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Abstract

The stochastic FitzHugh—-Nagumo equations are a system of stochastic partial
differential equations that describes the propagation of action potentials along
nerve axons. In the present work we obtain well-posedness and regularisation
results for the FitzHugh-Nagumo equations with domain R?. We begin by
considering the weak critical variational setting, where we prove global well-
posedness for the case d = 1. We subsequently consider the strong variational
setting, which allows us to extend our well-posedness results to d < 4. To prove
well-posedness and regularisation for arbitrary d, we consider the FitzHugh-
Nagumo equations in the LP(L?)-setting. Building on earlier results for reaction-
diffusion equations, we first prove well-posedness on the d-dimensional flat torus
and use bootstrapping techniques to prove instantaneous regularisation of the
solution. We subsequently extend the theory for reaction-diffusion equations to
the unbounded domain R? to finally prove well-posedness and regularisation for
the FitzHugh Nagumo equations on R?.
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1 Introduction

The FitzHugh—-Nagumo equations are among the fundamental models in the-
oretical neuroscience. Their origins date back to a series of experiments con-
ducted by Hodgkin and Huxley in the 1950s [HH52b]-[HH52¢] in which they
investigated the propagation of action potentials along the squid giant nerve
fibre. Based on their experimental results, [HH52a] developed a mathematical
model that describes the total membrane current density as a system of four
ordinary differential equations. The first of these equations describes the total
membrane current density I as the sum of the capacity current density Chs d}ﬁ“
and the sum of ionic sodium, potassium, and leakage currents I; = g;(V — Vi),
i € {Na, K,l},

dV;
1 :CMTéw + gxn*(Var — Vie) + gnam®h(Var — Viva) + 6 (Var — Vi),

where g;, i € {Na, K, 1}, are constants. The remaining equations relate the ionic
conductances to the potassium and sodium activations n,m, and the sodium
inactivation h

% =a,(Vi)(1 —n) — B,(Va)n,
% =, (Var)(1 — m) — B (Var)m,
% =an(Var)(1 = h) = Bu(Var)h.

FitzHugh [Fit61] suggested a simplification of the Hodgkin—Huxley model where
the fast variables (V,;m) and the slow variables (n,h) are each combined in
a single variable u; and wuso, respectively. Nagumo, Arimoto and Yoshizawa
[NAY62] further introduced a dependence on the space variable = that represents
the distance along the nerve axon. Later elaborations introduced a stochastic
input current that is typically modelled as white noise, resulting in the stochastic
FitzHugh—Nagumo equations

dug(t,z) = (WAui(t, z) + f(ur(t,x)) —u2(t,z)) dt

+ 2 k1 91kt 2)dWA(F) (1.1)
dug(t,z) = e(ui(t, z) — yus(t, x)) dt,

where v, €,y are positive constants, f is a third-degree polynomial with positive
leading coeflicient, and W7 is a U-cylindrical Brownian motion.

The FitzHugh—-Nagumo equations were originally developed as a model for
the propagation of action potentials along a long nerve axon, which can be ap-
proximately described as a long cable. However, in recent years there has been
increasing interest in applying the FitzHugh—Nagumo model to other electro-
physiological problems such as modelling the cardiac electric field (see [FS15]
and [BCP09]), which require higher-dimensional models. Existing work on well-
posedness of (1.1) has focussed on the variational setting (e.g., [BCP09]) and



often only considers a single space dimension (e.g., [EGK21], and [HH20]). In
the present work we will obtain global well-posedness and regularisation results
for (1.1) for sufficiently smooth initial data. Specifically, under conditions on
the parameters (p,q) that will be detailed in later sections, n > 0 small, and
initial data ug = (uy,0,ug2,0) € Bf]l/pq_l & H'~"9 a.s., Equation (1.1) has a global
solution u = (u1,us) such that

w€e LP

fo((0.00) BV @ 1) 10 (0. 00) B! 0 HY0)
and u regularises instantaneously in time and, in addition, u; regularises in-
stantaneously in space,

u € ngo’: (0,00; H' 7209 @ H270719)  q.s. for all § € [0,1/2),r € (2,00).
Moreover, we obtain a priori estimates for u on any interval [s,T], s > 0, that
is, we show that there exists a constant Ny > 0 such that

T
E s[up]]lp(||u1(t)||qu(Rd)—|—u2(t)||qu(Rd))+]E/ /d]lr|u1|q*2|Vu1|2dxdT
tels, T s R

< No (14 ELr(fur (5)1 8 ey + I02(8)]m0)))

where the restriction to I is a technical condition required to bound the L?-norm
of u at time s.

Our approach to proving (global) well-posedness of the FitzHugh—Nagumo
equations is based on the well-posedness results for reaction-diffusion equations
developed in [AV22c], [AV23b], and [AV23a].

e In Section 4.1 we consider a general form of (1.1) in the weak variational
setting with domain R as in [EGK21] and [HH20].

e In Section 4.2 we extend our results to the strong variational setting with
domain R?, d < 4.

e In Section 5 we first consider the FitzHugh-Nagumo equations on the
bounded domain T? to obtain well-posedness results for higher dimensions
and initial data with high regularity.

e In Section 6 we extend some of the results for reaction-diffusion equations
on the bounded domain T? proved in [AV23b] to the unbounded domain
R?, which will, in particular, provide insights on the achievable regularity
of solutions to the FitzHugh-Nagumo equations on R<.

e In Section 7 we build on the results of Sections 5 and 6 to prove global
well-posedness of the FitzHugh-Nagumo equations on R¢.

In the next section we will outline the setting and notation that will be used
throughout the present work.



2 Notation, Setting and Preliminaries

We write a < b for a,b € R if there exists a constant C' > 0 such that a < Cb. If
there exists a constant C depending on parameters «, (3, ... such that a < Cb,

yeen

The unit sphere and unit ball in R? are denoted by S; and Bj, respectively.
Moreover, we let (a,a) = 0.

For p € (1,00) and k € [0,p — 1), I = (a,b) € R and X a Banach space,
wy(t)® = |t — s|® is the shifted weight function with exponent x and we let
we(t) = we (), and LP(a,b,w,; X) denotes the set of all strongly measurable
maps f : I — X such that the weighted LP-norm

b 1/p
11250 ) = ( / wﬁ<t>|f<t>|’;<dt> <o

If, in addition, the derivative (in the distributional sense) f’ € LP(a,b, w,; X),
then we write f € WP (a,b,w,; X) and we set

£ lwrr(apawn:x) = 1FlLr @b x) + 1 e (abaw.sx)-

We further let Lioc(a, b, w,, X) = {f : (a,b) = X : fis strongly measurable and
for all compact K C (a,b), [, w(t)| f(t)|%dt < oco}. We denote the real and
complex interpolation functors by (-, ), and [, -]x, respectively. We will also
use the shorthand notation erp = (X0, X1)1—(14r)/p,p and X;ﬁ = (X0, X1)1-1/p,p-
The Bessel potential spaces H*?(T%), H*4(R") and the Besov spaces B ,(T),
B; (R%) can be defined by complex and real interpolation (see [Saw18, Sec-
tion 6.6] and [Tri78]). When no confusion about the domain can arise, we will
write L9, H*9, B: instead of LY(D), H*(D), B: (D) for D € {T%R4}.
Correspondingly, we will write LI(¢?), H*9(¢?), B; ,(¢*) instead of LI(D;(?),
H*9(D; (2), B;7P(D;£2) for D € {T¢,R4}. We denote the Schwartz space by S.
Further notation will be introduced in subsequent sections as needed.

We fix a filtered probability space (2 A, F,P) with o-algebra A, filtration
(Ft)t>0, and probability measure P. We denote the progressive o-algebra on
the filtered probability space by P.

We will regularly use the following embedding results on the domains T¢, R?
(see [Tri78, Theorem 4.6.1]). Let —0co < s < 00, 1 < p; < py < 0, ¢ € (1,00),
€ > 0, then

s+e€ s s S S
Bq,oo C Bq,l - qul C Bq,pz C Bq,OO’

if1§p§0071<q1§q2<oo,foo<t§5<oo,andsf(%2tf%,then
s t 5,q t,q
By ,C By, and H>" C H»%,

ifl<p<g<oo, —oo<t§s<oo,ands—%2t—g,then

8,p s s t,q
H>? CcB;, and B, , C H",



andif1<q<oo,1§p§007t20,ands—g>t,then
B;,CC' and H*? C C".
Moreover, we will regularly use the interpolation estimates (see, e.g., [BM18])
1 zzea S WA Brer o 1115 e

where —oo < s < oo and 1 < ¢,q1,92 < 0o and A € (0,1) are such that

1 1-—
s=As1+ (1—N)so andf:i—&— /\.
q q1 qz

3 Well-Posedness in the Variational Setting

We summarise some results from [AV22¢] that will be used in our proof of well-
posedness in the variational setting. We consider quasi-linear SPDEs of the
form

{du(t) +A(tu(t)dt = B(t,u(t)) dW (¢) 51)

u(0) = ug,

where W is a U-cylindrical Brownian motion

Below, for Hilbert spaces U, H, we denote the set of bounded operators from
U to H by L(U, H) and we denote the set of Hilbert-Schmidt operators from
U to H by Lo(U,H). Moreover, for an operator B € Ly(U, H) we denote

1Bl o,y = 1Bl o

3.1 Local Well-Posedness

We make the following assumption.

Assumption 3.1 (Assumption 3.1 in [AV22c]). Suppose that the following
conditions hold:

1. A(t,v)v = Ap(t,v)v — F(t,v) — f and B(t,v) = By(t,v)v + G(t,v) + g,
where

AO : RZO X Qx H— E(‘/,V*) and By : RZO X Qx H— E(‘/,;CQ(U,H))
are P @ B(H)-measurable, and
FiRsgx QxV = V* and G:Rsg x Qx V — Lo(U, H)

are P @ B(V)-measurable, and f : R>g x Q@ = V* and g : R>o x Q2 —
Lo(U, H) are P-measurable maps such that a.s.

f € Liye([0,00); V*) and g € Lj, ([0, 00); L2(U, H)).



2.VT >0,n>130, >0,M, >0 such that a.s.
1
(u, Ao(t,v)u) — §|||Bo(t7v)UI||?{ > Onllully = My (L4 [lullf),  (32)

where t € [0,T],u € V and v € H : |jv]|g < n.

3. Let pj > 0 and B; € (1/2,1) be such that

26; <1+

, J€EAL,...,mp+mg},
T5p, 7 { F+mc}

where mp, mg € N, and suppose thatVn > 1,T > 0 there exists a constant
Cr.n such that a.s.

1o (t, wwllv < Cra(1+ [ufla)wllv, (3.3)
140 (¢, w)w — Ao(t, v)wllv+ < Crnllu = vlallw]v, (3.4)
I1Bo(t, wywllsr < Cron (14 [[ullz) o]l (3.5)
I1Bo (¢, wyw — Bo(t, v)wllu < Crllu—vllzwlv, (3.6)
mpg
1E(t,w) = F(t,)llve < Crn > _(1+ [[ullf + [05)]u—vlls,,
- (3.7)
mpg
1F(t,w)llve < Crn Y (14 ullg ™), (3.8)
ZnFl-i-mG
IGEw) = Gt o)la < Cra > (L ullf + [0]5 )] — vlls,
j=mp+1
(3.9)
me+ma
Gt Wl < Crn Y A+ [ul5™),, (3.10)
j=mp+1

where t € [0,T] and u,v,w € V satisfy ||ulm, |[v]|z < n.
We make the following definition.

Definition 3.2 (Solution; Definition 3.2 in [AV22c]). Let Assumption 3.1 be
satisfied and let o be a stopping time taking values in [0, c0]. Let w: [0,0) xQ —
V' be a strongly progressively measurable process.
e u is a strong solution to (3.1) on [0,0] x Q if a.s. w € L _([0,0); V) N
C([0,0] NRx>g; H) such that

F(-,u) €L?(0,0,V*), G(-,u) € L*(0,0,Ls(U, H)),

and a.s. for all ¢t € [0, 0)

t

u(t) ~u(0) + | A(s,u(s))ds:/o Loy xB(s, u(s)) AW,



u is a local solution to (3.1) if there exists an increasing sequence of stop-
ping times (o )r>1 such that limpyee 0% = 0 a.s. and ulj ¢, xq is a strong
solution to (3.1) on [0,0] x Q; (0%)k>1 is called a localising sequence for

(u,0).

e A local solution (u,o) to (3.1) is called unique if for every other local
solution (u’,¢’) for a.a. w € Q and all ¢ € [0,0(w) A ¢'(w)) it holds that
u(t,w) = v (t,w).

o A unique local solution (u, o) to (3.1) is called a mazimal local solution if
for every other local solution (', 0”) it holds that a.s. ¢’ < ¢ and for a.a.
w e Nand all ¢t € [0,0'(w) it holds that u(t,w) = v/ (¢, w).

e A maximal local solution (u, o) to (3.1) is called a global (unique) solution
if 0 = 0o a.s., in which case we write u instead of (u, o).

Under Assumption 3.1, Theorem 3.3 in [AV22c] guarantees local well-posedness
of (3.1).

Theorem 3.3 (Local Well-Posedness; Theorem 3.3 in [AV22c]). Suppose that
Assumption 3.1 holds. Then for every uy € L[])_-O (2; H), there exists a (unique)

mazimal solution (u,c) to (3.1) such that a.s. u € C([0,0); H)NL? ([0,0); V).
Moreover, the following blow-up criterion holds
P (o <oo, sup |[u(t)|% +/ u(t)||? dt < oo | = 0. (3.11)
t€l0,0) 0

3.2 Global Well-Posedness

Under additional conditions, also global well-posedness of (3.1) can be shown.
[AV22¢] give the following condition on the operators A, B that guarantee global
well-posedness.

Theorem 3.4 (Global Well-Posedness I; Theorem 3.4 in [AV22c¢]). Suppose
that Assumption 3.1 holds and for oll T > 0 there exist n,0,M > 0 and a
progressively measurable ¢ € L*((0,T) x Q) and for any v € V and t € [0,T),

(v, A(t,v)) = (% +I Bt )7 = 0llvlly, — Ml — |o(t)*. (3.12)

Then for every ug € L%, (Q; H), there exists a (unique) global solution u to (3.1)
such that a.s. u € C([0,00); H) N L} ([0,00); V). Moreover, for each T > 0

loc

there is a constant Cr > 0 independent of Uy such that

EllullEo,rp;m) + Elulliz 0,00y < Cr(+Elluollz +Elloll720,7))-  (3:13)



4 FitzHugh-Nagumo Equations in the Variational
Setting

We consider the stochastic FitzHugh—Nagumo equations

dup (t,2) = (WAui(t, z) + flur(t,x)) — ua(t, z)) dt
+ Ekzl [bi(t,x) - Vui(t,z) + g1 (¢, u(t, )] dWi(¢) (4.1)
dug(t,z) =  e(ur(t,z) — yua(t,x)) dt + Zkzl g2, (t, u(t, ) dWa(t),

where Wy, W, are independent U-cylindrical Brownian motions, U = ¢?, and
the uy,u2 @ R>g x R? — R. The classical form of the non-linear term is
f(u) = u(l —u)(u— a), where a € (0,1). Although it is common to consider a
noise term in the first component, several authors have also considered a version
of the problem with additive [ZH11; BMO08] or multiplicative [Yam+19; Shi+19]
noise in the second component. Therefore, here we consider the general prob-
lem with independent semi-linear noise terms in both components. Moreover,
for convenience we assume that the non-linearities (g1, x)k>1, (92,6)k>1 do not
depend on the space variable z. However, such a dependence on x can easily
be introduced at the cost of some additional additive constants when checking
Assumption 3.1.
To write (4.1) in the form (3.1), we let u = (u1,us) € V,

Ag: [0, T] xV x Q= L(V,V*
vAuy(t, z) + us(t, )

)
tuw )
- (Lot hes)
F:V=sV*:

< (w1

By :[0,T] x HxQ — L(V; Lo(U; H))
(t, u,w) (u ( b (t, x) - Vul(t’x))ky)) 7 (4.4)

o

0

ﬂ.
£
£
1

/\

91 k(tu(t,z)))r>1 (4.5)
(92,5 (t,u(t, x)))k>1

and we define A(t,v) = Ag(t,v)v — F(t,v) and B(t,v) = By(t,v)v + G(t,v).

4.1 Weak Setting

We first consider (4.1) in the weak setting with domain R as in [EGK21]. There-
fore, we let

V= H'(R) ® L*(R)
H = L*R) @ L*(R)



V* = H 'R)® L*R),

such that V < H = H* — V*, we define the Laplacian for u; € H'(R) via

Hl(R)<U1aAU1>H*1(R) = —/ Vu1Vode,
R
and we further define the inner products

(u, ) = (u1,v1)L2(m) + (u2,v2)12(R)
= / u1v1 + ugvs dz,
R
(u,v)v = (u1,v1) g1 (r) + /R(UQ,W)H(R)
= / Vui Vo, +uiv dx+/uQv2dx.
R R
Assumption 4.1. We assume that the non-linearity f in (4.1) satisfies for any
v,y €R
e f(0)=0
o = supycg f'(y) < oo
o If(y) = fWII <1+ lyP + )y — /.
There exists a constant vy € (0,v) such that for any £ € R
o VIEP — 5 3 us (bi(t,2)%6)* > wol€f?
and for any y € R? g1(y) = (91.x(y))k>1 and g2(y) = (g2 (y))x>1 satisfy
(t,y) = g2(t, 9 )llez < Cilyr — yil + ly2 — al)

® [lg1(t,0)[|L2e2) + [lg2(t,0) [ L2(e2) < Ca.

Theorem 4.2 (Global Well-Posedness). Let Assumption 4.1 hold. Then for
everyug € L%, (4 H), there exists a (unique) global solution u to (4.1). Moreover,
for each T > 0 there is a constant Cp > 0 independent of ug such that

o [lgi(t,y) — g1(t,y") ez + llg2

EllullEo,rp:0) + Ellull72 0,0,y < Cr(1 4 Elluoll)- (4.6)

Proof. We use Theorem 3.4 to prove the claim. We begin by checking Assump-
tion 3.1. Let u,v,w € V, ||u||m, ||v]|g < n. For the growth bound (3.3) on Ay
we have

[(w, Ao (t, u)v)| =

/ v(Vuy - Vwy) + vewy — eviwy + eyvaws dx
Rd

<v||Vur| 2 [|[Vwi| r2 + [Jval[ 2 |lw1 || L2

+ ellvr |2 l|wzll 22 + eyllvallLel[wal[ 2



by Cauchy—Schwarz,
[(w, Ao(t, u)v)| <(v + 1+ e(1+7))[vllv]wlv.

The local Lipschitz condition (3.4) holds trivially since Ag(t,u) — Ag(t,v) = 0.
For the growth bound (3.5) on By we have

I Bo(t, wywll3r = |[b - Vaon |7
k>1

< 2(v = vo)[Vur 7,

< [wlf5-

where we used that by Assumption 4.1 ", -, (b Vw:)? < 2(v—1p)|Vw;|?. The
local Lipschitz condition (3.6) again holds trivially since Bo(t,u) — By(t,v) = 0.

For the growth condition (3.8) on F' we use that by Assumption 4.1 | f(u)| <
C1(1 + |u|?)|u| so that

1F ¢t w)llve S lluallze + lluillze = llusllze + [luallzs,-

We let p; = 2, mp = 1 and use the Sobolev embeddings LP « H?’~! with
% <28 —1- 3 and L% > H?/~1 with é < 28 — 1 — 5. The latter is most

restrictive and holds for 5 > %7 p € [1,2], and the requirement 28 < 1+ ﬁ

means that we additionally need g8 < % Note that the Sobolev embedding
L3P <> H?=1 limits us to d < 2. We thus obtain by Sobolev embeddings with

B1 =2/3, p1 = 2 and Young’s inequality
1
lurllze + luallzer S llullfse S 1+ fuallg ™

For the local Lipschitz condition (3.7) on F' we use that by Assumption 4.1
[f(w) = f(v)] < C1(1+ |ul? +[v]?)Jus — v1| so that

HF(LU) - F(t,v)|

ve St u) — F(tv)| e
S llus —villze + lwaPlus = valllze + (o1 lun — o] 22
By Holder’s inequality
N [*lus = vi]l| 2 < [Jua || Z6llur — vl zs,
and the Sobolev embedding H?*1~1 < L6 with 5, = 2/3 gives
S N llsllur — vrll s
= [Jua |3, lur — villg,-

Note that the Sobolev embedding H2%1~! < LS only holds for d = 1. Using
L? < H'/3 we also have ||uy —vy||z2 < |Jug —v1| g1/s = |Jur —v1]|,- Combining
the estimates gives

1F(t,u) = F(t,v)]

ve S (1 [l -1 + o1l 20, - lur = vill 2o



S (L fullfy + 1ol — vll, -
For the local Lipschitz condition (3.9) on G we use that by Assumption 4.1
lg1(t, u) — g1t v) ez + llg2(t, u) — g2(t,v)[le2 S |ur — v1| + [uz — v2| so that
IG @, w) = Gt )lla <llur — villL2 + lluz —val L2
Sllur = v1llgzs-1 + [luz — vl L2
S (ullf + 0I5 Il — vlls,
where we used the Sobolev embedding L? «= H?’~1 with 28 — 1 > 0, and we
set mg =1,p2 =1 and B3 = 2/3 in (3.9).
For the growth bound (3.10) on G we use that by Assumption 4.1 [|g1 (¢, 0)| £2(¢2)+
l92(£,0)|| 2 (s2y < O3 together with the Lipschitz condition above so that
IGE Wl < IG(E0)la + Gt u) = GE,0)[[a
S lga(t, 0Lz + [lg2(t, 0)ll L2 + lluallz2 + lluzll 2
p2+1
S+ ullg™,
by Young’s inequality.

Next, we check the coercivity condition (3.2) on Ay, By. Let u € V,v € H,
then using that v|Vuy[* — § 37,5 [bk - Vua > > 10| Vuy |* by Assumption 4.1,

1
(u, Ao (t, v)u) =5 1 Bo(t, v)ullZ

1
2/ V(Vu1)2 + UgUy — EUTUg + Efyug dz — = Z/ |bg - Vu1|2 dz
R 2R

[1— ¢
2

1
zonlllfy = (0 -+ 5l

Finally, we check the coercivity condition (3.12) of Theorem 3.4. Assumption
4.1 implies that for n € (0,v9/(2(v — 1p))) there exists a 7y € (0,r) such that
v[Vui |2 — (3 +n) >k bk - Vua |2 > 79|Vuy |?, and thus

>vo [[[ull = llull] - lull; + eylluzl|Zs @)

1 _ L
(u. Aot o)) = (5 ) VBt oyl > dollall = (0 + 20 ) i
Moreover, we estimate

(u, F(t,u)) = / wr(f(u) — £(0)) da

Rd
< [ n(f(©u) da.
Rd
by the mean value theorem, and using Assumption 4.1

(u, F(t, ) <ppllun]l7.

10



We already computed ||G(t,u)|| g < Co + Cylul|g. Since A(t,u) = Ao(t, u)u —
F(t,u) and B(t,u) = Bo(t,u)u+ G(t,u) we combine the above estimates to get
1 2

. 1 —¢
rullf -~ (70 + 5+ 071+ 20) )l — G2+ a0,

thus Theorem 3.4 applies with n < vo/(2(v — 1p)). O

4.2 Strong Setting

The proof of Theorem 4.2 in the preceding section showed that the weak setting
can only accommodate the FitzHugh-Nagumo equations (4.1) with dimension
d = 1. To obtain well-posedness results for higher dimensions, we now consider
(4.1) in the strong setting, where we let

V= H?*(RY) @ HY(RY)
H = H'(RY) @ H'(RY)
V*i=L*RY) @ H'(RY),

such that V < H = H* < V*, and we define for u; € H?(R?)

H2(]Rd)<U1,A'Ul>L2(]Rd) = / AulAvldx,
Rd
and we further define the inner products

(u, ’U)H = (ul, Ul)Hl(Rd) + (Uz, ’UQ)HI(Rd)
= Vuq - Vo +uivpde + Vusg - Vg + ugus dz,

Rd Rd

(u, ’U)V = (ul, Ul)Hz(]Rd) + (UQ, ’Ug)Lz(Rd)

= /d Z 0%u10% dxr + , Vusg - Vg + ugvs d.
R R
|| <2

Assumption 4.3. We assume that the non-linearity f in (4.1) satisfies for any
/
v,y eR

e f(0)=0,

o if = supyeg f'(y) < oo,

1f) = fEO < Cr@+ [yl + 1y P)ly — v/l
') = fWO < Co(L+ [yl + [y DIy = 'l
|f'(y)] < C3(1+1yf?),

11



there exists a constant vy € (0,v) such that b = (bi)kZI,lgjgd satisfies for any
£ e Re

o v[¢]? - %Zk21(bk €)= wlél,

o [V7]lwroemayzy < M,

fory,y € R? g1(y) = (g1.6(t;9))r>1 and go(y) = (go,x(t,y))k>1 satisfy
o llg1(y1) — g1 (¥D)llez + 1191 (1) — g1(y1)llez < Chlyr — w1l

and for u,v €'V

o [lg2(uz) — g2(v2)l| 1 (e2y < Callug — 2|1,
o [lg1(0)[[z2(e2) + 191 (O) I 222y + |g2(0) | L2 (e2) + 1192 (0) || L2 (e2) < Cs.

Remark 1. We need to impose strong restrictions on g1, g2 in the strong setting
to ensure that the Lipschitz condition on G in Assumption 3.1 is satisfied. For
instance, if we would allow g; to depend on usg, our estimate for |G|z would
involve terms ||02g1 (u1, u2) Vug— 0291 (v1,v2) Vs || L2, which cannot be factorised
(via Holder’s inequality) and bounded in the form (1 + |luz| g + ||v2l|g1)||ue —
Vo g1 since ug,vo € HY.

Our definition of a solution is analogous to Definition 3.2 in the weak setting.

Theorem 4.4 (Global Well-Posedness). Let Assumption 4.8 hold. Then for
every ug € L% (% H), there exists a (unique) global solution u to (4.1) for
d < 4. Moreover, for each T > 0 there is a constant Ct > 0 independent of ug
such that

EH’UJHQC([O,T];H) + E”U”%z((o,m;\/) <Cr(l+ EH“O”%)' (4.7)

Proof. We use Theorem 3.4 to prove the claim. We begin by checking Assump-
tion 3.1. Let w,v,w € V, ||ullm, ||[v]|g < n. For the growth bound (3.3) on Ay
we have

[ (w, Ao(t, u)v)| < /R V| Avi Awy + Vor - Van | + [Vos - Ve + vgw |
+ €|V - Vws — vyws| 4+ €y|Vug - Vws + vews| dz
<v([|Avr || L2@ay | Awr ]| L2 ray + VULl L2 ey Vw1 || 2 (ray)
+ Va2 ey [ Vwr || L2 wey + |02l L2 ey w1l 22 (e
+ (| Vol L2 wey | Vwal L2 ray) + V1] 22 ey |wal| L2 re))
+ ey Vel L2 ey | Vwal L2 (ray + [v2l L2 mey w2 L2 (r4Y)
Slelvllwlyv.
The local Lipschitz condition (3.4) holds trivially since Ag(t,u) — Ag(t,v) = 0.
For the growth bound (3.5) on By we have

IBo(t, wywlld < [1b - Venl[Fa + [V (b - Vewr) | 72

E>1

12



1
< IVl + (143 ) 190 Vol

E>1
+ (14 0) [lbr - V2wu 3

k>1

where we introduce § > 0 to gain some extra flexibility that will be used in the
proof of the coercivity condition below. Thus,

d
iz 1
| Bo(t, w)w||% < /R SO bl o 0wy de 4+ (1 + 5) Vb, - Vs ||2

k>14,5=1 E>1

d
+(1+49) /Rd Z Z b?cbfcaialwlajalw1 dx

k>114,5,1=1

1
< (vt a2 (14 ) ) IVl + 0= ) (1) i
where we used in the last step that ||b||%v1,m(£2) <M?and ), Z?’j:l bibleig; <

(v — 119)[€]? by Assumption 4.3, and Z?,l:l 2 |0;00w01 12 dz = || Awq||2. by in-
tegration by parts. We thus see that

I1Bo(t; wwller S llwlle + llwllv
~ Crpn(1 4+ [[w]v).
The local Lipschitz condition (3.6) again holds trivially since By(t, u)—Bo(t,v) =
0.

For the growth condition (3.8) on F' we use that by Assumption 4.3 | f(u)| <
C1(1 + |u1)?)|ul so that

| E(t, u)llve = || f(u1)ll L2 (ra)
< Ci([lullpz + llufllr2)
S Crn(1 4 [Jua o).

We set p; = 2 and we require 31 < 2/3. Since [L*(R?), H2(R%)]g, = H*"1, we
use the Sobolev embedding H?%* — LS with 28; — ¢ > —£ to get

lurllze < lluall3,

Hence, we have

1E(t, w)llve S T+ [luallf

and thus the condition (3.8) is satisfied for d < 4, 51 = 2/3.
For the local Lipschitz condition (3.7) on F we use that by Assumption 4.1
[f(w) = f(v)] < C1(1+ [ul? +[v]?)Jus — v1| so that

IF(t,u) = F(t,)llv- < CLl(1+ [ur? + [o1]*)Jur — o1 [ 2

13



< Ci(lur = villzz + [[(fua [ + o1 [*)Jur = oa [ 2)-
By Hoélder’s inequality we have
lfur [Plur = o1l g2 < 76 llur — o1l s,
and the Sobolev embedding H?%t < L% with 28, — d/2 > —d/6 gives
lfur [*lur = oa]l[z2 < ]|, lur — o1l

which is satisfied for d < 4,8, = 2/3. Using H*** < L2, we also have ||u; —
villr2 S |lur — v1llg, for B1 > 0. Combining the estimates gives

1F(t,u) = F(t,v)]

ve S (U llunllFpzey + il Fres, ) lun = vill gz
S (Tl + ol = vlls, -

For the local Lipschitz condition (3.9) on G we use that by Assumption 4.1
191 (u1) = g1 (v1)llez < Chlug — w1 and [[g2(uz) — g2(v2)|lm < Calluz — vz so

that
IG(t,w) — G(t, )l SIVgi(ur) — Vgi(vi)llzz + llgi(ur) — g1(vi)|lz2
+ [lg2(u2) — ga(v2)|| 1
Sllur = vil[z2 4 |91 (1) Vur — g1 (v1) Vo | 2
+ Hu2 — ’UQHHl.

Using that [|g1(t,u1) — g1(t,v1)|le2 < Cilus — v1| implies ||g’|| = (2) < C1 and
by Assumption 4.1 ||g}(u1) — g5 (v1)]|ez < Ci|ug — v1]|, we split the term

|91 (u1)Vur — g1 (v1)Vur |l 2(e2y <Ilgi(ua)Vuy — g (u1)Vorll 2 ey
+ 191 (u1) Vor — g1 (v1) Vor || 242y
SIVur = Vi e + [lur — vi | zs|[Vor || ps/s
Sllur —villg + [Jur — vrl[zsl[vr ]| grsss
Sllur — vl a2 (1 + [Jv1 | gs/2)

Sllur = orllgrse (14 [vrl| 22 ),

where we used the Sobolev embeddings L8 H3/? with —% < % — % and

HY8/3 «> H3/2 with 1 — % < % — % for d < 4. We set 8y = 3/4 and ps = 1,
and using that ||u; — v1]|r2 < |lur — v1]| gs/2, we have
1G @, u) = Gt vl SO+ lullgzee + [0l 2ee) [ — vl 26
(L4 lullf; + o) 1w = vlls,
For the growth bound (3.10) on G we use that by Assumption 4.1 [|g1 (¢, 0)|| £2(¢2)+

191 (t,0) || L2(e2yF1g2(t, 0) || L2 (e2) || g5 (E, 0)|| L2(¢2) < C'3 together with the Lipschitz
condition above so that

IGE ulla < NGE 0l + G u) — Gt 0)||a

14



1
ST+ Jullgy™

Next, we check the coercivity condition (3.2) on Ag, By. Let u € V,v € H,
then using the estimate for || By (¢, v)u||% obtained above,

1
(u, Ao (t,v)u) = S| Bo(t, v)ull
21// (Aup)? + |Vup |2 da +/ (Vug) - (Vuy) + uguy do
R4 R?

—€ (Vuy) - (Vug) + uyug dz + e’y/ |Vuz\2 + (uz)2 dx
R4 R4

1 1 1
-1 <y v+ M (1 n 5)) Vel — 50— v0) (1 +) | A 3

= (1/ — %(1/ — 1/0)(1 + (5)) ||AU1H%2

1 1
+ <1/2 <1/1/0+M2 <1+6>>> V|7

=21 = elullf + evllualf

> (vt vy = 3(v—wo)) ulli,

1 M? 1
— (2(1/— I/o) + 7 (1 + 5) +2|1 - 6) ||UH?_I

= Mpllully, — Onllull?,

N |

where we used that [, |[Au[Pdz = [, Zikzl |0;0ku1|? dz by integration by

parts, and § € (0, 1).

Finally, we check the coercivity condition (3.12) of Theorem 3.4. Since
A(t,u) = Ap(t,uw)u — F(t,u) and our computation above already shows that
(u, Ag(t,u)u) > v|ul|2 — (v +2[1 —€])||ul|%, we only need to obtain an estimate
for (u, F(t,u)). We have

<’U,, F(t, U)> :/ Vu1 . Vulf/(ul) + ulf(ul) dx

Rd

- / Va2 f () + [ua £ (€) da
Rd

<upllulF
by Assumption 4.3 and the intermediate value theorem applied to f(u1) — f(0).
We already obtained an estimate for || By (¢, u)ul|% above where we checked
the growth bound (3.4) for By. To bound [|G (¢, u)||% we use
G I <llgr w7y + V91 (ur) 202y + llg2(u2)ll7 (o2
<llg1(ur) = g1 (0)[[ 222y + 191(0) 1 2e2)
+ 191 (un) 17 o2y [ Vur [ 72 + 1195 (0) 172
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+ [lg2(u2) — g2(0)[1 31 + llg2(t,0) |17
<CY(llurllzp + lluzll3) +4C3
<CHllullf +4C3,

where we used that Assumption 4.3 implies [|g (u1)|[ e (e2) < Ch.
Combining all estimates and letting o = v — vy, we get

(At w)- (5 +0) 1BC0l,

> Aolt ) = (0, Pt} ~ (5 +1) (1Bo(ewuly + 16 0)l)

>ulfully — (v + 201 — e + pp) ull7

o (gn) ol — (5+a) o002 (14 5)] Il

1
- (5+7) (€l + 40
(1 2
=\v=7(5+n) QA+ uly
1 1
<y+21e|+w/+<2+n) (5+M2(1+5)+Cf>)IUII?J

= ((2+4)C3)
=0llully, — Mllullf; — o),

and 0 = v — (v — ) (14 2n)(1 4+ §)/2) > 0 for n and J sufficiently small. O

Remark 2. Global existence of a solution to (4.1) under more restrictive as-
sumptions than our Assumption 4.3 can often be proved using the theory for
the variational setting developed in [LR15]. The approach we have taken here
allows us to obtain existence results in the strong variational setting also when
the weak monotonicity condition on the operators —A, B (see (H2) of Chapter
4.1 in [LR15])

ve(=A(u) + Av),u —v)y + [|B(u) = Bv)lL,w,m) < Cllu —vlla (4.8)

does not hold. Indeed, our Assumption 4.3 admits nonlinearities F' that do not
satisfy weak monotonicity, as the following example shows.

For simplicity we assume that B does not depend on (¢,z), g1 = g2 = 0, and
||1B(v) — B(v)| & can be bounded by ||u—v]|| . Moreover, the term v+ (—Ag(u)+
Ao(v),u — v)y can also be bounded by ||u — v|z. Now consider f(u) = —u?
and let vy (z) = |z|? exp(—|x|? /), v2(z) = 0, wi(x) = exp(—|z|?/N),wa(x) =
0, where A > 0, and ui(x) = vi(x) + wi(x),uz(xr) = 0. We will show by
contradiction that weak monotonicity cannot hold for this choice of w,v, that
is, there is no constant C' > 0 such that v« (F(u) — F(v),u —v)y < Cllu—v|g
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for all A > 0. We begin with a scaling argument to simplify the necessary
computations. Assume (4.8) holds, then for p > 0

v (F(u) = F()u— v}y
= [, T (rn(pa)) = F01(p2)) - ¥ () = ()
+ [ (o) = Fon(pe)) (o) — oa(pr) do
= [ (310 Vur(p) + 30a(p ) Vor () - o (o)
+ [ n(pe)® = (o) un (o)

=p / (=3u1(y)*Vui(y) + 3v1(y)*Voi (y) - Vo (y) dy
Rd

- % /Rd (ur(y)* = v1(y)*)wi (y) dy

Sllur — vt g gay

= [ 1Vus(p2) = V(o) + o) = w1 (po) da

= [ 1Vus) = Vo) + 5 [ ) = o).

Thus, dividing both sides by p and letting p — oo shows that if weak monoton-
icity holds, then

V() — f(01)) - V(s — vp)dz < / IV (s — v1) 2 da.
Rd Rd

For our choice of u, v, w we have
16
/ |Vw: (z)]? dz z—/ |1‘|2672‘z|2/)\ dx
Rd A2 Rd

_E > 2 —2r2/)
- /S/O r2e dr dS(y)

i
=[51]4/ o
—0

as A — 0o, where we made a change to polar coordinates in the second step.
On the other hand,

/Rd(f?)ul(a:)zVul(x) + 301 (2)? Vo (2)) - Vwy (z) do

N L8 12\ 12, 4
—/Rde =1/ (|ﬂc| ()\—)\2>+|m| ()\_)\2 —ﬁ|a:| dz
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> 2 4 4 8§ 12 12
_ —ar?a (L2 (%% afs 12\ 125
/51/0 e (r ()\ )\2)+r <>\ )\2) )\2r> drdS(y)

_ 3 32 4
=[S |v/7 (256>\ 32VA \FA)

—00

as A — oo, contradicting our assumption that (4.8) holds.

5 FitzHugh-Nagumo Equations in the L?(L4(T?))-
Setting

5.1 Local Well-Posedness and Blow-Up Criteria

In Section 4 we considered the FitzHugh-Nagumo equations (4.1) in the weak
and the strong variational setting. In the weak variational setting we proved
(global) well-posedness for d = 1. By increasing the assumed differentiability
of the first component in the strong variational setting we were able to prove
(global) well-posedness for dimension d < 4. However, in the latter setting
we needed to make restrictive assumptions on the non-linearity GG, namely the
components g; and go of G could only depend on the corresponding component
of u, due to the mismatch in smoothness between the two components of . In
the present section we consider the FitzHugh-Nagumo equations (4.1) in the
LP(L4(T%))-setting, where the additional flexibility in the integrability of the
second component of the equations allows us to obtain (global) well-posedness
results under more general assumptions.

Our approach in this section follows the theory of reaction-diffusion equa-
tions on the periodic torus T¢ developed in [AV23b]. Therefore, we consider the
FitzHugh-Nagumo equations (4.1) on the periodic torus T first and attempt to
generalise our results to unbounded domains in later sections. Since the second
component of (4.1) does not involve a Laplace operator, the uniform ellipticity
condition of Assumption 5.1(3) only holds for the first component of the system
(4.1), and we need to make some adjustments to the theory of reaction-diffusion
equations in [AV23b] to accommodate the second component. We let 6 € [1,2),
n € (0,2 — 4], ¢ > 2 and consider the spaces

Xo = H YT @ H?>~°~ 74T = X} ® X2,
X, = H>7%(T%) @ H*>70~79(TY) = X| © X2, (5.1)
X = [Xo, Xa]p = H?~29(T4) @ H>~°~"(T?),

where 8 € (0,1). As before, we will write H~%% H?7%9 etc. instead of
H=%4(T4), H>~%9(T%) when no confusion can arise, and we will use the short-
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hand notation X é = [X{, X}]5. On these spaces we consider the operators

Ao 1[0, T] x X7 x Q — L(X1, X0) :

~ CvAw, 5.2
Ao(t,u,w):< OA ), (5:2)
Apert : [O,T] X Q — £(X1,X0) :
f X1 = Xo:
uy(t, z 5.4
f(u) — (f( 1(()t7 ))) ’ ( )

By :[0,T] x X' x Q — L(X1,7(U, X1,2)) :

Bolt, u,w) = (u(t,:v) . ((bk(t,x) 'Vgél(tvx))kzl)> 7

G:[0,T] x X1 x Q= (U, Xy2) :

_ (g1t u(t, )))r=1 (5.6)
G(t,u,w) = ((gz,:(t,u(t,x)))ZN) ;

and we define Ay = /Nlo—i—Apert, A= Ayp—F and B = By+G. We now extend the
results of the reaction-diffusion framework of [AV23b] to the FitzHugh-Nagumo
equations.

Assumption 5.1. Let d > 2. We say that Assumption 5.1(p,q, h,d) holds if
p € (2,00), ¢ € [2,00), h > 1, € [1,2), n € (0,2 — 0] and for i = 1,2 the
following hold:

1. For each j € {1,...,d}, b := (bi)kzl iRso x Q x T4 — (2 is P ® B(T9)-
measurable,

2. There exist N > 0 and a > max{%,é — 1} with p € [2,00) such that a.s.
forallt e R>o and j € {1,...,d}

||(bi(t, Ne>1llger @2y < N, (5.7)
3. There exists a vy € (0,v) such that, a.s. for all t € Rsq, v € T4 ¢ € R?
d ] _
S voa -5 Dbt | 6 =l (68)
gil=1 k>1

4. The map f : R — R is B(R)-measurable and the maps g; = (gr,i)k>1 :
R>o x QxR — 2 are P ® B(R?)-measurable. Moreover, for anyy,y’ € R

f(0)=0
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g = sup f'(y) < oo,

yER
1f() = F)I <G+ y" + 1y 1" Dy — o/,
9i(-,0) € L= (Rxq x Q; CH(T4; ¢%)),
for any y,y' € R?,
lg1(t,y) — g1(t.y)llez < Callyr — wil + ly2 — ),
lg2(t,y) — g2(t, ¥ ) ez < Ci(lyr — w1l + |y2 — val),
and for u,v € X1,

llg2(t,u) — g2(t,v)[| x2(e2) < Crllur — villx2(e2y + lluz — v2| x2(e2))
We define a solution to the FitzHugh-Nagumo equations in the LP(L4(T%))-
setting as follows.

Definition 5.2 (Solution; Definition 2.3 in [AV23b]). Let Assumption 5.1(p, g, h, )
be satisfied for some i > 1 and let x € [0, 5 —1).

e Let o be a stopping time taking values in [0,00] and let u : [0,0) X
Q — H?> %9 @ H?>797"4 be a stochastic process. We say (u, o) is a local
(p, K, 6,7, q)-solution to (4.1) if there exists a sequence of stopping times
(Uj)j21 such that

—o0;<oas. foral j>1andlimj,.0; =0 as.,
— for all j > 1 the process 1jg ,)xqu is progressively measurable,

— a.s. for all j > 1 we have u; € LP(0,0;,w,; H>=%9 @ H?>~9=m49) and

f(ou) € LP(0,04,we; H- O @ H207m9)),
G(-,u) € LP(O,Uj,wH;Hl_‘S’q(EQ) @ H2=0-ma(g2)),

— a.s. for all j > 1, for all t € [0, 0] it holds
¢
w1 (t) — uo,1 :/ vAuy + f(u1) —ug ds
0

+ Z/O [(br - V)ur + g1k (-, w)] AW (s)

E>1

t
uz(t) — uo,1 :/ euy — eyug ds
0

+Z/O 92,1, w) AW (s)

k>1

e (u,0)isa(p,k,d,n,q)-solution to (4.1) if for every other local (p, s, 8,1, q)-
solution (', 0") it holds that a.s. ¢/ < ¢ and uw =’ on [0,0”) x Q.
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Assumption 5.3 (Assumption 2.4 in [AV23b]). Letd > 2. Assumption 5.3(p,q,h,d)
holds if p € (2,00), q € [2,00), h > 1 and ¢ € [1, %) satisfy

1 1 d h d d(h—1)

- +-1d+—-) < . 5.9

p+2<+q)—h1’ d—s 1S 15— (5.9)
Theorem 5.4 (Local Existence, Uniqueness, and Regularity). Suppose that
Assumption 5.1(p, q, h,d) holds, ¢ > max {ﬁ, #&21)} and that € [0, 5 —
1) satisfies either

dh—-1) 1+x 1 d h
- - < — 1
q< 3 and ) +2<6+q>_h—1 (5.10)
or
dh—1) 1+x _ h 5
> < - = . .
q> 5 and PR — <1 2) (5.11)

Then for any n € (0,2 — 6] and
2—g—21tr
u € L%, By, P @HOTM (5.12)

there exists a unique (p, K, 0,1, q)-solution (u,o) to (4.1) such that a.s. o > 0
and

9_g_olEr

u € Ly, ([0,0), w; H* g H276777,q) nc <[0, 0); Bgp Pog g2

loc

(5.13)
Moreover, u regularises instantaneously in time and, in addition, u; reqularises
istantaneously in space; let

LS if s+n+d<2,
max{d/(6+n+2-2),¢} if S+n+<>2

then

u € H?o; (O,U;Hl_ze’C & H2_5_"’q) a.s. for all 0 €10,1/2),r € (2,0),¢ € (2,b)
(5.14)

and

d
Uy € Cfolcvaz ((070') X ]Rd) a.s. for all 01 € [0, 1/2),92 S (O, 1-— b) . (515)
Remark 3. Note that (5.14) holds in any case for { = q. Moreover, we prove
local well-posedness for general h > 1, which will be used in our proof of global
well-posedness. However, for the FitzHugh-Nagumo Equations (4.1) we assume
h=3.

The proof of Theorem 5.4 shows that the integrability in space that can be
obtained is limited by the smoothness of uy. This is reflected in our use of the
Sobolev embedding H>~9~"4 < H~1¢ in Step 3 of the proof.
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In the proof of Theorem 5.4 we will use the following lemma, the proof of
which can be found in [AV23D].

Lemma 5.5 (Lemma 3.2 in [AV23b]). Suppose that Assumption 5.1(p,q, h,d,7n)
holds and let

O(t,v) = f(v)

Moreover, suppose that ¢ > max {ﬁ, #(_/1121)}' Let py =h—1 and

BI:{;(M) (1-3). o<t

. d(h—1)
ifq> =%—.

N[

Then B € (0,1) and for v,v' € X{, ® is a lower-order nonlinearity, that is,
[2(-0) = (-, 0)Ixy S L+l + 1Y%, v —v'llx,,

12C,0)lxg S A +Ivl, lvllxs, -

Proof of Theorem 5.4. Existence and uniqueness. We would like to apply [AV22a,
Theorem 4.8]. To this end, we verify that [AV22a, Hypothesis (H) ] is satisfied
and that (Ao, Bo) € SMR; (T) for all T € (0, 00).

By Assumption 5.1(4), the first component of f satisfies the conditions of
Lemma 5.5 with 81 as given in the lemma. Since the second component is 0, it
follows that [AV22a, hypothesis (HF) ] holds. For the first component of G we
have by Assumption 5.1(4) for u,v € X;

lg1(w) = g1()ly(e2:x3 ) S [l = o1l[za + [Juz = va e

S Hul - UlH(H*‘;»‘Z,H?*(M),i2 + ||U2 - /U2||H2—5717,q

= [lu = vl[xg,

(5.16)

for any B> € [$,1), where we used that 6 + 7 € (0,2]. Due to the linear

growth of g; we can thus choose 35 € (1 — “;%, 1) sufficiently close to 1 and
p2 > 0 sufficiently small such that HT’“ < %(1 — B2) and thus (4.3) of [AV22a,
(Hypothesis (HG) ] holds. Similarly, for the second component of G we have by

Assumption 5.1(4) for u,v € X,
lg2(w) — g2(V) |l (e2.x, 1) S llwr — villz-s-na + [lue — v2 g2-s-na
S llur = vill -5 -5y, + lue — v2llg2-s-na
= Hu - U||Xﬁ3’

(5.17)

for any 83 € [1 — 3,1), and since n € (0,2 — 6] we can again choose (i3 €

(1- lif", 1) sufficiently close to 1 and p3 > 0 sufficiently small such that (4.3) of

22



[AV22a, Hypothesis (HG) | holds, from which it follows that [AV22a, Hypothesis
(HG) ] also holds and we conclude that [AV22a, Hypothesis (H) ] holds. To verify
that (Ao, Bo) € SMR; . we first note that (Ao, By) € SMR; . (T); for the first
component this follows from [AV21, Theorem 5.2 and Remark 5.6], and for the
second component this is immediate from the definition of stochastic maximum
regularity [AV21, Definition 2.3]. To establish stochastic maximum regularity
of (Ao, Bp), we apply the perturbation result [AV21, Theorem 3.2]. Let u € X3
and fix ¢g > 0 arbitrarily small, then we have

| Apersttll xo <lltzllr-sa + €lfurll ga—s—na + eyllus| m2—s-na
1—-n/2 2
SO+ e |fuzll gas-ma + el Y 2 llua |7 s 0
by the Gagliardo-Nirenberg inequality,

<(1 4 &) ||ua||gg2—s-na + € (1 - g) eo™ @ g || r-s.a

1
+ eyl -

2
<Cormmeolltllxy + €5/ "Cenllul x,,

(5.18)

Thus, ||Apertt| x, can be bounded by ||u| x, and ||u||x,, where the constant for
[|ul|x, is arbitrarily small, and [AV21, Theorem 3.2] yields (Ag, Bo) € SMR; ..
Finally, we check [AV22a, Assumption 3.2], which requires that there is a con-
stant CAO,BU such that ||AOH£(X1,X0) + ”BOHL',(Xl,'y(U,Xl/z)) < CAU,BO' The ex-
istence of such a constant for By is clear. For Ag we have for u € X7:

[Aoullx, <NAur]l-s.0 + [luzll-s.0 + €llurll gr2-s-na + evlullg2-s-n.0
<1 +e+ey)fullx,
Now [AV22a, Theorem 4.8] gives the existence of a unique (p, &, 9, ¢)-solution
with

U Engo’p([O, o), Wg; H? 0200 g H2*57"’q)

C

1+k
2-5—21E8 o5
nc <[0, 0); Bp.q P oH "’q> a.s.

for all @ € [0,1/2), from which the regularity properties (5.13) follow by weighted
Sobolev embedding [AV22a, Proposition 2.7].

Instantaneous reqularisation. Our proof follows the general lines of the proof
of [AV23b, Proposition 3.1] with some adjustments for the limited regularity of
Uus.

Step 1. We bootstrap regularity in time using [AV22b, Corollary 6.5 or
Proposition 6.8] to show that

u € 096[071/2)H$2(07U; H?>707200q g2=0-m14) a5, for all 7 € (2,00). (5.19)
As in [AV23D],
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o If ks =0 we choose r € (p,00) and « € (0,% — 1) such that

2
1 1 1 1
- = +aand72 max f(; —14 =
p r T je{1,2,3}

and apply [AV22b, Proposition 6.8],
o If Kk > 0 we let (r,a) = (p, k) and apply [AV22Db, Corollary 6.5],

and we let X; = Y; = H* %1 @ H?>79m4 4 ¢ {0,1}. The (Xo, X1, K,p)-
setting agrees with the setting in our existence proof, so [AV22b, Hypothesis
(H)] is satisfied. Moreover, [AV22b, Assumption 4.5] holds since (Ao, By) are
independent of u, and [AV22b, Assumption 4.7] holds by [AV22b, Remark 4.8].
In the (Yp, Y1, , r)-setting [AV22b, Hypothesis (H)] holds by Lemma 5.5 applied
to F, the arguments given in the existence proof for G, and our choice of the
parameters (a,r) above (in particular, % = HTO‘ < 1;%) Moreover, we check
the required embeddings:

o YT = Bg;é_Q/TGBHQ"S’"’q — Bg,;é_waBHz*d*"’q = X,I* by our choice
of r > p,

o Y, =X, forie{0,1}.

An application of [AV22b, Corollary 6.5], or [AV22b, Proposition 6.8] if k = 0,
now gives (5.19).

Step 2. We bootstrap differentiability in space using [AV22b, Theorem 6.3]
to show that

u€ mee[o,l/Q)Hle(;:(O7O'; H'=20:0 ¢ g2=9-m9)  as. for all 7 € (2,00). (5.20)

We may assume that 6 € (1,2) since otherwise the result already follows from
(5.19). Moreover, we choose 7 > max {p, 2%6} such that
1 §6-1 h

P S3h-1)

which is possible since ‘S_Tl < ﬁ always holds. We consider the spaces

Y; = X; = H* %4 g H?707 4y, = g¥-La g g270-m4 ¢ {1,2},
and we set the parameters

r(d—1)

r=r, a=0 a=
2

Note that whilst [AV23b] bootstrap integrability in space first and therefore
may assume that (5.11) applies, we need to consider both cases (5.10) and
(5.11) in the settings (Xo, X1,p, ), (Yo, Y1, @), (Yo,Y1,7, &). However, the
choice of parameters (r, «, 7, &) given above is sufficient in all cases. By Lemma
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5.5 together with the arguments in the proof of [AV23b, Part A of Proposi-
tion 3.1] it follows that [AV22b, Hypothesis (HF)] holds in the (Y, Y7, 7, @) and
the (Yo,fﬁ,?ﬂ&) setting, and both are not critical. In the (Yp, Y7, r, a)-setting
[AV22b, (HG)] holds by the same argument as in Step 1, and in the (YO, Yi,r, «)-
setting we can repeat the computations (5.16)-(5.17) with Yl/g = LIpH?> 0
and using that HY9 « H270714 < [9 < H~19 gince § + 1 € (0,2] to
show that [AV22b, (HG)] holds. Using the latter embeddings, and repeating
the computations (5.18) and the arguments preceding it, we can show that
(Ao, By) € SMR? . also in the (mefl,r, a)-setting. By [AV22b, Lemma 6.2]

DK
with e = 251 [AV22b, (6.1)] holds. Finally, we check that the required embed-
dings hold:

o Yr — 335572/’” @ H20-m4 3356*2/’) @ H?*70=14 = X ¥ holds since
r>p,

e There exists a A € (0,1) such that X + X < % and Yy, = H? %1 g
H20-m4 «y =04 g g2-0-14 = X, and Yy = H2 %4 ¢ H2 014
H2(=N)=0a ¢ ff2=0-14 — X, _,,

e YV; < Y; holds since § > 1,

o YV Ir = Bg;‘H/T ©H?>707 M1 = 3;572/1” @ H> " = YQT; by the choice

of parameters (7, &).

An application of [AV22b, Theorem 6.3] now gives (5.20).
Step 3. We bootstrap integrability in space using [AV22b, Theorem 6.3] to
show that

u € ﬁge[o}l/Q)Hl‘gO’:(O,U; HY=20¢ g H279-m49)  as. for all 7 € (2,00),¢ € (2,4).
(5.21)

As in [AV23b], we prove the claim by an inductive argument. Specifically,
we claim that there exists an ey > 0 that depends only on (r, d, g, h, d) such that

6 — _5—
u € Noepo,1/2) Hipe (0,03 H' 729C @ H>7079) as,

0,r 1-26 2-3 (5.22)
— U < 096[0,1/2)H1(;c (O,U;H —20,C+eo ® H™ —n,q) a.s.

forall ¢ > 2 if5+7}+§ < 2, and for all (+¢y < d/(é—i—n-l—%—?) if5—|—7]+§ > 2.
Suppose the left-hand side of (5.22) holds. We now find r1,79 > p and
aq,ag > 0 such that

1+0[1 ]. d h 1+Ol2 h (S
S (548 d -2
= +2<+2)<h—15’m e <h—1< 2>’

and we let r = max{ry,m2},a = min{ay,as}. Since 2 < p < (, the former
guarantees that (r,(,d, h) and (r,{ + €g, 9, h) satisty either (5.10) or (5.11). We
now consider the spaces

X; = 20 ® H2-0-ma Y; = 2i—1¢ ® H2767”’q7

9
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Y, = H? "Lt g g2i-ma e {1,2}

and we set the parameters
r=r, a=a.

By Lemma 5.5 together with the arguments in the proof of [AV23b, Part

A of Proposition 3.1] it follows that [AV22b, Hypothesis (HF)] holds in the

(Yy, Y1, r, @) and the (Y(J,Yl,f,&) setting, and both are not critical. To check

that [AV22a, Hypothesis (HG) | holds, we repeat the computations in (5.16)-

(5.17). For the first component of G we have by Assumption 5.1(4) for u,v € Y3
lg1(w) = g1()ly(e2vy,,) = g1 (w) = g1 (V)] e

1

S lur = vil|pe + [Jug — val| e (5.23)

S ||U1 - vl”(H*l;C,Hl,C)BZ + ||U2 — (U2||H2*5*71»q

= [lu = vllys,

for any B> € [%,1), where we used the Sobolev embedding L¢ <= H?~ 94
with —% <2-0-n-— g and § +n € (0,2]. Note that our use of the latter
embedding result means in particular that we cannot bootstrap integrability in
space if  + 7 = 2. Due to the linear growth of g; we can thus again choose
B2 € (1 — HTH’ 1) sufficiently close to 1 and p > 0 sufficiently small such that
HT"“ < ”TH(I — B2) and (4.3) of [AV22a, (Hypothesis (HG) | holds. For the
second component of G we have by Assumption 5.1(4) for u,v € Y3

ll92(w) = g2(0) Iy (2,7, ) = [l92(w) — g2(v) || x2(42)
S llur — villge-s-na + [[uz — v2l[gr2-s-n.a
S luy — o1l ge-s—ne + [luz — va gr2—s-n.a (5.24)
S llw —villg-16 5164, + luz — vallg2-s-n.a

= ||7.L - U||Y537

for any 83 € [1 — Z,1), where we used that H279="4 > H279=7¢ on the
bounded domain sz. We can now again choose 83 € (1 — “;%, 1) sufficiently
close to 1 and p > 0 sufficiently small such that (4.3) of [AV22a, (Hypo-
thesis (HG) ] holds, from which it follows that [AV22a, hypothesis (HG) ]
also holds and we conclude that [AV22a, hypothesis (H) ] holds. We verify

that (Ao, By) € SMR, . in the same way as in our existence proof. We have

(Ao, By) € SMR; . (T'), which for the first component follows from [AV21, The-
orem 5.2 and Remark 5.6], and for the second component it is immediate from
the definition of stochastic maximum regularity [AV21, Definition 2.3]. We can
thus establish stochastic maximum regularity of (Ao, Bp), by applying the per-
turbation result [AV21, Theorem 3.2]. Let u € Y7 and fix ¢ > 0 arbitrarily
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small, then we have

[Apersullvy <lluzllm-r.c + €llurllz-s-na + eylluallg2-s-n.

SA+eNlullgz-s-na + ellurlgo-s-nc,

by the Sobolev embedding H~1¢ <= H?79-"4 with —1 — ¢ < 2—-5—-n—2%and
the embedding H2~°~"4 = H2~9-7< on the bounded domam T<, and by the
Gagliardo-Nirenberg inequality

) 1 2 3—5—
| Aperttlly, 5(1+67)||U2||H276=w+€||u1||§q+1"< 2|y || (327

<(1+ e)|uall g2-s-na + = <6+n—1> AR Y

+ 238 =6 =m0y | pasg

2
2/(3=0=m)

SC&,%W,E(}”U”XO + € 6,77Hu||X1a

(5.25)

Thus, ||Aperttt|ly, can be bounded by ||u|ly, and ||u|ly,, where the constant for
|ully, is arbitrarily small, and [AV21, Theorem 3.2] yields (Ao, Bo) € SMR; .
Repeating the same computations with ¢ replaced by ¢ + €p shows that [AV22b,
Hypothesis (H)] holds if ¢ is sufficiently small and that (Ao, By) € SMR; .

also in the (Yp, Y1, 7, &)-setting. By [AV22b, Lemma 6.2] also [AV22b, (6.1)]
holds. Finally, we check that the required embeddings hold:

o YVTr — Bé;Q/T @ H2 014 Bg;&—Q/p @ H*°7m4 = X holds since
r>p,¢2>4q,

e Thereexistsa A € (0,1) such that 1 +X < 1 sand Yy = H2M@pH20-m4 <y
%4 a H2-0-m9 — Xo and V7 = Hl,q @ H2-0-m4q y [g2(1-X)—dyq fas)
H?=0-m4 = X, _ 4,

o Y, < Y since ¢g > 0 and H?~1:¢(te0 <y F2-1.C on the bounded domain
T4,

o YT — B2 gy gr-i-ma — Blf(l*a)/r @ H2-0-m4 — YQT; holds by

¢,r C+e,r

Sobolev embedding if

1_2_§21_21+0¢_ d .
r r C+e
Since ¢ > 2, a sufficient choice for the last embedding is ¢y < 2. An application

of [AV22b, Theorem 6.3] now gives (5.22), and, making € smaller if necessary,
iterating (5.22) yields (5.21).

Step 4. The result (5.15) follows by the Sobolev embeddings H?" «— C%
if — <4 >6; >0and H'720:¢ — O if17297g >y > 0. By Step 1 we
have 61 € [0,1/2). I § + 71+ 4 <2, we have 6, € (0,1), whilst if 6 + 7+ 4 > 2,
the limits on integrability in space obtained in Step 3 impose the restriction
02 € (0,1 — (6 +n+ 9 —2)) if the last term is positive. O
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Corollary 5.6 (Local Well-Posedness in Critical Spaces; Theorem 2.7 in [AV23b]).
Suppose that Assumptions 5.1(p,q,h,0) and 5.3(p,q,h,d) hold, and set k =

IiC:p<%—%((5+§))—l. Then for any n € (0,2 — 8] and

d__2
ug € L° (Q; BL, "1 H25’Q> (5.26)

there exists a unique (p, k., 6,1, q)-solution (u,o) such that a.s. 0 >0 and

d__2_
ue C([0,0); BL, "t @ H?>19) g.s. (5.27)

uwe HP ([0,0), wy,; H?> 9204 g H2*5*’7’q) a.s. for all 0 €[0,1/2). (5.28)

loc

Moreover, u regularises instantaneously in time and, in addition, ui reqularises
instantaneously in space; let

S if d+n+2<2,
B maX{d/(5—|—7]—|—g—2),q} if 5—|—77—|-§>2,

then

u e H?o; (O,U;Hl_ze’C @ H2_5_7”<) a.s. for all 0 € [0,1/2),7 € (2,0),¢ € (2,b),
(5.29)

and
u; € Cfolc’gz ((070‘) X ']Td) a.s. for all 61 € [O, 1/2),92 € (0, 1-— Z) . (530)

Proof. Corollary 5.6 is a direct consequence of Theorem 5.4. The proof that
[AV23b, Theorem 3.1] implies their [AV23b, Theorem 2.7] carries over verbatim
as it only requires checking that the conditions on (p, g, h, J, k.) given in Corol-
lary 5.6 are compatible with the conditions of Theorem 5.4. O

Theorem 5.7 (Blow-Up Criteria). Let the assumptions of Corollary 5.6 be
satisfied and let (u, o) be the (p, ke, 0, q)-solution to (4.1). Suppose further that
po € (2,00), hg > h, 6 € [1,2) are such that Assumptions 5.1(po, q, ho, o) and
5.3(po, q, ho, 00) hold. Let

d 2 _d, 2 2
g ho—1 TG py ho—1

If no € (0,2 — do) is such that 6 + 1 = 8y + no, then for all0 < s < T < o0
P( sup Hu<t)||359p0@}[2*50*710$q

te(s,o] (531)
+ [[ull oo (5,03 70000 200000y < 00,8 < o <T) =0.
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Proof. The proof follows the lines of the proof given in [AV23b]. Fix 0 < s <
T < oo and let (u,0) be the (p, ke, d,g)-solution to (4.1). Let (po,do, ko, Bo)

be as in Theorem 5.7. Set k.o = po (h(}fﬂl — % (50 + g)) — 1. By the reg-
ularisation result (5.27) and the assumptions of Theorem 5.7 we have ug €
C((0,0); H*°=m49) = C((0,0); H?~%~m0:2) for some 19 € (0,2 — o). Moreover,
using the regularisation result (5.29) (instead of the regularisation result (5.30)
together with the embedding C? «— B for 6 € (8y A 0,1) used in [AV23b])
and the embeddings H!'~204 B;’;O?e — Bq*@f;m for a suitable § € [0,1/2),
which exists since 8y < 1, we obtain

L{ossyu(s) € LY (; B, ® H>07m09),

We can now consider the SPDE

dvi(t,z) = (VAv(t,z) + f(vi(t, z)) — va(t,x)) dt
+ Zk21 [bi(t, ) - Voi(t,z) + g1.(t, v(t, x))] AW (2) (5.32)
dvs(t,z) = e(vi(t, z) — yva(t,x)) dt + Zkzl g2, (t, v(t, x)) dWa(t),

with vi(s) = 1{r>sui(s), which by Theorem 5.4 has unique (po, kc,0, 0, q)-
solution (v,7) on the interval [s, 00) such that

v € H (o7 wgH! T @ BTN 0 C[s, 7 B, @ PO
V0 € [0,1/2),7 € (2,00),C € (2,0), |

with b as given in Theorem 5.4. Applying the blow-up criterion in the abstract
setting provided in [AV22b, Theorem 4.10(3)], we obtain

P( sup {[lo1 (@)l geo + llv2(®)ll zr2-s0-n0.a } + Vil zro (s,75870.9)
te(s,] 4Po

=+ ||v2||LT’0(S,T;Hzfaof"o’q) < o, T < T) = 0
It remains to show that the solution (v, 7) agrees with (u, o), specifically,
T=o0as on{o>s}, w=wvae onlso)x{oc>s} (5.34)

Note that by (5.29) and the assumption hg > h we have that (uls ,), L{o>s30 +
Lo\ {o>s}5) i a (po, Ko, do, ¢)-solution to (5.32), and by maximality of (v, 7) we
have

oc<ton{o>s} u=wvas. onls,o)x{oc>s}

Applying the blow-up criteria in the abstract setting [AV22b, Theorem
4.10(3)] to u yields

Plo < T, sup (I Oz, + lo0)le-son)
te[0,0 ’

+ ”ul(t)”LP(O,G;H”’*‘I) + HUQ(t)”LP(O,J;Hz*E*"'v‘I) < OO) =0
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d 2 d 2 2 h 1 d
=—-——, Yy=—-+-—-—— and/ic—p(h_l—2<5—|—q>)—1.

The regularity result (5.33) together with the fact that Assumption 5.3 implies
that v < 1 give u = v € L} ((s,0); H"9 & H?>7%~"4) on {0 > s,0 < 7}. By

(5.27) with 6, := % < % — % and weighted Sobolev embeddings we have

U EHGC’p([O7 0), W, ; H?0-20c:0 g H2_6_n’q)

loc

C Lt ([0,0); H & HQ_‘;_""I) a.s.,

loc

and thus also u € LP(0,0; H"? & H?>797"49) as. on {0 < 7}. Similarly, the
regularity result (5.29) applied to v gives u = v € C((s, ol; Bz/iq @® H*°~m4) on
{o > s,0 < 7}. By (5.27) we also have u € C([0,0); B , & H*7°~"4), from
which it follows that u € C([s,0]; B , ® H>*~°~"1) on {o > s,0 < 7}. We thus
get

Plo > s,0 <7)=P(c >s,0 <7, sup {||ui(t)|gs + [|uz(t)||pg2-s-na}
tel0,0) 1P
+ ur ()l e 0,050y + [[u2 ()| Le (0,0 52570y < 00)
<B(o < T, sup (Dl g, + Iua(t)ls=-a-n0)

tel0,0)

F s @Ol e ©.05m70) + [lu2(®)llLr(0,0582-5-7.0) < 00) = 0.

Thus, on {0 > s} we have 0 = 7 as claimed in (5.34). O

5.2 Global Well-Posedness

In this section we prove global well-posedness of the FitzHugh-Nagumo Equa-
tions (4.1). We will assume that d > 2; the case d = 1 can be accommodated
by adding a dummy variable in (4.1).

Assumption 5.8 (L¢-Coercivity; Version of Assumption 4.1 in [AV23a]). Sup-
pose d > 2, Assumption 5.1(p,q,h,d) holds with h = 3 and let ¢ € {q} U (q,b)
with b as in Corollary 5.6. We say that Assumption 5.8 holds if there ex-
ist constants 0, M,C,> 0 such that a.e. on R>g x Q and for all (u1,us) €
CY(T?) @ C(T?)

[ i€ P 9~ BT 5 S g ) e
E>1

> 9/ |2 Vaur 2 — M [2) — MlusC do — C.
Td

Remark 4. As pointed out in [AV23al, if Assumption 5.8 holds for (ui,us) €
CH(T?) @ C(T?), it can be shown to extend to (uy,uz) € H»¢ @ LS, ¢ > d, via
an approximation argument.
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Lemma 5.9 (L¢-Coercivity for FitzHugh-Nagumo). Suppose the assumptions
of Corollary 5.6 with h = 3 are satisfied. Then Assumption 5.8 holds for all
¢ € {q} U(q,b) with b as in Corollary 5.6.

Proof. Let (u1,uz) € CH(T4)@C(T?) and fix ¢ € {q}U(g,b), then by Assumption
5.1 (4) and the mean value theorem

/ —ur | ?ug f(ug) do :/ —|ur | Pugug f1(€) d
Td Td

> [l

by Hoélder’s and Young’s inequality we estimate
/ w1~ 2ugug da > —/ 1S Hug| dz
T Té

> — (C_l |u1|Cdx+1/ |uQ|<dx),
¢ Jye ¢ Jye

and by Assumption 5.1 (4) and Holder’s and Young’s inequality

/Td —[ua]* 7Y (g w)?de > —(1+ 2Cf)</w s |€ d

k>1

+ /d lur]<2(lgr (0) 17> + [ua]* > uzl?) d»’C)
T
2 4 ¢ 2 ¢
> ((3-8) [ jwlcar 2 [ ja©))S de
C T4 C Td

2
+f/ lus|¢ dz),
¢ Jra

and [ g1(0)|| ¢.e2 is bounded. Let v be as in Assumption 5.1 (3). We may assume
without loss of generality that v < 1. Fix ¢y > 0 such that (1 —v)eg < v. We
estimate

1
/d‘ul'H Ver? = 5 D Mbr - Vyun + gu( )] | da
T

k>1

1
Z/ un |72 [ [Vua | = 5 D [0k Vua (1 + €0) + Coplgr i w)[* | da
Td 2 i>1

and Assumption 5.1 (3) yields |V, |* — £ D kst bk |* [ Vur|? > (v — eo(1 —
v))|Vuq|?, from which it follows

1
> [l (= =)Vl = 5 3 Colanst )l | da.

k>1

and we already obtained an estimate for the last term in the sum above. O
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Theorem 5.10 (Global Existence; Theorem 4.3 in [AV23a]). Suppose the as-
sumptions of Corollary 5.6 are satisfied with ¢ > d, h=3, § +17 =2 and

d_y
ug € L° (Q;B;{p @ L.

Let (u,0) be the (p, ke, 6, q)-solution to (4.1). Then (u,0) is a global solution,
that is, 0 = o0 a.s. In particular, the regularity results (5.27) - (5.30) hold with
o = 00. Moreover, there exist a constant Ng > 0 such that for all0 < s <T <
oo the following a prior bound holds:

T
B sup Lr(fu (0 +Hlus@)%) +E [ [ trfual? 2V dodr
s Te

te(s, T

(5.35)
< No (1 +ELp([Jur(s) |24 + [Juz(0)]|%4))

where T' = {o > s} N {||u1(s)||ne + ||uz(s)||re < L}, for some L > 1. Moreover,
the regqularity results (5.27)-(5.30) hold with 0 = oo a.s.

Remark 5. The assumptions ¢ > d and § + n = 2 are merely required for the
application of the blow-up criteria Thoerem 5.7 in our proof of Theorem 5.10.
Moreover, we note that Assumption 5.3 is compatible with the assumptions
q>d, h=3,0+n=2 of Theorem 5.10. Indeed,

e By the regularity result (5.29) and the assumption ¢ > d, for p sufficiently

laurgewehave%—i—%(é—i—g)g%:%7

e If d = 2, Assumption 5.3 also holds for h>3andd € 1, ﬁi}tl), so by
d(h—1)
h+1-8(h—1)

choosing h > 3 we obtain d < fis <

o Ifd>2and § > 1, then 745 < d < 3% = ;4% holds,

o If d > 2 and 0 = 1, Assumption 5.3 also holds any h > 3, from which we
- d d(h—1)
obtain a1 < d < — 5 -
The proof of Theorem 5.10 is relies on the following lemma.
Lemma 5.11 (Energy bounds; Version of Lemma 3.8 in [AV23a]). Suppose the
assumptions of Corollary 5.6 are satisfied with h =3 and let (u, o) be the local
(p, ke, 0, q)-solution to (4.1). Then for every ¢ € {q} U (q,b), where b is as in
Corollary 5.6, and for every 0 < s < T < oo we have

[sup T)(||u1(t)||iC + Hu2(t)||i<) < oo a.s. on{oc> s}, (5.36)
te|s,oN

o AT
/ / lu1[°~2|Vup > < 00 a.s. on {o > s}. (5.37)
s Td
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Moreover, there exists a constant Ng > 0 such that for all 0 < s <T < o0

sup B [0y (Tl ()15 + i ()]0)]

te[s,oNT)
oNT
+IE/ / Lr|ut |2 Vuy |2 dedr (5.38)
s Td

< No (1+ ELr(la(5)[5e + luz(5)[50)

E sup Ir(lur()lfe + luz(®)]5e)
t€[s,cAT)

oAT
—HEJ/ / Ip|u |72V |? dedr (5.39)
s Td
< No (1 +ELr(flua(s)l[5c + HUz(s)Hig)) ;

where T' = {|lui (8)|lrc + llua(s)|lzc <L} N{o > s} and L > 1.

The proof of Lemma 5.11 follows the proof given in [AV23a]. However, the
fact that both components of the FitzHugh-Nagumo equations (4.1) are coercive
and g1, g2 have linear growth (compared to the general reaction-diffusion frame-

work considered in [AV23a]) allows us to obtain bounds for E sup,c(, ;a7 1r([|lu1(?)]| ig +

||u2(t)||%<) via the Burkholder-Davis-Gundy inequalities, instead of the weaker

bounds for Esup,c(s oar) ]].1"(||U1(t)”2% + ||uz(t)||2§), A € (0,1) obtained in
[AV23a).

Proof of Lemma 5.11. We begin by establishing (5.36)-(5.37) using the general-
ised Itd’s formula (A.1). Note that Vu; and up have Lé-integrability by (5.29)
and the Sobolev embedding H?7 979 — [¢ with 2 — § —n — g > —% ifb>gq
(see Remark 3). By Lemma 5.9 Assumption 5.8 holds. In order to apply It6’s
formula, we will use a localisation argument. We define

7 =inf{t € [5,0) : Jus(t) — ur(8)lloray + lhurll oo
+ lluz(t) — wa(s)lL2(s tsm2-5-n0) 2 53 AT
on the event & := {0 > s, [|u1(s)|lc(re) + [[ua(s)|[g2-s-na < j — 1}, and we let
7; = s on the event €. Moreover, we let inf() = o A T. Note that due to the
limited regularity of us provided by Theorem 5.4, we use the H2~°~"9-norm in
our definition of 7; instead of the C(T¢)-norm used in [AV23a].

By the instantaneous regularisation results (5.29)-(5.30), we have lim;_, o 7; =
o. We further let

T ={o > s,|Jui(s)]|pe + |Juz(s)||gz-s-ne < K} € Fs.
Then (1r, uljo,7,)x,7;) is a local (p, k, d, g)-solution to (4.1). We let

w9 (t) = Tp u(t ATj),
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which is defined on the entire interval [s,T] x Q. We thus have a.s. for all
tels,T]

. . t
’U,gj)(t) _ ugﬂ)(s) :/ ]1[377'_7‘]><FK [uAu1 + f(ul) — UQ)] dr

(5.40)
+ Z/ Lisrxrs [0k - V)ur + g1 (- u)] dWi(r).
k>1
. . t
Uéj)(t) - Ugj)(s) —/ Lig rxTy [€u1 — eyug] dr
(5.41)

+Z/ Ljs,rj)xT s Gk,2 (- w) dWa (7).

k>1

By Corollary 5.6 and our definition of the stopping times 7;, u ( , 1 €{1,2},
satisfy the conditions of Theorem A.l. Hence, applying the generahsed Ito
formula to each component of u(9) gives

[u @)1 = [ ($)]Sc + <~ Dit) + ¢S, (5.42)

where D; denotes the deterministic term

o=/ wxmun“(“l( i) 21 g,

+ 5 Z[(bk . V)u1 + gk,l(-,u)]2> dz dr,

k>1

Uz €U EYU
/ / 1[97’,]><FK|U2|C 2( 2( — ’7 2 + 35 ng2 >d$d’l"

k>1

and S; denotes the stochastic term

S = Z/S/ Lo,y xrp [tn| "2 un [(br - V)ur + gea (-, w)] dz AWy (r),

k>1

5=3 / [ Vel agi ) de W)

k>1

Using Assumption 5.8, we obtain

. ot
@O0 [ [ L ry il Vo
<Ci(t — ) + [[uf” ()1 (5.43)

t
0 [ A (a1 + o)) dr -+ 681,
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where 6 = ¢(¢C —1)0, M; = ((¢ — 1)M and C; = ¢(¢ — 1)C. Moreover, we

estimate

! ¢—1 ¢ 1 ¢ ¢
C(¢—1)Dy(t) < Cf/s L7 xrx <CIIU2(T)IIL< + leul(r)llu +7||U2(7")|L<> dr

3 ! -
#3566 =0C [ [ U prilusl 2 (g20) I + aaf? + uaf?) do
s JT

and by Assumption 5.1(4), and Holder’s and Young’s inequalities appplied to
¢—1 d
f'[d ‘UQ‘ ‘ul‘ xZ,

t — 1
C(C — 1)Da(t) <Ce / Ly (<C1||uz(r>||§c + el 5+ vlluQ(T)llig) dr

3 ¢ 3¢—2 2
#3060 [ Temper (B0 + il oo
2
+ 2l Ol nagn )

t
SMz/ Lo,y xrsc ([ ()5 + ua(r)[5.0) dr + Cot — s),

by Hélder’s and Young’s inequalities applied to [r, |[uz|*~2|lg2(0)[|7 dz, where
M2 = GC(l +’)/) +301(%CQ —|—1), CQ = 3(4— 1)01Hg2(-, O)HLOC(REOXQQZZ)' We thus
obtain
S (1)[S <Calt — 5) + [[uf ()5
_oqt (5.44)
08 [ L (O + ) [ dr + 65
S

Adding (5.43) and (5.44) yields

. . - t
4 Ol + 1O 40 [ [ Vaper il P dear
S
<C(t =) + [uf” () + llus” ()15

t
.y / Vs (1 () [ + () [Sc) dr

+((S1 + S2),
(5.45)

where C' = Cy 4+ Co, M = M, + M,. The remaining steps of the proof carry
over verbatim from [AV23a], so we only sketch these steps here.
Step 1. Firstly, taking expectations in (5.45) and applying Gronwall’s lemma
to the function y(t) = sup,¢[, E(Hugj)(t)ﬂic + Hu;j)(t)Hic), we obtain
sup Eflfuf’’ (r)|ge+lug” ()]

réels,t]

) . 4 (5.46)
< e [Eljuf? (5)]1 5 + Blluf” (5)]1§ + Ct]
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Step 2. Secondly, by applying Fatou’s lemma to let j — oo in (5.46) with
t = T and taking expectations in (5.45), we can show that there exists a constant
Ny > 1 that depends on 6, M, C,(, T, cp,, and apy such that

oNT oANT
B[ @) +E [ [ tndunl 9 dedr

< No[1+Blp, ([fur (s)][5c + llua(s)[$0)]-
(5.47)

Step 3. Thirdly, we take the SUPye(s,on7) and subsequently take expectations
in (5.45) to obtain

. ) B oANT
E sw (luf @ + 1 01 ) + 8 [ /Wn[s,fj]mun*ﬂwlﬁda:dr

te(s,oNT)
() ) o [T
<E([[uf” (s)[15¢ + llus” (s)[15.¢) + ME/ L,y (Jua (0)[§ e + [lua(r)ll5c) dr
+CE sup (S1+8q)+ CT,
t€[s,oAT)

(5.48)

We first bound the innermost integral of S;. By Holder’s inequality and
Assumption 5.3(4)

Z/d | Ue e [n [ 2un [(br - V) + gra (- w)]| da
T

k>1

1/2
S (/ ]l[s,Tj]XFK|u1|Cdx)
Td

1/2
(] tempersil 2010 Dy + ka0 + un + ol o)

1/2
< ( sup ||u§”<t>||§<>
te]

s,0AT)
) ) 1/2
X (/Ed ]l[S’TJ_]XFK|’u,1|C_2|V’U/1‘2d,’I} —|— ||g1(0)||§:((€2) + ||u§j)||§< + Iuéﬂ)i<>

by Assumption 5.3(3), and Holder’s and Young’s inequality. Now fix ¢y > 0,
then by the Burkholder-Davis-Gundy inequality

2

oNT
E sup & SCE/ Z/ ]l[SVTj]XpK\ul\C_Qul[(bk -V)ug + gg,1(-u)]de| dr
te[s,oNT) s E>1 Td

SCT]E< sup ||U§])(t)||ic>

te[s,oNT)
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oNT
“ (/ / Lo e [ (7)€ 2V () e dr
s T

oNT ) .
T O ey + [ 0+ 1 0l ).

By Assumption 5.3(4), Holder’s and Young’s inequality

E swp S SGOCT,<E< sup |u§j><t>||§c)
tels,oAT) tels,oAT)
1 oNT o2 9
+ —Cr¢|E Ljs ) xrg [un (r) 577V (r)[* da dr
€0 s T4
) ()
+T+E/ ug” ()[15e + llus’ (r)llig)dr)

<eoCrcE sup  (Juf @5 + us @)l15c)
t€[s,cAT)

oNT . .
+Crce <E / [uf? ()S e + u$ ()]1S,c) dr
+E([uf ()15 + [[us (5)]1S.0) + T)7

where we used the result of Step 2 to bound the integral of |u;|¢~2|Vuy].

We proceed similarly for the second stochastic term, bounding the innermost
integral of S;. By (two applications of) Holder’s and Young’s inequality and
Assumption 5.3(4)

Z /d IL[“”W;’]XFK|u2|<_2uzgk,2(‘»u) dz
T

k>1

1/2
< ( / Lo e sl dx>
’]I‘d

1/2
X (/Ti l[s,Tj]XFK (‘U1|< + |U2|C + ng(O)H%) dx)

1/2
<oswp (a5, a8 e 4+ a1 ¢ + 1120001 ¢ o
te| )

s,0NT)

1/2

Fix €9 > 0 as before, then by the Burkholder-Davis-Gundy inequality

2

oAT
E sup & SCE/ Z/ ]l[syT],]XpK\ug\C_nggk)2(~,u)dx dr
tels,oAT) s E>1 Td

SCT]E< sup ||Ué])(t)||ic>

te[s,oNT)
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o AT . )
x / g ()11%c + s ()15 + 1g2(0) 15 g2

<eoCrcE sup  (Juf (@5 + us @)l15c)
tels,oNT)

oAT . )
+Orea(B [ 15+ 1l ar +7),

by Assumption 5.3(4), Holder’s and Young’s inequality.
Fixing €p as before and combining these results with (5.48), we have

E s ([uf @) + s 015 )

tels,oAT)

oAT
+9IE/ /d Lo,y xrg 1] 72V |* da dr
s T

<eoCrgE s ([uf (0))5e + 6§ 1)1 )
te[s,cN\T)

+Creo (Euu&”(s)nic + s (5)]1S.0)

oNT . .
+14E [ (0l + ||u§”<r>||<>dr).

Thus, for ey sufficiently small, and making 0 larger as needed, we can move
the first term on the right-hand side to the left-hand side and apply Fubini’s
theorem the last term to obtain

E s ([uf @) + s 015 )

t€[s,cAT)
_ oNT
+9E/ /d ]l[sﬂ]pr|u1|<*2|Vu1|2 dz dr
s T
SE([uf? (s)[1e + [lu$” ()[[S) + T

T X .
+[ B s (@1 + 1 01F) a
S

te[s,cAT)

Applying Gronwall’s lemma to the function y(t) = Esupre[s’g/\t)(||ugj)(r)||C +

||ugj)(r)||<) and letting 7 — oo yields the result.
Finally, (5.38) and (5.39) follow from Steps 1 to 3 with I'x replaced by
I'={o>s,[lui(s)llc + llua(s)l[e <L}, L > 1. O

Proof of Theorem 5.10. Our proof follows the lines of the proof of [AV23a, The-
orem 3.2]. By assumption, (p, g, h, §) satisfy the conditions of Corollary 5.6, and
Assumption 5.3 in particular. We fix an ¢y > 0 sufficiently small that will be
determined below and such that we can choose hg > h = 3 such that (since
g>d)

d(ho — 1)

q == f(l +€0).
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We let

d 2
fo="— "0\
q ho -1
and note that 8y < 0 by our choice of hg, and choose py > 2 such that
2 2
0>v=-+—-— ,
i * po  ho—1

which is possible by our choice of hyg. Moreover, we choose dy € [1,2) below and
let 9 € (0,2—0dp] be such that dg+19 = 0 +n. Next, we verify that (po, g, ho, do)
satisfy Assumption 5.3:

e hy > h > 1 by our choice of hy,

e 0y €1, h%—jl) for &g sufficiently small,

e By our choice of pqg p% < ﬁ — %, which implies p%) + % ((50 + %) <
1

1 _ho
ho—1 + 250 < Fo—1°

e Since d > 2 and ¢ > d we also have ﬁ < q for ¢y sufficiently small,

i 1de | 1 1 I S -
e Since ~5°¢ | 5 as e | 0 and 5 < o TT=so(ho=T) W€ can choose ¢ suffi

ciently small so that g < W‘f(,hgio‘(,ii,w

Theorem 5.7 now gives that

P( sup |[lu(t)

|| Bo 2-89—n
B,%,PH 0709
tels,o) 470

=+ ||’LL||LpO(S7U;H70,q@H2—60—n0,q) < oo, S <o < T) = 0

Next, we show that a.s.

t;’}g;] ||u(t)||ngo®H2,50,no’q + ”u”LT’O(s,a;H’YOf‘?@HZ*ﬁ;o*novq) < oQ.
Our assumption that 2 — 3§ —n = 0 means that H2~%~"9 = L9, and Lemma 5.11
with ¢ = g gives
u€ L®(s,c NT; L@ L7).
Since 79 < 0 by our choice of py, we have L9 — H79 so that u € LP(s,0 A
T; H09 @ H?>~9-"9) a.s. Moreover, by the Sobolev embedding L7 — B2 we

q,Po
have u € L*(s,0 AT} Bfo;,O @ H?7%=m0:9) a.5. It thus follows that

P(s <o <T)=P( sup |u(t)

H Bo 2—89—n0,
B DH 0—"0-9
te[s,o] 2P0

+ HUHLPO(s,o‘;H’Yqu@HQ—ISO—"qu) < oo, s <o < T) = 0,

and since o > 0 a.s., first letting s | 0 and subsequently letting T' — oo shows
that P(o < 00) = 0.
The a priori bound (5.35) follows from the bound (5.39) in Lemma 5.11. O
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6 Local Well-Posedness of Reaction-Diffusion Equa-
tions in the L?(LY(R%))-Setting

6.1 Local well-posedness in the case p > 2,d > 2

In this section we extend the theory of reaction-diffusion equations developed
in [AV23b] for the periodic torus to the unbounded domain R?. This will serve
as a reference as we extend our theory of the FitzHugh-Nagumo equations on
the periodic torus T? developed in Section 5 to the unbounded domain R?¢. We
consider stochastic reaction-diffusion equations of the form

du;(t) — div(a; - V) dt = [div(F;(-,w)) + fi(-,w)] dt
+ 2 ko1 [0k - V)i + gri(,w)] dW(t) - (6.1)
u;(0) = ug,q,

fori e {1,...,¢}, where (Wy)r>1 is a sequence of standard independent Brownian
motions. Our assumptions and results are largely derived from the results in

[AV23b] by making adjustments to their assumptions and proofs to account for

the unbounded domain R? considered here. We begin by considering p € (2, 00)

and d > 2. In subsequent sections we will discuss how the conditions on the

parameters change in the cases d = 1 and p = 2. Our Definition 5.2 of a

(local) solution in Section 5 carries over, with some obvious adjustments, to the

reaction-diffusion framework in the present section (see also [AV23b, Definition

2.3)).

Assumption 6.1 (Assumption 2.1 in [AV23b]). Letd > 2. Assumption 6.1(p,q,h,0)
holds if p € (2,00), ¢ € [2,00), h > 1, 6 € [1,2) and for i € {1,...,£} the fol-
lowing hold:
1. For each j,l € {1,....d}, al' : Rzo x Q x R = R and b = (b], ,)i>1 :
R>o x Q x RY — (2 are P ® B(R?)-measurable,

2. If§ =1, there exists N > 0 such that a.s. for allt >0 and j,l € {1,...,d}

lla ]| + ”bg”LOO(Z?) <N. (6.2)

If 6 > 1 there additionally exist 7 > 6 —1, e € (0,7 4+ 1 —0) such that a.s.
forallt >0 and j,l € {1,...,d},

la? e @ay + 167 lor @aszy < N, 6.3)

3. For every s € [0,T) there exist a7 : [s,T] x Q = R, b7 : [s,T] x Q — 2
such that for all j,k € {1,...,d}

Jm s o (e a1 0 -le) <0 6
w s,

40



4. There exists a v; > 0 such that, a.s. for allt >0, x,& € RY

k:>1

d
Z ag’l( Zb (t, x) b ()| & > vil€?, (6.5)
jl=1

5. Forallj €e{l,...,d} the maps
F/ fi Rsg x QxR xR - R
gi = (gr.i)k>1 Rog x @ x RT x R — (2
are P ® B(R?) @ B(R)-measurable. Set F; = (Fij)?:1 and assume that
FI(-,0), fi(,0) € Ng2.0e 0,y L (Rxo x Q4 H4(RY)),
9i(-,0) € Ng>2,0e(0,1) L (R0 x O HY1(RY; £7)),
and a.s. for allt € Rs>g,z € R4y, € R
|fit,x,) = filt,2,9)] S (1+ \ylh‘1 + Iy’lh‘l)ly —/
Fi(t,2,y) = Ptz y)| S U+ yl T + 1y 7))y — v/
lgi(t,2,9) = gilt 2y e S L+ [yl T + 1y 1)y — o).

Remark 6. Part (3) of Assumption 6.1 is an extension of [AV23b, Assumption
2.1] and is needed in our proof of local existence of solutions as the domain
we consider here is R? instead of T¢ as in [AV23b]. Specifically, the extension
allows us to show maximal stochastic regularity of the operators involving a;
and b; in (6.1) (see [AV21, Remark 5.7]).

Assumption 6.2 (Assumption 2.4 in [AV23b]). Letd > 2. Assumption 6.2(p,q,h,0)
holds if p € (2,00), ¢ € [2,00), h > 1 and § € [1, %) satisfy

1 1/ d h d d(h—1)
S < ) )
p+2<+ >—h—1 d—5 1S hyi-oah-1 (6:6)

Definition 6.3 (Local (p, ¢, h, §)-solution; Definition 2.3 in [AV23b]). Suppose
that Assumption 6.1 holds for some h > 1, let k € [0, 5 —1).

e Let o be a stopping time and u = (u;){_, : [0,0) x Q — H?>~%9(R% R!)
be a stochastic process. We say that (u, U) is a local (p, K, 9, q)-solution to
(6.1) if there exists a sequence of stopping times (;);>1 such that

—o0;<ocas. forall j >1andlimj,0; =0 as.,
— For all j > 1 the process Ljg ,;)xqu; is progressively measurable,

— a.s. for all j > 1 we have u; € LP(0,0;,w,; H>~%9(R%)) and

div(F;(-,u)) + fi(-,u) € Lp(O,oj,w,Q;H*‘s’q(Rd))

. (6.7)
(gk,i(‘7u))k21 S LP(O’ 0j, Wg; ]{1 6gq(Rd);£2)7
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— a.s. for all j > 1, for all t € [0, ;] it holds that

wi(t) — uo :/ div(a; - Vu;) + div(F; (-, u)) + fi(-,u)ds
0 . (6.8)
30 [ o s Vg ) W)

E>1

e (u,0) is a (p,k,9,q)-solution to (6.1) if for any other local (p,k,?,q)-
solution (u’,0’) we have ¢/ < ¢ and u =’ on [0,0") x Q.

Remark 7. The regularity conditions (6.2)—(6.3) on the a{’k in Assumption 6.1
are necessary for the integrals in (6.8) to be well-defined. Specifically, by [AV21,
Proposition 4.1(4)], if ug € LP(0, 05, w,; H2~%4(R9)), it holds a.s. that

div(a; - Vu;) € LP(0, 05, w,; H-4(R%))
div((br,i - Vwi)kz1 € LP(0, 05, we; H'~29(RY; £7)),

so the stochastic integrals are well-defined as H'~%9(R%)-valued stochastic in-
tegrals, and the deterministic integrals are well-defined as H~%9(R%)-valued
Bochner integrals (see [AV23b]).

Throughout the remainder of this section we set Xy = H_‘s’q7 X, = H2_5’q,
and X = [Xo, X1]p = H?>’~%9. Moreover, we let

27572HJ
p

Xg,rp = (XO,X1)17(1+H)/p,p = Bgp

The next theorem establishes the local existence, uniqueness and regularity of
solutions to (6.1). The embeddings H?~%¢t<0 <y F2=0C [2A=0C oy =04
and H?~%¢ < H?=%4 for some A € (0, 1) used in our proof of the regularisation
results in Theorem 5.4 do not hold on the unbounded domain R?. Therefore,
we cannot bootstrap integrability in space via [AV22b, Theorem 6.3].

Theorem 6.4 (Local Existence, Uniqueness, and Regularity; Version of Pro-
position 3.1 in [AV23b]). Suppose that Assumption 6.1(p,q,h,d) holds, g >

max {Tié’ #&21)} and that k € [0, 5 — 1) satisfies either

d(h—1) 1+ 1 d h
- )< — .
q< 3 and ) +2<6+q>_h1 (6.9)
or
d(h—1) 1+x h 4]
> < 1—=. 1
q> 3 and » _h—1< 2) (6.10)
Then for any
d__2_
ug € LY, (Q;B;{q ’H) (6.11)
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there exists a unique (p, k, 9, q)-solution (u, o) to (6.1) such that a.s. o >0 and
o s 2-5—21tE
we L) ([0,0),wy; H*=29)NC | [0,0); Bpg P, (6.12)

Moreover, u regularises instantaneously in space and time,
u € HloC (O,J;Hlfze’q) a.s. for all 9 € [0,1/2),r € (2,00), (6.13)

and, if ¢ > d, additionally

ue O’ ((0,0) x RERY) as. for all 6y € [0,1/2),6, € (07 1- d) . (6.14)
q

loc

We say that s is critical if the second term in (6.9) or (6.10) holds with
equality, and the space of initial data 32 0=204R)/P i5 also called critical.
In our proof of Theorem 6.4 we will use the following lemma, the proof of
which is a slight modification of the proof given in [AV23b] since we consider

(6.1) on R? instead of T<.

Lemma 6.5 (Lemma 3.2 in [AV23b]). Suppose that Assumption 6.1(p,q, h,d)
holds and let

D(t,v) = Po(t,v) + P1(t,v) == div(F(t,v)) + f(t,v)
L(t,v) = (gr(t,v))k>1-

Moreover, suppose that q > max{d;ié, #&21)}. Let p1 = h—1,py = %

and
5 Le+8)(1-4), ifg< 2,
1=y if g > =D
2 = K] )
d\ h— : d(h—1)
ﬂzz{hiﬁ;(an)h;, 0 < 551,
s , d(h—1
2 ifq= 225—1))'

Then 1, P2 € (0,1) and for v,v" € X1, ® and T are lower-order nonlinearities,
that is,

2
12(,0) = @( 0 o £ DA+ 0l +I101%, Ml = 2'llx,,

Jj=1
2

12(v)llxe S (4 llollR, )llvlx,
=1

J=
IT(0) =T ) lyeix ) S A+ IR, + 1015 lo = ' llx,,
S+

ITC, 0)llye2:x4)) ||v||§?ﬁ2)||v\|x,32-
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Proof. By Assumption 6.1 (5)

F’LJ(70)7fZ(aO) € mke{LQ}LOO(RZO X Q;Hzﬁk*(sz)’
H20) € Mgy (R x 0 HO1(23),

with 8k as in Lemma 6.5, so it suffices to estimate the differences ®(-,v) —®(-,v")
and I'(-,v) — I'(-,v"). For ®g we have by Assumption 6.1 (5)

1@, 0) = @o (0[50 S N+ [0l + "o = V[l -5
Sllv =o' llg-sa + ("7 + [/ 1* v = o'[|| e

by the Sobolev embedding with —g =—0— g, and g > d%'lg ensures that £ > 1,

S llv =V llgasi-sa + (lollza + [Vl 7a) o = v'llLen

by the embedding with H=%9 «— H?$17%4 since $; > 0, and Holder’s inequality,

K3

S o =0 lgzes-sa + ([0l 325,00 + 105725, -5.0) 1o = 0" [l 201 -5
by the Sobolev embedding with — % § 28, —0—¢

~(L+llk,, + ||v'||§<151 Do = UlHXﬁl'
In (i) we consider two cases:

o If ¢ < % we set f1 = % (5+ g) (1 — %), and the assumption ¢ >
#@?1) ensures that 8; € (0,1) so that the non-linearity is indeed of
lower order.

o Ifg> @ we set 8 = %, which at once ensures that 51 € (0,1) so that
the non-linearity is again of lower order.

For ®; we proceed in the same manner. By Assumption 6.1 (5) we have
1910, 0) = @1(, V) -s0 = [|[dIVE (-, v) = divE(, 0) | -0
SIFCv) = F(- ’)IIHl—M
Y [E R e e I |||H1 a
S o = lpss + (0] 2+ 7w — o'l
by the Sobolev embedding with —% =1-0- g, and ¢ > 7% ensures that

n>1,

h—1 h 1

S v =0l 28550 + (0] h+1+||v|| L)lle =] RS
) 2 L"

=~
h
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by the embedding H?#2~%4 < H1=%¢ gince By > %, and Holder’s inequality,

() h=1 h—1
/ !/
S v = gzse-0.0 + (0l 30,50 + 10"l 2ss .0 10 = V| 1120250

: - 2d d
by the Sobolev embedding with — e <289 —09— 4
~ (L4 I%, + IIE, Dllv —llx,, -
In (i) we again consider two cases:

o If g < % we set By = %H + 3 ((5—|— g) (Z—ﬁ) The assumption

q € (2h6l£?(71121), ggg:ll))) ensures that 35 € (%, 1) so that the non-linearity

is of lower order.

o If ¢ > % we set 5y = %, which ensures that 85 € (%, 1) so that the
non-linearity is of lower order. Combining the two estimates now gives

the result for ®.
For T we have by Assumption 6.1 (5)

”F('a 1)) - F('7 U/)‘l'y(éz,Hl*é’q) = ||g(t, ) U) - g(t, % U,)”'V(W,Hl*af‘?)

h-1 h—1
SIA A+l 2 + 727w =y, m1-50
h1 h1
Sllo = vl mr-sagey + (o] 2 + ]2 ) o =0 |[lg1-s.0e2)

since y(¢2; HS?) = HS9 for ¢ € R, q € (1, 00),

) =1 A1 .
S o= gr-sagey + [(v] 27 + [0 727) v = 0| agezy

by the Sovolev embedding with f% =1-0-— g, and the remaining estim-
ates are obtained in the same manner as for ®;. O

Proof of Theorem 6.4. The proof of local existence and uniqueness of the (p, s, 9, q)-
solution given in [AV23b] directly carries over to the domain R considered

here. By separately considering the cases q < d(h(s_l)7 d(h(;_l) <q< ZE';:B, and

q > %, Lemma 6.5 shows that Assumptions (HF) and (HG) of [AV23b,
Section 4.1] hold for (F,G) = (®,T) and that the trace space X1, is critical for

(6.1) if and only if

e q< D ang =4 1 (54 4) = ghy on
d(h—1) 14k _ h )
¢ g2 S5 and 98 = 5 (1-3).

The existence of a unique (p, , 4, ¢)-solution now follows by applying [AV23b,
Theorem 4.8] and noting that Definition 6.3 is equivalent to the definition
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of an L2-maximal local solution in [AV23b, Definition 4.4]. Theorem 4.8 in
[AV23Db] requires that the operators (A4,B) = (v — div(—a(t) - Vv),v —
((bx(t) - V)V)i>1 € SMR, (T), that is, the operators have stochastic max-
imal regularity (see [AV21, Definition 2.3]). By Assumption 6.1, Assumption
5.1 in [AV21] is satisfied and their Theorem 5.2 together with Remark 5.7 gives
that indeed (A4, B) € SMR;

Our proof of the regularity results (6.13) and (6.14) follows the same lines as
the proof given in [AV23b]. Assumption 6.1, and point (3) in Assumption 6.1
in combination with Remark 5.7 in [AV21] enables us to apply their Theorem
5.2 to obtain stochastic maximal regularity for (A, B).

Step 1. We bootstrap regularity in time using [AV22b, Corollary 6.5] to
show that

u € Noelo, 1/2)H1 "(0,0; H>70720:9)  as. for all r € (2,00). (6.15)

The proof for this step given in [AV23b] carries over verbatim. In particular,
for the choice of spaces X; = Y; = H* %4 j ¢ {0, 1}, the required embeddings
hold since X; = YaundYT’“:B2 o= 2/T<—>qu —2/p =X for r > p.

Step 2. We bootstrap dlﬁerentlablhty in space using [AV22b Theorem 6.3]
to show that

u € Ngejo,1/2)H, 10C "(0,0; H'7299) as. for all 7 € (2, 00). (6.16)

The proof of this step follows the lines of the proof of Step 2 in Theorem 5.4.
We may assume that 6 € (1,2) since otherwise the result already follows from

(6.15). We choose r > max {p, 2—36} such that
1 5-1 h

St oy

h

which is possible since 951 < =Ty

5 We consider the spaces

V=X, = H* % Y, = H* e {1,2},

and let
r(d—1)

5
Note that this choice of parameters satisfies the assumptions of Lemma 6.5
in both cases (6.9) and (6.10), in all settings (Xo, X1, p, k), (Yo, Y1,7, @), and
(YO, i, 7, &). By Lemma 6.5 together with the arguments in the proof of [AV23b,
Part A of Proposition 3.1] it now follows that [AV22b, Hypothesis (H)] holds in
the (Yo, Y1,7, ) and the (Yo, Y, 7, &) setting, and both are not critical. Finally,
the required embeddings hold:

r=r, a=0 a=

o Y = 32 0=, B(ipé 2r - X;DP‘" holds since r > p,

e There exists a A € (0,1) such that %+ A< % and Y\ = H2 %1
H=%9 = X, and Y; = H2 %4 3 F2(0-N=00 — X,
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° YZ < Y; holds since § > 1,

o YTt — 2072/ _ pZo2/r }A/(;ffn by the choice of parameters (7, ).

An application of [AV22Db, Theorem 6.3] now gives (6.16).
Step 3. The result (6.14) follows by the Sobolev embeddings H%" — C% if
—2>¢; >0and H!720:9 — C% if172073292 > 0. By Step 1 we have

61 €10,1/2), and by Step 2, if ¢ > d, we have 05 € (0,1 — %). O
Corollary 6.6 (Local Well-Posedness in Critical Spaces; Theorem 2.7 in [AV23b]).
Suppose that Assumptions 6.1(p,q,h,d) and 6.2(p,q, h,d) hold, and set K =:
fﬁc:p(% -3 (54—%)) — 1. Then for any

d__2
ug € L° <Q;B;q H) (6.17)

there exists a unique (p, ke, 0, q)-solution (u,o) such that a.s. o >0 and

d 2

ueC([0,0);Bl, " 1) as. (6.18)
u € Hleo’f (10,0),wy,; H*°72%9) a.s. for all 6 € [0,1/2). (6.19)

Moreover, u reqularises instantaneously in space and time,
u € Hleo’: (0, o; H1—20,q) a.s. for all 0 €[0,1/2),r € (2,00), (6.20)

and, if ¢ > d, additionally
d

ue 9% ((0,0) x RGRY)  aus. for all 0y € 0,1/2),05 € (07 1— ) . (6.21)
q

Proof. Corollary 6.6 is a direct consequence of Theorem 6.4. The proof that
Theorem 3.1 in [AV23b] implies their Theorem 2.7 carries over verbatim. [

Theorem 6.7 (Local Continuity; Proposition 3.3 in [AV23b]). Let the assump-
tions of Theorem 6.4 be satisfied and let (u, o) be the (p, k, 0, q)-solution to (6.1).
Then there exist positive constants (Co, Ty, €9) and stopping times oo, 01 € (0, 0]
a.s. such that the following holds. For each vy € Lp}-O(Q;B,?;,‘S_Q(HK)/p(RZ)
with E||lug —v0||1;32,5,2<1+m)/p < e and (v, T) the (p, K, d,q)-solution to (6.1) with
initial data vy tl:épre exists a stopping time 19 € (0,7] a.s. such that for all
te [07T0L’7 >0

P( sup [[u(r) —v(r)|l g2-s-204r)/» > 7,00 A To > 1)
ref0,t] P
(6.22)

0
< JIEHUO - ’UOH%?;§72(1+N)/P’
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]P)(”U - U”LP(O,t,wK;H?*&‘I) > Y,00 N To > t)

\ (6.23)
< JE”UO - U0‘|;§;é—2(1+~)/1)’

IP)(O'O N\ To < t) < Co (EUO - U0||227572(1+R>/p + P(O’l < t)) . (624)
a,p

Proof. The arguments from the proof of [AV22b, Theorem 4.5] used in the proof
given in [AV23b] remain valid, and thus their proof carries over verbatim. [

Theorem 6.8 (Blow-Up Criteria; Theorem 2.10 in [AV23b]). Let the assump-
tions of Theorem 6./ be satisfied and let (u, o) be the (p, ke, 0, q)-solution to (6.1)
with g < % — %. Suppose further that py € (2,00), qo € [qﬂ/(% — 50)), ho >

h, 6o € [1,2) are such that Assumptions 6.1(po, qo, ho,d0) and 6.2(po, g0, ho, do)
hold. Let

d 2 d 2 2 d

= — - — = — —_— =, b:—,
Ao @ ho—1 o qo+po ho—1 a d yd_ hotl

Then for all0 < s <T < o0

P( sup ||'U/(t)||BBg ot |wll Lro (5,05 m70090) < 00,8 <o <T) =0, (6.25)
te(s,o] 90,P
and, if additionally g < Zgﬂ,
P( sup [[u(t)l|gsn < 00,8 <o <T)=0 for all ¢ € (qo,by)- (6.26)
te[s,o] 91,90

Remark 8. [AV23b] obtain the blow-up criteria (6.25)-(6.26) under the milder
conditions of Assumption 6.2(pg, qo, ho, d9) and for g1 > qo arbitrarily large. The
additional limitations on the parameters (qo, ¢1, Po, 90, ho) required here are due
to the lack of spatialdinte%rability obtained in Theorem 6.4.

41 _ 2

The assumption ¢ < n—1 — ; guarantees that v = % + % — % < 1. The

assumption % < % guarantees that b, > go so that the interval (go, b,) is non-

empty. Moreover, since gy > ¢, the assumption % < Zgﬂ

with Assumption 6.2(po, go, ko, do). The assumption ¢o < d/(g —dp) is required
for there to exist a ¢; such that u is a (po, Ko, do, ¢1)-solution to (6.27).

is also compatible

Proof. The proof largely carries over from [AV23b] but requires some adjust-
ments for the unbounded domain R?. We will only give details for the proof of
(6.26) and point out where adjustments are needed when working on R? instead
of T<.

Fix 0 < s < T < oo and let (u,0) be the (p, ke, d, q)-solution to (6.1).
Let (go,po, 00, ho,Bo) be as in Theorem 6.8 and b, > ¢1 > ¢o. Set ke; =
Do (% - % (51- + g)) —1,7=0,1and 6; = 6. We now choose £ € (kc,0, Ke,1)
and set 8 =2 —§y — 2% < Bp such that the embeddings

1-20,q 1-2601,q1 B
H — H = By, 1o
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hold for some 6 € [0,1/2),60; € (2% - %7 1/2). Note that due to the unbounded
domain R, we cannot apply the regularisation result (6.14) together with the
embedding C? — Bge . as used in [AV23b]. The existence of suitable paramet-
ers (0, 60;) is guaranteed by the restriction ¢; < b,. By the regularisation result
(6.13) we have u € HOT (0, o; H1*29’q), which with suitably chosen 6, 6; implies

loc

Lig>syu(s) € L, (% By, ,,)-

q1,Po

The remainder of the proof proceeds as in [AV23b]. We can now consider
the SPDE
d’l)z(t) - div(ai . V’UZ) dt = [le(FZ(, 1))) + fl(, ’U)] dt
+ ko1 [0k, - V)i + gr (-, 0)] AW (E) - (6.27)
UZ(O) = ]l{cr>s}u(8)a

on the interval [s, c0), which by Theorem 6.4 has unique (po, o, 00, q1)-solution
(v, 7) such that

v e HIGOZ (0,7 H72%91) as. for all @ € [0,1/2),7 € (2, 0). (6.28)

By the choice of k < k1 and Theorem 6.4 the space of initial data Bgl po 18 MOt
critical and we can apply the blow-up criteria in the abstract setting provided

in [AV22b, Theorem 4.10(2)] to obtain

P( sup [Jv(s)|lgs < o0, 7<T)=0,
tels,T) a1-P0

which implies that

P( sup |jv(s)
tels,T)

HBflO,oc <00, 7<T)=0

by the embedding B% __ — BS for B < By. It remains to show that the

! q1,00 a1,po 0
solution (v, 7) agrees with (u, o), specifically,

T=o0cas on{oc>s}, u=wvae onls,o)x{o>s} (6.29)

Note that by (6.20) and the assumptions hg > h and ¢; < d/(g — dp) we have
that (ul(s,0), 1{o>s10 + Lo\ {o>5}5) 15 a (o, Ko, do, q1)-solution to (6.27), and by
maximality of (v,7) we have

oc<ton{o>s} wu=wvas. onls,o)x{oc> s}

Applying the blow-up criteria in the abstract setting [AV22b, Theorem
4.10(3)] to w yields

Plo < T, sup [0, + HOlirm) < 20) =0
te[0,0 !
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where

d 2 d 2 2 h 1 d
= — -t - dek.=p|l———=1(94 —1.
b=y YTt e p(hl 2<+ ))
The regularity result (6.28) together with the assumption that v < 1 give u =
ve Ll ((s,0); H") on {0 > s,0 < 7}. By (6.20) with 6, = fe < : - % and

weighted Sobolev embeddings we have

u EHall:p([O, U), W, ; H2_6_29c7Q>

loc

Cc Lt ([0,0); H"?) as.,

loc

and thus also u € LP(s,0; H"?) a.s. on {¢ < 7}. Similarly, the regularity result
(6.20) applied to v gives u = v € C((s,o];Bgﬁq) on {oc > s,0 < 7}. By (6.18)
we also have u € C([0,0); Bf ), from which it follows that u € C([s,0]; BY

ap)
on {o > s,0 < 7}. We thus get

P(oc > s,0 <71)=P(c > s,0 <7, sup ||“1(t)HB{jp + [|lur (8) || Lo 0,03 57-9) < 00)
te(0,0) ’

S]P)(J < T7 S[up) ”ul(t)”ng + ”ul(t)HLP(O,a;H’Y"?) < OO) =0.
tel0,0 ’

Thus, on {o > s} we have o = 7 as claimed in (6.29).

The proof of (6.25) uses the same arguments but uses the critical parameter
ke, for the initial data 1,5 u(s) € Bf{;’)po together with the blow-up criteria
[AV22Db, Theorem 4.10(3)] in the abstract setting, which also apply in the critical

case. O

6.2 Local well-posedness in the case p > 2,d =1

So far we have assumed d > 2. In this section we will comment on the changes
required to prove local well-posedness and blow-up criteria when d = 1.

Proposition 6.9 (Local existence, uniqueness, and regularity of different set-
tings; Proposition 6.1 in [AV23b)). Let Assumption 6.1(p,q, h, ) be satisfied for
d =1, and assume further that q > 2, % — % < 2 =90 and one of the following
holds:

Lo+t<zandts <t ominf1- 41— 8- L+ L t2e 4+ b,
1 14 h : ) ) 1 1

Then for any

ug € L%, (Q; B2 2 ~20+)/p) (6.30)

there exists a unique (p, k, 0, q)-solution (u,o) to (6.1) such that a.s. o >0 and
1+k
2-45 20277

we LY ([0,0),wy; H*=29) N C | [0,0); Bpg ) (6.31)
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Moreover, u reqularises instantaneously in space and time,

e HY" (0,05 H'~209) a.s. for all 0 € [0,1/2),r € (2,00), (6.32)

loc

ue 0% ((0,0) x RGRY)  aus. for all 0y € [0,1/2),05 € (07 1— Z) . (6.33)

loc

Proof. Lemma 6.5 is at the core of the proof of the local well-posedness result
Theorem 6.4. Therefore, we first discuss how the conditions on 5 and 3 change
when d = 1. Splitting & = &y + P, as before, we estimate
@0 (-, v) = @o (-, )50 S N+ 0"+ [ [* Yo = 0[[| 5.0
S o =o'l gzsi—sa + 1 ([]* 1+ 10" o = '] e

by the embedding with H*‘;q < H?P1=%4 gince $; > 0 and the Sobolev em-
bedding with — > —6 — =, and we choose £ =1,

Slv— U’IIle—s o+ (ollFe + 15 e) o =o'l pen
by Holder’s inequality,
S o =0 gzon-sa + ([0l 325, 5.0 + 101325, —5.0) [0 = V'l 21 5.0

by the Sobolev embedding with fgih < 28— 0 — %, and we choose 31 =
ax{f —+,0}+3 S to guarantee 23; —§ > 0. We further note that we require

— ﬁ <2-— 5 for the non-linearity to be of lower order.
Similarly, we estimate

191(,0) = @10, 0 )50 S 11+ 0] @702 4 0 [B=D2) o — o[ s

@)
S o =0 ga-sia + (110 P72 4 o1 B 7D2) o — ]| o

1
2
1
q

by the Sobolev embedding with —% >1—-0-— %, and ¢ > ié ensures that

n > 1. Thus, by the embedding H?%27%9 < H'=%4 with 8, > 1, and Holder’s
inequality,

[@1(-;0) = @1, 0) [ 1.0
S v =l g2ea-s0 + (Ilv]

(@)

S v = vl g2s-sa

(h=1)/2

h—1)/2
D |

n(h+1)/2

— ’L}I||Ln(h,+1)/2

h—1)/2 h—1)/2
+ (o) a2 4 1012 v — || 26520

HZBQ—J,q
~ (Lol + V15, Dilv = o'llx,,
by the Sobolev embedding with — (}%d 5 < 282 . In (i) we use the Sobolev
embedding with —% —0—= and we consider two cases to choose the value

for n. If6+% >2we1et77:1 and1f(5—|—q <2wesetnv1a—5—1 0— q In
(ii) we use the Sobolev embedding with —ﬁ <20y —3d— %, and we consider
three cases:
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oIf5+%<23ndq<%weset62:hil <5+ )(h+1) and the

assumption g € (ﬁ, %) ensures that 5o € (57 1),
° Ifé—i—% < 2andq> % we set Bo = g, which ensures that 35 € (%, 1),

. If5+1 > 2 we set o = max{zq h+1,0}+ The condition 1 577 <2-0
estabhshed before implies [ < 2q — h~1H + g < Ql—q — ﬁ + 5 < 1, so
62 € [5)1)'

Since fs € [%, 1) in all; the non-linearity is of lower order. Combining the two
estimates above now gives the result for ®. As in the proof of Lemma 6.5 the
same estimates apply to I'. Taken together these results establish Lemma 6.5
for the case d =1 with p1 = h —1, p =

1 1 1 §
61_2max{q—h,0}+2,

%-1-1""%(5"—%)(%)’ if 6+ 1 ; <2andq<; (5 1),
By=13, if 04§ < 2and ¢ > 557,

max{zlq %H,O}—i—%, 1f(5—|—5>2.

Existence of a unique (p, &, 9, ¢)-solution (u, o) to (6.1) is established as in the
proof of Theorem 6.4. The version of Lemma 6.5 for the case d = 1 shows that
the Assumptions (HF) and (HG) of [AV23b, Section 4.1] hold for (F, G) = (®,T")
and the trace space X ", is sub-critical if for j = 1,2

I+x _pj+1 1
— < - -(1-55). 6.34
oSt -0 (6.34)

The latter sub-criticality condition together with our choice of p1, p2, 81, B2 leads
to the requirement

h . 5 5 1 1 h+1 J i 1
Lt+r _ Jr-1min 1—571—§—Tq+ﬁa1—T(1—5)}a ifo+5 <2,
P | ymin{1-41- 5L+ 4 ifo+1>2

The existence proof is completed by applying [AV23b, Theorem 4.8] as before.
The regularisation results (6.32) - (6.33) follow by repeating the arguments in
the proof of Theorem 6.4. O

Also the blow-up criteria Theorem 6.8 remain valid for d = 1.

Theorem 6.10 (Blow-Up Criteria). Let the assumptions of Proposition 6.9 be
satisfied with parameters (p,q, h,d, k) and let (u, o) be the (p, k, 9, q)-solution to
(6.1) with % < %f %. Suppose further that Assumption 6.1(po, qo, ho, 00) holds
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with hg > h and that (po, qo, ho, do, ko) are such that qo € [q, 1/(% —dp)) and
either Proposition 6.9 (1) or (2) holds. Let
1+ Ko 20 1

Bo=2—260—2 ;o Y=2-0——, bg=5—757"
Po Do qfo'i‘a_ﬁ

Then for all0 < s <T < o0

P( sup [lu(®)|lgeo  + [[ullLro(s,o;m70090) < 00,8 <o <T) =0, (6.35)
t€ls,o] 90-P0
and, if additionally 1 < #etg,
P( sup ”“(t)”Bff{) < 00,8 <0 <T)=0 for all ¢1 € (qo,by). (6.36)
t€ls,o] 0

Proof. The proof proceeds by the same arguments as the proof of Theorem
6.8. O

6.3 Local well-posedness in the case p = 2

The results for the LP(L?)-setting discussed so far only consider p > 2. On the
other hand, the variational setting considered in Section 3 corresponds to the
case p = 2. We already obtained global well-posedness results for (3.1) in the
variational setting. Therefore, it is desirable to also generalise the regularity
results obtained for p > 2 to the boundary case p = 2.

We first note that the variational setting of Section 4 corresponds to the
parameters p = ¢ = 2, § = 1, and k = 0 in the LP-setting. In the case
of the weak setting it is immediately clear that the (global) solution provided
by Theorem 4.2 also satisfies Definition 6.3 of a (local) (p,q, h,d)-solution if
we allow p = 2 in Assumption 6.1. In the case of the strong setting, by the
embeddings H?? « H'2 <+ L2 the solution provided by Theorem 4.4 also
satisfies Definition 6.3 of a (local) (p, g, h,d)-solution. Theorems 4.2 and 4.4
already show that the existence part of Theorem 6.4 holds. Hence, it remains
to establish the regularity results (6.13) and (6.14).

Proposition 6.11 (Regularity for p = 2; Proposition 7.2 in [AV23b]). Assume
that p =q =2,
(L4,  fd=1
hel,3, ifd=2 (6.37)
(1, %54, ifd=>3,

and Assumption 6.1(p,q,h,0) holds for some 6 € (1,2). Ifd = 1, let ug €
L2f0(95 L?) and let Assumption 4.1 be satisfied, if d € {2,3,4} let ug € L-QFO (Q; HY)
and let Assumption 4.3 be satisfied, and let (u, o) be the (p, k,d,q) = (2,0,1,2)-
solution to (6.1) provided by Theorem 4.2 or Theorem 4.4. Then it holds a.s.
that

we L2,.([0,0); H) N C([0,0); I2).
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Moreover, the following analogue of the instantaneous reqularisation results
(6.13) - (6.14) holds:

we HY" (0,03 Hl_%’q) a.s. for all 0 €10,1/2),r € (2, 00),

loc

and, if d =1, additionally

1
u e 002 ((0,0) X Rd;RZ) a.s. for all 01 €10,1/2),05 € (O, 2) )

loc

Note that Theorems 4.2 and 4.4 show that o = co.

Proof. The first assertion of the Proposition is a direct consequence of Theorem
4.2 or Theorem 4.4. The regularisation result is proved in the same way as in
[AV23Db]. Therefore, we only sketch the proof here.

We first consider the case d > 3. We will apply [AV22b, Theorem 6.8] to show
that the (p,k,d,q) = (2,0,1,2)-solution (u, o) coincides with the (p,k,d,q) =
(r, @, 6g, 2)-solution where the parameters (r,«,dp,2) are such that the condi-
tions of Theorem 6.4 are satisfied. To this end, we choose € € (0,1/2) such that
0o =14+ ¢€ < d and we let

YZ_ — H2i_1_6’2, )(2 _ 1'_1'21'—1,27 p= 2.

We choose r such that % = maxjc(1,2} 5 — %, where §; are as given in Lemma
6.5, and note that this implies r € (2, 00). Moreover, we set

1_1—|—a €

2 r 2’

and note that o € (0, 5—1) since € € (0, %) Now letting (p, q, &, 0) = (r,2, r, 0g),
our assumption that h € (1, %d) implies that either condition (6.9) or condition
(6.10) of Theorem 6.4 is satisfied. Repeating the arguments in the existence part
of the proof of Theorem 6.4 shows that the conditions of [AV22b, Theorem 6.8]
are satisfied, and we conclude from the latter result that (u, o) coincides with
the unique (r, a, dg, 2)-solution to (6.1). The regularisation results of Proposition
6.11 now follow by applying Theorem 6.4 to the (r, a, dg, 2)-solution to (6.1).

Next, we consider the case d = 2. If h € (1, 2], we require dp € (1, min {,3/2})
for the condition (6.9) of Theorem 6.4 to be satisfied. Hence, we choose € €
(0,1/2) such that §o =1 + € < min {4, 3/2} and repeat the arguments from the
case d > 3 above. If h € (2,3), we need to modify the choice of 5 in Lemma 6.5
to be able to apply the existence part of the proof of Theorem 6.4. Therefore,
we choose € € (0,1/2) such that 6o =1+ € <min{4,5/3,h —1,2/(h — 1)}, and
set f1 = %0 + % — % In in the Sobolev embeddings used in the proof of Lemma
6.5 we use £ = 1. With our choice of §y the condition (6.10) of Theorem 6.4 is
satisfied and we can repeat the arguments from the case d > 3 above, using our
modified choice of 81 in the existence part of the proof of Theorem 6.4.

If h = 3, we repeat the argument for the case d > 3 with a slightly different
choice of the spaces X; and Y;. The existence part of the proof for d = 2 was
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given for the strong setting with Xo = L? and X; = H?. Hence, in order to
repeat the arguments for the case d > 3, we require analogues of Lemma 6.5
and Theorem 6.4 for the setting Xo = H¢, X; = H?"¢ with e € [0,1/2), h =3
and ¢ = 2. We let ® and I' as in Lemma 6.5. If € > 0 we estimate for &
@0 (-, v) = @o (-, ") - S (L4 0"+ [0" ) o = 0[] 11
S o =0 gzen—e + [ (0] + "o = o' e

by the embedding H~¢ « H?%1=¢ if 3; > 0 and the Sobolev embedding with
—e—1< f%. By Hoélder’s inequality,

@0 (-, v) = o (-, 0) [

Sllv =Vl gasi—c + (lollza + [Vl 7)o — o'l pen

Sl =0 llgzo—c + (lolli, - + 10 55 -l = vl gz

by the Sobolev embeddlng with — S 231 — € — 1. Thus, it suffices to choose
E=2and B = 2 + 5 since h = 3. If e = 0 we do not require the first Sobolev
embedding since H? = L2, the remaining steps remain unchanged with & = 2.
For ®; we estimate
[®1(,v) = @1( V) [ - = [|divE(,v) = divE(, v')] -
SIFC, ) - F(' )HHl—‘
o (G e | P I
~llv = v'llm- + [l + [0 = V[l 1
Sllo = o'l + (lollzsce + 10 aqwe)lo = o'l ss-es e
+ ([l r-cagge) + 1| mr-cae)) [l — [ Lare)
since h = 3. Now using [Tay00, Chapter 2, Proposition 1.1] with p = 2,¢; =
=g =r2=4,
1®1(,v) = @15 0") -
Sllo = vllm- + (Ivllzagey + 110l e llo = ' r-ca(me)
+ (vl r-cae) + [Vl m-ca@e)) [0 — 0|l 2are)
<o 01—+ + (ol sasa—esgy + 10 gzsa ez gy o — 'l asa—ees
by the Sobolev embeddings H?%2~¢2 < L* with —% < 2By—e—1and H?2~62 —

H'7¢2 with —e < 285 — e — 1. Thus, it suffices to choose By = %. For I" we use
that

IT1(0) = Ta () ez 2) =g ) = g(~ ’)Ilwz-Hl—e)

<A+ 1ol *T 4 7)o = e

99



from which we obtain an estimate in the same way as for ®; with 8, = %. Note
that the condition

for Assumptions (HF) and (HG) of [AV23b Section 4.1] to hold for (F,G) =
(®,T) then becomes lif" < min{3,2(1 —¢€)}. The proof of Theorem 6.4 for
the setting Xo = H~¢, X; = H?>™¢, h = 3 and ¢ = 2 now follows the same steps
as before.

We are now ready to repeat the reasoning for the case d > 3. We first choose

€ € (0,1/2), then set § = mane{l,z}ﬁj—%:i and choose a € (0,1) = (0,1 — %)
such that

I 14«

2 r 2

If we let (p,q,k,0) = (r,2,a,€), we can repeat the arguments of the existence
part of the proof of Theorem 6.4 with spaces Xo = H~¢ and X; = H?> € to
show that the conditions of [AV22b, Theorem 6.8] are satisfied. We conclude
from the latter result that (u, o) coincides with the unique (r, «, €, 2)-solution
o (6.1). The regularisation results of Proposition 6.11 now follow by applying
Theorem 6.4 to the (r, a, €, 2)-solution to (6.1).

Finally, we consider the case d = 1. We use the proof of Proposition 6.9 with
suitable parameters to establish the regularity results. To this end, we choose
€ € (0,1/2) such that

2h 3 11 2
dbp=1 ingd, —— — =, 14+—, =+ — 5.
0 +€<mm{’h—1 2 +h’2+h}
The latter guarantees that
1 b s s _ 1
5<ﬁmm{lfé,lfif?quQh,l——((er )}

Letting £, and B2 as in the proof of Proposition 6.9, we can choose r > 2, such
that % = MaX;e{1,2} B; — % Moreover, we set

1 1+a ¢
2” o Ty
where a € (0,5 — 1). Thus, the case do —&—% < 2 and HT”“ < %min{l — %’,
—% 14 L1 2l(5y+ 1)} of Proposition 6.9 is satisfied with parameters
(p,q,k,0) = (r,2,a,dp). We can now repeat the arguments from the case d > 3
above. O

7 FitzHugh-Nagumo Equations in the L?(L?(R%))-
Setting

With the results on local and global well-posedness of reaction-diffusion equa-
tions on R? in hand, we now return to the problem of well-posedness of the
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FitzHugh-Nagumo equations on the unbounded domain R? with d > 1. We
begin by establishing analogues of the existence and regularisation results The-
orem 5.4, Corollary 5.6, and the blow-up criteria 5.7.

7.1 Local Well-Posedness and Blow-Up Criteria

We again consider the FitzHugh-Nagumo equations (4.1). As in Section 5, since
the second component of the equation does not involve a Laplace operator,
the uniform ellipticity condition of Assumption 7.1(4) only holds for the first
component of the system (4.1). Therefore, we need to make some adjustments
to the theory developed for reaction-diffusion equations in Section 6. We let
0 €[1,2),n€ (0,2 —0], g > 2 and we consider the spaces

Xo=H %(RY @ H*79(RY) = X} @ X2,

X, = H>7%(RY) @ H?> 0~ 19(RY) = X1 ¢ X2, (7.1)

X5 = (X0, Xl = HP (R @ B2 19(RY),
where 3 € (0,1). We will again use the shorthand notation H~%9, H?>~%4 etc.
instead of H~=%(R%), H?~%4(R%) when no confusion can arise, and we will write
Xé = [X{}, X{]5. On these spaces we consider the operators Ag, Apert, f, Bo, G,

which we define as in (5.2). We again let Ay = Ay + Apert; A = Ag — F and
B = By + G. Moreover, we make the following assumptions

Assumption 7.1. Let p € (2,00), ¢ € [2,00), 0 € [1,2) and for i = 1,2 the
following hold:

1. For each j,€ {1,...,d}, b == (b])p>1 : Rso x @ x RY — (2 is P @ B(RY)-
measurable,

2. If 6 = 1, there exists N > 0 such that a.s. for allt >0 and j € {1,...,d}
167 | oo (2) < N, (7.2)

If 6 > 1 there additionally exist T > §—1, € € (0,7 + 1 —0) such that a.s.
forallt >0 and j € {1,...,d},

”ijCT(Rd;Z?) <N, (7.3)

3. For every s € [0,T) there exist b7 : [s,T] x Q — % such that for all
jed{l,...,d} o
lim esssup sup ||/ — ;2 =0, (7.4)
|z|=00  wen te[s,T)

4. There exists a vy € (0,v) such that, a.s. for allt >0, z,& € R?

J

d
1 .
Vi1 = 5 Y ULt (t) | &6 = wlél, (7.5)
Ji=1

k>1
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5. The map f : R — R is B(R)-measurable and the maps g; = (gri)k>1 :
R>o x Q x R — £2 are P ® B(RY) @ B(R)-measurable. Moreover,

f(vo) = Oa
ppr = sup f'(u) < oo,
u€eR

|f(w) = f(v)] < Cr(1+ "™ + [o]* ) |u — o],
9:(-,0) € Ny>2.6¢(0,1) L7 (Rxo x Qi HI(RY; (%)),
g1 (t, u)—g1 (¢, v)||e
< Ci(|ur — v1| + |uz — val)
llg2(t, w)=ga(t,v)llez < C1(lur — v1] + [uz — val)
lg2(t, u)—g2(t, )| x2(e2)
< Cr(flur —villx20e2y + [luz — vl x2(e2))

Our definition of a solution is analogous to Definition 5.2 in Section 5 for
the domain T¢.

Assumption 7.2 (Assumption 2.4 in [AV23b]). Letd > 2. Assumption 7.2(p,q,h,d)
holds if p € (2,00), q € [2,00), h > 1 and ¢ € [1, %) satisfy

11/, d h d d(h—1)
S5 ) < . :
p+2<+q>—h—1’ d—s 1 hTismoy) (7.6)

Theorem 7.3 (Local Existence, Uniqueness, and Regularity). Suppose that
Assumption 5.1(p, q, h,d) holds, ¢ > max {di—(sv #&21)} and that k € [0, 5 —
1) satisfies either

dh—1) 14wk 1 d h
- )< )
q< 5 and ) +2<5+q>_h—1 (7.7
or
dh—1)  14+x _ h 5
< Z
0z = and — _hl(l 2> (7.8)
Then for any n € (0,2 — 6] and
2- 521K o s
up € Ly, | %4 Byp P @H?OTMY (7.9)

there exists a unique (p, Kk, d,n,q)-solution (u,o) to (4.1) such that a.s. ¢ >0
and

loc

26 2-6— 2-5-21EE g
ue L ([ng)vwk;H 1o H ”’q)ﬂC [0,0);Bq’p P o H n4q |

(7.10)
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Moreover, u regularises instantaneously in time and, in addition, u; reqularises
instantaneously in space,

u € Hloo’; (0,05 H' 7200 @ F2=0- 1) a.s. for all 0 € 10,1/2),r € (2,00),
(7.11)

and, if ¢ > d, additionally

uy € Cleolc’e2 ((0,0) x R4 R) a.s. for all 01 € [0,1/2),0, € (O,l - d) .
q
(7.12)

The proof of Theorem 5.4 largely carries over to the proof of Theorem 7.3.
Therefore, we only point out which adjustments are required to accommodate
the unbounded domain R?. As stated for our proof of Theorem 6.4, the embed-
dings H?'~0¢teo <y g2i-0.C [2A=0.C y =04 and H?~%¢ — H?A %4 for some
A € (0,1) used in our proof of the regularisation results in Theorem 5.4 do not
hold on the unbounded domain R?. In addition, the computations (5.24) used
in Step 3 of our proof of Theorem 5.4 to establish [AV22b, Hypothesis (HG)] in
the (Yo, Y1, r, a)-setting and the (Yy, Y1, #, &)-setting relied on the fact that T¢
is a bounded domain. Therefore, we cannot bootstrap integrability in space via
[AV22b, Theorem 6.3].

Proof. Ezistence and uniqueness. We apply [AV22a, Theorem 4.8]. To this
end, we verify that [AV22a, Hypothesis (H) ] is satisfied and that (Ag, By) €
SMR; (T) for all T € (0, 00).

By Assumption 7.1(5), the first component of f satisfies the conditions of
Lemma 6.5 with ® = &; = f, I' = 0, and ; as given in the lemma. Since
the second component is 0, it follows that [AV22a, hypothesis (HF) | holds.
For G the computations in (5.16) - (5.17) and subsequent comments carry over
verbatim, and thus [AV22a, hypothesis (H) ] holds. To verify that (Ao, By) €
SMR; . we again note that (Ag, By) € SMR; .(T); for Ay this follows from
[AV21, Theorem 5.2 and Remark 5.6], and for By this follows from Assumption
7.1(3) together with [AV21, Theorem 5.2 and Remark 5.7]. The computations in
(5.18) carry over verbatim to the unbounded domain R, and [AV21, Theorem
3.2] yields (Ag, By) € SMR; .. [AV22a, Assumption 3.2] is verified as in the
proof of Theorem 5.4, and existence and uniqueness of the local solution (u, o)
follows from [AV22a, Theorem 4.8]. The regularity properties (7.10) follow by
weighted Sobolev embedding [AV22a, Proposition 2.7].

Instantaneous reqularisation. Steps 1 - 2 of the proof of Theorem 5.4 carry
over verbatim since none of the embedding results used there make use of the
fact that T is a bounded domain. The regularity result (7.12) is obtained in
the same way as in Step 3 of the proof of Theorem 6.4. O

Corollary 7.4 (Local Well-Posedness in Critical Spaces; Theorem 2.7 in [AV23b]).
Suppose that Assumptions 7.1(p,q,h,d) and 7.2(p,q,h,d) hold, and set k =:
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ﬁC:p(%—%(é—i—%))—l. Then for any n € (0,2 — §] and

d__2
ug € L° (Q; BL, " la H25’q> (7.13)

there exists a unique (p, k., 6,1, q)-solution (u,o) such that a.s. o >0 and

d 2

we C(0,0); BL, "1 @ H20-m9) g.s. (7.14)
uwe H?P ([0,0),w,; H* 07204 g H2_5_’7’q) a.s. for all 0 € [0,1/2). (7.15)

loc
Moreover, u regularises instantaneously in time and, in addition, u; reqularises
istantaneously in space,

u € Hfo’cr (0, oy H'720C o H2_5_"’q) a.s. for all 0 € [0,1/2),r € (2, 0(07),16)

and, if ¢ > d, additionally

loc

up € Cpo% ((0,0) x T9)  a.s. for all 6; € [0,1/2),65 € <0, 1— d> . (7.17)
q

Proof. Corollary 7.4 is immediate from Theorem 7.3. O

Our proof of Theorem 6.8 in Section 6 showed that the lack of spatial integ-
rability for solutions to reaction-diffusion equations (6.1) imposes considerable
limitations on the parameters (qo,q1) for which blow-up criteria can be ob-
tained. As we have seen in the proof of Theorem 5.7 in Section 5, the lack
of regularisation for the second component of the FitzHugh-Nagumo equations
(4.1) further limits us to applying the blow-up criteria [AV22b, Theorem 4.10(3)]
in the abstract setting. Therefore, we only state the equivalent of Theorem 5.7.

Theorem 7.5 (Blow-Up Criteria). Let the assumptions of Corollary 7.4 be
satisfied and let (u,c) be the (p, ke, 0, q)-solution to (4.1). Suppose further that
po € (2,00), hg > h, 6 € [1,2) are such that Assumptions 7.1(pg, q, ho, do) and
7.2(po, q, ho, do) hold. If no € (0,2 — do] is such that 6 +n = o + 1o, then for
all0 <s<T < o0

P( sup [[u(®)]lzs ~s0-m0.
tels.o] Bapg®H 20700 (7.18)
+ ||'LL||LpO(S7U;H70,q@H2—6O—n0,q) <oo,s< o< T) =0.

Proof. The proof of Theorem 5.7 carries over verbatim with ( = ¢ in (5.33)
since none of the embedding results used there make use of the fact that T¢ is
a bounded domain. 0
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7.2 Global Well-Posedness

In this section we prove global well-posedness of the FitzHugh-Nagumo Equa-
tions (4.1) on R%. As in Section 5, we will assume that d > 2; the case d = 1
can be accommodated by considering (4.1) on R x T and adding a dummy vari-
able. Due to the limited spatial integrability of the solution to (4.1) provided
by Corollary 7.4, we will formulate all assumptions and proofs with { = q.

Assumption 7.6 (L?-Coercivity; Version of Assumption 4.1 in [AV23a]). Sup-
pose d > 2, Assumption 7.1(p,q, h,d) holds with h = 3. We say that Assumption
7.6 holds if there exist constants 0, M,C,> 0 such that a.e. on R>q x Q and for
all (uy,uz2) € S(RY) & S(RY)

f o2 P - I - 2 S0 Oy v e

> 0/ lur |72 (|Vus |2 — Mup|?) — Mlug|? dx — C.
R4

Remark 9. As pointed out in [AV23a], if Assumption 5.8 holds for (u1,ug) €
S(R?) @ S(RY), it can be shown to extend to (ui,us) € HY @ L9 via an
approximation argument.

Lemma 7.7 (L?-Coercivity for FitzHugh-Nagumo). Suppose the assumptions
of Corollary 5.6 with h = 3 are satisfied. Then Assumption 5.8 holds.

Proof. The proof of Lemma 5.9 carries over verbatim if we replace the assump-
tion (u1,us) € CH(TY) @ C(T?) with (uy,uz) € S(RY) @ S(R?). O

Theorem 7.8 (Global Existence; Theorem 4.3 in [AV23a]). Suppose the as-
sumptions of Corollary 7.4 are satisfied with ¢ > d, h=3, 6 +n =2 and

d
=—1
ug € L° (Q;B;{p @Lq> :

Let (u,0) be the (p, ke, 6, q)-solution to (4.1). Then (u,c) is a global solution,
that is, 0 = o0 a.s. In particular, the reqularity results (7.14) - (7.17) hold with
o = 0o. Moreover, there exists a constant Ny > 0 such that for all0 < s <T <
oo the following a priori bound holds:

T
B sup Lr(lus(0]%, a2 +E [ [ elaal? 2V P doar
s R4

tels, T (7.19)

< No (1 +Elp(|lur(s)|%q + luz(®)]194)),

where I' = {o > s} N {||u1(s)||za + |lu2(s)|lLe < L}, for some L > 1. Moreover,
the regqularity results (7.14)-(7.17) hold with 0 = oo a.s.

The proof of Theorem 7.8 relies on the following lemma.
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Lemma 7.9 (Energy bounds; Version of Lemma 3.8 in [AV23a]). Suppose the
assumptions of Corollary 5.6 are satisfied with h = 3 and q > d, and let (u,0)
be the local (p, ke, 9, q)-solution to (4.1). Then for every 0 < s < T < oo we
have

sup  Jur(t) |3 + lu2 ()9, < o0 a.s. on {c > s}, (7.20)
tels,oAT)

oNT
/ / lup |7 2| Vuy > < 00 a.s. on {o > s}. (7.21)
s R4

Moreover, there exists a constant Ny > 0 such that for all 0 < s <T < oo and
kE>1

sup B [ o) () Lr([Jur (D)0 + [[uz(t)[|7.)]
te(s,cAT)

oAT
+IE/ / Lrfur |92 Vs |? dedr (7.22)
s R4

< No (14 Edp(fur ()% + lua(s)l1%0))

E sup  Ap(fur()l|7e + [lua ()70
te[s,oAT)

oAT
—I—E/ / L |72V |2 dvdr (7.23)
s R4

< No (1 +Elp(flur(s) % + lua(s)l174))
where T' = {|lu1(8)||za + [Ju2(8)||re < L} N{o > s} and L > 1.

Proof of Lemma 7.9. By our assumption that ¢ > d, the regularity result (7.17)
applies for some 6, > 0. Therefore, we can define the stopping times 7; as in
the proof of Lemma 5.11, and (7.16) and (7.17) give that lim; , 7, = 0. By
(7.16) and the embedding H>79~"9 < L4, Vu; and uy have Li-integrability,
which enables us to apply the generalised It6 formula A.1. The remainder of
the proof of Lemma 5.11 carries over verbatim. O

Proof of Theorem 7.8. The proof of Theorem 5.10 carries over verbatim. O

8 Discussion

In the present work we developed (global) well-posedness results for the stochastic
FitzHugh—Nagumo equations. Applying well-posedness results for stochastic
evolution equations in the critical variational setting allowed us to prove the
existence of a global solution as well as regularisation properties for the case
d = 1 in the weak variational setting. Moving to the strong variational setting
further allowed us to prove existence and regularity results for d < 4, but re-
quired us to impose restrictive assumptions on the noise terms. In particular,
we had to assume that the semi-linear noise terms of the two component equa-
tions only depend on the corresponding component of the solution process. By
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considering the FitzHugh-Nagumo equations in the LP(L%)-setting, first for the
bounded domain T¢ and subsequently for the unbounded domain R?, we were
able to prove (global) existence of a solution under linear growth assumptions
on the semi-linear noise terms. Moreover, we were able to prove instantaneous
regularisation of the solution in the first component, and to obtain a priori
estimates for the solution on arbitrary intervals [s, 7] with 0 < s < T < o0.
One limitation of our results is that our proofs of global well-posedness re-
quire us to assume high spatial integrability of the initial data that grows with
the dimension of the domain. The latter is due to two facts. Firstly, as our in-
vestigation of local well-posedness of reaction-diffusion equations on R? showed,
existing methods for bootstrapping spatial integrability fail on unbounded do-
mains. Secondly, the absence of spatial regularisation in the second component
of the FitzHugh—Nagumo equations limits the spatial regularisation that can be
obtained for the first component, and thus for the entire solution to the system.
While the former problem might be addressed by weakening the assumptions
of the well-posedness results in the abstract setting (i.e., [AV22b, Theorem 6.3,
Corollary 6.5 and Proposition 6.8]) on which our proofs rely, the latter problem
is inherent in the FitzHugh-Nagumo equations and can likely not be resolved.
An open problem that we were not able to address here is the question
whether and under which conditions the a priori bounds obtained in Theor-
ems 5.10 and 7.8 hold with s = 0. [AV23a] in their Lemma 3.8 show that for
reaction-diffusion equations, for sufficiently regular initial data one can indeed
take s = 0. Another open problem that we could not address here is establishing
compatibility of the solution obtained in the LP(L%(R%))-setting with the solu-
tion obtained in the variational setting. [AV23b] present such a compatibility
result (for the bounded domain T¢) in their Proposition 3.5; they show that if
a solution to a given reaction-diffusion equation exists under two sets of para-
meters (p1,q1, k1,01, h1) and (p2, g2, K2, d2, ha), then the two solutions coincide
(i.e., 01 = 03 and w3 = uz a.e. on [0,071) X ). Our results Theorems 6.9 and
6.11 show that existence of local solutions in the boundary cases d = 1 and
p = q = 2 can also be obtained in the LP(L9(R%))-setting. However, since the
proof of [AV23b, Proposition 3.5 relies on the instantaneous regularisation of
solutions to reaction-diffusion equations, we were not able to prove an analogue
of their result for the FitzHugh-Nagumo equations, neither on T nor on R?.
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A Appendix

A.1 Generalised It6 formula

Theorem A.1 (Generalised It6 formula; Extension of Proposition A.1 in [DHV16]).
Let D € {T4, R4}, ¢ > 2. Suppose that the assumptions of either Corollary 5.6

or Corollary 7.4 hold and that v = (v1,v3) is a local (p, K, d,n,q)-solution to
(4.1) such that

v e O([0,T); L(D)) N L*(0,T; HY(D)) @ C([0, T]; L (D))

Moreover, let
flvr) — w9 vV b - Vv + g1 (-, 0)
= (b = = R
¢ <€(U1 — Yv2) 0 Vi 92,1 (-, v)
so that v;, 1 € {1,2}, satisfies a.s.

dv; = (1) dt + div(@i(8) dt + Y k() AWit) on [0,T] x 2, v3(0) = v,
k>1

in H=Y$(D). Then a.s. and for all t € [0, T

/D\vi(t)|< dx_/D|Uo’i|cdx+/ot_/pc|vi(s)|c2Ui(8)¢¢(s)dxd3
- [ [ e ) deas

‘ (A1)
V; (S 4721)14 $); 1(s) dx (s
+kz>1/0 /D<| ()1 20u(s)es i (s) d VWi ()
1 t _ vil(s ¢—21,),. s 2 +ds
+2I;/0 [ 66 = Dl i (s) deds,

Proof. Assume first that D = T¢ or supp v; is bounded. Let (6,,)m>1 C C°(D)
be a Dirac sequence and let v, = v; * 0y, and similarly for vg ; m, @i,m, Pim
and v;  m. Then a.s. for all t € [0,T],2 € D

t t t
vi’m(t,x)—voyi,m:/o ¢z‘,m(3)d3+/0 div(<I>Z-,m(s))ds—l—z:/0 Vi kem(s) dW;(s).

k>1

We now let £ € CZ(R) be such that £(z) = |z|¢ for |#] < N for some constant
N. We apply the 1-dimensional It6 formula to £(z) (using the boundedness of
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v;.m) and integrate over x to obtain

t
/D s (8)[¢ dr = /D (03 (0)[€ dz + /O /D ot (8)|S 200 ()i () da s

- /t/ C(¢ = Dlwim ()| 72 Vin(s) - @im(s) dzds
3 [ ) )65 e W05

k>1

33 [ 66 Dl ) s

k>1

(A.2)

As in the proof given in [DHV16], using the fact that £ has bounded derivatives
up to second order, the embedding LP — L4 for ¢ < p on finite measure spaces,
and the assumptions on v, it follows that the deterministic terms converge

|Vi,m ¢ = [03]¢

Vi.m |2 0s,mBim — |vi] ¢ 20

\vi7m|<*2Vvi7m . (I)i,m — |vi|<*2Vv,» . (I)i

|Vi,m |2 Z Wikm|” = Jvil 72 Z |hi k]

E>1 E>1

in L1(Q x [0,T] x D) as m — oo, and that the integrand of the stochastic term
converges

Vi | 208 m Wi o — Vi 20tk

in L2(2x[0,T]xD) as m — oo, from which convergence of the stochastic integral
follows by the Burkholder-Davis-Gundy inequality. Thus, up to extracting a
subsequence, each term in (A.2) converges a.e. in £ x [0, T to the corresponding
term in (A.1).

If D = R? and supp v; is unbounded, we let xx € C.(R?%) be a smooth cutoff
function with xx = 1 on B(0,K) and xx = 0 on R\ B(O K + 1). Denote

(K)

by v; .. = Xkvim and similarly for o) ) <I>(K) and ¢ Hence, mul-

0,2,m’ Yi,m>? 'Lk:m

tiplying by X%(» applying the 1-dimensional It6 formula to £(z) with a suitable
constant N and integrating over x gives

B) ()¢ d = i (0)F)[C )20 (K)
[ 0F a = [ @+ [ [ 6 6066 dras

*/ [ CC =D (9 2<><Kw,m<s>>.<1>§f2<s>dxds
+ o (8)1 2000 ()8 () d Wi s)
=/ k
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1 t
2330 [ = DI, o) deas.

k>1

Repeating the arguments above, we obtain that a.s. in (w,t) € Q x [0,T]

t
0w ar= [ w0 ans [ quOmr e s anas
t
- / C(¢ =D ()2 (xx Vui(s) - 0 (5) dar s
0 Rd
t
+30 [] @ s)ul ¢) drawi (s

k>1

t
+ % Z/O e Dol ()20 5 ()% da ds,

k>1

and letting K — oo gives the result. O
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