, they can be tracked by an imaging

modality. Magnetic resonance imaging (MRI) is interesting for cell tracking because it is pre-

cise, harmless, and thus well suited for longitudinal studies. Moreover, single cell tracking is

possible by MRI. However, in vivo cell labeling with an MRI contrast agent is challenging [6,

11–16]. For cell labeling, the T2 and T2�-shortening MRI contrast agent superparamagnetic

iron oxide nanoparticles (SPIO) of 80–180 nm in size [17] are often used [18, 19]. They are rel-

atively safe compounds [19–22], but most of in vitro cell labeling techniques for SPIO are not

applicable in vivo, because of the high toxicity and broad systemic effects of transfection agents

[23]. Therefore, there has been growing interest in safe, site-specific cell labeling techniques.

One potential method involves using ultrasound contrast agent, which are comprised of

microbubbles. The microbubbles have a low diffusible gas core (for example C4F10), vary in

diameter from 1–10 μm, and are encapsulated by a coating material (for example phospholip-

ids). When ultrasound is applied, the microbubbles oscillate due to sequential compression

and expansion caused by pressure variations in the surrounding medium. The oscillation of

microbubbles has been shown to deliver therapeutic materials into cells and interstitial tissue

[24–27]. Up till now there is no consensus on the mechanism of the enhanced uptake. One of

the uptake routes is a phenomenon called sonoporation, when reversible or non-reversible cell

membrane pores are generated upon microbubble oscillations or violent collapse. Other

uptake routes include enhanced endocytosis and opening of cell-cell contacts [25, 26, 28]. It

has been reported that the efficacy of cellular uptake of therapeutic agents can be improved up

to 7.7-fold in vitro [29] and up to fivefold in vivo [30] by using targeted microbubbles (tMB)

instead of non-targeted microbubbles (non-tMB). The tMB have a ligand added in their coat-

ing by which the tMB can adhere to disease-specific cell membrane biomarkers [31, 32].

It was previously shown that 45–60 nm SPIO (Resovist) could be delivered in vivo into the

swine brain using SonoVue lipid-coated non-tMB and ultrasound (28-kHz ultrasound with

100-ms burst length and repetition rate of 1 Hz at 0.6–1 MPa (mechanical index (MI) 4.8–6.0)

applied for 5 min; MRI performed 3 h after treatment) [33]). Brain tumor delivery of SPIO

(mean diameter 6–10 nm [34] or 35.7 ± 9.2 nm [35]) loaded in the lipid-coating of in-house

produced non-tMB was shown in vivo in rats using ultrasound (0.4 MHz with 1,000 cycles and

repetition rate of 1 Hz at 325 kPa (MI 0.5) applied for 90 s; MRI performed 40 min after treat-

ment [34] or 1 MHz with 5,000 cycles and repetition rate of 1 Hz at 300 kPa (MI 0.3) applied

for 4 min; MRI performed 1 and 3 h after treatment [35]). Delivery of 120–180 nm SPIO (Feri-

dex) was also shown in the aortic arch by SonoVue and ultrasound treatment (8.5 MHz ultra-

sound at an MI of 1.2 applied for 20 min; MRI performed 1 h after treatment) [36]. These

studies demonstrate the possibility of SPIO-loaded MB or co-administrated SPIO with MB for

labeling extravascular tissues and subsequent MRI imaging of the SPIO, but do not cover cell

labeling. Successful SPIO (Revovist) mesenchymal stem cell labeling using SonoVue and ultra-

sound (1 MHz, 50% duty cycle, 1.0 W/cm2 acoustic power applied for 60 s) has been reported

in vitro [37]. SPIO (12 nm mean diameter) loaded in the polymer coating of in-house pro-

duced non-tMB were used to successfully label tumor cells in vitro using ultrasound (1 MHz,

20 cycles per burst, repetition rate of 10 kHz, 0.1–0.75 W/cm2 acoustic power applied for 40 s)

[38]. However, MB are blood pool agents. Endothelial cells, which form the inner lining of ves-

sels, are therefore the main target of intravascular administered MB [39, 40]. Exceptions are

tumors that invade into the vasculature, as reported for hepatocellular cancer (i.e. a primary

liver tumor) [41] and colorectal cancer [42]. On the other hand, tMB were shown to target

ovarian cancer cells preclinically by an alternative administration route, namely intraperito-

neal injection [43]. Additionally, tMB are preferable instead of non-tMB since they can be spe-

cifically targeted to the cells of interest and upon binding are close to the endothelium, which

is a perquisite for the MB-mediated drug delivery effectiveness [26]. The in vivo study by Gao
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et al. demonstrated arterial wall uptake of SPIO particles using non-tMB and ultrasound [36],

but only under one acoustic setting (8.5 MHz ultrasound at 1.2 MI, i.e. 3.5 MPa acoustic pres-

sure), which induced considerable arterial wall damage. To the best of our knowledge, no in-

depth studies have been performed to characterize the parameters (e.g., the acoustic settings,

the SPIO addition time and incubation time) that strongly influence the efficacy and safety of

SPIO-labeling of endothelial cells using tMB at low MI (<0.2).

The aim of our in vitro study was to find optimal parameters for non-invasive, tMB-medi-

ated, SPIO-labeling of endothelial cells for the future application of MRI tracking of tumor vas-

culature and tissue engineered vasculature structures. We used lipid-coated tMB targeted

against CD31 (i.e. platelet/endothelial cell adhesion molecule-1 (PECAM1)), a biomarker con-

stitutively expressed on endothelial cell membranes [44], as proof of concept. Iron specific

Prussian Blue staining in combination with calcein-AM based cell viability assays were applied

to define the most efficient and safe conditions for SPIO-labeling of endothelial cells in vitro.

We investigated a fixed ultrasound driving frequency of 1 MHz and a series of low diagnostic

acoustical pressures (<200 kPa; MI<0.2) and treatment duration times (0–30 s). In our study

we used 1 MHz as the ultrasound frequency because it is commonly used for microbubble-

mediated drug delivery studies and is close to the resonance frequency of microbubbles [26].

Although the exact link between the type of microbubble behavior and drug uptake is not yet

known [26], it was reported that endocytosis was stimulated at longer (2,000–10,000 cycles)

acoustic cycles [45–47]. SPIO are typically 80–150 nm [17] nanoparticles which may require

uptake by endocytosis, as this has been shown to be the main uptake mechanism for therapeu-

tics larger than ~17 nm in radius [46]. This is the reason why we chose to study 10,000 acoustic

cycles.

Materials and methods

Endothelial cells

Human umbilical vein endothelial cells (HUVECs) (Lonza, Verviers, Belgium) were cultured

in EGM-2 (Lonza) medium in T75 flasks (BD, Breda, the Netherlands) in a humidified incuba-

tor at 37˚C with 5% CO2. Cells were detached with 0.25% Trypsin in EDTA (Lonza) and

replated on one side of the acoustically transparent OptiCell™ (NUNC, Wiesbaden, Germany)

chambers. HUVECs were cultured as described before [48], for two days until 70% confluence

to resemble neovasculature endothelial cells.

Targeted microbubbles

Biotinylated lipid-coated microbubbles (mean diameter 2.5 μm) consisting of a coating of

DSPC (59.4 mol %; P 6517; Sigma-Aldrich, Zwijndrecht, the Netherlands), PEG-40 stearate

(35.7 mol %; P 3440; Sigma-Aldrich), DSPE-PEG(2000) (4.1 mol %; 880125 P; Avanti Polar

Lipids, Alabaster, AL, USA), and DSPE- PEG(2000)-biotin (0.8 mol %; 880129 C; Avanti Polar

Lipids) with a perfluorobutane (C4F10) gas core (F2 Chemicals, Preson, UK) were made by

sonication as previously described [49, 50]. Biotinylated anti-human CD31-antibody

(BAM3567; R&D Systems, Europe, Abingdon, United Kingdom) was conjugated to the micro-

bubbles via avidin-biotin bridging as previously described [50, 51]. Specificity of binding of

these CD31-targted microbubbles was previously reported by us [48].

Cell treatment

The concentration of tMB was evaluated by Coulter Counter (Multisizer 3, Beckman Coulter,

Mijdrecht, the Netherlands) measurements (n = 3) using a 20-μm aperture tube allowing

SPIO labeling of endothelial cells using ultrasound and targeted microbubbles at diagnostic pressures
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quantification of particle diameters between 0.4 and 12 μm using a linear spacing between the

256 channels. Ten million tMB were added to an OptiCell™ chamber with cells plated on the

bottom (cell to bubble ratio of 1:3), which was turned upside down to let microbubbles adhere

to the cells by flotation. After 5 min incubation at 37˚C, the chamber was reverted for the

experiment so the bound tMB were on top of the endothelial cells as shown in Fig 1A. SPIO

nanoparticles (Endorem™, Gerber S.A., Paris, France) were added at four time-points: 5 min

before, immediately before (0 min), 5 min after, and 15 min after insonification as illustrated

in Fig 1B, at a final concentration of 22.4 μg Fe/ml. Each OptiCell™ chamber was divided into

six acoustically non-overlapping areas (25 × 30 mm each; see Fig 1C), which covered the beam

area (6.5 mm for -6dB beam width) at the focus of the 1.0 MHz transducer (V303; Pana-

metrics-NDTTM, Olympus NDT, Waltham, MA, USA), as verified in advance with a cali-

brated 0.2 mm PVDF needle hydrophone (Precision Acoustics Ltd, Dorchester, UK). The

OptiCell chamber was placed into a 37 ˚C water bath and connected to a 2D micropositioner

(Fig 1D). The 1 MHz focused transducer was configured at a 45˚ angle below the sample and

the acoustic focus was aligned with the center of each subsection.

During the experiment, the position of the OptiCell chamber was manipulated so that the

center of each subsection was insonified in sequence at a predefined pressure (10 to 160 kPa

peak negative pressure (PNP), Fig 1C). A prolonged burst of 10,000 cycles with a repetition

rate of 20 Hz was applied generated by an arbitrary waveform generator (33220A, Agilent,

Palo Alto, CA, USA) and amplified using a broadband amplifier (ENI A-500, Electronics &

Innovation, Rochester, NY, USA). The first subsection, without the application of ultrasound,

was used as the control. The effect of the different total insonification time was determined (1

s, 10 s, and 30 s) at 40, 80, and 160 kPa PNP when SPIO were added 5 min prior to insonfica-

tion. To investigate the effect of the incubation time with SPIO, the OptiCells were incubated

at 37˚C for 5 min, 1 h, and 3 h after insonification when SPIO were added 5 min prior to

Fig 1. Experimental setup. (A) Schematic representation of the tMB adhering to HUVECs during treatment. (B)

Timing diagram of the experiment. The time of insonification (0 min) was used as the reference time. Targeted

microbubbles (tMB) were added 5 min before the ultrasound was applied; SPIO was added 5 min before (i.e. -5 min),

just before (i.e. 0 min), 5 min after, and 15 min after insonification. Cells were fixated 60 min after SPIO addition. (C)

Scheme of insonification of subsections of the OptiCell™ chamber (to scale). The acoustic pressure is given in PNP. (D)

The treatment setup.

https://doi.org/10.1371/journal.pone.0204354.g001
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insonification. The effect of SPIO addition time (-5, 0, 5, and 15 min with respect to the start

of insonification) was determined at 10, 20, 40, 80, and 160 kPa PNP. To check the effect of

insonification of HUVECs on SPIO uptake in the absence of tMBs, the OptiCells were insoni-

fied at 40, 80, and 160 kPa PNP for 30 s, while SPIO was added 5 min prior to insonification

(n = 2). All other experiments were repeated three times. From these three datasets the average

and standard deviation are plotted.

SPIO labeling

After the treatment described above (see also Fig 1B), cells were rinsed three times with phos-

phate-buffer saline (PBS; Invitrogen, Groningen, the Netherlands) to remove non-internalized

SPIO. Then, cells were fixated with 4% formaldehyde (Sigma-Aldrich, Zwijndrecht, the Neth-

erlands) for 10 min. After fixation, the cells were washed three times with PBS and then incu-

bated with Prussian Blue solution for 30 min (aqueous solution of 10% hydrochloric acid

(Sigma-Aldrich) and 5% potassium ferrocyanide (Sigma-Aldrich)) to assess the SPIO-labeling

[52]. Next, the cells were washed three times with PBS and the nuclei were stained with 0.1%

nuclear fast red solution (Sigma-Aldrich). Thereafter the OptiCells were dried for 48 h and

microscopically examined using a microscope (Olympus, Zoeterwoude, the Netherlands)

equipped with 20× Plan (NA 0.4) objective (Olympus) and a color camera (Axiocam MRc,

Carl Zeiss, Germany). SPIO uptake was assessed by manually counting Prussian Blue positive

cells among ~500 cells (acquired in 5 fields of view) located within a circle of 6 mm diameter

around the center point of each insonified area. A cell was counted as SPIO positive when it

contained one or more Prussian Blue stained iron particles.

Cell viability assay

For each SPIO uptake measurement, cell viability was determined in triplicate by calcein-AM

and propidium iodide (PI) assays in parallel. Cells were treated with SPIO, tMB and ultra-

sound as described before (see also Fig 1). Within 3 to 4 min after the US treatment of all sub-

sections of the Opticells, HUVECs were incubated at 37 ˚C, 5% CO2. Thirty min before

assessing the cell viability, calcein-AM was added to the OptiCell chamber (C3100MP; Invitro-

gen; 0.25 μM final concentration from a 1 mM stock prepared in DMSO (Sigma-Aldrich)) and

incubated for 30 min under the same conditions. Thereafter PI (P4864, Sigma-Aldrich, 25 μg/

ml final concentration) and Hoechst 33342 (Invitrogen; 5 μg/ml final concentration) were

added to the Opticell chamber. Microscopic examination was performed directly after the PI

and Hoechst addition with a fluorescent microscope (Olympus) equipped with the same setup

as applied for SPIO labeling measurements, only that a 5× LMPlanFl (NA 0.13) objective

(Olympus) was used here. For each condition five different fields of view were acquired

(~2900 cells) within the 6 mm circle around the center of the insonified area. Different filter

sets (U-MWU2, 330–385/420 nm; U-MWIB2, 460–490/510 nm; U-MWG2, 510–550/570 nm,

Olympus) were applied for detecting all cells (stained with Hoechst), viable cells (stained with

calcein-AM), and dead cells (stained with PI) respectively. All images were automatically ana-

lyzed in ImageJ [53]. The Find Maxima function in ImageJ was used to define the exact num-

ber of cells. To find an appropriate tolerance for the Find Maxima function in every image, the

number of local maxima was defined for tolerance parameters of 0 to 200 in steps of two. We

analyzed the differences in number of maxima between the steps. When the difference became

smaller than 20, this point was considered as the correct tolerance and the corresponding

number of cells as correct number of cells. This approach was validated by selective manual

counting of number of cells (n = 10). The difference between manual and automatic counting

was 2.1±0.4%. As shown in S1 Fig, the % of viable cells determined from the calcein-AM

SPIO labeling of endothelial cells using ultrasound and targeted microbubbles at diagnostic pressures
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staining (live cells) was the same as the cell viability determined from the PI staining (dead

cells). The cell viability data was therefore presented as the % of viable cells determined from

the calcein-AM staining.

Results

Microbubble dynamics

During all studied ultrasound bursts, we observed displacement and disappearance of tMB.

This was most pronounced for the 30 s insonification period, as shown in Fig 2. During insoni-

fication, tMB also clustered (Fig 2B–2D). After the 30 s insonification period, no tMB were

observed in the field of view (Fig 2E), suggesting they had been destroyed.

Insonification duration

In the absence of ultrasound, less than 2% of cells intracellularly incorporated SPIO naturally

(Fig 3A). The efficacy of SPIO uptake by HUVECs and the corresponding cell viability as a

function of the acoustic PNP and the total insonification duration (1, 10, or 30 s) at low MI

(<0.16) are shown in Fig 3. The total ultrasound exposure time was a key factor for SPIO

uptake efficacy. This was demonstrated by the amount of SPIO positive cells not exceeding 4%

for 1 s and 6% for 10 s of insonification, but with 30 s of insonification the amount of SPIO

positive cells increased to more than 10%. Additionally, the PNP also influenced SPIO uptake

significantly. With 30 s of insonification, the proportion of SPIO positive cells significantly

increased with the PNP (i.e., from ~10% at 40 kPa to ~16% at 160 kPa). At the same time, cell

viability (Fig 3B) decreased with both the increasing acoustical pressure and the insonification

time. For example at 80 kPa PNP, the cell viability decreased from ~70% for 10 s of insonifica-

tion to ~60% for 30 s of insonification. For a treatment time of 30 s, the cell viability dropped

by nearly two-fold from 40 kPa to 160 kPa PNP. In general, the cell viability remained high for

up to 40 kPa PNP. Specifically, insonification for 30 s demonstrated the best SPIO uptake and

was selected for further experiments. We did not investigate a longer insonification time

because after 30 s all tMB were destroyed (see Fig 2E).

SPIO incubation time

The influence of the SPIO incubation time (5 min, 1 h or 3 h) after the treatment with ultra-

sound and tMB on SPIO uptake and cell viability is illustrated in Fig 4. In general, SPIO uptake

increased prominently with the incubation time, for example for 180 kPa PNP SPIO uptake

increased from below ~4% to ~22%. The largest ratio between control and treated uptake was

at 1 h of incubation for all PNPs. Cell viability (Fig 4B) remained high (>75%) at 40 kPa PNP

for all incubation times. It decreased with the pressure (80–160 kPa PNP) for both 1 h and 3 h

of incubation time. A longer incubation time did not lower cell viability, as cell viability was

slightly higher after 3 h of incubation than after 1 h of incubation. Based on the results from

this experiment, 1 h of incubation with SPIO was selected for further investigations.

SPIO addition time

In Fig 5 the percentage of SPIO positive cells and cell viability are plotted for four different

times between insonification and SPIO addition for different acoustic PNP. Similar to the pre-

vious observations, no ultrasound application resulted in less than 2% of SPIO positive cells. In

addition, ultrasound application without tMBs present showed no significant difference in

SPIO uptake in comparison to the control without ultrasound application for all studied PNP

when the SPIO were added 5 min prior to insonification. For both additions of SPIO at 5 min

SPIO labeling of endothelial cells using ultrasound and targeted microbubbles at diagnostic pressures
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prior (-5 min) and just before (0 min) the ultrasound application, we obtained a relatively

large percentage of SPIO positive cells (~>10%) for acoustic pressures above 20 kPa PNP.

Moreover, the percentage of SPIO positive cells increased up to ~12–15% with higher PNP for

SPIO addition before the insonification. In contrast, SPIO addition at 5 and 15 min after ultra-

sound application resulted in much lower SPIO uptake (<8%). Similarly, the cell viability

remained above 50% for all settings.

Fig 2. Optical recording of tMB on HUVECs during ultrasound treatment. (A) before treatment. (B-E) tMB displacement,

clustering, and destroyment during 30 s insonification (1MHz, 80 kPa PNP, 10,000 cycles, repetition rate of 20 Hz, 30 s

insonification treatment, SPIO added at -5 min with respect to the start of insonification).

https://doi.org/10.1371/journal.pone.0204354.g002

Fig 3. The influence of ultrasound insonification time on intracellular SPIO uptake efficiency. (A) SPIO positive cells. (B) Cell viability.

HUVECs were treated with tMB and no ultrasound (- US) or ultrasound at varying PNP (40, 80, or 160 kPa) for 1, 10, or 30 s; SPIO added 5 min

before insonification (-5 min); 1 h of incubation after SPIO addition.

https://doi.org/10.1371/journal.pone.0204354.g003
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SPIO cell labeling

In the absence of ultrasound, intracellularly incorporated SPIO were detected as small iron

particle aggregates distributed in the cytoplasm (Fig 6A and 6B). Ultrasound and tMB treated

cells demonstrated much higher SPIO uptake as shown in Fig 6C–6G. Iron particles were

detected as aggregates of different sizes in the cytoplasm (Fig 6C and 6D). Other typical indi-

vidual examples of intracellular SPIO distribution patterns after ultrasound and tMB treatment

are shown in Fig 6E and 6F. These staining patterns included distribution of aggregates vary-

ing in size and blue intensity throughout the cytoplasm (Fig 6E) and one large aggregate

mainly located near the nucleus (Fig 6F) having a higher blue intensity in comparison to the

aggregates in Fig 6E. The intensity differences of the blue stain suggest different concentrations

of SPIO particles.

Fig 4. The influence of SPIO incubation time on intracellular SPIO uptake efficiency. (A) SPIO positive cells. (B) Cell viability. HUVECs

were treated with tMB and no ultrasound (- US) or ultrasound at varying PNP (40, 80, or 160 kPa) for 30 s. SPIO were added 5 min before

insonification (-5 min). Incubation time after SPIO addition was varied from 5 min to 1 h and 3 h.

https://doi.org/10.1371/journal.pone.0204354.g004

Fig 5. The influence of SPIO addition time on intracellular SPIO uptake efficiency. (A) SPIO positive cells. (B) Cell viability. HUVECs were

treated with tMB and no ultrasound (- US) or ultrasound at varying PNP (10, 20, 40, 80, or 160 kPa) for 30 s; SPIO were added 5 min before

insonification (-5 min), just before insonification (0 min), 5 min after or 15 min after insonification; 1 h of incubation after SPIO addition.

https://doi.org/10.1371/journal.pone.0204354.g005
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Discussion

Tracking of endothelial cells is important for cancer and cardiovascular disease. There are sev-

eral ways of SPIO cell labeling in vitro [22, 54]. Most of these techniques require different

transfection agents, which cannot be used in vivo due to the associated high toxicity and sys-

temic effects. We therefore studied a technique, based on ultrasound-activated ultrasound con-

trast agents that will be compatible for in vivo use. The SPIO uptake was dependent on

multiple factors, including the ultrasound settings, the time of SPIO addition, and the incuba-

tion time of SPIO with cells after the ultrasound treatment. Optimal labeling at 1 MHz ultra-

sound frequency was observed when the ultrasound parameters were 40 kPa peak negative

pressure (MI 0.04), 10,000 cycles and repetition rate of 20 Hz, applied for 30 s when SPIO were

Fig 6. SPIO cell labeling. Prussian Blue staining of SPIO uptake in (A, B) the control (i.e. no ultrasound, 1 h after

incubation) and in (C—F) the ultrasound and tMB treated HUVECs at different treatment conditions. C,D,E: 80 kPa

PNP, SPIO added at -5 min, 30 s insonification, 1 h incubation after SPIO addition; F: 160 kPa PNP, SPIO added at 15

min, 30 s insonification, 1 h incubation after SPIO addition. B and D are zoomed in from A and C as illustrated by the

dashed rectangles. In B and D, one example of a SPIO aggregate is indicated by an arrow.

https://doi.org/10.1371/journal.pone.0204354.g006
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added at 0 min. Compared to the control, this resulted in an approximate 12 times increase of

SPIO uptake with 85% cell viability.

Microbubble dynamics

We found an increasing trend of both SPIO positive cells and cell death with the acoustic PNP

increase. Note that we studied acoustic pressures up to 160 kPa PNP, a regime in which the

amplitude of radial lipid-coated microbubble oscillations increases with pressure [55, 56]. A

previous study by Vos et al. [57] has reported that highly non-spherical microbubble vibrations

can be induced at pressures as low as 140 kPa PNP for lipid-coated microbubbles at resonance.

In this regime, the acoustic streaming generated by oscillating microbubbles and the produced

shear stresses [58–61] can be one of the mechanisms for enhanced permeability of the cell

membrane [26]. As was expected, the total duration of insonification also showed an effect on

the SPIO uptake (Fig 3A). It has been reported that at 1 MHz frequency at a low mechanical

index (MI < 0.1), a lipid-coated microbubble can repeatedly oscillate for thousands of cycles;

while at higher MI microbubbles are destroyed within about 100 μs (i.e. 100 cycles) irrespective

of pulse length [62]. We indeed observed microbubbles still present up to 30 s at 80 kPa PNP

(MI = 0.08) (Fig 2). The improved uptake with prolonged insonification may be related with

the persistent effect produced by microstreaming generated by microbubble vibrations as for-

mulated earlier. Moreover, we noticed displacement of tMB with subsequent microbubble

clustering and merging driven by secondary radiation force over the prolonged burst, as illus-

trated by Fig 2. These findings are in line with our previous study where tMB bound to endo-

thelial cells also displaced, clustered, and merged by insonification at 1 MHz, albeit for a single

burst of up to 50,000 cycles [63]. Detachment of bound lipid-coated tMB has been reported to

be due to the attractive secondary Bjerknes force between two tMB [64, 65]. Aggregation of

detached tMB forming bigger microbubble clusters may have influenced their oscillation

dynamics as larger microbubbles have a lower resonance frequency than individual small

microbubbles [66]. At a low driving frequency (for example 1 MHz as applied in this study),

microbubble clusters are expected to have a higher amplitude of oscillation as they will be

closer to resonance, which could have contributed to the enhanced SPIO uptake.

SPIO uptake

In our study, HUVECs showed ~1% natural uptake after 1 h of incubation, and this value

increased to ~5% after 3 h (Fig 4A). Although the natural uptake of SPIO by HUVECs was pre-

viously reported by van Tiel et al. [67], this percentage of labeled cells is not sufficient for cell

tracking. Treatment of HUVECs with ultrasound and tMB led to a dramatic increase of

~10-fold in SPIO uptake after 1 h incubation (Fig 4A). On the other hand, cell viability

decreased between 5 min and 1 h incubation time (Fig 4B), suggesting that instantaneous cell

death (i.e. irreversible sonoporation due to large pores) is less prominent than induced cell

death. Induced cell death could occur via the apoptotic pathway, a process that takes time [68,

69], that can be activated by ultrasound and microbubbles as previously reported by others

[70–72]. We also observed that the SPIO labeling efficiency was influenced by the SPIO addi-

tion time in respect to the time of treatment with tMB and ultrasound (Fig 5). We observed

the highest efficacy when SPIO were added with the tMB (0 min) for acoustic PNPs up to 80

kPa. When SPIO were added 5 or 15 min after treatment, SPIO uptake was lower, but still sig-

nificantly higher (more than fivefold at 5 min) than natural uptake. This may suggest stimu-

lated endocytosis as uptake mechanism rather than sonoporation, since resealing of pores

created by ultrasound activated microbubbles has been reported on a relatively short time

scale of up to a minute [28, 73]. On the other hand, our results may also suggest that both
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uptake by stimulated endocytosis and pore formation occurred when SPIO were added 5 min

before or just before (0 min) treatment (Fig 5A). This is supported by four earlier ultrasound

contrast agent studies [46, 47, 74, 75] as they reported uptake by both pore formation and

endocytosis using similar (1 MHz [46, 47, 74, 75]) and different (0.3 MHz [74]) acoustic set-

tings. Meijering et al. [46] and De Cock et al. [47] also addressed the influence of particle size

on the uptake route: for dextrans larger than ~17 nm in radius, the primary uptake route was

endocytosis instead of pore formation. On the other hand, pores of 1 nm in size [76]

to> 100 μm2 in area [28] have been observed. However, induced pores >100 μm2 do not tend

to reseal [28] which likely leads to cell death. This could explain why higher acoustic pressures

(i.e.,� 80 kPa) in our study corresponded to increased cell death. Pores < 100 μm2 can still

reseal, according to a recent study [28]. The SPIO colloid with low molecular weight dextran

coating in Endorem™, as used in our study, are 120–180 nm in size [77] so they could enter

cells via resealable pores. The reason why Meijering et al. [46] observed dextran particles larger

than ~17 nm mainly to be taken up by endocytosis, could be the different type of microbubble

used (SonoVue versus tMB in our study) and/or the type of cells studied (bovine aortic endo-

thelial cells versus HUVECs in our study).

The amount of SPIO positive cells was almost two times higher when SPIO were added 5

min instead of 15 min after insonification. This suggests a relatively short temporal window

when the therapeutic agent can be actively taken up after microbubble insonification, espe-

cially when compared to the study by Yudina et al. who reported a temporal window of 24 h

[78]. The difference could be due to the therapeutic compound (small 600 Da molecule Sytox

Green versus the 120–180 nm SPIO in our study), the type of microbubble (SonoVue versus

tMB in our study), the acoustic settings (ultrasound frequency of 1.5 MHz, 440 kPa PNP, 300

cycles at 1 kHz repetition rate for 30 s versus 1 MHz,�160 kPa PNP, 10,000 cycles at 20 Hz for

30 s in our study) and/or the type of cells studied (C6 rat glioma cells versus HUVECs in our

study). Recently, the temporal window was reported to be cell type-dependent by the same

group [79]. For HUVECs, the temporal was found to be 1 h for the small molecule SYTOX

green.

In our study, we defined a cell as SPIO positive when we detected one or more SPIO parti-

cles within the cell. It is unlikely that the SPIO particles we detected were extracellular because

the cells were washed three times. We observed different labeling patterns, namely differences

in the intensity and the intracellular distribution of the SPIO particles, although we did not

quantify this degree of uptake. Some cells took up small spots (submicron) of SPIO as dense

granules ~2 nm in diameter, while others had large SPIO aggregates in the cytoplasm. This

variation in uptake patterns may also suggest uptake by pore formation and endocytosis as

SPIO homogeneously distributed in the cytoplasm may suggest pore formation while small

aggregates may indicate endocytic uptake. This is supported by different uptake patterns previ-

ously reported for dextrans with aggregates verified to be co-localized with endocytic vesicles

[46, 47].

As ultrasound contrast agent-mediated SPIO-labeling of endothelial cells is likely faster

clinically approved for labeling tumor vasculature, we decided to mimic the tumor vascula-

ture’s compromised endothelial monolayer with poorly connected and sprouting endothelial

cells [80] by culturing the HUVECs till 70% confluence. Our findings of effective tMB-medi-

ated SPIO-labeling may therefore not be applicable to a monolayer of HUVECs, i.e. 100% con-

fluence, applicable to vascular grafts. Different ultrasound pressures may be needed for

effective tMB-mediated SPIO-labeling HUVECs in a monolayer as cells in a monolayer are

more likely in the senescent cell cycle phase (G0) and have a more organized cytoskeleton.

With respect to sensitivity to ultrasound treatment, cells in the mitotis(M)-phase [81, 82] and

synthesis(S)-phase [82] have been reported most sensitive whereas cells in the senescent cell
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cycle phase were least sensitive. By contrast, another study showed the opposite: cells in the M

and S-phases were more resistant to ultrasound treatment [83]. However, these ultrasound

sensitivity studies were performed without the presence of MB and on cancer/epithelial cells.

These studies may therefore not translate to our study and it needs further investigation

whether the amount of cell confluence influences the response to tMB-treatment.

It was previously shown [38] that microbubbles with SPIO incorporated in their coating in

combination with ultrasound could lead to an about three fold increase of SPIO labeling of

tumor cells in vitro, without compromising cell viability. A polymer coated microbubble was

used, which has been shown to behave differently than a lipid coated microbubble when

exposed to ultrasound. Polymer microbubbles have a stiff coating, which can respond to ultra-

sound exposure under a high MI (>1) by cracking and releasing the encapsulated gas. On the

contrary, lipid coated microbubbles will oscillate at low MI and can also fuse [26]. They can

therefore have a more prolonged interaction with cells than polymer microbubbles. This could

explain why we found a ~12 fold increase in SPIO labeling compared to the control treatment.

Clinical implications

From the in vivo perspective, using tMB instead of non-tMB is preferable for endothelial cell

labeling and drug delivery since tMB can be specifically targeted to diseased endothelial cells

[84]. In addition, when ultrasound is applied to bound tMB, the vibrations of the ultrasound-

activated tMB will have a direct effect on the cell membrane. This may be the reason why tMB

have been shown to be up to ~5 times more effective in stimulating cellular uptake of therapeu-

tics in vivo [30]. CD31 used as target in this proof of concept study was chosen as model ligand

because it is constitutively expressed on endothelial cell membranes. It can therefore be used

to label endothelial cells with SPIO in tissue-engineered valves or vascular grafts in vitro. How-

ever, CD31 cannot be used in vivo as it is expressed throughout the entire vasculature tree [85].

For targeting tMB to tumor vasculature, αvβ3 or vascular endothelial growth factor receptor 2

(VEGFR2) can be used [84]. SPIO uptake by ultrasound-activated tMB in vivo is expected as

we recently reported that tMB bound to αvβ3 can stimulate endothelial cell drug uptake in vivo
[50]. VEGFR2 is another biomarker of interest for tMB. BR55, a tMB against VEGFR2, has

recently successfully been used in clinical trials for prostate, breast, and ovarian cancer [86,

87]. Our future studies will focus on in vivo SPIO labeling as well as in vivo MRI tracking of the

labeled endothelial cells. For the in vivo studies, our in vitro acoustic settings will need to be

extrapolated taking into account that ultrasound is attenuated by tissue (0.5 dB/cm/MHz [88])

and the microbubble vibration is damped in blood [89]. In our in vitro study we incubated the

HUVECs for 1 h with the SPIO. As the elimination half-life of Endorem™ (Feridex1 in the

USA) is 2.4 ± 0.2 h in humans and the SPIO are administered as a drip infusion over ~30 min

[77, 90], it may be expected that the SPIO will circulate long enough in vivo to also achieve the

1 h incubation period. It was shown before that single cell tracking is possible by MRI using

iron oxide as the label [13, 14, 16]. The micron-sized paramagnetic iron oxide (MPIO) parti-

cles used in one of these studies [13] are ten times bigger (1.6 μm) than SPIO. As it was

revealed before [67] that the iron content of cells labeled with SPIO is less (~10 folds) than

with MPIO, more cells may have to be labeled by SPIO to be detectable by MRI in vivo.

Conclusion

Our study shows that ultrasound-activated tMB are a promising technique to non-invasively

enhance SPIO uptake by endothelial cells. From the current in vitro study, we derived optimal

ultrasound parameters for SPIO delivery to HUVECs, that is, 40 kPa at 1 MHz (MI 0.04),

10,000 cycles and repetition rate of 20 Hz, applied for 30 s when SPIO were added at 0 min.
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This setting increased SPIO uptake up to 12 times compared to the control with 85% cell

viability.

Supporting information

S1 Fig. Cell viability determined from calcein-AM versus PI staining. Insonification for 30 s

for SPIO added at -5, 0, 5, or 15 min in respect to the start of insonification and incubated for

1 h. The acoustic PNP in (A) was 10 kPa, while this was 20 kPa in (B), 40 kPa in (C), 80 kPa in

(D), and 160 kPa in (E).

(TIF)
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