<]
TUDelft

Delft University of Technology

Bayesian Framework for a MIMO Volterra Tensor Network

Memmel, Eva; Menzen, Clara; Batselier, Kim

DOI
10.1016/j.ifacol.2023.10.341

Publication date
2023

Document Version
Final published version

Published in
IFAC-PapersOnLine

Citation (APA)
Memmel, E., Menzen, C., & Batselier, K. (2023). Bayesian Framework for a MIMO Volterra Tensor Network.
IFAC-PapersOnLine, 56(2), 7294-7299. https://doi.org/10.1016/j.ifacol.2023.10.341

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

https://doi.org/10.1016/j.ifacol.2023.10.341
https://doi.org/10.1016/j.ifacol.2023.10.341

Available online at www.sciencedirect.com

IFAC i

CONFERENCE PAPER ARCHIVE

ScienceDirect

IFAC PapersOnLine 56-2 (2023) 7294-7299

Bayesian Framework for a MIMO Volterra

Tensor Network *

Eva Memmel * Clara Menzen* Kim Batselier *

* Delft University of Technology , Delft, Netherlands
(e-mail: {e.m.memmel, c.m.menzen, kim.batselier} @ tudelft.nl).

Abstract: This paper proposes a Bayesian Volterra tensor network (TN) to solve high-
order discrete nonlinear multiple-input multiple-output (MIMO) Volterra system identification
problems. Using a low-rank tensor network to compress all Volterra kernels at once, we avoid
the exponential growth of monomials with respect to the order of the Volterra kernel. Our
contribution is to introduce a Bayesian framework for the low-rank Volterra TN. Compared
to the least squares solution for Volterra TNs, we include prior assumptions explicitly in the
model. In particular, we show for the first time how a zero-mean prior with diagonal covariance
matrix corresponds to implementing a Tikhonov regularization for the MIMO Volterra TN.
Furthermore, adopting a Bayesian viewpoint enables simulations with Bayesian uncertainty
bounds based on noise and prior assumptions. In addition, we demonstrate via numerical
experiments how Tikhonov regularization prevents overfitting in the case of higher-rank TNs.

Copyright © 2023 The Authors. This is an open access article under the CC BY-NC-ND license
(https://creativecommons.org/licenses/by-nc-nd/4.0/)

Keywords: Nonlinear system identification, Bayesian methods, Volterra series, Tensor networks

1. INTRODUCTION

One of the most challenging tasks in system identification
is modelling nonlinear systems. A commonly used model
structure for this purpose is the truncated Volterra series,
a nonlinear extension of the linear finite impulse response
model. The truncated Volterra series is useful when there
is no precise information about the exact nonlinear system
behaviour. However, a significant drawback of the Volterra
series is the exponential growth of parameters with respect
to the selected order of the model. This exponential growth
is known as the curse of dimensionality. Consequently,
the application of Volterra models is limited to weakly-
nonlinear systems.

There are different ways of reducing the complexity of the
Volterra kernel. One approach is to exploit prior knowledge
about the structure of the Volterra kernel and include it
in the model. Including prior knowledge can, for example,
be achieved in a Bayesian framework (Chen et al., 2011).
As the Volterra series is a nonlinear extension of the finite
impulse response model, Volterra kernels are expected to
be smoothly decaying. This knowledge can be encoded in
a probabilistic Bayesian prior, as first shown for linear
system identification by Pillonetto and De Nicolao (2010).
This work has been extended to parametric Volterra mod-
els by introducing a smoothly decaying prior covariance
matrix for each Volterra kernel by Birpoutsoukis et al.
(2018). So far, applications of the parametric approach
have been limited to third-order kernels. This approach
has been extended to higher order non-parametric Volterra
models (Dalla Libera et al., 2021), using a similar matrix
structure, limiting the applications to models with a small
number of samples. A different way of enforcing additional
structure is assuming a sparse structure. For example, a

* This work is supported by the TU Delft Al Labs programme.

sparse Bayesian learning algorithm can be introduced for
a Volterra model (Miao et al., 2019). However, the authors
have strong reasons to assume that most Volterra kernels
are irrelevant; thus, the system can be represented with
a sparse structure. Another way of adding structure is
to compress the Volterra kernels by imposing a low-rank
tensor structure onto them. Favier et al. (2012) apply both
low-rank Tucker and canonical polyadic decompositions.
Batselier et al. (2017) uses one tensor train decompo-
sition (Oseledets, 2011) for all Volterra kernels at once
to introduce a multiple-input-multiple-output (MIMO)
Volterra tensor network (TN). The MIMO Volterra TN ex-
ploits the multi-linearity of the tensor train decomposition
and solves the identification problem with the alternating
least squares (ALS) method. This way, the exponential
growth of the Volterra coefficients is completely avoided.
This work showed how to estimate a 10th-order Volterra
system within seconds on a standard personal computer.

Even though the MIMO Volterra system provides a consid-
erable advantage due to the low computational complexity,
it has a significant drawback: The TN model tends to
overfit for larger TN ranks. Batselier et al. (2017) al-
ready discuss the hypothesis that a regularized TN-model
will counteract the problem of overfitting. Unfortunately,
the TN model does not provide an option to include
prior knowledge about the Volterra model yet. Further-
more, available priors for Volterra kernels (Pillonetto and
De Nicolao, 2010; Birpoutsoukis et al., 2018; Dalla Libera
et al., 2021) cannot be straightforwardly applied to the
TN-model because the MIMO Volterra TN compresses all
kernels at once. The contribution of this paper is to address
the limitations of the MIMO Volterra TN-model and test
the hypothesis formulated by Batselier et al. (2017): For
the first time, we introduce a Bayesian framework for
the MIMO Volterra TN-model. Additionally, we provide a

2405-8963 Copyright © 2023 The Authors. This is an open access article under the CC BY-NC-ND license.
Peer review under responsibility of International Federation of Automatic Control.

10.1016/j.ifacol.2023.10.341

Eva Memmel et al. / IFAC PapersOnLine 56-2 (2023) 7294-7299

i i1 12 lA@'d‘iD
LN

Fig. 1. Graphical notation of a scalar, a vector, a matrix
and a D-way tensor. A node represents an object, an
edge a specific index. A node with D edges depicts a
D-way tensor.

Bayesian perspective on the Tikhonov regularization in the
MIMO Volterra TN. The Bayesian framework presented
in this paper is an adaptation of the Bayesian alternating
linear scheme presented by Menzen et al. (2022).

2. TENSOR BASICS

A D-dimensional array is a D-way or Dth-order tensor
A € RIvxlxxXIp Fach entry A(iy,dz,...,ip) is com-
pletely determined by D indices i1, 2, ...,ip. Commonly
used in system identifications are scalars (D = 0), which
are zero-order tensors, vectors (D = 1), which are first-
order tensors and matrices (D = 2), which are second-
order tensors. Higher-order tensors are tensors for which
the order is three or higher. Tensors have proven to
be a valuable tool to lift the curse of dimensionality in
Volterra system identification. An extensive tutorial on
low-rank TNs for nonlinear system identification is given
by Batselier (2022). In this section, we revise some useful
higher-order tensor basics, operations and decompositions,
specifically focusing on nonlinear tensor-network Volterra
system identification.

We denote scalars by the italic lowercase (e.g. a), vectors
by boldface lowercase (e.g. a) and matrices by boldface
capital (e.g. A) letters. Tensors are denoted with calli-
graphic capital letters (e.g. \A). Indices are denoted with
italic lowercase letters (e.g. i4), and their upper bound
is denoted with an italic uppercase letter (e.g. Ig). A
graphical notation can be used to simplify the formula-
tion of equations. Figure 1 depicts the graphical repre-
sentation of a scalar, a vector, a matrix and a D-way
tensor, where a node represents an object and an edge
a specific index. It is possible to rewrite a tensor as a
matrix or vector by matricization or vectorization (Kolda
and Bader, 2009). The vectorization vec(.,A) € Ritf2--Ip
of a tensor A € RI1x/2XxIp ig the vector obtained from
combining all indices i1, i2, . . ., ip into a single multi-index
[ilig e iD] by

D d—1
i=[ivip...ip] =i1+ Y (ia—1) [] I (1)
d=2 =1

Equation (1) can also be used to reshape a vector
vec(A) € RItf2Ip into a tensor A € RI1* 12X xIp,

The size of the matrix containing all Volterra weights
grows exponentially with the order of the Volterra system.
It is possible to reduce the storage complexity of that
matrix to linear in the order of the Volterra system by
representing the Volterra weights in a tensor train matrix
(TTM) form (Oseledets, 2010).

Definition 1. Let A €]RIDXJD,suchthat I =1L1,...1p,
JP = JiJs...Jp. Then the TTM of A consists of D 4-

7295

I I Ip
R2 R3 RD
J1 J2 JD
Fig. 2. Graphical notation of a TTM representing a matrix
A € RhlzdpxNidzJo Ry = Rpyy = 1 is usually

not depicted.

way tensors A e REaxTaxJaxRar1 guch that a matrix

entry Afiiy..p)[jijo...jp]iS given by
R Rp :
(1 (2) (D)
Z Z A1i1j17“2A7"2i2j27“3"'ATDiDjpl' (2)
T2:1 TD:1
The tensors A@, d = 1,...,D are called core tensors.

The dimensions R, Rs,...,Rpy1 are called TTM-ranks,
with Ry = Rpy1 = 1 per definition. Index-summations or
contractions as in Equation (2) can also be denoted in the
graphical notation by connecting the two corresponding
nodes with the corresponding edge. The graphical notation
for the TTM is shown in Figure 2. If Rs,...,Rp are
small; the TTM is a low-rank representation of the original
matrix. The advantage of representing the matrix A in
a low-rank TTM format is the change in storage costs.
With I = max([i,...,Ip), and J, R defined accordingly,
the storage costs change from O(IPJP) to O(DIJR?).
Thus, for a small R, the storage complexity reduces from
an exponential dependency on the order D to a linear
dependency.

3. TENSOR NETWORK MIMO VOLTERRA SYSTEM

In this section, we give a brief introduction to the TN
MIMO Volterra System presented by Batselier et al.
(2017). To simplify the notation, consider the following
truncated, D-th order SISO Volterra system with memory
M

D M—-1
y(n)=>_ > Walm,...

d=0mzi,...,;mq

d
mgq) H u(n —m;) +e(n).
N ®)

From this equation, it immediately follows that the size of
Volterra kernels W, grows exponentially with the order of
the system D. This curse of dimensionality can be lifted
by imposing a TN structure on all Volterra kernels at
once (Batselier et al., 2017). To derive the general MIMO
Volterra TN, let us now consider a MIMO system with P
inputs and L outputs, which are given by

u(n) = (u1(n) uz(n)...up(n))’ € R?

y(n) = (1(n) y2(n) ... ys(n))" € R",
forn=1,...,N. The objective is to derive a set of linear
matrix equations that we can decompose into a low-rank
TN and thus lift the curse of dimensionality. The first step
is to rewrite the inputs u(n) corresponding to Batselier
(2022) as

w, = (Tum) ... un-M+1)T) eR, (1)

7296

N Rp, N Rp
Fig. 3. Left: TN MIMO Volterra system for times
n=1,..., N, where row indices point to the left and
column indices to the right. Right: Bayesian frame-
work for TN MIMO Volterra system, the elements of
one TN-core are now random variables, indicated by
a bell curve. With the introduction of the Bayesian

framework, the simulations Y also become random
variables.

with I := PM + 1. Including the 1 allows us to define a

vector uf ® which contains all monomials of the inputs
from degree 0 up to D as

D times
u£®::un®un®“‘®un GRIDv (5)

where D is the order of the Volterra system and ® denotes
the Kronecker product. With this definition, we can write
the output of a MIMO Volterra system as

y(n)' = (uge) "W, (6)

where W € RI”XL contains all Volterra kernel coefficients.
We now obtain a set of linear matrices by writing out

equation (6) for all measurements n =1,..., N
Y = U W . (7)
~— ~— ~—
NxL NXIP IPXL

The size of the matrix W 1is problematic: Solving
equation (6) for W, has the computational complexity
O(LI?P). Since the computational complexity scales expo-
nentially with D, solving for W becomes quickly infeasible
as D grows. The computational complexity of solving
equation (7) can be reduced to linear in D by solving
it iteratively with the alternating linear scheme (ALS)
(Batselier et al., 2017). The corresponding algorithm is
called MIMO Volterra ALS (MVALS). Applying the ALS
requires imposing a low-rank TN structure on equation
(7), such that U and W are TTMs with TTM-cores U@
and W for d = 1,..., D, respectively. The TTMs rep-
resenting U and W form the MIMO Volterra TN. Figure
3 on the left is a graphical representation of the MIMO
Volterra TN. To simplify the notation, we will assume
equal rank R for all ranks Ry = --- = Rp = R. Note
that it is a low-rank compression of all Volterra kernels
combined. Thus, directly linking one specific TN-core to
one specific Volterra kernel is impossible. Due to the multi-
linear structure of the TTM, it is possible to solve for one
TTM-core W@ at a time. To derive the update equation
for one core, we first define the matrix U4 and the vector
us 4 for one sample according to (Batselier, 2022)

Eva Memmel et al. / IFAC PapersOnLine 56-2 (2023) 7294-7299

Udg = (W(l) X2 un) (W(dfl) X5 un> c RLXR
usg = (W(dﬂ) X9 un) (W(D) s un> c REXL.

Now, we can define the matrix U, in a row-wise Kro-
necker product structure for all samplesn=1,..., N
qu ® uir Q@ Uy
u!l oul ® U-4
Ugi=| 7 e RNLXEL - (g)
ul ,@ul ®Uqy

To simplify the notation further, we define y := vec(Y)
and wy := vec(W®). Updating one core W® is now
equivalent to solving the linear system

y = U\gwy, (9)
with y € RML and wy € RP/E In this context, one
iteration of the ALS is defined as sequentially updating all
cores once. Thus, one iteration of the ALS has the com-
putational complexity of O(D(R?I)?) and the algorithm
converges after a few iterations (Batselier et al., 2017).
Choosing a low-rank representation of W, thus choosing
a small value for the rank R, has the potential to lift the
curse of dimensionality and achieve a significant reduction

of the computational complexity, from exponential in D
with O(LI?P) to linear in D with O(D(R%I)3).

4. BAYESIAN TN MIMO VOLTERRA SYSTEM
IDENTIFICATION

The key contribution of this paper is to propose a frame-
work that allows to include prior knowledge into the
MIMO Volterra TN, namely the Bayesian MVALS (BAM-
VALS). In the first subsection, we derive the proposed
algorithm for imposing a Bayesian prior on one TN-core.
In the second section, we choose a specific prior and show,
how this prior can be reinterpreted for the MIMO Volterra
TN as Tikhonov regularization. The theoretical consid-
erations from this section are supported by numerical
experiments in the next section.

4.1 General framework

To simplify the notation, we now consider the SISO-system

= 1
y U w + e (10)
N NxID ID N

and assume Gaussian white noise e ~ N(0, o%I). Our pro-
posed method is summarised in Algorithm 1. The algo-
rithm relies on three central steps:

In the first step we solve Equation (10) for w with the
MVALS identification algorithm (Batselier et al., 2017) by
updating one TN-core at a time with Equation (9).

The second step of Algorithm 1 enables to incorporate
prior knowledge into the system. It requires a more de-
tailed derivation to show how to include prior knowl-
edge into the MIMO Volterra TN with our proposed
method. We begin with the TTM that represents the

vector w € R’” in Equation (10). We use the multi-linear
structure of TTMs and rewrite the vector w as a function
that is linear in the core wgq € R/ given by

(11)

W = W\de.

Eva Memmel et al. / IFAC PapersOnLine 56-2 (2023) 7294-7299

The matrix W\4 € RIVXRIR ig 5 contraction over all but
the dth core of the TN representing the tensor W,. From
this it follows directly that W\, is computed with

Wiy =Wy ®@Ipg@ WL, e RIXRIR
where W+, and W_; are matrices computed by con-
tracting all cores, whose ordinal number is smaller or
bigger than d, respectively. The number of rows of W\,
grows exponentially with D and thus, W\, can become
very large. Consequently, it is important to mention that
W\, is never computed explicitly. Instead, we implement
an efficient computation exploiting a row-wise Kronecker
product structure similar to the computation of U\, in
Equation (8). Additionally, note that Equation (11) can
be interpreted as a linear projection of Volterra kernels w
onto a smaller subspace. With this reinterpretation of the
TTM as a linear projection, we have laid the foundation
for the next steps.
Now we can include prior knowledge in a low-rank MIMO
Volterra TN. In the second step of Algorithm 1, we per-
form a Bayesian update (Menzen et al., 2022). A central
difference to the algorithm presented by Menzen et al.
(2022) is that we include the prior knowledge on only one
core wy and use the deterministic matrix W\ 4 to project
the prior knowledge on the vector w to make simulations.
Thanks to the linear projection, we are able to bypass the
computational bottleneck, namely the expensive nonlin-
ear transformation required to make simulations in a full
Bayesian TN as discussed by Menzen et al. (2022). For the
core wg, we consider a prior Gaussian distribution

p(wd) = N(mg, Pg)?

where m{ is the prior mean and P is the prior covariance
of the d-th core wy, respectively. A graphical representa-
tion of the new MIMO Volterra TN for d = 2 is depicted
in Figure 3 on the right. In Equation (10), we assume the
noise e to be Gaussian. It follows that the likelihood is
Gaussian, too, given by

p(y | wa) = N(my,o%T),
where my = UW\4wy. Then the mean mj and covari-
ance P;l" of the posterior distribution

p(wa | y) = N(mg,Py)
of the updated core wy is given by

Wl UTUW,, -
P = [Nag +(P)! (12)
WTdUTy
m} =P} [\ 5 + (P9 'mY|.

With the third step and final step of Algorithm 1, we can

first project the posterior distribution from the smaller

subspace p(wq | ¥) to p(w | §) = N(my, Py) with
Py =W ,PIW,

_ +
my, = W\dmd

. (13)

(14)
(15)
Then we use the distribution p(w | ¥) to compute
p(y) = N(mg, 3) for unseen inputs with

¥ =UP, U =UW WU, (16)
m; = Um,, = UW,ym}. (17)

Again, it is important to note that the matrices U and
W\, are not constructed explicitly. The product UW\4 is

7297

computed efficiently by exploiting the row-wise Kronecker
product structure presented in Equation (8). That yields
the computational complexity O(DN R?I) for predicting
the mean and O(DNI?R*) for predicting the confidence
bounds.

Algorithm 1 BAMVALS: Including prior knowledge to
Volterra system identification

Require: N samples of input u and output y, degree D,
memory M, TN ranks Rs,...,Rp, prior mean m?i,
prior covariance P9, noise variance o

Ensure: Simulations of ¢y with confidence bounds

1: Compute W W WD) with MVALS using
Equation (9).

2: Compute p(wq | ¥) with Bayesian update in projected
subspace with Equation (12) and (13).

3: Simulate unseen data to obtain mean with confidence
bounds, using Equation (16) and (17).

4.2 Tikhonov regularization

For this paper, we showcase how to include a prior to
the MIMO Volterra TN and analyse its effect. The TN-
model in Figure 3 on the left is prone to overfitting when
the TN-ranks are chosen too large. This can be resolved
by implementing a Bayesian Tikhonov prior. To achieve a
Tikhonov regularization, we choose the entries of the core
wg to be normally distributed with

p(wa) = N0, -

XI)' (18)
Inserting the selected prior into Equations (12) and (13)
yields the new update rules for the posterior distribution
p(wq | ¥) = N(m],PJ) for the core wy

W UTUW -t
\d \d
Pi=| =t AI] (19)
Wl UTy

For FIR models, the relationship between a Bayesian
perspective and regularized problems has been discussed
before, e.g. by Chen et al. (2011). We revisit the discussion
in the specific context of the MIMO Volterra TN and the
prior chosen in this paper. First, it is essential to point out
that the MIMO Volterra ALS proposed by Batselier et al.
(2017) computes the cores W W WD) in such a
way that the matrix W\, is orthogonal. Then, it can be
shown that implementing Equation (19) and (20) corre-
sponds to updating the core wy with choosing a quadratic
loss function combined with a Tikhonov regularization.
The resulting least squares problem to update the mean
of wy is then given as

min [y — UW\wall3 + N[Wawal3, (1)
where A = o®/x and || - ||» indicates the L?-norm.

In fact, by choosing (18) as a prior, we can address a
problem of the MVALS discussed in the work by Batselier
et al. (2017). There, Equation (9) is solved by computing
the pseudo-inverse of U\, since it is a singular matrix.
This pseudo-inverse has a regularizing effect but still tends
to overfit for relatively large TN ranks. This is especially

7298

problematic since the TN ranks are hyperparameters of
the MVALS and, therefore, not known in advance. This
way, the Tikhonov regularization allows the user to not
worry about choosing all the TN ranks too high and
still achieve good simulation performance. Furthermore,
the choice of the (D — 1) potentially different TN ranks
Ry,...,Rp becomes less important over choosing the
single hyperparameter A when a strong preference on the
prior is assumed.

5. NUMERICAL EXPERIMENTS

In this section, we want to discuss the effect of including
the prior stated in Equation (18) into the MIMO Volterra
TN and give an example of simulations with Bayesian
uncertainty bounds. With a limited number of training
measurement samples, an excessive number of parameters
is expected to lead to an increased root mean squared
error (RMSE) for the validation data. We show how this
effect can be countered with regularization. For this, we
conduct numerical experiments with the Cascaded Tanks
Benchmark presented by Schoukens et al. (2016). All com-
putations were done on a Dell Inc. Latitude 7410 laptop
with 16 GB of RAM and an Intel Core i7-10610U CPU
running at 1.80 GHz. For all experiments presented in the
paper, we use a grid search to fix the order D = 2, the
memory M = 95, and, if applicable, the noise o = 0.0165.
For all experiments, we impose the prior knowledge on
the core d = 2. The choice is arbitrary in the example
since both TN cores have the same number of coefficients.
For multiple cores with different sizes, choosing the core
containing the most elements would be sensible to achieve
the highest constraining effect. All implementations are
done in MATLAB R2020b; the code can be found at
https://github.com/blixi/BAMVALS.

5.1 Benchmark description

The Cascaded Tanks Benchmark is a nonlinear benchmark
with a relatively short data record (N = 1024), combin-
ing both soft and hard (due to overflow) nonlinearities
(Schoukens et al., 2016). It consists of two water tanks.
Water is pumped into the upper tank from a reservoir,
from where it can flow into the lower tank and back into
the reservoir. The input signal controls the water pump,
and the output signal measures the water level in the
lower tank. If the input signal is too large, both tanks
can overflow. The input-output behaviour of the system
is modelled with a Volterra series. For the estimation,
both the MVALS algorithm (Batselier et al., 2017) and
the proposed BAMVALS algorithm, see Algorithm 1, is
used for the training data set to estimate the Volterra
kernels. The performance of each model is evaluated on
the transient-free validation data set with the RMSE

(22)

as error-index, where N is the number of transient-free
data points of the validation data, y is the simulated
output and y is the validation output.

Eva Memmel et al. / IFAC PapersOnLine 56-2 (2023) 7294-7299

R MVALS BAMVALS
time (s) RMSE time (s) RMSE

3 0.5+0.1 | 0.96+0.06 0.5£0.2 0.99 +£0.51
6 1.6 +0.3 1.63 £0.35 1.7+0.3 0.78 £0.11
9 5.5+£0.9 5.02 £ 1.87 5.6 +0.9 0.96 £ 0.35
12 8.2+0.3 256 £ 70 8.3+0.3 0.82 + 0.05
24 | 15.9+0.4 | 8471 +6295 16.4+04 0.67 £ 0.01
48 249+1 2498 + 1 2724+1.1 | 0.63+0.00
72 | 32.6 1.2 2501+ 0 38.0£25 0.63 £ 0.00
96 | 43.3£0.6 3073 £0 54.24+0.8 0.63 £ 0.00

Table 1. Training time and RMSE on valida-
tion data for MVALS and BAMVALS (M =
95, D = 2, A\ = 330 with 1/x = 20,000, o2 =
0.0165) for an increasing rank R, averaged over
10 iterations. The results show a clear improve-
ment of the RMSE with the BAMVALS with

only a small increase in training time.

5.2 Regularizing effect

At first, we compare the RMSE and runtime of the MVALS
and BAMVALS to show the regularizing effect of the zero-
mean prior. For this, we consider the training time and the
RMSE for the MVALS and the BAMVALS averaged over
ten iterations. We set the hyperparameters of the BAM-
VALS to 1/x = 20,000, o2 = 0.0165. The results listed in
Table 1 show the BAMVALS leads to a clear improvement
of the RMSE compared to the MVALS: The high RMSE
of the MVALS is a result of the overparametrization, the
zero-mean prior given in Equation (18) counteracts the
overfitting and leads to the expected regularizing effect.
Thus, the results confirm the hypothesis of Batselier et al.
(2017). The additional computational steps for the BAM-
VALS, corresponding to Equations (19) and (20), lead to
a small increase in the training time up to 11s.

5.8 Choosing A and computing Bayesian simulations

Next, we conduct a more detailed investigation of the inter-
action between the chosen rank R and the hyperparameter
1/x. We apply Algorithm 1 on the data set and vary both R
and 1/x while keeping all other hyperparameters fixed. The
results are shown in Figure 4 The number of parameters
that need to be estimated grows with an increasing R. It
follows that for larger R we also need to emphasise the zero
mean prior. That corresponds to setting a higher value for
1/x. If 1/x is chosen too high, it results in underfitting, and
the RMSE increases again. Last, we apply Algorithm 1
to make predictions with Bayesian uncertainty bounds, as
shown in Figure 5. The uncertainty bounds are calculated
with Equation 16.

We compare the results of Table 1 and Figure 4 with
existing literature on Volterra models for the Cascaded
Nonlinear Benchmark, and we see a clear improvement
in the runtime with 27 seconds compared to 6.5 hours
(Birpoutsoukis et al., 2018) and 2 minutes (Dalla Libera
et al., 2021). With a RMSE = 0.54 (Birpoutsoukis et al.,
2018) and RMSE = 0.48 (Dalla Libera et al., 2021), it also
becomes evident that the exponentially decaying priors
for the Volterra kernels of Birpoutsoukis et al. (2018);
Dalla Libera et al. (2021) yield better results with respect
to the RMSE compared to the zero-mean prior obtaining

Eva Memmel et al. / IFAC PapersOnLine 56-2 (2023) 7294-7299

1/x = —o—2e0 2el —e— 2¢2 2e3 2e4 —e— 2e5
1.5
=
0
=
~
1
.><./o//
4
3 6 9 12 24 48 72 96
TN rank R
Fig. 4. RMSE for BAMVALS (D = 2, M = 95,
0? = 0.0165) for different values of R and 1/x on vali-
dation data, averaged over 10 iterations. The number
of parameters to be estimated increases with a larger
R, thus selecting a higher 1/x with an increasing R
results in a smaller RMSE.
confidence Bounds — original BAMVALS ‘
+ 10 ‘
E i [*
= |
- A
g | f\ / \ \ / \
g |
E 05 J k j / y v
= "\ / \ £
: [Y
0
0 200 400 600 800 1000
time (s)

Fig. 5. True (blue) and mean of simulated (red) system
output (BAMVALS: M = 95, R = 48, /x =
20,000, 02 = 0.0165), confidence bounds are depicted
with one standard deviation of the mean.

RMSE = 0.63 or one core the low-rank TN representation
in Equation (18).

6. CONCLUSION AND FUTURE WORK

With this paper, we develop an algorithm that allows
to include prior knowledge into the MIMO Volterra TN.
Furthermore, with the selected prior, we can confirm the
hypothesis of (Batselier et al., 2017) that regularization
in the MVALS counteracts overfitting. Last, we provide
a framework for computing simulations with Bayesian

7299

uncertainty bounds. A clear future direction of the work
is to derive an exponentially decaying prior for the MIMO
Volterra TN, as an improvement of the RMSE is expected.
A second future direction of the work is to adapt the
Bayesian ALS of Menzen et al. (2022) and treat all cores of
the TN as random variables. Third, in future work, we will
include hyperparameter optimization or investigate the
influence of the BAMVALS algorithm’s hyperparameters,
such as the core’s position containing the prior knowledge
in larger TNs or the impact of o2 on the confidence bounds.

REFERENCES

Batselier, K. (2022). Low-rank tensor decompositions for
nonlinear system identification: A tutorial with exam-
ples. IEEE Control Systems Magazine, 42(1), 54-74.

Batselier, K., Chen, Z., and Wong, N. (2017). Tensor
network alternating linear scheme for mimo volterra
system identification. Automatica, 84, 26-35.

Birpoutsoukis, G., Csurcsia, P.Z., and Schoukens, J.
(2018). Efficient multidimensional regularization for
volterra series estimation. Mechanical Systems and Sig-
nal Processing, 104, 896-914.

Chen, T., Ohlsson, H., and Ljung, L. (2011). On the esti-
mation of transfer functions, regularizations and gaus-
sian processes—revisited. IFAC Proceedings Volumes,
44(1), 2303-2308.

Dalla Libera, A., Carli, R., and Pillonetto, G. (2021).
Kernel-based methods for volterra series identification.
Automatica, 129, 109686.

Favier, G., Kibangou, A.Y., and Bouilloc, T. (2012). Non-
linear system modeling and identification using volterra-
parafac models. International Journal of Adaptive Con-
trol and Signal Processing, 26(1), 30-53.

Kolda, T.G. and Bader, B.W. (2009). Tensor decomposi-
tions and applications. SIAM review, 51(3), 455-500.
Menzen, C., Kok, M., and Batselier, K. (2022). Alternating
linear scheme in a bayesian framework for low-rank
tensor approximation. SIAM Journal on Scientific

Computing, 44(3), A1116-A1144.

Miao, P., Qi, C., Jin, Y., Song, K., and Yu, T. (2019).
Kernels pruning for volterra digital predistortion using
sparse bayesian learning. In 2019 11th International
Conference on Wireless Communications and Signal
Processing (WCSP), 1-6. IEEE.

Oseledets, 1.V. (2010). Approximation of 2°d\times2"d
matrices using tensor decomposition. SIAM Journal on
Matriz Analysis and Applications, 31(4), 2130-2145.

Oseledets, I.V. (2011). Tensor-train decomposition. STAM
Journal on Scientific Computing, 33(5), 2295-2317.

Pillonetto, G. and De Nicolao, G. (2010). A new kernel-
based approach for linear system identification. Auto-
matica, 46(1), 81-93.

Schoukens, M., Mattson, P., Wigren, T., and Noel, J.P.
(2016). Cascaded tanks benchmark combining soft and
hard nonlinearities. In Workshop on nonlinear system
identification benchmarks, 20-23.

