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Summary 

Altering the state of the stress of the subsurface reservoirs can lead fractures to slip and extend their lengths (i.e., 

to propagate). This process can even be engineered, in many applications, e.g., enhanced geothermal systems. As 

such, accurate and efficient simulation of the mechanical deformation of the subsurface geological reservoirs, 

allowing for fracture propagation, is at the core of many geoscientific operational designs. 

Subsurface reservoirs entail many fractures at multiple scales. Implementation of 3D complex grids on these 

complex fractured systems, for mechanical deformation analyses, is extremely challenging. An alternative 

approach can be developed by using extended finite element methods (XFEM). XFEM allows for capturing the 

fractures effects on a conveniently-generated structured matrix mesh. The cracks are introduced by extra degrees 

of freedom (DOFs) on the nodes of the matrix rock mesh. For geoscientific applications, however, XFEM results 

in too many DOFs which are beyond the scope of simulators. Additionally, for propagating fractures, these DOFs 

need to be updated in response to the dynamic extension of the fractures in the domain. The propagation process 

not only adds to the sensitivity of the outputs to the accuracy of the estimated stress field, but also increases the 

size of the linear systems. In addition to these, matrix rocks are often highly heterogeneous, at high resolutions. 

In this work, we present a novel multiscale procedure for propagating fractures in heterogeneous geological 

reservoirs. For the first time in the community, we present the highly fractured systems at coarser resolutions via 

XFEM-based basis functions, which also account for the propagating effects. Fractures are allowed to extend their 

scale and the enriched basis functions are locally updated. Using these bases, the coarse scale system is obtained 

in which no extra DOFs due to fractures exist. This significantly reduces the computational complexity.  

As a significant step forward compared with our recently-published journal paper [Xu, Hajibeygi, Sluys, Journal 

of Computational Physics, 2021], in this conference contribution we allow the fractures to propagate. Specially, 

we introduce a local-global-based approach, in which fracture propagation is treated only at local stage; while the 

stress and deformation are modelled at global scale. In the search of convenient implementation, the procedure is 

presented algebraically. 

Through several test cases, we demonstrate the applicability of the method for complex fractured media. Specially 

we demonstrate that propagation can be modeled at local scale, while accurate stress and deformation fields are 

obtained at global scale. 



Introduction

The equilibrium state of fractured geological formations may be violated due to a sudden change of the
state of stress, which can arise from anthropological operations. As a consequence, fractures can be
activated and slide or even grow (i.e., propagate). The consequences of the sliding fracture phenomena
can be disastrous. To be able to control and alleviate these risks, accurate and efficient simulation of
growing fractures in underground formations is crucial.
In view of fracture growth, some mechanical theories have been proposed in the literature. In Grif-
fith’s theory [(20)], the fracture grows when the energy release rate at its tip is larger than or equal to a
prescribed critical value, which is a material dependent parameter. A few classical theories have been
applied to further track the growth direction. The maximum principle stress theory (16) has been proved
to be able to track the direction of crack growth accurately. The maximum energy release rate (45; 38)
allows to predict crack growth for both tension and compression scenarios, which makes it appealing for
practical geoscience applications.
To simulate growing fractures, the extended finite element method (XFEM) (6; 33), which is an embed-
ded method for fracture mechanics simulation, is a viable option. Unlike the unstructured grid approach
(36; 7; 27; 18; 44), XFEM implies the enrichment to shape functions meanwhile not interfering with
the discretization layout. Therefore, independent meshes can be assigned to the matrix and fractures
(24; 42; 29; 15; 46). To match the partition of unity (PoU) property of shape functions (32), extra de-
grees of freedom (DOFs) are given to enriched nodes. Considering different geometric relationships
between fractures and elements, two types of enrichment can be applied: jump enrichment and junction
enrichment (33; 5; 4; 31; 13). Level set functions are introduced to help XFEM track the fracture tip
positions (34; 40; 8).
In underground fractured formations, heterogeneity that spans over larger length scales need to be con-
sidered together with fractures of different length-scales. The classical XFEM is not readily applicable in
the geoscience community due to the large number of extra DOFs for highly fractured formations. Note
that possible model-order-reduction schemes, such as upscaling or homogenization, are not able to cap-
ture the detailed sharp gradients in stress and strain nearby the fractures (2; 1; 3; 25; 30; 48; 35; 28; 21).
Alternatively, the multiscale method (MS) (23; 10; 39; 26; 14; 37; 9; 17; 19; 22; 43; 12) has been proved
to be able to capture the fine-scale heterogeneity, yet construct accurate coarse-scale systems and thus
reduce the computational costs. In presence of fractures, the multiscale extended finite element method
(MS-XFEM) has been recently developed by Xu et al. (47). This method incorporates the fine scale
discontinuities into the basis functions and creates finite element type problem on the coarse-scale mesh
which contains no extra DOFs. The generation of basis functions can be done algebraically as stated
in (47) conveniently. To control the quality of final results to a controlled level, the iterative method is
applied.
This paper develops an iterative MS-XFEM (iMS-XFEM) to simulate fracture growth in highly fractured
formations. The growth of fractures are tracked using level set functions. The growing fracture tips are
tracked by updating the basis functions which are generated based on the revised fine-scale stiffness
matrix in an algebraic manner. Thus, in each time step the basis functions are updated only at the local
domains in which the fracture geometry will change. Still, no extra DOFs are introduced on the coarse
scale system. Preconditioned GMRES is used during the iterative solving stage to control the accuracy
of the final results.
The structure of this paper is set as follows. First, the governing equations and the fine scale XFEM
method are introduced. Next, fracture growth simulation using fine scale XFEM is introduced, followed
by the fine scale XFEM in simulating multiple fractures propagation. Then the principles of how iMS-
XFEM in a multiple cracks simulation is presented.

Governing Equations and XFEM

Consider a domain Ω bounded by Γ as shown in Fig. 1. Prescribed displacements or Dirichlet boundary
condition are imposed on Γu, while traction are imposed on Γt . The multiple crack surfaces Γc,i=1...n
(lines in 2-D and surfaces in 3-D) are assumed to be traction-free.
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Figure 1: An illustration of fractured domain setup.

The momentum balance equations and boundary conditions read

∇ ·σ + f = 0 in Ω, (1)

σ ·−→n = t̄ on Γt , (2)

σ ·−→n = 0 on Γc, (3)
u = ū on Γu, (4)

where σ is the stress tensor and u is the displacement field over the whole domain. −→n is the normal
vector pointing outside the domain.
A linear elastic constitutive law is applied in this paper. The second order partial differential equation
(PDE) for displacement field u reads

∇ · (C : ∇
su)+ f = 0, (5)

where C is the linear elastic constitutive tensor. Eq. (5) is then solved for computational domains with
cracks (representing faults and fractures). This is done by using XFEM. Next, the XFEM is revisited
briefly.

Extended Finite Element Method (XFEM)

In this paper, two types of enrichment, jump enrichment and junction enrichment, are introduced to rep-
resent discontinuities. The jump enrichment represents the discontinuity in the displacement field across
the fractured body. The jump enrichment is often chosen as a step function, which can be expressed as

H(x) =

{
1
−1

.

To simulate the crossing of fractures in XFEM, the junction enrichment, or the crossing enrichment, is
applied. There are two situations of crossing considered: T-shape crossing and X-shape crossing and the
details of these two functions can be referred into (13). The junction functions values distribution inside
crossing cracked element are plotted in Fig. 2.
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Figure 2: Two types of the junction enrichment functions. X-shape junction enrichment can be divided
into two T-shape enrichment functions.

The displacement field u at fine-scale resolution h by uh is as

u≈ uh = ∑
i∈Ωh

uiNi +∑
j∈J

a jN jH(x)+ ∑
m∈M

bmNmJ(x), (6)

where N, H and J represent, respectively, the classical FEM shape functions, the jump function and the
junction enrichment functions. u denotes the standard DOFs associated to the classical finite element
method and a denotes the extra DOFs associated to the jump enriched nodes. Note that a also includes
the jump enrichment related extra DOFs due to the main crack in the junction enriched element. The
multipliers b are the extra DOFs due to the junction enrichment. The resulting linear system entails the
nodal displacement unknowns u, as well as the jump enriched extra DOFs a and junction enriched extra
DOFs b per fracture (and fault). The augmented XFEM linear system Kh dh = f h, therefore, readsKuu Kua Kub

Kau Kaa Kab
Kbu Kba Kbb


︸ ︷︷ ︸

Kh

u
a
b


︸︷︷︸

dh

=

 fu
fa
fb


︸ ︷︷ ︸

fh

. (7)

It is clear that additional blocks are added compared to the classical FEM stiffness matrix. Although
the complicated meshing procedure is avoided, application of the XFEM in geoscience field simulations
is still a nontrivial task. With the presence of highly fractured formations, the size of these additional
blocks becomes too big to be resolved by state-of-the-art simulators. To resolve this challenge, a multi-
scale simulation strategy is introduced in this paper.

Multiple Fractures Propagation Simulation Using XFEM

As mentioned, the use of a multiscale method enables a more feasible application of XFEM into a highly
fractured formations simulation. However, in this section, a method for fractures growth using only fine
scale XFEM is introduced. In this section this method will be expanded to the multiscale extended finite
element method (MS-XFEM) which can be used for highly fractured systems.

Propagation criterion

Griffith’s theory (20) states that the fracture tip will grow if the energy release rate, G, is larger than or
equal to the critical energy release rate, Gc. This is expressed as

G > Gc, (8)

where G is defined as the rate of energy decreased per unit fracture surface area increased (20). Eq. (8)
can be also written in terms of the stress intensity factor K as

K > Kc, (9)
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where Kc is called fracture toughness.
The fracture increment is usually defined as a constant during each time step. The fracture angle of
the propagation crack tip can be quantified using different theories. In this paper, only test cases under
tensile forces are performed, the maximum principle stress theory is used to predict the direction of
fracture propagation according to

θ = 2arctan
1
4
(

KI

KII
±
√
(

KI

KII
)2 +8), (10)

where KI is the stress intensity factor for mode I and KII is the stress intensity factor for mode II.

Multiple fractures propagation

Unlike propagation of a single fracture, the impact of the increment of one fracture tip to another needs
also to be considered in a multiple fractures propagation problem. Some fracture tips may grow and
they are grouped in the algorithm as competitive tips ncomp. These tips must strictly follow Eq. (9). But
not all of them can grow since the whole fractured system tend to release the minimum global energy to
reach a new equilibrium state (41). The unstable configuration of fractures path is defined as

(
∂Gi

∂ l j
− ∂Gc,i

∂ l j
)> 0, ∀i, j ∈ ncomp, (11)

where ∂Gi/∂ l j is the derivative of energy release rate of crack tip i with respect to crack tip j increment.
∂Gc,i/∂ l j is the derivative of critical energy release rate of crack tip i with respect to crack tip j incre-
ment.
At the beginning of each fracture growth step, the matrix ∂G/∂ l needs to be constructed to check
whether the chosen growing path meets the criterion described by Eq. (11). The double virtual in-
cremental method is applied (41; 8) to construct the matrix ∂G/∂ l. In the double virtual incremental
method, it is assumed that the growth of the tips would only affect a small region near the fractures
tips. The virtual fracture tip i increment, li, is approximated using virtual displacement function Θi. The
virtual fracture tip j increment, l j, is approximated using the virtual displacement function Π j. These
functions are shown in Fig. 3.

𝜣𝒊 = 𝟏

𝛁𝜣𝒊 ≠ 𝟎

𝚷𝒊 = 𝟏

𝛁𝚷𝒊 ≠ 𝟎

𝚷𝒊 = 𝟎

𝜣𝒊 = 𝟎

Figure 3: Function Π (green) and function Θ (blue) at fracture tip. The gradients of both functions are 0
outside the colored zones.

Note that the radius of the non-zero gradient zone of function Π is normally twice the radius of the
none-zero gradient zone of function Θ. These two zones are not allowed to intersect.
The virtual displacement field d̃ j is constructed in order to compute ∂Gi/∂ l j. To compute this virtual
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displacement field, a virtual force vector f̃Π j around the fracture tip j is defined as

f̃Π j =
∫

BT (CB̃Π j d−σdiv(Π j))dΩ+
∫

B̃T
Π j

σdΩ, (12)

where C is the linear elastic constitutive matrix. The matrix B̃Π j is assembled similar to the construction
of the B matrix. Each component of B̃Π j is constructed by multiplying the gradient of the function Π.
Details can be found in (41). The virtual displacement field d̃ j is given by

d̃ j = K−1f̃Π j . (13)

The derivative of the energy release rate at fracture tip i corresponding to incremental of fracture tip j
increment is computed using

∂Gi

∂ l j
= dT [

∫
(BT CB̃Θi +

∫
B̃T

Θi
CB−BT CB)dΩ]d̃T

j . (14)

The construction of B̃Θi is carried out by multiplying B with the gradient of the function Θ. As mentioned
above, the gradients of both function Π and function Θ are involved in the entire process to construct
the matrix ∂G/∂ l. The gradients of these two functions are both 0 outside the colored zone in Fig. 3 .
Therefore this construction process is only needed on colored zones.
The matrix ∂G/∂ l is constructed by assembling the terms ∂Gi/∂ l j. The maximum subdeterminant of
matrix ∂G/∂ l provides the set of fracture tips that would grow in the current time step, defined as Nact ,
which read

Nact = max︸︷︷︸
∀i, j∈ncomp

[
det(

∂Gi

∂ l j
)> 0

]
. (15)

iMS-XFEM in Simulation of Multiple Fractures Propagation

The propagation of a fracture network, unlike propagation of a single fracture, means that much more
extra DOFs are added in each new time step. Multiscale simulation becomes necessary to reduce the
computational burden due to excessive number of fractures. MS-XFEM, as described in (47) is creating
a finite element type system on a coarse scale mesh without any extra DOFs required. It would become a
good solution to simulate the fractures propagation in underground formation. Iterative MS-XFEM can
control the error level in the final solution as will be explained.

Multiscale Extended Finite Element Method (MS-XFEM)

The fine scale solution dh can be approximated with the solution field d′h by a multiscale formulation

dh ≈ d′h = P dH , (16)

where P is the matrix of basis functions (i.e., prolongation operator) and dH are the coarse-scale nodal
displacements at the coarse scale mesh ΩH . All extra DOFs and enrichment functions are included in
matrix P instead of vector dH , which reduces the size of the coarse scale linear system. This is crucial
in significantly improving the computational efficiency in these large-scale heterogeneous systems.
MS-XFEM solves the linear system of equations on the coarse mesh, imposed on a given fine-scale
mesh, as shown in Fig. 4. The coarsening ratio is defined as the ratio between the coarse mesh size and
fine-scale mesh size, which is 4×4 for the example shown in Fig. 4.
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coarse scale mesh 2 x 2

fine scale mesh 8 x 8

Internal node

Edge node

Vertex node

Figure 4: Illustration of the multiscale mesh imposed on a given fine-scale mesh, with a coarsening ratio
of 4× 4. In each coarse element there are three types of nodes: internal nodes, edge nodes and vertex
nodes.

To construct the coarse-scale system of equations and solve for dH , the fine-scale linear system(Kh dh =
fh) is restricted to the coarse-scale via

(R Kh P)︸ ︷︷ ︸
KH

dH = R fh. (17)

Here, R is the restriction operator with size NH ×Nh+ j+c, defined as the transpose of basis function
operator

R = PT , (18)

where Nh+ j+c is the size of the fine-scale enriched XFEM system including the extra DOFs and NH is
the size of coarse mesh. Prolongation operator P has the dimension of Nh+ j+c×NH . This results in the
coarse-scale system matrix KH size of NH ×NH .
Once the coarse-scale system is solved on KH space for dH , one can compute the approximate fine-scale
solution using Eq. (16). Overall, the multiscale procedure can be summarised as finding an approximate
solution d′h according to

dh ≈ d′h = P dH = P(R Kh P)−1R fh. (19)

In here, the term P(R Kh P)−1R is called the multiscale operator M−1
MS.

Next, the prolongation operator P, i.e., the basis functions are explained in detail. Once P is known, all
terms in Eq. (19) are defined.
In order to construct the basis functions, the algebraic method is one convenient method. In Fig. 4, it
is shown that all nodes in any coarse element can be split into three groups: internal, edge and vertex
nodes.
The coarse-scale solution can be computed based on the solutions on the vertex nodes. The functions
that interpolate the solution between the vertex nodes through the edge and internal nodes are then the
necessary basis functions.
To develop the basis functions, first the fine-scale stiffness matrix Kh is permuted using the permutation
operator T as

Kv = T Kh TT = T

Kuu Kua Kub
Kau Kaa Kab
Kbu Kba Kbb

 TT =

KII KIE KIV
KEI KEE KEV
KV I KV E KVV

 . (20)

European Conference on the Mathematics of Geological Reservoirs 2022
5–7 September 2022, The Hague, The Netherlands & Online



Here, I represents the internal nodes, E represents the edge nodes and V represents the vertex nodes.
The permuted linear system, therefore, readsKII KIE KIV

KEI KEE KEV
KV I KV E KVV

dI
dE
dV

=

 fI
fE
fV

 . (21)

Note that the permuted system collects all entries of the XFEM discrete system belonging to I, E, and V
nodes.
A reduced-dimensional boundary condition is imposed as localization condition. This causes the entry
KEI to vanish, as the connectivity between the edge and internal nodes for the edge elements is assumed
to disappear. Since the solution at vertex nodes will be obtained from the coarse-scale system, the
reordered fine-scale matrix can now be reduced toKII KIE KIV

0 KR
EE KR

EV
0 0 KH

d′I
d′E
d′V

=

 0
0
f H

 . (22)

Given the solution at the coarse nodes d′V , one can obtain the solution at the edge via

d′E =−(KR
EE)
−1KR

EV d′V = PE d′V . (23)

The solution at the internal nodes is then obtained by solving 2D local XFEM problems subject to
Dirichlet condition defined by the solutions at boundary and vertex nodes.
The prolongation matrix is finally defined as

d′ =

d′I
d′E
d′V

=

−K−1
II (−KIE(KR

EE)
−1KR

EV +KIV )
−(KR

EE)
−1KR

EV
IVV


︸ ︷︷ ︸

P

d′V . (24)

Here, IVV is the diagonal identity matrix equal to the size of the number of vertex nodes.
After defining the prolongation operator algebraically, based on the entries of the 2D XFEM (for internal
nodes) and 1D XFEM (for edge nodes), one can determine the multiscale solution.

Iterative multiscale extended finite element method (iMS-XFEM)

Preconditioned GMRES is applied to control the error and reduce it to any desired tolerance. The itera-
tive strategy is introduced in detail in (22; 47) to improve accuracy. To reduce the high frequency error,
a fine-scale smoother M−1

sm (usually named as ILU(0) (11)) is paired with the multiscale operator M−1
MS.

The preconditioner used here involves the multiscale operator and the fine scale smoothing operator
following

M−1 = M−1
MS +M−1

sm (I−K f M−1
MS). (25)

iMS-XFEM on fracture propagation

Propagation of crack tips can be simulated using iMS-XFEM. Crack tip growth results in new enriched
elements and thus change the fine scale stiffness matrix. In terms of the multiscale method, this fine
scale crack propagation is mainly affecting the basis functions since it captures all the fine scale dis-
continuities. If the basis functions can be updated during each crack growth step, the fine scale fracture
propagation can be simulated using the iMS-XFEM. One example of updating the basis functions are
shown in the test case.
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Numerical Test Cases

In this section several test cases have been performed to investigate the applicability of the iMS-XFEM
in simulation of single and multiple fractures propagation. These test cases are simulated using the
iMS-XFEM and compared with the fine scale results to check accuracy. In the following test cases, the
material is homogeneous sandstone with a Young’s modulus E = 25GPa and Poisson’s ratio of 0.2. The
fracture toughness of sandstone Kc = 1.4×106Pa ·m− 1

2 .
Preconditioned GMRES is used to control the accuracy of the results. The criterion to stop the iterations
is set as if the norm of the residual ||rn||2 at current time step tn is less than τ of the original residual
norm ||r0||2

||rn||2
||r0||2

6 τ. (26)

The tolerance input is affecting the number of iterations required to reach convergence. In here, the
result obtained without iterative strategy and two other tolerance values, τ = 10−8 and τ = 10−2, are
applied. Normally there is no doubt that a tolerance of τ = 10−8 would give very accurate iMS-XFEM
solutions but it is also valuable to analyze whether the less accurate solutions (τ = 10−2) are acceptable
since this less accurate solution has less computational burden.

Test case 1: homogeneous sandstone with multiple fractures

In the first test case, a square 2D domain of L×L with L = 10[m] is considered. The fine-scale mesh
consists of 49×49 elements, while the coarse scale mesh contains only a 7×7 coarse grid. This results
in a coarsening ratio of 7× 7 in both x and y directions. The fractures setup is shown in Fig. 5. The
fractures are located around its center point with coordinates shown in brackets. The two fractures have
been labeled with a number from 1 to 2. The initial length of each fracture are both 2 [m]. The angle
shown also in the bracket in Fig. 5 is the angle of fracture inclined around its center point. The number
of maximum growing step sizes is set as 18 [s] and each time step size is 1 [s]. The fracture increment
is set as 0.4 [m]. The Dirichlet boundary conditions are applied at the bottom. At the top a distributed
upward loading q = 108 [N/m] is applied.

𝟏𝟎𝟖𝑵/𝒎

1. 𝟎. 𝟑 , 𝟎. 𝟓 ; 𝟏𝟎°

2. [𝟎. 𝟔 , 𝟎. 𝟓; 𝟏𝟎°]10 m

10 m

Figure 5: Test case 1: Multiple fractures within a homogeneous sandstone reservoir under tension stress.
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In the following, only the test with an iterative strategy and tolerance of τ = 10−2 is studied. The prop-
agating crack path at step 4 and 12 are shown in Fig. 6 in the left column. Red color segments represent
the fracture pattern predicted using iMS-XFEM solution and blue segments represent the fracture pat-
tern predicted using only fine scale XFEM solution. It is clear that not all tips will grow considering the
global minimum energy release by Eq. (15). The stress plots are shown in the middle column, which
partly reveals why some tips grow and others do not. The corresponding displacement fields at these
steps are plotted in the right column. The red lines represent the coarse scale mesh with iMS-XFEM
displacement result plotted on coarse scale grids. The blue lines represent the fine scale displacement
result.
The sequence of propagating crack tips is as follows. First, the left tip of fracture 1 grows to the left edge
since that the maximum stress is located around the left tip of fracture 1, as shown in Fig. 6 (b). At step
5, the left tip of fracture 1 reaches at the left edge of domain. Then the right tip of fracture 1 propagates.
At step 12, the right fracture tip of fracture 1 joins fracture 2. The crossing point is also where the peak
stress locate around as shown in Fig. 6 (e). The top fracture tip of fracture 2 continues to grow to the
right edge.

crack pattern at step 4, =10-2

(a) (b) (c)

crack pattern at step 12, =10-2

(d) (e) (f)

Figure 6: Test case 1: crack paths growing history at step 4 and 12. Left column includes crack patterns
predicted. Red segments and crosses represent crack paths predicted using iMS-XFEM result and blue
segments and circles represent the crack paths predicted using fine scale XFEM result. The middle
column includes the stress plot of σyy at these steps. The right column includes the corresponding
displacement fields at these steps. Blue lines represent the fine scale XFEM result while red lines
represent the iMS-XFEM results and the coarse scale grid.

The convergence characteristics recorded using preconditioned GMRES are shown in Fig. 7. In this
figure, the convergence at step 4 and 12 have been plotted. The number of extra DOFs for each of these
steps is: 118 and 176. The iterations required to reach convergence with respect to tolerance of 10−8 are:
28 and 39, respectively. Still the number of iterations required to reach convergence is increasing as the
fracture is growing. It can be approximately stated that the number of iterations to reach convergence is
growing proportionally by the increase of DOFs. It is noted that the convergence behavior for step 12
is not good as the residual is not reduced significantly in the first 5 iterations. This is mainly due to the
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extreme displacement field as shown Fig. 6 (f). This kind of extreme displacement field is not usual in
geological formations deformation.

0 5 10 15 20 25 30 35 40

iteration
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Convergence history

step 4
step 12

Figure 7: Test case 1: convergence history using preconditioned GMRES. The number of extra DOFs
for each of these steps are: 118 and 176. The number of iterations to reach convergence is increasing
with the growth of fractures.

Conclusion

An iterative multiscale method for XFEM, namely iMS-XFEM, is proposed to track the growth of mul-
tiple fractures in underground formations. The growth of fractures leads to the extension and also the
junction of the discontinuities. The basis functions are capable of capturing this extension or junction of
the fine scale fractures. The basis functions are updated in an algebraic manner based on the fine-scale
stiffness matrix, which is revised in accordance with the growth of fractures. This makes iMS-XFEM
suitable to simulate propagation of fractures. A test case result shows that iMS-XFEM with precon-
ditioned GMRES track the growth of fractures paths correctly, even if the error tolerance is not that
extreme. This means that the basis functions successfully capture the changes of these fractures. This is
promising for iMS-XFEM’s further application into for example 3D complicated highly fractured for-
mations simulation which is the most suitable model for natural fractured formations.
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