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Abstract

The stochastic FitzHugh–Nagumo equations are a system of stochastic partial
differential equations that describes the propagation of action potentials along
nerve axons. In the present work we obtain well-posedness and regularisation
results for the FitzHugh–Nagumo equations with domain Rd. We begin by
considering the weak critical variational setting, where we prove global well-
posedness for the case d = 1. We subsequently consider the strong variational
setting, which allows us to extend our well-posedness results to d ≤ 4. To prove
well-posedness and regularisation for arbitrary d, we consider the FitzHugh–
Nagumo equations in the Lp(Lq)-setting. Building on earlier results for reaction-
diffusion equations, we first prove well-posedness on the d-dimensional flat torus
and use bootstrapping techniques to prove instantaneous regularisation of the
solution. We subsequently extend the theory for reaction-diffusion equations to
the unbounded domain Rd to finally prove well-posedness and regularisation for
the FitzHugh–Nagumo equations on Rd.
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1 Introduction

The FitzHugh–Nagumo equations are among the fundamental models in the-
oretical neuroscience. Their origins date back to a series of experiments con-
ducted by Hodgkin and Huxley in the 1950s [HH52b]-[HH52c] in which they
investigated the propagation of action potentials along the squid giant nerve
fibre. Based on their experimental results, [HH52a] developed a mathematical
model that describes the total membrane current density as a system of four
ordinary differential equations. The first of these equations describes the total
membrane current density I as the sum of the capacity current density CM

dVM

dt
and the sum of ionic sodium, potassium, and leakage currents Ii = gi(V − VK),
i ∈ {Na,K, l},

I =CM
dVM
dt

+ ḡKn
4(VM − VK) + ḡNam

3h(VM − VNa) + ḡl(VM − Vl),

where ḡi, i ∈ {Na,K, l}, are constants. The remaining equations relate the ionic
conductances to the potassium and sodium activations n,m, and the sodium
inactivation h

dn

dt
=αn(VM )(1− n)− βn(VM )n,

dm

dt
=αm(VM )(1−m)− βm(VM )m,

dh

dt
=αh(VM )(1− h)− βh(VM )h.

FitzHugh [Fit61] suggested a simplification of the Hodgkin–Huxley model where
the fast variables (V,m) and the slow variables (n, h) are each combined in
a single variable u1 and u2, respectively. Nagumo, Arimoto and Yoshizawa
[NAY62] further introduced a dependence on the space variable x that represents
the distance along the nerve axon. Later elaborations introduced a stochastic
input current that is typically modelled as white noise, resulting in the stochastic
FitzHugh–Nagumo equations

du1(t, x) = (ν∆u1(t, x) + f(u1(t, x))− u2(t, x)) dt
+
∑

k≥1 g1,k(t, x)dW1(t)

du2(t, x) = ϵ(u1(t, x)− γu2(t, x)) dt,
(1.1)

where ν, ϵ, γ are positive constants, f is a third-degree polynomial with positive
leading coefficient, and W1 is a U -cylindrical Brownian motion.

The FitzHugh–Nagumo equations were originally developed as a model for
the propagation of action potentials along a long nerve axon, which can be ap-
proximately described as a long cable. However, in recent years there has been
increasing interest in applying the FitzHugh–Nagumo model to other electro-
physiological problems such as modelling the cardiac electric field (see [FS15]
and [BCP09]), which require higher-dimensional models. Existing work on well-
posedness of (1.1) has focussed on the variational setting (e.g., [BCP09]) and
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often only considers a single space dimension (e.g., [EGK21], and [HH20]). In
the present work we will obtain global well-posedness and regularisation results
for (1.1) for sufficiently smooth initial data. Specifically, under conditions on
the parameters (p, q) that will be detailed in later sections, η > 0 small, and

initial data u0 = (u1,0, u2,0) ∈ Bd/q−1
q,p ⊕H1−η,q a.s., Equation (1.1) has a global

solution u = (u1, u2) such that

u ∈ Lp
loc([0,∞);H1,q ⊕H1−η,q) ∩ C

(
[0,∞);Bd/q−1

q,p ⊕H1−η,q
)
,

and u regularises instantaneously in time and, in addition, u1 regularises in-
stantaneously in space,

u ∈ Hθ,r
loc

(
0,∞;H1−2θ,q ⊕H2−δ−η,q

)
a.s. for all θ ∈ [0, 1/2), r ∈ (2,∞).

Moreover, we obtain a priori estimates for u on any interval [s, T ], s > 0, that
is, we show that there exists a constant N0 > 0 such that

E sup
t∈[s,T ]

1Γ(∥u1(t)∥qLq(Rd)
+∥u2(t)∥qLq(Rd)

) + E
∫ T

s

∫
Rd

1Γ|u1|q−2|∇u1|2 dxdr

≤ N0

(
1 + E1Γ(∥u1(s)∥qLq(Rd)

+ ∥u2(t)∥qLq(Rd)
)
)
,

where the restriction to Γ is a technical condition required to bound the Lq-norm
of u at time s.

Our approach to proving (global) well-posedness of the FitzHugh–Nagumo
equations is based on the well-posedness results for reaction-diffusion equations
developed in [AV22c], [AV23b], and [AV23a].

• In Section 4.1 we consider a general form of (1.1) in the weak variational
setting with domain R as in [EGK21] and [HH20].

• In Section 4.2 we extend our results to the strong variational setting with
domain Rd, d ≤ 4.

• In Section 5 we first consider the FitzHugh–Nagumo equations on the
bounded domain Td to obtain well-posedness results for higher dimensions
and initial data with high regularity.

• In Section 6 we extend some of the results for reaction-diffusion equations
on the bounded domain Td proved in [AV23b] to the unbounded domain
Rd, which will, in particular, provide insights on the achievable regularity
of solutions to the FitzHugh–Nagumo equations on Rd.

• In Section 7 we build on the results of Sections 5 and 6 to prove global
well-posedness of the FitzHugh–Nagumo equations on Rd.

In the next section we will outline the setting and notation that will be used
throughout the present work.
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2 Notation, Setting and Preliminaries

We write a ≲ b for a, b ∈ R if there exists a constant C > 0 such that a ≤ Cb. If
there exists a constant C depending on parameters α, β, . . . such that a ≤ Cb,

we will use the notation a ≤ Cα,β,...b. For ξ ∈ Rd we write |ξ| =
(∑d

j=1 ξ
2
j

)1/2
.

The unit sphere and unit ball in Rd are denoted by S1 and B1, respectively.
Moreover, we let (a, a) = ∅.

For p ∈ (1,∞) and κ ∈ [0, p − 1), I = (a, b) ⊆ R and X a Banach space,
wκ(t)

s = |t − s|κ is the shifted weight function with exponent κ and we let
wκ(t) = wκ(t)

0, and Lp(a, b, wκ;X) denotes the set of all strongly measurable
maps f : I → X such that the weighted Lp-norm

∥f∥Lp(a,b,wκ;X) =

(∫ b

a

wκ(t)∥f(t)∥pXdt

)1/p

<∞.

If, in addition, the derivative (in the distributional sense) f ′ ∈ Lp(a, b, wκ;X),
then we write f ∈W 1,p(a, b, wκ;X) and we set

∥f∥W 1,p(a,b,wκ;X) = ∥f∥Lp(a,b,wκ;X) + ∥f ′∥Lp(a,b,wκ;X).

We further let Lloc(a, b, wκ, X) = {f : (a, b)→ X : f is strongly measurable and
for all compact K ⊆ (a, b),

∫
K
wκ(t)∥f(t)∥pXdt < ∞}. We denote the real and

complex interpolation functors by (·, ·)κ,p and [·, ·]λ, respectively. We will also
use the shorthand notationXTr

κ,p = (X0, X1)1−(1+κ)/p,p andX
Tr
p = (X0, X1)1−1/p,p.

The Bessel potential spaces Hs,q(Td), Hs,q(Rd) and the Besov spaces Bs
q,p(Td),

Bs
q,p(Rd) can be defined by complex and real interpolation (see [Saw18, Sec-

tion 6.6] and [Tri78]). When no confusion about the domain can arise, we will
write Lq, Hs,q, Bs

q,p instead of Lq(D), Hs,q(D), Bs
q,p(D) for D ∈ {Td,Rd}.

Correspondingly, we will write Lq(ℓ2), Hs,q(ℓ2), Bs
q,p(ℓ

2) instead of Lq(D; ℓ2),
Hs,q(D; ℓ2), Bs

q,p(D; ℓ2) for D ∈ {Td,Rd}. We denote the Schwartz space by S.
Further notation will be introduced in subsequent sections as needed.

We fix a filtered probability space (Ω A,F ,P) with σ-algebra A, filtration
(Ft)t≥0, and probability measure P. We denote the progressive σ-algebra on
the filtered probability space by P.

We will regularly use the following embedding results on the domains Td, Rd

(see [Tri78, Theorem 4.6.1]). Let −∞ < s < ∞, 1 < p1 ≤ p2 ≤ ∞, q ∈ (1,∞),
ϵ > 0, then

Bs+ϵ
q,∞ ⊂ Bs

q,1 ⊂ Bs
q,p1
⊂ Bs

q,p2
⊂ Bs

q,∞,

if 1 ≤ p ≤ ∞, 1 < q1 ≤ q2 <∞, −∞ < t ≤ s <∞, and s− d
q1
≥ t− d

q2
, then

Bs
q1,p ⊂ B

t
q2,p and Hs,q1 ⊂ Ht,q2 ,

if 1 < p < q <∞, −∞ < t ≤ s <∞, and s− d
p ≥ t−

d
q , then

Hs,p ⊂ Bs
q,p and Bs

p,q ⊂ Ht,q,

3



and if 1 < q <∞, 1 ≤ p ≤ ∞, t ≥ 0, and s− d
q > t, then

Bs
q,p ⊂ Ct and Hs,q ⊂ Ct.

Moreover, we will regularly use the interpolation estimates (see, e.g., [BM18])

∥f∥Hs,q ≲ ∥f∥λHs1,q1 ∥f∥1−λ
Hs2,q2 ,

where −∞ < s <∞ and 1 ≤ q, q1, q2 ≤ ∞ and λ ∈ (0, 1) are such that

s = λs1 + (1− λ)s2 and
1

q
=

λ

q1
+

1− λ
q2

.

3 Well-Posedness in the Variational Setting

We summarise some results from [AV22c] that will be used in our proof of well-
posedness in the variational setting. We consider quasi-linear SPDEs of the
form {

du(t) +A(t, u(t)) dt = B(t, u(t)) dW (t)

u(0) = u0,
(3.1)

where W is a U -cylindrical Brownian motion
Below, for Hilbert spaces U,H, we denote the set of bounded operators from

U to H by L(U,H) and we denote the set of Hilbert-Schmidt operators from
U to H by L2(U,H). Moreover, for an operator B ∈ L2(U,H) we denote
∥B∥L2(U,H) = |||B|||H .

3.1 Local Well-Posedness

We make the following assumption.

Assumption 3.1 (Assumption 3.1 in [AV22c]). Suppose that the following
conditions hold:

1. A(t, v)v = A0(t, v)v − F (t, v) − f and B(t, v) = B0(t, v)v + G(t, v) + g,
where

A0 : R≥0 × Ω×H → L(V, V ∗) and B0 : R≥0 × Ω×H → L(V,L2(U,H))

are P ⊗ B(H)-measurable, and

F : R≥0 × Ω× V → V ∗ and G : R≥0 × Ω× V → L2(U,H)

are P ⊗ B(V )-measurable, and f : R≥0 × Ω → V ∗ and g : R≥0 × Ω →
L2(U,H) are P-measurable maps such that a.s.

f ∈ L2
loc([0,∞);V ∗) and g ∈ L2

loc([0,∞);L2(U,H)).
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2. ∀T > 0, n ≥ 1 ∃θn > 0,Mn > 0 such that a.s.

⟨u,A0(t, v)u⟩ −
1

2
|||B0(t, v)u|||2H ≥ θn∥u∥2V −Mn(1 + ∥u∥2H), (3.2)

where t ∈ [0, T ], u ∈ V and v ∈ H : ∥v∥H ≤ n.

3. Let ρj ≥ 0 and βj ∈ (1/2, 1) be such that

2βj ≤ 1 +
1

1 + ρj
, j ∈ {1, . . . ,mF +mG},

where mF ,mG ∈ N, and suppose that ∀n ≥ 1, T > 0 there exists a constant
CT,n such that a.s.

∥A0(t, u)w∥V ∗ ≤ CT,n(1 + ∥u∥H)∥w∥V , (3.3)

∥A0(t, u)w −A0(t, v)w∥V ∗ ≤ CT,n∥u− v∥H∥w∥V , (3.4)

|||B0(t, u)w|||H ≤ CT,n(1 + ∥u∥H)∥w∥V , (3.5)

|||B0(t, u)w −B0(t, v)w|||H ≤ CT,n∥u− v∥H∥w∥V , (3.6)

∥F (t, u)− F (t, v)∥V ∗ ≤ CT,n

mF∑
j=1

(1 + ∥u∥ρj

βj
+ ∥v∥ρj

βj
)∥u− v∥βj ,

(3.7)

∥F (t, u)∥V ∗ ≤ CT,n

mF∑
j=1

(1 + ∥u∥ρj+1
βj

), (3.8)

|||G(t, u)−G(t, v)|||H ≤ CT,n

mF+mG∑
j=mF+1

(1 + ∥u∥ρj

βj
+ ∥v∥ρj

βj
)∥u− v∥βj ,

(3.9)

|||G(t, u)|||H ≤ CT,n

mF+mG∑
j=mF+1

(1 + ∥u∥ρj+1
βj

), , (3.10)

where t ∈ [0, T ] and u, v, w ∈ V satisfy ∥u∥H , ∥v∥H ≤ n.

We make the following definition.

Definition 3.2 (Solution; Definition 3.2 in [AV22c]). Let Assumption 3.1 be
satisfied and let σ be a stopping time taking values in [0,∞]. Let u : [0, σ)×Ω→
V be a strongly progressively measurable process.

• u is a strong solution to (3.1) on [0, σ] × Ω if a.s. u ∈ L2
loc([0, σ);V ) ∩

C([0, σ] ∩ R≥0;H) such that

F (·, u) ∈L2(0, σ, V ∗), G(·, u) ∈ L2(0, σ,L2(U,H)),

and a.s. for all t ∈ [0, σ)

u(t)− u(0) +
∫ t

0

A(s, u(s)) ds =

∫ t

0

1[0,σ)×ΩB(s, u(s)) dWs.
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• u is a local solution to (3.1) if there exists an increasing sequence of stop-
ping times (σk)k≥1 such that limk↑∞ σk = σ a.s. and u|[0,σk]×Ω is a strong
solution to (3.1) on [0, σ] × Ω; (σk)k≥1 is called a localising sequence for
(u, σ).

• A local solution (u, σ) to (3.1) is called unique if for every other local
solution (u′, σ′) for a.a. ω ∈ Ω and all t ∈ [0, σ(ω) ∧ σ′(ω)) it holds that
u(t, ω) = u′(t, ω).

• A unique local solution (u, σ) to (3.1) is called a maximal local solution if
for every other local solution (u′, σ′) it holds that a.s. σ′ ≤ σ and for a.a.
ω ∈ Ω and all t ∈ [0, σ′(ω) it holds that u(t, ω) = u′(t, ω).

• A maximal local solution (u, σ) to (3.1) is called a global (unique) solution
if σ =∞ a.s., in which case we write u instead of (u, σ).

Under Assumption 3.1, Theorem 3.3 in [AV22c] guarantees local well-posedness
of (3.1).

Theorem 3.3 (Local Well-Posedness; Theorem 3.3 in [AV22c]). Suppose that
Assumption 3.1 holds. Then for every u0 ∈ L0

F0
(Ω;H), there exists a (unique)

maximal solution (u, σ) to (3.1) such that a.s. u ∈ C([0, σ);H)∩L2
loc([0, σ);V ).

Moreover, the following blow-up criterion holds

P

(
σ <∞, sup

t∈[0,σ)

∥u(t)∥2H +

∫ σ

0

∥u(t)∥2V dt <∞

)
= 0. (3.11)

3.2 Global Well-Posedness

Under additional conditions, also global well-posedness of (3.1) can be shown.
[AV22c] give the following condition on the operators A,B that guarantee global
well-posedness.

Theorem 3.4 (Global Well-Posedness I; Theorem 3.4 in [AV22c]). Suppose
that Assumption 3.1 holds and for all T > 0 there exist η, θ,M > 0 and a
progressively measurable ϕ ∈ L2((0, T )× Ω) and for any v ∈ V and t ∈ [0, T ],

⟨v,A(t, v)⟩ − (
1

2
+ η)|||B(t, v)|||2H ≥ θ∥v∥2V −M∥v∥2H − |ϕ(t)|2. (3.12)

Then for every u0 ∈ L0
F0

(Ω;H), there exists a (unique) global solution u to (3.1)
such that a.s. u ∈ C([0,∞);H) ∩ L2

loc([0,∞);V ). Moreover, for each T > 0
there is a constant CT > 0 independent of U0 such that

E∥u∥2C([0,T ];H) + E∥u∥2L2(0,T ;V ) ≤ CT (1 + E∥u0∥2H + E∥ϕ∥2L2(0,T )). (3.13)
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4 FitzHugh-Nagumo Equations in the Variational
Setting

We consider the stochastic FitzHugh–Nagumo equations
du1(t, x) = (ν∆u1(t, x) + f(u1(t, x))− u2(t, x)) dt

+
∑

k≥1 [bk(t, x) · ∇u1(t, x) + g1,k(t, u(t, x))] dW1(t)

du2(t, x) = ϵ(u1(t, x)− γu2(t, x)) dt+
∑

k≥1 g2,k(t, u(t, x)) dW2(t),

(4.1)

where W1,W2 are independent U -cylindrical Brownian motions, U = ℓ2, and
the u1, u2 : R≥0 × Rd → R. The classical form of the non-linear term is
f(u) = u(1− u)(u− a), where a ∈ (0, 1). Although it is common to consider a
noise term in the first component, several authors have also considered a version
of the problem with additive [ZH11; BM08] or multiplicative [Yam+19; Shi+19]
noise in the second component. Therefore, here we consider the general prob-
lem with independent semi-linear noise terms in both components. Moreover,
for convenience we assume that the non-linearities (g1,k)k≥1, (g2,k)k≥1 do not
depend on the space variable x. However, such a dependence on x can easily
be introduced at the cost of some additional additive constants when checking
Assumption 3.1.

To write (4.1) in the form (3.1), we let u = (u1, u2) ∈ V ,

A0 : [0, T ]× V × Ω→ L(V, V ∗) :

(t, u, ω) 7→
(
−ν∆u1(t, x) + u2(t, x)
−ϵu1(t, x) + ϵγu2(t, x)

)
,

(4.2)

F : V → V ∗ :

u 7→
(
f(u1(t, x))

0

)
,

(4.3)

B0 : [0, T ]×H × Ω→ L(V ;L2(U ;H)) :

(t, u, ω) 7→
(
u(t, x) 7→

(
(bk(t, x) · ∇u1(t, x))k≥1

0

))
,

(4.4)

G : [0, T ]× V × Ω→ L2(U ;H) :

(t, u, ω) 7→
(
(g1,k(t, u(t, x)))k≥1

(g2,k(t, u(t, x)))k≥1

)
,

(4.5)

and we define A(t, v) = A0(t, v)v − F (t, v) and B(t, v) = B0(t, v)v +G(t, v).

4.1 Weak Setting

We first consider (4.1) in the weak setting with domain R as in [EGK21]. There-
fore, we let

V := H1(R)⊕ L2(R)
H := L2(R)⊕ L2(R)

7



V ∗ := H−1(R)⊕ L2(R),

such that V ↪→ H = H∗ ↪→ V ∗, we define the Laplacian for u1 ∈ H1(R) via

H1(R)⟨u1,∆v1⟩H−1(R) := −
∫
R
∇u1∇v1dx,

and we further define the inner products

(u, v)H := (u1, v1)L2(R) + (u2, v2)L2(R)

=

∫
R
u1v1 + u2v2 dx,

(u, v)V := (u1, v1)H1(R) +

∫
R
(u2, v2)L2(R)

=

∫
R
∇u1∇v1 + u1v1 dx+

∫
R
u2v2dx.

Assumption 4.1. We assume that the non-linearity f in (4.1) satisfies for any
y, y′ ∈ R

• f(0) = 0

• µf := supy∈R f
′(y) <∞

• |f(y)− f(y′)| ≤ C1(1 + |y|2 + |y′|2)|y − y′|,

There exists a constant ν0 ∈ (0, ν) such that for any ξ ∈ R

• ν|ξ|2 − 1
2

∑
k≥1(bk(t, x)

2ξ)2 ≥ ν0|ξ|2

and for any y ∈ R2 g1(y) := (g1,k(y))k≥1 and g2(y) := (g2,k(y))k≥1 satisfy

• ∥g1(t, y)− g1(t, y′)∥ℓ2 + ∥g2(t, y)− g2(t, y′)∥ℓ2 ≤ C1(|y1 − y′1|+ |y2 − y′2|)

• ∥g1(t, 0)∥L2(ℓ2) + ∥g2(t, 0)∥L2(ℓ2) ≤ C2.

Theorem 4.2 (Global Well-Posedness). Let Assumption 4.1 hold. Then for
every u0 ∈ L0

F0
(Ω;H), there exists a (unique) global solution u to (4.1). Moreover,

for each T > 0 there is a constant CT > 0 independent of u0 such that

E∥u∥2C([0,T ];H) + E∥u∥2L2(0,T ;V ) ≤ CT (1 + E∥u0∥2H). (4.6)

Proof. We use Theorem 3.4 to prove the claim. We begin by checking Assump-
tion 3.1. Let u, v, w ∈ V , ∥u∥H , ∥v∥H ≤ n. For the growth bound (3.3) on A0

we have

|⟨w,A0(t, u)v⟩| =
∣∣∣∣∫

Rd

ν(∇v1 · ∇w1) + v2w1 − ϵv1w2 + ϵγv2w2 dx

∣∣∣∣
≤ν∥∇v1∥L2∥∇w1∥L2 + ∥v2∥L2∥w1∥L2

+ ϵ∥v1∥L2∥w2∥L2 + ϵγ∥v2∥L2∥w2∥L2
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by Cauchy–Schwarz,

|⟨w,A0(t, u)v⟩| ≤(ν + 1 + ϵ(1 + γ))∥v∥V ∥w∥V .

The local Lipschitz condition (3.4) holds trivially since A0(t, u)−A0(t, v) = 0.
For the growth bound (3.5) on B0 we have

|||B0(t, u)w|||2H =
∑
k≥1

∥bk · ∇w1∥2L2

≤ 2(ν − ν0)∥∇w1∥2L2 ,

≲ ∥w∥2V .

where we used that by Assumption 4.1
∑

k≥1(bk ·∇w1)
2 ≤ 2(ν−ν0)|∇w1|2. The

local Lipschitz condition (3.6) again holds trivially since B0(t, u)−B0(t, v) = 0.
For the growth condition (3.8) on F we use that by Assumption 4.1 |f(u)| ≤

C1(1 + |u|2)|u1| so that

∥F (t, u)∥V ∗ ≲ ∥u1∥Lp + ∥u31∥Lp = ∥u1∥Lp + ∥u1∥3L3p .

We let ρ1 = 2, mF = 1 and use the Sobolev embeddings Lp ←↩ H2β−1 with
1
p ≤ 2β − 1 − 1

2 and L3p ←↩ H2β−1 with 1
3p ≤ 2β − 1 − 1

2 . The latter is most

restrictive and holds for β ≥ 2
3 , p ∈ [1, 2], and the requirement 2β ≤ 1 + 1

ρ+1

means that we additionally need β ≤ 2
3 . Note that the Sobolev embedding

L3p ←↩ H2β−1 limits us to d ≤ 2. We thus obtain by Sobolev embeddings with
β1 = 2/3, ρ1 = 2 and Young’s inequality

∥u1∥Lp + ∥u1∥3L3p ≲ ∥u1∥3H1/3 ≲ 1 + ∥u1∥ρ1+1
β1

.

For the local Lipschitz condition (3.7) on F we use that by Assumption 4.1
|f(u)− f(v)| ≤ C1(1 + |u|2 + |v|2)|u1 − v1| so that

∥F (t, u)− F (t, v)∥V ∗ ≲ ∥F (t, u)− F (t, v)∥L2

≲ ∥u1 − v1∥L2 + ∥|u1|2|u1 − v1|∥L2 + ∥|v1|2|u1 − v1|∥L2 .

By Hölder’s inequality

∥|u1|2|u1 − v1|∥L2 ≤ ∥u1∥2L6∥u1 − v1∥L6 ,

and the Sobolev embedding H2β1−1 ↪→ L6 with β1 = 2/3 gives

≲ ∥u1∥2H1/3∥u1 − v1∥H1/3

= ∥u1∥2β1
∥u1 − v1∥β1

.

Note that the Sobolev embedding H2β1−1 ↪→ L6 only holds for d = 1. Using
L2 ←↩ H1/3, we also have ∥u1−v1∥L2 ≲ ∥u1−v1∥H1/3 = ∥u1−v1∥β1

. Combining
the estimates gives

∥F (t, u)− F (t, v)∥V ∗ ≲ (1 + ∥u1∥2H2β1−1 + ∥v1∥2H2β1−1)∥u1 − v1∥H2β1−1
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≲ (1 + ∥u∥ρ1

β1
+ ∥v∥ρ1

β1
)∥u− v∥β1 .

For the local Lipschitz condition (3.9) on G we use that by Assumption 4.1
∥g1(t, u)− g1(t, v)∥ℓ2 + ∥g2(t, u)− g2(t, v)∥ℓ2 ≲ |u1 − v1|+ |u2 − v2| so that

|||G(t, u)−G(t, v)|||H ≤∥u1 − v1∥L2 + ∥u2 − v2∥L2

≲∥u1 − v1∥H2β−1 + ∥u2 − v2∥L2

≲(1 + ∥u∥ρ2

β2
+ ∥v∥ρ2

β2
)∥u− v∥β2

,

where we used the Sobolev embedding L2 ←↩ H2β−1 with 2β − 1 ≥ 0, and we
set mG = 1, ρ2 = 1 and β2 = 2/3 in (3.9).

For the growth bound (3.10) onG we use that by Assumption 4.1 ∥g1(t, 0)∥L2(ℓ2)+
∥g2(t, 0)∥L2(ℓ2) ≤ C2 together with the Lipschitz condition above so that

|||G(t, u)|||H ≤ ∥G(t, 0)∥H + ∥G(t, u)−G(t, 0)∥H
≲ ∥g1(t, 0)∥L2 + ∥g2(t, 0)∥L2 + ∥u1∥L2 + ∥u2∥L2

≲ 1 + ∥u∥ρ2+1
β2

,

by Young’s inequality.
Next, we check the coercivity condition (3.2) on A0, B0. Let u ∈ V, v ∈ H,

then using that ν|∇u1|2 − 1
2

∑
k≥1 |bk · ∇u1|2 ≥ ν0|∇u1|2 by Assumption 4.1,

⟨u,A0(t, v)u⟩−
1

2
|||B0(t, v)u|||2H

≥
∫
R
ν(∇u1)2 + u2u1 − ϵu1u2 + ϵγu22 dx−

1

2

∑
k≥1

∫
R
|bk · ∇u1|2 dx

≥ν0
[
∥u∥2V − ∥u∥2H

]
− |1− ϵ|

2
∥u∥2H + ϵγ∥u2∥2L2(Rd)

≥ν0∥u∥2V −
(
ν0 +

|1− ϵ|
2

)
∥u∥2H .

Finally, we check the coercivity condition (3.12) of Theorem 3.4. Assumption
4.1 implies that for η ∈ (0, ν0/(2(ν − ν0))) there exists a ν̃0 ∈ (0, ν) such that
ν|∇u1|2 −

(
1
2 + η

)∑
k≥1 |bk · ∇u1|2 ≥ ν̃0|∇u1|2, and thus

⟨u,A0(t, v)u⟩ −
(
1

2
+ η

)
|||B0(t, v)u|||2H ≥ ν̃0∥u∥2V −

(
ν̃0 +

|1− ϵ|
1

)
∥u∥2H .

Moreover, we estimate

⟨u, F (t, u)⟩ =
∫
Rd

u1(f(u1)− f(0)) dx

≤
∫
Rd

u1(f
′(ξ)u1) dx,

by the mean value theorem, and using Assumption 4.1

⟨u, F (t, u)⟩ ≤µf∥u1∥2L2 .
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We already computed ∥G(t, u)∥H ≤ C2 + C1∥u∥H . Since A(t, u) = A0(t, u)u−
F (t, u) and B(t, u) = B0(t, u)u+G(t, u) we combine the above estimates to get

⟨u,A(t, u)⟩−
(
1

2
+ η

)
|||B(t, u)|||2H

≥ν̃0∥u∥2V −
(
ν̃0 +

|1− ϵ|
2

+ µf ′ + C2
1 (1 + 2η)

)
∥u∥2H − C2

2 (2 + 4η),

thus Theorem 3.4 applies with η < ν0/(2(ν − ν0)).

4.2 Strong Setting

The proof of Theorem 4.2 in the preceding section showed that the weak setting
can only accommodate the FitzHugh-Nagumo equations (4.1) with dimension
d = 1. To obtain well-posedness results for higher dimensions, we now consider
(4.1) in the strong setting, where we let

V := H2(Rd)⊕H1(Rd)

H := H1(Rd)⊕H1(Rd)

V ∗ := L2(Rd)⊕H1(Rd),

such that V ↪→ H = H∗ ↪→ V ∗, and we define for u1 ∈ H2(Rd)

H2(Rd)⟨u1,∆v1⟩L2(Rd) :=

∫
Rd

∆u1∆v1dx,

and we further define the inner products

(u, v)H := (u1, v1)H1(Rd) + (u2, v2)H1(Rd)

=

∫
Rd

∇u1 · ∇v1 + u1v1 dx+

∫
Rd

∇u2 · ∇v2 + u2v2 dx,

(u, v)V := (u1, v1)H2(Rd) + (u2, v2)L2(Rd)

=

∫
Rd

∑
|α|≤2

∂αu1∂
αv1 dx+

∫
Rd

∇u2 · ∇v2 + u2v2 dx.

Assumption 4.3. We assume that the non-linearity f in (4.1) satisfies for any
y, y′ ∈ R

• f(0) = 0,

• µf := supy∈R f
′(y) <∞,

• |f(y)− f(y′)| ≤ C1(1 + |y|2 + |y′|2)|y − y′|,

• |f ′(y)− f ′(y′)| ≤ C2(1 + |y|+ |y′|)|y − y′|,

• |f ′(y)| ≤ C3(1 + |y|2),
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there exists a constant ν0 ∈ (0, ν) such that b = (bjk)k≥1,1≤j≤d satisfies for any
ξ ∈ Rd

• ν|ξ|2 − 1
2

∑
k≥1(bk · ξ)2 ≥ ν0|ξ|2,

• ∥bj∥W 1,∞(Rd;ℓ2) ≤M ,

for y, y′ ∈ R2 g1(y) := (g1,k(t, y))k≥1 and g2(y) := (g2,k(t, y))k≥1 satisfy

• ∥g1(y1)− g1(y′1)∥ℓ2 + ∥g′1(y1)− g′1(y′1)∥ℓ2 ≤ C1|y1 − y′1|,

and for u, v ∈ V

• ∥g2(u2)− g2(v2)∥H1(ℓ2) ≤ C2∥u2 − v2∥H1 ,

• ∥g1(0)∥L2(ℓ2) + ∥g′1(0)∥L2(ℓ2) + ∥g2(0)∥L2(ℓ2) + ∥g′2(0)∥L2(ℓ2) ≤ C3.

Remark 1. We need to impose strong restrictions on g1, g2 in the strong setting
to ensure that the Lipschitz condition on G in Assumption 3.1 is satisfied. For
instance, if we would allow g1 to depend on u2, our estimate for |||G|||H would
involve terms ∥∂2g1(u1, u2)∇u2−∂2g1(v1, v2)∇v2∥L2 , which cannot be factorised
(via Hölder’s inequality) and bounded in the form (1 + ∥u2∥H1 + ∥v2∥H1)∥u2 −
v2∥H1 since u2, v2 ∈ H1.

Our definition of a solution is analogous to Definition 3.2 in the weak setting.

Theorem 4.4 (Global Well-Posedness). Let Assumption 4.3 hold. Then for
every u0 ∈ L0

F0
(Ω;H), there exists a (unique) global solution u to (4.1) for

d ≤ 4. Moreover, for each T > 0 there is a constant CT > 0 independent of u0
such that

E∥u∥2C([0,T ];H) + E∥u∥2L2((0,T );V ) ≤ CT (1 + E∥u0∥2H). (4.7)

Proof. We use Theorem 3.4 to prove the claim. We begin by checking Assump-
tion 3.1. Let u, v, w ∈ V , ∥u∥H , ∥v∥H ≤ n. For the growth bound (3.3) on A0

we have

|⟨w,A0(t, u)v⟩| ≤
∫
Rd

ν|∆v1∆w1 +∇v1 · ∇w1|+ |∇v2 · ∇w1 + v2w1|

+ ϵ|∇v1 · ∇w2 − v1w2|+ ϵγ|∇v2 · ∇w2 + v2w2|dx
≤ν(∥∆v1∥L2(Rd)∥∆w1∥L2(Rd) + ∥∇v1∥L2(Rd)∥∇w1∥L2(Rd))

+ ∥∇v2∥L2(Rd)∥∇w1∥L2(Rd) + ∥v2∥L2(Rd)∥w1∥L2(Rd)

+ ϵ(∥∇v1∥L2(Rd)∥∇w2∥L2(Rd)) + ∥v1∥L2(Rd)∥w2∥L2(Rd))

+ ϵγ(∥∇v2∥L2(Rd)∥∇w2∥L2(Rd) + ∥v2∥L2(Rd)∥w2∥L2(Rd))

≲∥v∥V ∥w∥V .

The local Lipschitz condition (3.4) holds trivially since A0(t, u)−A0(t, v) = 0.
For the growth bound (3.5) on B0 we have

|||B0(t, u)w|||2H ≤
∑
k≥1

∥bk · ∇w1∥2L2 + ∥∇(bk · ∇w1)∥2L2
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≤
∑
k≥1

∥bk · ∇w1∥2L2 +

(
1 +

1

δ

)
∥∇bk · ∇w1∥2L2

+
∑
k≥1

(1 + δ) ∥bk · ∇2w1∥2L2

where we introduce δ > 0 to gain some extra flexibility that will be used in the
proof of the coercivity condition below. Thus,

|||B0(t, u)w|||2H ≤
∫
Rd

∑
k≥1

d∑
i,j=1

bikb
j
k∂iw1∂jw1 dx+

∑
k≥1

(
1 +

1

δ

)
∥∇bk · ∇w1∥2L2

+ (1 + δ)

∫
Rd

∑
k≥1

d∑
i,j,l=1

bikb
j
k∂i∂lw1∂j∂lw1 dx

≤
(
ν − ν0 +M2

(
1 +

1

δ

))
∥∇w1∥2L2 + (ν − ν0) (1 + δ) ∥∆w1∥2L2 ,

where we used in the last step that ∥b∥2W 1,∞(ℓ2) ≤M
2 and

∑
k≥1

∑d
i,j=1 b

i
kb

j
kξiξj ≤

(ν − ν0)|ξ|2 by Assumption 4.3, and
∑d

j,l=1

∫
Rd |∂j∂lw1|2 dx = ∥∆w1∥2L2 by in-

tegration by parts. We thus see that

|||B0(t, u)w|||H ≲ ∥w∥H + ∥w∥V
≂ CT,n(1 + ∥w∥V ).

The local Lipschitz condition (3.6) again holds trivially sinceB0(t, u)−B0(t, v) =
0.

For the growth condition (3.8) on F we use that by Assumption 4.3 |f(u)| ≤
C1(1 + |u1|2)|u| so that

∥F (t, u)∥V ∗ = ∥f(u1)∥L2(Rd)

≤ C1(∥u1∥L2 + ∥u31∥L2)

≲ CT,n(1 + ∥u1∥3L6).

We set ρ1 = 2 and we require β1 ≤ 2/3. Since [L2(Rd), H2(Rd)]β1 = H2β1 , we
use the Sobolev embedding H2β1 ↪→ L6 with 2β1 − d

2 ≥ −
d
6 to get

∥u1∥3L6 ≲ ∥u1∥3β1

Hence, we have
∥F (t, u)∥V ∗ ≲ 1 + ∥u1∥ρ1+1

β1
,

and thus the condition (3.8) is satisfied for d ≤ 4, β1 = 2/3.
For the local Lipschitz condition (3.7) on F we use that by Assumption 4.1

|f(u)− f(v)| ≤ C1(1 + |u|2 + |v|2)|u1 − v1| so that

∥F (t, u)− F (t, v)∥V ∗ ≤ C1∥(1 + |u1|2 + |v1|2)|u1 − v1|∥L2
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≤ C1(∥u1 − v1∥L2 + ∥(|u1|2 + |v1|2)|u1 − v1|∥L2).

By Hölder’s inequality we have

∥|u1|2|u1 − v1|∥L2 ≤ ∥u1∥2L6∥u1 − v1∥L6 ,

and the Sobolev embedding H2β1 ↪→ L6 with 2β1 − d/2 ≥ −d/6 gives

∥|u1|2|u1 − v1|∥L2 ≤ ∥u1∥2β1
∥u1 − v1∥β1

,

which is satisfied for d ≤ 4, β1 = 2/3. Using H2β1 ↪→ L2, we also have ∥u1 −
v1∥L2 ≲ ∥u1 − v1∥β1 for β1 > 0. Combining the estimates gives

∥F (t, u)− F (t, v)∥V ∗ ≲ (1 + ∥u1∥2H2β1 + ∥v1∥2H2β1 )∥u1 − v1∥H2β1

≲ (1 + ∥u∥ρ1

β1
+ ∥v∥ρ1

β1
)∥u− v∥β1

.

For the local Lipschitz condition (3.9) on G we use that by Assumption 4.1
∥g1(u1)− g1(v1)∥ℓ2 ≤ C1|u1 − v1| and ∥g2(u2)− g2(v2)∥H1 ≤ C2∥u2 − v2∥H1 so
that

|||G(t, u)−G(t, v)|||H ≲∥∇g1(u1)−∇g1(v1)∥L2 + ∥g1(u1)− g1(v1)∥L2

+ ∥g2(u2)− g2(v2)∥H1

≲∥u1 − v1∥L2 + ∥g′1(u1)∇u1 − g′1(v1)∇v1∥L2

+ ∥u2 − v2∥H1 .

Using that ∥g1(t, u1) − g1(t, v1)∥ℓ2 ≤ C1|u1 − v1| implies ∥g′∥L∞(ℓ2) ≤ C1 and
by Assumption 4.1 ∥g′1(u1)− g′1(v1)∥ℓ2 ≤ C1|u1 − v1|, we split the term

∥g′1(u1)∇u1 − g′1(v1)∇v1∥L2(ℓ2) ≤∥g′1(u1)∇u1 − g′1(u1)∇v1∥L2(ℓ2)

+ ∥g′1(u1)∇v1 − g′1(v1)∇v1∥L2(ℓ2)

≲∥∇u1 −∇v1∥L2 + ∥u1 − v1∥L8∥∇v1∥L8/3

≲∥u1 − v1∥H1 + ∥u1 − v1∥L8∥v1∥H1,8/3

≲∥u1 − v1∥H3/2(1 + ∥v1∥H3/2)

≂∥u1 − v1∥H2β2 (1 + ∥v1∥H2β2 ),

where we used the Sobolev embeddings L8 ←↩ H3/2 with −d
8 ≤

3
2 −

d
2 and

H1,8/3 ←↩ H3/2 with 1 − d3
8 ≤

3
2 −

d
2 for d ≤ 4. We set β2 = 3/4 and ρ2 = 1,

and using that ∥u1 − v1∥L2 ≲ ∥u1 − v1∥H3/2 , we have

|||G(t, u)−G(t, v)|||H ≲(1 + ∥u∥H2β2 + ∥v∥H2β2 )∥u− v∥H2β2

≂(1 + ∥u∥ρ2

β2
+ ∥v∥ρ2

β2
)∥u− v∥β2 .

For the growth bound (3.10) onG we use that by Assumption 4.1 ∥g1(t, 0)∥L2(ℓ2)+
∥g′1(t, 0)∥L2(ℓ2)+∥g2(t, 0)∥L2(ℓ2)+∥g′2(t, 0)∥L2(ℓ2) ≤ C3 together with the Lipschitz
condition above so that

|||G(t, u)|||H ≤ |||G(t, 0)|||H + |||G(t, u)−G(t, 0)|||H
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≲ 1 + ∥u∥ρ2+1
β2

.

Next, we check the coercivity condition (3.2) on A0, B0. Let u ∈ V, v ∈ H,
then using the estimate for |||B0(t, v)u|||2H obtained above,

⟨u,A0(t, v)u⟩ −
1

2
|||B0(t, v)u|||2H

≥ν
∫
Rd

(∆u1)
2 + |∇u1|2 dx+

∫
Rd

(∇u2) · (∇u1) + u2u1 dx

− ϵ
∫
Rd

(∇u1) · (∇u2) + u1u2 dx+ ϵγ

∫
Rd

|∇u2|2 + (u2)
2 dx

− 1

2

(
ν − ν0 +M2

(
1 +

1

δ

))
∥∇u1∥2L2 −

1

2
(ν − ν0)(1 + δ)∥∆u1∥2L2

=

(
ν − 1

2
(ν − ν0)(1 + δ)

)
∥∆u1∥2L2

+

(
ν − 1

2

(
ν − ν0 +M2

(
1 +

1

δ

)))
∥∇u1∥2L2

− 2|1− ϵ|∥u∥2H + ϵγ∥u2∥2H1

≥1

2
(ν + ν0 − δ(ν − ν0)) ∥u∥2V

−
(
1

2
(ν − ν0) +

M2

2

(
1 +

1

δ

)
+ 2|1− ϵ|

)
∥u∥2H

=:Mn∥u∥2V − θn∥u∥2H ,

where we used that
∫
Rd |∆u1|2 dx =

∫
Rd

∑d
j,k=1 |∂j∂ku1|2 dx by integration by

parts, and δ ∈ (0, 1).
Finally, we check the coercivity condition (3.12) of Theorem 3.4. Since

A(t, u) = A0(t, u)u − F (t, u) and our computation above already shows that
⟨u,A0(t, u)u⟩ ≥ ν∥u∥2V − (ν+2|1− ϵ|)∥u∥2H , we only need to obtain an estimate
for ⟨u, F (t, u)⟩. We have

⟨u, F (t, u)⟩ =
∫
Rd

∇u1 · ∇u1f ′(u1) + u1f(u1) dx

=

∫
Rd

|∇u1|2f ′(u1) + |u1|2f ′(ξ) dx

≤µf ′∥u∥2H

by Assumption 4.3 and the intermediate value theorem applied to f(u1)− f(0).
We already obtained an estimate for |||B0(t, u)u|||2H above where we checked

the growth bound (3.4) for B0. To bound |||G(t, u)|||2H we use

|||G(t, u)|||2H ≤∥g1(u1)∥2L2(ℓ2) + ∥∇g1(u1)∥
2
L2(ℓ2) + ∥g2(u2)∥

2
H1(ℓ2)

≤∥g1(u1)− g1(0)∥2L2(ℓ2) + ∥g1(0)∥
2
L2(ℓ2)

+ ∥g′1(u1)∥2L∞(ℓ2)∥∇u1∥
2
L2 + ∥g′1(0)∥2L2
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+ ∥g2(u2)− g2(0)∥2H1 + ∥g2(t, 0)∥2H1

≤C2
1 (∥u1∥2H1 + ∥u2∥2H1) + 4C2

3

≤C2
1∥u∥2H + 4C2

2 ,

where we used that Assumption 4.3 implies ∥g′1(u1)∥L∞(ℓ2) ≤ C1.
Combining all estimates and letting ν̃ = ν − ν0, we get

⟨u,A(t, u)⟩−
(
1

2
+ η

)
|||B(t, u)|||2H

≥⟨u,A0(t, u)⟩ − ⟨u, F (t, u)⟩ −
(
1

2
+ η

)(
|||B0(t, u)u|||2H + |||G(t, u)|||2H

)
≥ν∥u∥2V − (ν + 2|1− ϵ|+ µf ′)∥u∥2H

− ν̃
(
1

2
+ η

)
(1 + δ)∥u∥2V −

(
1

2
+ η

)[
ν̃ +M2

(
1 +

1

δ

)]
∥u∥2H

−
(
1

2
+ η

)(
C2

1∥u∥2H + 4C2
2

)
=

(
ν − ν̃

(
1

2
+ η

)
(1 + δ)

)
∥u∥2V

−
(
ν + 2|1− ϵ|+ µf ′ +

(
1

2
+ η

)(
ν̃ +M2

(
1 +

1

δ

)
+ C2

1

))
∥u∥2H

−
(
(2 + 4η)C2

2

)
=:θ∥u∥2V −M∥u∥2H − |φ(t)|2,

and θ = ν − (ν − ν0)(1 + 2η)(1 + δ)/2) > 0 for η and δ sufficiently small.

Remark 2. Global existence of a solution to (4.1) under more restrictive as-
sumptions than our Assumption 4.3 can often be proved using the theory for
the variational setting developed in [LR15]. The approach we have taken here
allows us to obtain existence results in the strong variational setting also when
the weak monotonicity condition on the operators −A,B (see (H2) of Chapter
4.1 in [LR15])

V ∗⟨−A(u) +A(v), u− v⟩V + |||B(u)−B(v)|||L2(U,H) ≤ C∥u− v∥H (4.8)

does not hold. Indeed, our Assumption 4.3 admits nonlinearities F that do not
satisfy weak monotonicity, as the following example shows.

For simplicity we assume that B does not depend on (t, x), g1 = g2 = 0, and
|||B(u)−B(v)|||H can be bounded by ∥u−v∥H . Moreover, the term V ∗⟨−A0(u)+
A0(v), u − v⟩V can also be bounded by ∥u − v∥H . Now consider f(u) = −u3
and let v1(x) = |x|2 exp(−|x|2/λ), v2(x) = 0, w1(x) = exp(−|x|2/λ), w2(x) =
0, where λ > 0, and u1(x) = v1(x) + w1(x), u2(x) = 0. We will show by
contradiction that weak monotonicity cannot hold for this choice of u, v, that
is, there is no constant C > 0 such that V ∗⟨F (u)− F (v), u− v⟩V ≤ C∥u− v∥H

16



for all λ > 0. We begin with a scaling argument to simplify the necessary
computations. Assume (4.8) holds, then for ρ > 0

V ∗⟨F (u)− F (v),u− v⟩V

=

∫
Rd

∇(f(u1(ρx))− f(v1(ρx))) · ∇(u1(ρx)− v1(ρx)) dx

+

∫
Rd

(f(u1(ρx))− f(v1(ρx)))(u1(ρx)− v1(ρx)) dx

=

∫
Rd

(−3u1(ρx)2∇u1(ρx) + 3v1(ρx)
2∇v1(ρx)) · ∇w1(ρx) dx

+

∫
Rd

(u1(ρx)
3 − v1(ρx)3)w1(ρx) dx

=ρ

∫
Rd

(−3u1(y)2∇u1(y) + 3v1(y)
2∇v1(y) · ∇w1(y) dy

+
1

ρ

∫
Rd

(u1(y)
3 − v1(y)3)w1(y) dy

≲∥u1 − v1∥H1(Rd)

=

∫
Rd

|∇u1(ρx)−∇v1(ρx)|2 + |u1(ρx)− v1(ρx)|2 dx

=ρ

∫
Rd

|∇u1(y)−∇v1(y)|2 dy +
1

ρ

∫
Rd

|u1(y)− v1(y)|2 dy.

Thus, dividing both sides by ρ and letting ρ→∞ shows that if weak monoton-
icity holds, then∫

Rd

∇(f(u1)− f(v1)) · ∇(u1 − v1) dx ≤
∫
Rd

|∇(u1 − v1)|2 dx.

For our choice of u, v, w we have∫
Rd

|∇w1(x)|2 dx =
16

λ2

∫
Rd

|x|2e−2|x|2/λ dx

=
16

λ2

∫
S1

∫ ∞

0

r2e−2r2/λ dr dS(y)

=|S1|
√

π

2λ

→0

as λ → ∞, where we made a change to polar coordinates in the second step.
On the other hand,∫

Rd

(−3u1(x)2∇u1(x) + 3v1(x)
2∇v1(x)) · ∇w1(x) dx

=

∫
Rd

e−4|x|2/λ
(
|x|2

(
4

λ
− 4

λ2

)
+ |x|4

(
8

λ
− 12

λ2

)
− 12

λ2
|x|6
)

dx
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=

∫
S1

∫ ∞

0

e−4r2/λ

(
r2
(
4

λ
− 4

λ2

)
+ r4

(
8

λ
− 12

λ2

)
− 12

λ2
r6
)

dr dS(y)

=|S1|
√
π

(
3

256
λ3/2 − 32

√
λ− 4√

λ

)
→∞

as λ→∞, contradicting our assumption that (4.8) holds.

5 FitzHugh-Nagumo Equations in the Lp(Lq(Td))-
Setting

5.1 Local Well-Posedness and Blow-Up Criteria

In Section 4 we considered the FitzHugh-Nagumo equations (4.1) in the weak
and the strong variational setting. In the weak variational setting we proved
(global) well-posedness for d = 1. By increasing the assumed differentiability
of the first component in the strong variational setting we were able to prove
(global) well-posedness for dimension d ≤ 4. However, in the latter setting
we needed to make restrictive assumptions on the non-linearity G, namely the
components g1 and g2 of G could only depend on the corresponding component
of u, due to the mismatch in smoothness between the two components of u. In
the present section we consider the FitzHugh-Nagumo equations (4.1) in the
Lp(Lq(Td))-setting, where the additional flexibility in the integrability of the
second component of the equations allows us to obtain (global) well-posedness
results under more general assumptions.

Our approach in this section follows the theory of reaction-diffusion equa-
tions on the periodic torus Td developed in [AV23b]. Therefore, we consider the
FitzHugh-Nagumo equations (4.1) on the periodic torus Td first and attempt to
generalise our results to unbounded domains in later sections. Since the second
component of (4.1) does not involve a Laplace operator, the uniform ellipticity
condition of Assumption 5.1(3) only holds for the first component of the system
(4.1), and we need to make some adjustments to the theory of reaction-diffusion
equations in [AV23b] to accommodate the second component. We let δ ∈ [1, 2),
η ∈ (0, 2− δ], q ≥ 2 and consider the spaces

X0 = H−δ,q(Td)⊕H2−δ−η,q(Td) =: X1
0 ⊕X2,

X1 = H2−δ,q(Td)⊕H2−δ−η,q(Td) =: X1
1 ⊕X2,

Xβ := [X0, X1]β = H2β−δ,q(Td)⊕H2−δ−η,q(Td),

(5.1)

where β ∈ (0, 1). As before, we will write H−δ,q, H2−δ,q etc. instead of
H−δ,q(Td), H2−δ,q(Td) when no confusion can arise, and we will use the short-
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hand notation X1
β = [X1

0 , X
1
1 ]β . On these spaces we consider the operators

Ã0 : [0, T ]×XTr
κ,p × Ω→ L(X1, X0) :

Ã0(t, u, ω) =

(
−ν∆u1

0

)
,

(5.2)

Apert : [0, T ]× Ω→ L(X1, X0) :

Apert(t, u, ω) =

(
u2

−ϵu1 + γϵu2

)
,

(5.3)

f : X1 → X0 :

f(u) =

(
f(u1(t, x))

0

)
,

(5.4)

B0 : [0, T ]×XTr
κ,p × Ω→ L(X1, γ(U,X1/2)) :

B0(t, u, ω) =

(
u(t, x) 7→

(
(bk(t, x) · ∇u1(t, x))k≥1

0

))
,

(5.5)

G : [0, T ]×X1 × Ω→ γ(U,X1/2) :

G(t, u, ω) =

(
(g1,k(t, u(t, x)))k≥1

(g2,k(t, u(t, x)))k≥1

)
,

(5.6)

and we define A0 = Ã0+Apert, A = A0−F and B = B0+G. We now extend the
results of the reaction-diffusion framework of [AV23b] to the FitzHugh-Nagumo
equations.

Assumption 5.1. Let d ≥ 2. We say that Assumption 5.1(p, q, h, δ) holds if
p ∈ (2,∞), q ∈ [2,∞), h > 1, δ ∈ [1, 2), η ∈ (0, 2 − δ] and for i = 1, 2 the
following hold:

1. For each j ∈ {1, . . . , d}, bj := (bjk)k≥1 : R≥0 ×Ω× Td → ℓ2 is P ⊗ B(Td)-
measurable,

2. There exist N > 0 and α > max{dρ , δ − 1} with ρ ∈ [2,∞) such that a.s.

for all t ∈ R≥0 and j ∈ {1, . . . , d}

∥(bjk(t, ·))k≥1∥Hα,ρ(ℓ2) ≤ N, (5.7)

3. There exists a ν0 ∈ (0, ν) such that, a.s. for all t ∈ R≥0, x ∈ Td, ξ ∈ Rd

d∑
j,l=1

νδj,l − 1

2

∑
k≥1

bjk(t, x)b
l
k(t, x)

 ξjξl ≥ ν0|ξ|2, (5.8)

4. The map f : R → R is B(R)-measurable and the maps gi := (gk,i)k≥1 :
R≥0×Ω×R2 → ℓ2 are P⊗B(R2)-measurable. Moreover, for any y, y′ ∈ R

f(·, 0) = 0
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µf ′ := sup
y∈R

f ′(y) <∞,

|f(y)− f(y′)| ≤ C1(1 + |y|h−1 + |y′|h−1)|y − y′|,
gi(·, 0) ∈ L∞(R≥0 × Ω;C1(Td; ℓ2)),

for any y, y′ ∈ R2,

∥g1(t, y)− g1(t, y′)∥ℓ2 ≤ C1(|y1 − y′1|+ |y2 − y′2|),
∥g2(t, y)− g2(t, y′)∥ℓ2 ≤ C1(|y1 − y′1|+ |y2 − y′2|),

and for u, v ∈ X1,

∥g2(t, u)− g2(t, v)∥X2(ℓ2) ≤ C1(∥u1 − v1∥X2(ℓ2) + ∥u2 − v2∥X2(ℓ2))

We define a solution to the FitzHugh–Nagumo equations in the Lp(Lq(Td))-
setting as follows.

Definition 5.2 (Solution; Definition 2.3 in [AV23b]). Let Assumption 5.1(p, q, h, δ)
be satisfied for some h > 1 and let κ ∈ [0, p2 − 1).

• Let σ be a stopping time taking values in [0,∞] and let u : [0, σ) ×
Ω → H2−δ,q ⊕H2−δ−η,q be a stochastic process. We say (u, σ) is a local
(p, κ, δ, η, q)-solution to (4.1) if there exists a sequence of stopping times
(σj)j≥1 such that

– σj ≤ σ a.s. for all j ≥ 1 and limj→∞ σj = σ a.s.,

– for all j ≥ 1 the process 1[0,σj ]×Ωu is progressively measurable,

– a.s. for all j ≥ 1 we have ui ∈ Lp(0, σj , wκ;H
2−δ,q ⊕H2−δ−η,q) and

f(·, u) ∈ Lp(0, σj , wκ;H
−δ,q ⊕H2−δ−η,q)),

G(·, u) ∈ Lp(0, σj , wκ;H
1−δ,q(ℓ2)⊕H2−δ−η,q(ℓ2)),

– a.s. for all j ≥ 1, for all t ∈ [0, σj ] it holds

u1(t)− u0,1 =

∫ t

0

ν∆u1 + f(u1)− u2 ds

+
∑
k≥1

∫ t

0

[(bk · ∇)u1 + g1,k(·, u)] dW1(s)

u2(t)− u0,1 =

∫ t

0

ϵu1 − ϵγu2 ds

+
∑
k≥1

∫ t

0

g2,k(·, u) dW2(s)

• (u, σ) is a (p, κ, δ, η, q)-solution to (4.1) if for every other local (p, κ, δ, η, q)-
solution (u′, σ′) it holds that a.s. σ′ ≤ σ and u = u′ on [0, σ′)× Ω.
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Assumption 5.3 (Assumption 2.4 in [AV23b]). Let d ≥ 2. Assumption 5.3(p, q, h, δ)
holds if p ∈ (2,∞), q ∈ [2,∞), h > 1 and δ ∈ [1, h+1

h ) satisfy

1

p
+

1

2

(
δ +

d

q

)
≤ h

h− 1
,

d

d− δ
< q <

d(h− 1)

h+ 1− δ(h− 1)
. (5.9)

Theorem 5.4 (Local Existence, Uniqueness, and Regularity). Suppose that

Assumption 5.1(p, q, h, δ) holds, q > max
{

d
d−δ ,

d(h−1)
2h−δ(h−1)

}
and that κ ∈ [0, p2 −

1) satisfies either

q <
d(h− 1)

δ
and

1 + κ

p
+

1

2

(
δ +

d

q

)
≤ h

h− 1
(5.10)

or

q ≥ d(h− 1)

δ
and

1 + κ

p
≤ h

h− 1

(
1− δ

2

)
. (5.11)

Then for any η ∈ (0, 2− δ] and

u0 ∈ L0
F0

(
Ω;B

2−δ−2
1+κ
p

q,p ⊕H2−δ−η,q

)
(5.12)

there exists a unique (p, κ, δ, η, q)-solution (u, σ) to (4.1) such that a.s. σ > 0
and

u ∈ Lp
loc([0, σ), wk;H

2−δ,q ⊕H2−δ−η,q) ∩ C

(
[0, σ);B

2−δ−2
1+κ
p

q,p ⊕H2−δ−η,q

)
.

(5.13)
Moreover, u regularises instantaneously in time and, in addition, u1 regularises
instantaneously in space; let

b =

{
∞ if δ + η + d

q ≤ 2,

max{d/(δ + η + d
q − 2), q} if δ + η + d

q > 2,

then

u ∈ Hθ,r
loc

(
0, σ;H1−2θ,ζ ⊕H2−δ−η,q

)
a.s. for all θ ∈ [0, 1/2), r ∈ (2,∞), ζ ∈ (2, b)

(5.14)

and

u1 ∈ Cθ1,θ2
loc

(
(0, σ)× Rd

)
a.s. for all θ1 ∈ [0, 1/2), θ2 ∈

(
0, 1− d

b

)
. (5.15)

Remark 3. Note that (5.14) holds in any case for ζ = q. Moreover, we prove
local well-posedness for general h > 1, which will be used in our proof of global
well-posedness. However, for the FitzHugh–Nagumo Equations (4.1) we assume
h = 3.

The proof of Theorem 5.4 shows that the integrability in space that can be
obtained is limited by the smoothness of u2. This is reflected in our use of the
Sobolev embedding H2−δ−η,q ↪→ H−1,ζ in Step 3 of the proof.
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In the proof of Theorem 5.4 we will use the following lemma, the proof of
which can be found in [AV23b].

Lemma 5.5 (Lemma 3.2 in [AV23b]). Suppose that Assumption 5.1(p, q, h, δ, η)
holds and let

Φ(t, v) := f(v)

Moreover, suppose that q > max
{

d
d−δ ,

d(h−1)
2h−δ(h−1)

}
. Let ρ1 = h− 1 and

β1 =

{
1
2

(
δ + d

q

) (
1− 1

h

)
, if q < d(h−1)

δ ,

δ
2 , if q ≥ d(h−1)

δ .

Then β1 ∈ (0, 1) and for v, v′ ∈ X1
1 , Φ is a lower-order nonlinearity, that is,

∥Φ(·, v)− Φ(·, v′)∥X1
0
≲ (1 + ∥v∥ρ1

Xβ1
+ ∥v′∥ρ1

Xβ1
)∥v − v′∥Xβj

∥Φ(·, v)∥X1
0
≲ (1 + ∥v∥ρ1

Xβ1
)∥v∥Xβ1

.

Proof of Theorem 5.4. Existence and uniqueness. We would like to apply [AV22a,
Theorem 4.8]. To this end, we verify that [AV22a, Hypothesis (H) ] is satisfied
and that (A0, B0) ∈ SMR•

p,κ(T ) for all T ∈ (0,∞).
By Assumption 5.1(4), the first component of f satisfies the conditions of

Lemma 5.5 with β1 as given in the lemma. Since the second component is 0, it
follows that [AV22a, hypothesis (HF) ] holds. For the first component of G we
have by Assumption 5.1(4) for u, v ∈ X1

∥g1(u)− g1(v)∥γ(ℓ2;X1
1/2

) ≲ ∥u1 − v1∥Lq + ∥u2 − v2∥Lq

≲ ∥u1 − v1∥(H−δ,q,H2−δ,q)β2
+ ∥u2 − v2∥H2−δ−η,q

= ∥u− v∥Xβ2
,

(5.16)

for any β2 ∈ [ δ2 , 1), where we used that δ + η ∈ (0, 2]. Due to the linear
growth of g1 we can thus choose β2 ∈ (1 − 1+κ

p , 1) sufficiently close to 1 and

ρ2 ≥ 0 sufficiently small such that 1+κ
p ≤ ρ2+1

ρ2
(1−β2) and thus (4.3) of [AV22a,

(Hypothesis (HG) ] holds. Similarly, for the second component of G we have by
Assumption 5.1(4) for u, v ∈ X1

∥g2(u)− g2(v)∥γ(ℓ2;X1/2) ≲ ∥u1 − v1∥H2−δ−η,q + ∥u2 − v2∥H2−δ−η,q

≲ ∥u1 − v1∥(H−δ,q,H2−δ,q)β3
+ ∥u2 − v2∥H2−δ−η,q

= ∥u− v∥Xβ3
,

(5.17)

for any β3 ∈ [1 − η
2 , 1), and since η ∈ (0, 2 − δ] we can again choose β3 ∈

(1− 1+κ
p , 1) sufficiently close to 1 and ρ3 ≥ 0 sufficiently small such that (4.3) of
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[AV22a, Hypothesis (HG) ] holds, from which it follows that [AV22a, Hypothesis
(HG) ] also holds and we conclude that [AV22a, Hypothesis (H) ] holds. To verify
that (A0, B0) ∈ SMR•

p,κ we first note that (Ã0, B0) ∈ SMR•
p,κ(T ); for the first

component this follows from [AV21, Theorem 5.2 and Remark 5.6], and for the
second component this is immediate from the definition of stochastic maximum
regularity [AV21, Definition 2.3]. To establish stochastic maximum regularity
of (A0, B0), we apply the perturbation result [AV21, Theorem 3.2]. Let u ∈ X1

and fix ϵ0 > 0 arbitrarily small, then we have

∥Apertu∥X0
≤∥u2∥H−δ,q + ϵ∥u1∥H2−δ−η,q + ϵγ∥u2∥H2−δ−η,q

≲(1 + ϵγ)∥u2∥H2−δ−η,q + ϵ∥u1∥1−η/2

H−δ,q ∥u1∥η/2H2−δ,q ,

by the Gagliardo-Nirenberg inequality,

≤(1 + ϵγ)∥u2∥H2−δ−η,q + ϵ
(
1− η

2

)
ϵ
−η/(2−η)
0 ∥u1∥H−δ,q

+ ϵ
1

2
ηϵ

2/η
0 ∥u1∥H2−δ,q

≤Cϵ,γ,η,ϵ0∥u∥X0 + ϵ
2/η
0 Cϵ,η∥u∥X1 ,

(5.18)

Thus, ∥Apertu∥X0 can be bounded by ∥u∥X0 and ∥u∥X1 , where the constant for
∥u∥X1 is arbitrarily small, and [AV21, Theorem 3.2] yields (A0, B0) ∈ SMR•

p,κ.
Finally, we check [AV22a, Assumption 3.2], which requires that there is a con-
stant CA0,B0

such that ∥A0∥L(X1,X0) + ∥B0∥L(X1,γ(U,X1/2)) ≤ CA0,B0
. The ex-

istence of such a constant for B0 is clear. For A0 we have for u ∈ X1:

∥A0u∥X0
≤∥∆u1∥H−δ,q + ∥u2∥H−δ,q + ϵ∥u1∥H2−δ−η,q + ϵγ∥u2∥H2−δ−η,q

≤(1 + ϵ+ ϵγ)∥u∥X1

Now [AV22a, Theorem 4.8] gives the existence of a unique (p, κ, δ, q)-solution
with

u ∈Hθ,p
loc ([0, σ), wk;H

2−δ−2θ,q ⊕H2−δ−η,q)

∩ C

(
[0, σ);B

2−δ−2
1+κ
p

p,q ⊕H2−δ−η,q

)
a.s.

for all θ ∈ [0, 1/2), from which the regularity properties (5.13) follow by weighted
Sobolev embedding [AV22a, Proposition 2.7].

Instantaneous regularisation. Our proof follows the general lines of the proof
of [AV23b, Proposition 3.1] with some adjustments for the limited regularity of
u2.

Step 1. We bootstrap regularity in time using [AV22b, Corollary 6.5 or
Proposition 6.8] to show that

u ∈ ∩θ∈[0,1/2)H
θ,r
loc (0, σ;H

2−δ−2θ,q⊕H2−δ−η,q) a.s. for all r ∈ (2,∞). (5.19)

As in [AV23b],
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• If κ = 0 we choose r ∈ (p,∞) and α ∈ (0, r2 − 1) such that

1

p
=

1 + α

r
and

1

r
≥ max

j∈{1,2,3}
βj − 1 +

1

p

and apply [AV22b, Proposition 6.8],

• If κ > 0 we let (r, α) = (p, κ) and apply [AV22b, Corollary 6.5],

and we let Xi = Yi = H2i−δ,q ⊕ H2−δ−η,q, i ∈ {0, 1}. The (X0, X1, κ, p)-
setting agrees with the setting in our existence proof, so [AV22b, Hypothesis
(H)] is satisfied. Moreover, [AV22b, Assumption 4.5] holds since (A0, B0) are
independent of u, and [AV22b, Assumption 4.7] holds by [AV22b, Remark 4.8].
In the (Y0, Y1, α, r)-setting [AV22b, Hypothesis (H)] holds by Lemma 5.5 applied
to F , the arguments given in the existence proof for G, and our choice of the
parameters (α, r) above (in particular, 1

p = 1+α
r ≤ 1+κ

p ). Moreover, we check
the required embeddings:

• Y Tr
r = B

2−δ−2/r
q,r ⊕H2−δ−η,q ↪→ B

2−δ−2/p
q,p ⊕H2−δ−η,q = XTr

r by our choice
of r ≥ p,

• Yi = Xi for i ∈ {0, 1}.

An application of [AV22b, Corollary 6.5], or [AV22b, Proposition 6.8] if κ = 0,
now gives (5.19).

Step 2. We bootstrap differentiability in space using [AV22b, Theorem 6.3]
to show that

u ∈ ∩θ∈[0,1/2)H
θ,r
loc (0, σ;H

1−2θ,q ⊕H2−δ−η,q) a.s. for all r ∈ (2,∞). (5.20)

We may assume that δ ∈ (1, 2) since otherwise the result already follows from

(5.19). Moreover, we choose r > max
{
p, 2

2−δ

}
such that

1

r
+
δ − 1

2
<

h

2(h− 1)
,

which is possible since δ−1
2 < h

2(h−1) always holds. We consider the spaces

Yi = Xi = H2i−δ,q ⊕H2−δ−η,q Ŷi = H2i−1,q ⊕H2−δ−η,q, i ∈ {1, 2},

and we set the parameters

r̂ = r, α = 0, α̂ =
r(δ − 1)

2
.

Note that whilst [AV23b] bootstrap integrability in space first and therefore
may assume that (5.11) applies, we need to consider both cases (5.10) and
(5.11) in the settings (X0, X1, p, κ), (Y0, Y1, r, α), (Ŷ0, Ŷ1, r̂, α̂). However, the
choice of parameters (r, α, r̂, α̂) given above is sufficient in all cases. By Lemma
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5.5 together with the arguments in the proof of [AV23b, Part A of Proposi-
tion 3.1] it follows that [AV22b, Hypothesis (HF)] holds in the (Y0, Y1, r, α) and
the (Ŷ0, Ŷ1, r̂, α̂) setting, and both are not critical. In the (Y0, Y1, r, α)-setting
[AV22b, (HG)] holds by the same argument as in Step 1, and in the (Ŷ0, Ŷ1, r, α)-
setting we can repeat the computations (5.16)-(5.17) with Ŷ1/2 = Lq⊕H2−δ−η,q

and using that H1,q ↪→ H2−δ−η,q ↪→ Lq ↪→ H−1,q since δ + η ∈ (0, 2] to
show that [AV22b, (HG)] holds. Using the latter embeddings, and repeating
the computations (5.18) and the arguments preceding it, we can show that
(A0, B0) ∈ SMR•

p,κ also in the (Ŷ0, Ŷ1, r, α)-setting. By [AV22b, Lemma 6.2]

with ϵ = δ−1
2 [AV22b, (6.1)] holds. Finally, we check that the required embed-

dings hold:

• Y Tr
r = B

2−δ−2/r
q,r ⊕H2−δ−η,q ↪→ B

2−δ−2/p
q,p ⊕H2−δ−η,q = XTr

p holds since
r > p,

• There exists a λ ∈ (0, 1) such that 1
r + λ ≤ 1

p and Yλ = H2λ−δ,q ⊕
H2−δ−η,q ↪→ H−δ,q ⊕ H2−δ−η,q = X0 and Y1 = H2−δ,q ⊕ H2−δ−η,q ↪→
H2(1−λ)−δ,q ⊕H2−δ−η,q = X1−λ,

• Ŷi ↪→ Yi holds since δ > 1,

• Y Tr
r = B

2−δ−2/r
q,r ⊕H2−δ−η,q = B

2−δ−2/r
q,r ⊕H2−δ−η,q = Ŷ Tr

α̂,r̂ by the choice
of parameters (r̂, α̂).

An application of [AV22b, Theorem 6.3] now gives (5.20).
Step 3. We bootstrap integrability in space using [AV22b, Theorem 6.3] to

show that

u ∈ ∩θ∈[0,1/2)H
θ,r
loc (0, σ;H

1−2θ,ζ ⊕H2−δ−η,q) a.s. for all r ∈ (2,∞), ζ ∈ (2, 4).
(5.21)

As in [AV23b], we prove the claim by an inductive argument. Specifically,
we claim that there exists an ϵ0 > 0 that depends only on (r, δ, q, h, d) such that

u ∈ ∩θ∈[0,1/2) H
θ,r
loc (0, σ;H

1−2θ,ζ ⊕H2−δ−η,q) a.s.

=⇒ u ∈ ∩θ∈[0,1/2)H
θ,r
loc (0, σ;H

1−2θ,ζ+ϵ0 ⊕H2−δ−η,q) a.s.
(5.22)

for all ζ > 2 if δ+η+ d
q ≤ 2, and for all ζ+ϵ0 < d/(δ+η+ d

q −2) if δ+η+ d
q > 2.

Suppose the left-hand side of (5.22) holds. We now find r1, r2 > p and
α1, α2 > 0 such that

1 + α1

r1
+

1

2

(
δ +

d

2

)
<

h

h− 1
and

1 + α2

r2
<

h

h− 1

(
1− δ

2

)
,

and we let r = max{r1, r2}, α = min{α1, α2}. Since 2 < p ≤ ζ, the former
guarantees that (r, ζ, δ, h) and (r, ζ + ϵ0, δ, h) satisfy either (5.10) or (5.11). We
now consider the spaces

Xi = H2i−δ,q ⊕H2−δ−η,q, Yi = H2i−1,ζ ⊕H2−δ−η,q,
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Ŷi = H2i−1,ζ+ϵ0 ⊕H2−δ−η,q, i ∈ {1, 2}

and we set the parameters
r̂ = r, α̂ = α.

By Lemma 5.5 together with the arguments in the proof of [AV23b, Part
A of Proposition 3.1] it follows that [AV22b, Hypothesis (HF)] holds in the
(Y0, Y1, r, α) and the (Ŷ0, Ŷ1, r̂, α̂) setting, and both are not critical. To check
that [AV22a, Hypothesis (HG) ] holds, we repeat the computations in (5.16)-
(5.17). For the first component of G we have by Assumption 5.1(4) for u, v ∈ Y1

∥g1(u)− g1(v)∥γ(ℓ2;Y 1
1/2

) = ∥g1(u)− g1(v)∥Lζ

≲ ∥u1 − v1∥Lζ + ∥u2 − v2∥Lζ

≲ ∥u1 − v1∥(H−1,ζ ,H1,ζ)β2
+ ∥u2 − v2∥H2−δ−η,q

= ∥u− v∥Yβ2
,

(5.23)

for any β2 ∈ [ 12 , 1), where we used the Sobolev embedding Lζ ←↩ H2−δ−η,q

with −d
ζ ≤ 2 − δ − η − d

q and δ + η ∈ (0, 2]. Note that our use of the latter
embedding result means in particular that we cannot bootstrap integrability in
space if δ + η = 2. Due to the linear growth of g1 we can thus again choose
β2 ∈ (1 − 1+κ

p , 1) sufficiently close to 1 and ρ ≥ 0 sufficiently small such that
1+κ
p ≤ ρ+1

ρ (1 − β2) and (4.3) of [AV22a, (Hypothesis (HG) ] holds. For the

second component of G we have by Assumption 5.1(4) for u, v ∈ Y1

∥g2(u)− g2(v)∥γ(ℓ2;Y1/2) = ∥g2(u)− g2(v)∥X2
0 (ℓ

2)

≲ ∥u1 − v1∥H2−δ−η,q + ∥u2 − v2∥H2−δ−η,q

≲ ∥u1 − v1∥H2−δ−η,ζ + ∥u2 − v2∥H2−δ−η,q

≲ ∥u1 − v1∥(H−1,ζ ,H1,ζ)β3
+ ∥u2 − v2∥H2−δ−η,q

= ∥u− v∥Yβ3
,

(5.24)

for any β3 ∈ [1 − η
2 , 1), where we used that H2−δ−η,q ←↩ H2−δ−η,ζ on the

bounded domain Td. We can now again choose β3 ∈ (1 − 1+κ
p , 1) sufficiently

close to 1 and ρ ≥ 0 sufficiently small such that (4.3) of [AV22a, (Hypo-
thesis (HG) ] holds, from which it follows that [AV22a, hypothesis (HG) ]
also holds and we conclude that [AV22a, hypothesis (H) ] holds. We verify
that (A0, B0) ∈ SMR•

p,κ in the same way as in our existence proof. We have

(Ã0, B0) ∈ SMR•
p,κ(T ), which for the first component follows from [AV21, The-

orem 5.2 and Remark 5.6], and for the second component it is immediate from
the definition of stochastic maximum regularity [AV21, Definition 2.3]. We can
thus establish stochastic maximum regularity of (A0, B0), by applying the per-
turbation result [AV21, Theorem 3.2]. Let u ∈ Y1 and fix ϵ1 > 0 arbitrarily

26



small, then we have

∥Apertu∥Y0
≤∥u2∥H−1,ζ + ϵ∥u1∥H2−δ−η,q + ϵγ∥u2∥H2−δ−η,q

≲(1 + ϵγ)∥u2∥H2−δ−η,q + ϵ∥u1∥H2−δ−η,ζ ,

by the Sobolev embedding H−1,ζ ←↩ H2−δ−η,q with −1− d
ζ ≤ 2− δ− η− d

q and

the embedding H2−δ−η,q ←↩ H2−δ−η,ζ on the bounded domain Td, and by the
Gagliardo-Nirenberg inequality

∥Apertu∥Y0
≲(1 + ϵγ)∥u2∥H2−δ−η,q + ϵ∥u1∥(δ+η−1)/2

H−1,ζ ∥u1∥(3−δ−η)/2

H1,ζ

≤(1 + ϵγ)∥u2∥H2−δ−η,q +
ϵ

2
(δ + η − 1) ϵ

−2/(δ+η−1)
1 ∥u1∥H−δ,q

+
ϵ

2
(3− δ − η)ϵ2/(3−δ−η)

1 ∥u1∥H2−δ,q

≤Cϵ,γ,η,ϵ0∥u∥X0
+ ϵ

2/(3−δ−η)
1 Cϵ,η∥u∥X1

,

(5.25)

Thus, ∥Apertu∥Y0
can be bounded by ∥u∥Y0

and ∥u∥Y1
, where the constant for

∥u∥Y1
is arbitrarily small, and [AV21, Theorem 3.2] yields (A0, B0) ∈ SMR•

p,κ.
Repeating the same computations with ζ replaced by ζ+ ϵ0 shows that [AV22b,
Hypothesis (H)] holds if ϵ0 is sufficiently small and that (A0, B0) ∈ SMR•

p,κ

also in the (Ŷ0, Ŷ1, r̂, α̂)-setting. By [AV22b, Lemma 6.2] also [AV22b, (6.1)]
holds. Finally, we check that the required embeddings hold:

• Y Tr
r = B

1−2/r
ζ,r ⊕ H2−δ−η,q ↪→ B

2−δ−2/p
q,p ⊕ H2−δ−η,q = XTr

p holds since
r > p, ζ ≥ q,

• There exists a λ ∈ (0, 1) such that 1
r+λ ≤

1
p and Yλ = H2λ,q⊕H2−δ−η,q ↪→

H−δ,q ⊕ H2−δ−η,q = X0 and Y1 = H1,q ⊕ H2−δ−η,q ↪→ H2(1−λ)−δ,q ⊕
H2−δ−η,q = X1−λ,

• Ŷi ↪→ Yi since ϵ0 > 0 and H2i−1,ζ+ϵ0 ↪→ H2i−1,ζ on the bounded domain
Td,

• Y Tr
r = B

1−2/r
ζ,r ⊕ H2−δ−η,q = B

1−2(1+α)/r
ζ+ϵ,r ⊕ H2−δ−η,q = Ŷ Tr

α̂,r̂ holds by
Sobolev embedding if

1− 2

r
− d

ζ
≥ 1− 2

1 + α

r
− d

ζ + ϵ
.

Since ζ ≥ 2, a sufficient choice for the last embedding is ϵ0 ≤ α
2r . An application

of [AV22b, Theorem 6.3] now gives (5.22), and, making ϵ0 smaller if necessary,
iterating (5.22) yields (5.21).

Step 4. The result (5.15) follows by the Sobolev embeddings Hθ,r ↪→ Cθ1

if θ − d
r ≥ θ1 > 0 and H1−2θ,ζ ↪→ Cθ2 if 1 − 2θ − d

ζ ≥ θ2 > 0. By Step 1 we

have θ1 ∈ [0, 1/2). If δ + η + d
q ≤ 2, we have θ2 ∈ (0, 1), whilst if δ + η + d

q > 2,
the limits on integrability in space obtained in Step 3 impose the restriction
θ2 ∈ (0, 1− (δ + η + d

q − 2)) if the last term is positive.
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Corollary 5.6 (Local Well-Posedness in Critical Spaces; Theorem 2.7 in [AV23b]).
Suppose that Assumptions 5.1(p, q, h, δ) and 5.3(p, q, h, δ) hold, and set κ =:

κc = p
(

h
h−1 −

1
2

(
δ + d

q

))
− 1. Then for any η ∈ (0, 2− δ] and

u0 ∈ L0

(
Ω;B

d
q−

2
h−1

q,p ⊕H2−δ,q

)
(5.26)

there exists a unique (p, κc, δ, η, q)-solution (u, σ) such that a.s. σ > 0 and

u ∈ C([0, σ);B
d
q−

2
h−1

q,p ⊕H2−δ−η,q) a.s. (5.27)

u ∈ Hθ,p
loc

(
[0, σ), wκc

;H2−δ−2θ,q ⊕H2−δ−η,q
)
a.s. for all θ ∈ [0, 1/2). (5.28)

Moreover, u regularises instantaneously in time and, in addition, u1 regularises
instantaneously in space; let

b =

{
∞ if δ + η + d

q ≤ 2,

max{d/(δ + η + d
q − 2), q} if δ + η + d

q > 2,

then

u ∈ Hθ,r
loc

(
0, σ;H1−2θ,ζ ⊕H2−δ−η,ζ

)
a.s. for all θ ∈ [0, 1/2), r ∈ (2,∞), ζ ∈ (2, b),

(5.29)

and

u1 ∈ Cθ1,θ2
loc

(
(0, σ)× Td

)
a.s. for all θ1 ∈ [0, 1/2), θ2 ∈

(
0, 1− d

b

)
. (5.30)

Proof. Corollary 5.6 is a direct consequence of Theorem 5.4. The proof that
[AV23b, Theorem 3.1] implies their [AV23b, Theorem 2.7] carries over verbatim
as it only requires checking that the conditions on (p, q, h, δ, κc) given in Corol-
lary 5.6 are compatible with the conditions of Theorem 5.4.

Theorem 5.7 (Blow-Up Criteria). Let the assumptions of Corollary 5.6 be
satisfied and let (u, σ) be the (p, κc, δ, q)-solution to (4.1). Suppose further that
p0 ∈ (2,∞), h0 ≥ h, δ0 ∈ [1, 2) are such that Assumptions 5.1(p0, q, h0, δ0) and
5.3(p0, q, h0, δ0) hold. Let

β0 =
d

q
− 2

h0 − 1
, γ0 =

d

q
+

2

p0
− 2

h0 − 1
.

If η0 ∈ (0, 2− δ0] is such that δ + η = δ0 + η0, then for all 0 < s < T <∞

P( sup
t∈[s,σ]

∥u(t)∥
B

β0
q,p0

⊕H2−δ0−η0,q

+ ∥u∥Lp0 (s,σ;Hγ0,q⊕H2−δ0−η0,q) <∞, s < σ < T ) = 0.
(5.31)
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Proof. The proof follows the lines of the proof given in [AV23b]. Fix 0 < s <
T < ∞ and let (u, σ) be the (p, κc, δ, q)-solution to (4.1). Let (p0, δ0, h0, β0)

be as in Theorem 5.7. Set κc,0 = p0

(
h0

h0−1 −
1
2

(
δ0 +

d
q

))
− 1. By the reg-

ularisation result (5.27) and the assumptions of Theorem 5.7 we have u2 ∈
C((0, σ);H2−δ−η,q) = C((0, σ);H2−δ0−η0,q) for some η0 ∈ (0, 2− δ0]. Moreover,
using the regularisation result (5.29) (instead of the regularisation result (5.30)
together with the embedding Cθ ↪→ Bβ0

q,p0
for θ ∈ (β0 ∧ 0, 1) used in [AV23b])

and the embeddings H1−2θ,q ↪→ B1−2θ
q,∞ ↪→ Bβ0

q,p0
for a suitable θ ∈ [0, 1/2),

which exists since β0 < 1, we obtain

1{σ>s}u(s) ∈ L0
Fs

(Ω;Bβ0
q,p0
⊕H2−δ0−η0,q).

We can now consider the SPDE
dv1(t, x) = (ν∆v1(t, x) + f(v1(t, x))− v2(t, x)) dt

+
∑

k≥1 [bk(t, x) · ∇v1(t, x) + g1,k(t, v(t, x))] dW1(t)

dv2(t, x) = ϵ(v1(t, x)− γv2(t, x)) dt+
∑

k≥1 g2,k(t, v(t, x)) dW2(t),

(5.32)

with vi(s) = 1{σ>s}ui(s), which by Theorem 5.4 has unique (p0, κc,0, δ0, q)-
solution (v, τ) on the interval [s,∞) such that

v ∈ Hθ,r((s, τ), ws
κ;H

1−2θ,ζ ⊕H2−δ−η,q) ∩ C([s, τ);Bβ0
q,p0
⊕H2−δ0−η0,q)

∀θ ∈ [0, 1/2), r ∈ (2,∞), ζ ∈ (2, b),
(5.33)

with b as given in Theorem 5.4. Applying the blow-up criterion in the abstract
setting provided in [AV22b, Theorem 4.10(3)], we obtain

P( sup
t∈[s,τ ]

{∥v1(t)∥Bβ0
q,p0

+ ∥v2(t)∥H2−δ0−η0,q}+ ∥v1∥Lp0 (s,τ ;Hγ0,q)

+ ∥v2∥Lp0 (s,τ ;H2−δ0−η0,q) <∞, τ < T ) = 0.

It remains to show that the solution (v, τ) agrees with (u, σ), specifically,

τ = σ a.s. on {σ > s}, u = v a.e. on [s, σ)× {σ > s}. (5.34)

Note that by (5.29) and the assumption h0 ≥ h we have that (u|[s,σ),1{σ>s}σ+
1Ω\{σ>s}s) is a (p0, κ0, δ0, q)-solution to (5.32), and by maximality of (v, τ) we
have

σ ≤ τ on {σ > s}, u = v a.s. on [s, σ)× {σ > s}.

Applying the blow-up criteria in the abstract setting [AV22b, Theorem
4.10(3)] to u yields

P(σ < T, sup
t∈[0,σ)

{∥u1(t)∥Bβ
q,p

+ ∥u2(t)∥H2−δ−η,q}

+ ∥u1(t)∥Lp(0,σ;Hγ,q) + ∥u2(t)∥Lp(0,σ;H2−δ−η,q) <∞) = 0
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where

β =
d

q
− 2

h− 1
, γ =

d

q
+

2

p
− 2

h− 1
, and κc = p

(
h

h− 1
− 1

2

(
δ +

d

q

))
− 1.

The regularity result (5.33) together with the fact that Assumption 5.3 implies
that γ ≤ 1 give u = v ∈ Lp

loc((s, σ];H
γ,q ⊕ H2−δ−η,q) on {σ > s, σ < τ}. By

(5.27) with θc :=
κc

p < 1
2 −

1
p and weighted Sobolev embeddings we have

u ∈Hθc,p
loc ([0, σ), wκc ;H

2−δ−2θc,q ⊕H2−δ−η,q)

⊆ Lp
loc([0, σ);H

γ,q ⊕H2−δ−η,q) a.s.,

and thus also u ∈ Lp(0, σ;Hγ,q ⊕ H2−δ−η,q) a.s. on {σ < τ}. Similarly, the
regularity result (5.29) applied to v gives u = v ∈ C((s, σ];Bβ

p,q ⊕H2−δ−η,q) on

{σ > s, σ < τ}. By (5.27) we also have u ∈ C([0, σ);Bβ
q,p ⊕ H2−δ−η,q), from

which it follows that u ∈ C([s, σ];Bβ
q,p ⊕H2−δ−η,q) on {σ > s, σ < τ}. We thus

get

P(σ > s, σ < τ) =P(σ > s, σ < τ, sup
t∈[0,σ)

{∥u1(t)∥Bβ
q,p

+ ∥u2(t)∥H2−δ−η,q}

+ ∥u1(t)∥Lp(0,σ;Hγ,q) + ∥u2(t)∥Lp(0,σ;H2−δ−η,q) <∞)

≤P(σ < T, sup
t∈[0,σ)

{∥u1(t)∥Bβ
q,p

+ ∥u2(t)∥H2−δ−η,q}

+ ∥u1(t)∥Lp(0,σ;Hγ,q) + ∥u2(t)∥Lp(0,σ;H2−δ−η,q) <∞) = 0.

Thus, on {σ > s} we have σ = τ as claimed in (5.34).

5.2 Global Well-Posedness

In this section we prove global well-posedness of the FitzHugh-Nagumo Equa-
tions (4.1). We will assume that d ≥ 2; the case d = 1 can be accommodated
by adding a dummy variable in (4.1).

Assumption 5.8 (Lζ-Coercivity; Version of Assumption 4.1 in [AV23a]). Sup-
pose d ≥ 2, Assumption 5.1(p, q, h, δ) holds with h = 3 and let ζ ∈ {q} ∪ (q, b)
with b as in Corollary 5.6. We say that Assumption 5.8 holds if there ex-
ist constants θ,M,C,> 0 such that a.e. on R≥0 × Ω and for all (u1, u2) ∈
C1(Td)⊕ C(Td)∫

Td

|u1|ζ−2
(
∇u1 · ∇u1 −

u1(f(u1)− u2)
ζ − 1

− 1

2

∑
k≥1

[(bk · ∇)u1 + g1,k(·, u)]2
)
dx

≥ θ
∫
Td

|u1|ζ−2(|∇u1|2 −M |u1|2)−M |u2|ζ dx− C.

Remark 4. As pointed out in [AV23a], if Assumption 5.8 holds for (u1, u2) ∈
C1(Td)⊕ C(Td), it can be shown to extend to (u1, u2) ∈ H1,ζ ⊕ Lζ , ζ ≥ d, via
an approximation argument.
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Lemma 5.9 (Lζ-Coercivity for FitzHugh-Nagumo). Suppose the assumptions
of Corollary 5.6 with h = 3 are satisfied. Then Assumption 5.8 holds for all
ζ ∈ {q} ∪ (q, b) with b as in Corollary 5.6.

Proof. Let (u1, u2) ∈ C1(Td)⊕C(Td) and fix ζ ∈ {q}∪(q, b), then by Assumption
5.1 (4) and the mean value theorem∫
Td

−|u1|ζ−2u1f(u1) dx =

∫
Td

−|u1|ζ−2u1u1f
′(ξ) dx

≥− µf ′

∫
Td

|u1|ζ dx,

by Hölder’s and Young’s inequality we estimate∫
Td

|u1|ζ−2u1u2 dx ≥ −
∫
Td

|u1|ζ−1|u2|dx

≥−
(
ζ − 1

ζ

∫
Td

|u1|ζ dx+
1

ζ

∫
Td

|u2|ζ dx
)
,

and by Assumption 5.1 (4) and Hölder’s and Young’s inequality∫
Td

−|u1|ζ−2
∑
k≥1

(g1,k(·, u))2 dx ≥ −(1 + 2C2
1 )

(∫
Td

|u1|ζ dx

+

∫
Td

|u1|ζ−2∥g1(0)∥2ℓ2 + |u1|ζ−2|u2|2) dx
)

≥− (1 + 2C2
1 )
((

3− 4

ζ

)∫
Td

|u1|ζ dx+
2

ζ

∫
Td

∥g1(0)∥ζℓ2 dx

+
2

ζ

∫
Td

|u2|ζ dx
)
,

and ∥g1(0)∥Lζ ;ℓ2 is bounded. Let ν be as in Assumption 5.1 (3). We may assume
without loss of generality that ν < 1. Fix ϵ0 > 0 such that (1 − ν)ϵ0 < ν. We
estimate∫

Td

|u1|ζ−2

|∇u1|2 − 1

2

∑
k≥1

[(bk · ∇)u1 + g1,k(·, u)]2
 dx

≥
∫
Td

|u1|ζ−2

|∇u1|2 − 1

2

∑
k≥1

[|bk|2|∇u1|2(1 + ϵ0) + Cϵ0 |g1,k(·, u)|2
 dx

and Assumption 5.1 (3) yields |∇u1|2 − 1+ϵ0
2

∑
k≥1 |bk|2|∇u1|2 ≥ (ν − ϵ0(1 −

ν))|∇u1|2, from which it follows

≥
∫
Td

|u1|ζ−2

(ν − ϵ0(1− ν))|∇u1|2 −
1

2

∑
k≥1

Cϵ0 |g1,k(·, u)|2
 dx,

and we already obtained an estimate for the last term in the sum above.
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Theorem 5.10 (Global Existence; Theorem 4.3 in [AV23a]). Suppose the as-
sumptions of Corollary 5.6 are satisfied with q > d, h = 3, δ + η = 2 and

u0 ∈ L0

(
Ω;B

d
q−1

q,p ⊕ Lq

)
.

Let (u, σ) be the (p, κc, δ, q)-solution to (4.1). Then (u, σ) is a global solution,
that is, σ =∞ a.s. In particular, the regularity results (5.27) - (5.30) hold with
σ =∞. Moreover, there exist a constant N0 > 0 such that for all 0 < s < T <
∞ the following a prior bound holds:

E sup
t∈[s,T ]

1Γ(∥u1(t)∥qLq+∥u2(t)∥qLq ) + E
∫ T

s

∫
Td

1Γ|u1|q−2|∇u1|2 dxdr

≤ N0 (1 + E1Γ(∥u1(s)∥qLq + ∥u2(t)∥qLq )) ,

(5.35)

where Γ = {σ > s} ∩ {∥u1(s)∥Lq + ∥u2(s)∥Lq ≤ L}, for some L ≥ 1. Moreover,
the regularity results (5.27)-(5.30) hold with σ =∞ a.s.

Remark 5. The assumptions q > d and δ + η = 2 are merely required for the
application of the blow-up criteria Thoerem 5.7 in our proof of Theorem 5.10.
Moreover, we note that Assumption 5.3 is compatible with the assumptions
q > d, h = 3, δ + η = 2 of Theorem 5.10. Indeed,

• By the regularity result (5.29) and the assumption q > d, for p sufficiently

large we have 1
p + 1

2

(
δ + d

q

)
≤ h

h−1 = 3
2 ,

• If d = 2, Assumption 5.3 also holds for h̃ > 3 and δ ∈ [1, h̃+1
h̃

), so by

choosing h̃ > 3 we obtain d ≤ d
d−δ <

d(h̃−1)

h̃+1−δ(h̃−1)

• If d > 2 and δ > 1, then d
d−δ < d < d

2−δ = d(h−1)
h+1−δ(h−1) holds,

• If d > 2 and δ = 1, Assumption 5.3 also holds any h̃ > 3, from which we

obtain d
d−1 < d < d(h̃−1)

2 .

The proof of Theorem 5.10 is relies on the following lemma.

Lemma 5.11 (Energy bounds; Version of Lemma 3.8 in [AV23a]). Suppose the
assumptions of Corollary 5.6 are satisfied with h = 3 and let (u, σ) be the local
(p, κc, δ, q)-solution to (4.1). Then for every ζ ∈ {q} ∪ (q, b), where b is as in
Corollary 5.6, and for every 0 < s < T <∞ we have

sup
t∈[s,σ∧T )

(∥u1(t)∥ζLζ + ∥u2(t)∥ζLζ ) <∞ a.s. on {σ > s}, (5.36)∫ σ∧T

s

∫
Td

|u1|ζ−2|∇u1|2 <∞ a.s. on {σ > s}. (5.37)
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Moreover, there exists a constant N0 > 0 such that for all 0 < s < T <∞

sup
t∈[s,σ∧T )

E
[
1[s,σ)(t)1Γ(∥u1(t)∥ζLζ + ∥u2(t)∥ζLζ )

]
+E

∫ σ∧T

s

∫
Td

1Γ|u1|ζ−2|∇u1|2 dxdr

≤ N0

(
1 + E1Γ(∥u1(s)∥ζLζ + ∥u2(s)∥ζLζ )

)
,

(5.38)

E sup
t∈[s,σ∧T )

1Γ(∥u1(t)∥ζLζ + ∥u2(t)∥ζLζ )

+E
∫ σ∧T

s

∫
Td

1Γ|u1|ζ−2|∇u1|2 dxdr

≤ N0

(
1 + E1Γ(∥u1(s)∥ζLζ + ∥u2(s)∥ζLζ )

)
,

(5.39)

where Γ = {∥u1(s)∥Lζ + ∥u2(s)∥Lζ ≤ L} ∩ {σ > s} and L ≥ 1.

The proof of Lemma 5.11 follows the proof given in [AV23a]. However, the
fact that both components of the FitzHugh-Nagumo equations (4.1) are coercive
and g1, g2 have linear growth (compared to the general reaction-diffusion frame-

work considered in [AV23a]) allows us to obtain bounds for E supt∈[s,σ∧T ) 1Γ(∥u1(t)∥ζLζ+

∥u2(t)∥ζLζ ) via the Burkholder-Davis-Gundy inequalities, instead of the weaker

bounds for E supt∈[s,σ∧T ) 1Γ(∥u1(t)∥λζLζ + ∥u2(t)∥λζLζ ), λ ∈ (0, 1) obtained in
[AV23a].

Proof of Lemma 5.11. We begin by establishing (5.36)-(5.37) using the general-
ised Itô’s formula (A.1). Note that ∇u1 and u2 have Lζ-integrability by (5.29)
and the Sobolev embedding H2−δ−η,q ↪→ Lζ with 2 − δ − η − d

q ≥ −
d
ζ if b > q

(see Remark 3). By Lemma 5.9 Assumption 5.8 holds. In order to apply Itô’s
formula, we will use a localisation argument. We define

τj = inf{t ∈ [s, σ) : ∥u1(t)− u1(s)∥C(Td) + ∥u1∥L2(s,t;H1,ζ)

+ ∥u2(t)− u2(s)∥L2(s,t;H2−δ−η,q) ≥ j} ∧ T

on the event E := {σ > s, ∥u1(s)∥C(Td) + ∥u2(s)∥H2−δ−η,q ≤ j − 1}, and we let

τj = s on the event EC . Moreover, we let inf ∅ = σ ∧ T . Note that due to the
limited regularity of u2 provided by Theorem 5.4, we use the H2−δ−η,q-norm in
our definition of τj instead of the C(Td)-norm used in [AV23a].

By the instantaneous regularisation results (5.29)-(5.30), we have limj→∞ τj =
σ. We further let

ΓK = {σ > s, ∥u1(s)∥L∞ + ∥u2(s)∥H2−δ−η,q ≤ K} ∈ Fs.

Then (1ΓK
u|[0,τj)×Ω, τj) is a local (p, κ, δ, q)-solution to (4.1). We let

u(j)(t) = 1ΓK
u(t ∧ τj),
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which is defined on the entire interval [s, T ] × Ω. We thus have a.s. for all
t ∈ [s, T ]

u
(j)
1 (t)− u(j)1 (s) =

∫ t

s

1[s,τj ]×ΓK
[ν∆u1 + f(u1)− u2)] dr

+
∑
k≥1

∫ t

s

1[s,τj ]×ΓK
[(bk,1 · ∇)u1 + gk,1(·, u)] dW1(r).

(5.40)

u
(j)
2 (t)− u(j)2 (s) =

∫ t

s

1[s,τj ]×ΓK
[ϵu1 − ϵγu2] dr

+
∑
k≥1

∫ t

s

1[s,τj ]×ΓK
gk,2(·, u) dW2(r).

(5.41)

By Corollary 5.6 and our definition of the stopping times τj , u
(j)
i , i ∈ {1, 2},

satisfy the conditions of Theorem A.1. Hence, applying the generalised Itô
formula to each component of u(j) gives

∥u(j)i (t)∥ζ
Lζ = ∥u(j)i (s)∥ζ

Lζ + ζ(ζ − 1)Di(t) + ζSi, (5.42)

where Di denotes the deterministic term

D1(t) =

∫ t

s

∫
Td

1[s,τj ]×ΓK
|u1|ζ−2

(
u1(f(u1)− u2)

ζ − 1
− |∇u1|2

+
1

2

∑
k≥1

[(bk · ∇)u1 + gk,1(·, u)]2
)
dxdr,

D2(t) =

∫ t

s

∫
Td

1[s,τj ]×ΓK
|u2|ζ−2

(
u2(ϵu1 − ϵγu2)

ζ − 1
+

1

2

∑
k≥1

gk,2(·, u)2
)
dxdr

and Si denotes the stochastic term

S1 =
∑
k≥1

∫ t

s

∫
Td

1[s,τj ]×ΓK
|u1|ζ−2u1[(bk · ∇)u1 + gk,1(·, u)] dxdW1(r),

S2 =
∑
k≥1

∫ t

s

∫
Td

1[s,τj ]×ΓK
|u2|ζ−2u2gk,2(·, u) dxdW2(r).

Using Assumption 5.8, we obtain

∥u(j)1 (t)∥ζ
Lζ+θ̃

∫ t

s

∫
Td

1[s,τj ]×ΓK
|u1|ζ−2|∇u1|2 dxdr

≤C̃1(t− s) + ∥u(j)1 (s)∥ζ
Lζ

+ M̃1

∫ t

s

1[s,τj ]×ΓK
(∥u1(r)∥ζ + ∥u2(r)∥ζ) dr + ζS1,

(5.43)
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where θ̃ = ζ(ζ − 1)θ, M̃1 = ζ(ζ − 1)M and C̃1 = ζ(ζ − 1)C. Moreover, we
estimate

ζ(ζ − 1)D2(t) ≤ ζϵ
∫ t

s

1[s,τj ]×ΓK

(
ζ − 1

ζ
∥u2(r)∥ζLζ +

1

ζ
∥u1(r)∥ζLζ + γ∥u2(r)∥ζLζ

)
dr

+
3

2
ζ(ζ − 1)C1

∫ t

s

∫
Td

1[s,τj ]×ΓK
|u2|ζ−2(∥g2(0)∥2ℓ2 + |u1|2 + |u2|2) dxdr,

and by Assumption 5.1(4), and Hölder’s and Young’s inequalities appplied to∫
Td |u2|ζ−1|u1|dx,

ζ(ζ − 1)D2(t) ≤ζϵ
∫ t

s

1[s,τj ]×ΓK

(
ζ − 1

ζ
∥u2(r)∥ζLζ +

1

ζ
∥u1(r)∥ζLζ + γ∥u2(r)∥ζLζ

)
dr

+
3

2
ζ(ζ − 1)C1

∫ t

s

1[s,τj ]×ΓK

(
3ζ − 2

ζ
∥u2(r)∥ζLζ +

2

ζ
∥u1∥ζLζ(Td;ℓ2)

+
2

ζ
∥g2(r, 0)∥ζLζ(Td;ℓ2)

)
dr,

≤M̃2

∫ t

s

1[s,τj ]×ΓK
(∥u1(r)∥ζLζ + ∥u2(r)∥ζLζ ) dr + C̃2(t− s),

by Hölder’s and Young’s inequalities applied to
∫
Td |u2|ζ−2∥g2(0)∥2ℓ2 dx, where

M̃2 = ϵζ(1+γ)+3C1(
3
2ζ

2+1), C̃2 = 3(ζ−1)C1∥g2(·, 0)∥L∞(R≥0×Ω;ℓ2). We thus
obtain

∥u(j)2 (t)∥ζ
Lζ ≤C̃2(t− s) + ∥u(j)2 (s)∥ζ

Lζ

+ M̃2

∫ t

s

1[s,τj ]×ΓK
(∥u1(r)∥ζ + ∥u2(r)∥ζ) dr + ζS2.

(5.44)

Adding (5.43) and (5.44) yields

∥u(j)1 (t)∥ζ
Lζ + ∥u(j)2 (t)∥ζ

Lζ + θ̃

∫ t

s

∫
Td

1[s,τj ]×ΓK
|u1|ζ−2|∇u1|2 dxdr

≤C̃(t− s) + ∥u(j)1 (s)∥ζ
Lζ + ∥u(j)2 (s)∥ζ

Lζ

+ M̃

∫ t

s

1[s,τj ]×ΓK
(∥u1(r)∥ζLζ + ∥u2(r)∥ζLζ ) dr

+ ζ(S1 + S2),
(5.45)

where C̃ = C̃1 + C̃2, M̃ = M̃1 + M̃2. The remaining steps of the proof carry
over verbatim from [AV23a], so we only sketch these steps here.

Step 1. Firstly, taking expectations in (5.45) and applying Gronwall’s lemma

to the function y(t) = supr∈[s,t] E(∥u
(j)
1 (t)∥ζ

Lζ + ∥u(j)2 (t)∥ζ
Lζ ), we obtain

sup
r∈[s,t]

E[∥u(j)1 (r)∥ζ
Lζ+∥u(j)2 (r)∥ζ

Lζ ]

≤ etM̃
[
E∥u(j)1 (s)∥ζ

Lζ + E∥u(j)2 (s)∥ζ
Lζ + C̃t

]
.

(5.46)
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Step 2. Secondly, by applying Fatou’s lemma to let j → ∞ in (5.46) with
t = T and taking expectations in (5.45), we can show that there exists a constant
N0 ≥ 1 that depends on θ̃, M̃ , C̃, ζ, T, αm, and αM such that

E
∫ σ∧T

s

1ΓK
(∥u1(r)∥ζLζ+∥u2(r)∥ζLζ ) + E

∫ σ∧T

s

∫
Td

1ΓK
|u1|ζ−2|∇u1|2 dxdr

≤ N0[1 + E1ΓK
(∥u1(s)∥ζLζ + ∥u2(s)∥ζLζ )].

(5.47)

Step 3. Thirdly, we take the supt∈[s,σ∧T ) and subsequently take expectations
in (5.45) to obtain

E sup
t∈[s,σ∧T )

(
∥u(j)1 (t)∥ζ

Lζ + ∥u(j)2 (t)∥ζ
Lζ

)
+ θ̃E

∫ σ∧T

s

∫
Td

1[s,τj ]×ΓK
|u1|ζ−2|∇u1|2 dxdr

≤E(∥u(j)1 (s)∥ζ
Lζ + ∥u(j)2 (s)∥ζ

Lζ ) + M̃E
∫ σ∧T

s

1[s,τj ]×ΓK
(∥u1(r)∥ζLζ + ∥u2(r)∥ζLζ ) dr

+ ζE sup
t∈[s,σ∧T )

(S1 + S2) + C̃T,

(5.48)

We first bound the innermost integral of S1. By Hölder’s inequality and
Assumption 5.3(4)∑
k≥1

∫
Td

∣∣1[s,τj ]×ΓK
|u1|ζ−2u1[(bk · ∇)u1 + gk,1(·, u)]

∣∣ dx
≲

(∫
Td

1[s,τj ]×ΓK
|u1|ζ dx

)1/2

×
(∫

Td

1[s,τj ]×ΓK
|u1|ζ−2[∥(bk · ∇)u1∥2ℓ2 + ∥gk,1(0)∥2ℓ2 + |u1|2 + |u2|2] dx

)1/2

≲

(
sup

t∈[s,σ∧T )

∥u(j)1 (t)∥ζ
Lζ

)1/2

×
(∫

Td

1[s,τj ]×ΓK
|u1|ζ−2|∇u1|2 dx+ ∥g1(0)∥ζLζ(ℓ2)

+ ∥u(j)1 ∥
ζ
Lζ + ∥u(j)2 ∥

ζ
Lζ

)1/2

by Assumption 5.3(3), and Hölder’s and Young’s inequality. Now fix ϵ0 > 0,
then by the Burkholder-Davis-Gundy inequality

E sup
t∈[s,σ∧T )

S1 ≤CE
∫ σ∧T

s

∣∣∣∣∣∣
∑
k≥1

∫
Td

1[s,τj ]×ΓK
|u1|ζ−2u1[(bk · ∇)u1 + gk,1(·, u)] dx

∣∣∣∣∣∣
2

dr

≤CTE

(
sup

t∈[s,σ∧T )

∥u(j)1 (t)∥ζ
Lζ

)
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×
(∫ σ∧T

s

∫
Td

1[s,τj ]×ΓK
|u1(r)|ζ−2|∇u1(r)|2 dx dr

+ T∥g1(0)∥ζL∞(Ω×[s,T ];ℓ2) +

∫ σ∧T

s

∥u(j)1 (r)∥ζ
Lζ + ∥u(j)2 (r)∥ζ

Lζ dr

)
.

By Assumption 5.3(4), Hölder’s and Young’s inequality

E sup
t∈[s,σ∧T )

S1 ≤ϵ0CT,ζE

(
sup

t∈[s,σ∧T )

∥u(j)1 (t)∥ζ
Lζ

)

+
1

ϵ0
CT,ζ

(
E
∫ σ∧T

s

∫
Td

1[s,τj ]×ΓK
|u1(r)|ζ−2|∇u1(r)|2 dxdr

+ T + E
∫ σ∧T

s

∥u(j)1 (r)∥ζ
Lζ + ∥u(j)2 (r)∥ζ

Lζ ) dr

)
≤ϵ0CT,ζE sup

t∈[s,σ∧T )

(
∥u(j)1 (t)∥ζ

Lζ + ∥u(j)2 (t)∥ζ
Lζ

)
+ CT,ζ,ϵ0

(
E
∫ σ∧T

s

∥u(j)1 (r)∥ζ
Lζ + ∥u(j)2 (r)∥ζ

Lζ ) dr

+ E(∥u(j)1 (s)∥ζ
Lζ + ∥u(j)2 (s)∥ζ

Lζ ) + T

)
,

where we used the result of Step 2 to bound the integral of |u1|ζ−2|∇u1|.
We proceed similarly for the second stochastic term, bounding the innermost

integral of S2. By (two applications of) Hölder’s and Young’s inequality and
Assumption 5.3(4)∑

k≥1

∫
Td

1[s,τj ]×ΓK
|u2|ζ−2u2gk,2(·, u) dx

≲

(∫
Td

1[s,τj ]×ΓK
|u2|ζ dx

)1/2

×
(∫

Td

1[s,τj ]×ΓK

(
|u1|ζ + |u2|ζ + ∥g2(0)∥ζℓ2

)
dx

)1/2

≲

(
sup

t∈[s,σ∧T )

∥u(j)2 ∥
ζ
Lζ

)1/2 (
∥u(j)1 ∥

ζ
Lζ + ∥u(j)2 ∥

ζ
Lζ + ∥g2(0)∥ζLζ(ℓ2)

)1/2
.

Fix ϵ0 > 0 as before, then by the Burkholder-Davis-Gundy inequality

E sup
t∈[s,σ∧T )

S2 ≤CE
∫ σ∧T

s

∣∣∣∣∣∣
∑
k≥1

∫
Td

1[s,τj ]×ΓK
|u2|ζ−2u2gk,2(·, u) dx

∣∣∣∣∣∣
2

dr

≤CTE

(
sup

t∈[s,σ∧T )

∥u(j)2 (t)∥ζ
Lζ

)
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×
∫ σ∧T

s

∥u(j)1 (r)∥ζ
Lζ + ∥u(j)2 (r)∥ζ

Lζ + ∥g2(0)∥ζLζ(ℓ2)
dr

≤ϵ0CT,ζE sup
t∈[s,σ∧T )

(
∥u(j)1 (t)∥ζ

Lζ + ∥u(j)2 (t)∥ζ
Lζ

)
+ CT,ζ,ϵ0

(
E
∫ σ∧T

s

∥u(j)1 ∥
ζ
Lζ + ∥u(j)2 ∥

ζ
Lζ dr + T

)
,

by Assumption 5.3(4), Hölder’s and Young’s inequality.
Fixing ϵ0 as before and combining these results with (5.48), we have

E sup
t∈[s,σ∧T )

(
∥u(j)1 (t)∥ζ

Lζ + ∥u(j)2 (t)∥ζ
Lζ

)
+θ̃E

∫ σ∧T

s

∫
Td

1[s,τj ]×ΓK
|u1|ζ−2|∇u1|2 dx dr

≤ϵ0CT,ζE sup
t∈[s,σ∧T )

(
∥u(j)1 (t)∥ζ

Lζ + ∥u(j)2 (t)∥ζ
Lζ

)
+ CT,ζ,ϵ0

(
E(∥u(j)1 (s)∥ζ

Lζ + ∥u(j)2 (s)∥ζ
Lζ )

+ T + E
∫ σ∧T

s

(∥u(j)1 (r)∥ζ + ∥u(j)2 (r)∥ζ) dr
)
.

Thus, for ϵ0 sufficiently small, and making θ̃ larger as needed, we can move
the first term on the right-hand side to the left-hand side and apply Fubini’s
theorem the last term to obtain

E sup
t∈[s,σ∧T )

(
∥u(j)1 (t)∥ζ

Lζ + ∥u(j)2 (t)∥ζ
Lζ

)
+θ̃E

∫ σ∧T

s

∫
Td

1[s,τj ]×ΓK
|u1|ζ−2|∇u1|2 dx dr

≲E(∥u(j)1 (s)∥ζ
Lζ + ∥u(j)2 (s)∥ζ

Lζ ) + T

+

∫ T

s

E sup
t∈[s,σ∧r)

(
∥u(j)1 (t)∥ζ + ∥u(j)2 (t)∥ζ

)
dt.

Applying Gronwall’s lemma to the function y(t) = E supr∈[s,σ∧t)(∥u
(j)
1 (r)∥ζ +

∥u(j)2 (r)∥ζ) and letting j →∞ yields the result.
Finally, (5.38) and (5.39) follow from Steps 1 to 3 with ΓK replaced by

Γ = {σ > s, ∥u1(s)∥Lζ + ∥u2(s)∥Lζ ≤ L}, L ≥ 1.

Proof of Theorem 5.10. Our proof follows the lines of the proof of [AV23a, The-
orem 3.2]. By assumption, (p, q, h, δ) satisfy the conditions of Corollary 5.6, and
Assumption 5.3 in particular. We fix an ϵ0 > 0 sufficiently small that will be
determined below and such that we can choose h0 ≥ h = 3 such that (since
q > d )

q =
d(h0 − 1)

2
(1 + ϵ0).
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We let

β0 =
d

q
− 2

h0 − 1
,

and note that β0 < 0 by our choice of h0, and choose p0 > 2 such that

0 > γ0 =
d

q
+

2

p0
− 2

h0 − 1
,

which is possible by our choice of h0. Moreover, we choose δ0 ∈ [1, 2) below and
let η0 ∈ (0, 2−δ0] be such that δ0+η0 = δ+η. Next, we verify that (p0, q, h0, δ0)
satisfy Assumption 5.3:

• h0 ≥ h > 1 by our choice of h0,

• δ0 ∈ [1, h0+1
h0

) for δ0 sufficiently small,

• By our choice of p0
1
p0

< 1
h0−1 −

d
2q , which implies 1

p0
+ 1

2

(
δ0 +

d
q

)
<

1
h0−1 + 1

2δ0 <
h0

h0−1 ,

• Since d ≥ 2 and q > d we also have d
d−δ0

< q for δ0 sufficiently small,

• Since 1+ϵ0
2 ↓ 1

2 as ϵ0 ↓ 0 and 1
2 <

1
h0+1−δ0(h0−1) , we can choose ϵ0 suffi-

ciently small so that q < d(h0−1)
h0+1−δ0(h0−1) .

Theorem 5.7 now gives that

P( sup
t∈[s,σ]

∥u(t)∥
B

β0
q,p0

⊕H2−δ0−η0,q

+ ∥u∥Lp0 (s,σ;Hγ0,q⊕H2−δ0−η0,q) <∞, s < σ < T ) = 0.

Next, we show that a.s.

sup
t∈[s,σ]

∥u(t)∥
B

β0
q,p0

⊕H2−δ0−η0,q + ∥u∥Lp0 (s,σ;Hγ0,q⊕H2−δ0−η0,q) <∞.

Our assumption that 2−δ−η = 0 means that H2−δ−η,q = Lq, and Lemma 5.11
with ζ = q gives

u ∈ L∞(s, σ ∧ T ;Lq ⊕ Lq).

Since γ0 < 0 by our choice of p0, we have Lq ↪→ Hγ0,q so that u ∈ Lp0(s, σ ∧
T ;Hγ0,q ⊕H2−δ−η,q) a.s. Moreover, by the Sobolev embedding Lq ↪→ Bβ0

q,p0
we

have u ∈ L∞(s, σ ∧ T ;Bβ0
q,p0
⊕H2−δ0−η0,q) a.s. It thus follows that

P(s < σ < T ) =P( sup
t∈[s,σ]

∥u(t)∥
B

β0
q,p0

⊕H2−δ0−η0,q

+ ∥u∥Lp0 (s,σ;Hγ0,q⊕H2−δ0−η0,q) <∞, s < σ < T ) = 0,

and since σ > 0 a.s., first letting s ↓ 0 and subsequently letting T → ∞ shows
that P(σ <∞) = 0.

The a priori bound (5.35) follows from the bound (5.39) in Lemma 5.11.

39



6 Local Well-Posedness of Reaction-Diffusion Equa-
tions in the Lp(Lq(Rd))-Setting

6.1 Local well-posedness in the case p > 2, d ≥ 2

In this section we extend the theory of reaction-diffusion equations developed
in [AV23b] for the periodic torus to the unbounded domain Rd. This will serve
as a reference as we extend our theory of the FitzHugh-Nagumo equations on
the periodic torus Td developed in Section 5 to the unbounded domain Rd. We
consider stochastic reaction-diffusion equations of the form

dui(t)− div(ai · ∇ui) dt = [div(Fi(·, u)) + fi(·, u)] dt
+
∑

k≥1 [(bk,i · ∇)ui + gk,i(·, u)] dW (t)

ui(0) = u0,i,

(6.1)

for i ∈ {1, . . . , ℓ}, where (Wk)k≥1 is a sequence of standard independent Brownian
motions. Our assumptions and results are largely derived from the results in
[AV23b] by making adjustments to their assumptions and proofs to account for
the unbounded domain Rd considered here. We begin by considering p ∈ (2,∞)
and d ≥ 2. In subsequent sections we will discuss how the conditions on the
parameters change in the cases d = 1 and p = 2. Our Definition 5.2 of a
(local) solution in Section 5 carries over, with some obvious adjustments, to the
reaction-diffusion framework in the present section (see also [AV23b, Definition
2.3]).

Assumption 6.1 (Assumption 2.1 in [AV23b]). Let d ≥ 2. Assumption 6.1(p, q, h, δ)
holds if p ∈ (2,∞), q ∈ [2,∞), h > 1, δ ∈ [1, 2) and for i ∈ {1, . . . , ℓ} the fol-
lowing hold:

1. For each j, l ∈ {1, . . . , d}, aj,li : R≥0 × Ω × Rd → R and bji := (bjk,i)k≥1 :

R≥0 × Ω× Rd → ℓ2 are P ⊗ B(Rd)-measurable,

2. If δ = 1, there exists N > 0 such that a.s. for all t ≥ 0 and j, l ∈ {1, . . . , d}

∥aj,li ∥L∞ + ∥bji∥L∞(ℓ2) ≤ N. (6.2)

If δ > 1 there additionally exist τ > δ− 1, ϵ ∈ (0, τ + 1− δ) such that a.s.
for all t ≥ 0 and j, l ∈ {1, . . . , d},

∥aj,li ∥Cτ (Rd) + ∥b
j
i∥Cτ (Rd;ℓ2) ≤ N, (6.3)

3. For every s ∈ [0, T ) there exist âj,li : [s, T ] × Ω → R, b̂ji : [s, T ] × Ω → ℓ2

such that for all j, k ∈ {1, . . . , d}

lim
|x|→∞

ess sup
ω∈Ω

sup
t∈[s,T ]

(
|aj,li − â

j,l
i |+ ∥b

j
i − b̂

j
i∥ℓ2

)
= 0. (6.4)
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4. There exists a νi > 0 such that, a.s. for all t ≥ 0, x, ξ ∈ Rd

d∑
j,l=1

aj,li (t, x)− 1

2

∑
k≥1

bjk,i(t, x)b
l
k,i(t, x)

 ξjξl ≥ νi|ξ|2, (6.5)

5. For all j ∈ {1, . . . , d} the maps

F j
i , fi :R≥0 × Ω× Rd × R→ R

gi := (gk,i)k≥1 :R≥0 × Ω× Rd × R→ ℓ2

are P ⊗ B(Rd)⊗ B(R)-measurable. Set Fi := (F j
i )

d
j=1 and assume that

F j
i (·, 0), fi(·, 0) ∈ ∩q≥2,θ∈(0,1)L

∞(R≥0 × Ω;Hθ,q(Rd)),

gi(·, 0) ∈ ∩q≥2,θ∈(0,1)L
∞(R≥0 × Ω;Hθ,q(Rd; ℓ2)),

and a.s. for all t ∈ R≥0, x ∈ Rd, y, y′ ∈ R

|fi(t, x, y)− fi(t, x, y′)| ≲ (1 + |y|h−1 + |y′|h−1)|y − y′|

|Fi(t, x, y)− Fi(t, x, y
′)| ≲ (1 + |y|

h−1
2 + |y′|

h−1
2 )|y − y′|

|gi(t, x, y)− gi(t, x, y′)|ℓ2 ≲ (1 + |y|
h−1
2 + |y′|

h−1
2 )|y − y′|.

Remark 6. Part (3) of Assumption 6.1 is an extension of [AV23b, Assumption
2.1] and is needed in our proof of local existence of solutions as the domain
we consider here is Rd instead of Td as in [AV23b]. Specifically, the extension
allows us to show maximal stochastic regularity of the operators involving ai
and bi in (6.1) (see [AV21, Remark 5.7]).

Assumption 6.2 (Assumption 2.4 in [AV23b]). Let d ≥ 2. Assumption 6.2(p, q, h, δ)
holds if p ∈ (2,∞), q ∈ [2,∞), h > 1 and δ ∈ [1, h+1

h ) satisfy

1

p
+

1

2

(
δ +

d

q

)
≤ h

h− 1
,

d

d− δ
< q <

d(h− 1)

h+ 1− δ(h− 1)
. (6.6)

Definition 6.3 (Local (p, q, h, δ)-solution; Definition 2.3 in [AV23b]). Suppose
that Assumption 6.1 holds for some h > 1, let κ ∈ [0, p2 − 1).

• Let σ be a stopping time and u = (ui)
ℓ
i=1 : [0, σ) × Ω → H2−δ,q(Rd;Rl)

be a stochastic process. We say that (u, σ) is a local (p, κ, δ, q)-solution to
(6.1) if there exists a sequence of stopping times (σj)j≥1 such that

– σj ≤ σ a.s. for all j ≥ 1 and limj→∞ σj = σ a.s.,

– For all j ≥ 1 the process 1[0,σj ]×Ωui is progressively measurable,

– a.s. for all j ≥ 1 we have ui ∈ Lp(0, σj , wκ;H
2−δ,q(Rd)) and

div(Fi(·, u)) + fi(·, u) ∈ Lp(0, σj , wκ;H
−δ,q(Rd))

(gk,i(·, u))k≥1 ∈ Lp(0, σj , wκ;H
1−δ,q(Rd); ℓ2),

(6.7)
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– a.s. for all j ≥ 1, for all t ∈ [0, σj ] it holds that

ui(t)− u0,i =
∫ t

0

div(ai · ∇ui) + div(Fi(·, u)) + fi(·, u) ds

+
∑
k≥1

∫ t

0

10,σj
[(bk,i · ∇)u+ gk,i(·, u)] dW (s).

(6.8)

• (u, σ) is a (p, κ, δ, q)-solution to (6.1) if for any other local (p, κ, δ, q)-
solution (u′, σ′) we have σ′ ≤ σ and u = u′ on [0, σ′)× Ω.

Remark 7. The regularity conditions (6.2)–(6.3) on the aj,ki in Assumption 6.1
are necessary for the integrals in (6.8) to be well-defined. Specifically, by [AV21,
Proposition 4.1(4)], if u0 ∈ Lp(0, σj , wκ;H

2−δ,q(Rd)), it holds a.s. that

div(ai · ∇ui) ∈ Lp(0, σj , wκ;H
−δ,q(Rd))

div((bk,i · ∇)ui)k≥1 ∈ Lp(0, σj , wκ;H
1−δ,q(Rd; ℓ2)),

so the stochastic integrals are well-defined as H1−δ,q(Rd)-valued stochastic in-
tegrals, and the deterministic integrals are well-defined as H−δ,q(Rd)-valued
Bochner integrals (see [AV23b]).

Throughout the remainder of this section we set X0 = H−δ,q, X1 = H2−δ,q,
and Xβ = [X0, X1]β = H2β−δ,q. Moreover, we let

XTr
κ,p := (X0, X1)1−(1+κ)/p,p = B

2−δ−2
1+κ
p

q,p .

The next theorem establishes the local existence, uniqueness and regularity of
solutions to (6.1). The embeddings H2i−δ,ζ+ϵ0 ↪→ H2i−δ,ζ , H2λ−δ,ζ ↪→ H−δ,q

and H2−δ,ζ ↪→ H2λ−δ,q for some λ ∈ (0, 1) used in our proof of the regularisation
results in Theorem 5.4 do not hold on the unbounded domain Rd. Therefore,
we cannot bootstrap integrability in space via [AV22b, Theorem 6.3].

Theorem 6.4 (Local Existence, Uniqueness, and Regularity; Version of Pro-
position 3.1 in [AV23b]). Suppose that Assumption 6.1(p, q, h, δ) holds, q >

max
{

d
d−δ ,

d(h−1)
2h−δ(h−1)

}
and that κ ∈ [0, p2 − 1) satisfies either

q <
d(h− 1)

δ
and

1 + κ

p
+

1

2

(
δ +

d

q

)
≤ h

h− 1
(6.9)

or

q ≥ d(h− 1)

δ
and

1 + κ

p
≤ h

h− 1

(
1− δ

2

)
. (6.10)

Then for any

u0 ∈ L0
F0

(
Ω;B

d
q−

2
h−1

p,q

)
(6.11)
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there exists a unique (p, κ, δ, q)-solution (u, σ) to (6.1) such that a.s. σ > 0 and

u ∈ Lp
loc([0, σ), wk;H

2−δ,q) ∩ C

(
[0, σ);B

2−δ−2
1+κ
p

p,q

)
. (6.12)

Moreover, u regularises instantaneously in space and time,

u ∈ Hθ,r
loc

(
0, σ;H1−2θ,q

)
a.s. for all θ ∈ [0, 1/2), r ∈ (2,∞), (6.13)

and, if q > d, additionally

u ∈ Cθ1,θ2
loc

(
(0, σ)× Rd;Rℓ

)
a.s. for all θ1 ∈ [0, 1/2), θ2 ∈

(
0, 1− d

q

)
. (6.14)

We say that κ is critical if the second term in (6.9) or (6.10) holds with

equality, and the space of initial data B
2−δ−2(1+κ)/p
p,q is also called critical.

In our proof of Theorem 6.4 we will use the following lemma, the proof of
which is a slight modification of the proof given in [AV23b] since we consider
(6.1) on Rd instead of Td.

Lemma 6.5 (Lemma 3.2 in [AV23b]). Suppose that Assumption 6.1(p, q, h, δ)
holds and let

Φ(t, v) = Φ0(t, v) + Φ1(t, v) := div(F (t, v)) + f(t, v)

Γ(t, v) := (gk(t, v))k≥1.

Moreover, suppose that q > max
{

d
d−δ ,

d(h−1)
2h−δ(h−1)

}
. Let ρ1 = h − 1, ρ2 = h−1

2

and

β1 =

{
1
2

(
δ + d

q

) (
1− 1

h

)
, if q < d(h−1)

δ ,

δ
2 , if q ≥ d(h−1)

δ ,

β2 =

{
1

h+1 + 1
2

(
δ + d

q

)
h−1
h+1 , if q < d(h−1)

2(δ−1) ,

δ
2 , if q ≥ d(h−1)

2(δ−1) .

Then β1, β2 ∈ (0, 1) and for v, v′ ∈ X1, Φ and Γ are lower-order nonlinearities,
that is,

∥Φ(·, v)− Φ(·, v′)∥X0
≲

2∑
j=1

(1 + ∥v∥ρj

Xβj
+ ∥v′∥ρj

Xβj
)∥v − v′∥Xβj

∥Φ(·, v)∥X0 ≲
2∑

j=1

(1 + ∥v∥ρj

Xβj
)∥v∥Xβj

∥Γ(·, v)− Γ(·, v′)∥γ(ℓ2;X1/2) ≲ (1 + ∥v∥ρ2

Xβ2
+ ∥v′∥ρ2

Xβ2
)∥v − v′∥Xβ2

∥Γ(·, v)∥γ(ℓ2;X1/2) ≲ (1 + ∥v∥ρ2

Xβ2
)∥v∥Xβ2

.
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Proof. By Assumption 6.1 (5)

F j
i (·, 0), fi(·, 0) ∈ ∩k∈{1,2}L

∞(R≥0 × Ω;H2βk−δ,q),

gi(·, 0) ∈ ∩k∈{1,2}L
∞(R≥0 × Ω;H2βk,q(ℓ2)),

with βk as in Lemma 6.5, so it suffices to estimate the differences Φ(·, v)−Φ(·, v′)
and Γ(·, v)− Γ(·, v′). For Φ0 we have by Assumption 6.1 (5)

∥Φ0(·, v)− Φ0(·, v′)∥H−δ,q ≲ ∥(1 + |v|h−1 + |v′|h−1)|v − v′|∥H−δ,q

≲ ∥v − v′∥H−δ,q + ∥(|v|h−1 + |v′|h−1)|v − v′|∥Lξ

by the Sobolev embedding with −d
ξ = −δ− d

q , and q >
d

d−δ ensures that ξ > 1,

≲ ∥v − v′∥H2β1−δ,q + (∥v∥h−1
Lξh + ∥v′∥h−1

Lξh )∥v − v′∥Lξh

by the embedding with H−δ,q ↪→ H2β1−δ,q since β1 > 0, and Hölder’s inequality,

(i)

≲ ∥v − v′∥H2β1−δ,q + (∥v∥h−1
H2β1−δ,q + ∥v′∥h−1

H2β1−δ,q )∥v − v′∥H2β1−δ,q

by the Sobolev embedding with − d
ξh ≤ 2β1 − δ − d

q

≂ (1 + ∥v∥ρ1

Xβ1
+ ∥v′∥ρ1

Xβ1
|)∥v − v′∥Xβ1

.

In (i) we consider two cases:

• If q < d(h−1)
δ we set β1 = 1

2

(
δ + d

q

) (
1− 1

h

)
, and the assumption q >

d(h−1)
2h−δ(h−1) ensures that β1 ∈ (0, 1) so that the non-linearity is indeed of

lower order.

• If q ≥ d(h−1)
δ we set β1 = δ

2 , which at once ensures that β1 ∈ (0, 1) so that
the non-linearity is again of lower order.

For Φ1 we proceed in the same manner. By Assumption 6.1 (5) we have

∥Φ1(·, v)− Φ1(·, v′)∥H−δ,q = ∥divF (·, v)− divF (·, v′)∥H−δ,q

≲ ∥F (·, v)− F (·, v′)∥H1−δ,q

≲ ∥(1 + |v|
h−1
2 + |v′|

h−1
2 )|v − v′|∥H1−δ,q

≲ ∥v − v′∥H1−δ,q + ∥(|v|
h−1
2 + |v′|

h−1
2 )|v − v′|∥Lη

by the Sobolev embedding with − d
η = 1 − δ − d

q , and q > d
d−δ ensures that

η > 1,

≲ ∥v − v′∥H2β2−δ,q + (∥v∥
h−1
2

L
η
h+1
2

+ ∥v′∥
h−1
2

L
η
h+1
2

)∥v − v′∥
L

η
h+1
2
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by the embedding H2β2−δ,q ↪→ H1−δ,q since β2 ≥ 1
2 , and Hölder’s inequality,

(i)

≲ ∥v − v′∥H2β2−δ,q + (∥v∥
h−1
2

H2β2−δ,q + ∥v′∥
h−1
2

H2β2−δ,q )∥v − v′∥H2β2−δ,q

by the Sobolev embedding with − 2d
η(h+1) ≤ 2β2 − δ − d

q

≂ (1 + ∥v∥ρ2

Xβ2
+ ∥v′∥ρ2

Xβ2
|)∥v − v′∥Xβ2

.

In (i) we again consider two cases:

• If q < d(h−1)
2(δ−1) we set β2 = 1

h+1 + 1
2

(
δ + d

q

)(
h−1
h+1

)
. The assumption

q ∈
(

d(h−1)
2h−δ(h−1) ,

d(h−1)
2(δ−1)

)
ensures that β2 ∈ ( 12 , 1) so that the non-linearity

is of lower order.

• If q ≥ d(h−1)
2(δ−1) we set β2 = δ

2 , which ensures that β2 ∈ ( 12 , 1) so that the

non-linearity is of lower order. Combining the two estimates now gives
the result for Φ.

For Γ we have by Assumption 6.1 (5)

∥Γ(·, v)− Γ(·, v′)∥γ(ℓ2,H1−δ,q) = ∥g(t, ·, v)− g(t, ·, v′)∥γ(ℓ2,H1−δ,q)

≲ ∥(1 + |v|
h−1
2 + |v′|

h−1
2 )|v − v′|∥γ(ℓ2,H1−δ,q)

≲ ∥v − v′∥H1−δ,q(ℓ2) + ∥(|v|
h−1
2 + |v′|

h−1
2 )|v − v′|∥H1−δ,q(ℓ2)

since γ(ℓ2;Hζ,q) = Hζ,q for ζ ∈ R, q ∈ (1,∞),

≲ ∥v − v′∥H1−δ,q(ℓ2) + ∥(|v|
h−1
2 + |v′|

h−1
2 )|v − v′|∥Lη(ℓ2)

by the Sovolev embedding with − d
η = 1− δ− d

q , and the remaining estim-
ates are obtained in the same manner as for Φ1.

Proof of Theorem 6.4. The proof of local existence and uniqueness of the (p, κ, δ, q)-
solution given in [AV23b] directly carries over to the domain Rd considered

here. By separately considering the cases q < d(h−1)
δ , d(h−1)

δ ≤ q ≤ d(h−1)
2(δ−1) , and

q > d(h−1)
2(δ−1) , Lemma 6.5 shows that Assumptions (HF) and (HG) of [AV23b,

Section 4.1] hold for (F,G) = (Φ,Γ) and that the trace space XTr
κ,p is critical for

(6.1) if and only if

• q < d(h−1)
δ and 1+κ

p + 1
2

(
δ + d

q

)
= h

h−1 , or

• q ≥ d(h−1)
δ and 1+κ

p = h
h−1

(
1− δ

2

)
.

The existence of a unique (p, κ, δ, q)-solution now follows by applying [AV23b,
Theorem 4.8] and noting that Definition 6.3 is equivalent to the definition
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of an Lp
κ-maximal local solution in [AV23b, Definition 4.4]. Theorem 4.8 in

[AV23b] requires that the operators (A,B) := (v 7→ div(−a(t) · ∇v), v 7→
((bk(t) · ∇)v)k≥1 ∈ SMR•

p,κ(T ), that is, the operators have stochastic max-
imal regularity (see [AV21, Definition 2.3]). By Assumption 6.1, Assumption
5.1 in [AV21] is satisfied and their Theorem 5.2 together with Remark 5.7 gives
that indeed (A,B) ∈ SMR•

p,κ.
Our proof of the regularity results (6.13) and (6.14) follows the same lines as

the proof given in [AV23b]. Assumption 6.1, and point (3) in Assumption 6.1
in combination with Remark 5.7 in [AV21] enables us to apply their Theorem
5.2 to obtain stochastic maximal regularity for (A,B).

Step 1. We bootstrap regularity in time using [AV22b, Corollary 6.5] to
show that

u ∈ ∩θ∈[0,1/2)H
θ,r
loc (0, σ;H

2−δ−2θ,q) a.s. for all r ∈ (2,∞). (6.15)

The proof for this step given in [AV23b] carries over verbatim. In particular,
for the choice of spaces Xi = Yi = H2i−δ,q, i ∈ {0, 1}, the required embeddings

hold since Xi = Yi and Y
Tr
r = B

2−δ−2/r
q,r ↪→ B

2−δ−2/p
q,p = XTr

r for r ≥ p.
Step 2. We bootstrap differentiability in space using [AV22b, Theorem 6.3]

to show that

u ∈ ∩θ∈[0,1/2)H
θ,r
loc (0, σ;H

1−2θ,q) a.s. for all r ∈ (2,∞). (6.16)

The proof of this step follows the lines of the proof of Step 2 in Theorem 5.4.
We may assume that δ ∈ (1, 2) since otherwise the result already follows from

(6.15). We choose r > max
{
p, 2

2−δ

}
such that

1

r
+
δ − 1

2
<

h

2(h− 1)
,

which is possible since δ−1
2 < h

2(h−1) . We consider the spaces

Yi = Xi = H2i−δ,q Ŷi = H2i−1,q, i ∈ {1, 2},

and let

r̂ = r, α = 0, α̂ =
r(δ − 1)

2
.

Note that this choice of parameters satisfies the assumptions of Lemma 6.5
in both cases (6.9) and (6.10), in all settings (X0, X1, p, κ), (Y0, Y1, r, α), and
(Ŷ0, Ŷ1, r̂, α̂). By Lemma 6.5 together with the arguments in the proof of [AV23b,
Part A of Proposition 3.1] it now follows that [AV22b, Hypothesis (H)] holds in
the (Y0, Y1, r, α) and the (Ŷ0, Ŷ1, r̂, α̂) setting, and both are not critical. Finally,
the required embeddings hold:

• Y Tr
r = B

2−δ−2/r
q,r ↪→ B

2−δ−2/p
q,p = XTr

p holds since r > p,

• There exists a λ ∈ (0, 1) such that 1
r + λ ≤ 1

p and Yλ = H2λ−δ,q ↪→
H−δ,q = X0 and Y1 = H2−δ,q ↪→ H2(1−λ)−δ,q = X1−λ,
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• Ŷi ↪→ Yi holds since δ > 1,

• Y Tr
r = B

2−δ−2/r
q,r = B

2−δ−2/r
q,r = Ŷ Tr

α̂,r̂ by the choice of parameters (r̂, α̂).

An application of [AV22b, Theorem 6.3] now gives (6.16).
Step 3. The result (6.14) follows by the Sobolev embeddings Hθ,r ↪→ Cθ1 if

θ − d
r ≥ θ1 > 0 and H1−2θ,q ↪→ Cθ2 if 1− 2θ − d

q ≥ θ2 > 0. By Step 1 we have

θ1 ∈ [0, 1/2), and by Step 2, if q > d, we have θ2 ∈ (0, 1− d
q ).

Corollary 6.6 (Local Well-Posedness in Critical Spaces; Theorem 2.7 in [AV23b]).
Suppose that Assumptions 6.1(p, q, h, δ) and 6.2(p, q, h, δ) hold, and set κ =:

κc = p
(

h
h−1 −

1
2

(
δ + d

q

))
− 1. Then for any

u0 ∈ L0

(
Ω;B

d
q−

2
h−1

p,q

)
(6.17)

there exists a unique (p, κc, δ, q)-solution (u, σ) such that a.s. σ > 0 and

u ∈ C([0, σ);B
d
q−

2
h−1

p,q ) a.s. (6.18)

u ∈ Hθ,p
loc

(
[0, σ), wκc ;H

2−δ−2θ,q
)
a.s. for all θ ∈ [0, 1/2). (6.19)

Moreover, u regularises instantaneously in space and time,

u ∈ Hθ,r
loc

(
0, σ;H1−2θ,q

)
a.s. for all θ ∈ [0, 1/2), r ∈ (2,∞), (6.20)

and, if q > d, additionally

u ∈ Cθ1,θ2
loc

(
(0, σ)× Rd;Rℓ

)
a.s. for all θ1 ∈ [0, 1/2), θ2 ∈

(
0, 1− d

q

)
. (6.21)

Proof. Corollary 6.6 is a direct consequence of Theorem 6.4. The proof that
Theorem 3.1 in [AV23b] implies their Theorem 2.7 carries over verbatim.

Theorem 6.7 (Local Continuity; Proposition 3.3 in [AV23b]). Let the assump-
tions of Theorem 6.4 be satisfied and let (u, σ) be the (p, κ, δ, q)-solution to (6.1).
Then there exist positive constants (C0, T0, ϵ0) and stopping times σ0, σ1 ∈ (0, σ]

a.s. such that the following holds. For each v0 ∈ Lp
F0

(Ω;B
2−δ−2(1+κ)/p
q,p (Rℓ)

with E∥u0−v0∥p
B

2−δ−2(1+κ)/p
q,p

≤ ϵ0 and (v, τ) the (p, κ, δ, q)-solution to (6.1) with

initial data v0 there exists a stopping time τ0 ∈ (0, τ ] a.s. such that for all
t ∈ [0, T0], γ > 0

P( sup
r∈[0,t]

∥u(r)− v(r)∥
B

2−δ−2(1+κ)/p
q,p

≥ γ, σ0 ∧ τ0 > t)

≤ C0

γp
E∥u0 − v0∥p

B
2−δ−2(1+κ)/p
q,p

,
(6.22)
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P(∥u− v∥Lp(0,t,wκ;H2−δ,q) ≥ γ, σ0 ∧ τ0 > t)

≤ C0

γp
E∥u0 − v0∥p

B
2−δ−2(1+κ)/p
q,p

,
(6.23)

P(σ0 ∧ τ0 ≤ t) ≤ C0

(
E∥u0 − v0∥p

B
2−δ−2(1+κ)/p
q,p

+ P(σ1 ≤ t)
)
. (6.24)

Proof. The arguments from the proof of [AV22b, Theorem 4.5] used in the proof
given in [AV23b] remain valid, and thus their proof carries over verbatim.

Theorem 6.8 (Blow-Up Criteria; Theorem 2.10 in [AV23b]). Let the assump-
tions of Theorem 6.4 be satisfied and let (u, σ) be the (p, κc, δ, q)-solution to (6.1)

with d
q <

h+1
h−1 −

2
p . Suppose further that p0 ∈ (2,∞), q0 ∈

[
q, d/(dq − δ0)

)
, h0 ≥

h, δ0 ∈ [1, 2) are such that Assumptions 6.1(p0, q0, h0, δ0) and 6.2(p0, q0, h0, δ0)
hold. Let

β0 =
d

q0
− 2

h0 − 1
, γ0 =

d

q0
+

2

p0
− 2

h0 − 1
, bq =

d
d
q0

+ d
q −

h0+1
h0−1

.

Then for all 0 < s < T <∞

P( sup
t∈[s,σ]

∥u(t)∥
B

β0
q0,p0

+ ∥u∥Lp0 (s,σ;Hγ0,q0 ) <∞, s < σ < T ) = 0, (6.25)

and, if additionally d
q <

h0+1
h0−1 ,

P( sup
t∈[s,σ]

∥u(t)∥
B

β0
q1,∞

<∞, s < σ < T ) = 0 for all q1 ∈ (q0, bq). (6.26)

Remark 8. [AV23b] obtain the blow-up criteria (6.25)-(6.26) under the milder
conditions of Assumption 6.2(p0, q0, h0, δ0) and for q1 > q0 arbitrarily large. The
additional limitations on the parameters (q0, q1, p0, δ0, h0) required here are due
to the lack of spatial integrability obtained in Theorem 6.4.

The assumption d
q <

h+1
h−1 −

2
p guarantees that γ = d

q + 2
p −

2
h−1 < 1. The

assumption d
q <

h0+1
h0−1 guarantees that bq > q0 so that the interval (q0, bq) is non-

empty. Moreover, since q0 > q, the assumption d
q < h0+1

h0−1 is also compatible

with Assumption 6.2(p0, q0, h0, δ0). The assumption q0 < d/(dq − δ0) is required
for there to exist a q1 such that u is a (p0, κ0, δ0, q1)-solution to (6.27).

Proof. The proof largely carries over from [AV23b] but requires some adjust-
ments for the unbounded domain Rd. We will only give details for the proof of
(6.26) and point out where adjustments are needed when working on Rd instead
of Td.

Fix 0 < s < T < ∞ and let (u, σ) be the (p, κc, δ, q)-solution to (6.1).
Let (q0, p0, δ0, h0, β0) be as in Theorem 6.8 and bq > q1 > q0. Set κc,i =

p0

(
h0

h0−1 −
1
2

(
δi +

d
qi

))
−1, i = 0, 1 and δ1 = δ. We now choose κ ∈ (κc,0, κc,1)

and set β = 2− δ0 − 2 1+κ
p0

< β0 such that the embeddings

H1−2θ,q ↪→ H1−2θ1,q1 ↪→ Bβ
q1,p0

48



hold for some θ ∈ [0, 1/2), θ1 ∈ ( d
2q −

d
2q1
, 1/2). Note that due to the unbounded

domain Rd, we cannot apply the regularisation result (6.14) together with the
embedding Cθ ↪→ Bβ0

q0,p0
as used in [AV23b]. The existence of suitable paramet-

ers (θ, θ1) is guaranteed by the restriction q1 < bq. By the regularisation result

(6.13) we have u ∈ Hθ,r
loc

(
0, σ;H1−2θ,q

)
, which with suitably chosen θ, θ1 implies

1{σ>s}u(s) ∈ L0
Fs

(Ω;Bβ
q1,p0

).

The remainder of the proof proceeds as in [AV23b]. We can now consider
the SPDE

dvi(t)− div(ai · ∇vi) dt = [div(Fi(·, v)) + fi(·, v)] dt
+
∑

k≥1 [(bk,i · ∇)vi + gk,i(·, v)] dW (t)

vi(0) = 1{σ>s}u(s),

(6.27)

on the interval [s,∞), which by Theorem 6.4 has unique (p0, κ0, δ0, q1)-solution
(v, τ) such that

v ∈ Hθ,r
loc

(
0, τ ;H1−2θ,q1

)
a.s. for all θ ∈ [0, 1/2), r ∈ (2,∞). (6.28)

By the choice of κ < κc,1 and Theorem 6.4 the space of initial data Bβ
q1,p0

is not
critical and we can apply the blow-up criteria in the abstract setting provided
in [AV22b, Theorem 4.10(2)] to obtain

P( sup
t∈[s,τ)

∥v(s)∥Bβ
q1,p0

<∞, τ < T ) = 0,

which implies that

P( sup
t∈[s,τ)

∥v(s)∥
B

β0
q1,∞

<∞, τ < T ) = 0

by the embedding Bβ0
q1,∞ ↪→ Bβ

q1,p0
for β < β0. It remains to show that the

solution (v, τ) agrees with (u, σ), specifically,

τ = σ a.s. on {σ > s}, u = v a.e. on [s, σ)× {σ > s}. (6.29)

Note that by (6.20) and the assumptions h0 ≥ h and q1 ≤ d/(dq − δ0) we have

that (u|[s,σ),1{σ>s}σ+ 1Ω\{σ>s}s) is a (p0, κ0, δ0, q1)-solution to (6.27), and by
maximality of (v, τ) we have

σ ≤ τ on {σ > s}, u = v a.s. on [s, σ)× {σ > s}.

Applying the blow-up criteria in the abstract setting [AV22b, Theorem
4.10(3)] to u yields

P(σ < T, sup
t∈[0,σ)

∥u(t)∥Bβ
q,p

+ ∥u(t)∥Lp(0,σ;Hγ,q) <∞) = 0
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where

β =
d

q
− 2

h− 1
, γ =

d

q
+

2

p
− 2

h− 1
, and κc = p

(
h

h− 1
− 1

2

(
δ +

d

q

))
− 1.

The regularity result (6.28) together with the assumption that γ ≤ 1 give u =
v ∈ Lp

loc((s, σ];H
γ,q) on {σ > s, σ < τ}. By (6.20) with θc := κc

p < 1
2 −

1
p and

weighted Sobolev embeddings we have

u ∈Hθc,p
loc ([0, σ), wκc

;H2−δ−2θc,q)

⊆ Lp
loc([0, σ);H

γ,q) a.s.,

and thus also u ∈ Lp(s, σ;Hγ,q) a.s. on {σ < τ}. Similarly, the regularity result
(6.20) applied to v gives u = v ∈ C((s, σ];Bβ

p,q) on {σ > s, σ < τ}. By (6.18)

we also have u ∈ C([0, σ);Bβ
q,p), from which it follows that u ∈ C([s, σ];Bβ

q,p)
on {σ > s, σ < τ}. We thus get

P(σ > s, σ < τ) =P(σ > s, σ < τ, sup
t∈[0,σ)

∥u1(t)∥Bβ
q,p

+ ∥u1(t)∥Lp(0,σ;Hγ,q) <∞)

≤P(σ < T, sup
t∈[0,σ)

∥u1(t)∥Bβ
q,p

+ ∥u1(t)∥Lp(0,σ;Hγ,q) <∞) = 0.

Thus, on {σ > s} we have σ = τ as claimed in (6.29).
The proof of (6.25) uses the same arguments but uses the critical parameter

κc,0 for the initial data 1{σ>s}u(s) ∈ Bβ0
q0,p0

together with the blow-up criteria
[AV22b, Theorem 4.10(3)] in the abstract setting, which also apply in the critical
case.

6.2 Local well-posedness in the case p > 2, d = 1

So far we have assumed d ≥ 2. In this section we will comment on the changes
required to prove local well-posedness and blow-up criteria when d = 1.

Proposition 6.9 (Local existence, uniqueness, and regularity of different set-
tings; Proposition 6.1 in [AV23b]). Let Assumption 6.1(p, q, h, δ) be satisfied for
d = 1, and assume further that q ≥ 2, 1

q −
1
h < 2 − δ and one of the following

holds:

1. δ + 1
q < 2 and 1+κ

p ≤ h
h−1 min

{
1− δ

2 , 1−
δ
2 −

1
2q + 1

2h , 1−
h−1
2h (δ + 1

q )
}
,

2. δ + 1
q > 2 and 1+κ

p ≤ h
h−1 min

{
1− δ

2 , 1−
δ
2 −

1
2q + 1

2h

}
.

Then for any
u0 ∈ L0

F0
(Ω;B2−δ−2(1+κ)/p

q,p ) (6.30)

there exists a unique (p, κ, δ, q)-solution (u, σ) to (6.1) such that a.s. σ > 0 and

u ∈ Lp
loc([0, σ), wk;H

2−δ,q) ∩ C

(
[0, σ);B

2−δ−2
1+κ
p

p,q

)
. (6.31)
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Moreover, u regularises instantaneously in space and time,

u ∈ Hθ,r
loc

(
0, σ;H1−2θ,q

)
a.s. for all θ ∈ [0, 1/2), r ∈ (2,∞), (6.32)

u ∈ Cθ1,θ2
loc

(
(0, σ)× Rd;Rℓ

)
a.s. for all θ1 ∈ [0, 1/2), θ2 ∈

(
0, 1− d

q

)
. (6.33)

Proof. Lemma 6.5 is at the core of the proof of the local well-posedness result
Theorem 6.4. Therefore, we first discuss how the conditions on β1 and β2 change
when d = 1. Splitting Φ = Φ0 +Φ1 as before, we estimate

∥Φ0(·, v)− Φ0(·, v′)∥H−δ,q ≲ ∥(1 + |v|h−1 + |v′|h−1)|v − v′|∥H−δ,q

≲ ∥v − v′∥H2β1−δ,q + ∥(|v|h−1 + |v′|h−1)|v − v′|∥Lξ

by the embedding with H−δ,q ↪→ H2β1−δ,q since β1 > 0 and the Sobolev em-
bedding with − 1

ξ ≥ −δ −
1
q , and we choose ξ = 1,

≲ ∥v − v′∥H2β1−δ,q + (∥v∥h−1
Lξh + ∥v′∥h−1

Lξh )∥v − v′∥Lξh

by Hölder’s inequality,

≲ ∥v − v′∥H2β1−δ,q + (∥v∥h−1
H2β1−δ,q + ∥v′∥h−1

H2β1−δ,q )∥v − v′∥H2β1−δ,q .

by the Sobolev embedding with − 1
ξh ≤ 2β1 − δ − 1

q , and we choose β1 =
1
2 max{ 1q −

1
h , 0}+

δ
2 to guarantee 2β1− δ ≥ 0. We further note that we require

1
q −

1
h < 2− δ for the non-linearity to be of lower order.
Similarly, we estimate

∥Φ1(·, v)− Φ1(·, v′)∥H−δ,q ≲ ∥(1 + |v|(h−1)/2 + |v′|(h−1)/2)|v − v′|∥H1−δ,q

(i)

≲ ∥v − v′∥H1−δ,q + ∥(|v|(h−1)/2 + |v′|(h−1)/2)|v − v′|∥Lη

by the Sobolev embedding with − 1
η ≥ 1 − δ − 1

q , and q > d
d−δ ensures that

η > 1. Thus, by the embedding H2β2−δ,q ↪→ H1−δ,q with β2 ≥ 1
2 , and Hölder’s

inequality,

∥Φ1(·, v)− Φ1(·, v′)∥H−δ,q

≲ ∥v − v′∥H2β2−δ,q + (∥v∥(h−1)/2

Lη(h+1)/2 + ∥v′∥
(h−1)/2

Lη(h+1)/2)∥v − v′∥Lη(h+1)/2

(ii)

≲ ∥v − v′∥H2β2−δ,q + (∥v∥(h−1)/2

H2β2−δ,q + ∥v′∥(h−1)/2

H2β2−δ,q )∥v − v′∥H2β2−δ,q

≂ (1 + ∥v∥ρ2

Xβ2
+ ∥v′∥ρ2

Xβ2
|)∥v − v′∥Xβ2

by the Sobolev embedding with − 2d
η(h−1) ≤ 2β2−δ− d

q . In (i) we use the Sobolev

embedding with − 1
η ≥ 1− δ − 1

q and we consider two cases to choose the value

for η. If δ+ 1
q > 2 we let η = 1, and if δ+ 1

q < 2 we set η via − 1
η = 1− δ− 1

q . In

(ii) we use the Sobolev embedding with − 2
η(h+1) ≤ 2β2− δ− 1

q , and we consider

three cases:
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• If δ + 1
q < 2 and q < h−1

2(δ−1) we set β2 = 1
h+1 + 1

2

(
δ + 1

q

)(
h−1
h+1

)
, and the

assumption q ∈
(

1
2−δ ,

h−1
2(δ−1)

)
ensures that β2 ∈ ( 12 , 1),

• If δ+ 1
q < 2 and q ≥ h−1

2(δ−1) we set β2 = δ
2 , which ensures that β2 ∈ ( 12 , 1),

• If δ+ 1
q > 2 we set β2 = max{ 1

2q−
1

h+1 , 0}+
δ
2 . The condition

1
q −

1
h < 2−δ

established before implies β2 ≤ 1
2q −

1
h+1 + δ

2 < 1
2q −

1
2h + δ

2 < 1, so

β2 ∈ [ 12 , 1).

Since β2 ∈ [ 12 , 1) in all, the non-linearity is of lower order. Combining the two
estimates above now gives the result for Φ. As in the proof of Lemma 6.5 the
same estimates apply to Γ. Taken together, these results establish Lemma 6.5
for the case d = 1 with ρ1 = h− 1, ρ2 = h−1

2 , and

β1 =
1

2
max

{
1

q
− 1

h
, 0

}
+
δ

2
,

β2 =


1

h+1 + 1
2

(
δ + 1

q

)(
h−1
h+1

)
, if δ + 1

q < 2 and q < h−1
2(δ−1) ,

δ
2 , if δ + 1

q < 2 and q > h−1
2(δ−1) ,

max
{

1
2q −

1
h+1 , 0

}
+ δ

2 , if δ + 1
q > 2.

Existence of a unique (p, κ, δ, q)-solution (u, σ) to (6.1) is established as in the
proof of Theorem 6.4. The version of Lemma 6.5 for the case d = 1 shows that
the Assumptions (HF) and (HG) of [AV23b, Section 4.1] hold for (F,G) = (Φ,Γ)
and the trace space XTr

κ,p is sub-critical if for j = 1, 2

1 + κ

p
≤ ρj + 1

ρj
− 1

2
(1− βj). (6.34)

The latter sub-criticality condition together with our choice of ρ1, ρ2, β1, β2 leads
to the requirement

1 + κ

p
≤


h

h−1 min
{
1− δ

2 , 1−
δ
2 −

1
2q + 1

2h , 1−
h+1
h

(
1− δ

2

)}
, if δ + 1

2 < 2,

h
h−1 min

{
1− δ

2 , 1−
δ
2 −

1
2q + 1

2h

}
, if δ + 1

2 > 2.

The existence proof is completed by applying [AV23b, Theorem 4.8] as before.
The regularisation results (6.32) - (6.33) follow by repeating the arguments in
the proof of Theorem 6.4.

Also the blow-up criteria Theorem 6.8 remain valid for d = 1.

Theorem 6.10 (Blow-Up Criteria). Let the assumptions of Proposition 6.9 be
satisfied with parameters (p, q, h, δ, κ) and let (u, σ) be the (p, κ, δ, q)-solution to
(6.1) with 1

q <
h+1
h−1−

2
p . Suppose further that Assumption 6.1(p0, q0, h0, δ0) holds
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with h0 ≥ h and that (p0, q0, h0, δ0, κ0) are such that q0 ∈ [q, 1/( 1q − δ0)) and

either Proposition 6.9 (1) or (2) holds. Let

β0 = 2− δ0 − 2
1 + κ0
p0

, γ0 = 2− δ0 −
2κ0
p0

, bq =
1

1
q0

+ 1
q −

h0+1
h0−1

.

Then for all 0 < s < T <∞

P( sup
t∈[s,σ]

∥u(t)∥
B

β0
q0,p0

+ ∥u∥Lp0 (s,σ;Hγ0,q0 ) <∞, s < σ < T ) = 0, (6.35)

and, if additionally 1
q <

h0+1
h0−1 ,

P( sup
t∈[s,σ]

∥u(t)∥
B

β0
q1,∞

<∞, s < σ < T ) = 0 for all q1 ∈ (q0, bq). (6.36)

Proof. The proof proceeds by the same arguments as the proof of Theorem
6.8.

6.3 Local well-posedness in the case p = 2

The results for the Lp(Lq)-setting discussed so far only consider p > 2. On the
other hand, the variational setting considered in Section 3 corresponds to the
case p = 2. We already obtained global well-posedness results for (3.1) in the
variational setting. Therefore, it is desirable to also generalise the regularity
results obtained for p > 2 to the boundary case p = 2.

We first note that the variational setting of Section 4 corresponds to the
parameters p = q = 2, δ = 1, and κ = 0 in the Lp-setting. In the case
of the weak setting it is immediately clear that the (global) solution provided
by Theorem 4.2 also satisfies Definition 6.3 of a (local) (p, q, h, δ)-solution if
we allow p = 2 in Assumption 6.1. In the case of the strong setting, by the
embeddings H2,2 ↪→ H1,2 ↪→ L2 the solution provided by Theorem 4.4 also
satisfies Definition 6.3 of a (local) (p, q, h, δ)-solution. Theorems 4.2 and 4.4
already show that the existence part of Theorem 6.4 holds. Hence, it remains
to establish the regularity results (6.13) and (6.14).

Proposition 6.11 (Regularity for p = 2; Proposition 7.2 in [AV23b]). Assume
that p = q = 2,

h ∈


(1, 4], if d = 1

(1, 3], if d = 2

(1, 4+d
d ], if d ≥ 3,

(6.37)

and Assumption 6.1(p, q, h, δ) holds for some δ ∈ (1, 2). If d = 1, let u0 ∈
L2
F0

(Ω;L2) and let Assumption 4.1 be satisfied, if d ∈ {2, 3, 4} let u0 ∈ L2
F0

(Ω;H1)
and let Assumption 4.3 be satisfied, and let (u, σ) be the (p, κ, δ, q) = (2, 0, 1, 2)-
solution to (6.1) provided by Theorem 4.2 or Theorem 4.4. Then it holds a.s.
that

u ∈ L2
loc([0, σ);H

1,2) ∩ C([0, σ);L2).
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Moreover, the following analogue of the instantaneous regularisation results
(6.13) - (6.14) holds:

u ∈ Hθ,r
loc

(
0, σ;H1−2θ,q

)
a.s. for all θ ∈ [0, 1/2), r ∈ (2,∞),

and, if d = 1, additionally

u ∈ Cθ1,θ2
loc

(
(0, σ)× Rd;Rℓ

)
a.s. for all θ1 ∈ [0, 1/2), θ2 ∈

(
0,

1

2

)
.

Note that Theorems 4.2 and 4.4 show that σ =∞.

Proof. The first assertion of the Proposition is a direct consequence of Theorem
4.2 or Theorem 4.4. The regularisation result is proved in the same way as in
[AV23b]. Therefore, we only sketch the proof here.

We first consider the case d ≥ 3. We will apply [AV22b, Theorem 6.8] to show
that the (p, κ, δ, q) = (2, 0, 1, 2)-solution (u, σ) coincides with the (p, κ, δ, q) =
(r, α, δ0, 2)-solution where the parameters (r, α, δ0, 2) are such that the condi-
tions of Theorem 6.4 are satisfied. To this end, we choose ϵ ∈ (0, 1/2) such that
δ0 := 1 + ϵ < δ and we let

Yi = H2i−1−ϵ,2, Xi = H2i−1,2, p = 2.

We choose r such that 1
r = maxj∈{1,2} βj − 1

2 , where βj are as given in Lemma
6.5, and note that this implies r ∈ (2,∞). Moreover, we set

1

2
=

1 + α

r
+
ϵ

2
,

and note that α ∈ (0, r2−1) since ϵ ∈ (0, 12 ). Now letting (p, q, κ, δ) = (r, 2, α, δ0),

our assumption that h ∈ (1, 4+d
d ) implies that either condition (6.9) or condition

(6.10) of Theorem 6.4 is satisfied. Repeating the arguments in the existence part
of the proof of Theorem 6.4 shows that the conditions of [AV22b, Theorem 6.8]
are satisfied, and we conclude from the latter result that (u, σ) coincides with
the unique (r, α, δ0, 2)-solution to (6.1). The regularisation results of Proposition
6.11 now follow by applying Theorem 6.4 to the (r, α, δ0, 2)-solution to (6.1).

Next, we consider the case d = 2. If h ∈ (1, 2], we require δ0 ∈ (1,min {δ, 3/2})
for the condition (6.9) of Theorem 6.4 to be satisfied. Hence, we choose ϵ ∈
(0, 1/2) such that δ0 = 1+ ϵ < min {δ, 3/2} and repeat the arguments from the
case d ≥ 3 above. If h ∈ (2, 3), we need to modify the choice of β1 in Lemma 6.5
to be able to apply the existence part of the proof of Theorem 6.4. Therefore,
we choose ϵ ∈ (0, 1/2) such that δ0 = 1+ ϵ < min {δ, 5/3, h− 1, 2/(h− 1)}, and
set β1 = δ0

2 + 1
2 −

1
h . In in the Sobolev embeddings used in the proof of Lemma

6.5 we use ξ = 1. With our choice of δ0 the condition (6.10) of Theorem 6.4 is
satisfied and we can repeat the arguments from the case d ≥ 3 above, using our
modified choice of β1 in the existence part of the proof of Theorem 6.4.

If h = 3, we repeat the argument for the case d ≥ 3 with a slightly different
choice of the spaces Xi and Yi. The existence part of the proof for d = 2 was
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given for the strong setting with X0 = L2 and X1 = H2. Hence, in order to
repeat the arguments for the case d ≥ 3, we require analogues of Lemma 6.5
and Theorem 6.4 for the setting X0 = H−ϵ, X1 = H2−ϵ with ϵ ∈ [0, 1/2), h = 3
and q = 2. We let Φ and Γ as in Lemma 6.5. If ϵ > 0 we estimate for Φ0

∥Φ0(·, v)− Φ0(·, v′)∥H−ϵ ≲ ∥(1 + |v|h−1 + |v′|h−1)|v − v′|∥H−ϵ

≲ ∥v − v′∥H2β1−ϵ + ∥(|v|h−1 + |v′|h−1)|v − v′|∥Lξ

by the embedding H−ϵ ↪→ H2β1−ϵ if β1 > 0 and the Sobolev embedding with
−ϵ− 1 ≤ − 2

ξ . By Hölder’s inequality,

∥Φ0(·, v)− Φ0(·, v′)∥H−ϵ

≲ ∥v − v′∥H2β1−ϵ + (∥v∥h−1
Lξh + ∥v′∥h−1

Lξh )∥v − v′∥Lξh

≲ ∥v − v′∥H2β1−ϵ + (∥v∥h−1
H2β1−ϵ + ∥v′∥h−1

H2β1−ϵ)∥v − v′∥H2β1−ϵ

by the Sobolev embedding with − 2
ξh ≤ 2β1 − ϵ− 1. Thus, it suffices to choose

ξ = 2 and β1 = 1
2 + ϵ

2 since h = 3. If ϵ = 0 we do not require the first Sobolev
embedding since H0 = L2, the remaining steps remain unchanged with ξ = 2.

For Φ1 we estimate

∥Φ1(·, v)− Φ1(·, v′)∥H−ϵ = ∥divF (·, v)− divF (·, v′)∥H−ϵ

≲∥F (·, v)− F (·, v′)∥H1−ϵ

≲∥(1 + |v|
h−1
2 + |v′|

h−1
2 )|v − v′|∥H1−ϵ

≂∥v − v′∥H1−ϵ + ∥(|v|+ |v′|)|v − v′|∥H1−ϵ

≲∥v − v′∥H1−ϵ + (∥v∥L4(R2) + ∥v′∥L4(R2))∥v − v′|∥H1−ϵ,4(R2)

+ (∥v∥H1−ϵ,4(R2) + ∥v′∥H1−ϵ,4(R2))∥v − v′|∥L4(R2)

since h = 3. Now using [Tay00, Chapter 2, Proposition 1.1] with p = 2, q1 =
r1 = q2 = r2 = 4,

∥Φ1(·, v)− Φ1(·, v′)∥H−ϵ

≲∥v − v′∥H1−ϵ + (∥v∥L4(R2) + ∥v′∥L4(R2))∥v − v′|∥H1−ϵ,4(R2)

+ (∥v∥H1−ϵ,4(R2) + ∥v′∥H1−ϵ,4(R2))∥v − v′|∥L4(R2)

≲∥v − v′∥H1−ϵ + (∥v∥H2β2−ϵ,2(R2) + ∥v′∥H2β2−ϵ,2(R2))∥v − v′|∥H2β2−ϵ,2(R2)

by the Sobolev embeddingsH2β2−ϵ,2 ↪→ L4 with− 1
2 ≤ 2β2−ϵ−1 andH2β2−ϵ,2 ↪→

H1−ϵ,2 with −ϵ ≤ 2β2 − ϵ− 1. Thus, it suffices to choose β2 = 3
4 . For Γ we use

that

∥Γ1(·, v)− Γ1(·, v′)∥ℓ2;γ(X1/2) ≂∥g(·, v)− g(·, v
′)∥γ(ℓ2;H1−ϵ)

≲∥(1 + |v|
h−1
2 + |v′|

h−1
2 )|v − v′|∥H1−ϵ ,
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from which we obtain an estimate in the same way as for Φ1 with β2 = 3
4 . Note

that the condition
1 + κ

p
≤ (1− βj)

1 + ρj
ρj

for Assumptions (HF) and (HG) of [AV23b, Section 4.1] to hold for (F,G) =
(Φ,Γ) then becomes 1+κ

p ≤ min
{

1
2 ,

3
4 (1− ϵ)

}
. The proof of Theorem 6.4 for

the setting X0 = H−ϵ, X1 = H2−ϵ, h = 3 and q = 2 now follows the same steps
as before.

We are now ready to repeat the reasoning for the case d ≥ 3. We first choose
ϵ ∈ (0, 1/2), then set r

2 = max
j∈{1,2}βj−

1
2=

1
4
and choose α ∈ (0, 1) = (0, 1− r

2 )

such that
1

2
=

1 + α

r
+
ϵ

2
.

If we let (p, q, κ, δ) = (r, 2, α, ϵ), we can repeat the arguments of the existence
part of the proof of Theorem 6.4 with spaces X0 = H−ϵ and X1 = H2−ϵ to
show that the conditions of [AV22b, Theorem 6.8] are satisfied. We conclude
from the latter result that (u, σ) coincides with the unique (r, α, ϵ, 2)-solution
to (6.1). The regularisation results of Proposition 6.11 now follow by applying
Theorem 6.4 to the (r, α, ϵ, 2)-solution to (6.1).

Finally, we consider the case d = 1. We use the proof of Proposition 6.9 with
suitable parameters to establish the regularity results. To this end, we choose
ϵ ∈ (0, 1/2) such that

δ0 = 1 + ϵ < min

{
δ,

2h

h− 1
− 3

2
, 1 +

1

h
,
1

2
+

2

h

}
.

The latter guarantees that

1

2
< h

h−1 min
{
1− δ

2 , 1−
δ
2 −

1
2q + 1

2h , 1−
h−1
2h (δ + 1

q )
}
.

Letting β1 and β2 as in the proof of Proposition 6.9, we can choose r > 2, such
that 1

r = maxj∈{1,2} βj − 1
2 . Moreover, we set

1

2
=

1 + α

r
+
ϵ

2
,

where α ∈ (0, r2 − 1). Thus, the case δ0 +
1
2 < 2 and 1+α

r ≤ h
h−1 min

{
1 − δ0

2 ,

1− δ0
2 −

1
4 +

1
2h , 1−

h−1
2h (δ0+

1
2 )
}
of Proposition 6.9 is satisfied with parameters

(p, q, κ, δ) = (r, 2, α, δ0). We can now repeat the arguments from the case d ≥ 3
above.

7 FitzHugh-Nagumo Equations in the Lp(Lq(Rd))-
Setting

With the results on local and global well-posedness of reaction-diffusion equa-
tions on Rd in hand, we now return to the problem of well-posedness of the
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FitzHugh-Nagumo equations on the unbounded domain Rd with d > 1. We
begin by establishing analogues of the existence and regularisation results The-
orem 5.4, Corollary 5.6, and the blow-up criteria 5.7.

7.1 Local Well-Posedness and Blow-Up Criteria

We again consider the FitzHugh-Nagumo equations (4.1). As in Section 5, since
the second component of the equation does not involve a Laplace operator,
the uniform ellipticity condition of Assumption 7.1(4) only holds for the first
component of the system (4.1). Therefore, we need to make some adjustments
to the theory developed for reaction-diffusion equations in Section 6. We let
δ ∈ [1, 2), η ∈ (0, 2− δ], q ≥ 2 and we consider the spaces

X0 = H−δ,q(Rd)⊕H2−δ−η,q(Rd) =: X1
0 ⊕X2,

X1 = H2−δ,q(Rd)⊕H2−δ−η,q(Rd) =: X1
1 ⊕X2,

Xβ := [X0, X1]β = H2β−δ,q(Rd)⊕H2−δ−η,q(Rd),

(7.1)

where β ∈ (0, 1). We will again use the shorthand notation H−δ,q, H2−δ,q etc.
instead of H−δ,q(Rd), H2−δ,q(Rd) when no confusion can arise, and we will write
X1

β = [X1
0 , X

1
1 ]β . On these spaces we consider the operators Ã0, Apert, f, B0, G,

which we define as in (5.2). We again let A0 = Ã0 + Apert, A = A0 − F and
B = B0 +G. Moreover, we make the following assumptions

Assumption 7.1. Let p ∈ (2,∞), q ∈ [2,∞), δ ∈ [1, 2) and for i = 1, 2 the
following hold:

1. For each j,∈ {1, . . . , d}, bj := (bjk)k≥1 : R≥0 ×Ω×Rd → ℓ2 is P ⊗B(Rd)-
measurable,

2. If δ = 1, there exists N > 0 such that a.s. for all t ≥ 0 and j ∈ {1, . . . , d}

∥bj∥L∞(ℓ2) ≤ N, (7.2)

If δ > 1 there additionally exist τ > δ− 1, ϵ ∈ (0, τ + 1− δ) such that a.s.
for all t ≥ 0 and j ∈ {1, . . . , d},

∥bj∥Cτ (Rd;ℓ2) ≤ N, (7.3)

3. For every s ∈ [0, T ) there exist b̂j : [s, T ] × Ω → ℓ2 such that for all
j ∈ {1, . . . , d}

lim
|x|→∞

ess sup
ω∈Ω

sup
t∈[s,T ]

∥bj − b̂j∥ℓ2 = 0, (7.4)

4. There exists a ν0 ∈ (0, ν) such that, a.s. for all t ≥ 0, x, ξ ∈ Rd

d∑
j,l=1

νδj,l − 1

2

∑
k≥1

bjk(t, x)b
l
k(t, x)

 ξjξl ≥ ν0|ξ|2, (7.5)

57



5. The map f : R → R is B(R)-measurable and the maps gi := (gk,i)k≥1 :
R≥0 × Ω× R→ ℓ2 are P ⊗ B(Rd)⊗ B(R)-measurable. Moreover,

f(·, 0) = 0,

µf ′ := sup
u∈R

f ′(u) <∞,

|f(u)− f(v)| ≤ C1(1 + |u|h−1 + |v|h−1)|u− v|,
gi(·, 0) ∈ ∩q≥2,θ∈(0,1)L

∞(R≥0 × Ω;Hθ,q(Rd; ℓ2)),

∥g1(t, u)−g1(t, v)∥ℓ2
≤ C1(|u1 − v1|+ |u2 − v2|)

∥g2(t, u)−g2(t, v)∥ℓ2 ≤ C1(|u1 − v1|+ |u2 − v2|)
∥g2(t, u)−g2(t, v)∥X2(ℓ2)

≤ C1(∥u1 − v1∥X2(ℓ2) + ∥u2 − v2∥X2(ℓ2))

Our definition of a solution is analogous to Definition 5.2 in Section 5 for
the domain Td.

Assumption 7.2 (Assumption 2.4 in [AV23b]). Let d ≥ 2. Assumption 7.2(p, q, h, δ)
holds if p ∈ (2,∞), q ∈ [2,∞), h > 1 and δ ∈ [1, h+1

h ) satisfy

1

p
+

1

2

(
δ +

d

q

)
≤ h

h− 1
,

d

d− δ
< q <

d(h− 1)

h+ 1− δ(h− 1)
. (7.6)

Theorem 7.3 (Local Existence, Uniqueness, and Regularity). Suppose that

Assumption 5.1(p, q, h, δ) holds, q > max
{

d
d−δ ,

d(h−1)
2h−δ(h−1)

}
and that κ ∈ [0, p2 −

1) satisfies either

q <
d(h− 1)

δ
and

1 + κ

p
+

1

2

(
δ +

d

q

)
≤ h

h− 1
(7.7)

or

q ≥ d(h− 1)

δ
and

1 + κ

p
≤ h

h− 1

(
1− δ

2

)
. (7.8)

Then for any η ∈ (0, 2− δ] and

u0 ∈ L0
F0

(
Ω;B

2−δ−2
1+κ
p

q,p ⊕H2−δ−η,q

)
(7.9)

there exists a unique (p, κ, δ, η, q)-solution (u, σ) to (4.1) such that a.s. σ > 0
and

u ∈ Lp
loc([0, σ), wk;H

2−δ,q ⊕H2−δ−η,q) ∩ C

(
[0, σ);B

2−δ−2
1+κ
p

q,p ⊕H2−δ−η,q

)
.

(7.10)
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Moreover, u regularises instantaneously in time and, in addition, u1 regularises
instantaneously in space,

u ∈ Hθ,r
loc

(
0, σ;H1−2θ,q ⊕H2−δ−η,q

)
a.s. for all θ ∈ [0, 1/2), r ∈ (2,∞),

(7.11)

and, if q > d, additionally

u1 ∈ Cθ1,θ2
loc

(
(0, σ)× Rd;R

)
a.s. for all θ1 ∈ [0, 1/2), θ2 ∈

(
0, 1− d

q

)
.

(7.12)

The proof of Theorem 5.4 largely carries over to the proof of Theorem 7.3.
Therefore, we only point out which adjustments are required to accommodate
the unbounded domain Rd. As stated for our proof of Theorem 6.4, the embed-
dings H2i−δ,ζ+ϵ0 ↪→ H2i−δ,ζ , H2λ−δ,ζ ↪→ H−δ,q and H2−δ,ζ ↪→ H2λ−δ,q for some
λ ∈ (0, 1) used in our proof of the regularisation results in Theorem 5.4 do not
hold on the unbounded domain Rd. In addition, the computations (5.24) used
in Step 3 of our proof of Theorem 5.4 to establish [AV22b, Hypothesis (HG)] in
the (Y0, Y1, r, α)-setting and the (Ŷ0, Ŷ1, r̂, α̂)-setting relied on the fact that Td

is a bounded domain. Therefore, we cannot bootstrap integrability in space via
[AV22b, Theorem 6.3].

Proof. Existence and uniqueness. We apply [AV22a, Theorem 4.8]. To this
end, we verify that [AV22a, Hypothesis (H) ] is satisfied and that (A0, B0) ∈
SMR•

p,κ(T ) for all T ∈ (0,∞).
By Assumption 7.1(5), the first component of f satisfies the conditions of

Lemma 6.5 with Φ = Φ1 = f , Γ = 0, and β1 as given in the lemma. Since
the second component is 0, it follows that [AV22a, hypothesis (HF) ] holds.
For G the computations in (5.16) - (5.17) and subsequent comments carry over
verbatim, and thus [AV22a, hypothesis (H) ] holds. To verify that (A0, B0) ∈
SMR•

p,κ we again note that (Ã0, B0) ∈ SMR•
p,κ(T ); for Ã0 this follows from

[AV21, Theorem 5.2 and Remark 5.6], and for B0 this follows from Assumption
7.1(3) together with [AV21, Theorem 5.2 and Remark 5.7]. The computations in
(5.18) carry over verbatim to the unbounded domain Rd, and [AV21, Theorem
3.2] yields (A0, B0) ∈ SMR•

p,κ. [AV22a, Assumption 3.2] is verified as in the
proof of Theorem 5.4, and existence and uniqueness of the local solution (u, σ)
follows from [AV22a, Theorem 4.8]. The regularity properties (7.10) follow by
weighted Sobolev embedding [AV22a, Proposition 2.7].

Instantaneous regularisation. Steps 1 - 2 of the proof of Theorem 5.4 carry
over verbatim since none of the embedding results used there make use of the
fact that Td is a bounded domain. The regularity result (7.12) is obtained in
the same way as in Step 3 of the proof of Theorem 6.4.

Corollary 7.4 (Local Well-Posedness in Critical Spaces; Theorem 2.7 in [AV23b]).
Suppose that Assumptions 7.1(p, q, h, δ) and 7.2(p, q, h, δ) hold, and set κ =:
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κc = p
(

h
h−1 −

1
2

(
δ + d

q

))
− 1. Then for any η ∈ (0, 2− δ] and

u0 ∈ L0

(
Ω;B

d
q−

2
h−1

q,p ⊕H2−δ,q

)
(7.13)

there exists a unique (p, κc, δ, η, q)-solution (u, σ) such that a.s. σ > 0 and

u ∈ C([0, σ);B
d
q−

2
h−1

q,p ⊕H2−δ−η,q) a.s. (7.14)

u ∈ Hθ,p
loc

(
[0, σ), wκc

;H2−δ−2θ,q ⊕H2−δ−η,q
)
a.s. for all θ ∈ [0, 1/2). (7.15)

Moreover, u regularises instantaneously in time and, in addition, u1 regularises
instantaneously in space,

u ∈ Hθ,r
loc

(
0, σ;H1−2θ,ζ ⊕H2−δ−η,q

)
a.s. for all θ ∈ [0, 1/2), r ∈ (2,∞),

(7.16)

and, if q > d, additionally

u1 ∈ Cθ1,θ2
loc

(
(0, σ)× Td

)
a.s. for all θ1 ∈ [0, 1/2), θ2 ∈

(
0, 1− d

q

)
. (7.17)

Proof. Corollary 7.4 is immediate from Theorem 7.3.

Our proof of Theorem 6.8 in Section 6 showed that the lack of spatial integ-
rability for solutions to reaction-diffusion equations (6.1) imposes considerable
limitations on the parameters (q0, q1) for which blow-up criteria can be ob-
tained. As we have seen in the proof of Theorem 5.7 in Section 5, the lack
of regularisation for the second component of the FitzHugh-Nagumo equations
(4.1) further limits us to applying the blow-up criteria [AV22b, Theorem 4.10(3)]
in the abstract setting. Therefore, we only state the equivalent of Theorem 5.7.

Theorem 7.5 (Blow-Up Criteria). Let the assumptions of Corollary 7.4 be
satisfied and let (u, σ) be the (p, κc, δ, q)-solution to (4.1). Suppose further that
p0 ∈ (2,∞), h0 ≥ h, δ0 ∈ [1, 2) are such that Assumptions 7.1(p0, q, h0, δ0) and
7.2(p0, q, h0, δ0) hold. If η0 ∈ (0, 2 − δ0] is such that δ + η = δ0 + η0, then for
all 0 < s < T <∞

P( sup
t∈[s,σ]

∥u(t)∥
B

β0
q,p0

⊕H2−δ0−η0,q

+ ∥u∥Lp0 (s,σ;Hγ0,q⊕H2−δ0−η0,q) <∞, s < σ < T ) = 0.
(7.18)

Proof. The proof of Theorem 5.7 carries over verbatim with ζ = q in (5.33)
since none of the embedding results used there make use of the fact that Td is
a bounded domain.
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7.2 Global Well-Posedness

In this section we prove global well-posedness of the FitzHugh-Nagumo Equa-
tions (4.1) on Rd. As in Section 5, we will assume that d ≥ 2; the case d = 1
can be accommodated by considering (4.1) on R×T and adding a dummy vari-
able. Due to the limited spatial integrability of the solution to (4.1) provided
by Corollary 7.4, we will formulate all assumptions and proofs with ζ = q.

Assumption 7.6 (Lq-Coercivity; Version of Assumption 4.1 in [AV23a]). Sup-
pose d ≥ 2, Assumption 7.1(p, q, h, δ) holds with h = 3. We say that Assumption
7.6 holds if there exist constants θ,M,C,> 0 such that a.e. on R≥0×Ω and for
all (u1, u2) ∈ S(Rd)⊕ S(Rd)∫

Rd

|u1|q−2
(
∇u1 · ∇u1 −

u1(f(u1)− u2)
q − 1

− 1

2

∑
k≥1

[(bk · ∇)u1 + g1,k(·, u)]2
)
dx

≥ θ
∫
Rd

|u1|q−2(|∇u1|2 −M |u1|2)−M |u2|q dx− C.

Remark 9. As pointed out in [AV23a], if Assumption 5.8 holds for (u1, u2) ∈
S(Rd) ⊕ S(Rd), it can be shown to extend to (u1, u2) ∈ H1,q ⊕ Lq via an
approximation argument.

Lemma 7.7 (Lq-Coercivity for FitzHugh-Nagumo). Suppose the assumptions
of Corollary 5.6 with h = 3 are satisfied. Then Assumption 5.8 holds.

Proof. The proof of Lemma 5.9 carries over verbatim if we replace the assump-
tion (u1, u2) ∈ C1(Td)⊕ C(Td) with (u1, u2) ∈ S(Rd)⊕ S(Rd).

Theorem 7.8 (Global Existence; Theorem 4.3 in [AV23a]). Suppose the as-
sumptions of Corollary 7.4 are satisfied with q > d, h = 3, δ + η = 2 and

u0 ∈ L0

(
Ω;B

d
q−1

q,p ⊕ Lq

)
.

Let (u, σ) be the (p, κc, δ, q)-solution to (4.1). Then (u, σ) is a global solution,
that is, σ =∞ a.s. In particular, the regularity results (7.14) - (7.17) hold with
σ =∞. Moreover, there exists a constant N0 > 0 such that for all 0 < s < T <
∞ the following a priori bound holds:

E sup
t∈[s,T ]

1Γ(∥u1(t)∥qLq+∥u2(t)∥qLq ) + E
∫ T

s

∫
Rd

1Γ|u1|q−2|∇u1|2 dxdr

≤ N0 (1 + E1Γ(∥u1(s)∥qLq + ∥u2(t)∥qLq )) ,

(7.19)

where Γ = {σ > s} ∩ {∥u1(s)∥Lq + ∥u2(s)∥Lq ≤ L}, for some L ≥ 1. Moreover,
the regularity results (7.14)-(7.17) hold with σ =∞ a.s.

The proof of Theorem 7.8 relies on the following lemma.
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Lemma 7.9 (Energy bounds; Version of Lemma 3.8 in [AV23a]). Suppose the
assumptions of Corollary 5.6 are satisfied with h = 3 and q > d, and let (u, σ)
be the local (p, κc, δ, q)-solution to (4.1). Then for every 0 < s < T < ∞ we
have

sup
t∈[s,σ∧T )

∥u1(t)∥qLq + ∥u2(t)∥qLq <∞ a.s. on {σ > s}, (7.20)∫ σ∧T

s

∫
Rd

|u1|q−2|∇u1|2 <∞ a.s. on {σ > s}. (7.21)

Moreover, there exists a constant N0 > 0 such that for all 0 < s < T <∞ and
k ≥ 1

sup
t∈[s,σ∧T )

E
[
1[s,σ)(t)1Γ(∥u1(t)∥qLq + ∥u2(t)∥qLq )

]
+E

∫ σ∧T

s

∫
Rd

1Γ|u1|q−2|∇u1|2 dxdr

≤ N0 (1 + E1Γ(∥u1(s)∥qLq + ∥u2(s)∥qLq )) ,

(7.22)

E sup
t∈[s,σ∧T )

1Γ(∥u1(t)∥qLq + ∥u2(t)∥qLq )

+E
∫ σ∧T

s

∫
Rd

1Γ|u1|q−2|∇u1|2 dxdr

≤ N0 (1 + E1Γ(∥u1(s)∥qLq + ∥u2(s)∥qLq )) ,

(7.23)

where Γ = {∥u1(s)∥Lq + ∥u2(s)∥Lq ≤ L} ∩ {σ > s} and L ≥ 1.

Proof of Lemma 7.9. By our assumption that q > d, the regularity result (7.17)
applies for some θ2 > 0. Therefore, we can define the stopping times τj as in
the proof of Lemma 5.11, and (7.16) and (7.17) give that limj→∞ τj = σ. By
(7.16) and the embedding H2−δ−η,q ↪→ Lq, ∇u1 and u2 have Lq-integrability,
which enables us to apply the generalised Itô formula A.1. The remainder of
the proof of Lemma 5.11 carries over verbatim.

Proof of Theorem 7.8. The proof of Theorem 5.10 carries over verbatim.

8 Discussion

In the present work we developed (global) well-posedness results for the stochastic
FitzHugh–Nagumo equations. Applying well-posedness results for stochastic
evolution equations in the critical variational setting allowed us to prove the
existence of a global solution as well as regularisation properties for the case
d = 1 in the weak variational setting. Moving to the strong variational setting
further allowed us to prove existence and regularity results for d ≤ 4, but re-
quired us to impose restrictive assumptions on the noise terms. In particular,
we had to assume that the semi-linear noise terms of the two component equa-
tions only depend on the corresponding component of the solution process. By
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considering the FitzHugh–Nagumo equations in the Lp(Lq)-setting, first for the
bounded domain Td and subsequently for the unbounded domain Rd, we were
able to prove (global) existence of a solution under linear growth assumptions
on the semi-linear noise terms. Moreover, we were able to prove instantaneous
regularisation of the solution in the first component, and to obtain a priori
estimates for the solution on arbitrary intervals [s, T ] with 0 < s < T <∞.

One limitation of our results is that our proofs of global well-posedness re-
quire us to assume high spatial integrability of the initial data that grows with
the dimension of the domain. The latter is due to two facts. Firstly, as our in-
vestigation of local well-posedness of reaction-diffusion equations on Rd showed,
existing methods for bootstrapping spatial integrability fail on unbounded do-
mains. Secondly, the absence of spatial regularisation in the second component
of the FitzHugh–Nagumo equations limits the spatial regularisation that can be
obtained for the first component, and thus for the entire solution to the system.
While the former problem might be addressed by weakening the assumptions
of the well-posedness results in the abstract setting (i.e., [AV22b, Theorem 6.3,
Corollary 6.5 and Proposition 6.8]) on which our proofs rely, the latter problem
is inherent in the FitzHugh–Nagumo equations and can likely not be resolved.

An open problem that we were not able to address here is the question
whether and under which conditions the a priori bounds obtained in Theor-
ems 5.10 and 7.8 hold with s = 0. [AV23a] in their Lemma 3.8 show that for
reaction-diffusion equations, for sufficiently regular initial data one can indeed
take s = 0. Another open problem that we could not address here is establishing
compatibility of the solution obtained in the Lp(Lq(Rd))-setting with the solu-
tion obtained in the variational setting. [AV23b] present such a compatibility
result (for the bounded domain Td) in their Proposition 3.5; they show that if
a solution to a given reaction-diffusion equation exists under two sets of para-
meters (p1, q1, κ1, δ1, h1) and (p2, q2, κ2, δ2, h2), then the two solutions coincide
(i.e., σ1 = σ2 and u1 = u2 a.e. on [0, σ1) × Ω). Our results Theorems 6.9 and
6.11 show that existence of local solutions in the boundary cases d = 1 and
p = q = 2 can also be obtained in the Lp(Lq(Rd))-setting. However, since the
proof of [AV23b, Proposition 3.5] relies on the instantaneous regularisation of
solutions to reaction-diffusion equations, we were not able to prove an analogue
of their result for the FitzHugh–Nagumo equations, neither on Td nor on Rd.
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A Appendix

A.1 Generalised Itô formula

Theorem A.1 (Generalised Itô formula; Extension of Proposition A.1 in [DHV16]).
Let D ∈ {Td,Rd}, ζ ≥ 2. Suppose that the assumptions of either Corollary 5.6
or Corollary 7.4 hold and that v = (v1, v2) is a local (p, κ, δ, η, q)-solution to
(4.1) such that

v ∈ C([0, T ];Lζ(D)) ∩ L2(0, T ;H1,ζ(D))⊕ C([0, T ];Lζ(D)).

Moreover, let

ϕ =

(
f(v1)− v2
ϵ(v1 − γv2)

)
Φ =

(
ν∇v1
0

)
ψk =

(
bk · ∇v1 + g1,k(·, v)

g2,k(·, v)

)
so that vi, i ∈ {1, 2}, satisfies a.s.

dvi = ϕi(t) dt+ div(Φi(t)) dt+
∑
k≥1

ψi,k(t) dWi(t) on [0, T ]× Ω, vi(0) = v0,i

in H−1,ζ(D). Then a.s. and for all t ∈ [0, T ]∫
D
|vi(t)|ζ dx =

∫
D
|v0,i|ζ dx+

∫ t

0

∫
D
ζ|vi(s)|ζ−2vi(s)ϕi(s) dx ds

−
∫ t

0

∫
D
ζ(ζ − 1)|vi(s)|ζ−2∇vi(s) · Φi(s) dxds

+
∑
k≥1

∫ t

0

∫
D
ζ|vi(s)|ζ−2vi(s)ψi,k(s) dx dWi(s)

+
1

2

∑
k≥1

∫ t

0

∫
D
ζ(ζ − 1)|vi(s)|ζ−2|ψi,k(s)|2 dxds.

(A.1)

Proof. Assume first that D = Td or supp vi is bounded. Let (δm)m≥1 ⊂ C∞
c (D)

be a Dirac sequence and let vi,m = vi ∗ δm, and similarly for v0,i,m, ϕi,m,Φi,m

and ψi,k,m. Then a.s. for all t ∈ [0, T ], x ∈ D

vi,m(t, x)−v0,i,m =

∫ t

0

ϕi,m(s) ds+

∫ t

0

div(Φi,m(s)) ds+
∑
k≥1

∫ t

0

ψi,k,m(s) dWi(s).

We now let ξ ∈ C2
b (R) be such that ξ(x) = |x|ζ for |x| ≤ N for some constant

N . We apply the 1-dimensional Itô formula to ξ(x) (using the boundedness of
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vi,m) and integrate over x to obtain∫
D
|vi,m(t)|ζ dx =

∫
D
|vi,m(0)|ζ dx+

∫ t

0

∫
D
ζ|vi,m(s)|ζ−2vi,m(s)ϕi,m(s) dxds

−
∫ t

0

∫
D
ζ(ζ − 1)|vi,m(s)|ζ−2∇vi,m(s) · Φi,m(s) dxds

+
∑
k≥1

∫ t

0

∫
D
ζ|vi,m(s)|ζ−2vi,m(s)ψi,k,m(s) dx dWi(s)

+
1

2

∑
k≥1

∫ t

0

∫
D
ζ(ζ − 1)|vi,m(s)|ζ−2|ψi,k,m(s)|2 dxds.

(A.2)

As in the proof given in [DHV16], using the fact that ξ has bounded derivatives
up to second order, the embedding Lp ↪→ Lq for q ≤ p on finite measure spaces,
and the assumptions on v, it follows that the deterministic terms converge

|vi,m|ζ → |vi|ζ

|vi,m|ζ−2vi,mϕi,m → |vi|ζ−2viϕi

|vi,m|ζ−2∇vi,m · Φi,m → |vi|ζ−2∇vi · Φi

|vi,m|ζ−2
∑
k≥1

|ψi,k,m|2 → |vi|ζ−2
∑
k≥1

|ψi,k|2

in L1(Ω× [0, T ]×D) as m→∞, and that the integrand of the stochastic term
converges

|vi,m|ζ−2vi,mψi,k,m → |vi|ζ−2viψi,k

in L2(Ω×[0, T ]×D) asm→∞, from which convergence of the stochastic integral
follows by the Burkholder-Davis-Gundy inequality. Thus, up to extracting a
subsequence, each term in (A.2) converges a.e. in Ω× [0, T ] to the corresponding
term in (A.1).

If D = Rd and supp vi is unbounded, we let χK ∈ Cc(Rd) be a smooth cutoff
function with χK = 1 on B(0,K) and χK = 0 on Rd \ B(0,K + 1). Denote

by v
(K)
i,m = χKvi,m and similarly for v

(K)
0,i,m, ϕ

(K)
i,m ,Φ

(K)
i,m and ψ

(K)
i,k,m. Hence, mul-

tiplying by χζ
K , applying the 1-dimensional Itô formula to ξ(x) with a suitable

constant N and integrating over x gives∫
Rd

|v(K)
i,m (t)|ζ dx =

∫
Rd

|vi,m(0)(K)|ζ dx+

∫ t

0

∫
Rd

ζ|v(K)
i,m (s)|ζ−2v

(K)
i,m (s)ϕ

(K)
i,m (s) dxds

−
∫ t

0

∫
Rd

ζ(ζ − 1)|v(K)
i,m (s)|ζ−2(χK∇vi,m(s)) · Φ(K)

i,m (s) dx ds

+
∑
k≥1

∫ t

0

∫
Rd

ζ|v(K)
i,m (s)|ζ−2v

(K)
i,m (s)ψ

(K)
i,k,m(s) dxdWi(s)
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+
1

2

∑
k≥1

∫ t

0

∫
Rd

ζ(ζ − 1)|v(K)
i,m (s)|ζ−2|ψ(K)

i,k,m(s)|2 dxds.

Repeating the arguments above, we obtain that a.s. in (ω, t) ∈ Ω× [0, T ]∫
Rd

|v(K)
i (t)|ζ dx =

∫
Rd

|v(K)
0,i |

ζ dx+

∫ t

0

∫
Rd

ζ|v(K)
i (s)|ζ−2v

(K)
i (s)ϕ

(K)
i (s) dx ds

−
∫ t

0

∫
Rd

ζ(ζ − 1)|v(K)
i (s)|ζ−2(χK∇vi(s)) · Φ(K)

i (s) dxds

+
∑
k≥1

∫ t

0

∫
Rd

ζ|v(K)
i (s)|ζ−2v

(K)
i (s)ψ

(K)
i,k (s) dx dWi(s)

+
1

2

∑
k≥1

∫ t

0

∫
Rd

ζ(ζ − 1)|v(K)
i (s)|ζ−2|ψ(K)

i,k (s)|2 dx ds,

and letting K →∞ gives the result.
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generate parabolic stochastic partial differential equations: quasi-
linear case”. In: Ann. Probab. 44.3 (2016), pp. 1916–1955. issn:
0091-1798. doi: 10.1214/15-AOP1013. url: https://doi.org/
10.1214/15-AOP1013.

[EGK21] Katharina Eichinger, Manuel V Gnann and Christian Kuehn.Multiscale
analysis for traveling-pulse solutions to the stochastic FitzHugh-
Nagumo equations. arXiv:2002.07234v2. 2021.

[Fit61] R. FitzHugh. “Impulses and physiological states in theoretical mod-
els of nerve membrane”. In: Biophys. J. 1.6 (1961), pp. 445–466.
doi: 10.1016/s0006-3495(61)86902-6.

[FS15] P. C. Franzone and G. Savare. Degenerate evolution systems model-
ing the cardiac electric field at micro-and macroscopic level. Evolu-
tion equations, semigroups and functional analysis. Springer, Cham,
2015, pp. vi+266. isbn: 978-3-319-22353-7; 978-3-319-22354-4. doi:
10.1007/978-3-319-22354-4. url: https://doi-org.proxy.
uba.uva.nl/10.1007/978-3-319-22354-4.

[HH20] C H S Hamster and H J Hupkes. “Stability of traveling waves for
systems of reaction-diffusion equations with multiplicative noise”.
In: SIAM Journal of Mathematical Analysis 52.2 (2020), pp. 1386–
1426. doi: https://doi.org/10.1137/18M1226348.

[HH52a] A. L. HODGKN and A. F. HUXLEY. “A quantitative description of
membrane current and its application to conduction and excitation
in nerve”. In: J. Physiol. 117.4 (1952), pp. 500–544. doi: 10.1113/
jphysiol.1952.sp004764.

[HH52b] A. L. HODGKN and A. F. HUXLEY. “Currents carried by sodium
and potassium ions through the membrane of the giant axon of
Loligo”. In: J. Physiol. 116.4 (1952), pp. 449–472. doi: 10.1113/
jphysiol.1952.sp004717.

[HH52c] A. L. HODGKN and A. F. HUXLEY. “Measurement of current-
voltage relations in the membrane of the giant axon of Loligo”. In:
J. Physiol. 116.4 (1952), pp. 424–448. doi: 10.1113/jphysiol.
1952.sp004716.
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