

Master of Science Thesis

Assessing and developing optimization
methodologies for practical engineering design

with high-fidelity CFD simulations

Iliass Azijli

June 10, 2011

Assessing and developing optimization
methodologies for practical engineering design

with high-fidelity CFD simulations

Iliass Azijli

Submitted in partial fulfillment of the requirements for the degree of
Master of Science

June 10, 2011

Faculty of Aerospace Engineering · Delft University of Technology

Copyright © Iliass Azijli, Lotus Renault GP, Delft University of Technology
All rights reserved.

DELFT UNIVERSITY OF TECHNOLOGY
FACULTY OF

AEROSPACE ENGINEERING
AERODYNAMICS CHAIR

The undersigned hereby certify that they have read and recommend to the Faculty of Aerospace
Engineering for acceptance the thesis entitled “Assessing and developing optimization
methodologies for practical engineering design with high-fidelity CFD simulations”
by Iliass Azijli in fulfillment of the requirements for the degree of Master of Science.

Dated: June 10, 2011

Exam committee:
prof. dr. ir. drs. H. Bijl

dr. ir. P.A. Cusdin

dr. R.P. Dwight

dr. S.J. Hulshoff

iii

Preface

This work, carried out at the CFD department of Lotus Renault GP, finalizes my
studies at the Aerospace Engineering faculty of Delft University of Technology. I
joined the company in 2009 to do a four months internship at the Aerodynamics
department. After this, I did a six months internship at the CFD department,
followed by the final thesis research, which is the work you are currently reading.
There have been a number of notable players during my stay here whom I would
like to thank explicitly. The whole thing started with me sending a letter to the
head of aerodynamics Dirk de Beer, asking whether I could do an internship here.
I am truly grateful to him for opening the gates to me. During my stay at the
Aerodynamics department I was supervised by Hari Roberts. I really enjoyed the
project that he had assigned to me; analyzing wind tunnel data and track data
and trying to combine the two into something special. That was a real challenge!
Not only did I learn a lot about the aerodynamic development process itself, I also
learned a great deal about the dynamics of Formula One cars. I think he was a great
supervisor because he also gave me an insight into the way he approaches problems
and how he comes up with interesting new ideas to solve them.
When I moved to the CFD department, I was assigned to work in the rear team,
which focuses on developing the rear part of the car. I was supervised by Kristofer
Midgley, who guided me through the whole CFD process. I have learned a great deal
about aerodynamics from him. The main project I was assigned to work on was the
initial development of the F-duct. This project has truly been a unique experience
where I witnessed the whole development process: from the initial development of
the concept in CFD to the point of testing the part in the wind tunnel; from seeing
it being produced at the manufacturing department and fitted at the race bay to
watching the end result on TV.
With regards to the present work, I would like to thank Paul Cusdin, my supervisor
here, and Richard Dwight, my supervisor at Delft. They both have been very
supportive and enthusiastic throughout this process. I would also like to thank
Steve Fenwick, who helped me to get to grips with the complete iSIGHT framework
and helped me improve KERS. I would also like to thank my college mate Marius
Birsanu for supplying his LaTeX thesis template and answering all my LaTeX related
questions.
Last but certainly not least, I would like to thank Jarrod Murphy, the head of
this department. He allowed me to do the internship and my MSc thesis here.
Furthermore, I worked closely with him on the F-duct project, which I really enjoyed.

Iliass Azijli
Enstone, June 10, 2011

v

Abstract

In modern day Formula One, aerodynamics has become the key performance differ-
entiator. The two tools used for the aerodynamic design are the wind tunnel and
Computational Fluid Dynamics (CFD). For a rapid development rate, it is crucial
to use these tools as efficiently as possible. The goal of this thesis is to improve the
optimization methodology at the CFD department of Lotus Renault GP (LRGP).
This is a challenge because CFD simulations are expensive; they require a relatively
large amount of wall clock time to complete and in addition there is a restriction
on the number of runs that can be carried out. This restriction was agreed upon
between the Formula One teams to reduce the cost of the sport.
The pre-existing optimization methodology makes extensive use of the design of ex-
periments (DOE) approach, in which the design space is filled with a set of points
that are run in CFD. The results are then analyzed and the best design is chosen,
possibly followed by tweaking it manually to improve the performance.
Two approaches are investigated to improve upon this methodology and two CFD
test cases are set up to assess them. The idea of the first approach is to make use
of local optimization algorithms. Gradient-free and gradient-based algorithms are
investigated. SQP (Sequential Quadratic Programming) methods are found to be
the most efficient solver.
The second approach is a surrogate modeling framework. Given the DOE results,
the idea is to build a cheap surrogate model of the expensive function. The opti-
mization is then carried out on this model while the original function is evaluated
at each iteration to update the surrogate. The surrogate modeling technique used
is Kriging, which is an interpolating method. Since CFD data can contain a level
of numerical noise, there will be cases where it would be preferred to regress the
data instead. The original method is modified to be able to do this. Additionally,
a method which only regresses points within a user-defined threshold is introduced
and investigated. The test cases show that they indeed improve the traditional in-
terpolating method. Furthermore, an alternative technique to building a Kriging
surface is introduced. It is based on minimizing the cross-validation error rather
than maximizing the likelihood function. For sparse data sets, it is found to pro-
duce more accurate response surfaces. To avoid getting stuck in a local minimum,
the algorithm EGO is implemented.
Comparing the local solvers to surrogate modeling, the latter can provide the user
with a better understanding of the design problem. It also gives the user more con-
trol over the optimization and can supply better insights if it fails.
The surrogate modeling approach is applied to a couple of actual projects carried
out at LRGP’s CFD department and proves to be a good extension to the current
methodology. Not only does it manage to find improved designs, it also helps in
providing a better understanding of the design problems.

vii

Nomenclature

Abbreviations

AMGA archive-based micro genetic algorithm

AoA angle of attack

BFGS Broyden-Fletcher-Goldfarb-Shanno

bsf best so far

CAD computer aided design

CFD computational fluid dynamics

CG conjugate gradient

DACE design and analysis of computer experiments

DIRECT DIviding RECTangles

DOE design of experiments

DS downhill simplex

EGO efficient global optimization

F1 Formula One

FIA Fédération Internationale de l’Automobile

FOTA Formula One Teams Association

HJ Hooke-Jeeves

ib in-board

KERS Kriging and Exploring Response Surfaces / Kinetic Energy Recov-
ery System

LRGP Lotus Renault GP

LSGRG large scale generalized reduced gradients

MLE maximum likelihood estimator

MMFD modified method of feasible directions

MOST multi-functional optimization system tool

viii

NLP nonlinear programming

ob out-board

QP quadratic programming

RAAE relative average absolute error

RBF radial basis function

RMAE relative maximum absolute error

RWMP rear wing main plane

Sp starting point

SQP sequential quadratic programming

TRW top rear wing

Xval cross-validation

Greek Symbols

α angle of attack

β polynomial coefficient

∆x finite difference step size

ε modeling/correlation error

γ airfoil camber

ŷ prediction of y

λ lagrange multiplier

µ penalty parameter (constraint handling) / regression term (Kriging)

Φ normal cumulative distribution function

φ normal probability distribution function

φ1 `1 exact penalty function

ψ concentrated log likelihood function (dacefit)

ρ regularization constant (Kriging)

σ2 variance

θ correlation parameter (Kriging)

ix

Latin Symbols

p search direction vector / smoothing parameter

r correlation vector

x design vector

C lower triangular square matrix (Cholesky factorization)

c constraints / chord length

CD drag coefficient

CL lift coefficient

CM pitching moment coefficient

E [I (x)] expected improvement

F m× t regression matrix (Kriging)

f objective function

h number of polynomial coefficients

K lipschitz constant

L Lagrangian function

m number of sample points

n number of design variables

R m×m correlation matrix

S m× n matrix containing the sample data variables

s root mean squared error (Kriging)

t number of regression terms (Kriging) / airfoil thickness

u unit round-off error

X horizontal position

Y m-sized vector containing the sample data output / vertical position

y real response

xi

Contents

Nomenclature vii

1 Introduction 1

1.1 The CFD development process . 2

1.1.1 Concept exploration . 2

1.1.2 Concept exploitation . 3

1.2 Goal of the present research . 5

1.3 Key contributions . 6

1.4 Thesis outline . 7

2 Review of local solvers 9

2.1 Gradient-free methods . 10

2.1.1 The simplex method . 10

2.1.2 The alternating variables method 11

2.2 Gradient-based methods . 12

2.2.1 First-order methods . 12

2.2.2 Second-order methods . 13

2.2.3 Stepping to the next iterate 14

2.3 Constraint handling . 16

2.3.1 Indirect methods . 16

2.3.2 Direct methods . 16

Feasible direction methods 16

Elimination methods . 17

Sequential Quadratic Programming (SQP) methods 18

2.4 Calculating derivatives . 19

2.4.1 Finite difference method . 20

2.4.2 Complex variables method . 21

2.4.3 Exact differentiation . 21

xii Contents

3 Review of surrogate modeling 23

3.1 The design of experiments . 24

3.2 Building the surrogate model . 25

3.2.1 Kriging: the theory . 26

3.2.2 Kriging: the implementation 29

3.3 Exploring and exploiting the surrogate model 34

3.3.1 Infill criteria . 35

3.3.2 EGO: Efficient Global Optimization 38

4 Improvements to DACE 45

4.1 How to determine the optimum correlation parameters 45

4.1.1 Cross-validation based parameter tuning 46

4.1.2 An efficient cross-validation scheme 48

4.1.3 Numerical experiments . 50

4.2 How to fit noisy functions . 52

4.2.1 The downside of interpolation 53

4.2.2 Regressing noisy functions . 53

4.2.3 A Bayesian point of view to regression 55

4.2.4 Adaptive regression . 57

5 KERS: a Kriging based optimization tool 63

5.1 The build mode . 64

5.2 The optimize mode . 64

6 Test applications 67

6.1 Global settings . 67

6.1.1 iSIGHT . 67

6.1.2 KERS . 68

6.2 Test case 1 - the double airfoil . 69

6.2.1 Test case description . 69

6.2.2 The optimum gradient step size 72

6.2.3 Box constraints . 73

Contents xiii

Interpolated surface . 73

CFD surface . 75

6.2.4 Geometric constraints . 76

Interpolated surface . 77

CFD surface . 78

6.2.5 Pitching moment bounds . 80

Interpolated surface . 80

CFD surface . 82

6.2.6 Pitching moment target . 83

Interpolated surface . 84

CFD surface . 84

6.2.7 Summary . 85

6.3 Test case 2 - the two-element airfoil 86

6.3.1 Test case description . 86

6.3.2 The optimum gradient step size 88

6.3.3 Results . 92

7 Real-life problems 95

7.1 Twisted wing . 95

7.2 Extruded wing . 100

7.3 Airfoil optimization . 103

7.4 Rib integration . 106

8 Conclusions & recommendations 111

8.1 Conclusions . 111

8.1.1 Local solvers . 111

8.1.2 The surrogate modeling framework 111

8.2 Recommendations . 112

8.2.1 Local solvers . 112

8.2.2 The surrogate modeling framework 113

xiv Contents

Appendices

A A description of the global optimizer DIRECT I

A.1 Constraint handling . III

B Detailed description of KERS VII

B.1 Structure and workings . VII

B.2 Control file settings for KERS . IX

B.3 KERS settings decision tree . XV

References XVII

1

‘Most experts suggest that one should open
with a joke. Obviously, they’ve never heard me
tell a joke.’

Anonymous 1
Introduction

Formula One is widely considered to be the pinnacle of motorsport. Each competing
team is required to build its own chassis, which should satisfy a set of rules specified
by the FIA, the sport’s regulating body. The fascinating aspect of the sport is that
there are two levels of competition. In the foreground, there are the twenty-odd
races held across the world and watched by millions of people. In the background,
there is the technical development race between the teams. The astute observer will
notice that during the course of a season, the cars are constantly evolving.
Of all the components on the car, the aerodynamic surfaces receive the most at-
tention. It is often stated that the four main ingredients that make a modern day
Formula One car fast are the driver, engine, tires and the aerodynamics. Nowadays,
since the engines are homologated1 and because there is only one tire manufacturer,
it should be no surprise why the aerodynamics have become so important. The
two tools used in developing the aerodynamics of the car are the wind tunnel and
Computational Fluid Dynamics (CFD). Each team invests heavily in these tools
and nowadays, virtually every team has its own wind tunnel and CFD resources.
The situation at Lotus Renault GP2 (LRGP) is no different. A major step forwards
was the construction of the ‘Computational Aerodynamics Research Center’ in 2008.
Prior to this, the wind tunnel and CFD aerodynamicists worked in the same build-
ing, which houses the wind tunnel. The construction of the center enabled the team
to increase its number of CFD aerodynamicists and also expand its computational
power. To carry out the demanding CFD computations the team owns an Xtreme-
X2 supercomputer which has in excess of 4000 cores and 8Tbytes of memory. At
its peak, it can provide a performance of 38TFlops. Next to all these hardware
updates, the software used is frequently updated too. Not only are the commercial
packages regularly updated to their latest versions, the in-house developed codes
are constantly refined and improved.

1This basically means that the engine development that competing engine manufacturers are allowed to
carry out has been reduced to a minimum.

2The Enstone based team has been re-branded to Lotus Renault GP as of the 2011 season. Since 2002,
the team had competed as Renault F1 Team, winning back-to-back Constructor’s and Driver’s titles in
2005 and 2006. From 1986 to 2001, the team had raced as Benetton Formula 1 Racing Team, winning
the Driver’s titles in 1994 and 1995 and the Constructor’s title in 1995.

2 CHAPTER 1 INTRODUCTION

1.1 The CFD development process

While developing the aerodynamics of the car, the focus is both on creating new
concepts and improving existing concepts. When CFD was introduced into Formula
One in the 90’s, it was primarily used for concept exploration3. This is because CFD
allows one to visualize the flow field around the car. To be more specific, it is possible
to visualize the scalar and vector fields of the different flow parameters. This pro-
vides an understanding as to why a certain concept works (or not). The wind tunnel
does not lend itself very well for gaining understanding, even though it is possible
to visualize surface lines by using UV paint. The wind tunnel is more appropriate
for optimizing known concepts, i.e. concept exploitation. Nowadays however, CFD
is being used more and more as an optimization tool as well.

1.1.1 Concept exploration

Let’s take as the starting point a certain aerodynamic concept. It could either be an
innovation or a well known and tried idea. The first step is to generate the necessary
surfaces in CAD. The commercial package used for this is CATIA.
The next step is to integrate the surfaces into an existing baseline model of the car.
The commercial package ANSA is used for this. ANSA is also used for generating
the surface mesh. Once the new surfaces have been integrated with the car, an
unstructured surface mesh consisting of triangular elements is generated.
The discretized surfaces of the car are then imported into Star-CCM+. This com-
mercial package is used as a volume mesher, flow solver and post-processor. It can
also be used as a surface mesher, but it is customary within LRGP to generate the
surface mesh in ANSA. To simulate the boundary layer, a prism layer mesh com-
posed of orthogonal prismatic cells is grown from the car surfaces.
The next step in the process is to solve the flow equations. The flow field parameters
and loads extracted from the CFD results are averaged over a final set of iterations
(for example, the last 100) instead of simply taking the value of the last iteration.
When plotting these parameters as a function of the iterations, they may show an
oscillatory behavior. Even though the solver used is the steady state solver, the
flow field around the car is quite unsteady, primarily due to the wake shed by the
tires. The reason why it is important to average the parameters over a number of
final iterations instead of just taking the final value is because the results will be
compared to other runs. Now, if for example the configuration of a run 1 actually
generates a higher load than run 2 but the final iteration of run 1 is at the mini-
mum of an oscillation while run 2 is at the maximum of an oscillation, then simply
taking the final value will give the opposite results. Figure 1.1 gives a simple exam-
ple of this, in which the blue line represents run 1 while the red line represents run 2.

3Benetton F1 was one of the first F1 teams to use CFD.

THE CFD DEVELOPMENT PROCESS 3

Figure 1.1 Simply extracting the values of the final iteration can obscure the comparison
between different runs.

Once the whole process has finished, the CFD aerodynamicist takes over again and
analyzes the results. The process from geometry generation to post-processing is
summarized in Figure 1.2.

Figure 1.2 The CFD process at LRGP.

1.1.2 Concept exploitation

The CAD generation, surface cleanup and post-processing blocks are labor intensive
processes. This is not a real problem if only a couple of runs are carried out and
the main goal is to determine whether the concept works or not. However, once
the concept is believed to have potential and the focus shifts to optimizing it, it is
anticipated that a relatively large number of runs will be carried out. In that case,
it becomes very important to fully automate the process summarized in Figure 1.2.
To this end, the commercial package iSIGHT is used. iSIGHT is basically a program
that allows the user to link different simulation codes and monitor and analyze these

4 CHAPTER 1 INTRODUCTION

runs in a clear and graphical manner. To use iSIGHT, the user should write control
files for each simulation code. Also, the CAD geometry should be parameterized. In
addition to this, the car model is defeatured to reduce the runtime of each function
evaluation. This has become particularly important due to recent regulation changes
concerning the aero resources a team can use (the ‘FOTA4 restriction’). The pre-
existing optimization methodology works as follows: Given a number of runs to be
carried out, a Design Of Experiments (DOE) is used to seed the design space using
a suitable criterion, depending on the type of DOE. Based on these results, the
user should pick the best design point. If this configuration is infeasible, it will be
tweaked manually to make it feasible. If required, the next step is then to carry
out a new DOE around this point and investigate whether an improvement has
been found. If this is the case but the configuration is infeasible, then some manual
tweaking is again required to make it feasible. Figure 1.3 summarizes the approach.

Figure 1.3 The pre-existing optimization process at LRGP. ‘bsf’ stands for ‘best so far’.

The optimization process described is not really an optimization process in the
traditional sense where a numerical algorithm iteratively searches for an optimum.
Instead, in the process described the experienced CFD aerodynamicist is the opti-
mizer. The advantage of this approach is that the user retains more control over
the process and directions taken, which is especially desired when it is difficult to
express the objective mathematically and the aerodynamic knowledge of the user is
paramount in determining what a good design is.
For example, when developing the rear wing for a high downforce circuit, the primary
goal is to maximize downforce, which is easy to express mathematically. However,
it is not uncommon for highly loaded wings to be close to separation and in fact,
as the trailing edge region of the flap starts to separate and an off-body stall is
observed, they can still be generating high downforce. On top of this, the trailing
edge region of the main plane can also show signs of separation. So, if the objective
is simply expressed to be maximizing the rear wing’s load, then it is very likely that
the resulting wing will be an unstable one. But, there is no one objective way of
quantifying this stability. Skin friction, measured at the back of the flap and main
plane, can be used or the total pressure behind the wing. But the question remains
how they should be weighted in the optimization problem. To make the problem

4The Formula One Teams Association (FOTA) is a group consisting of the competing F1 teams. Its
goal is to give the teams a united voice in their ongoing discussion with the sport’s regulating body
(FIA) regarding the future of Formula One.

GOAL OF THE PRESENT RESEARCH 5

even more difficult, it should be noted that the aerodynamic characteristics of an
F1 car are highly sensitive to its attitude5 with respect to the incoming flow. When
carrying out an optimization in CFD, the car is commonly set to a single attitude.
So, an optimum configuration at that particular point may turn out to be very poor
at other attitudes. Additionally, to reduce the CFD runtime, some features may be
removed from the model. This will change the flow field around the configuration
and possibly the optimum configuration.
The example described above highlights the fact that applying optimization meth-
ods to an F1 car is far from straightforward. Simply encapsulating a CFD process
with an optimization solver could easily lead to poor configurations. This is one of
the reasons why the optimization methodology as summarized in Figure 1.3 is the
accepted one. However, this does not mean that other methods should be discarded.

1.2 Goal of the present research

The optimization methodology presented in the previous section has some draw-
backs, which are summarized below:

• apart from the DOE itself, the optimization methodology is a manual process,
which makes it time consuming;

• the DOE returns a discrete set of configurations. As a result of this, the user
may overlook better designs;

• no full use is made of the DOE results to gain a good understanding of the
design problem.

Since the CFD simulations are expensive, calls made to them should be kept at a
minimum. A popular method that takes this into account, while at the same time
addresses the above mentioned drawbacks, is known as surrogate modeling. Using
the DOE results, a surrogate model is built, which is a cheap replacement to the
expensive function. This surrogate can then be used for a variety of goals. The two
most important uses in the present context are to find the optimum on the surrogate
and to explore it in order to gain a better understanding of the design problem.
The main goal of the present research is to develop a surrogate modeling framework
and eventually apply it to actual aerodynamic design projects at LRGP. The sur-
rogate modeling technique chosen is known as Kriging6. The reason why Kriging is
chosen is because it has the following desirable features:

5Pitch, yaw, roll, heave and front tire steer.
6In the context of deterministic computer experiments it is known as DACE, which is short for Design
and Analysis of Computer Experiments.

6 CHAPTER 1 INTRODUCTION

• it is an interpolating method. This is desirable in the context of deterministic
computer simulations;

• it can capture highly nonlinear responses;

• its statistical interpretation makes it particularly efficient in the context of
global optimization.

Next to developing a surrogate modeling framework, the present research also as-
sesses the idea of applying existing optimization algorithms directly to the expensive
functions. In other words, the step of carrying out a DOE followed by building a
cheap surrogate is circumvented. Although this approach does not lend itself very
well for gaining an understanding of the design problem, it may find a better op-
timum, potentially using fewer function evaluations. Two CFD test cases are set
up to compare the existing optimization algorithms and the developed surrogate
modeling framework.
So, the goal of the present research is threefold:

1. develop a surrogate modeling framework;

2. compare the performance of the surrogate modeling framework with existing
optimization algorithms;

3. apply the developed surrogate modeling framework to real life projects.

1.3 Key contributions

The following contributions are made in the present research:

• To potentially improve the accuracy of the surrogate, an alternative objective
function is introduced for determining the optimum correlation parameters
that comprise a Kriging model. In the literature, the maximum likelihood
function is used to build the optimum Kriging model. The alternative objective
function introduced in this research is based on leave-one-out cross-validation.

• Kriging is modified to handle noisy functions by smoothing data points rather
than interpolating them. The two ideas introduced in this research are to
either only smooth clustered points within a user-defined threshold or apply
a level of smoothing to each point which is proportional to its corresponding
uncertainty.

• The global optimization algorithm DIRECT7, which can only handle box con-
straints, is modified to handle nonlinear constraints using an exact penalty
function.

7DIRECT is used to find the global optimum on the surrogate model.

THESIS OUTLINE 7

The above contributions, together with the original Kriging method, are imple-
mented into a Matlab based standalone executable and successfully applied to a
number of real-life rear wing development projects carried out for the 2011 car.

1.4 Thesis outline

Chapter 2 reviews the existing optimization algorithms used in the present research.
Rather than mentioning the actual implementations used, it focuses on the concepts
behind these methods. Chapter 3 reviews the surrogate modeling framework. The
three building blocks (setting up the DOE, building the surrogate and finally using
it) are discussed in detail. Chapter 4 mentions the two contributions made to
Kriging, i.e. the alternative objective function introduced for finding the optimum
correlation parameters and a method to fit noisy functions. The resulting Kriging
based optimization tool is presented in Chapter 5. Chapter 6 presents two test
applications that are used to compare the existing optimization algorithms with
the newly developed tool. Four real-life problems are tackled by the Kriging based
optimization tool in Chapter 7. Chapter 8 ends this thesis with conclusions and
recommendations regarding the existing optimization algorithms and the surrogate
modeling framework.

9

‘This downhill path is easy, but there’s no turn-
ing back.’

Christina Rossetti, Amor Mundi 2
Review of local solvers

This chapter reviews a number of optimization methods that only look for a local
optimum. This is because the objective functions are obtained from expensive CFD
simulations and therefore it would not make sense to apply global algorithms like
simulated annealing, genetic algorithms or branch-and-bound as they require a sig-
nificant number of iterations to find the global optimum. Before presenting the local
solvers, it is worthwhile to mathematically express the optimization problem:

min
x∈Rn,u∈Rp

f (x,u)

subject to

R (x,u) = 0

ci (x,u) = 0, i = 1, ...,me

cj (x,u) ≤ 0, j = 1, ...,mi

(2.1)

f is the objective function. It is obtained by solving the set of partial differential
equations R (x,u) = 0, also known as the flow solver. f is a function of n design
variables1 and p state (/flow) variables2. The flow solver essentially enters the
optimization problem in the form of an equality constraint. In addition to this
constraint, there are me equality constraints and mi inequality constraints. (2.1) is
known as a PDE-constrained optimization problem. There are two main strategies
that one can use to solve this type of problem:

1. Simultaneously solve the PDE and optimization problem (one-step method).

2. Eliminate the state variables from the optimization problem and solve the
resulting two systems (flow and optimization) separately at each iteration
(two-step method).

1Examples of design variables in the present context are wing chord length, angle of attack and wing
thickness.

2Examples of state variables in the present context are flow velocities and pressures.

10 CHAPTER 2 REVIEW OF LOCAL SOLVERS

The advantage of the two-step method over the one-stage method is that it allows
one to use existing optimizers and PDE solvers to solve the problem. In that case,
one can reformulate (2.1) as follows:

min
x∈Rn

f (x)

subject to

ci (x) = 0, i = 1, ...,me

cj (x) ≤ 0, j = 1, ...,mi

(2.2)

The flow system is now embedded in f . (2.2) is known as a non-linear programming
problem (NLP) since at least one of the functions f , ci or cj may be nonlinear.
The local solvers can be subdivided into methods that make use of the gradients of
the considered functions and gradient-free methods. Section 2.1 discusses gradient-
free methods while Section 2.2 discusses the gradient-based methods. To keep the
discussion clear, these two sections assume that no constraints are present. The
handling of constraints is reserved to Section 2.3. Finally, Section 2.4 discusses how
gradients can be calculated.

2.1 Gradient-free methods

Gradient-free methods do not make use of the objective function’s gradient to de-
termine where to sample the design space. Instead, they evaluate the function at a
set of points, compare the function values with each other and subsequently decide
where to sample next.

2.1.1 The simplex method

The most well-known gradient-free method is the simplex method, proposed by John
Nelder and Roger Mead [37]. Given a starting point in an n-dimensional space, a
simplex with (n+ 1) vertices is formed3. Its n edges can be considered to be vec-
tors that can span the whole space. Once the initial simplex has been formed, the
function values at the vertices are ordered from best to worst. A new function evalu-
ation is carried out at the point where the worst point reflects through the opposing
edge. Depending on the function values found, the simplex can either expand or
contract. In the subsequent iterations, reflection, expansion and contraction are the

3In a two dimensional space, a triangle is formed and in a three dimensional space, a tetrahedron is
formed.

GRADIENT-FREE METHODS 11

three basic moves that the simplex can make as it marches towards the minimum.
Figure 2.1 illustrates the method in two dimensions.

Figure 2.1 The sequence of triangles Tk converging to the point (3,2) for the simplex method.

2.1.2 The alternating variables method

Another well-known method that does not make use of gradients is the alternating
variables method. As the name suggests, at each iteration k (k = 1, 2, ..., n) the vari-
able xk is changed in order to minimize the objective function value while the other
variables are kept fixed. When all variables have been changed (independently from
each other), the whole cycle is repeated until convergence occurs. The method is
usually very inefficient and unreliable. Since the search directions are independent of
each other and aligned with the coordinate axes, the method ignores the possibility
of correlation between the variables. Various modifications have been proposed to
this basic method. The most prevalent is based on the observation that the points
at the start and end of a cycle determine a line along which more progress might be
made towards the optimum than along the coordinate directions independently from
each other. The most efficient of these modified methods is probably the method
proposed by Hooke and Jeeves [19].

Despite their slow convergence compared to gradient-based methods, gradient-free
methods remain popular within the engineering community. It often occurs in engi-
neering practice that the designer is looking for a quick improvement over a baseline
design and frequently a highly accurate solution is neither possible nor desired. An
optimization algorithm will therefore often be stopped long before it formally con-

12 CHAPTER 2 REVIEW OF LOCAL SOLVERS

verges. So, even though the mathematical theory predicts that gradient algorithms
are faster than the gradient-free methods, this may not always be observed in prac-
tice. Furthermore, if the objective functions contain noise or discontinuities, then
gradient algorithms will generally perform worse, whereas gradient-free methods
are better able to deal with these types of functions. For a further discussion on
gradient-free methods, the reader is referred to Torczon [50] and Wright [56].

2.2 Gradient-based methods

Instead of comparing function values, gradient-based methods make us of the func-
tion’s gradient to determine where to go. The gradient is a vector pointing into
the direction of maximum ascent. Gradient-based methods can be subdivided into
methods that only use the gradient (first-order methods) and methods that use (an
approximation of) second-order derivatives as well. Using second-order derivatives
to determine the search direction can increase the rate of convergence.

2.2.1 First-order methods

The steepest descent method is the most basic of the gradient methods; the search
direction is simply the opposite direction of the gradient. Compared to the more
advanced gradient methods discussed below, it is theoretically the slowest (linear
convergence). To appreciate why this method is slow, consider a two-dimensional
function with an ellipse shaped minimum, as given by Figure 2.2. Since the direction
of steepest descent will be orthogonal to the contour lines, it will generally not point
to the minimum, except of course at the extremes of the major and minor axes. For
this reason, the method will zigzag its way to the solution; a behavior reminiscent
to the alternating variables method discussed in the previous section. However,
whereas the alternating variables method would simply choose its directions based
on the coordinate axes used, the steepest descent method clearly makes a better
choice in that respect.
An improvement on the steepest descent method is the conjugate gradient (CG)
method. Instead of the local gradient, it uses the conjugate gradient to determine
the search direction. The conjugate gradient method was originally developed by
Hestenes and Stiefel [17] as an iterative method for solving large linear systems with
positive-definite matrices. Fletcher and Reeves [11] later adapted it for solving large-
scale nonlinear optimization problems. The details of how the directions are chosen
are outside the scope of this thesis. The interested reader is referred to Shewchuk
[46], who describes the workings of the CG method in a clear and illustrative manner.

GRADIENT-BASED METHODS 13

Figure 2.2 Zigzagging behavior of the steepest descent method [39].

2.2.2 Second-order methods

Second-order methods locally model the objective function at the iterate k through
the use of a quadratic function:

f (xk + p) ≈ f (xk) + pT∇f (xk) +
1

2
pT∇2f (xk) p (2.3)

They then (approximately) minimize this model to find the next iterate k + 1.
∇f (xk) and ∇2f (xk) are the gradient and Hessian of the function at the current
iterate, respectively. To have a model with a strict local minimum (a bowl shape
in a two-dimensional problem), the Hessian has to be positive definite. Assuming
that the gradient and Hessian are known, the direction and magnitude to be taken
in order to find the next iterate can be determined by setting the derivative of (2.3)
to zero. The result is the following explicit formula:

pk = −∇2f−1
k ∇fk (2.4)

The method described above is known as Newton’s method, and it is a significant
improvement over the steepest descent method as it possesses quadratic instead of
linear convergence behavior. Even though the method is simple and appears ready
to be used in practice, there are two main difficulties associated with it:

• obtaining the Hessian efficiently; contrary to the gradient, which is an n-sized
vector containing the first order partial derivatives of the objective function,
the Hessian is an n2-sized matrix containing the function’s second order partial
derivatives. So, one can imagine that determining the Hessian directly may
prove extremely costly when the objective functions are themselves expensive
to calculate and/or the number of variables is high;

14 CHAPTER 2 REVIEW OF LOCAL SOLVERS

• uphill search direction; far from a minimum, it is possible that the Hessian is
not positive-definite. Taking the actual Newton step can then move the search
uphill rather than downhill.

Quasi -Newton methods are able to deal with the above two difficulties. First of
all, they approximate the Hessian using gradient information alone, which enables
them to obtain the second-order information efficiently. They start with an ini-
tial guess of the Hessian (generally just the identity matrix) and update this guess
using only gradient information. Secondly, by starting with a positive-definite ma-
trix and updating it such that it stays positive-definite, quasi-Newton method will
guarantee that a downhill move is always made. The first quasi-Newton method
was formulated by Davidon [7]. Various updating schemes have been devised but
the one presently considered to be the most effective is the BFGS method4. The
disadvantage of quasi-Newton methods compared to the Newton method is that
theoretically they are slower. They exhibit super-linear convergence rather than
quadratic converge near a minimum.

2.2.3 Stepping to the next iterate

Up till now, the focus has been on describing different ways of choosing a direction
using gradients. The next matter is the determination of the step size to be taken
in this direction. Indeed, this is an important consideration since certain step sizes
may in fact produce an uphill movement, even though the direction chosen was
a descent direction. Figure 2.3 illustrates this. The current iterate is represented
by the black dot. The actual function is represented by the blue line whereas the
red line represents the local quadratic model. If the step size is chosen to be the
minimizer of this quadratic model (step length of 1 for (quasi)-Newton methods),
then in reality this would result in an uphill move.

Figure 2.3 Stepping to the next iterate.

4BFGS stands for Broyden [5], Fletcher [9] Goldfarb [15] and Shanno [45], the names of the researchers
who developed the method independently from each other.

GRADIENT-BASED METHODS 15

To stabilize the gradient-based methods, line search strategies can be used. For
efficiency, practical methods will only look for an approximate minimizer. All these
methods start out with an initial estimate and as long as certain conditions are not
met, new step lengths are estimated provided an upper bound on the number of
function evaluations has not been reached. The most popular of these conditions
are the Wolfe conditions [55]:

• the first condition states that there should be a sufficient decrease in the
objective function. However, this condition alone could hinder the algorithm
from making reasonable progress, as a sufficiently small step would already
give a decrease;

• the second condition (curvature condition) ensures that the steps cannot be
too small by forcing the gradient at the next iterate to be a certain factor
higher than at the current iterate.

Having specified the termination conditions, line search algorithms proceed by brack-
eting the search interval. For Newton and quasi-Newton methods, the end point is
usually chosen to be the point resulting from the step length of 1. If this point does
not satisfy the conditions, the step is reduced until either the conditions are satisfied
or a maximum number of line search function evaluations is reached. To make this
so-called backtracking more efficient, it is possible to interpolate a quadratic or cubic
to choose the next step length. Steepest descent and conjugate gradient methods
do not have a natural step length so they have to use some heuristic to determine
the initial guess. Optimal step sizes from previous iterations may be used to this
end.
An alternative to line search methods are trust-region methods. Where line search
methods first choose a direction and then a step size, trust-region methods choose
a direction and step size simultaneously. They do this by defining a region around
the current iterate within which the local model is assumed to be accurate and they
then try to find the minimizer within this region. Once the position of this mini-
mizer has been found, they calculate its actual value. The following three scenarios
are possible:

1. if the prediction was particularly poor or the new iterative has a worse function
value than the current iterate, the step is rejected and the trust-region shrinks;

2. if the prediction was very good then the step is accepted and the trust-region
is expanded;

3. if the prediction was not particularly bad but also not especially good, the
step is accepted but the trust-region is left unchanged.

16 CHAPTER 2 REVIEW OF LOCAL SOLVERS

There is no consensus in the literature on which of the two methods is better. More
information on gradient-based algorithms can be found in the book by Nocedal and
Wright [39].

2.3 Constraint handling

This section discusses how constraints can be handled. In the present context, con-
straint functions could for example be aerodynamic loads or functions representing
distances between (complex) shapes. For this reason, all the methods discussed are
capable of handling nonlinear constraints. The literature on constraint handling is
vast and by no means is it intended here to provide a complete description. Instead,
the most prevalent methods are presented. The discussion of these methods was
inspired by the books by Fletcher [10] and Nocedal and Wright [39].
There is no standard taxonomy for nonlinear constrained optimization algorithms.
Nevertheless, the most basic subdivision one can make is to categorize the meth-
ods into those that directly handle constraints and those that indirectly take the
constraints into account.

2.3.1 Indirect methods

Instead of handling the constraints directly, indirect methods recast the constrained
problem into an unconstrained problem. The resulting unconstrained problem may
then be solved by any of the methods discussed in Sections 2.1 and 2.2. The original
constrained problem can be recasted by defining the new objective function as the
sum of the original objective function and the constraint violations. If none of
the constraints are violated, then the latter term should naturally be zero. If the
current iterate is infeasible on the other hand, this term should be positive. The
newly defined function is therefore referred to as a penalty function.

2.3.2 Direct methods

Instead of recasting a constrained problem into an unconstrained one and optimizing
the result, direct methods deal with the constraints directly.

Feasible direction methods

The most intuitive way of dealing with constraints is to choose the search direction
that will produce a decrease in the objective function while ensuring that the current
iterate does not become infeasible. This is the basic idea behind the so-called feasible
direction methods, introduced by Zoutendijk [57]. If none of the constraints are ac-
tive or violated, then a search direction is chosen using one of the gradient methods

CONSTRAINT HANDLING 17

described in Section 2.2. If a constraint is active, i.e. the current iterate is on the
constraint boundary, then Figure 2.4 illustrates how the direction is chosen. The
blue and red curves are part of the function and constraint contours, respectively,
at the current iterate. The region under the blue dotted line, which is normal to the
gradient of the objective function ∇F (x), consists of usable search directions. How-
ever, they are not all feasible. The region to the right of the red dotted line, which
is normal to the constraint gradient ∇c (x), comprises the feasible directions, not all
of which are usable. The intersection of the usable and feasible regions is called the
usable-feasible region. The method of feasible directions uses a control parameter
to determine the search direction p within this region. The parameter is referred
to as the push-off factor. A value of zero will result in a search direction tangent
to the active constraint while large values will produce search directions that tend
to follow the contour of the objective function. This means that small values will
produce a large decrease of the objective function but the same constraint boundary
may quickly be re-encountered. On the other hand, large values will reduce the risk
of hitting (or puncturing) the constraint boundary but the decrease in the objective
function will not be very large. Instead of randomly choosing a value, the push-off
factor can be made a function of the constraint value.

Figure 2.4 The usable-feasible direction.

Elimination methods

To introduce the next method of directly handling constraints, assume temporar-
ily that there are only equality constraints. Also, the nonlinear constraints were

18 CHAPTER 2 REVIEW OF LOCAL SOLVERS

linearized. In that case, the following system can be set up:

ATx = b (2.5)

If m is the number of equality constraints and n is the number of variables, then
m ≤ n must hold for the problem to be solvable. In that case, it is possible to split
the variables up, where the first set will contain m elements while the second will
contain the rest; x1 ∈ Rm and x2 ∈ Rn−m. It is easy to show that (2.5) can be
rewritten to:

AT
1 x1 +AT

2 x2 = b (2.6)

where AT =
(
AT

1 AT
2

)
. (2.6) can readily be solved such that it expresses x1 in

terms of x2:

x1 = A−T1

(
b−AT

2 x2

)
(2.7)

The unconstrained problem can now be solved by expressing the objective function
in terms of the reduced set of variables x2. x1 follows from x2 through (2.7) and the
equality constraints are automatically satisfied. Inequality constraints can be taken
into account by adding slack variables.

Both the feasible direction method and the elimination method are feasible meth-
ods, meaning that they try to keep all iterates feasible. This is an advantage if
the objective function is undefined in the infeasible space. Another advantage is
that the actual objective function is minimized at each step. In other words, one
does not have to modify the problem by introducing a penalty or merit function
(this will be described later). A disadvantage of these methods is that they can-
not take shortcuts through infeasible domains to get to the solution quicker. So,
when comparing them with methods that do allow the intermediate iterates to be
infeasible, the feasible methods may require more function evaluations. As a final
note, it is interesting to mention that the feasible direction and elimination methods
have opposite philosophies. Where elimination methods try to follow the constraint
boundary, feasible direction methods try to push themselves away from it.

Sequential Quadratic Programming (SQP) methods

The most advanced of the direct methods are known as Sequential Quadratic Pro-
gramming methods. As the name suggests, the idea is to solve a quadratic pro-
gramming (QP) sub problem at each iteration. A QP problem is defined to have a
quadratic objective function with linear constraints. However, instead of setting up

CALCULATING DERIVATIVES 19

a quadratic approximation of the objective function, as given in (2.3), a quadratic
approximation of the Lagrangian is used instead. The Lagrangian is defined as
follows:

L (x, λ) = f (x) +
∑
i

λici (x) (2.8)

where the summation is taken over all the active constraints. Whereas one tries to
simply minimize the objective function f in an unconstrained problem, as discussed
in Section 2.2, the plan is now to minimize the Lagrangian, as its minimum will cor-
respond to a point that is the minimum of f while at the same time satisfying the
constraints. A wide range of methods exist to solve the QP problem. The interested
reader is referred to Chapter 16 of Nocedal and Wright [39].
An SQP method can either be implemented as a line search method or a trust-region
method. When it is implemented as a line search method, the next iterate is chosen
along the direction found by the QP problem. When it is implemented as a trust-
region method, the trust-region is added as a constraint to the QP problem. In
both cases, use is made of a so-called merit function to ensure that the SQP method
converges from remote starting points. The merit function is essentially a penalty
function. In the case of a line search method, the merit function replaces the actual
objective function to determine the step size. In the case of a trust-region method,
the merit function is used to determine whether a step should be accepted or not
and to determine whether the trust-region should be expanded, shrunk or kept un-
changed for the next iterate. Not only does the merit function make it possible for
the SQP method to converge from remote starting points, it also makes it possible
for the algorithm to accept an infeasible iterate, even though it should eventually
converge to a feasible point. This may be seen as a disadvantage if the objective
function is undefined in feasible regions but it can be an advantage as the method
will be able to take shortcuts to the optimum point. This property is contrary to
the two feasible methods discussed earlier.

2.4 Calculating derivatives

Since the gradient methods require the derivatives of the objective function and
constraints to be calculated, it is important to know how to obtain them. There are
three approaches that can be used (from least to most accurate):

1. the finite difference method

2. the complex variables method

3. exact differentiation

20 CHAPTER 2 REVIEW OF LOCAL SOLVERS

2.4.1 Finite difference method

The finite difference method makes use of Taylor’s theorem to approximate the
derivative at a certain point. For example, the first derivative at a point x can be
calculated as follows:

∂f

∂x
≈ f (x+ ∆x)− f (x)

∆x
(2.9)

(2.9), also known as forward differencing, is a first order approximation to the deriva-
tive. A second order approximation, known as central differencing, can be obtained
as follows:

∂f

∂x
≈ f (x+ ∆x)− f (x−∆x)

2∆x
(2.10)

Note that even though the latter should be more accurate (in theory), it requires
twice as many function evaluations. The advantage of calculating derivatives with
the finite difference method is its simplicity. Given a black box function, it can be
calculated ‘around it’, i.e. the source code is not required. This is in contrast to
the complex variables method and exact differentiation. A disadvantage of the finite
difference method is that one has to choose a suitable value for the gradient step size,
∆x. The step size cannot be too big because truncation errors will spoil the results.
Theoretically, it has to be chosen as small as possible, i.e. it has to approach zero. In
practice however, when using a computer to calculate the functions, round-off errors
prevent the step size from becoming too small. One can therefore expect that there
will be an optimal step size. When the objective function is a simple evaluation
on a computer, the step size can be chosen quite small. If u is the round-off error
(typically about 1E-16 in double-precision arithmetic), a fairly optimal choice of the
step size is

√
u [41]. This rule is followed by many practical optimizers when they

use finite differencing to determine the functions’ gradients.
However, the objective functions may contain a certain degree of noise and for this
reason, it is not practical to take a gradient step size as small as

√
u. Noise in this

context is not the same as in physical experiments. On the contrary, the noise is
repeatable. In the present context, the noise in the CFD functions can have various
sources:

• the first is attributed to the discretization error, in particular, perturbations in
the mesh as small changes in the geometry occur. Especially when remeshing
the geometry for each design point, this can be a substantial contributor to
the noise. The method of remeshing from scratch is the current method used
in the LRGP CFD department;

• another possible source is due to incomplete convergence. In practice the
simulation is stopped long before the residuals reach machine precision. To

CALCULATING DERIVATIVES 21

decrease the influence of this source it is therefore wise to average the objective
function over the last X number of iterations instead of taking the actual
final value, a method that is already implemented in the current LRGP CFD
methodology;

• yet another source may be due to the inaccurate application of boundary
conditions (e.g., iterating during the solution towards a fixed value of lift).

If no prior knowledge is available and the optimal gradient step size for a CFD
function is to be determined, a parameter sweep will have to be carried out at a
certain design point and the step should be chosen such that one is outside the noise
level of the function. As the optimal gradient step size may be different at various
design points and from problem to problem, it should be evident that even though
the method of finite differencing is very simple, it has a serious practical drawback.

2.4.2 Complex variables method

An alternative, more accurate method of calculating derivatives makes use of a com-
plex Taylor series expansion instead. By introducing a small perturbation parameter
ε to the imaginary component of a function f , the derivative may be approximated
as follows:

∂f

∂x
≈ = [f (x+ εi)]

ε
(2.11)

As a result, the gradients are obtained without subtracting similarly valued func-
tions [33]. However, this method is still in principle an approximation method for
calculating derivatives and in addition requires the function’s source code.

2.4.3 Exact differentiation

The final method discussed is an exact method for obtaining gradients, which boils
down to the well-known method of symbolic differentiation. Even though one might
expect that exact differentiation would only be possible for simple analytic functions
and not for a sophisticated computer code, the idea of applying exact differentia-
tion to a computer code is that at the end of the day, any function is calculated
by carrying out a sequence of simple elementary operations involving one or two
arguments at a time. Examples of one-argument operations are the trigonometric,
exponential and logarithmic functions. Two-argument operations include addition,
multiplication, division and the power operation. Extensive use is made of the chain
rule, which states that if h is a function of the vector y ∈ Rm, which in turn is a

22 CHAPTER 2 REVIEW OF LOCAL SOLVERS

function of the vector x ∈ Rn, the derivative of h with respect to x can be written
as follows:

∇xh (y (x)) =
m∑
i=1

∂h

∂yi
∇yi (x) (2.12)

In the same way that the original code is written to calculate the objective function
at a certain design point, it is possible to write a code that can calculate the deriva-
tive of the objective function at the same point. However, realizing that writing a
good computer code can already be labor intensive, one can imagine that writing
the differentiated code will be labor intensive as well, especially if the original pro-
gram is updated regularly. Fortunately, there are computer programs available that
can automatically generate code capable of computing the derivative of the original
function. These Automatic Differentiation (AD) programs work by breaking the
original code into the most elementary operations mentioned above. They then ap-
ply the chain rule to build the exact derivative. For a review on recent developments
in automatic differentiation the reader is referred to Bischof et al. [2].
Even though exact differentiation will provide an exact value for the derivative of
a certain function f with respect to xi, one still has to carry out this procedure n
times to obtain the function’s gradient, required by the gradient-based algorithms.
So, even though exact differentiation is superior to the two previously mentioned
methods in terms of accuracy, in terms of cost it is the same. Luckily, it is possible
to obtain the gradient of f at the cost of (approximately) one function evaluation
by solving the adjoint (dual) problem instead of the original (primal) problem. The
concept of duality is a well known concept in mathematics. In the context of design,
the first application of adjoint methods was made by Pironneau [40]. In aerody-
namic shape optimization, where the number of variables can become very high and
the function values are obtained from expensive CFD simulations, adjoint methods
have become very popular, as reflected in the large amount of articles that have
been published about the subject in recent years ([20], [42], [38], [36], [35]).
Still, one should not forget that the source code is needed in order to carry out
the exact differentiation and on top of this, if the adjoint method is to be used, an
adjoint solver should be developed. In industry, extensive use is made of commercial
codes, for which the source code is not available (i.e. the program is a black box).
This has therefore limited the use of these methods in industrial applications.

23

‘All that we see or seem, is but a dream within
a dream...’

Edgard Allan Poe, A Dream within a Dream 3
Review of surrogate modeling

The previous chapter reviewed local optimizers. They have two main drawbacks,
which especially become evident when the objective and/or constraint functions are
expensive.
First of all, if they fail to find an improvement, it is not straightforward to determine
why this happened. There are a number of potential causes. For example, it is con-
ceivable that there is indeed no improvement possible. Another cause could be the
solver settings. For the gradient algorithms, inaccurate gradients can easily cause
the methods to stall or choose suboptimal search directions. Finally, failure to find
an improvement could have been caused by a failed run that occurred somewhere
in the process. In previous projects carried out in the LRGP CFD department,
cases have been reported where an optimizer would suddenly start searching in a
completely different part of the design space after an analysis failure occurred. If
the function to be optimized is cheap and the solver had not found an improvement,
it is easy to change some settings or change the initial starting point and restart the
algorithm. However, when the functions are particularly expensive, this may not be
possible.
The second drawback to directly linking an optimizer with an expensive function is
that they do not provide an understanding of the design problem. When success-
ful they do return an improvement compared to the initial point and if they are
particularly efficient, a small number of design points in between. This may not
be a problem if the improved design is indeed the last stage in the process but in
practice this is not the case. Models used in optimization projects are de-featured
at certain regions to reduce the mesh count. To confirm whether the design does
indeed improve the baseline, it is consequently evaluated on a more refined model,
possibly at a number of ride heights or even in yaw and steer, which then requires
a full-car simulation. Once the concept has been confirmed to work, it is tested in
the wind tunnel and of course the last stage is track testing. At any of these stages
it could be found that the concept is actually not an improvement. In that case, it
is important to determine why this is the case and above all how this can be solved.
Since an optimizer simply yields an (apparent) optimum, they are obviously not a
great tool for gaining understanding.
This chapter reviews an alternative optimization methodology considered suitable
when the relevant functions are expensive. Indeed, it is not one algorithm but rather

24 CHAPTER 3 REVIEW OF SURROGATE MODELING

a set of separate ideas that when combined appropriately can provide a valuable en-
hancement to the current optimization methodology. It will be referred to as the
surrogate modeling framework.
As the name suggests, the concept of surrogate modeling is to replace an expensive
function with a cheaper function that should serve as its surrogate. So, instead of
thoroughly exploring the expensive function or using it for (global) optimization,
these operations are carried out on the cheaper surrogate. The framework can be
roughly subdivided into three steps:

1. choose a set of points where the original, expensive function should be evalu-
ated. This is the so-called design of experiments (DOE) or ‘calibration’ phase;

2. using the DOE results, build a surrogate model;

3. use the surrogate for the intended purpose(s).

The following three sections describe each step in detail.

3.1 The design of experiments

The first step in the surrogate modeling framework is to seed the design space with
a number of sample points where the actual function is to be evaluated. To obtain a
surrogate model with sufficient accuracy throughout the design space it is important
that the sample points cover the whole space. The easiest way of achieving this is to
divide the space into a rectangular mesh and make each vertex a design point. This
approach is known as a full factorial. The main disadvantage of this approach is
that the number of points required rises exponentially with the number of variables.
An alternative to the full factorial approach is to only use a subset of it. Instead of
choosing the subset randomly, it can be chosen such that it maintains orthogonality
(independence) among the different variables and interactions. These designs are
also known as orthogonal arrays.
However, when it is essential to use a minimum number of sample points, a very
popular method is to make use of Latin Hypercubes. If it is decided to use m sam-
ples, then each dimension is subdivided into m levels. There is no unique way of
obtaining such a design. For this reason, Latin Hypercubes are generated randomly.
The advantage of Latin Hypercubes is that each variable instance is visited only
once. The disadvantage is that since they are generated at random, it is possible to
come up with a sample set that does not cover the space sufficiently.
To obtain a so-called space filling design, an optimization routine can be set up with
the ordering of the sample points in the space as the variables and the minimum
distance between two points as the objective function to be maximized. These opti-
mization problems can be solved with various combinatorial optimization methods,
like genetic algorithms or simulated annealing. The Optimal Latin Hypercube is the

BUILDING THE SURROGATE MODEL 25

DOE technique of choice within the optimization methodology at the CFD depart-
ment.
Another DOE technique is known as Central Composite Designs. The design is gen-
erated by augmenting a 2-level full factorial with a center point and two additional
star points for each of the n variables. This amounts to 2n + 2n + 1 design points
in total. The disadvantage of this type of DOE is that the number of design points
rises quickly with the number of dimensions and in addition to this the user cannot
specify the number of design points to be used. This is one of the major advantages
of (Optimal) Latin Hypercubes, as the user can explicitly specify the number of
sample points to be used for constructing the surrogate model.
In the rest of this thesis, Optimal Latin Hypercube sampling is used as the DOE
technique.

3.2 Building the surrogate model

Using the DOE results, the next step is to build the surrogate model1. The model
can either be built by fitting a mathematical function through the data points or
one can take into account the underlying physics. The former method is considered
in this thesis. A discussion of the latter approach can be found in Beran and Silva
[1].
A number of surrogate modeling techniques exist. Polynomial fitting is the simplest
and most well-known technique. The surrogate model can be represented as follows:

ŷ (x) =
∑
h

βhfh (x) + ε (3.1)

where ŷ is the prediction of the real response y and where each fh (x) is a polynomial
term. The βh’s are unknown coefficients. ε is a normally distributed, independent
error term with mean zero and variance σ2. The unknown coefficients are determined
by solving the following system:

 f1

(
x(1)

)
· · · fh

(
x(1)

)
...

. . .
...

f1

(
x(m)

)
· · · fh

(
x(m)

)

 β1

...
βh

 u

 y(1)

...

y(m)

 (3.2)

The system has m equations and h unknowns, since there are m sample or DOE
points and h coefficients. If h < m, then the surrogate model will regress the data;
the system of equations is solved in the least squares sense. If h = m, then the
surrogate model will interpolate the data. Even though the technique of polynomial

1Another word for surrogate model is metamodel, which means ‘model of a model’. Indeed, the expensive
simulation code is a model of physical reality and the surrogate is the model of the expensive code.

26 CHAPTER 3 REVIEW OF SURROGATE MODELING

fitting is very simple, it is not particularly suitable when the actual function is
highly nonlinear. Of course, one can use a polynomial of higher order (increase h).
However, high order polynomials will tend to show excessive oscillations between
data points. So, even though one can easily force the method to interpolate a highly
nonlinear function by simply choosing h = m, the danger of overfitting (i.e. poor
generalization of the surrogate model to unseen data points) is quite high.
A popular fitting method is to make use of radial basis functions (RBFs). As their
name suggests, an approximation consists of a sum of weighted basis functions that
take as input the Euclidean distance between a trial point and the sample points
used to build the surrogate model. A large number of basis functions exist. The
most popular are the thin plate spline, multiquadratics and the Gaussian. Given
a set of sample points with their corresponding function values, the weights are
determined by solving a matrix-vector equation.
Having introduced RBFs, the next technique that is presented has been the focus
of the present research. The technique is known as Kriging and fundamentally it is
an RBF method. However, it has some crucial extensions to the standard method
that will become evident shortly.

3.2.1 Kriging: the theory

Kriging was originally used in the 1950s by D.G. Krige [27] to analyze mining data.
The method was later refined by Matheron [34]. Nowadays, Kriging is a fundamental
technique in the field of geostatistics. The idea of using Kriging to build surrogate
models of computer experiments was introduced by a group of statisticians in the
late 1980s. A paper by Sacks et al. [43], entitled ‘Design and Analysis of Computer
Experiments’, deserves special mention here. Following the title of this paper, the
use of Kriging in the context of computer experiments has become widely known as
DACE. In the rest of this thesis, when mentioning Kriging it will be thought of as
its usage in the context of DACE.
The presentation of Kriging in this section follows the explanation outlined by Jones
et al. [26]. They motivate the idea behind Kriging as a modification to the previously
described method of polynomial fitting that addresses some of its shortcomings in
the context of fitting responses from deterministic computer experiments. Recall
that in polynomial fitting, it is assumed that the errors are independent. For a
physical experiment, this is an acceptable assumption. However, for a computer
experiment a set of inputs will always return the same outputs. In other words, the
assumption of independent errors is incorrect. Any error in the metamodel will be
due to modeling errors. The error term is therefore really a function of the inputs:
ε (x). Additionally, if two points i and j are close to each other, then the errors
ε
(
x(i)
)

and ε
(
x(j)

)
should be close too. So, instead of assuming that the errors are

independent, for computer experiments it makes more sense to assume that they
are related somehow; in other words, they are correlated. In fact, it makes sense to
assume that the correlation is high when points are close to each other and low when

BUILDING THE SURROGATE MODEL 27

they are far apart. For each sample point, its correlation with the rest of the space
can be represented as a function of the distance. This reminds one of the radial
basis function method and in fact, Kriging itself is a type of radial basis function
method. However, it should be considered a special case since the distance is not
defined as the well-known Eucledian distance. Instead, it is defined as follows:

d
(
x(i),x(j)

)
=

n∑
h=1

θh

∣∣∣x(i)
h − x

(j)
h

∣∣∣ph (3.3)

with θh ≥ 0 and ph ∈ [1, 2]. With θh fixed and the same for all variables and ph
set to 2, the method would reduce to the standard RBFs. However, Kriging allows
each variable to have an individual contribution to the approximation, therefore
allowing a more flexible response surface. Kriging can therefore be referred to as a
tuned RBF method. With the distance function described by (3.3), the correlation
between errors at x(i) and x(j) is:

Corr
[
ε
(
x(i)
)
, ε
(
x(j)

)]
= exp

[
−d
(
x(i),x(j)

)]
(3.4)

The choice of the exponential was not arbitrary. The reason it was chosen is because
it has the required correlation properties:

• for distantly spaced points, the correlation approaches 0;

• for closely spaced points, the correlation approaches 1.

In fact, if the distance between two points is zero then the correlation is 1. This
makes sense as it was stated that for a computer experiment, a given input will
always return the same output. By modeling the correlation in this way, it is ac-
ceptable to defer from using a complicated regression term (first term in (3.1)) and
just use a simple constant instead. One can state that polynomial regression and
Kriging have contradictory philosophies. Where polynomial regression focuses en-
tirely on the regression term and simply assumes independent errors, Kriging focuses
on modeling the errors, which are not assumed to be independent but correlated.
For Kriging, (3.1) can therefore be written as:

ŷ (x) = µ+ ε (x) (3.5)

where µ is the constant regression term and ε (x) is Normal
(
0, σ2

)
. Contrary to

(3.1), the correlation between errors is given by (3.3) and (3.4) and is not zero. (3.3)-
(3.5) form the so-called ‘DACE stochastic process model’, From these equations it
can be deduced that there are 2n+ 2 parameters that should be determined: µ, σ2,
θ1, ..., θn and p1, ..., pn. Notice that µ is equivalent to the βh’s in (3.1). In the case of

28 CHAPTER 3 REVIEW OF SURROGATE MODELING

Kriging, it would be found by solving the equation in the generalized least-squares
sense:

µ =
(
1TR−11

)−1
1TR−1y (3.6)

R is the so-called correlation matrix. If m sample points were used to build the
response surface, it is an m × m matrix whose (i, j) entry is given by (3.4). 1 is
an m-sized vector of ones. y is the vector containing the m responses. Having
calculated µ, the variance σ2 can be found as follows:

σ2 =
1

m
(y− 1µ)T R−1 (y− 1µ) (3.7)

To be able to calculate µ and σ2, the parameters θ1, ..., θn and p1, ..., pn have to be
determined, since the correlation matrix is a function of these parameters. They
are determined by maximizing a function known as the likelihood function, which
is a common function in statistics. The idea of the maximum likelihood function is
that it gives the parameters most likely to have resulted in the data observed. The
variables θ1, ..., θn are referred to as the correlation parameters or simply ‘the θ’s’.
The variables p1, ..., pn are known as the smoothing parameters. In geostatistical
models they are often set to values between 0 and 1 to allow for erratic responses.
In engineering however, where the objective functions are frequently smooth and
do not have singularities, the values are often set to 2. In the current thesis, the
smoothing parameters were all fixed to 2, leaving the θ’s as the tuning parameters.
To evaluate the Kriging surface at a point x*, the following expression is used (the
derivation of this predictor can be found in Sacks et al. [43]:

ŷ (x∗) = µ+ rTR−1 (y− 1µ) (3.8)

where r is an m-sized vector representing the correlations between the trial point x*
and the sample points used to build the surface. To verify that the method indeed
interpolates the sample data, assume that x* is the i-th sample point (x(i)). In that
case, r will simply be the i-th column of the correlation matrix. So, the term rTR−1

can be expressed as follows:

rTR−1 =
(
R−1r

)T
=
(
R−1Ri

)T
= eTi (3.9)

where ei is the i-th unit vector. (3.8) then reduces to:

ŷ
(
x(i)
)

= µ+ eTi (y− 1µ) = µ+
(
y(i) − µ

)
= y(i) (3.10)

So, the prediction at the i-th sample point indeed returns the actual observed value
y(i).

BUILDING THE SURROGATE MODEL 29

Kriging is an attractive method since it is capable of approximating highly nonlinear
functions, much more so than the traditional RBFs, as it allows each direction to
be weighted differently when calculating distances. In addition, the description of
Kriging from the statistical viewpoint, i.e. assuming that a prediction is a realization
of a stochastic process, allows one to quantify the uncertainty of a prediction. This
feature will be of benefit when discussing the use of Kriging in the context of global
optimization, which is the subject of the next section. The mean squared error of
the predictor at a point x* is denoted by the following equation (again, the reader
is referred to Sacks et al. [43] for a derivation of this formula):

s2 (x∗) = σ2

[
1− rTR−1r +

(
1− 1TR−1r

)2
1TR−11

]
(3.11)

The term −rTR−1r represents the reduction in the prediction error due to the fact
that x* is correlated with the sampled points. The term

(
1− 1TR−1r

)2
/1TR−11

represents the uncertainty that comes from the fact that µ is not known exactly,
but instead is estimated from the data. Since the method interpolates this data, the
error at a sampled point must be zero, i.e. s2

(
x(i)
)

= 0. Indeed, since R−1r = ei
as given by (3.9), rTR−1r becomes:

rTR−1r = rTei = ri (x∗) ≡ Corr
(
x∗,x(i)

)
= Corr

(
x(i),x(i)

)
= 1 (3.12)

Additionally,

1TR−1r = 1Tei = 1 (3.13)

Substituting (3.12) and (3.13) into (3.11) therefore gives that s2
(
x(i)
)

= 0.

3.2.2 Kriging: the implementation

A Matlab implementation of Kriging, developed by Lophaven et al. [32], was used
in the present work2. In the following, it will be referred to as dacefit, which is
the name of the Matlab script that generates the Kriging surface, given a set of
sample data. Once a Kriging surface has been generated, predictions can be made
using the script called predictor. The program comes with three different types of
regression functions; a constant, a linear function and a quadratic. The user however
has total freedom in supplying a custom made regression function. Recall that in
the previous section, the correlation between two points was represented with an
exponential function (see (3.4)). Like the traditional RBF method, it is possible to
define other types of correlation functions or (basis functions). Dacefit comes with 7

2The source code is freely available at URL: http://www2.imm.dtu.dk/~hbn/dace/

http://www2.imm.dtu.dk/~hbn/dace/

30 CHAPTER 3 REVIEW OF SURROGATE MODELING

Table 3.1 Correlation models available in dacefit (dj = wj − xj).

Name Rj (θj,dj)

EXP exp (−θj |dj |)

EXPG exp
(
−θj |dj |θk+1

)
, 0 < θk+1 ≤ 2

GAUSS exp
(
−θjd2j

)
LIN max [0, 1− θj |dj |]

SPHERICAL 1− 1.5ξj + 0.5ξ3j , ξj = min [1, θj |dj |]

CUBIC 1− 3ξ2j + 2ξ3j , ξj = min [1, θj |dj |]

SPLINE ζ (ξj)

different choices, as summarized in Table 3.1. (3.14) shows how the spline function
ζ is defined, where ξj = θj |dj |.

ζ (ξj) =

1− 15ξ2

j + 30ξ3
j , 0 ≤ ξj ≤ 0.2

1.25 (1− ξ)3 , 0.2 < ξj < 1

0, ξ ≥ 1

(3.14)

If there are n dimensions, the correlation R between two points is the product of n
one-dimensional correlations:

R (θ,w,x) =

n∏
j=1

Rj (θj , wj − xj) (3.15)

The correlation functions can be separated into two groups. The first group consists
of the functions that have a parabolic behavior near the origin (GAUSS, CUBIC and
SPLINE) and the second group consists of the functions that have a linear behavior
near the origin (EXP, LIN and SPHERICAL). Depending on the last parameter
θk+1, the general exponential (EXPG) can either belong to the first group (θk+1 = 2)
or the second group (θk+1 = 1), where it becomes GAUSS or EXP, respectively. The
functions in the first group have a continuous gradient at the origin and are smoother
than the functions in the second group, which have a discontinuous gradient at the
origin. Figure 3.1 illustrates the correlation functions from the two groups.
As discussed in the previous section, the correlation functions should be 1 when
the distance is zero (correlation of a point with itself) and decrease towards zero
with increasing distance. The correlation functions of dacefit indeed have these

BUILDING THE SURROGATE MODEL 31

Figure 3.1 Correlation functions for 0 ≤ dj ≤ 2 with θj = 0.2 (red), θj = 1 (green) and
θj = 5 (blue).

properties. Additionally, it can be observed that large values for θi lead to a faster
decrease. θi basically represents how far a sample point’s influence extends. A low
θi means that the sample points have a high correlation in the i-direction, while a
high θi means that there is a considerable difference between the sample points in
this direction. For this reason, θi can be considered to be a measure of how ‘active’
a certain variable is. It is helpful to look at the correlation parameters in this way,
especially in high-dimensional problems where it is difficult to visualize the design
landscape and the effect of the variables is unknown. By examining the elements
of θ one can determine which variables are the most important and maybe even
eliminate the unimportant ones in future considerations.
The rest of this section describes how dacefit calculates the model parameters µ,
σ2 and θ1, ..., θn when a set of sample points has been given. The discussion follows
the description by Lophaven et al. [31]. Given m sample points in an n dimensional
space (S̄ ∈ Rm×n) with their corresponding function values Ȳ ∈ Rm×1, the first step
is to normalize the data:

S:,j =
S̄:,j−Sj,mean

Sj,std

Y = Ȳ−Ymean
Ystd

(3.16)

32 CHAPTER 3 REVIEW OF SURROGATE MODELING

where Sj,mean and Sj,std are the mean and standard deviation of the j-th variable,
respectively and Ymean and Ystd are the mean and the standard deviation of the out-
put, respectively. All subsequent computations are carried out with the normalized
data which will have a mean of zero and a variance of one in each coordinate. The
next step is to calculate the regression matrix F ∈ Rm×t. The i-th row contains the
t elements of the regression function evaluated at the i-th sample point. The i, j-th
element of the correlation matrix R ∈ Rm×m was defined in (3.15). Note that the
correlation matrix is a function of θ. The following regression problem is formed:

Fµ u Y (3.17)

wherem ≥ t to ensure that the system is not underdetermined. The generalized least
squares solution was already given by (3.6) in the case that a constant regression
term was used and therefore F was a vector of ones and µ was a scalar. In the
general case, the solution will be:

µ =
(
F TR−1F

)−1
F TR−1Y (3.18)

(3.7) then becomes:

σ2 =
1

m
(Y − Fµ)T R−1 (Y − Fµ) (3.19)

Even though (3.18) and (3.19) contain the inverse of the correlation matrix and the
inverse of F TR−1F , they should not be calculated explicitly to obtain the solutions.
Calculating the inverse of a matrix in order to solve a system of linear equations
can easily lead to inaccurate results if the matrix to be inverted is ill-conditioned.
Instead, dacefit uses a better procedure. The first step consists of calculating the
Cholesky factorization of the correlation matrix:

R = CCT (3.20)

where C is a lower triangular matrix with positive diagonal entries. The Cholesky
factorization is only possible if the correlation matrix is symmetric and positive-
definite. The first condition is a given because of the way the correlation matrix
is defined; the correlation between sample points i and j is of course equal to the
correlation between sample points j and i. Positive-definiteness however is not a
guarantee. For example, if there are n variables and two of them are perfectly
correlated, then the correlation matrix will not have n independent columns and
therefore the matrix is singular, i.e. not positive-definite. If the correlation matrix
is found not to be positive-definite, dacefit aborts. Writing R in its factorized form
in (3.18) produces the following expression:

BUILDING THE SURROGATE MODEL 33

µ = F−1CCTF−TF TC−TC−1Y (3.21)

which reduces to:

µ =
(
C−1F

)−1
C−1Y (3.22)

The following two matrices are defined:

F̃ = C−1F

Ỹ = C−1Y
(3.23)

Since C is a lower triangular matrix, F̃ and Ỹ can simply be found by forward
substitution. (3.22) then reduces to a regression problem which can be solved by
solving the normal equations:

F̃ T F̃µ = F̃ T Ỹ (3.24)

To reduce effects of rounding errors when the correlation matrix is very ill-conditioned,
the QR factorization of F̃ is computed:

F̃ = QGT (3.25)

where Q has orthonormal columns and GT is upper triangular. Substituting (3.25)
into (3.24) gives, after some cancellations:

GTµ = QT Ỹ (3.26)

µ can then be found by simple back substitution. Because of the Cholesky factor-
ization and the definition of the matrices in (3.23), σ2 can simply be calculated as
follows:

σ2 =
1

m

∣∣∣Ỹ − F̃µ∣∣∣2 (3.27)

Where |·| represents the determinant.
Of all operations carried out by dacefit, the Cholesky factorization dominates the
computational effort. As the correlation matrix is an m×m matrix, the factoriza-
tion uses O

(
m3
)

flops. The backward and forward substitutions carried out to solve
the systems in (3.23) on the other hand take O

(
m2
)

flops. The QR factorization is
not so expensive. If t regression terms are used, it is an O

(
tm2

)
process.

To find the optimum correlation parameters, dacefit carries out a box constrained

34 CHAPTER 3 REVIEW OF SURROGATE MODELING

non-linear optimization. The objective function optimized is the maximum likeli-
hood estimator. For every distribution a likelihood function can be set up. For
the distribution considered here (a multivariate normal distribution) the likelihood
function can be expressed as follows:

1

(2π)
m
2 (σ2)

m
2

∣∣∣R 1
2

∣∣∣ exp

(
− (Y − Fµ)T R−1 (Y − Fµ)

2σ2

)
(3.28)

By taking the natural logarithm of (3.28), the maximization process can be simpli-
fied without modifying the resulting parameters. Of course, constant terms can be
ignored in the optimization process;

− m

2
ln
(
σ2
)
− 1

2
ln (|R|)− (Y − Fµ)T R−1 (Y − Fµ)

2σ2
+ const (3.29)

Inserting the values of µ and σ2 (from (3.18) and (3.19)) into (3.29) gives the so-
called concentrated log likelihood function:

− m

2
ln
(
σ2
)
− 1

2
ln (|R|) (3.30)

Instead of maximizing (3.30), dacefit minimizes the following function:

ψ = |R|
1
m σ2 (3.31)

It can be verified that (3.30) and (3.31) will return the same optimum set of θ’s by
taking the natural logarithm of (3.31) and multiplying the result with −m. Dacefit
uses a modified version of the Hooke-Jeeves method for the optimization.

3.3 Exploring and exploiting the surrogate model

Once the surrogate model has been built and its accuracy has been deemed satisfac-
tory, it is ready to do its duty, namely to act as a cheap replacement to the expensive
code. The two uses of interest in the present context are gaining an understanding
of the problem and using the response surface to find an optimum design. One
can gain an understanding of the problem by creating suitable plots like parameter
sweeps and contour curves. The rest of this section describes the use of surrogates
in an optimization framework
Starting with an initial response surface, built using results obtained from a DOE,
the optimum on the response surface is searched. The expensive code is then evalu-
ated at this point, the response surface is updated and the optimum is found on the
new surface. The expensive code is then evaluated at the new point and the response

EXPLORING AND EXPLOITING THE SURROGATE MODEL 35

surface is updated again. This process is repeated until a maximum number of ex-
pensive function evaluations is reached, or some user specified convergence criterion
has been met. As the surrogate model is cheap to evaluate, global optimization al-
gorithms like branch-and-bound, genetic algorithms and simulated annealing can be
used to find the optimum. The algorithm used in this research for finding the global
optimum on the response surface is the global optimizer DIRECT. A description of
how it works can be found in Appendix A. The next sub section describes a number
of criteria that can be used to choose the next sample point to be evaluated, i.e. the
‘infill criteria’.

3.3.1 Infill criteria

543
KrigingTuned basis

functions.
Statistical

interpretation

762

Thin-plate
splines, Hardy
multiquadratics

Fixed basis
functions.

NO statistics.

Interpolating

1
Quadratic polynomials and

other regression models
Not

interpolating
(smoothing)

Optimization: find
point that

minimizes an
objective

Goal seeking: find
point that achieves a

given target

Maximize
Expected

Improvement

Maximize the
Probability of
Improvement

Minimize
a

Lower
Bounding
Function

Minimize
the

Response
Surface

One-stage approach:
evaluate hypotheses about optimum based on
implications for the response surface

Two-stage approach: first fit a surface, then find the next iterate by
optimizing an auxiliary function based on the surface

Method for selecting search points

Kind of Response Surface

543
KrigingTuned basis

functions.
Statistical

interpretation

762

Thin-plate
splines, Hardy
multiquadratics

Fixed basis
functions.

NO statistics.

Interpolating

1
Quadratic polynomials and

other regression models
Not

interpolating
(smoothing)

Optimization: find
point that

minimizes an
objective

Goal seeking: find
point that achieves a

given target

Maximize
Expected

Improvement

Maximize the
Probability of
Improvement

Minimize
a

Lower
Bounding
Function

Minimize
the

Response
Surface

One-stage approach:
evaluate hypotheses about optimum based on
implications for the response surface

Two-stage approach: first fit a surface, then find the next iterate by
optimizing an auxiliary function based on the surface

Method for selecting search points

Kind of Response Surface

Figure 3.2 A taxonomy of response-surface-based global optimization methods. (From Jones
[24])

The most obvious and intuitive way of choosing the next sample point is to deter-
mine the actual best function value on the response surface. However, Jones [24]
shows that it can cause the method to get stuck in a local optimum. Figure 3.6 il-
lustrates this using a one-dimensional function. It has two minima: one at x ≈ 0.14
and the other at x ≈ 0.76. The latter is the global minimum. To avoid getting stuck
in a local minimum, a number of infill criteria have been proposed in the open liter-
ature. The surrogate modeling technique of choice in the present research is Kriging
and Jones discusses a set of infill criteria based on using this particular modeling
technique. Figure 3.2 summarizes the various methods available, as extracted from
the mentioned article. For a discussion of a global optimization framework using the
standard RBFs, the interested reader is referred to Gutman [16]. From the figure
it can be determined that the method illustrated in Figure 3.6 is Method 2. The
various infill criteria are grouped according to the metamodeling technique used and
the method used for selecting infill points.
Regarding the method to select infill points, a subdivision is made between the

36 CHAPTER 3 REVIEW OF SURROGATE MODELING

two-stage approach and the one-stage approach. The two-stage approach first fits a
surface through the sample data (by determining the optimum model parameters),
followed by choosing the next iterate by optimizing an auxiliary function based on
the surface (in the case of Method 2, the auxiliary function is the function value
on the response surface itself). Jones mentions that the fundamental flaw of this
approach is that it assumes that the response surface obtained from the first stage
is accurate. As a result of this it can be deceived when the initial sample is sparse
and gives a highly misleading view of the function.
One-stage methods (methods 6 and 7 in Figure 3.2) on the other hand avoid esti-
mating the model parameters based only on the observed sample set. The basic idea
is to first define a hypothesis about the optimum: ‘the optimum function value is f∗

and obtained at x∗’. Then, the surface most likely to go through the sample points
and this optimum is sought by optimizing the model parameters with the point
x∗. So, the number of optimization parameters is extended with x∗. Therefore, the
response surface is built in one step. The method described here is method 6 from
Figure 3.2. Method 7 is similar to method 6 with the modification that instead of
defining one f∗, a range of these values are evaluated. Figure 3.3 gives an example
of Method 6. In principle, one-stage methods are better than two-stage methods.
The disadvantage of one-stage methods is that they are more difficult to optimize.
In the present framework, the response surfaces will not only be used for optimiza-
tion. Rather, once a DOE has been carried out the first focus will be to understand
the design problem. To this end, a response surface will be built and suitable plots
will be made to explore the relevant functions. Once the user is confident that the
problem was set up correctly and a fair understanding of it has been achieved, the
next step will be to use the response surface for optimization purposes, i.e. to find
the best configuration. This type of process naturally lends itself to the two-stage
process rather than the one-stage process, as the response surface will already have
been built.
The metamodeling techniques are subdivided into two groups. The first consists of
techniques that regress data points and the second consists of interpolating tech-
niques. According to the table, method 1 is the only suitable method for regressing
techniques. It is the intuitive method of choosing the infill point to be the optimum
on the response surface. So, clearly these techniques are not suitable when it is
crucial to find the global optimum as they can easily get stuck in a local optimum.
The second group of metamodeling techniques consists of the interpolating meth-
ods. This group is subdivided into the fixed basis functions (the traditional RBF
method) and the tuned basis function method Kriging.
The final three methods given in Figure 3.2, methods 3, 4 and 5, are reserved for
Kriging. The reason is that these methods rely on the metamodeling technique’s
ability to quantify a prediction error at a given point, in addition to the prediction
itself. As explained in the previous section, a prediction made by Kriging can be
thought of as being a realization of a stochastic process. This does not mean that the
output is a random process. On the contrary, they are obtained from deterministic
computer experiments.

EXPLORING AND EXPLOITING THE SURROGATE MODEL 37

1 2 3 4 5

0

1

2

3

4

5

6

7

8

Surface Through (x*, f*)

Sample Points

Assumed Optimum (x*, f*)

x* = 1.75?

Credibility = -1.478

0

1

2

3

4

5

6

7

8

1 2 3 4 5

Surface Through (x*, f*)

Sample Points

Assumed Optimum (x*, f*)

x* = 3.35?

Credibility = +1.424

Figure 3.3 In Method 6, the credibility of the hypothesis that the surface passes through
(x∗, f∗) is based on the likelihood of the data conditional upon the surface passing through this
point. The figure compares hypotheses for two possible values of x∗, both with the same value
of f∗. (From Jones [24])

The statistical view simply states something about the uncertainty in the predictions
themselves. So, next to the predicted value at a certain design point, given by (3.8),
one can also calculate the uncertainty about this prediction; recall the mean squared
error, given in (3.11). Note that methods 1 and 2 assume that the prediction is
correct and therefore they simply use the predicted value as the auxiliary function
for choosing the next sample points. If this assumption is true, then if an appropriate
global optimization algorithm is applied on the response surface, the actual global
optimum will eventually be found. However, if the assumption is not true, then
there is a chance that the method will get stuck in a local minimum. Instead of
stating that the prediction is correct, one can acknowledge the fact that there is
some uncertainty present. So, instead of using the predicted value as the objective
function, one can combine it with the uncertainty.
The first method discussed that makes use of the prediction error is method 3,
proposed by Cox and John [6]. The auxiliary function is the so-called ‘statistical
lower bound’ and is defined as follows:

ŷ (x)− κ · s (x) (3.32)

where ŷ (x) is the predicted value and s (x) is the root mean squared error of the
prediction. For strictly positive values of κ the method will put some emphasis on
searching in relatively un-sampled regions of the design space where the prediction
error will be high. The higher the value of κ, the more global the search will be. The
disadvantage of this method is that in the limit, the iterates will not be dense. In
other words, not all possible points in the design space will eventually be sampled.
A theorem by Torn and Z̆ilinskas [51] states that in order to converge to a global
optimum for a general continuous function, the sequence of iterates must be dense.

38 CHAPTER 3 REVIEW OF SURROGATE MODELING

A more popular method, originally proposed by Kushner [28], defines the probability
of improving the function beyond some target T . The infill point will be the point
that maximizes this utility function. As a prediction made by Kriging is assumed to
be a realization of a stochastic process Y (x) with the mean given by (3.8) and the
error given by (3.11), the probability of improvement can be calculated as follows:

Φ

(
T − ŷ (x)

s (x)

)
(3.33)

where Φ (·) is the Normal cumulative distribution function. Contrary to method 3,
the iterates generated by method 4 will be dense, as proved by Gutman [16]. Indeed,
as sample points will start to cluster around a point, the error in that region will
become small meaning that the probability of finding an improvement there will
become small too. The algorithm will therefore be driven to search elsewhere in the
design space.
The last method described aims at maximizing a utility function known as the
expected improvement. This is method 5 in Figure 3.2 and it is the method imple-
mented in this thesis.

3.3.2 EGO: Efficient Global Optimization

Figure 3.4 The uncertainty about the function’s value at a point (such as x = 8 above) can
be treated as if the value there was a realization of a normal random variable with mean and
standard deviation given by the DACE predictor and its standard error. (From Jones et al. [26])

Maximizing the expected improvement has been made popular by Jones et al. [26].
They called the algorithm EGO, which is short for Efficient Global Optimization.
Locatelli [30] proved that under mild assumptions the iterates generated by the
method are dense, meaning that eventually all points in the design space will be
sampled. This means that the method will find the global optimum (eventually).
To calculate the expected improvement, the best point among the sample points

EXPLORING AND EXPLOITING THE SURROGATE MODEL 39

has to be identified first. In case of minimization: fmin = min (y1, ..., ym) (refer to
Figure 3.4). Again, interpret Kriging as if it is modeling the uncertainty at ŷ (x) by
treating it as the realization of a normally distributed random variable Y with mean
and standard deviation given by (3.8) and (3.11) respectively. For example, at the
point x = 8, a normal density function is shown. Its mean is at the value predicted
by the response surface and its width depends on the error at that point. A wider
function corresponds to higher uncertainty. By treating the prediction at x = 8 as
a realization of the random variable Y with the density function shown, there will
be a chance that the function x = 8 is an improvement over the current best value
fmin. This is conceivable since the density function extends below the line y = fmin

(the area colored in red). If the improvement is defined as follows:

I = max (fmin − Y, 0) (3.34)

then the expected improvement is obtained by taking the expected value of (3.34):

E [I (x)] = E [max (fmin − Y, 0)] (3.35)

It turns out that (3.35) can be expressed in closed form:

E [I (x)] = (fmin − ŷ) Φ

(
fmin − ŷ

s

)
+ sφ

(
fmin − ŷ

s

)
(3.36)

where Φ (·) and φ (·) are the standard normal cumulative and probability distri-
bution functions, respectively. Looking at (3.36), the following three interesting
observations are made:

1. the expected improvement will be 0 at a sample point. As the technique
interpolates the data, the error at a sample point i is 0. This makes the
second term in (3.36) equal to 0. The associated function value at i is yi, with
fmin ≤ yi. The argument in Φ (·) is therefore −∞, which renders it equal to 0.
So, the first term in (3.36) will be equal to 0 too. The fact that the expected
improvement will be 0 at a sample point guarantees that no re-sampling will
occur. In the limit, the iterates will therefore be dense. For this reason, the
method is guaranteed to find the global optimum;

2. the first term in (3.36) is the difference between the current minimum and
the predicted value multiplied by the probability that the function value will
be smaller than fmin. It is therefore large where the prediction is likely to
be smaller than fmin. The second term tends to be large where there is high
uncertainty about whether or not the prediction will be better than fmin,
i.e. unexplored regions. The utility function can therefore be thought of as
providing a trade-off between local and global search;

40 CHAPTER 3 REVIEW OF SURROGATE MODELING

3. contrary to the ‘statistical lower bound’ method given in (3.32) and the prob-
ability of improvement in (3.33), no user-supplied parameter is needed.

Figure 3.7 shows the method implemented on the same 1D function as was given in
Figure 3.6. In addition to the true function and the Kriging surface, the plots also
show the expected improvement. This is the objective function maximized in the
background. At the first iteration, the infill point is the same as for method 2, i.e.
the minimum on the response surface. This is because the expected improvement
there is at its maximum. Note that this is the only maximum at the considered in-
terval. At the second iteration, the expected improvement has three maxima. Two
of these are in the vicinity of the global minimum of the response surface. How-
ever, the global maximum of the expected improvement occurs at a different point,
where the design space has not been explored extensively yet. For this reason, the
infill point is at that position. When the point is evaluated on the real function,
it is found that the function value found is considerably better than the already
sampled points. The new function value found becomes the new fmin. In the next
three iterations, the infill points are all in the vicinity of the global minimum of
the response surface (around x = 0.76). In the sixth iteration however, the method
samples at a different point as the response surface has been sampled extensively
around x = 0.76 and the expected improvement there has therefore diminished. So,
when examining the infill points chosen it can clearly be seen that the method tries
to strike a balance between local and global search, which confirms point 2 stated
above. Point 1 can be confirmed by examining the ‘double bumps’ at Figures 3.7(b)
and 3.7(c). They can be thought of as being one bump ‘pinched’ to zero in the
middle by the presence of the sample point there. Also, note how the maximum
expected improvement starts out around 6E-1 and in the sixth iteration has dropped
to 1E-11.
Since EGO tries to balance local and global search, the sampling of the space can
be quite erratic. To define a stopping criterion for the method it is therefore unde-
sirable to monitor the convergence of the objective function value or the parameter
values. The most intuitive stopping criterion in that case would be the expected im-
provement value. If it drops below a certain threshold, the method can be stopped.
To illustrate this, a two-dimensional test function is considered, as given in Figure
3.8(a). The test function has four minima. The global minimum is denoted by the
cross. Figure 3.8(b) gives the initial response surface built using 10 sample points
distributed by an Optimal Latin Hypercube algorithm. 20 iterations are carried out
using Method 2 and EGO. Figures 3.8(c) and 3.8(e) give the iterates at iteration
10 and 20 for Method 2, respectively. Note that the figures are identical. This is
because the method converged after 9 iterations. Subsequent iterates were dupli-
cate points so the method stalled; it converged to one of the local minima. Figures
3.8(d) and 3.8(f) give the iterates at iterations 10 and 20 for EGO, respectively.
After 10 iterations it seems to be converging to the same local minimum as Method
2 but it clearly escapes getting stuck as at iteration 20 it is seen to have located the
global minimum. Figure 3.5 plots the function values and maximum improvement

EXPLORING AND EXPLOITING THE SURROGATE MODEL 41

as functions of the iteration number. Whereas the function value is not converging
to any value, the maximum expected improvement is clearly converging to 0. So,
when using EGO it makes more sense to use the maximum expected improvement
for assessing convergence.

Figure 3.5 Convergence of EGO in terms of sample function value (blue line) and the maximum
expected improvement (green line), applied to the function from Figure 3.8.

42 CHAPTER 3 REVIEW OF SURROGATE MODELING

(a) (b)

(c) (d)

(e) (f)

Figure 3.6 Optimization of the function y (x) = (6x− 2)
2

sin (12x− 4) using the global
minimum on the response surface as the infill point.

EXPLORING AND EXPLOITING THE SURROGATE MODEL 43

(a) (b)

(c) (d)

(e) (f)

Figure 3.7 Optimization of the function y (x) = (6x− 2)
2

sin (12x− 4) using the maximum
of the expected improvement as the infill point.

44 CHAPTER 3 REVIEW OF SURROGATE MODELING

(a) (b)

(c) (d)

(e) (f)

Figure 3.8 The two dimensional test function y (x) =
∑2
j=1 0.01

[
(xj + 0.5)

4 − 30x2j − 20xj

]
with the global minimum at the black cross (3.8(a)); the initial response surface using 10 sample
points (3.8(b)); response surfaces after 10 (3.8(c)) and 20 (3.8(c)) iterations for Method 2;
response surfaces after 10 (3.8(d)) and 20 (3.8(f)) iterations for EGO.

45

‘Do not follow where the path may lead. Go
instead where there is no path and leave a trail.’

George Bernard Shaw 4
Improvements to DACE

This chapter presents two contributions made to DACE. They are both based on
improving the quality of the response surface. It should be clear why obtaining an
accurate response surface is crucial. Not only will it speed up convergence in an opti-
mization loop, it will also give a more accurate global representation of the expensive
function, which is particularly important when the surrogate is used for visualiza-
tion purposes. The first contribution is the use of leave-one-out cross-validation
instead of the widely accepted maximum likelihood function when determining the
optimum correlation parameters. The second contribution boils down to smoothing
the DOE points rather than interpolating them, which is a useful technique when
the function of interest is noisy.

4.1 How to determine the optimum correlation parameters

To find the optimum correlation parameters, the open literature suggests using the
maximum likelihood estimator (MLE) as the objective function. This is indeed
the route followed by dacefit. As the optimizer, it uses a modified version of the
Hooke-Jeeves (HJ) method. Since the algorithm will only find a local optimum,
it was thought that if one uses a global algorithm, the response surfaces acquired
should naturally be of better quality. To this end, the global algorithm DIRECT1

was used in the optimization process. To verify whether this modification would
indeed provide better response surfaces, the interpolated version of CFD test case 1
(discussed in Chapter 6) was used. For a number of different sample sizes, response
surfaces were built using HJ and DIRECT. The quality of the response surfaces
obtained with these two optimizers was then compared by calculating their errors
on a fine 100×100 mesh of the actual function. Figure 4.1 shows the results. The blue
line, corresponding to the left vertical axis, gives the difference between the minimum
ψ found by DIRECT and HJ. As expected, DIRECT always finds a better optimum.
The green line, corresponding to the right axis, gives the difference between the
average error of the response surfaces obtained with DIRECT and HJ. Interestingly,
even though DIRECT always finds a better optimum for ψ, this does not always
translate into a better response surface. Another interesting observation is that

1see Appendix A for a description of the algorithm.

46 CHAPTER 4 IMPROVEMENTS TO DACE

for the scarcest data set of 10 sample points, the difference in accuracy between
the two response surfaces is the largest, in HJ’s favor. These observations raised
the question of whether there may be another, more suitable objective function
that could be used for tuning the correlation parameters. The rest of this section
introduces a new concept for tuning a Kriging surface and compares it with the
traditional approach.

Figure 4.1 Comparison between DIRECT and HJ in terms of the optimum MLE (blue line)
and response surface quality (green line).

4.1.1 Cross-validation based parameter tuning

Once a Kriging surface is constructed, it is ready to predict responses at un-sampled
points. However, it is good practice to check the quality of the model first. For
regression techniques, a commonly used method is to calculate a metric representing
the deviation between the sample outputs and their predicted values. The so-called
R2 is a well known metric for this. The closer it is to 1, the better the fit. However,
since DACE interpolates the sample data, it would not make sense to compare the
predicted values at sample points with their corresponding output values. For an
interpolation technique, it would make more sense to fit the sampled points and then
test the predictions on an additional set of points. This process is known as holdout
validation. However, when the computer experiments are particularly expensive,
one may be reluctant to carry out additional simulations for validation purposes.
In that case, cross-validation is a good alternative. Given a set of m sample points,
the basic idea of cross-validation is to fit the model to m − v of these points (the

HOW TO DETERMINE THE OPTIMUM CORRELATION PARAMETERS 47

sample set) and subsequently measure the prediction error for the v remaining points

(the validation set). In total, there are

(
n
v

)
possibilities for doing this. For

example, if there are 100 sample points and the validation set is chosen to contain
5 sample points, then there are 75,287,520 distinct cases. Since building a Kriging
model is relatively expensive when compared to say linear regression, this is not an
efficient way of validating the model. Another possibility is to use a subset of the
combinations. In that case, it is best to randomly select which points to include in
the validation set. Of course, care should be taken such that no identical cases are
generated or only a certain part of the design space is used for validation. If one
chooses v to be equal to 1, then there are m distinct scenarios. This is the case
where m− 1 points are used to build the model and the remaining point is used for
validation. This special case is known as leave-one-out cross-validation. Indeed, this
is the alternative to the MLE considered in this research. To use the cross-validation
method as the objective function for finding the optimum correlation parameters,
the following steps are carried out:

• Given θ1, ..., θn

• For i = 1...m

Build the Kriging model by excluding sample point i;

Predict the output value of i;

Calculate the error between the actual and predicted value;

• From the m error values, build a suitable metric (M), like the root-mean
square error or the average error. This metric is the objective function.

The goal is then to minimize M = M (θ). As for the commonly used maximum
likelihood estimation objective function, this is a non-linear optimization problem
with box constraints.
As was mentioned at the end of the previous chapter, the Cholesky factorization
dominates the computational effort when building a Kriging surface. If there are m
sample points, then it uses O

(
m3
)

flops. So, if the maximum likelihood estimator is
used as the objective function, then getting it will cost O

(
m3
)

flops in total. How-
ever, if leave-one-out cross-validation is used, then calculating the cross-validation
error for a given set of correlation parameters will be an O

(
m4
)

process, since a
Kriging surface is built for each left out data point. For this reason, ways to speed
up the process were investigated. In the present context, the computational cost of
this step is insignificant compared to the CFD computations carried out and for this
reason, one can simply follow the O

(
m4
)

route. However, in other cases, where the
objective function takes less wall clock time, reducing the time of the Kriging build-
ing process may become more important. In that case, it becomes crucial to obtain
the cross-validation objective function in a more efficient way. This is described in
the next sub section.

48 CHAPTER 4 IMPROVEMENTS TO DACE

4.1.2 An efficient cross-validation scheme

Since the Cholesky factorization is the most expensive operation carried out, it is
only natural to try and reduce its overhead first. Let’s start out with the correlation
matrix R. Its Cholesky factorization was given in (3.20). Say that observation i is
removed from the training set. The correlation matrix of the training set can be
obtained by removing the i-th column and row from R, resulting in the correlation
matrix denoted by R[−i]. Instead of recalculating the Cholesky factorization of this
new matrix from scratch, it is possible to simply update the original factorization,
as described by Gill et al. [14]. The first step is to remove column i from CT :

Having done that, one can see that the resulting matrix is neither upper triangular
nor square. To make it upper triangular, the entries circled have to become zero
somehow2. This can be achieved by applying a series of Givens rotations to the
matrix. Given a vector x, the Givens rotation Jk = J (k, k − 1, θ) zeroes out the kth

element of x and is given by:

To convert the off-diagonal term z2 to zero, c and s can be calculated as follows:

2Once this has been achieved, the last row must be removed to make the matrix square again.

HOW TO DETERMINE THE OPTIMUM CORRELATION PARAMETERS 49

ρ2 = z2
1 + z2

2

c = z1/ρ
s = z2/ρ

(4.1)

The entry z1 then becomes ρ. Downdating an existing Cholesky factorization with
the discussed sequence of Givens rotations is an O

(
m2
)

process. This process is
repeated m times, so the resulting algorithm is an O

(
m3
)

process. The algorithm
described here is therefore a clear improvement over the simple method of building
a Kriging surface from scratch for each left out point.
If the problem is solved by means of a Cholesky factorization, which is the route fol-
lowed in dacefit, then downdating the Cholesky factorization by means of a sequence
of Givens rotations, as described earlier, is an efficient method when using cross-
validation. If the generalized least squares problem is instead obtained by means
of the matrix inversion route, then for this method there is also an efficient way
of implementing cross-validation. Again, instead of calculating the inverse of the
reduced correlation matrix from scratch for each left out sample point, it is possible
to update the original inverted correlation matrix. Following Jolly et al. [23], the
procedure works as follows. Starting out with the correlation matrix R of the full
m sample points, the inverse R−1 is calculated and expressed as follows:

R−1 =

A(i−1)×(i−1) f(i−1)×1 B(i−1)×(m−i)

f
′

1×(i−1) e1×1 g
′

1×(m−i)

B
′

(m−i)×(i−1) g(m−i)×1 D(m−i)×(m−i)

 (4.2)

A new matrix H is constructed by removing the i -th row and column from R−1;

H =

[
A B

B
′
D

]
(4.3)

and a new vector is formed with f and g:

k =

[
f
g

]
(4.4)

The inverse of the correlation matrix with the i -th column and row removed can
then be calculated as follows:

R−1
[−i] = H − kk

′

e
(4.5)

50 CHAPTER 4 IMPROVEMENTS TO DACE

Like the Cholesky factorization, calculating the inverse from scratch is an O
(
m3
)

process, whereas updating the existing inverse as given in (4.5) is an O
(
m2
)

process.
Both routes (i.e. the Cholesky route and the matrix inversion route) were imple-
mented in Matlab. Testing showed that updating the inverse is much faster than
updating the Cholesky factorization. However, the disadvantage of the matrix in-
version route is that in cases when there are sample points close to each other, the
correlation matrix becomes ill-conditioned and therefore the results obtained are
inaccurate. Indeed, as the correlation matrix becomes more ill-conditioned, it was
found that the results returned by the two methods started to diverge. The Cholesky
route is therefore the more robust implementation. When speed is key, it is possible
to use the matrix inversion route as the default, but revert to the Cholesky route if
the correlation matrix is ill-conditioned (this can be determined by calculating the
condition number of the matrix).
As a side note, it is interesting to state that even though arithmetic operations are
often used to compare algorithms with each other to determine which one is faster,
in a practical implementation there are other factors that should be taken into ac-
count too. For example, operations like storing or accessing entries of a matrix
or the presence of loops. The latter is an important factor when an interpretative
language is used, like Matlab. Matlab is notorious for being slow when loops are
used, as the arguments inside have to be interpreted each time the loop is entered.
If possible, loops should be replaced by vectorization. However, when downdating
the Cholesky factorization, a sequence of Givens rotations has to be applied and
unfortunately this cannot be vectorized, as it is a recursive process. For this reason,
the Cholesky route contains a loop. The matrix inversion route on the other hand
does not contain a loop and this is probably the reason why its Matlab implemen-
tation was found to be so much faster. Genz et al. [13] give an interesting, detailed
description of how an algorithm that in theory should be faster than another algo-
rithm (Fast Givens QR factorization vs. ordinary Givens QR factorization) actually
turns out to be slower when implemented in the interpretative environment Matlab.
When they implemented the two methods in compiled FORTRAN however, they
found that the program speeds were similar to the theoretically expected ones.

4.1.3 Numerical experiments

This sub section compares the quality of the Kriging surfaces obtained using the
maximum likelihood estimate (MLE) and cross-validation (Xval). Eleven test func-
tions were used to compare the two approaches. Table 4.1 gives the names of the
test functions used with their dimensions and bounds. The problem ‘branin’ is the
branin test function [4]. The problem ‘camel’ is the so-called six hump camel back
test function [8]. Both these functions are often used to test global optimization
algorithms. The test functions denoted with ‘P’ followed by a number were ob-
tained from the Hock and Schittkowski [18] set which offers 180 problems for testing
nonlinear optimization algorithms.

HOW TO DETERMINE THE OPTIMUM CORRELATION PARAMETERS 51

Table 4.1 Test functions to compare the MLE and Xval ideas for building Kriging surfaces.

No. Name Dim. Bounds

1 branin 2 0 ≤ xi ≤ 10
2 camel 2 −2 ≤ xi ≤ 2
3 P5 2 −3 ≤ xi ≤ 3
4 P26 3 −1 ≤ xi ≤ 1
5 P42 4 −5 ≤ xi ≤ 5
6 P44 4 −5 ≤ xi ≤ 5
7 P48 5 −5 ≤ xi ≤ 5
8 P93 6 −1 ≤ xi ≤ 1
9 P100 7 −1 ≤ xi ≤ 1

10 P108 9 −1 ≤ xi ≤ 1
11 P113 10 −1 ≤ xi ≤ 1

The DOE technique used to build the Kriging surfaces was iSIGHT’s Optimal Latin
Hypercube. Four different sample sizes were used for each test function: 5n, 10n,
20n and 50n, where n is the number of dimensions. To find the optimum correla-
tion parameters, the SQP algorithm of Matlab’s fmincon routine was used. This
algorithm was not designed to find global optima. For this reason, it was started
at multiple points. Specifically, it was started at the 50n points obtained from the
Optimal Latin Hypercube algorithm.
The quality of the surfaces is expressed using the following two metrics: the Rel-
ative Average Absolute Error (RAAE) and the Relative Maximum Absolute Error
(RMAE). They are a measure for the global and local accuracy of the response
surface, respectively and are defined as follows [21]:

RAAE =

∑k
i=1 |yi − ŷi|
k · STD

(4.6)

RMAE =
max (|y1 − ŷ1| , |y2 − ŷ2| , ..., |yk − ŷk|)

STD
(4.7)

where ŷi is the predicted value at a point, yi is the actual value and STD is the
standard deviation. Since Kriging interpolates the data, the errors at the sample
points will be zero. For this reason, the errors were calculated at k other points in
the space, distributed by means of a full factorial. The value of k was around 1E6.
The particular error used in the cross-validation method was the root mean squared
error.
Figure 4.2 plots the RAAE and RMAE averaged over the test functions. The figure
shows that for 5n and 10n sample points, the Xval objective function gives a more
accurate response surface, especially for the 5n case. For 20n and 50n sample
points, both criteria seem to give very similar surfaces. It should not come as
a surprise that for larger sample sizes, the two objective functions give similarly

52 CHAPTER 4 IMPROVEMENTS TO DACE

accurate surfaces as the choice of the values for the correlation parameters becomes
less crucial. In fact, the observation that the advantage of Xval over MLE for large
sample sizes drastically diminishes should be considered a good sign since the former
is a more expensive method. The cost becomes more evident for larger sample sizes.
Interestingly, recall that in Figure 4.1 it was observed that for the scarcest sample
set, the globally optimal MLE value found by DIRECT actually gave a much larger
error than the local optimum found by HJ. Again, in Figure 4.2 it is seen that for
the scarcest sample set of 5n the correlation parameters corresponding to the best
MLE value are clearly not as good as the ones at a different part of the correlation
parameter space (the ones found by Xval). This is an indication that for scarce
sample sets, the MLE may not be a very good objective function for tuning the
correlation parameters.

(a) (b)

Figure 4.2 RAAE and RMAE as a function of the sample size for the MLE and Xval criteria,
averaged over the 11 test functions.

4.2 How to fit noisy functions

A deterministic computer simulation will always return the same output if the input
is left unchanged. In that case, interpolating surrogate modeling techniques are the
conceptually correct approach to data fitting, since the surrogate model will exactly
go through the sample points. In contrast, a surrogate model built using a regressing
(or smoothing) method will not necessarily go exactly through all sample points.
Regression techniques are therefore popular in approximating functions obtained
from physical experiments, where measurement errors and other factors outside the
influence of the experimenter may produce different output values at different times,
even though the inputs are (thought to be) the same. These factors are referred to
as experimental noise.
DACE, the focus of this thesis, is an interpolating method. In the present con-
text, the deterministic computer simulations are high-fidelity CFD computations.

HOW TO FIT NOISY FUNCTIONS 53

As mentioned in Chapter 2, these simulations may contain a certain degree of noise
as well. Discretization errors and incomplete convergence are the two main sources.
Contrary to the random nature of experimental noise, this numerical noise is repro-
ducible. The next subsection shows how using an interpolating technique as DACE
can be undesirable when the underlying function is noisy.

4.2.1 The downside of interpolation

Figure 4.3(a) shows the downforce generated by a two element airfoil3 as a function
of the flap angle. A sixth order polynomial fit of the sample points, shown by the
black dotted line, reveals the familiar trend in which an increasing flap angle results
in an increase in downforce up to a point where the flap stalls. Beyond that angle,
the downforce created by the assembly starts to decrease with increasing flap angle.
One can observe that the CFD results are positioned quite irregularly around this
trend. It is these irregularities that are referred to as noise. Figure 4.3(b) shows
two interpolating response surfaces. The green line was obtained using five sample
points, namely at 30◦, 32◦, 36◦, 39◦ and 40◦. The red line was obtained using
an additional sample point at 36.25◦, which is very close to the sample point at
36◦. Whereas the green line captures the trend of the underlying function well,
the red line clearly does not. This is the downside of interpolation methods when
the underlying functions are noisy since they will not only capture the actual trend
but also the noise. When the sample points are sufficiently far from each other,
which they will be when they are obtained from a DOE4, then it is safe to use
an interpolation technique. However, if the surrogate model is then used in an
optimization loop and the sample points start to cluster as the method converges
to an optimum, then it becomes undesirable to use such a technique. Figure 4.8
illustrates how an optimization can break down when an interpolating surrogate
model is applied onto a noisy surface.

4.2.2 Regressing noisy functions

When the response surface is expected to be noisy and an optimization is pursued,
it is still desirable to use Kriging rather than revert to polynomial regression, since
Kriging is capable of accurately capturing highly nonlinear functions. This sub
section describes how dacefit was modified such that it could regress data. The
technique used is quite simple:

• define a positive constant ρ and add it to the leading diagonal of the correlation
matrix: R+ ρI, where I is the identity matrix;

3This is the second CFD test case described in Chapter 6.
4When the Optimal Latin Hypercube sampling method is used, the optimization actually tries to maxi-
mize the smallest distance between the sample points.

54 CHAPTER 4 IMPROVEMENTS TO DACE

(a) (b)

Figure 4.3 (4.3(a)) CFD data points for test case 2 (see Chapter 6). The dotted line shows the
trend; 4.3(b) DACE surface fitted with sample points having a sufficient inter-distance (green
line) and a DACE surface fitted with two clustered points at 36◦ and 36.25◦ (red line).

• the set of optimization variables used to find the best DACE surface now
consists of the correlation parameters (the θ’s) and this ρ.

Interestingly, the seed of the idea came from a method already used by dacefit to
improve its robustness. Problems may occur when the correlation matrix is ill-
conditioned. This can for example occur when there are closely spaced sample
points. The program therefore uses a modified Cholesky factorization, where (3.20)
is replaced by:

CCT = R+ ρI (4.8)

with ρ = (10 +m) εM . The parameter εM is the machine accuracy. The process
of replacing an ill-conditioned matrix with a better conditioned matrix by adding a
small constant to the diagonal entries is known as regularization and it is a popular
method in a range of disciplines5. The result of regularization is that the response
surface will not exactly go through the sample points. Of course, since the regular-
ization constant used by dacefit is so small, this will not be visible.
Realizing what regularization leads to (regression or smoothing) and knowing how
it can be achieved (add a constant to the diagonal entries of the correlation ma-
trix) the technique of using it to regress noisy functions was conceived. Contrary
to the original implementation used by dacefit, where the regularization constant ρ
is small and independent of the data values, the idea introduced here is to use it
as a parameter in the optimization process along with the correlation parameters
and impose larger bounds on it. Figure 4.4 compares Kriging interpolation with

5In general statistics, regularization is known as ridge regression. In inverse problems it is referred to as
Tikhonov regularization and in optimization it is called damped Newton.

HOW TO FIT NOISY FUNCTIONS 55

Kriging regression for the case illustrated in Figure 4.3, i.e. the one with the two
clustered data points at 36◦ and 36.25◦. Whereas the interpolating surface goes
through the clustered points, the regressing surface clearly smoothes these points
out. The lower and upper bounds imposed on the regularization constant were 1E-6
and 1E-1, respectively. Figure 4.9 illustrates the use of this regressing surface in an
optimization. As opposed to the interpolating case, the optimization does not break
down for the regressing case.

Figure 4.4 Kriging interpolation (red line) vs. Kriging regression (magenta line)

4.2.3 A Bayesian point of view to regression

In the previous section, the solution to fitting noisy functions using Kriging was
introduced in a pragmatic fashion; a problem was detected, namely that interpo-
lating a noisy function is not desired when there are closely spaced sampled points.
Then, by stating that in such cases it is preferred to regress data and realizing that
regularization has that effect, the solution was introduced. When one approaches
Kriging from a Bayesian point of view, it is possible to provide a more convincing
motivation for the technique used.
In the Bayesian approach, one states a prior belief of a process of interest, and then
collects data, followed by updating that belief given this new data. Central to this
approach is Bayes Theorem:

p (g|y) ∝ p (y|g) p (g) (4.9)

It has the following components:

• Data distribution, p (y|g): the distribution of the data, given the unobserved

56 CHAPTER 4 IMPROVEMENTS TO DACE

data. If y represents imperfect observations of the true values g, then it is a
quantification of the measurement errors;

• Prior distribution, p (g): a quantification of the a-priori belief of the distri-
bution of the data;

• Posterior distribution, p (g|y): the distribution of the unobserved data
given the data.

Wikle and Berliner [54] give a Bayesian derivation of Kriging. Say that one is
interested in the m + 1 discrete values g and that they have the following normal
prior distribution:

g ∼ N (µ, R) (4.10)

Then, m of these values are observed. The observations have the following distribu-
tion:

y ∼ N (Hg, D) (4.11)

where H is the observation matrix and D is the observation error covariance matrix.
Applying Bayes Theorem, they state that the posterior mean is given by:

E (g|y) = µ +K (y−Hµ) (4.12)

where K is the gain matrix, defined as:

K = RHT
(
D +HRHT

)−1
(4.13)

It can easily be shown that (4.12) is equivalent to the DACE predictor expressed by
(3.8) in the previous chapter, with the exception that the Bayesian approach defines
R as a sum between the standard correlation matrix and the observation error
matrix. If one defines the observation error matrix as ρI, the same result is obtained
as regularization (see (4.8)). Now however, the regularization constant ρ has an
intuitive meaning, as it represents the variance in the function values returned by
the computer simulation. As discussed earlier, even though the computer simulation
returns a deterministic value, there is an uncertainty in this value due to for example
incomplete convergence. So, in that sense it makes sense to state that there is an
observation error.

HOW TO FIT NOISY FUNCTIONS 57

4.2.4 Adaptive regression

The Bayesian point of view is more useful than the regularization point of view in
that it provides a more convincing foundation to the notion of adaptive regression
introduced here. The discussion above mentioned adding one constant to the diago-
nal terms, meaning that all sample points receive the same amount of smoothing, or
alternatively, the variance of the function values returned is the same for all sample
points. One can take the method a step further and try to apply the correct amount
of smoothing to each sample point. In other words, if a certain part of the design
space is known to be considerably ‘noisier’ than another part, it should be possible
to add more smoothing in the noisy part.
For example, recall the CFD data points shown in Figure 4.3(a). Between a flap
angle of 30◦ and 36◦, the flow on the flap suction surface is still attached. How-
ever, beyond this angle it starts to separate. So, the figure can be split into two
parts; the un-stalled part and the stalled part. The data points in the first part
clearly follow the trend, given by the dotted line, better than the data points in
the second part. So, one would naturally be inclined to introduce more smooth-
ing in the second part. It was already mentioned in Chapter 1 that the flow field
parameters and loads extracted from the CFD results are averaged over the final
set of iterations. Using these averaged values instead of the values of the last it-
eration should make comparisons with other configurations more reliable. Next to
the average values, the standard deviations are also calculated. For this example,
these values will serve as a metric for quantifying noise. In a way, they represent
the noise due to incomplete convergence and possibly flow unsteadiness. However,
the other source of noise, namely the one due to the discretization error, in par-
ticular due to the remeshing of geometries, should also be taken into consideration
to define a good metric for the noise level of each configuration. This could be an
interesting subject for future research. In the mean time, the standard deviation is
taken as the metric to quantify noise. The blue line in Figure 4.5 shows the CFD
data points from Figure 4.3(a), but now the standard deviation of the CL, shown
by the green line, is plotted too. It was obtained from the last 100 iterations. As
expected, the standard deviation increases with flap angle. Interestingly, looking at
the slope of the standard deviation, one can roughly divide it into two parts: the
first part lies between 30◦ and 36◦, i.e. in the un-stalled region; the second part
lies in the stalled region between 36◦ and 40◦ and is clearly steeper than the first
part. To get a feel of how adaptive smoothing would work in practice, nine sample
points were taken from the CFD data in order to build a response surface. Three
of these points were in the un-stalled region while the rest was in the stalled region.
Figure 4.6 shows the results. Three response surfaces were built. The red response
surface interpolates all the sample points and is clearly a poor representation of the
CFD function. The magenta line was obtained by regressing the sample points by
using an equal regression constant for all sample points. The response surface is a
clear improvement. Finally, the green line was obtained by taking into account the
standard deviation of each sample point. The regression constant for each diagonal

58 CHAPTER 4 IMPROVEMENTS TO DACE

entry was calculated as follows:

ρi = ρ · σ2
i (4.14)

Figure 4.5 CL as a function of the flap angle, calculated from CFD simulations (blue line),
and the CL standard deviation obtained from the last 100 iterations (green line).

Figure 4.6 Interpolating (red line), regressing (magenta line) and ‘adaptively’ regressing (green
line) response surfaces. The latter used the standard deviation of CL to weigh the smoothing
among the sample points, given by the black dots.

where σi is the standard deviation of sample point i. The two regressing lines are
very similar but one can observe that the latter respects the sample data in the
un-stalled region more.

HOW TO FIT NOISY FUNCTIONS 59

The second interesting implementation of adaptive smoothing is essentially the ex-
treme case of the first; set the regularization constant to 0 for a certain set of the
sample data and set it to ρ for the rest. In other words, a part of the sample points
will be interpolated while the rest will be regressed. The reason for proposing this
application is that it was found that when using a regressing surface in an opti-
mization loop, new sample points (the ‘infill points’) may not change the shape of
the new response surface sufficiently. Of course, this is the downside of smoothing.
The consequence of this behavior may be that the optimization will progress slowly.
To appreciate that this can indeed occur, compare Figure 4.8(b) with 4.9(b). For
clarity, they are shown side by side in Figure 4.7, with their initial surfaces. The
new sample point in the interpolated case causes the new surface to change more
radically than the regressed case. This enables the former to get closer to the actual
minimum than the latter case. As was shown in Figure 4.9, the latter does eventu-
ally reach the actual minimum and in fact does not break down like the interpolated
case. However, this example only serves to give the reader an idea of what could
happen in a more complex case. The extreme case bears some resemblance with
the process of determining a good finite difference step for gradient algorithms, as
discussed in Chapter 2. A good step size ensures that one is outside the CFD noise.
Sample points within the threshold will be regressed while the rest of the points will
be interpolated. In this way, it is possible to avoid slowing down the optimization
process as described above while keeping it stable as the sample points start to
cluster when the process converges to an optimum.

60 CHAPTER 4 IMPROVEMENTS TO DACE

(a) (b)

(c) (d)

Figure 4.7 Initial interpolated (4.7(a)) and regressed (4.7(b)) response surfaces; interpolated
(4.7(c)) and regressed (4.7(d)) surfaces after the first optimization iteration.

HOW TO FIT NOISY FUNCTIONS 61

(a) (b)

(c) (d)

(e) (f)

Figure 4.8 Optimization carried out with an interpolating Kriging surface (red) on a noisy
function (blue). 4.8(a) is the starting point and 4.8(b) to 4.8(f) give the iterations 1 to 5,
respectively. The black points are the sample points and the blue point is the minimum on the
response surface, i.e. the new sample point.

62 CHAPTER 4 IMPROVEMENTS TO DACE

(a) (b)

(c) (d)

(e) (f)

Figure 4.9 Optimization carried out with a regressing Kriging surface (red) on a noisy function
(blue). 4.9(a) is the starting point and 4.9(b) to 4.9(f) give the iterations 1 to 5, respectively.
The black points are the sample points and the blue point is the minimum on the response
surface, i.e. the new sample point.

63

‘The solving of a problem lies in finding the
solvers.’

Van Herpen’s Law 5
KERS: a Kriging based optimization tool

The work carried out in the context of the surrogate modeling framework has culmi-
nated in a computer program called KERS, which is short for Kriging and Exploring
Response Surfaces. In Formula One, KERS is a system that recovers and stores a
part of the kinetic energy that would otherwise be wasted into heat when an F1
car breaks. When activated by the driver, it can provide a boost in speed1. Since
the program developed in this thesis is intended to extend (or boost) the current
optimization methodology and it tries to make full use (i.e. not waste) of the DOE
points, KERS seemed an appropriate choice of name.
KERS was written in the Matlab environment as it is widely considered to be the
preferred language in the development stage of programs. This is because it comes
with a large range of functions, toolboxes (like fmincon in the Optimization Tool-
box) and libraries (like LAPACK and BLAS) which allows the programmer to focus
on developing the actual concepts rather than having to constantly write additional
codes to carry out elementary operations. An additional reason for using Matlab
was because the original Kriging implementation and the global optimizer DIRECT
were written in this language. However, the number of Matlab licenses available
within the company is limited and the goal is that everyone within the CFD group
should be able to use KERS. Additionally, not everyone within the group has ex-
perience with Matlab. For these reasons, the Matlab code was converted into a
Windows standalone executable2, which does not require the user to have either
a Matlab license3 or experience. To control the program, the user has to write a
control file in .txt format and subsequently call the executable. This feature also
makes it easy to use the program within the iSIGHT (or similar) framework(s). A
detailed description of the program is given in Appendix B.
KERS can be run in two modes, namely the build mode and the optimize mode.

1In F1 circles, KERS stands for Kinetic Energy Recovery System. The system was introduced in the
2009 season but quickly abandoned by a number of teams. Even though it was still legal in 2010, all
teams had agreed not to use it. The 2011 season however has seen the reintroduction of the system.

2Fortunately, it was not necessary to rewrite the whole Matlab code into for example C to generate an
.exe file. Instead, a Matlab toolbox called Matlab compiler was used for this. For more information on
the toolbox, visit URL: http://www.mathworks.com/help/pdf_doc/compiler/compiler.pdf

3To be able to run the executable, the end-user has to install the Matlab Compiler Runtime (MCR)
which should be supplied by the developer of the Matlab code. These are a standalone set of shared
libraries that enable the execution of Matlab files on computers without an installed version of Matlab.

http://www.mathworks.com/help/pdf_doc/compiler/compiler.pdf

64 CHAPTER 5 KERS: A KRIGING BASED OPTIMIZATION TOOL

They are described in the next two sections.

5.1 The build mode

• The surrogate modeling technique used to build the response surfaces is Krig-
ing.

• Three different regression terms are available for building the Kriging surface;
a constant, a linear function or a quadratic.

• Seven different correlation models are available for building the Kriging surface
(see Table 3.1).

• The response surface can either interpolate or smooth the data. An additional
option is to only smooth data points that are clustered within a user-defined
threshold.

• To tune the model parameters, the user can either specify the maximum like-
lihood estimator as the objective function or use the cross-validation concept.

• Three different optimization algorithms can be used to tune the model param-
eters: a gradient-free local algorithm (Hooke-Jeeves based), a gradient-based
local algorithm (Matlab’s fmincon) and the gradient-free global algorithm (DI-
RECT).

• Warm starting can be used to provide a good initial guess for the model
parameter optimization process. These have to be .mat files from previous
builds.

• The response surfaces built can be validated. If the sample points were in-
terpolated, leave-one-out cross-validation is used. If the sample points were
regressed, then the customary validation technique of comparing the actual
sample function values with the response surface built using the whole sample
set is used. In both cases, a plot is made of the predicted values versus the
actual sample value and in addition to this, error metrics4 are calculated.

5.2 The optimize mode

• The type of optimization problem that can be solved is the NLP problem,
defined in (2.2).

4The error metrics calculated are the root mean squared error, the average absolute error, the maximum
absolute error and the R2 (coefficient of determination).

THE OPTIMIZE MODE 65

• The global solution of the NLP problem is found using DIRECT, followed by
fmincon.

• By supplying warm start files of previously built response surfaces, the building
step can be skipped.

• The auxiliary function used to find the optimum on the response surface can
either be the actual objective function or the expected improvement (EGO).
In the program they are called exploit and explore, respectively. Exploit may
get stuck in a local optimum if the underlying function is multimodal and/or
a scarce data set was used to build the initial response surface. Explore on
the other hand will eventually find the global optimum. Whichever way the
response surface was built (interpolation, regression or a mix) both methods
can be used to find infill points.

67

‘A goal is not always meant to be reached, it
often serves simply as something to aim at.’

Bruce Lee 6
Test applications

Using two CFD test cases, this chapter assesses the performance of a number of
existing local optimizers and the newly developed surrogate modeling based opti-
mization tool KERS. The existing local optimizers of iSIGHT were used.

6.1 Global settings

This section describes the settings used for both test cases.

6.1.1 iSIGHT

Version 5.2, Release 3.5-1 of iSIGHT was used. This version comes with six local
optimizers (see Table 6.1). It has two gradient-free methods in DS and HJ (simplex
and Hooke-Jeeves method, respectively) and four gradient-based methods. The
maximum number of function evaluations these optimizers are allowed to carry out
is set to 20n, where n is the number of variables. All other optimizer settings were
kept at their default values, shown in Table 6.2.

Table 6.1 iSIGHT’s local optimizers

Algorithm Search direction Search step Constraint handling Reference

DS - - Penalty function [37]

HJ - - Penalty function [19]

LSGRG BFGS / CG line search Elimination method [29]

MMFD Steepest descent line search Feasible direction method [53]

MOST BFGS line search SQP [52]

NLPQL BFGS line search SQP [44]

Some comments with regards to the various settings are given:

68 CHAPTER 6 TEST APPLICATIONS

Table 6.2 iSIGHT optimizers settings.

Algorithm Setting Value

DS Intial Simplex Size 0.1

HJ
Relative Step Size 0.5
Step Size Reduction Factor 0.5

LSGRG
Binding Constraint Epsilon 1.0E-4
Phase 1 Objective Ratio 1.0

MMFD None specified -

MOST Constraint Tolerance 1.0E-04

NLPQL Forward Differencing -

• DS: a value of 0.1 for the initial simplex size means that in each coordinate
direction, the initial simplex will cover 10% of the variable range.

• HJ: the Relative Step Size is the initial step size in each coordinate direction.
Like the initial simplex size parameter in DS, a larger value will result into a
more global search. The other control parameter is the Step Size Reduction
Factor, which enables the method to actually converge to an optimum.

• LSGRG: the Binding Constraint Epsilon represents the threshold for binding
constraints. If a constraint is within this epsilon, it is assumed to be feasible.
Increasing it can sometimes speed up convergence, while decreasing it occa-
sionally yields a more accurate solution. The other parameter is the Phase 1
Objective Ratio. This parameter sets the ratio of the true objective value to
the sum of constraint violations to be used as the objective function during
the so-called Phase 1 of optimization. In this phase, the algorithm tries to
make an infeasible point feasible before it can proceed.

• MMFD: this algorithm does not have any specific settings.

• MOST: the Constraint Tolerance specifies the acceptable constraint violation
for feasible designs.

• NLPQL: this is the only iSIGHT algorithm that provides central differencing
in addition to forward differencing. Since the other gradient algorithms only
use forward differencing, the same was set for NLPQL.

6.1.2 KERS

The following settings were used for KERS:

TEST CASE 1 - THE DOUBLE AIRFOIL 69

• Kriging model: for all the Kriging surfaces built, a constant term was used
for the regression term µ and the Gaussian function was used for the correlation
model, as these are the most common settings in the context of engineering
functions ([43], [48], [12]).

• Tuning criterion: it was found in Chapter 4 that the cross-validation route
can give a more accurate response surface than the MLE route when the
data set is scarce, but when the data set is larger, both routes will return
similarly accurate surfaces. Also, it was found that the cross-validation route
is computationally more demanding, especially when the number of sample
points is large. More sample points can be used to build response surface for
geometric functions as they are considerably cheaper to evaluate than the CFD
functions. Therefore, it was decided to build the expensive CFD functions
using cross-validation while the geometric functions were built using the MLE
criterion.

• Sampling strategy: iSIGHT’s Optimal Latin Hypercube sampling technique
was used. The algorithm is based on the work by [22].

• Number of sample points: it was decided to follow the ‘10n-rule’, where n
is the number of variables. In the current LRGP methodology, 20n points are
used for DOEs. Since the goal is to use the surrogate model for optimization,
it makes sense to use fewer points for the DOE to allow for the optimization
iterations. For the two dimensional cases, 10 initial points were used instead
of 20 as it was found that in these cases, accurate surfaces could already be
built with as little as 10 points.

• Smoothing threshold: for the adaptively smoothing Kriging surface, the
threshold in each variable direction is taken to be equal to the gradient step
sizes. So, sample points within this threshold will be regressed while the other
points will be interpolated.

6.2 Test case 1 - the double airfoil

6.2.1 Test case description

The main goal of the first test case is to gain an understanding of how the optimiza-
tion algorithms work. To visualize the paths that these algorithms take towards the
optimum, the geometry was parameterized with two variables. The configuration
of test case 1 consists of two identical airfoils, as shown by Figure 6.1. The center
airfoil is fixed while the outer airfoil can move along the dotted circle. On top of
this, its angle of attack can vary from −10◦ to +10◦. The free stream flow comes
from the left at 40m/s. The mesh for test case 1 consisted of approximately 27,000
polyhedral faces.

70 CHAPTER 6 TEST APPLICATIONS

Figure 6.1 Test case 1 - geometry

Figure 6.2 Test case 1 - full factorial CFD results.

To locate the global optimum and to determine how nonlinear the problem is, a full-
factorial DOE was carried out. Both variables were divided into 21 points, resulting
in a total of 441 design points. Figure 6.2 shows the results. The surface is highly
nonlinear, which should pose a challenge for the iSIGHT optimizers and for KERS.
To understand to what extent the CFD noise can compromise the performance of an
optimizer, it would be interesting to have a smooth reference function to the CFD
results. To this end, the full factorial results for test case 1 were interpolated. To

TEST CASE 1 - THE DOUBLE AIRFOIL 71

allow continuous gradients throughout the domain, bi-cubic interpolation was used
instead of linear interpolation. Figure 6.3 shows the smooth interpolated design
space.
Test case 1 is subdivided into the following optimization problems:

Figure 6.3 Test case 1 - bicubic interpolation of the full factorial CFD results.

1. maximize the lift produced by the assembly. This case only imposes bounds
on the variables; the outer airfoil can freely move along the entire circle and
its angle of attack can take any value between −10◦ and +10◦;

2. maximize the lift produced by the assembly while ensuring that the outer
airfoil stays inside the red rectangle shown in Figure 6.1;

3. maximize the lift produced by the assembly while ensuring that the pitching
moment coefficient around the leading edge of the center airfoil is between -0.5
and 1.5;

4. maximize the lift produced by the assembly while ensuring that the pitching
moment coefficient around the leading edge of the center airfoil is 0.

By defining the four sub cases, it can be investigated how the optimization algo-
rithms will cope in the presence of non-linear equality and inequality constraints.
They are described in detail in Sections 6.2.3 to 6.2.6, together with the results
obtained. For a summary of the results, the reader is referred to Section 6.2.7.

72 CHAPTER 6 TEST APPLICATIONS

6.2.2 The optimum gradient step size

For the gradient-based algorithms, the gradient step sizes have to be determined.
To determine the optimum step size for test case 1, a parameter sweep was carried
out at [Position,AoA] = [0.8, 4◦]. Figure 6.4 shows the results. The presence of
the noise is evident. Taking the gradient step size as small as

√
u would render the

calculated gradients useless. Figure 6.5 shows the finite difference gradients as a
function of the step size. Based on the figures, the following step sizes were chosen:

• 0.25◦ for AoA;

• 0.04 for Position.

(a) (b)

Figure 6.4 Parameter sweeps for test case 1.

(a) (b)

Figure 6.5 Finite difference gradients as a function of the step size for test case 1.

TEST CASE 1 - THE DOUBLE AIRFOIL 73

6.2.3 Box constraints

The first sub problem is the simplest of the four, as it only has box constraints. This
case was started at three different points;

• Starting Point 1 (Sp1); [Position, AoA] = [0.5, 0]

• Starting Point 2 (Sp2); [Position, AoA] = [0, -10]

• Starting Point 3 (Sp3); [Position, AoA] = [0.8, 6]

Figure 6.6 shows the starting points, together with the global optimum, indicated
by the red cross. It lies at [Position, AoA] ≈ [0.938,10.0] and the CL there is 3.360.

Figure 6.6 Global optimum and starting points for the box constrained sub problem of test
case 1.

Interpolated surface

For the interpolated cases, the Kriging surfaces would interpolate the sample points.
The center plot of Figure 6.7 shows the initial response surface produced by KERS,
together with the true function it is approximating at the left. Although not perfect,
the response surface does show the global trend of the function. The infill points
were found using Method 2 from Figure 3.2, i.e. the global optimum on the response
surface is chosen to be the next sample point. Table 6.3 shows the results. KERS
finds the solution in 8 iterations, since the initial response surface was built with 10
sample points. Three different starting points were used for the iSIGHT algorithms.
The table shows the results obtained when they were started closest to the global
optimum (Sp3). All of the iSIGHT optimizers found the global maximum in this
case.

74 CHAPTER 6 TEST APPLICATIONS

Figure 6.7 Contour curves of the total lift coefficient CL for test case 1; (left) actual surface,
(center) initial Kriging surface built with the 10 black sample points, (right) Kriging surface
after 8 iterations; the blue points are the infill points and the red point is the global optimum
found.

MMFD did not find the global maximum in the specified 40 function evaluations
(using the 20n rule). However, by increasing the number of function evaluations it
did eventually find it after 124 function evaluations. The reason it was so slow was
because it started to zigzag its way to the optimum. As mentioned in Chapter 2,
steepest descent methods are prone to this behavior if the optimum is ellipse shaped,
which it indeed is when examining the actual function in Figure 6.7. The best
iSIGHT optimizer for this particular case was MOST, which required 24 function
evaluations, i.e. 6 more than KERS. The right-hand picture of Figure 6.7 shows the
state of the response surface after the 8 iterations. The accuracy of the response
surface in the vicinity of the global maximum has increased, but at the expense
of the rest of the surface. One may argue however that when one is trying to
use the response surface for the purpose of optimization, the response surface is
merely a ‘vehicle’ for reaching that goal. As long as the final surface is not used for
visualization purposes or gaining understanding, the deterioration in overall surface
quality may not be considered a problem.

Table 6.3 Results obtained for the box constrained case of test case 1 on the interpolated
CFD surface.

Algorithm Position AoA CL Runs

DS 0.938 10.0 3.360 36
HJ 0.938 10.0 3.360 27

NLPQL 0.938 10.0 3.360 34
MOST 0.937 10.0 3.360 24
MMFD 0.939 8.58 3.262 40
LSGRG 0.938 10.0 3.360 26

KERS 0.938 10.0 3.360 18

TEST CASE 1 - THE DOUBLE AIRFOIL 75

CFD surface

On the actual (noisy) CFD surface, a smoothing (regr) and adaptively smoothing
(mix) response surface was used, in addition to the interpolating response surface.
Table 6.4 shows the results. Comparing the three response surface methods with
each other, the fully regressing surface finds the highest CL, closely followed by the
mixed surface. Note that the number of runs is the sum of 10 (used to build the initial
response surface) with the iteration in which the best CL value is found. Figure
6.8(a) compares the prediction error of the interpolating and regressing surfaces. The
interpolating surface clearly breaks down after 20 iterations. Indeed, the optimum
value was found by the interpolating method after 27 runs, which is the 17th iteration
(i.e. before the surface breaks down). The regressing surface is clearly more stable
and looking at Figure 6.8(b), one can observe that the error does indeed converge
to 0 (after some glitches), contrary to the interpolating method. The mixed surface
is also more stable than the interpolating surface and also sees its prediction errors
converge to zero. Comparing KERS with the iSIGHT optimizers, it seems that
KERS does not find the best value. However, it does reach the same region where
the global optimum lies. In the response surface method’s defense, it should be
stated that the results shown for the iSIGHT optimizers are the results obtained
when they were started closest to the known global optimum. For the response
surface method however, no such prior knowledge was required.

Table 6.4 Results obtained for the box constrained case of test case 1 on the actual CFD
surface.

Algorithm Position AoA CL Runs

DS 0.937 9.36 3.325 36
HJ 0.939 10.0 3.338 40

NLPQL 0.932 10.0 3.326 12
MOST 0.906 10.0 3.314 32
MMFD 0.926 9.60 3.280 35
LSGRG 0.932 10.0 3.326 32

KERS (interp) 0.932 9.46 3.287 27
KERS (regr) 0.908 10.0 3.323 33
KERS (mix) 0.937 10.0 3.318 32

To get an idea of how the interpolating surface deteriorates due to the noisy CFD
function, Figure 6.9 compares the surface at the 20th iteration with the regressing
surface.
The gradient-free iSIGHT optimizers are also influenced by the presence of the noise.
Figure 6.10 uses DS to illustrate this. The black dots show the sampled points on the
interpolated surface and the blue stars show the points on the actual CFD surface.
Two observations are made. First of all, the blue points cluster (converge) close
to the actual optimum which explains why the optimum value found on the CFD
surface is lower than the one found on the interpolated surface. Secondly, the initial

76 CHAPTER 6 TEST APPLICATIONS

(a) (b)

Figure 6.8 Absolute error of the CL prediction as a function of the iteration number for the
box constrained case of test case 1, applied on the actual CFD surface.

sampled points are the same for both cases when the simplex is still large and the
noise has no effect on the process. However, as the simplex becomes smaller the
noise kicks in and the routes start to deviate from each other.

(a) (b)

Figure 6.9 Interpolated (6.9(a)) and regressed (6.9(b)) response surfaces after 20 iterations,
for the box constrained case of test case 1, applied on the actual CFD surface. The black dots
are the infill points.

6.2.4 Geometric constraints

Figure 6.11 shows the constraint boundaries of the geometrically constrained sub
case, together with the three starting points and the global optimum. The gray area
is the infeasible space. The constraints significantly decrease the size of the feasible
space such that only Positions between 0.8 and 1 are feasible. The starting points
were:

TEST CASE 1 - THE DOUBLE AIRFOIL 77

Figure 6.10 Points sampled by DS on the interpolated surface (black dots) and the actual
CFD surface (blue stars).

• Starting Point 1 (Sp1); [Position, AoA] = [0.5, 0]

• Starting Point 4 (Sp4); [Position, AoA] = [0.8, -9]

• Starting Point 5 (Sp5); [Position, AoA] = [0.9, -9]

From Figure 6.11 it can be seen that Sp4 is an infeasible point, but close to the
bottom left constraint boundary. Sp5 is on the feasible side of this boundary. The
global optimum lies at [Position, AoA] ≈ [0.938,10.0], where CL is 3.360.

Interpolated surface

To deal with the geometric constraints, response surfaces were built for these func-
tions too. Since the evaluation of these functions would be considerably cheaper
than the CFD functions, it is possible to use more sample points when building
them. Therefore, 80 sample points were used instead of 10. Note that for the ge-
ometric constraints, interpolating surfaces were used. This is because these values,
obtained from the CAD package CATIA, do not contain the noise that the CFD
functions exhibit. The resulting response surfaces, corresponding to the four sides
of the legality boxes, can be found in Figure 6.12. Notice the periodicity in the
Position variable, due to the fact that the outer airfoil moves along a circle. For
this sub case, the global maximum was the same as the one for sub case 1. Table
6.5 shows the results. For this particular case, MOST, NLPQL and KERS used the
same number of function evaluations to find the global maximum.

78 CHAPTER 6 TEST APPLICATIONS

Figure 6.11 Global optimum and starting points for the geometrically constrained sub problem
of test case 1.

Table 6.5 Results obtained for test case 1, sub case 2 on the interpolated CFD surface.

Algorithm Position AoA CL Runs

DS 0.938 10.0 3.360 38
HJ 0.938 10.0 3.360 27

NLPQL 0.938 10.0 3.360 18
MOST 0.938 10.0 3.360 18
MMFD 0.938 10.0 3.360 26
LSGRG 0.938 10.0 3.360 26

KERS 0.938 10.0 3.360 18

CFD surface

Table 6.6 shows the results for the geometrically constrained case. Again, the re-
gressing surface outperforms the interpolating surface. Figure 6.13 compares the
actual CL values for the three response surface methods as the optimization pro-
gressed. Starting with the interpolating method, one can observe that it behaves
well until it reaches the 9th iteration. Before that, it steadily finds better CL val-
ues compared to the first guess. After this, the method is clearly struggling to
find improved designs. The regressing surface on the other hand is clearly more
stable. After a slow start, it does eventually converge to an optimum, without
breaking down as the sample points start to cluster. The reason why a regressing
method could be slower than an interpolating method is because it smoothes the
data, so added points may not change the response surface as much as an interpo-
lating method would. Depending on the total number of infill points chosen, this
implementation could have returned a design less optimal than the interpolating
implementation.

TEST CASE 1 - THE DOUBLE AIRFOIL 79

Figure 6.12 Response surfaces built for the geometric constraints of test case 1 using the 80
sample points shown in black.

Table 6.6 Results obtained for test case 1, sub case 2 on the actual CFD surface.

Algorithm Position AoA CL Runs

DS 0.927 9.91 3.326 35
HJ 0.938 10.0 3.309 27

NLPQL 0.932 9.87 3.350 40
MOST 0.908 10.0 3.308 35
MMFD 0.905 9.76 3.271 24
LSGRG 0.891 8.00 3.126 30

KERS (interp) 0.894 10.0 3.296 18
KERS (regr) 0.917 10.0 3.318 34
KERS (mix) 0.895 9.64 3.287 34

This would have been the case if the method was stopped after 9 iterations. That
is the reason why the mixed method of surface generation was introduced. In the
first couple of iterations, it simply chooses the same infill points as the interpolating
method. However, where the interpolating method starts to break down due to
sampling closely spaced points, the mixed method smoothes these points and as a
result can progress without breaking down. It is this robustness, combined with the
fact that it will not be slowed down as much as the regressing method that could

80 CHAPTER 6 TEST APPLICATIONS

make the mixed method an interesting option for Kriging based optimization.

Figure 6.13 Actual CL vs. iterations for the geometrically constrained case of test case 1,
applied on the actual CFD function.

6.2.5 Pitching moment bounds

Figure 6.14 shows the inequality constraints. The dotted curve in the center is the
pitching moment coefficient contour line at -0.5. The two dotted curves at the left
and right sides are the pitching moment coefficient contour lines at 1.5. The global
maximum is CL ≈ 2.837 and lies at [Position, AoA] ≈ [0.779, 10.0], that is on the
upper constraint boundary. This sub case was started at two different points:

1. Starting Point 1 (Sp1); [Position, AoA] = [0.5, 0]

2. Starting Point 6 (Sp6); [Position, AoA] = [0.2, -10]

Sp6 is a feasible point but to get to the maximum lift, the optimizers will have to
face the center constraint.

Interpolated surface

Figure 6.15 shows the actual lift and pitching moment coefficients on the left, to-
gether with their initial (interpolated) surrogates on the right. Table 6.7 shows the

TEST CASE 1 - THE DOUBLE AIRFOIL 81

Figure 6.14 Global optimum and starting points for the sub problem of test case 1 with the
pitching moment bounds.

results of the optimizers. For this particular case, NLPQL was the fastest iSIGHT
algorithm as it found the solution in 24 iterations. Recall that when constraints
are present, SQP methods allow intermediate iterates to be infeasible. This enables
them to find ‘short-cuts’ as they progress towards the feasible optimum. MMFD and
LSGRG however are feasible methods, meaning that they try to keep all iterates fea-
sible. This was confirmed by inspecting the optimization routes taken by the solvers.
Figure 6.16 shows the optimizer routes for Sp6, which was a feasible point. Whereas
the global maximum lies on the constraint boundary at [Position,AoA] ≈ [0.8, 10],
there are some local maxima in the region 0.2 < Position < 0.3 and 6 < AoA < 10.
MOST was the only optimizer that converged to the global maximum. The rest
converged to local maxima. As discussed above, the SQP method MOST allows
its iterates to enter the infeasible domain. In this way, it was able to simply cross
the ‘obstacle’ in the center formed by the lower bound of the constraint in order to
reach the optimum. One if its iterates is in the infeasible region in the center of
the domain. MOST still accepts this step when it carries out its line search. Recall
that it uses a merit function for this, which is the sum of the objective function and
the weighted constraint violations. Even though the iterate is infeasible, it is still
accepted because it produces a very good objective function value. MMFD on the
other hand ricochets between the constraint boundaries (recall the push-off factor
mentioned in Chapter 2). This happens around [Position,AoA] = [0.4,−5] and
[0.2, 9]. LSGRG shows a poorer behavior. It closely follows the constraint boundary
as it converges to the same optimum that NLPQL reaches. Again, this is a result
of the fact that it is a feasible method. It wants to cross the boundary since the
function value is high there but it cannot do that as it will produce an infeasible
iterate. The result is therefore that it closely follows the constraint boundary as it
converges to its optimum. Note that DS and HJ, which make use of the penalty

82 CHAPTER 6 TEST APPLICATIONS

method, can produce infeasible iterates too.

Figure 6.15 Contour curves of the total lift (top) and pitching moment (bottom) coefficients
for test case 1; (left) actual surfaces, (right) Kriging surfaces built with the 10 black sample
points. The black lines represent the CM curves at -0.5 and 1.5.

Table 6.7 Results obtained for test case 1, sub case 3 on the interpolated CFD surface.

Algorithm Position AoA CL Runs

DS 0.781 9.06 2.749 18
HJ 0.777 10.0 2.827 38

NLPQL 0.779 10.0 2.837 24
MOST 0.778 10.0 2.834 36
MMFD 0.779 10.0 2.837 29
LSGRG 0.779 10.0 2.837 30

KERS 0.779 10.0 2.837 15

CFD surface

Table 6.8 shows the results. All the response surface methods locate the global
optimum. The mixed method finds the highest CL value.

TEST CASE 1 - THE DOUBLE AIRFOIL 83

Figure 6.16 Routes followed by the iSIGHT optimizers for sub case 3 of test case 1.

Table 6.8 Results obtained pitching moment bounded problem of test case 1 on the actual
CFD surface.

Algorithm Position AoA CL Runs

DS 0.778 9.07 2.766 32
HJ 0.781 8.75 2.775 28

NLPQL 0.782 8.43 2.784 31
MOST 0.781 9.16 2.784 31
MMFD 0.781 9.20 2.749 34
LSGRG 0.784 5.88 2.714 19

KERs (interp) 0.779 10.0 2.784 20
KERS (regr) 0.782 10.0 2.783 32
KERS (mix) 0.784 10.0 2.787 25

6.2.6 Pitching moment target

The final sub case imposed a CM target of 0 as the equality constraint. Figure 6.17
shows the constraint curves, the starting point and the global optimum ([Position,
AoA] = [0.300, 6.30]), where CL = 2.591. The starting point was in the center of
the domain:

84 CHAPTER 6 TEST APPLICATIONS

• Starting Point 1 (Sp1); [Position, AoA] = [0.5, 0]

Figure 6.17 Global optimum and starting point for the sub problem of test case 1 with the
pitching moment target.

Interpolated surface

Table 6.9 shows the results. For this particular case, none of the iSIGHT optimizers
were able to find the global maximum. DS, HJ, MOST and MMFD were unable to
follow the equality constraint. Among the successful iSIGHT optimizers, NLPQL
found a local optimum, which lies on the right hand constraint boundary. KERS
was able to find the global maximum.

Table 6.9 Results obtained for the test case 1, constrained with the pitching moment target,
on the interpolated CFD surface.

Algorithm Position AoA CL Runs

DS × × × ×
HJ × × × ×

NLPQL 0.682 7.04 2.456 30
MOST × × × ×
MMFD × × × ×
LSGRG 0.589 -8.00 1.542 39

KERS 0.300 6.30 2.591 17

CFD surface

Table 6.10 shows the results for this sub case when applied on the actual CFD
function. The three implementations of KERS all converge to the left hand curve

TEST CASE 1 - THE DOUBLE AIRFOIL 85

(although they do not all converge to the same point) where the global optimum lies.
Among the iSIGHT optimizers, only the SQP methods NLPQL and MOST managed
to find a point that satisfied the equality constraint, although they converged to the
right hand curve, which contain local optima.

Table 6.10 Results obtained for test case 1, sub case 4 on the actual CFD surface.

Algorithm Position AoA CL Runs

DS × × × ×
HJ × × × ×

NLPQL 0.681 3.33 2.349 23
MOST 0.683 6.58 2.459 22
MMFD × × × ×
LSGRG × × × ×

KERS (interp) 0.302 5.36 2.583 24
KERS (regr) 0.297 9.01 2.581 20
KERS (mix) 0.298 7.92 2.585 20

6.2.7 Summary

The goal of this test case was to gain an understanding of how the optimizers work.
This sub section summarizes the results obtained. Figure 6.18(a) gives the average
optimum CL found by the different optimizers and Figure 6.18(b) shows how many
function evaluations were needed to reach the optimum. The figures contain quite
a bit of information so a break down in terms of the following aspects is made:

(a) (b)

Figure 6.18 Optimizer results for test case 1.

• best iSIGHT optimizer: Among the iSIGHT optimizers, it seems like
NLPQL performs the best. It finds the best optima in the least amount of
function evaluations.

86 CHAPTER 6 TEST APPLICATIONS

• comparison between iSIGHT and KERS: KERS finds better optima in
the least amount of function evaluations. In all cases, it was able to find
the global optimum, whereas the optima found by the iSIGHT optimizers
depended on the starting point chosen (and they therefore rely on the prior
knowledge of the user regarding the design problem).

• influence of the CFD noise: when comparing the optima found by the
optimizers on the interpolated objective function and the actual (noisy) CFD
function, one can observe that lower function values are found when the ob-
jective contains noise1. KERS (in its interpolating mode) shows the same
behavior. For this reason, it was investigated how a(n) (adaptively) regressing
response surface would cope. One can see that it does provide a slight improve-
ment. From the figure it is not clearly visible, but the averages were 2.988,
3.001 and 2.994 for the interpolating, regressing and adaptively regressing sur-
faces, respectively. In terms of the number of function evaluations required,
the iSIGHT optimizers tend to stop earlier, explaining why the average num-
ber of function evaluations is lower. KERS on the other hand requires more
function evaluations. The interpolating mode shows this behavior because it
‘breaks’ down at a certain point. The regressing and adaptively regressing
surfaces show this behavior because when they smooth the data they tend to
converge at a slower rate.

6.3 Test case 2 - the two-element airfoil

6.3.1 Test case description

In reality, it is common to use more than two variables in an optimization process.
Test case 2 is used to represent problems with a greater number of design variables.
It is a two-element airfoil as shown in Figure 6.19. The mesh for test case 2 consisted
of approximately 22,000 polyhedral faces.

Figure 6.19 Test case 2 - geometry

1MOST does not show this behavior. On closer inspection, it was found that for sub case 4 (the equality
constraint case) the algorithm stalled when applied on the interpolated surface but not when applied
on the CFD surface. So, this has skewed the results.

TEST CASE 2 - THE TWO-ELEMENT AIRFOIL 87

The flap and main plane both have six variables, so there are twelve variables in
total:

• horizontal position (X)

• vertical position (Y)

• angle of attack (α)

• airfoil thickness (t)

• airfoil camber (γ)

• chord length (c)

As in test case 1, test case 2 is divided into a set of sub cases. In total there are
six cases. For all cases the downforce has to be maximized (minimization of the lift
coefficient CL) while ensuring that the airfoils stay inside the red rectangular box.
The sub cases differ in the number of variables. Table 6.11 shows the breakdown.

Table 6.11 Sub cases for test case 2.

Flap Main plane

sub case X Y α t γ c X Y α t γ c

1 × ×
2 × × × ×
3 × × × × × ×
4 × × × × × × × ×
5 × × × × × × × × × ×
6 × × × × × × × × × × × ×

Table 6.12 gives the bounds imposed on the variables, together with the feasible
starting point. At this point, the assembly generated a CL of -1.239.

Table 6.12 Starting point and bounds imposed on the twelve variables of test case 2.

Main plane Flap

Variable Lower Start Upper Lower Start Upper Unit

X 50 151 300 200 315 350 mm
Y 0 35 100 50 60 150 mm
α -5 0 20 0 15 50 ◦
t 1 30 70 1 7 30 mm
γ 0.1 0.35 1.5 0.1 0.2 1.0 -
c 100 300 350 50 70 200 mm

88 CHAPTER 6 TEST APPLICATIONS

The bounds were chosen such that there will be configurations where the two air-
foils clash. This can indeed occur in practice for certain parameterizations. When
a geometry clashes, then an error will occur in one of the simulation codes. For
example, Star-CCM+ will not be able to generate a volume mesh for such a case.
iSIGHT will interpret this as a failed run so it would be informative to see how the
optimization algorithms deal with these occurrences. If the geometry is parameter-
ized in such a way that no clashing can occur, then it is still possible for a run to
fail. For example, a failed run can be caused by an error in the cluster or a floating
point error in the solver. Since it was possible for the airfoils to clash, an additional
inequality constraint was defined; the minimum distance between the elements was
not allowed to be smaller than 2mm.
To start KERS, a DOE was carried out for each sub case. The best CL value found
for each sub case can be found in Table 6.13. The table also shows the initial number
of sample points used to build the response surfaces of the geometric constraints and
the objective function. To build the constraint surfaces, more sample points were
used since they are considerably cheaper to evaluate. Note that for CL, the number
of sample points is not exactly 10n. This is because some DOE points produced
clashed geometries, where the CL function could therefore not be evaluated.

Table 6.13 Test case 2; KERS starting points.

Samples

Dimensions geo const. CL bsf

2 80 19 -1.767
4 200 38 -2.269
6 300 55 -1.955
8 500 70 -2.219

10 750 89 -1.793
12 1000 188 -1.372

6.3.2 The optimum gradient step size

A parameter sweep around the starting point was carried out to determine the
optimal gradient step size (see Figures 6.20 and 6.21). The following step sizes were
chosen:

• for the angles: 0.25◦;

• for the cambers; 0.05;

• for all the parameters with units length (in mm); 1mm.

The choices were not solely based on the parameter sweep results. iSIGHT does not
allow the user to explicitly define different gradient steps for each variable. Instead,

TEST CASE 2 - THE TWO-ELEMENT AIRFOIL 89

there is one gradient step parameter that can be set and this value is then used for all
variables. Next to this setting, it is possible to scale each variable differently. This
setting is intended to ensure that all variables are in the same order of magnitude.
However, since it is not possible to choose both settings (scaling and gradient step)
for each variable, a compromise had to be found to partly use the scaling to ensure
that the variables would be in the same order of magnitude but at the same time
the gradient step sizes were chosen appropriately.

90 CHAPTER 6 TEST APPLICATIONS

(a) (b)

(c) (d)

(e) (f)

Figure 6.20 Parameter sweeps for test case 2 and the accompanying finite difference gradients
as a function of the step size.

TEST CASE 2 - THE TWO-ELEMENT AIRFOIL 91

(a) (b)

(c) (d)

(e) (f)

Figure 6.21 Parameter sweeps for test case 2 and the accompanying finite difference gradients
as a function of the step size (cont.).

92 CHAPTER 6 TEST APPLICATIONS

6.3.3 Results

This sub section presents the results for test case 2. First, the results obtained
with the iSIGHT optimizers are presented and elaborated. Figure 6.22 shows the
optimum CL values found and the number of function evaluations required, averaged
over the six sub cases.

(a) (b)

Figure 6.22 iSIGHT results averaged over the 6 sub problems of test case 2.

In terms of the optimum CL and number of function evaluations, the following ob-
servations are made:

Optimum CL

• There is a clear distinction between the two gradient-free algorithms on one
side and the four gradient algorithms on the other side. The gradient-free algo-
rithms clearly find better optimum values. Even though these two algorithms
are local algorithms like the gradient algorithms, they are able to search the
design space more globally. For DS, the setting that controls this is the initial
simplex size. A larger initial simplex size increases the probability of find-
ing the global optimum. As mentioned earlier, the value used was the default
value, which is equal to 10% of the design space. For HJ, the particular setting
is the so-called Relative Step Size. This is the step size the algorithm takes in
each direction at the start of the optimization. The default value is 0.5, which
means that in each direction it will span half the design space. For the gra-
dient algorithms however, it is not possible to control the extent of the global
search. If the starting point is chosen far away from the global optimum, they
can easily get stuck in a local minimum or require more function evaluations
to reach the optimum. DS and HJ are less sensitive to the starting point.

• Among the gradient algorithms, it is again apparent that the SQP methods
find better optima than the feasible methods. Because of the parameterization

TEST CASE 2 - THE TWO-ELEMENT AIRFOIL 93

chosen, it was possible that the two airfoils would clash. Especially when
greater numbers of design variables are used, the design space can consist of
‘infeasible patches’. SQP algorithms can deal with these types of spaces more
efficiently. Even though they could therefore sample at a point where the
configuration clashes and therefore the objective function is undefined, they
did not break down but simply decreased the step size along the line search.

Function evaluations

• Examining the number of function evaluations carried out by the optimiz-
ers, DS uses the most number of function evaluations whereas HJ uses the
least. Upon closer inspection, it was found that HJ often stopped prematurely
because too many runs failed. This was due to the fact that the geometries
clashed, so somewhere in the process (CAD, surface/volume meshing) a failure
would occur. This should not come as a surprise as HJ is not very delicate in
choosing its samples. It simply chooses them based on the coordinate system
used and on top of this, at the beginning the step sizes are quite large so for
this particular problem it is bound to come across a clashed geometry.

• Another interesting observation was made for LSGRG. It was already found
in test case 1 that this algorithm tends to follow constraint boundaries when
it comes across them. This same behavior was observed in the current test
case. For a couple of problems, the solver would try to follow a constraint
boundary but because the gradient steps chosen were quite large (and the
constraint boundaries were probably highly nonlinear), it was not able to follow
them closely. For this reason it often found itself at the infeasible side of the
boundary. When this happens and the solver is unable to recover itself back
into feasibility, it stalls. This may explain why LSGRG uses the least number
of function evaluations among the gradient algorithms.

Tables 6.14 and 6.15 shows the results obtained with KERS. For each subcase, the
iSIGHT optimizer that found the best CL is shown too. This would either be DS or
HJ, as it was stated above that for this particular test case, the gradient-free methods
found better function values than the gradient-based algorithms. exploit means that
the infill points chosen is the best point on the response surface, while explore means
that the infill point is the point with the maximum expected improvement (EGO).

A couple of observations are made:

• KERS finds better configurations than the best iSIGHT optimizer and gener-
ally in fewer function evaluations;

• The exploit mode finds better optima than the explore mode. This may be
an indication that the response surface is not as multimodal as was expected.
When the response is not multimodal, EGO is of course expected to be slower,
since it tries to balance local (exploiting) search with global (exploring) search;

94 CHAPTER 6 TEST APPLICATIONS

Table 6.14 KERS results for test case 2 (optimum CL).

KERS (exploit) KERS (explore)

Dim. iSIGHT interp regr mix interp regr mix

2 -1.946 -1.940 -1.730 -1.949 -1.935 -1.627 -1.935
4 -2.665 -2.737 -2.712 -2.683 -2.680 -2.455 -2.674
6 -2.540 -2.824 -2.804 -2.833 -2.806 -2.803 -2.761
8 -2.535 -2.819 -2.771 -2.673 -2.547 -2.820 -2.592

10 -2.257 -2.909 -2.847 -2.929 -2.872 -2.761 -2.744
12 -2.387 -2.406 -2.709 -2.822 -2.321 -2.436 -2.631

-2.388 -2.606 -2.596 -2.648 -2.527 -2.484 -2.556

Table 6.15 KERS results for test case 2 (Number of function evaluations).

KERS (exploit) KERS (explore)

Dim. iSIGHT interp regr mix interp regr mix

2 23 27 34 30 20 25 37
4 76 76 60 57 41 47 73
6 110 92 111 86 63 88 102
8 151 147 155 122 135 156 157

10 162 167 154 176 91 98 200
12 200 229 214 201 226 203 229

120 123 121 112 96 103 133

• the interpolating response surface is better than the regressing surface. It was
already found in the two-dimensional test case 1 that a regressing surface may
converge slower because the response surface changes less radically when a
new sample point is added. Since higher dimensional problems are considered
in this test case and therefore the sample points are spaced further apart, the
noise will not immediately become a hindrance;

• The adaptively regressing surface (mix) performs better than the purely in-
terpolating surface.

95

‘You talk the talk. Do you walk the walk?’

Animal Mother, Full Metal Jacket 7
Real-life problems

The two test cases presented in the previous chapter were very useful for comparing
iSIGHT’s local optimizers and KERS and contributed to the development and un-
derstanding of the developed tool. To determine whether KERS will indeed give a
boost to the current LRGP optimization methodology, it was decided to test it out
on a couple of actual optimization problems investigated in the CFD department.
They were all part of a project focusing on the development of the R31’s top rear
wing (TRW)1.
The 2011 season has seen the introduction of moveable rear wings as part of the Drag
Reduction System. This regulation change was born out of the desire to increase
overtaking in Formula One. By allowing the following car to rotate the leading
edge of its rear wing flap upwards, the TRW will potentially stall. This loss in
downforce is accompanied by a loss in induced drag, which should make it easier
for the following car to overtake. Additionally, the leading car will not be allowed
to stall its rear wing when the following car is within a specified distance. Because
of the introduction of these moveable rear wings, a significant amount of effort has
gone into developing effective rear wings, i.e. rear wings that will produce sufficient
downforce in their normal state (the ‘off-condition’) and at the same time be able
to shed as much drag as possible when the flap is activated (the ‘on-condition’).
To reduce the mesh count, the CFD model was defeatured (see Figure 7.1). Re-
garding the response surfaces built, they all used a constant regression term and
a Gaussian correlation model. To tune the model parameters, the cross-validation
method was used. Additionally, all response surfaces were interpolated. Not only
were the CFD functions found to be much ‘cleaner’ than those of the test cases, the
number of variables used was 4 or higher and the number of infill points was chosen
to be small.

7.1 Twisted wing

In the DOE carried out for this part of the project, the TRW was parameterized
with 8 variables:

1The R31 is LRGP’s 2011 contender.

96 CHAPTER 7 REAL-LIFE PROBLEMS

Figure 7.1 Optimization model used. The car was cut along the red surface, which imposes
an inlet condition. The flow values at this surface were obtained from the corresponding half-car
model. The blue surface is the symmetry surface.

• angle of attack (or twist) of the in-board (ib) and out-board (ob) flap sections;

• scale of the ib and ob flap sections;

• angle of attack of the ib and ob main plane (RWMP) sections;

• scale of the ib and ob RWMP sections.

The parameters were specified relative to a baseline case (bs). The lower and upper
bounds for the angles were −5◦ and +5◦, respectively. The lower and upper bounds
for the scales were −5% and +5%, respectively. The DOE consisted of 180 design
points, spread out using iSIGHT’s Optimal Latin Hypercube algorithm. The focus
of this particular problem was to maximize the downforce of the TRW in the off-
condition while at the same time maximize the drag reduction when the flap is
opened. Of course, the resulting geometry must also fit inside the legality box.
Table 7.1 shows the results of the baseline run (bs), the best2 design from the DOE
(bs DOE) and a shrunken version of it that would fit inside the box (bs DOE s). All
the aerodynamic loads are expressed with respect to the baseline. Observe that even
though bs DOE is generating 1pt3 more downforce and shedding 4units more drag
than baseline, it is sticking 7.7mm out of the bottom legality box. The shrunken,
legal version generates 1.3pts less downforce than bs DOE. Using the DOE results,
response surfaces were built for the following functions:

2This is the DOE point that produced a large amount of downforce without being ‘too illegal’.
3A point (pt) is 0.01 of force coefficient while a unit is 0.001. The unit is the smallest force coefficient
value that is considered to be of significance.

TWISTED WING 97

Table 7.1 The baseline design (bs), the best DOE points (bs DOE) and a legalized version
(bs DOE s) of it.

∆CLRW ∆CDRW legal bottom legal front
Run [-] [-] [mm] [mm]

bs 0 0 0.69 -0.024
bs DOE -0.010 -0.004 7.7 0.33

bs DOE s +0.003 -0.001 -0.40 -0.79

s

• CLRW ; CFD function representing the CL of the rear wing assembly in the
off-condition.

• CDRW ; CFD function representing the amount of CD shed by the rear wing
assembly when switching from the off- to on-conditions.

• legal bottom; geometric function representing the distance between the bot-
tom surface of the TRW legality box and the lowest point of the RWMP.
Negative values indicate a legal configuration, i.e. the RWMP is not punctur-
ing the bottom surface of the legality box.

• legal front; geometric function representing the distance between the front
surface of the TRW legality box and the front most point of the RWMP.
Again, negative values indicate a legal configuration.

The values for the CFD functions were averaged over the last 100 iterations. The
values for the geometric functions were obtained from CATIA. With the parame-
terization used and the imposed bounds on the variables, the top and back surfaces
of the legality box could not be crossed, so these functions were not included in the
surrogate model. Figure 7.2 shows one of the DOE designs, including the TRW le-
gality box. This particular design was sticking out of the front and bottom surfaces
of the legality box.

Figure 7.2 TRW with legality box.

98 CHAPTER 7 REAL-LIFE PROBLEMS

Figure 7.3 shows the cross-validation plots for the four functions while Table 7.2
gives the average and maximum absolute errors for each fitted functions. Looking
at the cross-validation plots and the error metrics, the fit appears to be satisfactory.

(a) (b)

(c) (d)

Figure 7.3 Cross-validation plots for the four fitted functions.

Table 7.2 Average and maximum absolute errors calculated by means of cross-validation.

Absolute error

Parameter Average Maximum Unit

CLRW 0.3 4.5 pts
CDRW 0.2 1.9 pts

legal bottom 0.87 3.2 mm
legal front 0.93 5.3 mm

The response surfaces were then used for optimization purposes. Four different cases
were run:

1. CL − exploit: minimize CLRW by searching the optimum on the response

TWISTED WING 99

surface;

2. CD − exploit: minimize CDRW by searching the optimum on the response
surface;

3. CL − explore: minimize CLRW using EGO;

4. CD − explore: minimize CDRW using EGO.

Table 7.3 shows the results. Interestingly, the configurations all lie on the bottom
surface of the legality box, indicating that this constraint is the main limiter in
achieving a maximum downforce and drag switch.

Table 7.3 Optima obtained from the surrogate model.

Exploit Explore

Parameter CL CD CL CD Unit

∆CLRW -0.004 +0.003 -0.001 +0.004 -
∆CDRW -0.002 -0.005 -0.001 -0.005 -

legal bottom 0.0 0.0 0.0 0.0 mm
legal front 0.0 -3.3 -0.50 -3.9 mm

The proposed configurations were subsequently run in CFD. Table 7.4 shows the
prediction errors. The predictions appear to be quite accurate. The largest error
for the geometric constraints is 1.9mm. The largest error for CLRW is 3units, while
the largest error for CDRW is 5units. Comparing the CL − exploit configuration
with baseline, gains of 3 units in downforce and 3 units in drag delta are achieved.

Table 7.4 Prediction errors.

Exploit Explore

Parameter CL CD CL CD Unit

CLRW +0.001 +0.000 +0.003 +0.001 -
CDRW -0.001 +0.005 +0.000 +0.004 -

legal bottom +1.0 -1.9 +0.13 -1.8 mm
legal front +1.1 -0.3 +0.00 -0.5 mm

To understand how the CLRW and CDRW are related, the surrogate model was used
to construct a Pareto front. The algorithm used for this was one of iSIGHT’s genetic
algorithms called AMGA, based on the work of Tiwari et al. [49]. Figure 7.4(a)
shows all the points, legal and illegal, that the algorithm sampled. The positive
horizontal direction corresponds to a decrease in downforce and the positive vertical
direction corresponds to a decrease in drag switch. As the rear wing generates more
downforce, it can shed more drag when the flap is actuated. This is of course what

100 CHAPTER 7 REAL-LIFE PROBLEMS

one would expect as more downforce is accompanied with more (induced) drag.
However, it seems that the legality box is limiting this trend; observe how the red
points reach deeper into the bottom left corner of the plot. Figure 7.4(b) zooms into
this limiting region and has removed the illegal points for clarity. A Pareto front is
visible indicating that at a certain point, if one wants to increase downforce while
keeping the configuration legal, the amount of drag that one can shed will naturally
be reduced.

(a) (b)

Figure 7.4 Legal design points generated by AMGA. The red curve is the Pareto front.

7.2 Extruded wing

In this new DOE, 4 variables were used:

• angle of attack of the flap;

• scale of the flap;

• angle of attack of the RWMP;

• scale of the RWMP.

Contrary to the twisted wing, in this DOE the ib and ob sections were the same
(i.e. the wing was a 2D extrusion). The parameters were specified relative to a
baseline case (bs). The lower and upper bounds for the angles were −5◦ and +5◦,
respectively. The lower and upper bounds for the scales were −10% and +10%,
respectively. A DOE of 80 points was set up. 3 runs failed, leaving 77 points that
could be used for building the surrogate model. The focus of this particular problem
was to maximize the downforce of the TRW in the off-condition and at the same

EXTRUDED WING 101

time maximize the drag switch when the flap is rotated. Table 7.5 shows the results
of the baseline run, together with two interesting DOE points (DOE 1 and DOE 2)
with their accompanying scaled versions that should fill the box better (DOE 1 s
and DOE 2 s). DOE 2 s generates the highest downforce while DOE 1 s produces
the largest drag switch.

Table 7.5 The baseline design (bs), two interesting DOE points and two manually tweaked
versions.

∆CLRW ∆CDRW legal bottom legal front
Run [-] [-] [mm] [mm]

bs 0 0 0.67 -0.21
DOE 1 +0.007 -0.002 -5.15 -13.04

DOE 1 s +0.001 -0.004 -1.35 -0.86
DOE 2 -0.001 +0.003 0.01 -3.78

DOE 2 s -0.003 +0.003 0.89 -0.64

Again, response surfaces were built for the four functions. Table 7.6 gives the average
and maximum absolute errors for each fitted function. Looking at dation plots and
the error metrics, the fit appears to be satisfactory.

Table 7.6 Average and maximum absolute errors calculated by means of cross-validation.

Absolute error

Parameter Average Maximum Unit

CLRW 0.1 0.3 pts
CDRW 0.1 0.2 pts

legal bottom 1.9 7.7 mm
legal front 0.14 0.49 mm

Before using the surrogate model for optimization, it was decided to gain an under-
standing of the problem first. To this end, a couple of plots were generated. As there
were four variables, the nested plot shown in Figure 7.5 was made. The represented
function is the CLRW . The horizontal axis represents the angles of attack while the
vertical axis represents the scales. The axes on the mini tiles belong to the flap while
the main tile belongs to the RWMP. The RWMP angle and scale were subdivided
into 13 intervals, explaining why there are 13 mini tiles in both directions. The
most downforce is generated by the blue regions. The figure indicates that for both
the RWMP and flap, an increase in scale will increase the downforce generated by
the RW. Indeed, an increased scale means a bigger surface area, so more load can
be generated. Regarding the angle of attack; lower values (right to left) mean that
the leading edge is moved down, while the trailing edge is kept constant. So, lower
values should see an increase in downforce, which is indeed what can be observed
from the figure.

102 CHAPTER 7 REAL-LIFE PROBLEMS

Figure 7.5 Nested plot of the CLRW for the extruded wing. The horizontal axis represents
angles of attack while the vertical axis represents the scales. The axes on the mini tiles belong
to the flap while the main tile belongs to the RWMP.

Figure 7.6 gives the nested plot of the CDRW . This function shows a more complex
behavior with the four variables. Blue regions represent configurations that generate
a large drag switch. The following observations can be made:

• an increasing RWMP scale appears to result in a decreasing drag delta;

• an increasing flap scale appears to result in an increasing drag delta;

The next step was to optimize the response surface. As for the twisted wing, four
different cases were set up: CL−exploit, CD−exploit, CL−explore and CD−explore.
Table 7.7 shows the results (the CL&CD column is discussed later).
The proposed configurations were subsequently run in CFD. Table 7.8 shows the
prediction error. The predictions appear to be quite accurate. The largest error
for the geometric constraints is 2.1mm. The largest error for CLRW is 3units,
while the largest error for CDRW is 1unit. Comparing the CL − exploit design
with the baseline run, a gain of 4 units in CLRW and 3 units in CDRW has been
achieved. Comparing with the best design obtained by manually scaling a DOE
point (DOE 2 s), a gain of 1 unit in CLRW has been achieved with a 6units gain in
CDRW . As in the previous problem, the surrogate model was linked with AMGA
to construct a Pareto front for the downforce and drag switch. Figure 7.7 shows the
results. The red curve shows the Pareto front indicating the limit where an increase
in downforce will cause a decrease in drag switch. From the Pareto front, a design
point was chosen and subsequently run.

AIRFOIL OPTIMIZATION 103

Figure 7.6 Nested plot of the CDRW . The horizontal axis represents angles of attack while
the vertical axis represents the scales. The axes on the mini tiles belong to the flap while the
main tile belongs to the RWMP.

Table 7.7 Optima obtained from the surrogate model.

Exploit Explore

Parameter CL CD CL&CD CL CD Unit

∆CLRW -0.005 +0.003 -0.005 -0.004 +0.003 -
∆CDRW -0.002 -0.004 -0.002 -0.000 -0.004 -

legal bottom 0.0 0.0 0.0 0.0 0.0 mm
legal front 0.0 0.0 -0.13 -19 0.0 mm

This point corresponds to the CL&CD column of Table 7.7. It turned out that the
actual CLRW was the same as predicted (within the unit accuracy), while the drag
delta was 2 units more than predicted. In addition, legal bottom and legal front
were -0.59mm and -0.015mm, respectively, meaning that the configuration was fully
legal.

7.3 Airfoil optimization

This DOE focused on maximizing downforce. For these design points, only the
off-condition was therefore run. The baseline for this case was the point chosen
on the Pareto front in the previous problem. Again, the TRW was chosen to be a
2D extrusion. Both the RWMP and flap were parameterized with 6 variables. In

104 CHAPTER 7 REAL-LIFE PROBLEMS

Table 7.8 Prediction errors

Exploit Explore

Parameter CL CD CL CD Unit

∆CLRW +0.001 +0.000 +0.003 +0.001 -
∆CDRW -0.001 -0.001 -0.001 +0.000 -

legal bottom -0.59 0.40 +2.1 +0.29 mm
legal front +0.22 +0.0 -19 +0.032 mm

Figure 7.7 Legal design points generated by AMGA. The red curve is the Pareto front.

addition to the angle of attack and scale, four camber variables were defined on the
main plane and flap:

• camber frt

• camber mid

• camber rr

• camber rr angle

The total number of variables was therefore 12. A DOE of 400 points was set up.
Since the parameterization and the imposed variable bounds allowed for certain con-
figurations to cross the back of the legality box, a response surface for this constraint
was also built, in addition to the CLRW and the bottom and front constraints. Table
7.9 gives the average and maximum absolute errors for each fitted function. From
the DOE, the design point producing the highest load was outside the legality box;
5mm at the back, 3mm at the front and a considerable 21mm at the bottom.

AIRFOIL OPTIMIZATION 105

Table 7.9 Average and maximum absolute errors calculated by means of cross-validation.

Absolute error

Parameter Average Maximum Unit

CLRW 0.3 2.6 pts
legal back 0.07 0.90 mm

legal bottom 0.13 0.66 mm
legal front 0.12 0.49 mm

The configuration that produces a good amount of load but that did not stick out
the legality box considerably (8mm and 9mm at the bottom and front) produced
1.5pts more downforce. This configuration was shrunk to fit the box, which reduced
the downforce with 1.1pts. Using the surrogate model, an optimization was carried
out to find a legal configuration that could generate more RW downforce than this
bsf configuration. To determine the infill points, it was decided to alternate the
auxiliary function between the CLRW and the expected improvement. Table 7.10
shows the results relative to the bsf. The best design point was found in iteration
7. Even though it generates the same load as the design point found in the 11th

iteration, the former was completely inside the box. Note that the prediction error
indeed goes down and on top of this the expected improvement clearly diminished.
This gives one confidence that a configuration close to the global optimum was
found. All in all, the response surface methodology has given an improvement of 6
units over the previously re-scaled DOE point.

Table 7.10 Progress of the optimization using the surrogate model built.

∆CLRW |Error|

Iteration predicted actual [pts] E [I (x)]

1 -0.012 -0.001 1.1 1.5E-02
2 -0.009 -0.002 0.7 2.0E-02
3 -0.013 -0.001 1.2 1.3E-02
4 -0.010 +0.005 1.5 1.0E-02
5 -0.008 -0.003 0.5 5.7E-03
6 -0.003 -0.004 0.1 5.9E-03
7 -0.004 -0.006 0.2 2.1E-04
8 -0.004 -0.005 0.2 2.4E-04
9 -0.007 -0.005 0.2 3.5E-04

10 -0.007 -0.005 0.2 8.2E-05
11 -0.006 -0.006 0.0 9.9E-06

106 CHAPTER 7 REAL-LIFE PROBLEMS

7.4 Rib integration

The three design problems described in the previous sections did not have a legality
rib4. The present section describes a DOE where the rib was included, as shown in
Figure 7.8. Note that the TRW shown in Figure 7.8 is the left half of the complete
TRW (i.e. the full TRW has two legality ribs). The presence of the rib can cause the
flow around it to separate from the suction surfaces of the flap and RWMP, leading
to a loss in downforce. To try and regain this loss, a DOE with four variables was
set up. The variables were scale and angle of attack of the flap and RWMP sections
at the position of the legality rib. The blue surfaces were kept unchanged, while
the green surfaces were set up such that they would provide a smooth blend. The
scales were bounded between −10% and +10% of the baseline, while the angles
were bounded between −10◦ and +10◦. Figure 7.9 shows the velocity magnitude at
a vertical plane behind the TRW for the baseline, which was an extruded wing. One
can clearly identify the stall coming from the region where the rib resides (the blue
region). A DOE of 70 points was set up. The configuration producing the highest
load (4pts more than baseline) was well outside the legality box (31mm outside the
bottom). The configuration that produced the highest load while being the closest
to legality (1mm outside the back) produced 2.2pts more downforce than baseline.
This was the best so far (bsf) from the DOE. To understand how the parameters
chosen influence the CL, a response surface was built for it. In addition, response
surfaces were built for the back, bottom and front legality constraints. Table 7.11
gives the average and maximum absolute errors for each fitted function.

Figure 7.8 TRW with legality rib.

As there were four variables, it was possible to visualize the whole design space in
one plot, using the concept of the nested plot introduced in Section 7.2. Figure 7.10
shows the nested plot for the present problem. The horizontal axis represents angles
of attack. Going from right to left is equivalent to drooping the leading edge of the
section at the position of the legality rib. The vertical axis represents the scales of
the sections. Going from the bottom to the top is equivalent to increasing the scale

4A stiff spacer separating the RWMP and flap in order to maintain a constant slot gap. It is required
for legality.

RIB INTEGRATION 107

Figure 7.9 Velocity magnitude behind the baseline TRW with legality rib.

Table 7.11 Average and maximum absolute errors calculated by means of cross-validation.

Absolute error

Parameter Average Maximum Unit

CLRW 0.8 2.7 pts
legal back 0.002 0.02 mm

legal bottom 0.89 2.8 mm
legal front 0.47 3.2 mm

of the sections. It is therefore clear from the figure that increasing the scale of the
section and drooping it will increase the downforce. Using the surrogate model, a
couple of iterations were carried out. For all iterations, the auxiliary function used
was the actual CL on the response surface (‘exploit’). The reason for not using
the expected improvement is because prior to carrying out the DOE, the response
surface was not expected to be multimodal. Examining Figure 7.10, one can observe
that this is indeed the case. An additional reason is that the ‘exploit’ approach tends
to converge faster, which was already confirmed in the previous chapter for test case
2. Table 7.12 shows the results of the iterations, relative to the bsf. The best legal
configuration was found in the first iteration. Comparing it with the bsf, the gain

108 CHAPTER 7 REAL-LIFE PROBLEMS

achieved is 1pt. Figure 7.11 shows the configuration, together with the TRW legality
box.

Figure 7.10 Nested plot of CLRW . The horizontal axis represents angles of attack while the
vertical axis represents the scales. The axes on the mini tiles belong to the flap while the main
tile belongs to the RWMP.

Table 7.12 Progress of the optimization using the surrogate model built.

Flap Main plane ∆CLRW |Error|

iteration angle scale angle scale Max legal predicted actual [pts]

1 -4.74 0.1 2.39 -0.06 +0.0 -0.021 -0.010 1.1
2 -6.00 0.1 3.55 -0.02 +0.0 -0.014 -0.010 0.4
3 0.36 0.1 2.45 -0.07 +0.0 -0.012 -0.000 1.2
4 -5.99 0.1 2.52 -0.06 +0.0 -0.013 -0.008 0.5
5 -5.99 0.1 4.27 0.02 +0.3 -0.020 -0.012 0.8
6 -3.62 0.08 0.70 -0.07 +1.9 -0.012 -0.004 0.8

RIB INTEGRATION 109

Figure 7.11 Best legal configuration found by the response surface optimization.

111

‘A conclusion is the place where you got tired
thinking.’

Martin Henry Fischer 8
Conclusions & recommendations

The next section describes how the present research has contributed to enhancing
the current optimization methodology, followed by suggestions for possible future
work.

8.1 Conclusions

Two approaches to optimization were investigated in this research, and assessed
using two CFD test cases.

8.1.1 Local solvers

The first optimization approach investigated is the traditional approach, in which
a numerical algorithm is used to solve the optimization problem. The following
conclusions are drawn:

• SQP methods showed the best performance: they found the best optimum in
the least number of function evaluations.

• noise can decrease the performance of the algorithms; when applied on noisy
functions, the actual values these solvers found were lower than for the noise-
free versions.

8.1.2 The surrogate modeling framework

The surrogate modeling technique used in this research was Kriging. The following
modifications were introduced and investigated in order to improve the quality of
the surrogate model:

• use a cross-validation error metric instead of the maximum likelihood estima-
tor to find the optimum response surface; The latter is the widely accepted
methodology in the open literature. It was found that for scarce sample sets,
the cross-validation idea can give more accurate response surfaces;

112 CHAPTER 8 CONCLUSIONS & RECOMMENDATIONS

• allow the Kriging surface to regress sample points; this is particularly desirable
when the underlying function is noisy and there are clustered sample points.
It was found that for noisy functions, the smoothing indeed stabilizes the
optimization procedure. This was evident in the two dimensional test case 1
but less so in the higher dimensional problems in test case 2. Indeed, as the
number of dimensions increases, sample points will be spaced further apart so
noise will be less of a hindrance. Since an interpolating surface will change
more considerably as a result of an infill point it can converge more quickly to
the actual optimum;

• adaptive regression; a method was introduced which will apply the level of
smoothing to each sample point that is proportional to its standard deviation.
The extreme case of this was to only regress sample points that are clustered
within a user specified threshold. It was concluded from the test cases that it
indeed provides better results than the fully interpolating and fully regressing
methods.

To find the global optimum on the response surface, the global optimizer DIRECT
was used. Originally, the algorithm could only handle box-constraints. So, DI-
RECT was extended to handle nonlinear equality and inequality constraints. This
was achieved by using an exact penalty function.
The development of the surrogate modeling framework culminated in the program
KERS. For the two test cases, KERS was found to compare favorably with the
iSIGHT optimizers.
Finally, KERS was used on a couple of real-life CFD design projects. For all these
projects, it showed to be a good improvement over the current optimization method-
ology as it was able to enhance the understanding of a design problem while at the
same time find better designs when used in an optimization loop. These two features
clearly make surrogate modeling attractive in the context of using expensive codes
in the design process, contrary to the more standard approach of using black-box
optimizers.

8.2 Recommendations

8.2.1 Local solvers

Instead of using gradients obtained from finite differencing, it is possible to calcu-
late them with more accurate methods like the complex variables method or exact
differentiation. More accurate gradients should lead to a better performing gradient-
based algorithm. The adjoint approach can be very useful in this respect, as it is
capable of obtaining accurate gradients at the cost of a CFD function evaluation.
In the present context, the challenges will be to obtain (a part of) the source code
of an accurate CFD solver. Indeed, if the primal is not accurate enough in reliably

RECOMMENDATIONS 113

modeling the complex flow around an F1 car, then the gradients will not be as
useful. Then, one needs to develop the actual adjoint solver.

8.2.2 The surrogate modeling framework

Regarding the surrogate modeling framework, since KERS has been a first attempt
to using this concept within the CFD optimization methodology at LRGP, there is
still significant room for improvement:

• make use of gradient-enhanced Kriging ; the Kriging surface will therefore not
only go through a sampled point, it will also have the same gradient there.
Compared to the standard Kriging approach, one can therefore either obtain
a more accurate response surface for the same number of points or the same
accuracy by using fewer points. Note that gradient-enhanced Kriging is only
useful when the gradients can be obtained cheaply. Recall that the adjoint
method is capable of obtaining the gradient at the cost of one function evalu-
ation.

• use a surrogate model for other purposes than optimization; In the present
context, where the car is continuously being developed both in CFD and in
the wind tunnel, an interesting application would be to combine the results
from these two methods into one model. Another application may be to use
results from a high-fidelity code to calibrate results from a low-fidelity code.
The surrogate model would then serve as a transfer function which maps the
discrepancy between the two stages across the design space. This will enable
one to carry out a large number of runs with the low-fidelity code, using the
surrogate model to ‘correct’ the results. In the present context, the high-
fidelity code would be the solution obtained from Star-CCM+ applied on an
accurate half-car (or even full-car) model. The low-fidelity code can be a
variety of things. For example, it could be a defeatured model. Another
possibility would be to use results from a panel method like NEWPAN as the
low-fidelity code.

• when using adaptive regression, try to quantify the error at each sample point
more accurately. It was briefly mentioned and shown that using the standard
deviation of the function as an error metric can provide better results than
full regression. If a better error estimate can be found, for example by using
the adjoint solution, then it may be possible to obtain an even better response
surface.

I

A
A description of the global optimizer

DIRECT

This appendix describes the workings of the global optimization algorithm DI-
RECT1, which is used to find the global optimum on the surrogate response surface.
It was proposed by Jones et al. [25]. The Matlab source code of the implementation
used in this research can be found in the article by Björkman and Holmström [3].
DIRECT is a Lipschitzian optimization method. The Lipschitz constant K gives an
upper bound on the rate of change of a function. Knowledge of this constant is a
powerful tool for global optimization. An algorithm that makes use of this constant
comes with a number of advantages:

1. convergence theorems can easily be proved;

2. these methods are deterministic so there is no need for multiple runs;

3. besides the Lipschitzian constant itself, one does not have to define a large
number of parameters to set up the algorithm, therefore minimizing the need
for parameter fine-tuning;

4. Lipschitzian methods can define bounds on how far they are from the optimum.
They can therefore use a stopping criterion which is more meaningful than
simply specifying an iteration limit.

However, specifying the Lipschitz constant is not easy. In fact, determining the
correct value is as difficult as finding the global optimum since it boils down to
finding the maximum of the gradient’s magnitude. For this reason, Lipschitzian
methods will usually specify a large value for this constant such that it is at least
higher than the actual value. As will be explained shortly, in the context of global
optimization the Lipschitzian constant (or, to be more specific, its approximation)
can be interpreted to be a weighting parameter specifying how local and global
search should be balanced. High values put more emphasis on global search. It

1The name DIRECT not only refers to the fact that the algorithm is a direct technique, i.e. it does not
makes use of function gradients, it is also an abbreviation for DIviding RECTangles, a reference to the
way the method works.

II CHAPTER A A DESCRIPTION OF THE GLOBAL OPTIMIZER DIRECT

can therefore be appreciated why the standard Lipschitzian methods can exhibit
slow convergence speeds. To get a feel for how a Lipschitzian optimizer works,
Figure A.1 shows Shubert’s [47] algorithm for a one-dimensional function at three
subsequent iterations. The black dots are the points where the objective function
has been evaluated. The magnitude of the slope of the blue lines is equal to the
(approximation of the) Lipschitz constant K. Since it represents the upper bound
of the rate of change of the function, the function will never be below the V shapes.
At each iteration, the function is evaluated at the lowest V-notch in the interval. It
can easily be verified that the value of a V-notch is equal to:

f (a) + f (b)

2
−K (b− a) (A.1)

where a and b are the left- and right-hand sides of an interval, respectively and f (·)
is the one-dimensional function. The first term is low when the function values at
the endpoints are low. The second term is low when the interval is big (relatively
unexplored region). In other words, the first term emphasizes local search while the
second term emphasizes global search.

(a) (b)

(c)

Figure A.1 Shubert’s algorithm.

DIRECT makes the following modifications to Shubert’s algorithm:

CONSTRAINT HANDLING III

1. instead of evaluating an interval at its endpoints (vertices), it is evaluated at
its center point. Shubert’s algorithm becomes impractical in higher dimen-
sions, since an interval becomes a hypercube with 2n vertices, where n is the
number of dimensions. The algorithm DIRECT on the other hand will always
start with one point at the center of the hypercube. Shifting to center-point
sampling requires two additional modifications:

• the ‘V-shape’ constructed using the Lipschitzian constant becomes an
‘inverted V’, with the notch located at the sampled center. So, instead
of the notch being the hypothetical minimum, its two endpoints become
the hypothetical minima;

• an interval is subdivided into three to ensure that center sampling can
still be carried out in subsequent iterations. Figure A.2 illustrates how
these modifications would play out in practice.

2. assume that the space has already been subdivided into m intervals [ai, bi],
i = 1, ...,m and the next step is to choose the interval that should be sampled.
Figure A.3(a) plots these intervals where the horizontal axis represents the
distance from the interval’s center and the vertical axis represents the function
value at this center. The blue line has slope K. Therefore, if the line is taken
through one of these points, its intersection with the vertical axis will represent
the hypothetical minimum for that particular interval. Shubert’s algorithm
will choose the interval that produces the lowest hypothetical minimum (the
red dot). From the figure it can be derived that the larger K is, the more global
the search will become since large intervals will be chosen. Instead of choosing
one value for K, DIRECT will essentially evaluate all possible K values by
choosing the sample points that form the bottom right edge of the convex
hull, as shown in Figure A.3(b). The green dots are the intervals that will
be subdivided. For this reason, DIRECT will not put all emphasis on global
search. Rather, at each iteration it will carry out global and local search. In
other words, the user does not have to specify a Lipschitzian constant.

To understand how DIRECT would work in more than 1 dimension, Figure A.4
shows three iterations of the algorithm in two dimensions.

A.1 Constraint handling

DIRECT can only handle bounded problems. In the present context, it is very
important for an optimizer to be able to handle nonlinear equality and inequality
constraints. This section therefore describes how DIRECT was extended to handle
nonlinear equality and inequality constraints.
As described in Chapter 2, the easiest way of handling constraints is to use an
indirect method (penalty function), which is the method chosen here. An additional

IV CHAPTER A A DESCRIPTION OF THE GLOBAL OPTIMIZER DIRECT

(a) (b)

(c)

Figure A.2 DIRECT algorithm in 1D.

reason for choosing an indirect method is because the goal is to extend an existing
algorithm so it can handle constraints. So, instead of taking the difficult route
of changing the source code of the algorithm, an indirect method allows one to
build the extension around the original code. Furthermore, it was decided to follow
up DIRECT with the SQP algorithm of Matlab’s fmincon solver. In other words,
DIRECT is used to locate the global minimum in a possibly multimodal design
space. Then, using the optimum found by DIRECT, fmincon is used to provide
a more accurate solution. This will be especially useful if the solution lies on a
constraint boundary as indirect methods are known to have difficulty finding these
kinds of solutions. A number of penalty functions exist, like the quadratic penalty
function, the logarithmic barrier function, the augmented Lagrangian function and
the exact penalty function. The first three are iterative. Starting with an initial
guess for the penalty parameter, at each iteration the unconstrained problem is
solved, followed by increasing the penalty of constraint violations. In the context of
extending a local algorithm, this is not a problem. However, when using a global
algorithm, which does not make use of a starting point and does not follow a path to
the optimum, it is not a good idea to restart the method each time with a different
penalty value. This is the reason why the exact penalty function, shown by Eq.A.2,
was chosen.

CONSTRAINT HANDLING V

(b-a)/2

f(c)

slope = K

(b
i
-a

i
)/2

f(c
i
)

(a)

(b-a)/2

f(c)

(b)

Figure A.3 Choosing the next interval for sampling according to standard Lipschitzian methods
(A.3(a)) and DIRECT (A.3(b)). The green points are the potentially optimal intervals.

φ1 (x;µ) = f (x) +
1

µ

∑
i∈E
|ci (x)|+ 1

µ

∑
i∈I

[ci (x)]− (A.2)

where [c]− = max (0, c). For all sufficiently small, positive values of the penalty
parameter µ, one minimization of the unconstrained function will yield the solution
of the originally constrained problem. Note that on the constraint boundary, the first
derivative is not defined. For this reason, the exact penalty method is not desired
when the original optimizer is gradient-based. However, since DIRECT does not
make use of gradients, this is not an issue.

VI CHAPTER A A DESCRIPTION OF THE GLOBAL OPTIMIZER DIRECT

Figure A.4 DIRECT applied in two dimensions. The rows represent the iterations. The first
column is the start of each iteration. In the second column, the potentially optimal rectangles
are identified as illustrated in Figure A.3(b). In the third column, these rectangles are divided
and sampled.

VII

B
Detailed description of KERS

This appendix explains in detail how the program KERS works. The end of a DOE is
taken as the starting point (i.e. the design points with their accompanying function
values are available). Section B.1 explains the program structure and workings,
while Section B.2 lists all the control settings that the program accepts. With all the
features implemented in the program, the number of settings totals 37. However,
they do not all have to be specified as it will depend on the mode in which the
program is run. Furthermore, certain settings are dependent upon choices made
earlier in the decision process. To help the user decide which settings should be
specified, the reader is referred to the decision tree in Section B.3.

B.1 Structure and workings

Figure B.1 Input / Output structure of KERS.

Figure B.1 gives a schematic of the input / output structure. To call the program
and supply it with all the necessary settings, the user has to construct a control file.
For a full description of all the settings, the reader is referred to Appendix B.2. If
the goal is to build a Kriging model, then a file containing the DOE results has to

VIII CHAPTER B DETAILED DESCRIPTION OF KERS

be supplied. It can either be an Excel, CSV or text file. For each fitted function,
an Excel and Mat file will be created, where fn is the name of the n-th function
fitted. Both files contain the same data but the latter can only be read by Matlab.
There are two reasons why a Mat file is created too. First of all, the program can
read Mat files much faster than Excel files. Secondly, it is a safety issue so the
user cannot (accidently) modify the parameters of the created model when warm
starting. The Excel file not only contains the model data, it also contains a macro
which enables the user to evaluate the fitted functions wherever he/she wants. If
the user tries to evaluate the response surface outside the bounds used to build it,
the cell containing the prediction will turn orange and the specific variable which
was outside the bound will turn orange too. The Excel file contains four sheets:

1. Predict : this is the sheet where the input values should be supplied and where
the output will be returned.

2. Summary : this sheet contains the following information:

• the regression term and correlation model used;

• the variable names and the name of the function fitted;

• the number of variables and the number of sample points used to make
the fit;

• whether the data points were interpolated, regressed or the mix option
was used;

• the model parameters;

• in case the mix option was used, the threshold values in each dimension;

• the validation error metrics;

• the lower and upper bounds of the data set.

3. Sample data: all the originally supplied DOE data.

4. Xtra model data: additional data like the normalized sample data, the µ
calculated in (3.6) and the cross-validation predictions.

If the goal is optimization and the relevant functions have already been fitted, they
can be supplied to the program so it only goes through the optimization stage (warm
starting). In this case, no DOE data file is required. The results of the optimization,
i.e. the optimum objective function, variables and constraint values are written to
optimum.txt. Of course, if some required functions are not present in the warm start
files, they will be built first before the optimization can start. In that case, a DOE
data file must be supplied. All relevant operations carried out by the program are
displayed in the DOS command window and written to a log file called log.txt.

CONTROL FILE SETTINGS FOR KERS IX

B.2 Control file settings for KERS

These are all the settings that KERS accepts.

bound max
The upper bound of the optimization problem. If a scalar value is specified, all
variables will have this upper bound. To specify a vector, use ‘;’ to separate the
different entries. If nothing is specified, then the DOE data is used to determine the
maximum for each variable. In other words, you should specify a data file in that
case.

bound min
The lower bound of the optimization problem.

bsf
The best so far value of the objective function for calculating the expected improve-
ment (only required when the optimization strategy is explore).

close wndws
When the program makes a picture of the validated response surface, the Matlab
window will open, enabling the user to zoom, pan, and read the data points from the
plot. This may not be desired if the program is used in a loop, as multiple windows
will stay open and the command prompt will not be released until you close the
windows.

Options:

• yes; plotting windows will automatically close

• no; plotting windows will stay open

If nothing is specified, then the plotting window will stay open.

correlation model
A Kriging model is defined as the sum between a regression term and deviations
(the ‘correlations’) from it. KERS comes with seven different correlation models:

• exp; exponential correlation model

• expg; generalized exponential correlation model

X CHAPTER B DETAILED DESCRIPTION OF KERS

• gauss; Gaussian correlation model

• lin; linear correlation model

• spherical; spherical correlation model

• cubic; cubic correlation model

• spline; spline correlation model

datafile
This entry should contain the full name of a .txt, .csv or.xls file containing the data
for building the response surface. Each column should contain data of a different
parameter, with the first row specifying the parameter’s name.

equality constraints
The names of the functions that will be the equality constraints. Separate con-
straints with a ‘/’. Equality constraints were set to 0.

functions
The names of the functions for which response surfaces should be built. To define
more than 1 function, use the ‘/’ sign to separate the various function names.

globallocal search krig
A (positive) parameter specifying the weight between the amount of global and lo-
cal search that DIRECT should carry out. In this context, DIRECT searches the
optimum correlation parameters to build the Kriging surface.

A value of 1E-4 is a good value. Larger values will increase the amount of local
search. Jones et al. [25] mention that one can vary this parameter between 1E-2 to
1E-7 without observing a significant change in algorithm performance. So, in a sense
it’s best to keep the value at 1E-4 and just play around with the number of iterations.

globallocal search opt
A (positive) parameter specifying the weight between the amount of global and lo-
cal search that DIRECT should carry out. In this context, DIRECT searches the
existing Kriging surfaces for the best design.

A value of 1E-4 is a good value.

goal
The program can be used for two purposes. The first is to gain an understanding of

CONTROL FILE SETTINGS FOR KERS XI

the design problem. Using the results from a DOE, the program builds a cheap sur-
rogate of the expensive function. As mentioned earlier, the model data is exported
to an Excel file containing a macro that allows the user to evaluate the response
surface at any point. The second goal that the program can achieve is solving a
constrained, nonlinear optimization problem on the response surface. So, the goal
specified can either be build or optimize.

hyper ellipse
The threshold value in each variable. Data points within this so-called hyper ellipse
will be regressed. If one value is specified, all variables will get the same value. If
one wants to specify a different value for each variable, they have to be separated
with ‘;’. This parameter only has to be specified if mix is used for smoothing.

inequality constraints
The names of the functions that will be the inequality constraints. Separate con-
straints with a ‘/’. Inequality constraints are ≤ 0.

iterations direct krig
The number of iterations that DIRECT should use. In this context, DIRECT
searches the optimum correlation parameters to build the Kriging surface.

iterations direct opt
The number of iterations that DIRECT should use. In this context, DIRECT
searches the existing Kriging surfaces for the best design.

iterations fmincon krig
The maximum number of iterations that FMINCON is allowed to use. In this con-
text, DIRECT searches the optimum correlation parameters to build the Kriging
surface.

iterations fmincon opt
The maximum number of iterations that FMINCON is allowed to use. In this con-
text, DIRECT searches the existing Kriging surfaces for the best design.

minmax
The objective function can either be maximized (max) or minimized (min). If
nothing is specified, then by default the objective function will be minimized.

objective
The name of the function to be optimized.

XII CHAPTER B DETAILED DESCRIPTION OF KERS

outputfolder
Full name of the folder where all the results will be written to, including the log file.
If nothing is specified, the current directory will be the output folder.

penalty term obj opt
DIRECT handles constraints using the penalty approach. Higher values will punish
constraint violations more. In this context, DIRECT searches the existing Kriging
surfaces for the best design. A good value is 200.

!!!This parameter must be positive!!!

regression term
There are three options that can be used: 0, 1 and 2. They represent a constant,
linear and quadratic function, respectively.

sheetname
If the data file is an Excel file, then the name of the sheet containing the data should
be specified here.

smooth 0
If no interpolation is used, this is the initial guess for the smoothing parameter.
Larger values result in more smoothing. As opposed to theta 0 which is a vector
with as many elements as there are variables, smooth 0 is a scalar.

Values between 1E-6 and 1E-1. Larger values lead to more smoothing

!!!This value must be positive!!!

smoothing
To interpolate the data points, choose interp. To regress the data points, choose
smooth. The mix option will only regress data points within a user-defined thresh-
old. The size of the threshold should be defined in ‘hyper ellipse’.

smooth max
The upper bound of the smoothing parameter.

smooth min
The lower bound of the smoothing parameter.

CONTROL FILE SETTINGS FOR KERS XIII

strategy
When searching the optimum design using the surrogate models built, two methods
can be used to define an optimum:

• exploit; The first option is the most straightforward option. Given a response
surface, the optimizer will define the optimum as the globally best point on this
particular surface (which satisfies the constraints present, if any). This method
can get stuck in a local optimum.

• explore; The maximum expected improvement is used as the auxiliary func-
tion to find the next iterate (EGO).

theta 0
The initial guess for the correlation parameters of the Kriging model. Each variable
will have its own value. The value given here overwrites values given in a warm
start. If you want to use the values from the warm start, don’t specify a value for
theta 0. It is possible to specify a different value for each parameter. In that case,
the different entries of the vector have to be separated using a ‘;’. If only one value
is specified, all correlation parameters will be set to this value.

Good initial guesses should be between 0.1 and 1.

!!!This value must be strictly positive!!!

theta criterion
Kriging is also referred to as a tuned radial basis function method, i.e. the model
parameters are tuned using a certain criterion. This results in a bound optimization
problem. There are three options:

• none; in this case, no optimization will be carried out to find the optimum
model parameters. The model parameters given directly by the user or through
a warm start will be used to build the model. Note that warm start data is
overwritten by values given directly by the user.

• MLE; the optimum model parameters are found using the maximum likeli-
hood criterion. This is the widely accepted criterion in the open literature.

• Xval; the optimum model parameters are found using cross-validation. In
this case, the user has to specify the error metric that should be used for this
(check the ‘Xval error’ header).

XIV CHAPTER B DETAILED DESCRIPTION OF KERS

theta max
The upper bounds of the correlation parameters. As described in ‘theta 0’ a vector
can be specified. Note that a bound only has to be given when the theta criterion
isn’t none.

!!! if the theta optimizer returns a value on the upper bound, try to increase this
bound, rerun the algorithm (preferably using warmstart) and check whether a bet-
ter surface is produced !!!

theta min
The lower bounds of the correlation parameters. As described in ‘theta 0’ a vector
can be specified. Note that a bound only has to be given when the theta criterion
isn’t none.

!!! if the theta optimizer returns a value on the lower bound, try to decrease this
bound, rerun the algorithm (preferably using warmstart) and check whether a bet-
ter surface is produced !!!

theta optimizer
The optimization algorithm to be used for finding the optimum model parameters.

Options:

• HJ; a local solver that doesn’t use gradients

• FMINCON; a local solver that uses gradients

• DIRECT; a global solver that doesn’t use gradients

All algorithms require a bound on the parameters. Additionally, the local solvers
require a starting point.

validation
It is good practice to validate each response surface built before using it for visual-
ization or optimization purposes.

Options:

• yes: validation will be carried out. It consists of calculating error metrics and
plotting the actual data vs. the predicted data. Interpolated data points will
be cross-validated using the leave-one out method.

• no: no validation will be carried out.

KERS SETTINGS DECISION TREE XV

If nothing is specified, no validation will be carried out.

variables
The names of the variables that define the functions to be fit. The ‘/’ sign should
be used as the delimiter.

warmstart
Full name to a .mat file containing previously built response surfaces. When build-
ing a response surface, warm starting is handy for supplying a good initial guess
for the optimum model parameters. Multiple warm start files can be given. Each
file should be given in a separate row, preceded by the ‘warmstart’ identifier column.

Xval error
The error metric to be used when Xval is used to find the optimum model parame-
ters.

Options:

• RMSE; Root Mean Square Error

• ARE; Average Relative Error

• AAE; Average Absolute Error

• MRE; Maximum Relative Error

• MAE; Maximum Absolute Error

B.3 KERS settings decision tree

The tree in Figure B.2 is intended to help the user decide which settings to specify
in the control file.

XVI CHAPTER B DETAILED DESCRIPTION OF KERS

Figure B.2 KERS settings decision tree

XVII

References

[1] P.S. Beran and W.A. Silva. Reduced-order modeling - new approaches for
computational physics. In AIAA-2001-853, 39th Aerospace Sciences Meeting
and Exhibit, Reno, NV, Jan. 8 - 11 2001.

[2] C.H. Bischof, H.M. Bucker, P. Hovland, U. Naumann, and J. Utke. Advances
in automatic differentiation. Lecture Notes in Computational Science and En-
gineering, 64, 2008.

[3] M. Björkman and K. Holmström. Global optimization using the direct algo-
rithm in matlab. Advanced Modeling and Optimization, 1(2):17–37, 1999.

[4] F.H. Branin. Widely convergent methods for finding multiple solutions of si-
multaneous nonlinear equations. IBM Journal of Research and Development,
16:504–522, 1972.

[5] C.G. Broyden. The convergence of a class of double-rank minimization algo-
rithms. Journal of the Institute of Mathematics and Its Applications, 6:76–90,
1970.

[6] D.D. Cox and S. John. Sdo: A statistical method for global optimization. In
Multidisciplinary Design Optimization: State of the Art, pages 315–329. SIAM,
Philadelphia, 1997.

[7] W.C. Davidon. Variable metric method for minimization. SIAM Journal on
Optimization, 1:1–17, 1991.

[8] L. Dixon and G. Szegő. The global optimization problem: an introduction.
In L. Dixon and G. Szegő, editors, Toward Global Optimization 2, pages 1–15.
New York, 1978.

[9] R. Fletcher. A new approach to variable metric algorithms. Computer Journal,
13:317–322, 1970.

[10] R. Fletcher. Practical methods of Optimization. John Wiley & Sons, New York,
2nd edition, 1987.

[11] R. Fletcher and C.M. Reeves. Function minimization by conjugate gradients.
Computer Journal, 7:149–154, 1964.

[12] A.I.J. Forrester, A. Sobéster, and A.J. Keane. Engineering design via surrogate
modelling, a practical guide. John Wiley & Sons Ltd., 2008.

[13] A. Genz, Z. Lin, C. Jones, D. Luo, and T. Prenzel. Fast givens goes slow in
matlab. ACM SIGNUM Newsletter, 26:11–16, 1991.

XVIII References

[14] P.E. Gill, G.H. Golub, W. Murray, and M.A. Saunders. Methods for modifying
matrix factorizations. Mathematics of Computation, 28(126):505–535, 1974.

[15] D. Goldfarb. A family of variable metric updates derived by variational means.
Mathematics of Computation, 24:23–26, 1970.

[16] H.M. Gutman. A radial basis function method for global optimization. Journal
of Global Optimization, 19:201–227, 2001.

[17] M.R. Hestenes and E. Stiefel. Methods of conjugate gradients for solving linear
systems. Journal of Research of the National Bureau of Standards, 49:409–436,
1952.

[18] W. Hock and K. Schittkowski. Test examples for nonlinear programming codes.
Spinger-Verlag, New York, 1981.

[19] R. Hooke and T.A. Jeeves. ‘direct search’ solution of numerical and statistical
problems. Journal of the Association for Computing Machinery, 8:212–229,
1961.

[20] A. Jameson. Optimum aerodynamic design using cfd and control theory. AIAA
Paper 95-1729-CP, 1995.

[21] R. Jin, W. Chen, and T.W. Simpson. Comparative studies of metamod-
eling techniques under multiple modeling criteria. In AIAA-2000-4801, 8th

AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and
Optimization, Long Beach, CA, Sept. 6 - 8 2000.

[22] R. Jin, W. Chen, and A. Sudjianto. An efficient algorithm for constructing opti-
mal design of computer experiments. In ASME Design Automation Conference,
Chicago, IL, Sept. 2 - 6 2003.

[23] W.M. Jolly, J.M. Graham, A. Michaelis, R. Nemani, and S.W. Running. A
flexible, integrated system for generating meteorological surfaces derived from
point sources across multiple geographic scales. Environmental Modelling &
Software, 20:873–882, 2005.

[24] D.R. Jones. A taxonomy of global optimization methods based on response
surfaces. Journal of Global Optimization, 21:345–383, 2001.

[25] D.R. Jones, C.D. Perttunen, and B.E. Stuckman. Lipschitzian optimization
without the lipschitz constant. Journal of Optimization Theory and Application,
79(1):157–181, 1993.

[26] D.R. Jones and M. Schönlau W.J. Welch. Efficient global optimization of ex-
pensive black-box functions. Journal of Global Optimization, 13:455–492, 1998.

[27] D.G. Krige. A statistical approach to some mine valuations and allied problems
at the witwatersrand. Master’s thesis, University of Witwatersrand, 1951.

References XIX

[28] H.J. Kushner. A new method of locating the maximum point of an arbitrary
multipeak curve in the presence of noise. Journal of Basic Engineering, 86:97–
106, 1964.

[29] L.S. Lasdon, A.D. Waren, A. Jain, and M. Ratner. Design and testing of a gen-
eralized reduced gradient code for nonlinear programming. ACM Transactions
on Mathematical Software, 4(1):34–50, 1978.

[30] M. Locatelli. Bayesian algorithms for one-dimensional global optimization.
Journal of Global Optimization, 10:57–76, 1997.

[31] S.N. Lophaven, H.B. Nielsen, and J. Sondergaard. Aspects of the matlab tool-
box dace. Technical report, Informatics and Mathematical Modelling, Technical
University of Denmark, 2002.

[32] S.N. Lophaven, H.B. Nielsen, and J. Sondergaard. Dace - a matlab kriging
toolbox. Technical report, Informatics and Mathematical Modelling, Technical
University of Denmark, 2002.

[33] J. Lyness. Numerical algorithms based on the theory of complex variables. In
Proceedings of the ACM 22nd National Conference, pages 124–134, Washington
DC, 1967.

[34] G. Matheron. The theory of regionalized variables and its applications. Techni-
cal Report 5, Paris School of Mines, 1971. Les Cahiers du Centre de Morphologie
Mathematiques de Fontainebleau.

[35] D.J. Mavriplis. Discrete adjoint-based approach for optimization problems on
three-dimensional unstructured meshes. AIAA Journal, 45(4):740–750, 2007.

[36] B. Mohammadi. A new optimal shape design procedure for inviscid and vis-
cous turbulent flows. International Journal for Numerical Methods in Fluids,
25(2):183–203, 1997.

[37] J.A. Nelder and R. Mead. A simplex method for function minimization. Com-
puter Journal, 7:308–313, 1965.

[38] E. Nielsen and W. Anderson. Aerodynamic design optimization on unstructured
meshes using the navier-stokes equations. AIAA Journal, 37:1411–1419, 1999.

[39] J. Nocedal and S.J. Wright. Numerical Optimization. Springer Series in Oper-
ations Research, New York, 2nd edition, 2006.

[40] O. Pironneau. On optimum design in fluid mechanics. Journal of Fluid Me-
chanics, 64:97–110, 1974.

[41] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery. Numerical
Recipes: The Art of Scientific Computing. Cambridge University Press, 3rd

edition, 2007.

XX References

[42] J. Reuther, A. Jameson, A. Farmer, J. Martinelli, and D. Saunders. Aero-
dynamic shape optimization of complex aircraft configurations via an adjoint
formulation. AIAA Paper 96-0094, 1996.

[43] J. Sacks, W.J. Welch, T.J. Mitchell, and H. Wynn. Design and analysis of
computer experiments. Statistical Science, 4(4):409–423, 1989.

[44] K. Schittkowski. Nlpql: A fortran subroutine solving constrained nonlinear
programming problems. Annals of Operations Research, 5:485–500, 1985.

[45] D.F. Shanno. Conditioning of quasi-newton methods for function minimization.
Mathematics of Computation, 24:647–656, 1970.

[46] J.R. Shewchuk. An introduction to the conjugate gradient method without the
agonizing pain. Technical report, School of Computer Science, Carnegie Mellon
University, 1994.

[47] B. Shubert. A sequential method seeking the global maximum of a function.
SIAM Journal on Numerical Analysis, 9:379–388, 1972.

[48] T.W. Simpson. A concept exploration method for product family design. PhD
thesis, Georgia Institute of Technology, 1998.

[49] S. Tiwari, P. Koch, G. Fadel, and K. Deb. Amga: An archive-based micro
genetic algorithm for fast and reliable convergence. In Genetic and Evolutionary
Computation Conference GECCO, Atlanta, Georgia, July 12 - 16 2008.

[50] V. Torczon. On the convergence of pattern search algorithms. SIAM Journal
on Optimization, 7:1–25, 1997.

[51] A. Torn and A. Z̆ilinskas. Global optimization. Springer, Berlin, 1987.

[52] C.H. Tseng. Most 1.1 manual. Technical report, National Chiao Tung Univer-
sity, 1996.

[53] G.N. Vanderplaats. An efficient feasible directions algorithm for design synthe-
sis. AIAA Journal, 22(11):1633–1640, 1984.

[54] C.K. Wikle and L.M. Berliner. A bayesian tutorial for data assimilation. Phys-
ica D: Nonlinear Phenomena, 230(1-2):1–16, 2007.

[55] P. Wolfe. Convergence conditions for ascent methods. SIAM Review, 11(2):226–
235, 1969.

[56] M.H. Wright. Direct search methods: Once scorned, now respectable. In Nu-
merical Analysis 1995: Proceedings of the 1995 Dundee Biennial Conference in
Numerical Analysis, pages 191–208, Harlow, UK, 1996.

[57] G. Zoutendijk. Methods of Feasible Directions. Elsevier, Amsterdam, 2nd edi-
tion, 1960.

	Nomenclature
	Introduction
	The CFD development process
	Concept exploration
	Concept exploitation

	Goal of the present research
	Key contributions
	Thesis outline

	Review of local solvers
	Gradient-free methods
	The simplex method
	The alternating variables method

	Gradient-based methods
	First-order methods
	Second-order methods
	Stepping to the next iterate

	Constraint handling
	Indirect methods
	Direct methods
	Feasible direction methods
	Elimination methods
	Sequential Quadratic Programming (SQP) methods

	Calculating derivatives
	Finite difference method
	Complex variables method
	Exact differentiation

	Review of surrogate modeling
	The design of experiments
	Building the surrogate model
	Kriging: the theory
	Kriging: the implementation

	Exploring and exploiting the surrogate model
	Infill criteria
	EGO: Efficient Global Optimization

	Improvements to DACE
	How to determine the optimum correlation parameters
	Cross-validation based parameter tuning
	An efficient cross-validation scheme
	Numerical experiments

	How to fit noisy functions
	The downside of interpolation
	Regressing noisy functions
	A Bayesian point of view to regression
	Adaptive regression

	KERS: a Kriging based optimization tool
	The build mode
	The optimize mode

	Test applications
	Global settings
	iSIGHT
	KERS

	Test case 1 - the double airfoil
	Test case description
	The optimum gradient step size
	Box constraints
	Interpolated surface
	CFD surface

	Geometric constraints
	Interpolated surface
	CFD surface

	Pitching moment bounds
	Interpolated surface
	CFD surface

	Pitching moment target
	Interpolated surface
	CFD surface

	Summary

	Test case 2 - the two-element airfoil
	Test case description
	The optimum gradient step size
	Results

	Real-life problems
	Twisted wing
	Extruded wing
	Airfoil optimization
	Rib integration

	Conclusions & recommendations
	Conclusions
	Local solvers
	The surrogate modeling framework

	Recommendations
	Local solvers
	The surrogate modeling framework

	A description of the global optimizer DIRECT
	Constraint handling

	Detailed description of KERS
	Structure and workings
	Control file settings for KERS
	KERS settings decision tree

	References

