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Abstract—Edge-cloud jobs are rapidly prevailing in many
application domains, posing the challenge of using both resource-
strenuous edge devices and elastic cloud resources. Efficient
resource allocation on such jobs via scheduling algorithms is
essential to guarantee their performance, e.g. latency. Deep
reinforcement learning (DRL) is increasingly adopted to make
scheduling decisions but faces the conundrum of achieving high
rewards at a low training overhead. It is unknown if such a DRL
can be applied to timely tune the scheduling algorithms that are
adopted in response to fast changing workloads and resources.
In this paper, we propose EdgeTuner to effectively leverage DRL
to select scheduling algorithms online for edge-cloud jobs. The
enabling features of EdgeTuner are sophisticated DRL model
that captures complex dynamics of Edge-Cloud jobs/tasks and
an effective simulator to emulate the response times of short-
running jobs in accordance to dynamically changing scheduling
algorithms. EdgeTuner trains DRL agents offline by directly
interacting with the simulator. We implement EdgeTuner on
Kubernetes scheduler and extensively evaluate it on Kubernetes
cluster testbed driven by the production traces. Our results show
that EdgeTuner outperforms prevailing scheduling algorithms by
achieving significant lower job response time while accelerating
DRL training speed by more than 180x.

Index Terms—Edge-cloud workloads; scheduling algorithm;
DRL; run-time tuning; Kubernetes

I. INTRODUCTION

Due to recent development of Internet of Things (IoT) and
edge computing technology, traditional cloud-based approach-
es face performance issues due to their high transmission
latency and expensive bandwidth cost. At the same time, edge
devices have limited or even insufficient resources to execute
expensive vision and machine learning tasks [9], [11], [19],
[25]. The jobs that process some tasks on both cloud and some
on edge devices thus fast increase and edge-cloud workloads
becomes very critical for various applications. Representative
workloads include cloud-edge workloads (e.g. smart home
applications [18], [39]), edge-cloud workloads (e.g. smart
healthcare [22], anomaly detection [38], and object recogni-
tion [16]), and edge-cloud-edge workloads (e.g. autonomous
driving services [5] and intelligent photo management [32]).
To process jobs in such workloads, an edge device collaborates
with cloud nodes [12], [33], [37] and thus the jobs’ perfor-
mances are considerably affected by the resource allocation
among them.

Example. Figure 1 illustrates an example of allocating three
tasks (from two jobs) to two cloud nodes using a Kubernetes

scheduler. The job performance is influenced by three factors:
(1) Workload dynamicity. Jobs arrive continuously and their
tasks demand different amounts of resources (Figure 1(a));
(2) Resource dynamicity. The cloud resource available to
an edge device dynamically changes (Figure 1(b)); and (3)
scheduling algorithm. When applying different scheduling
algorithms, e.g. Balanced Resource Allocation (BRA), Most
Requested Priority (MRP), and Least Requested Priority (LRP)
[4] in Kubernetes, jobs have considerably different latencies.
In Figure 1(c)’s example, BRA achieves the lowest latency
because its scheduling mechanism uses the resources most
efficiently for this specific scenario.

Hence, the cluster’s performance largely depends on the
configurations of scheduling algorithms that respond to work-
load and resource dynamicity. Deep reinforcement learning
(DRL) is a widely used technique that learns optimal resource
allocation online as the system runs [17], [20], [28]. However,
applying this technique to tune scheduling algorithms requires
a dauntingly large number of data samples for training DRL
agents. Moreover, cloud-edge jobs tend to be short running
(over 90% of job durations range from dozens of seconds to a
few minutes). When constructing time-variant states (randomly
arrival jobs, various resource demands of tasks, and elastic
node resources) in a DRL environment, a training sample
needs rather long time (e.g. 10 seconds) to generate. This is
because it needs to differentiate the states of two consecutive
time-steps and at least a few seconds are needed before some
workload or resource changes happen. A DRL training may
need millions of samples to converge and hence the training
process is bottlenecked by the time-consuming sampling
phase (may take dozens of hours). At run-time, an outdated
DRL agent may lead to significant deviations from the optimal
scheduling policy and incur job performance degradation.
Some recent techniques develop simulation platforms to sup-
port the DRL training in an offline fashion [24], [35], [36].
Most of them share the limitation that their designs target
for long-running jobs in performance computing (HPC) data
centers, and implicitly assume a fixed scheduling algorithm
and pre-defined available resources.

In this paper, we propose EdgeTuner, an online approach
that effectively uses DRL agents to select scheduling algo-
rithms for edge-cloud jobs. To overcome the daunting training
overhead, we develop a cluster simulator that emulates the
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Fig. 1. An example of job scheduling using three Kubernetes scheduling algorithms

volatile and complex state space of edge-cloud jobs, their
resource demands, and cluster resource utilization. The simu-
lator effectively captures the on-line adaption across different
scheduling algorithms as well as the dynamicity of short-
running jobs. As such, the training of DRL agent can be
effectively and quickly converged via this offline simulation
phase. Note that EdgeTuner differs from traditional hyper-
heuristic approaches that find an optimal scheduling algorithm
for pre-specified cloud workflow [34] or batch jobs [27], [29].
In contrast, EdgeTuner needs no prior knowledge about the
jobs to be scheduled and provides fast scheduling algorithm
tuning for continuously arrival jobs in the cluster.

In particular, the contributions of this paper are as follows:

. Complex Edge-Cloud job scheduling modelling. We
formulate the tuning of scheduling algorithms for edge-cloud
jobs as a sequential decision making process (MDP) to lever-
age the DRL technique. To incorporate various scheduling
scenarios, we define general state representation of complex
nodes and workloads, use action to reflect optional scheduling
algorithms, and define reward function to estimate job perfor-
mance.

. DRL training acceleration. We develop a cluster simula-
tor that emulates a scheduling algorithm’s resource allocation
mechanism and its influence factors (available resources, and
waiting and running tasks). At each scheduling interval, the
simulator takes the agent’s state and action as inputs and
outputs the reward instantly (this process takes at least a
few seconds in real clusters). The training can be performed
offline by directly interacting with the simulator in the usually
adopted online learning scheme.

. Implementation and evaluation. We incorporate our
controller on the popular Kubernetes scheduler and evaluate
it using workloads driven from the Alibaba cluster trace [2].
We evaluate our approach in real clusters and the exten-
sive evaluations against 11 Kubernetes scheduling algorithms
show: (i) by applying DRL agents on edge devices, our
approach outperforms representative scheduling algorithms by
achieving 15.78% reductions in job latencies; (ii) our approach
accelerates the DRL training speeds by more than 180x.

The remainder of this paper is organized as follows: Section
II formulates the problem, Section III explains our approach.
and Section IV evaluates it. Section V introduces the related
work, and finally, Sections VI summarizes the work.

II. PROBLEM FORMULATION

We now formalize the tuning for scheduling algorithms
of edge-cloud workloads as a RL problem. An edge-cloud
job consists of multiple tasks, some of which are executed
on edge devices and the rest of tasks are co-executed on
cloud nodes with other jobs. For the resource demands, we
consider CPU and memory. A scheduling algorithm decides
how to best co-locate the execution of tasks in the cloud in
accordance to their CPU and memory resources such that the
response times of jobs are minimized. Here, we specifically
consider scenarios that scheduling algorithms can be dynami-
cally chosen during the system runtime. We model the tuning
of scheduling algorithm as RL problem. in which an agent
(tuner) learns to act (selecting a scheduling algorithm) in an
environment (cluster) in order to maximize a scalar reward
signal [26]. At each discrete time-step (episode) t = 0, 1,
2. . ., the cluster provides the tuner with an observation st,
the tuner responds by selecting a scheduling algorithm at and
obtains the feedback of reward R(st, at) and next state st+1

from the environment. This interaction is formalized within
the framework of markov decision process (MDP), which is
a controlled stochastic process defined by the state space S,
action space A, transition dynamics 0 ≤ P (st+1|st, at) ≤ 1,
and reward function R(s, a).

State. The modeling of state considers two factors that de-
termine jobs’ running performances: the resource utilizations
in nodes and the waiting and running tasks in the cluster.
Similar to previous cluster scheduling, a job corresponds to a
directed acyclic graph (DAG) of tasks. In scheduling, waiting
tasks are the targets that a scheduling algorithm needs to
manage; running tasks occupy resources and then release them
after completion. Formally, st=(N,V w, V r) denotes the node
and task information during a scheduling interval.
• A node n ∈ N is denoted as a 6-tuple

(cpuu, cpur, cpuc,memu,memr,memc): (1) cpuu

represents the actual usage of CPU cores; (2) cpur

represents the requested (reserved by tasks) CPU cores;
(3) cpuc represents the capacity of CPU cores in the
node; (4) memu represents the actual memory usage;
(5) memr represents the requested memory by tasks;
and (6) memc represents the node’s memory capacity.

• A waiting task vw ∈ V w, it is denoted as a 7-tuple
(cpur, cpul,memr,meml, work, p, jid): (1) cpur repre-
sents the requested CPU by the task; (2) cpul represents
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the CPU limit of the task; (3) memr represents the
requested memory by the task; (4)meml represents the
task’s memory limit; (5) work represents the workload
of task, e.g. workload 200 means the task needs 100
seconds to complete when running in 2 CPU cores; (6) p
represents the task’s platform type (cloud or edge); and
(7) jid is the job ID the task belongs to.

• A running task vr ∈ V r is denoted as a 5-tuple
(work, node, cpul, et, jid): (1) work represents the task’s
workload (that is, number of CPU cores multiplied by
execution time); (2) node represents the node the task is
allocated; (3)cpul represents the task’s CPU limit; (4) et
represents the elapsed time when the task starts running;
and (5) jid is its job ID.

Dimensionality of state st. We note that in practical job
scheduling, |N | is the number of nodes in the edge-cloud clus-
ter, but the numbers of waiting and running tasks continuously
change at different time steps. We hence set these numbers as
sufficiently large values (e.g. 6 or 10 that is larger than the
total number of tasks). Given that the scheduling interval is
short (e.g. 10 seconds), such values do not increase the training
complexity. We note that the state space grows significantly
with the number of job/task arrivals and the size of cluster.

Action. Given a scheduler, action at represents one possible
scheduling algorithm an agent can select. For example, when
implementing DRL in Kubernetes, three typical scheduling
algorithms are: (1) BRA: this algorithm balances the utilization
of CPU and memory resources in different nodes. (2) LRP: this
algorithm calculates the amount of resources and the number
of tasks allocated to different nodes, and prefers to allocate
tasks to nodes with more available resources. (3) MRP: this
algorithm prefers to allocate tasks to nodes with less available
resources, thus running the same tasks with the least number
of nodes.

Transition dynamics. In a MDP, transition dynamics
P (st+1|st, at) reflects the time-variant dynamics of cluster.
Such dynamics are determined by three factors: the tasks
V allocatet that obtain resource allocations; the completed tasks
V completet at time-step t; and the newly arrival jobs/tasks
V arrivet+1 at time-step t+1. We note that both V allocatet and
V completet are influenced by the scheduler algorithm set by
action at, and they determine the three elements in state st+1

at time step t+1:

V wt+1 = V wt \V allocatet ∪ V arrivet+1 (1)

V rt+1 = V rt ∪ V allocatet \V completet (2)

Reward function. At a time-step t, a reward rt denotes
the job latency (or job completion time (JCT) [8]) when using
scheduling algorithm at. Given that there are only a small
number of jobs during a scheduling interval, we consider
completion times of both jobs and their tasks to accelerate
the convergency of RL training. Specifically, let J be the set

of jobs completed within period (t − 1, t] and JCTi be the
completion time of a job ji ∈ J . The reward of job ji is

rjobi = α1 ∗ JCTi + β1 (3)

Similarly, let V c be the set of tasks completed within period
(t−1, t] and TCTi be the completion time of a task vci ∈ V c.
The reward of task vci is

rtaski = α2 ∗ TCTi + β2 (4)

The reward rt of time-step t is the summation of jobs and
tasks’ rewards.

rt =

|J|∑
i=1

rjobi +

|V c|∑
i=1

rtaski (5)

In RL training, we set negative values of α1 and α2, and
positive values of β1 and β2 in Equations 3 and 4. These
settings ensure the reward is inversely proportional to the
completion times of jobs and tasks.

III. EDGETUNER

A. Overview

EdgeTuner is designed with two objectives.
1) Hot swapping scheduling algorithms for dynamic work-

loads and resources. The core component of EdgeTuner,
the DRL-based agent, is external to the cluster scheduler
and just operates on its scheduling algorithms. This design
ensures minimum modifications to the scheduler, and more
importantly, making it possible to replace any of them at
runtime without shutting down the system. Specifically, the
agent observes the state (cluster status) periodically (e.g. 10
seconds) and selects a scheduling algorithm for the cluster
scheduler.

2) Simulator-based DRL training acceleration. We note that
under diverse workloads, the whole training process needs a
lot of experience (e.g. several million samples) to converge.
However, in real job scheduling scenarios, the actor takes at
least a few seconds to evaluate the effectiveness of an action
(that is, the selection of a scheduling algorithm) and obtains
a sample from the environment (the cluster). Even using the
latest DRL training techniques (e.g. IQN+Ape-X [28]), the
training may take dozens of hours to complete due to the
long sampling phase. Moreover, when the cluster resource
changes, the training process needs to be re-executed and
the long training time makes the DRL agent infeasible for
online scheduling algorithm tuning. Given this motivation, we
develop a cluster simulator and use it as the environment for
the actor. We explain how to train DRL agent under dynamic
workloads and resources in Section III-B.

We incorporated the proposed approach with the Kubernetes
schedulers [4] (Section III-C). Similar to other mainstream
resource negotiation systems, such as Borg [31], Kubernetes
provides access to various information regarding to resources,
jobs, and scheduling constraints. When a job is submitted,
Kubernetes also provides interfaces to obtain its submission
time, resource demand, and task information. When an agent
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generates an action according to the above state information,
it is pushed to the Kubernetes scheduler that supports run-time
adjustment of its scheduling algorithms.

B. Simulator-based Training of DRL Agent

The training of a DRL agent has two phases: in the
sampling phase, the actor collects experience training samples
by interacting with the simulator. The learning phase starts
when a pre-specified number of samples is collected. Similar
to other simulation platforms [35], [36], our simulator is
driven by workload traces and it can generate an experience
sample instantly, thus considerably accelerating the sampling
and training process.

Algorithm 1 details the steps of the actor. It first initializes
the environment by obtaining the latest network parameters
(line 1) and getting initial state from environment (line 2).
Subsequently, it iteratively obtains samples and adds them
to the replay memory (lines 3 to 14). At each iteration,
the actor first selects an action (a scheduling algorithm)
and applies it to the environment (line 4). It then triggers
environment.SimulateOneStep(st−1,at−1) to obtain state st
and reword rt constructed using information of nodes, jobs,
and tasks in the environment (line 5). Finally, it gets episode
termination signal (line 6) and adds the sample data to the
local buffer (line 7). When the buffer size is larger than the
maximal size B, the actor calculates priorities for the current
experience and triggers the remote call to add experience to
the replay memory (lines 8 to 12). The actor also periodically
obtains the latest network parameters (line 13).

Algorithm 1 Actor
Require: B: the maximal size of local buffer;

Ts: the number of sampling steps.
1. θ0 ← learner.Parameters();
2. s0 ← environment.InitialState();
3. for t = 1 to Ts do
4. at−1 ← πθt−1(st−1);
5. st, rt ← environment.SimulateOneStep(st−1, at−1);
6. γt ← environment.HasDone();
7. localBuffer.Add((st−1, at−1, rt, γt));
8. if localBuffer.Size() > B then
9. τ ← localBuffer.Get(B);

10. p ← ComputePriorities(τ );
11. replay.Add(τ, p);
12. end if
13. Periodically(θt ← learner.Parameters()).
14. end for

The steps of function environment.SimulateOneStep(at−1)
are explained in Algorithm 2. This function first gets the set
N of nodes, and the waiting tasks V w and running tasks V r

from state st−1 (line 1). It then simulates resource allocations
using a list of iterations (lines 3 to 7). At each iteration, the
function sequentially allocates resources to waiting tasks using
scheduling algorithm at−1 (line 4) and checks the completion
of running tasks at the current simulation time ts (line 5). The

Fig. 2. Example of one time-step in the simulator

status of nodes, and waiting, running and completed tasks are
updated before moving to the next iteration. The iterations
end when the simulation time exceeds the scheduling interval.
Finally, the function converts the information of nodes and
tasks into state st and reward rt of time-step t, and returns
them (lines 8 to 11).

Algorithm 2 environment.SimulateOneStep(st−1, at−1)
Require: ts: the simulation time;

∆t: the duration of one iteration in simulation;
Tw,V r,V c: the sets of waiting, running, and completed
tasks;
N : the set of nodes.

1. Obtain N,V w, V r from state st−1;
2. ts=0;
3. while ts is smaller than the scheduling interval do
4. N,V w, V r ← environment.AllocateResource

(N,Taskw, at−1);
5. N,V r, V c ← environment.CheckCompletion

(N,Taskr);
6. ts=ts + ∆t;
7. end while
8. st ← stateBuilder.Build(N,V w, V r);
9. Jc ← GetCompletedJobs(V c);

10. rt ← rewardBuilder.Build(Jc, V c);
11. return st, rt.
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Example. Figure 2 displays an example of simulating
resource allocations in a Kubernetes cluster at time-step t.
In state st−1, there exist three nodes of different resource
capacities, three waiting tasks v1 to v3, and no running task.
The MRP algorithm is applied to allocate resources with two
iteration. At iteration 1, it allocates node n1’s resources to
task v1 and node n3’s resources to task v2 according to these
tasks’ resource limits. At iteration 2, it assigns task v3 to the
node n1 with the least available resources. Given that there
are insufficient resources to meet the resource limits of both
tasks, the amounts of resources allocated to v1 and v3 are in
proportion to their resource requests.

In the learning phase, the learner starts when the replay
memory has L samples and trains the model using T t itera-
tions. At each iteration, the learner first samples a prioritized
batch of experience (training samples), applies the learning
rule, and updates the model parameters. Subsequently, it cal-
culates and updates the priorities for experience and removes
old experience from replay memory.

C. Implementation of Cluster Simulator

Our cluster simulator is implemented using Golang and it
can support different operating systems such as Linux and
Max-Os. Figure 3 illustrates the implementation of simulator-
based DRL training and it consists of three major parts.
• Simulator-based training environment. At each sam-

pling or training time-step t, the ”Action executor” mod-
ule is responsible for accepting an action from the agent,
converting it into the corresponding scheduling algorithm,
and forwarding it to the simulator. Subsequently, the
”State builder” and ”Reward builder” modules receive job
and node information from the simulator and construct
state st and reward rt in the experience.

• Http server. The ”Initial state” module is used to ini-
tialize the simulation environment, including initial node
information, tasks waiting to be scheduled, and tasks
that have been executed. Similarly, the ”Interactive state”
module stores the state information during the training
process. The ”Action” module provides scheduling algo-
rithms such as LRP, MRP, BRA in the simulator.

• Cluster simulator. Each sampling/training time-step t
(e.g. an episode) corresponds to multiple iterations in
the simulator. At each iteration, the simulator first judges
if there exists tasks/jobs to be scheduled in the waiting
queue and if there are sufficient resources. If the available
resources exceed the requested resources by the waiting
tasks, the simulator applies a scheduling algorithm to
assign the tasks to edge and cloud, and updates the node
and task statuses; otherwise it updates the simulation time
ts. The simulation completes if ts is longer than the
scheduling interval; otherwise it continues scheduling the
remaining tasks at the next iteration.

Applicability to other job scheduling scenarios. Our
simulator implements the Kubernetes scheduler and its 10
scheduling algorithms at present. Within the context of DRL
training, its simulation mechanism can be applied to other job

scheduling scenarios: (1) state. The simulator generates state
information by taking real cluster traces (e.g. Google traces [3]
or Alibaba traces [1]) as input. Specifically, it first derives
information of nodes and tasks, and adds tasks to priority
queues. Subsequently, it emulates the process of resource
allocation and task execution, during which the resource gran-
ularity can be containers or CPU/memories. After each time-
step, it transforms the information of nodes and tasks into the
state information that the DRL agent can understand. We note
that the above generation process naturally applies to a wide
range of job scheduling scenarios. (2) Action. The simulator
includes a general scheduler that provides the interfaces of
predicate and priority. It is convenient to implement a new job
scheduling algorithm by extending the general scheduler with
new predicates and priorities. (3) Reward. The current reward
function (Equation 5) considers job and task latencies. It can
be extended to incorporate other metrics in job scheduling,
such as resource utilization or energy consumption.

Applicability to scheduling algorithms. Our simulator can
replay the behaviours of resource allocation and task execution
for most of the Kubernetes scheduling algorithms. The only
exception is Equal Priority (EP), which randomly allocates
resources to tasks. Our simulator cannot replay the behaviour
of this algorithm because it may have two different resource
allocations even when handling the same workload. We note
that a DRL agent also cannot take such algorithms as actions,
because they result in different rewards under the same state
and thus disturb the optimization process in DRL training.

Discussion of system uncertainties. We note that in real
clusters, a job’s performance is also influenced by random
background activities such as system maintenance or garbage
collection of operating systems. These activities are not incor-
porated in our simulator for two reasons. First, although back-
ground activities can create considerable CPU or network load
(in particular when resource are saturated), this work focuses
on comparing job performances across different scheduling
algorithms and implicitly assumes that the performances are
estimated under the same factors (that is, different algorithms
suffer from the same performance interferences). Second, in
many practical scenarios (when systems have available re-
sources for allocation), the performance impact of background
activities is much smaller (e.g. 100 times smaller) than that
caused by applying different scheduling algorithms.

IV. EVALUATION

In this section, we evaluate the proposed approach with
two major criteria: (1) its robust performance under diverse
scheduling scenarios of different workloads and available
resources (Section IV-B); and (2) its effectiveness in signif-
icantly accelerate DRL training (Section IV-C) and how it is
influenced by DRL training settings (Section IV-D)

A. Evaluation settings

Evaluation platform. The experiments of job scheduling
were performance in a Kubernetes cluster of 2 edge devices
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Fig. 3. Implementation of Cluster Simulator for DRL training

and 4 cloud nodes. Each edge device is Raspberry Pi 4B of 4-
core 1.5GHz Cortex-A72 (ARM v8) and 4 GB memory. Each
cloud node is equipped with 8 Intel E5-2660 v4 processor
cores, and 8 GB of DRAM. The training of DRL agents was
conducted in a GPU node of two Intel(R) Xeon(R) Silver 4216
processors, 48-GB Quadro RTX 8000 Graphics Card, and 256
GB memory. All nodes run Linux Ubuntu 18.04 LTS. In the
Kubernetes cluster, the Python, Go, Docker, and Kubernetes
versions are 3.8.5, 1.14.12, 19.03.8, and v1.19.3 respectively.

Real-trace driven scheduling scenarios. In evaluation, we
generate three workload patterns of edge-cloud application-
s (edge-cloud, cloud-edge, and edge-cloud-edge workloads)
following the 4034-node and 8-day Alibaba cluster trace
2018 [2]. Specifically, we derive the information of job arrival
pattern, the number of tasks in a job, the resource (CPU
and memory) request and resource limit of each task, and
the workload (CPU core×seconds) from the trace. In job
scheduling, we also consider two typical scenarios of daytime
(6:00 to 24:00) and night (0:00 to 6:00). In the trace, 19,508
and 28,290 jobs, 6.92 and 7 million tasks are submitted in the
daytime and at night, respectively.

DRL training setting. We implemented the proposed ap-
proach based on Google DeepMind’s RainBow tool [13]. In
DQN training, we use the latest technique [28] that combines
Implicit Quantile Networks (IQN) [6] and Ape-X [15]. The
training settings of three DRL elements are as follows:
• State. The interval between two time-steps is 10 seconds,

hence the number of waiting and running tasks in a state
is set to 10. In Equations 3 and 4, the values of α1, β1,
α2, and β2 are set to -0.04, 10, -0.004, 1, respectively.

• Actor. The maximal number of time-steps is 50 millions
and the experience replay memory capacity is set to 10
million. In sampling, the number of actors is 8, the history
length (the number of consecutive states processed) is set
to 4, and the frequency of sampling from memory is 4.

• Learner. The training phase starts after 10K time-steps
of the sampling phase. In training, the network hidden

node size is set to 64, the batch size is 32, the network is
updated every 1000 steps, and the importance sampling
weight in prioritised experience replay is 0.4.

Evaluation metrics. Our evaluation considers both job per-
formance and training efficiency under dynamic workloads and
resources. The job performance is measured by the average job
latency and the training efficiency is measured by the sampling
time and the training time in DRL training.

B. Improvement of Job Performance Under Dynamic Work-
loads and Resources

In this section, we evaluate the effectiveness of EdgeTuner
in reducing job latencies by adaptively selecting its scheduling
algorithms under dynamic workloads and resources. Here we
compare against baselines with 11 representative algorithms
in the Kubernetes cluster scheduler [4]: LRP, MRP, BRA,
EP, Resource Limits Priority (RLP), Taint Toleration Priority
(TTP), ode Affinity Priority (NAP), Image Locality Priority
(ILP), Node Prefer Avoid Pods Priority (NPAPP), Node Label
Priority (NLP), and Inter Pod Affinity Priority (IPAP). For
the same set of jobs (tasks), these algorithms lead to different
resource allocations and thus result in different job perfor-
mances.

Dynamic workloads. This evaluation tests 6 workload-
s, covering 3 edge-cloud workload patters and 2 periods
(daytime and night). Figure 4 uses box plots to illustrate
each workload’s distribution of job latencies, including their
minimum and maximum values, the first quartile, median,
and third quartile. We can observe that in most of the cases,
our approach achieves lower latencies than other approaches,
indicating the DRL agent selects proper scheduling algorithms
for different workloads in the system. Specifically, most of
jobs complete within a few seconds to dozens of minutes.
This means the waiting and running tasks continuously change
at different scheduling time-steps and the agent selects the
algorithm that brings the largest reward (namely the shortest
completion times of jobs and tasks).
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Fig. 4. Comparison of job latencies under dynamic workloads

Dynamic resources. We take the two cloud-edge workloads
as example and further test dynamic resource changes. In four
evaluations of either workload (daytime or night), there are
50% decrease, 25% decrease, 25% increase, and 50% increase
in its cloud resources, respectively. Figure 5 displays the
comparison results. The results show for the same workload
(Figures 5(a) to (d) or Figures 5(e) to (h)), less available
resources result in higher job latencies and larger discrep-
ancies in job latencies. In different scenarios, our approach
consistently brings the lowest job latencies because of its
dynamic scheduling algorithm tuning mechanism. Note that
when the cluster resource changes, the DRL agent needs to be
re-trained because the node information changes in its state.
In EdgeTuner, this training can be performed offline by setting
different resources in its simulator for the same workload, thus
avoiding the time-consuming online learning process.

Table I summarizes the percentages of reduced job latency,
when comparing EdgeTuner against the baseline scheduling
algorithms. We can see that these reductions vary across dif-
ferent workloads and different available resources depending
on a variety of factors such as types of workloads, amounts
of resources and scheduling algorithms. When considering all
evaluation cases, our approach achieves an average of 15.78%
reductions in job latencies.

C. Acceleration of DRL training

The effectiveness of tuning scheduling algorithms relies
on efficiently training DRL agents. This sections evaluation
tests an agent’s training time consisting of two parts: (1) the
major training time comes from collecting samples in the actor
(Algorithm 1). Each training needs several million samples to
converge and each sample needs at least a few seconds to
obtain in real clusters; (2) using the collected samples in the
replay memory, the learner trains the DQN model. We compare
EdgeTuner (collecting samples with the Kubernetes simulator
in Algorithm 2) and the real Kubernetes cluster following the
experiment settings of the previous section. After convergency,
EdgeTuner and the real cluster have negligible differences in
their rewards.

Table II lists the sampling times and training times under
different workloads and resources (the same 14 scenarios as
Table I). We can see that in all cases, the sampling phase takes
a long time (more than 90 hours) in the real Kubernetes cluster
and EdgeTuner considerably reduce this time to a few seconds
(acceleration by up to 35630.04x). Similarly, in Kubernetes,
the training phase also completes in dozens of hours to several
hundreds hours due to the time-consuming sampling process.
In contrast, EdgeTuner completes the training phase within a
few hours. We can also observe that the training time also
varies across different states (i.e. different jobs, tasks, and
nodes) and our approach consistently reduces training time
by 122.57x. When considering both sampling and training
phases, our approach accelerates DRL training by more than
180x and more importantly, because it enables the training to
be performed offline and can provide the adapted DRL agent
timely.

D. Discussion of DRL Training Settings

We now take the cloud-edge workload as an example and
design experiments to discuss the three major factors that
influence DRL training efficiency. Five metrics are used in
evaluation: sampling time, training time, the total number of
samples, the total number of sampling and training iterations,
and the total time of sampling and training phases.

DRL training techniques. In DRL training, this work
employs the latest Rainbow tool [14] combined with two
model training techniques: IQN for distributional reinforce-
ment learning [6], and Ape-X for distributed sampling and
prioritized experience replay [15]. Figure 6(a) shows that IQN
incurs the longest sampling time because it only uses one actor.
In contrast, Ape-X supports multiple actors and considerably
reduces the sampling time when collecting the same number
of samples. In addition, Figure 6(b) shows that Ape-X has the
longest training time because the IQN technique accelerates
the convergence speed. To verify this claim, Figures 6(c) and
(d) show that Ape-X needs the largest samples and training
iterations, and thus takes the longest time to complete the
training process (Figure 6(e)).

Different numbers of actors. This evaluation considers
three different numbers of actors: 8 (used in EdgeTuner in
previous evaluations), 4, and 16. Figure 7(a) shows that more
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Fig. 5. Comparison of job latencies under dynamic available resources

TABLE I
PERCENTAGES OF REDUCED JOB LATENCIES UNDER DYNAMIC WORKLOADS AND RESOURCES

Scenario Job scheduling scenarios BRA EP ILP IPAP LRP MRP NAP NLP NPAPP RLP TTP
1 Cloud-edge

workloads
daytime Original resources 19.16 25.18 30.59 24.37 22.14 8.66 25.70 19.47 25.44 15.94 25.18

2 night Original resources 9.83 17.02 16.90 16.90 20.09 8.46 16.64 15.47 15.60 15.60 16.25
3 Edge-cloud

workloads
daytime Original resources 12.90 19.40 16.92 7.69 17.56 7.69 10.74 10.74 12.20 14.96 27.03

4 night Original resources 9.02 12.12 14.07 15.02 18.02 9.73 15.02 13.11 14.71 14.07 14.07
5 Edge-cloud-

edge workloads
daytime Original resources 15.28 20.00 19.80 22.74 21.98 8.14 23.30 18.56 24.22 19.80 24.58

6 night Original resources 9.51 14.67 15.75 15.55 18.74 9.39 14.07 13.66 17.08 14.07 13.66
7

Cloud-edge
workloads

daytime

50% decrease 12.54 12.00 14.63 14.37 15.13 0.00 17.82 15.13 18.75 13.60 17.10
8 25% decrease 15.33 20.55 13.43 21.62 17.73 4.53 22.67 24.18 16.55 24.43 18.88
9 25% increase 11.34 20.68 18.85 20.08 22.14 8.26 21.85 26.22 10.97 27.99 19.16
10 50% increase 11.72 22.99 20.97 21.27 22.14 8.26 18.22 26.74 20.08 25.70 21.56
11

night

50% decrease 15.39 9.17 9.60 8.29 14.63 0.00 8.38 11.04 9.17 6.76 9.08
12 25% decrease 18.14 17.80 16.26 18.14 18.49 15.16 17.33 15.65 17.80 21.46 21.14
13 25% increase 9.83 9.38 12.46 9.83 20.09 8.46 13.30 8.77 13.72 13.30 10.87
14 50% increase 9.83 11.46 12.74 9.08 20.09 8.46 11.31 12.03 12.88 10.87 12.03

Fig. 6. Comparison of DRL training overheads under different model training techniques

actors indeed reduce sampling time. However, when the actor
number is 16, the sampling speed exceeds the training speed.
This means the 16 actors need to wait for the learner while
occupying resources, thus delaying the whole training process
(Figure 7(b)). This claim is verified in Figures 7(c) and (e)’s
results. We can also observe that the scenario of 50% decrease
in resources is simpler because it has less available resources
(that is, smaller state space). Hence in this scenario, the model
training needs fewer samples (Figure 7(c)) and iterations
(Figure 7(d)), and converges more quickly (Figure 7(e)).

History length. In DRL training, history length decides

the number of time-steps used to construct a state in the
environment. Conceptually, the longer the history length, the
more information the agent can learn from a state. This evalu-
ation considers three history lengths: 4 (used in EdgeTuner in
previous evaluations), 1, and 8. The results in Figure 8 display
that when the history length is 1 (that is, the states in different
iterations are independent of each other), the training needs the
largest numbers of samples and the longest time to converge.
In contrast, when the history length is 8, the training needs
the smallest number of samples (Figure 8(c)), but its sampling
time is still longer than that of history length 4 in the scenario
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Fig. 7. Comparison of DRL training overheads under different actors

Fig. 8. Comparison of DRL training overheads under different history lengths

TABLE II
DRL TRAINING TIME BREAKDOWN UNDER DYNAMIC WORKLOADS AND

RESOURCES

Scenario Sampling time (seconds) Training time (seconds)
EdgeTuner/Kubernetes Reductions EdgeTuner/Kubernetes Reductions

1 11/336160 30560x 5824/744708 127.87x
2 7/325463 46494.71x 3689/448439 121.56x
3 9/312343 34704.78x 9425/1107046 117.46x
4 8/314422 39302.75x 2222/264988 119.26x
5 8/281755 35219.38x 13051/1386341 106.22x
6 6/288622 48103.67x 4793/521044 108.71x
7 12/337417 28118.08x 8053/1020424 126.71x
8 10/335230 33523x 6947889505 128.04x
9 11/336568 30597.1x 9125/1149461 125.97x

10 12/334561 27880.08x 13003/1647970 126.74x
11 8/338561 42320.13x 2128/273040 128.31x
12 10/337088 37454.22x 13534/1672159 123.55x
13 10/338766 33876.6x 4563/573715 125.73x
14 11/337326 30666x 3455/448519 129.82x

of 25% decrease in resources (Figure 8(a)). This is because
the state of history length 8 is two times larger than that of
history length 4 and hence each sample’s collection time is
longer in the former setting.

V. RELATED WORK

In modern cloud data centers, cluster resource management
systems (e.g. YARN [30] and Kubernetes [4]) provide multiple
scheduling algorithms/policies to control resource allocation to
their jobs [7], [10], [21], [23], [40]. This work focuses on edge-
cloud jobs with diverse workload characteristics including
stochastic arrival rate, different resource demands and dura-
tions. Our approach is built upon existing configurable sched-
ulers and employ DRL to tune their scheduling algorithms
online. Early work in this area applies reinforcement learning
(RL) techniques to schedule jobs at particular time slots and
minimize their latencies [20]. Later techniques employ state-
of-the-art DRL techniques to accelerate the training speed [17],
[28]. However, in this edge-cloud job scheduling scenario, they

still suffer from time-consuming sampling phase because: (i)
a large number of samples (e.g. over 1 million) are needed; (ii)
a sample can only be obtained every few seconds (as shorter
intervals cannot reflect the changes in workloads).

To address the above problems, recent approaches train DRL
agents in an offline manner [35], [36]. The training is driven by
a neural network based computational model, which predicts
system states and generates training samples based on history
traces. Similarly, DeepEE develops a simulation platform to
emulate dynamic IT workloads and cooling systems [24].
These techniques target long-running and compute-intensive
jobs in HPC data centers and differ from this work’s scenario
in the following two aspects. First, the long-running jobs
follow an arrival queue and they are dispatched to proper
servers according to a fixed job scheduling algorithm.
Second, latency is not a key concern of compute-intensive
jobs. In DRL training, these techniques implicitly assume fixed
available resources in the cluster.

VI. CONCLUSION

In this paper, we present EdgeTuner to optimize resource
allocation and scheduling algorithms for dynamic edge-cloud
workloads. The core component of EdgeTuner is a DRL
agent for run-time scheduling algorithm tuning and a cluster
simulator to accelerate the lengthy DRL training process.
EdgeTuner is implemented on Kubernetes and evaluated using
production-system workloads on real clusters.
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