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Abstract

Braided rivers are among the most dynamic natural Earth systems, with a rapid and complex morphological
evolution. Limited understanding and inadequate algorithm implementation of specific processes affect the
accuracy of physics-based models. This leads to uncertainties that complicate the effective design of inter-
ventions and protection measures. In recent years, artificial intelligence techniques rapidly advanced and
the availability of satellite imagery products increased. This research sets a novel attempt to predict the plan-
form evolution of braided rivers with deep learning using satellite images. The study focuses on the middle
and lower reaches of the Brahmaputra-Jamuna River in India and Bangladesh. We developed JamUNet, a U-
Net-based convolutional neural network (CNN). The model is trained with the Global Surface Water Dataset
(GSWD) to classify each pixel as "Non-water" or "Water". Four images from the same month over four con-
secutive years were used as input. The fifth year image served as target. JamUNet demonstrates a general
capability in capturing the planform evolution. Morphological processes like meander migration, channel
abandonment, and confluence and bifurcation development are often well captured. However, temporal
patterns are lacking. More complex phenomena, like channel formation and channel shifting, remain un-
predicted. JamUNet also tends to underpredict the total areas of erosion and deposition. Overall, JamUNet
achieves a 5− 6% improvement compared to the benchmark method for which no morphological change
occurs in metrics such as precision, recall, F1-score, and critical success index (CSI). Among these, recall is
the most meaningful metric for evaluating the model performance. JamUNet can serve as a preliminary tool
for water management authorities in India and Bangladesh. It can assist in prioritising bank protection in
erosion-prone areas and support land reclamation projects and inland navigation. Caution is always advised
due to the model tendency to underpredict erosion. More research is required to improve the current model.
Nonetheless, deep-learning modelling seems a promising field of research. Testing alternative model archi-
tectures and incorporating additional data, such as water levels or river discharge, could improve the model
performance.
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1
Introduction

1.1. Background
Braiding is one of the three main channel patterns described in literature to categorise the plan view of rivers,
along with meandering and straight channels (Leopold and Wolman, 1957). As described by Jagers (2003),
braided rivers are “systems of channels splitting and rejoining around islands”. Although different classifi-
cations exist and outline more channel types, such as anabranching and anostomising rivers (Alabyan and
Chalov, 1998), braided rivers represent one of the most distinctive categories because of their unique charac-
teristics (Ferguson, 1993).

Braided rivers are generally identified by the combined presence of wide shallow channels, an alluvial bed
of non-cohesive sediments, and limited presence of vegetation (Jagers, 2003), as well as the channel division
around alluvial islands and bars (Leopold and Wolman, 1957). Braided rivers are often found on steeper
slopes than meandering rivers (Jagers, 2003). For these reasons, in braided rivers the flow velocity generally
reaches higher values compared to other rivers. Consequently, relevant erosion and deposition processes
take place in braided rivers, which are considered the most dynamic type of rivers (Stecca et al., 2019).

Different morphodynamic changes are observed in braided rivers, ranging from micro- (bedforms and dune
migration) to macro- (bar development) and especially mega-scale (formation of islands, confluences and
bifurcations) (Jagers, 2003). All scales are relevant for the overall evolution of the river morphology and mu-
tually influence each other. Consider for instance the effect of scour holes on bend migration and channel
attraction (Mosselman and Sloff, 2002). However, mega-scale changes have greater impacts on the river and
the adjacent areas. Specifically, bank erosion and lateral channel migration, as well as new channel forma-
tion, are the most concerning ones for the safety of the surrounding population. When a bank retreats or a
new channel is formed, existing (hydraulic) structures, embankments, and bank protection measures can be
damaged. The functionality of these structures is therefore harmed and eventually failures can occur. The
surrounding population becomes exposed to higher flood and geomorphic risk (Noh et al., 2024), which can
lead to severe damages and loss of lives. Moreover, the failure of critical infrastructure, such as bridges and
inland port facilities, can negatively influence trade, with implications on the well-being and economic and
social development of the nearby communities (Best et al., 2022).

1.2. Problem definition
Being able to predict where and how the river evolves is crucial for supporting spatial-related decision-
making processes in the vicinity of such rivers. To safely and efficiently design interventions, protection
measures, evacuation plans as well as infrastructure and all other buildings, engineers, urban planners, and
policy makers need to be aware of the spatio-temporal morphological developments of the rivers. In the
past, laboratory scale experiments were employed for understanding specific processes and consequently
predict the evolution of the concerned physical systems. Nowadays, large-scale experiments are generally
replaced by numerical models (Chavarrías, 2019). Several different models were developed for braided rivers.
To mention some, Murray and Paola (1994) formulated a physics-based cellular model. Klaassen et al. (1993)
developed a probabilistic framework based on scenario-occurrence probabilities. Jagers (2003) implemented
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1.2. Problem definition 1. Introduction

their functional model design into a working branches model.

However, a reliable physics-based modelling of such rivers is a complex task (Jagers, 2003), especially when
compared to other types of rivers. This is due to the rapidly changing morphological patterns, along with a
lack of process understanding and the non-implementation in the model algorithms of specific morphody-
namic processes (Jagers, 2003). Consider for instance scour hole evolution, bank erosion, and the effects of
riparian vegetation, wood, sediment gradation, and secondary flow (Mosselman and Sloff, 2002; Jagers, 2003;
Siviglia and Crosato, 2016; Hu et al., 2023). Achieving accurate short-term predictions (ranging from few
months to one year ahead) is already challenging. Longer-term predictions (beyond one year), often more
relevant for the design of large projects and land-use plans, pose even greater difficulties.
Consequently, prediction uncertainty hinders the design process and the effectiveness of interventions, with
negative repercussions on the local population.

In recent years, artificial intelligence (AI) techniques emerged and gained popularity for several different ap-
plications and contexts (Goodfellow et al., 2016; Blake et al., 2021). As defined by Gignac and Szodorai (2024),
AI is “the maximal capacity of an artificial system to successfully achieve a novel goal through computational
algorithms”. Despite raising new ethical and moral questions (Lo Piano, 2020; Prince, 2023), the performance
reached by AI models to solve complex problems is promising. Among other applications, deep learning is
the key subset of machine learning for computer vision tasks that involve images. Unlike other traditional
machine-learning models, the deep-learning ones leverage the inclusion of specific inductive biases. These
represent the inherent tendency of the model to prioritize one solution over another by extrapolating pat-
terns between data points (Krizhevsky et al., 2012; Prince, 2023). This is crucial to overcome the so-called
curse of dimensionality, the issue of training data sparsity. The amount of training data needed increases
exponentially as the number of dimensions in the data grows. Without inductive biases, vast amounts of data
would be required to ensure sufficient coverage of the input space and limit unexplored regions of this. For
that, an almost infinite amount of data would be required for large datasets. Instead, by reducing the com-
plexity of the model solution space, inductive biases guide the model learning and help the generalization
to unseen datasets. Representation learning also enhances deep-learning models performance by automat-
ically extracting meaningful patterns from raw data. As a result, complex patterns are expressed in simpler
representations necessary for the modelling task (LeCun et al., 2015; Goodfellow et al., 2016).

Several deep-learning models were developed as surrogate models, which are trained on the outputs of
physics-based model simulations. These models are useful as they accelerate computations by eliminat-
ing the need to run new simulations. Consider the convolutional neural network (CNN) by Melo et al. (2022)
for emulating estuarine morphology or the graph neural network (GNN) by Bentivoglio et al. (2023) for flood
propagation, both relying on Delft3D simulations (Deltares, 2024). However, physics-based models are com-
plex to implement for braided rivers and their accuracy may not always be satisfactory. It is not meaningful
to develop surrogate models for predicting braided rivers morphology, because the deep-learning model un-
certainties would sum with the physics-based ones. As a result, the predictions would be even less reliable.
For this reason, deep-learning morphological modelling should be based on monitored data.

Remote sensing, particularly through satellite imagery, offers valuable tools for predicting the planform evo-
lution of braided rivers. Satellite images were already used for rivers and other Earth systems studies (Hage-
naars et al., 2018; Munasinghe et al., 2021; Spinosa et al., 2021). Recently, more satellite imagery products were
generated and different global collections became accessible (Woodcock et al., 2008; Wulder et al., 2012). The
release of the Google Earth Engine (GEE) platform also helped users to more easily retrieve, process and ex-
port the available geographic collections for different applications (Gorelick et al., 2017; Cardille et al., 2023).

Some studies applied AI techniques using satellite images to focus on specific morphological processes, such
as bank erosion (Jagers, 2003; Ali and Zobeyer, 2021), or for quantifying the total accretion, erosion and un-
changed areas (Deng et al., 2022) of braided rivers. However, no research is yet performed to predict the
overall planform evolution of (large) braided sand-bed rivers, including other morphological processes such
as confluence and bifurcation development, bar and channel migration, channel shifting, and so on.

For all of the above reasons, this thesis represents an innovative attempt to predict the morphological evolu-
tion of a braided sand-bed river using deep learning. A U-Net-based CNN model for binary image segmen-
tation was implemented. The model was trained with the Global Surface Water Dataset (GSWD) collection,
which contains pre-classified satellite images (Pekel et al., 2016). The suggested model for this research is
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inspired by the neural network (NN) developed by Jagers (2003). The case study of this project is the Brahma-
putra River. The focus was posed on the middle and lower reaches, in India and Bangladesh. These reaches
were split into several smaller segments used for training, validating and eventually testing the model. The
model performance were assessed considering a loss function, which represents the difference between the
model predictions and the real targets. Other classification metrics were included as well. The model outputs
were visually inspected as well. A comparison with two benchmark morphological models was eventually
performed.

1.3. Objective and research questions
The main objective of this thesis is to develop an original deep-learning model for predicting the planform
changes of a braided sand-bed river. Additionally, another expected outcome is the development and im-
plementation of a novel framework and methodology that can be applied to similar Earth systems, such as
coastal shoreline changes for instance.

Hence, the main research question of this work is:

How can deep learning help in predicting the planform changes of braided sand-bed rivers?

To answer this question, the following subquestions are formulated:

1. What is a suitable model architecture for this problem?

2. What are the most suitable assessment metrics for this task?

3. Based on the available data, for which prediction timescale - short-term (i.e., less than one year ahead,
in the order of weeks or few months) or long-term changes (one year ahead or longer) - is the model
most suited?

4. Depending on the satellite image collection chosen, what image preprocessing techniques are required
for improving the model performance, if there is any?

5. What relevant information (quantities, locations) on morphological processes can be inferred from the
outputs of the model?

6. How does the model compare to (i) the NN developed by Jagers (2003) and (ii) the benchmark method
for which no morphological change occurs?

7. What kind of physical information can be exploited to improve the model performance?

1.4. Thesis outline
This document is organised as follows. Chapter 2 presents the background of this project, with relevant lit-
erature, the related findings, and the case study. In Chapter 3 the overall methodology, the data, the pre-
processing steps and the model architecture are described, along with an introduction of the benchmark
models. Chapter 4 contains the model results in terms of metrics and visual inspection, as well as a com-
parison with the benchmark models. Chapter 5 contains a discussion and interpretation of the results, along
with limitations. Eventually, Chapter 6 contains the conclusions and answers to the research questions, with
recommendations for the model application and future improvements.
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2
Background

This chapter provides the background required for this research. It mostly includes the literature review per-
formed to find existing knowledge, related findings and research gaps regarding the three main topics of this
project. Section 2.1 describes braided rivers, their morphological processes and some relevant models de-
veloped. Section 2.2 provides the technical and social context of the case study. It also includes information
on previous research and the models specifically developed for it. Section 2.3 introduces artificial intelli-
gence, the most suited assessment metrics, and deep-learning modelling with some applications to similar
problems. Section 2.4 focuses on remote sensing and satellite images, the available collections, and the most
commonly applied preprocessing techniques.

2.1. Braided rivers
2.1.1. Morphological characteristics and processes
Braiding is one of the primary channel patterns used to describe the plan view of rivers (Leopold and Wol-
man, 1957). According to Paola (2001), braiding is the fundamental pattern of alluvial rivers, representing the
instability of streams flowing on non-cohesive material. In addition to the definition given by Jagers (2003)
presented in Section 1.1, a broader description is provided by Lane (1957). According to Lane, braided rivers
are characterised by “a number of alluvial channels with bars and islands between meeting and dividing
again, and presenting from the air the intertwining effect of a braid”.

Figure 2.1: Sketch of straight, meandering, braided and anastomosing channels. Image from https://tucanada.org/2022/10/14/
wandering-waterways/.

There is some debate about the way braided rivers develop. Lane (1957) suggests that braided rivers evolve
from anastomosing rivers after coarse sediments begin to deposit. These sediments form central bars that
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trap finer material and eventually lead to a disequilibrium in sediment transport rates. As mentioned by
Jagers (2003), various instabilities in water and sediment balance equations can cause rivers to develop a
braiding pattern rather than a meandering one. The formation of braided rivers depends on a set of control-
ling variables, which differentiate them from meandering channels. Compared to these, braided rivers are
generally characterised by steeper bed slopes, larger discharges and larger width/depth ratios (Leopold and
Wolman, 1957). However, Paola (2001) argues that only abundant bedload is the most fundamental charac-
teristic of braided streams. Factors such as steep slopes, coarse grain sizes, and flashy discharges are deemed
to be secondary, and play accessory roles in the evolution of these rivers. Consequently, braiding patterns de-
velop because of an exaggerated response of sediment flux to variations in the water flux. Such pattern does
not appropriately develop only if vegetation and cohesive sediments are present, which constraint its evo-
lution. Potentially, without vegetation the braiding pattern would be laterally unconstrained (Paola, 2001).
According to Ferguson (1993), there is not a single universal mode of braid development. Braiding patterns
are not solely the result of depositional processes, like central bar deposition and the formation of chutes
and lobes. Erosional processes, including chute cutoffs, dissection of multiple lobes, and avulsions initiated
by bank erosion, can also lead to the development of braiding. Typically, braided rivers are characterised by
“high values of valley slope, stream power, shear stress, width/depth ratio, and bedload transport rate”.

The interaction between water and sediment plays a crucial role in determining the river(bed) morphological
evolution (Jagers, 2003). The combination of high flow velocities and non-cohesive bed and bank material
results in significant erosion and deposition processes in braided rivers (Jagers, 2003). Hence, the presence
of an unstable network of multiple channels causes the river morphology to rapidly change during high-flow
stages (Ashmore, 2013).

Several morphological features characterise braided rivers. The main ones are braid bars and islands, around
which channels bifurcate and converge. Braid bars typically develop in the middle of the river, detached from
the banks, and are subject to reorganization and evolution after floods due to lateral accretion processes. In
contrast, islands are generally larger and consequently more stable, also thanks to the presence of vegetation.

Channel confluences and bifurcations are other significant elements and play a crucial role in the high-level
dynamics of braided rivers, influencing the overall morphological evolution of the system (Paola, 2001). Con-
fluences tend to accelerate the water flow, causing erosion, whereas bifurcations slow it, enhancing deposi-
tion and bar formation. The process of reversible entrainment is relevant in braided rivers, as erosion and
deposition processes typically move similar volumes of material (Paola, 2001).
Confluences are often considered more dynamic than bifurcations due to variations in discharge partition-
ing. However, bifurcations and upstream channel alignment play an important role in distributing water and
sediment among thedownstream channels (Jagers, 2003). Depending on several factors, the geometry of the
bifurcation can lead to channel abandonment. This occurs when sediment supply exceeds transport capac-
ity and causes a silting-up and consequent abandonment of the channel (Klaassen et al., 1993; Jagers, 2003).
Klaassen et al. (1993) showed that the frequency of channel abandonment upstream of bifurcations is corre-
lated with the deflection angle. The larger the angle, the larger the probability of channel abandonment.
Opposed to channel abandonment, channel formation through cutoff, often across bars, allows the river to
maintain a braided pattern. Additionally, channel offtakes contribute to the development of avulsions, where
channels abruptly change course (Best et al., 2022).

Other relevant processes in braided rivers are channel migration (Klaassen et al., 1993) and channel shifting.
These processes are driven by bank erosion and the accretion of point bars. When riverbanks erode, the
sediment is deposited downstream in areas with reduced transport capacity (Jagers, 2003). This interplay
between erosion and deposition often leads to either a gradual narrowing or widening of the river. Bank
erosion is also correlated to bar development and the presence of confluences or bifurcations (Surian, 2015).
This process is considered as one of the most concerning for the nearby population because it can cause
the river banks to retreat by exceptional amounts, harming the safety of people, buildings and infrastructure
(Klaassen et al., 1993; Best et al., 2022).
Scour holes, particularly at confluences and meander bends, are another important feature of braided rivers,
as they affect the macro-scale dynamics with implications on channel attraction, channel narrowing and
generation of confluences (Mosselman and Sloff, 2002; Jagers, 2003).

Additionally, planform changes are sensitive to flood discharge variations. The extent of bank erosion is in-
fluenced by the magnitude and duration of the floods, although these do not necessarily affect the locations
of erosion (Jagers, 2003). Channel formation and bar migration along the channel also depend on the flood

5



2.2. Case study 2. Background

extent. This has consequence on the future morphological evolution. Consider the bar arrival at a bifurca-
tion. This can be anticipated or postponed in time, depending on the flood magnitude. The siltation of one
of the bifurcated channels with bar deposited material is anticipated or postponed depending on the time
needed for the bar to reach the bifurcation (Klaassen et al., 1993).

2.1.2. Existing models of braided rivers
Field studies and laboratory experiments were common approaches to study the dynamics of braided rivers
(Jagers, 2003). These were later replaced by physics-based numerical models (Chavarrías, 2019), which allow
to achieve results in a shorter time whereas not being affected by laboratory scale effects. However, the fast
and chaotic morphological changes of braided rivers complicate the development of reliable and accurate
models. In addition to this, some morphodynamic processes are either not fully understood or lack a proper
implementation in physics-based models. Scour hole development, bank erosion, sediment transport char-
acteristics and bedforms development, the effects of riparian vegetation, wood, sediment gradation, and
secondary flow are some of these processes (Mosselman and Sloff, 2002; Jagers, 2003; Siviglia and Crosato,
2016; Hu et al., 2023). For these reasons, the models predictions can be uncertain and not always provide a
solid base for the design of infrastructure, interventions or other measures. Nevertheless, solving a system of
equations, comprising the Saint Venant shallow water equations (SWE), coupled with a sediment-flux equa-
tion and Exner equation for mass balance, is particularly complex for braided rivers, as the channel network
constantly reorganises (Paola, 2001). The computation time of these models can also be a further concern,
especially when modelling large systems.

To partially overcome these issues, Murray and Paola (1994) developed a simple two-dimensional cellular
model without modelling the flow in detail. The model does not solve explicitly the above-mentioned set of
equations but simplifies them into a set of local rules that govern how water and sediment move on a discrete
grid. The model turned out to be able to produce braiding patterns only using non-linear sediment transport
laws. This is in line with the more general knowledge that physically realistic sediment transport laws are
non-linear.

Besides some physics-based models, such as Delft3D (Deltares, 2024), were developed for specific situations
(Giri et al., 2021; Barua, 2023), other original models were implemented for braided rivers. Jagers (2003) men-
tions two conceptual models. The first is a one-dimensional Markov Chain, that statistically represents the
alongstream variations of the number of channels in a cross section and allows to generate bifurcations and
confluences. Additionally, Random Walk models based on a regular two-dimensional lattice grid were imple-
mented. In these models, initially single channels can randomly split or not into two branches and progress
independently until they rejoin together or split again.

Other models, theoretically suitable for all types of rivers, exist (Jagers, 2003). One of these is the time series
extrapolation. Such autoregressive models rely on the presence of maps, surveys, or satellite images. By
overlaying the bankline positions across different years and including random variations, the average bank
migration rate can be extrapolated from past years behaviour, for instance.

Eventually, to deal with planform changes of braided rivers, Jagers (2003) suggests to either treat the branches
of braided rivers as separate channels and model these as single meandering rivers or, alternatively, model all
branches with a two-dimensional model for the entire braidplain.

2.2. Case study
2.2.1. Context
The case study of this project is the Brahmaputra River. The name of the river actually changes several times
along its course. Brahmaputra is the name of the Indian reach, but it also represents the most adopted name
when referring to the whole river. In Bangladesh, for instance, the river splits in two branches. The main
branch is referred to as the Jamuna River, and the Old Brahmaputra is the name used for the secondary
branch. When dealing with both the Indian and the main Bangladeshi reach, as for in this research, the river
is often called Brahmaputra-Jamuna. However, for a better readability and adherence to the international
most recognised name, the river is referred to only as the Brahmaputra River. The name Jamuna is used when
specifically referring to the Bangladeshi reach only.

The Brahmaputra springs in the Chinese province of Tibet, from the Chemayungdung glacier near Mount
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Figure 2.2: Geographical context. The map shows the full course of the Brahmaputra (yellow reach) from the Himalayas to the confluence
with the Ganges River. The zoom image shows the stretch of the river considered for this case study (blue reach).

Kailash in the Himalayas, at an altitude of 5100 m (Jagers, 2003). It flows along the northern board of the
Himalayas for about 1400 km. It then crosses the mountains, entering the Indian province of Assam. Close
to Sadiya it joins the Lothi and Dibang River. After approximately 600 km, the river sharply bends left and
enters Bangladesh, where it flows for approximately 250 km. Near Bahadurabad, in Bangladesh, it also splits
in two branches, the Jamuna, currently the main branch, and the Old Brahmaputra (more information on
this is given in Section 2.2.3). At Aricha, in Bangladesh, it joins the Ganges River, forming the Padma River.
Further downstream, the Padma River joins the Upper Meghna River, forming the Lower Meghna River, which
eventually discharges in the Bay of Bengal, in the Indian Ocean (Jagers, 2003; Best et al., 2022). The bottom
right image of Figure 2.2 shows the planview of the Brahmaputra from its origin to the confluence with the
Ganges River.

The stretch of the river considered for this project is approximately 875 km long. The upstream boundary is
set close to Sadiya, just downstream of the confluence with the Lothi and Dibang River, in Indian territory.
The downstream boundary is set close to Aricha, just upstream of the confluence with the Ganges River, in
Bangladesh. Figure 2.2 shows the stretch of the river considered for this project. It also includes the river from
its origin to the confluence with the Ganges River.

2.2.2. Hydrology and hydrodynamic
The Brahmaputra River has a catchment area of approximately 560 000 km2, which is on average subject to 1.9
m/yr of rainfall. Due to its geographical location, the river experiences large floods during summer months.
The first contribution to the flood discharges is the snow melt originated from the Himalayas, which occurs
around May. However, tropical monsoon rainfall also largely contributes to the hydrograph increase and,
actually, dominates it between July and September, when the hydrograph peak is reached. The monsoon
season generally lasts from May until October. For these reasons, the discharge largely varies throughout the
year. During the low-flow season between January and April, the river discharge is between 4000 and 12 000
m3/s, with a minimum record of 2037 m3/s. The mean annual discharge at Bahadurabad is 20 200 m3/s.
The average annual flood is about 60 000 m3/s, but larger values were recorded, with a peak of 102 535 m3/s
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reached in 1998. The water levels recorded at Bahadurabad also increase by 6−7 m, from around 13 m Public
Works Datum (PWD)1 during the low-flow season to 19−20 m PWD during floods (Jagers, 2003; Best et al.,
2022). More information on recorded water levels and discharges are given in Appendix A.

Figure 2.3: River cross section at Bahadurabad, in Bangladesh. The horizontal lines represents the water level at different discharges.
The survey was conducted in 1992 for the River Survey Project within the Flood Action Plan 24 (1996). Water levels and discharge data
are retrieved from Figure A.2.

Figure 2.3 shows a cross section of the Jamuna reach at Bahadurabad. It also includes the water levels as-
sociated to the minimum, average, and maximum discharges as well as the 25%, 50% (median), 75%, and
90% percentiles of the discharge distribution. The data were recorded within 1990 and 2016 (Figure A.2). The
bathymetry was surveyed in 1992.

Figure 2.4: Brahmaputra River close to Dibrugarh, India. Image courtesy of Erik Mosselman.

The braidplain river width varies between 5−17 km, with an average of 11 km, whereas individual channels
can be up to 2 km wide (Klaassen et al., 1993; Best et al., 2022). The flow depth varies between 2−20 m and

1The PWD was established by the Bangladeshi Department of Public Works. It is a horizontal datum originally believed to have zero level
at the mean sea level (MSL) at Calcutta, India. This datum is 0.46 m below the MSL.
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up to 30 m in the largest channels, although local bed scour holes of 40−45 m were recorded (Jagers, 2003;
Best et al., 2022). Depth-averaged velocities can reach over 3.5 m/s during floods.

2.2.3. Geomorphology
The Brahmaputra flows across one of the most tectonically active zones in the world, subject to a 5 cm/year
north migration (Jagers, 2003). The Himalayas mountains experience uplifting processes, whereas the Bengal
region is subducting. For these reasons, large earthquakes occurred in the last centuries (Best et al., 2022)
and might occur again in the future. Such earthquakes can highly influence the local morphology, as they
cause landslides that feed the river with sediments and mobilise the alluvial riverbed fine sediments, causing
an increase in sediment transport. Additionally, small faults are also considered to influence local channel
migration and width changes (Klaassen et al., 1993; Best et al., 2022).

In Bangladeshi territory the Brahmaputra splits in two branches, the Jamuna and the Old Brahmaputra. The
latter used to be the main branch until the end of the 18th century, when a gradual avulsion started develop-
ing. Tectonic activity, increased discharges and catastrophic floods are deemed to be the most likely causes
for the initiation of such avulsion (Best et al., 2022). Moreover, westward migrating patterns are currently
observed in the river (Jagers, 2003). Between 1973 and 2003, river bank erosion rates were estimated to be 207
and 83 m/year on the right and left bank, respectively (Best et al., 2022).

Additionally, in some locations the course of the Brahmaputra is affected by the presence of inselbergs, also
known as monadnocks. These geological features are isolated mountains generally composed of granitic or
gneiss matrix. Such features represent a constraint for the river development, and eventually confine the river
braidplain. The main inselbergs of the region are the Shillong and the Mikir Hills (Lahiri, 2022). Vegetation
also plays a crucial role in stabilizing the river banks. Locations characterised by the presence of vegetation
are generally more stable, compared to non-vegetated areas, although Best et al. (2022) argues that deep roots
are insufficient to halt bank erosion in the deepest channels (20−30 m deep) of the Brahmaputra.

2.2.4. Morphodynamics
The Brahmaputra is widely classified as a braided river. This is confirmed by the Brice braiding index, in-
cluded between 4− 6 (Best et al., 2022), and by the physics-based formula proposed by Crosato and Mos-
selman (2009). In the braid belt, the upstream reaches typically have three major channels, whereas the
downstream ones are characterised by two major channels. Most of the Brahmaputra bed and bank material
is fine sands (85%) and silt/clay (15%). For this reason, the Brahmaputra is also referred to as a braided sand-
bed river. Due to abrasion processes, the grain size gets finer moving downstream, with an average value of
0.22 mm at Bahadurabad. During floods, a huge amount of sediment is transported. Some studies estimate
a sediment yield between 555−1157 Mt/year, with a 10−30% contribution of bedload (Best et al., 2022). For
an average transporting width of 3 km, 5 Mt/day of total load is estimated to be transported by the river.
This large amount of sediments causes the river to reorganise itself after every flood. Most of this material
originates from erosion of the bed and the banks of the river and the sediment supply from the Himalayas.

Among the various morphodynamic processes that shape braided rivers, including the Brahmaputra, bank
erosion likely received the most attention due to its significant impacts on the nearby communities. Accord-
ing to Klaassen et al. (1993), the bank erosion rates of the Brahmaputra can vary between 0−500 m/year, with
local exceptional situations reaching up to 750−1000 m/year. Additionally, according to recent estimates the
Brahmaputra erodes around 2000−5000 ha/year of mainland floodplain (Best et al., 2022).

2.2.5. Social and international context
The devastating floods of the Brahmaputra yearly affect tens of millions of people in India and Bangladesh,
with estimated damages in the order of billions of dollars. Crops, buildings, infrastructure, and economical
activities largely suffer from these floods, which can also claim hundreds of human lives (Best et al., 2022).
Several projects were developed with international stakeholders and NGOs to protect the surrounding ar-
eas and the local population. Most of these works focused on river training and riverbanks protection and
stabilization (Best et al., 2022). As a direct consequence of the 1987 and 1988 large floods, for instance,
the Bangladeshi Government, in collaboration with the World Bank, developed the Flood Action Plan (FAP).
Within this plan, several projects with different goals were implemented. FAP1 aimed at stabilising the banks
of the Brahmaputra for protecting the city of Sirajganj and the Fulchari railway ferry terminal. It also aimed at
preventing avulsions into the Bengali River and future outflanking of the Bangabandhu Bridge. FAP21 tested
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(a) Erosion of the bank. (b) Erosion of an embankment.

Figure 2.5: Bank erosion along the Brahmaputra. Left image from Sarkar (2017). Right image courtesy of Sanjay Giri.

permeable groynes at Kamarjani and revetments at Bahadurabad and Guthail (Best et al., 2022).

Figure 2.6: Flood extent in Rangpur district, Bangladesh, July 2024. Image from Agence France-Presse (2024).

One of the most recent initiatives is the Flood and Riverbank Erosion Risk Management Investement Program
(FRERMIP), funded by the Asian Development Bank and the Governments of Bangladesh and the Nether-
lands. The project involved a joint venture of consultancy firms such as Northwest Hydraulic Consultant and
Euroconsult Mott MacDonald. Deltares and Bangladeshi national authorities, such as the Ministry of Wa-
ter Resources (MoWR) and the Bangladesh Water Developement Board (BWDB), collaborated as well. The
program started in 2016 aiming at “providing structural and non-structural flood and riverbank erosion risk
management measures” in three main priority Bangladeshi areas in order to “provide a more secure and im-
proved livelihood for people living along the main rivers of Bangladesh” (McLean et al., 2020).
Despite significant efforts and the success of many projects, several interventions failed between 1998 and
2004 (Best et al., 2022). These failures are partly due to the occurrence of large floods but also to the difficul-
ties in predicting the morphological development of the river.

Other international initiatives focused on the construction of critical infrastructure, such as the Bangabandhu
Bridge (Mottaleb and Rahut, 2018), or on flood adaptation measures, like the construction of plinths (Begum,
2023; Koepon Stichting, 2024).

10



2.3. Artificial intelligence 2. Background

2.2.6. Existing models of the Brahmaputra River
Some physics-based models of the Jamuna exist. However, most of these models were implemented for un-
derstanding the morphological response of the river to specific local interventions. Some examples are the
bank stabilization of the avulsion channel in Kamarjani (Barua, 2023) or the prediction the behaviour of key
bifurcations under different conditions to support adaptive river management strategies (Giri et al., 2021). In
this section other original models are reported.

Klaassen et al. (1993) developed a probabilistic framework to predict the planform changes of the Jamuna
reach. Branches were treated individually as meandering channels. Elementary planform changes were
modelled either with kinematic or stochastic processes, such as Monte Carlo simulations. They showed it
was possible to reach quite accurate result for short term changes. Longer-term changes remained a chal-
lenge as the number of possible developments increases.
Building on this framework, Jagers (2003) implemented the so-called branches model. Simulations were per-
formed with different stochastic influences. Every result represented the realisation of one ensemble of pos-
sible planforms. By overlaying all planforms one over the other, the frequency representing the predicted
occurrence of channels was interpreted as the probability of erosion.

2.3. Artificial intelligence
2.3.1. Machine learning and neural networks
The concept of AI was initially introduced in 1955 by McCarthy et al., who stated that “every aspect of learning
or any other feature of intelligence can in principle be so precisely described that a machine can be made to
simulate it”. Whereas different definitions exist, AI can be considered as the set of computational algorithms
used to solve complex tasks by simulating the human intelligent behaviour (Prince, 2023).

Machine learning is the subset of AI systems that acquires knowledge by extracting patterns from prepro-
cessed raw data (LeCun et al., 2015; Goodfellow et al., 2016). This set of techniques allows to make subjective
decisions based on real world knowledge. Two main categories of methods exist: supervised and unsuper-
vised learning. Supervised learning involves the presence of labeled data, which implies the existence of a
defined relationship between inputs and outputs (Prince, 2023). Within supervised learning, the two most
common tasks are classification, which involves predicting two or more distinct categories, and regression,
where the goal is to predict the continuous value of one or more variables. For our problem both approaches
could be appropriate. The task choice depends on the data used, i.e. binary satellite images or bankline
coordinates, and the research objectives.

Among various algorithms, artificial neural networks (ANNs) are one of the most widely used models. These
are inspired by the functioning of biological brains (Goodfellow et al., 2016), which consist of interconnected
neurons that transmit signals to each other through synapses. Similarly, ANNs consist of multiple fully con-
nected neurons, also known as hidden units, organised into several distinct hidden layers. Bishop (1994)
describes ANNs as “a series of functional transformations”. Initially, linear combinations of the inputs are
computed using adaptive parameters known as weights and biases. These combinations are then followed
by a non-linear transformation through differentiable activation functions, which vary depending on the task.
These functions introduce non-linearity in the network, allowing to learn more complex patterns.
To propagate the information through the network, the output of a single (hidden) layer serves as input to the
subsequent one. Finally, before reaching the output layer, the results are transformed by a further activation
function suited to the specific task. This entire process of mapping inputs to outputs, with information flow-
ing through the hidden units of the various layers, is called forward propagation.
During the training process, the learning and the performance of the model are evaluated using loss func-
tions. These functions measure the difference between the real targets and the model predictions. The ob-
jective is to minimise this loss, making the model predictions as close as possible to the actual targets. This is
achieved through error backpropagation (Bishop, 1994; LeCun et al., 2015). This method computes the gradi-
ent of the loss function with respect to the model parameters and then propagates this error gradient through
the network. Specific optimization algorithms use these gradients to update the model parameters, aiming
to reduce the loss and improve the model performance.

One key issue of these models is overfitting. A model is said to overfit when it optimises its parameters to fit
not only the relevant patterns in the data, but also the noise present in those data. The model can achieve
high accuracy on the training data, however it often fails to generalise well to unseen data, leading to poor
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performance on new examples. To overcome this issue, the available data is split in three distinct datasets:
training, validation and testing datasets. The training set is used to train the model, which enables it to learn
the relevant patterns and update its parameters. The validation dataset is used during the training step to
monitor the model performance in order to avoid overfitting. The testing dataset is used for a final evaluation
of the model on unprocessed data and is relevant to assess how the model can generalise (LeCun et al., 2015).

2.3.1.1. Loss functions and metrics
The loss functions and metrics depend on the problem and task. For regression tasks, the most common
functions are the root mean squared error (RMSE) and the mean absolute error (MAE) losses, which measure
the distance between the predicted and the target value. Similar functions are the mean squared error (MSE)
and Huber losses. Classification losses focus instead on comparing the predicted probability to the actual
target class. For binary classification tasks, binary cross entropy (BCE) is the most common function, whereas
for multiclass classification categorical cross entropy (CCE) is used.

Additionally, for classification problems other assessment metrics are available. Accuracy measures the per-
centage of correct predictions out of the total. Precision measures the percentage of correctly predicted pos-
itive pixels with respect to all positive predictions. Recall measures the percentage of correctly positive pre-
dictions out of the real positive targets. F1-score is the harmonised mean of precision and recall. In addition
to recall, Bentivoglio et al. (2023) suggest to include the critical success index (CSI), specifically when dealing
with imbalanced datasets.

2.3.2. Deep-learning modelling
ANNs typically consist of few hidden layers, each containing a limited number of hidden units. Due to their
relatively simple structure, these models are often referred to as "shallow" ANNs. However, when it comes to
extracting high-level abstract features, their performance get worse. Furthermore, when dealing with high-
dimensional structured data2, like images, they would require an impractically large number of parameters,
making computation inefficient (Goodfellow et al., 2016; Prince, 2023). This inefficiency is worsened by the
so-called curse of dimensionality. This refers to the issue of training data sparsity, where the amount of train-
ing data needed increases exponentially as the number of dimensions in the data grows.
To overcome these challenges, deep learning was introduced. Compared to shallow ANNs, deep neural net-
works (DNNs) are formed by stacking many hidden layers, which in turn increase the number of hidden
units.3 Besides requiring a larger number of parameters, DNNs are able to capture complex patterns more
effectively due to the presence of specific inductive biases. These biases, implemented through model ar-
chitectural choices, represent built-in assumptions that allow these models to prioritise certain solutions
by extrapolating patterns between data points (Krizhevsky et al., 2012; Prince, 2023). Deep-learning mod-
els performance is also enhanced by representation learning. This comprises a set of methods that extracts
meaningful and informative patterns from raw data, without requiring preprocessing of these. Deep-learning
models automatically implement this feature extraction and express complex patterns in terms of simpler
representations, like corners and contours (Goodfellow et al., 2016). These representations are necessary for
the model task (LeCun et al., 2015), such as feature detection or classification.

Among other applications, deep learning is particularly well-suited for computer vision tasks. This is largely
due to the spatial inductive bias, which assumes that nearby pixels within an image are statistically related.
DNNs can leverage this by considering the spatial organization of images. The spatial inductive bias is
achieved through convolutions, linear operations that apply filters to local regions independently (Figure
2.7). By sharing the parameters across the entire image, convolutions process different local regions of an
image in a similar way and better exploit spatial dimensions (Goodfellow et al., 2016). This greatly reduces
the number of parameters compared to ANNs, which treat the relationship between every input equally and
have to learn the interpretation of the pixels at every position (Prince, 2023). Figure 2.8 compares a fully con-
nected layer with a convolutional layer, for which less parameters are required. After applying a non-linear
activation function to the convolution output we obtain a convolutional layer. The output of a convolution is
called feature map and it represents abstract hidden variables extracted from the input data.

2The term high-dimensional data refers to data that have a large number of input variables. Each pixel of an image represents one
variable. As a result, even relatively small images with 64x64 pixels would already contain 4096 input variables.

3The number of hidden units is often referred to as width of the network, whereas the number of hidden layers as depth of the network.
To avoid confusion with the width and depth concepts of rivers, from here onward, hydraulic variables will be defined as channel width
and channel depth, whereas the number of hidden units and hidden layers will be referred to as network width and network depth,
respectively.

12



2.3. Artificial intelligence 2. Background

Figure 2.7: Convolution of an input layer. It is possible to see how the weights ωi j are shared and do not change while the convolution
slides through the image. Images c) and d) show the effect of padding=1, also known as same padding. This preserves the original image
dimensions by surrounding the image edges by zeros. Image from Prince (2023).

Figure 2.8: Comparison between fully connected layers with weights weighting each input (left) and a convolutional layer with only
neighbouring weights (right). Image from Prince (2023).

Pooling layers are often used after convolutional layers to reduce the spatial dimensions of these feature
maps, improving the computational efficiency. Finally, stacking several convolutional and pooling layers
forms a CNN. These models can process multiple input channels4 simultaneously by applying different filters
to each input channel and generating multiple feature maps (O’Shea and Nash, 2015).

Similarly to the way a CNN deals with two-dimensional input data like images, recurrent neural networks
(RNN) are suitable for sequential data, like time series (Schmidt, 2019). These models are specifically de-
signed to capture temporal patterns thanks to the presence of an internal state, which enables them to retain
the information from previous time steps. By introducing memory cells and gating mechanisms to RNN we
get a long short-term memory (LSTM) unit (Hochreiter and Schmidhuber, 1997), which is able to track both
short- and long-term time dependencies in the data. Eventually, combining a CNN with an LSTM results

4The term input channels refers to the number of different layers characterizing the input data, such as images. For grayscale images,
there is one channel, whereas RGB images have three channels (red, green, and blue). To avoid confusion with river channels, we will
refer to this concept simply as channels or directly as river channels, reserving the term input channels for the number of layers in the
input.
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in a convolutional long short-term memory (ConvLSTM) (Shi et al., 2015), which is particularly suited when
dealing with spatio-temporal phenomena.

2.3.2.1. Related research
One of the main applications of deep learning is surrogate modelling. Surrogate models are trained with the
simulations of numerical models, with the aim to speed these computations up without having to run the
whole simulation again. For this reason, these models are particularly useful for almost real-time applica-
tions, such as flood warning systems.
For instance, Bentivoglio et al. (2023) implemented a novel GNN for spatio-temporal flood inundations.
Nazari et al. (2022) developed a physics-informed neural network (PINN) for modelling the water flows in
a river during floods. Melo et al. (2022) developed a surrogate CNN for emulating the results of a hydrody-
namic model such as Delft3D (Deltares, 2024) for estuarine morphological evolution.

However, within the framework of this research surrogate modelling is not considered a valid option, given
the uncertainties of physics-based models for braided rivers. Consequently, the predictions of the morpho-
logical evolution should be based on monitored data, such as flow discharge, sediment transport rate, and
river bathymetry, for instance. Khankhoje and Choudhury (2024) developed a dynamic NN for sediment
discharge forecasting in the Mississippi River and some of its tributaries using measured data from gauging
stations. Zhang et al. (2024) implemented a CNN for predicting the shear stress distribution and river bed to-
pography in meandering rivers coupling measured bathymetry data with large eddy simulation (LES) results.
Deng et al. (2022) implemented a regression lightweight NN with only few layers and neurons to predict the
overall accretion, erosion, and unchanged areas of a braided river. Satellite images and records of flow rate,
annual average sediment transport rate, and sediment concentration were the inputs of the model. This
turned out to predict quite accurately the areas of accretion and erosion, indicating a relevant depositional
trend of the studied reach. Ren et al. (2024) also implemented a novel algorithm for riverbank erosion risk as-
sessment based on a multi-source dataset. They categorised the risk in five levels, from low to extreme. Their
research integrates methods related to the emerging field of explainable artificial intelligence (XAI). These
methods enhance the model interpretability to gain more insights in the factors and processes influencing
riverbank erosion. In this way, they aim to help decision-makers and involved stakeholders to prioritise the
locations for protective projects.

Specifically for the Brahmaputra, two AI models exist. Using classified satellite images, Jagers (2003) devel-
oped an NN, to predict the locations where bank erosion was likely to occur one year into the future. Five
physics variables, such as the point distance to the closest channel or the local width of the nearest channel,
were parameterised and given as inputs. Despite some errors and missing some morphological features, the
model was able to provide reasonable predictions regarding bank erosion at several locations. This is the
model that actually inspired this research and more information on this is given in Section 3.3.1.
Ali and Zobeyer (2021) developed a ConvLSTM for predicting the bank erosion of the Jamuna reach as well.
However, contrary to the NN model by Jagers (2003), they did not make use of classified images in two dis-
tinct land classes. They developed a regression model which used the relative coordinates of the delineated
banklines. Compared to the model by Jagers (2003), which did not take into account the temporal evolution
of the river across different years, this one included specific features that enable to represent the temporal
components as well. The model turned out to underpredict the erosion magnitude, whereas being able to
accurately identify the erosion prone areas.

2.4. Remote sensing
2.4.1. Satellite imagery
Remote sensing is a set of instrument-based techniques used for acquiring and measuring spatially dis-
tributed data by means of devices which are not in contact with the surveyed items (Salomonson, 2014). For
this research, only satellite-derived data were considered. This choice was motivated by the wide availability
of satellite image collections through online platforms. Satellite data also provide extensive temporal and
spatial coverage. This is crucial for analysing of how wide geographic areas change in time. This contrasts
with other remote sensing techniques like aerial photography or unmanned aerial vehicle (UAV) imagery,
which typically cover smaller areas and have shorter temporal records.

In 1972, NASA designed and launched the first Landsat mission, with the aim to provide unclassified remotely-
sensed data to facilitate assessment of land and water resources (Lauer et al., 1997). Since then, more satel-
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lites were launched. These generated several collections with different characteristics and fields of applica-
tion. The release of the GEE cloud-based platform helps users to access, process and export the available
geographic collections for different Earth systems applications (Gorelick et al., 2017; Cardille et al., 2023).

Passive and active are the two types of existing remote sensing instruments. Passive satellites are also known
as optical or multispectral sensors and they rely on the presence of an external energy source, specifically
the sunlight. Optical sensors measure the visible, near-infrared, and shortwave infrared spectral regions, and
measure the emergent radiation from the Earth. However, as they rely on the sun radiation, the presence of
cloud coverage negatively affects the generated images. Active instruments, instead, emit an artificial radia-
tion that generates a scatter back signal from the ground. synthetic-aperture radar (SAR) is the most common
active system for satellite imagery. Since these systems emit micro-waves, these can penetrate the clouds and
consequently return images regardless of the weather conditions (Richards, 2022).

Apart from the sensor type, the spatial nominal resolution (the square area covered by one single pixel), the
temporal coverage (the total years of record), and the temporal granularity or satellite overpass frequency
(the average temporal interval between consecutive images) are key factors in the collection choice. Other
relevant properties are the emitted radiation amplitude (the brightness of the emitted electromagnetic radia-
tion), the radiation frequency (which relates to the spectral resolution), and the satellite spatial coverage (the
total area that a satellite can cover in one image).

2.4.2. Available collections
Landsat and Sentinel are the two most common satellite collections. Landsat 1 satellite was launched in 1972,
although the most used collections trace back to 1982, when Landsat 4 was launched (Wulder et al., 2012).
All Landsat satellites contain optical sensors, hence their collections are hindered by the cloud presence. The
image resolution increased from 80 to 30 m, whereas the overpass frequency is 16 days. Sentinel collections
are developed within the Copernicus Program of the European Union. It comprises two satellites. Sentinel-1,
radar, was launched in 2014 and has an overpass frequency of 6 days. Sentinel-2, optical, was launched in
2015 and has an overpass frequency of 10 days. Both satellites have a spatial resolution of 10 m. Figure 2.9
shows how Landsat collections are hindered by cloud coverage, whereas Sentinel-1 is not.

(a) Landsat-8. (b) Sentinel-1.

Figure 2.9: Comparison between Landsat-8 (2.9a) and Sentinel-1 (2.9b) images representing the flood conditions of the Jamuna reach
upstream of the confluence with the Ganges River of 2015 monsoon season. Landsat images are affected by cloud coverage, whereas
Sentinel images are not.

NASA and IBM developed the Harmonized Landsat and Sentinel-2 (HLS) collection, which combines Landsat-
8 and 9 Operational Land Imager (OLI) with Sentinel-2A and 2B MultiSpectral Instrument (MSI). The harmo-
nization between these collections is made possible due to the spectral similarities between these sensors.
This enabled the generation of higher frequency imagery products (Claverie et al., 2018).
Another collection worth mentioning is the GSWD, developed by the European Commission’s Joint Research
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Centre (JRC). This collection provides globally classified images of surface water dynamics, dating back to
1984. As it is based on Landsat satellite imagery, it is also hindered by cloud presence (Pekel et al., 2016).

2.4.3. Preprocessing techniques
The image preprocessing steps depend on the collection used. Munasinghe et al. (2021) describe several tech-
niques for pixel-based classification. Most of these are one- or two-step algorithms, such as Band Ratioing,
Random Forest classifiers, and Support Vector Machines. The choice among these algorithms depends on the
available data type and task. Besides these, other relevant methods are sub-pixel based algorithms, to accom-
modate different land-use classes in a single pixel, change detection methods, and ensemble classification,
which combines different approaches to improve the results. Khurshid and Khan (2012) implemented a two-
step algorithm for river channel extraction, combining an approximate and a detailed segmentation process.
Basnayaka et al. (2022) suggest to use multispectral bands for pixel classification. The modified normalized
difference water index (MNDWI) is the most recommended index for water bodies extraction, but to minimise
misclassifiaction normalized difference water index (NDVI) and enhanced vegetation index (EVI) should be
included as well. Deng et al. (2022) also use a combination of the above-mentioned water-body indices with
Landsat images. Additionally, they argue that their proposed algorithm is more accurate for water-bodies
extraction than the GSWD annual collection for braided rivers.
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3
Methods and materials

This chapter aims to describe the workflow applied in this project, the data, and the deep-learning model that
was trained. Section 3.1 describes the data used, specifically the satellite images, the preprocessing steps,
and the final datasets. In Section 3.2 the implemented deep-learning model is described, along with the loss
function and assessment metrics used to monitor and assess the model performance throughout the training
process and for future evaluations. Section 3.3 introduces the benchmarks models used for comparing and
assessing the performance of our proposed model.

Figure 3.1 shows the adopted workflow for the current research.

Figure 3.1: Adopted workflow for this research.

3.1. Satellite images
3.1.1. Image collection
Due to cloud coverage, during the monsoon season the number of suitable images from optical satellites
is significantly reduced, if not absent at all, compared to the rest of the year. Additionally, in the months
of November and December the flood season is at its falling stage. During these months, the water levels
are indeed lower compared to the summer monsonic months, but still quite high. Consequently, several
morphological features such as bars, secondary channels and bifurcations are not clearly distinguishable or
sometimes not visible at all. On top of that, construction works for bank protections and any other interven-
tion can only be done during the low-flow months. Hence, for the involved stakeholders it is more important
to be aware of the post-floods morphological conditions.
For these reasons, in this research only images taken during the low-flow stage were considered. As intro-
duced in Section 2.2.2, for the Brahmaputra River the low-flow stage occurs between January and April.

The available collections were accessed and analysed using the GEE platform. Apart from the parameters
introduced in Section 2.4.1, the final collection was chosen also based on the number of cloud-free images
and the expected preprocessing steps needed.

17



3.1. Satellite images 3. Methods and materials

The Monthly History GSWD collection was chosen (Pekel et al., 2016). This collection was developed by the
European Commission’s Joint Research Centre (JRC) in the framework of the Copernicus Programme. It maps
the location and temporal distribution of water surfaces at global scale (Global Surface Water Explorer, 2024).
An expert system classifier was trained with Landsat 5, 7, and 8 images. Hence, the collection is affected by
clouds. For the validation dataset the classification achieves less than 1% of false water detection (error of
commission) and misses less than 5% of water areas (error of omission). The collection contains monthly
images from March 1984 to December 2021, although for the case study area images are available starting
from December 1987. The images have a spatial resolution of 30 m and are characterised by a single band
named water. This band can take three values, each representing a specific land-use category, as included in
Table 3.1. Figure 3.2 shows an original image containing the three distinctive classes.

Value Class

0 No data

1 Non-water

2 Water

Table 3.1: Original water band values for the chosen collec-
tion.

Figure 3.2: Example of an original image. Red, yellow, and
blue pixels represent “No data”, “Non-water”, and “Water” ar-
eas, respectively. The image represents the most downstream
reach in January 1990. The white arrow indicates the flow di-
rection.

Images were accessed using an automated script in the GEE code editor. The specific dataset ID is the New
Asset ID 1984-2021 JRC/GSW1_4/MonthlyHistory. The image resolution was downgraded to 60 m (i.e., with a
decreasing factor of 2). Besides a potential loss of detail and feature representation, this downgrade reduces
the image size, hence the export time, and most importantly the memory usage and computation time during
the model training and inference. The case study stretch introduced in Section 2.2 was divided in thirty
smaller reaches. Using QGIS 3.28.15, approximately 60× 30 km rectangles were drawn to demarcate each
reach area. 60 and 30 km represent the longitudinal and lateral dimensions, respectively. The shape files were
imported in GEE as Assets. These were used to crop the satellite image areas, and consequently to export the
images for all reaches individually.

3.1.2. Image preprocessing
To ensure consistent characteristics across all reaches and years, the images were preprocessed before gen-
erating the training, validation, and testing datasets. The flow characteristics of the most downstream of the
thirty reaches were used as a reference for this standardization step. In this reach, the flow is directed south-
ward, i.e. it goes from the top to the bottom of the image (see Figure 3.2). In the first step, it was ensured
that the flow direction was directed in the same way for all reaches. This was done through a rigid rotation
for all those reaches that did not respect this requirement. Subsequently, images were reshaped to match a
1000×500 pixels dimension, representing an exact 60×30 km reach.
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“No data” pixels were individually replaced with the corresponding single pixels of an average generated im-
age. This image was obtained performing a two-steps averaging process. In the first step, the low-flow season
average was computed separately for all reaches and years. The remaining “No data” areas were replaced by
averaging the neighbouring pixels. A hard replacement with the “Non-water” class was applied to all remain-
ing “No data” pixels. In this way, images were binarized and the modelling task was partially simplified (see
Section 3.2). Figure 3.3 shows the same image previously presented (Figure 3.2) after the binarization step.
For coherence with literature and for algorithm simplification, the two class values were converted as given
in Table 3.2. Appendix B contains more information on the preprocessing and “No data” replacement.

Value Class

0 Non-water

1 Water

Table 3.2: Converted water band values after binarization.

Figure 3.3: Example of a preprocessed binary image after
the “No data” replacement. Yellow and blue pixels represent
“Non-water” and “Water” areas. The image represents the
most downstream reach in January 1990. The white arrow in-
dicates the flow direction.

3.1.3. Input-target combinations
From a temporal perspective, the problem was modelled as a sequence-to-one task (Goodfellow et al., 2016).
Four images, representative of the same month across four consecutive years, were used as inputs. The
fifth consecutive year image represented the target. For this reason, the input and target tensors have shape
(4, 1000, 500) and (1, 1000, 500), respectively.

Even after replacing the “No data” pixels, some completely unsuitable images remained. The reason is that
throughout some years, mainly during the 90s, all images were only composed of “No data” pixels. As a result,
the pixel replacement strategy previously adopted would return fully “Non-water” images. To avoid these im-
ages to become part of any dataset, a quality filtering operation was applied to all input-target combinations.
If any image included within any input-target combination contained more than 480 000 “Non-water” pixels,
the full combination was discarded. More details on the quality filtering procedure are given in Appendix C.

The training, validation and testing datasets were generated considering only images representative of March.
The month choice was based on the number and quality, i.e. least number of “No data” pixels to be replaced,
of the available input-target combinations.
The datasets were obtained by spatially splitting the reaches. The most downstream reach was reserved for
testing the model and the one just upstream for the validation step. The remaining 28 reaches located further
upstream, the majority of which in Indian territory, were utilised for training the model. This dataset is com-
posed of 518, 19 and 19 samples for the training, validation, and testing steps, respectively. Figure 3.4 shows
the planview of the river and the reaches used for the different modelling steps.
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Figure 3.4: Spatial dataset reaches division. Blue, yellow, and red areas represent training, validation, and testing reaches, respectively.

A different splitting procedure was investigated. This is described in Appendix H, along with the most relevant
results obtained and a brief discussion on why this dataset was not selected for the main analysis .

3.2. JamUNet
3.2.1. Model architecture
From an algorithm perspective, the modelling problem is defined a binary semantic segmentation task. This
means that the model is trained to classify each pixel of a whole image as either “Non-water” or “Water”.

A CNN model based on the U-Net architecture was developed. Such model was originally introduced by Ron-
neberger et al. (2015) for biomedical image segmentation. The U-Net is a fully convolutional neural network
which comprises two primary components: an encoding path and a corresponding symmetrical decoding
path. The encoder is responsible for extracting relevant features from the input images, whereas the decoder
uses these features to reconstruct the output image. A bottleneck layer connects the encoder and decoder,
facilitating the flow of information between these two components. The model here introduced is named
JamUNet, as the combination of the words “Jamuna” and “U-Net”.

CNN models are generally well-suited for spatially-oriented tasks. From a temporal perspective, these prob-
lems are often modelled as one-to-one problems, where a single input image is used to predict a single output
image. In such cases, temporal features are generally not relevant or not present at all. The suitability of
CNN models for these tasks is attributed to their spatial inductive bias, which is effectively captured through
convolutional operations. However, our problem involves not only a clear two-dimensional spatial compo-
nent but also significant temporal patterns. The image in year i is somehow correlated to the images in the
previous years i − 1, i − 2, . . . , i −n, with n being an undefined number of years. It is assumed that current
morphological conditions are influenced by the preceding years conditions.

To address the challenge of incorporating a temporal inductive bias into the model without using LSTM cells,
an alternative approach was employed. Traditionally, the convolutional block of U-Net models consists of
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Figure 3.5: Sketch of the JamUNet architecture and operations performed.

a sequence of operations: a 2D convolution, followed by batch normalization (BN)1, an activation function,
typically rectified linear unit (ReLU) (Equation 3.1, left image of Figure D.5), and at least another 2D convolu-
tion.

f (x) = max(0, x) (3.1)

where x represents the model output after the BN step.

To better capture the temporal evolution of the images, here the second 2D convolution was replaced with
a semi-3D convolution, which actually operates as a 2D convolution due to the dataset dimensions2. This
modification slightly improved the model outputs, both in terms of metrics and of image generation. In this
setup, the initial 2D convolution is expected to extract spatial features from the feature maps independently,
whereas the semi-3D convolution captures the temporal dynamics of the spatial features across the sequence
map by map. This approach is inspired by Stańczyk and Mehrkanoon (2021), who applied a similar strategy
for wind speed prediction.

The model is composed of 4 symmetrical hidden layers in both the encoding and decoding path, and a bottle-
neck temporal convolutional layer. In the encoder, every convolutional block is followed by a downsampling
operation. This halves the feature map spatial dimensions, whereas the number of feature maps doubles.
For instance, after the first downsample, the tensor size goes from (8, 1000, 500) to (16, 500, 250). The max

1BN reparameterises the activations of each (hidden) layer by normalizing them to have zero mean and unit variance, based on mini-
batch statistics. This helps to mitigate the internal covariate shift, that is the variation in the distribution of the network inputs. BN
improves training stability, enhances the parameters optimization and also introduces a regularizing effect. Additionally, it enables to
use larger learning rates, which accelerates the learning process and enhances overall training efficiency (Prince, 2023).

2The datasets have dimension (4, 1000, 500), with 4 the number of input channels, 1000, 500 image height and width. For a (semi-
)3D convolution to operate the image depth is required as additional dimension. Hence, the datasets should have dimension
(4, image depth, 1000, 500). By temporarily setting the image depth to 1, semi-3D convolutions can be performed.
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pooling method with a 2x2 kernel size and a 2x2 stride was employed for this operation. Table 3.3 compares
the 2D and semi-3D convolutions used in this study.

Hyperparameter 2D convolutions Semi-3D convolutions
Number of feature maps per layer 8, 16, 32, 64, 128 8, 16, 32, 64, 128

Kernel size (3, 3) (1, 3, 3)
Stride (1, 1) (1, 1)

Padding (1, 1) (0, 1, 1)

Table 3.3: 2D and 3D convolutions comparison.

At the end of the encoder, a bottleneck with an additional temporal convolution is included. This is supposed
to further enhances the learning of temporal features.
As mentioned, the decoder path is symmetrical to the encoder. Instead of simple upsampling techniques
such as nearest-neighbor or bilinear interpolation, transposed convolutions are performed before every block.
Unlike upsampling methods, which do not have learnable parameters, transposed convolutions include these,
potentially enabling the model to learn more complex patterns during the upsampling operations. Trans-
posed convolutions double the feature map spatial dimensions whereas reducing the number of feature
maps. Considering the previous example, a tensor with dimensions (16, 500, 250) gets upsampled to (8, 1000,
500) using a 2x2 kernel size and 2x2 stride.
Skip connections are established between the final semi-3D convolutional layer of each encoder level and
the corresponding upsampled output in the decoder. In this way, the high-resolution features learnt by the
encoder are stacked with the upsampled features from the decoder. As a result, the model is supposed to bet-
ter recover the spatial details lost during the downsampling step in the encoder and improve the predictive
skills.
The final decoder layer reduces the number of feature maps from 8 to just 1, generating a grayscale image.
This output is passed through a Sigmoid activation function (Equation 3.2, right image of Figure D.5) to pro-
duce the output segmentation map, with pixel values normalised in the range 0−1.

σ(x) = 1

1+exp(−x)
(3.2)

where x represent the logits, the raw output of the network.

3.2.2. Hyperparameters
Table 3.4 contains the hyperparameters, constant parameters of the training process, and their values set for
this model. The number of epochs represents the number of complete passes through the entire training
dataset. One epoch is completed after the model has processed all batches in the training dataset. The batch
size refers to the number of training samples processed together in one iteration, before the model updates
its weights.
The optimizer is the algorithm responsible of updating the model weights and biases to minimise the loss
function. It does so by adjusting the parameters after every batch of data during training, and eventually
after every epoch. The learning rate controls how much the model parameters are adjusted in response to
the computed gradients during backpropagation and determines the size of the steps taken by the optimizer
in minimising the loss. The scheduler step is the interval between two epochs at which the learning rate
is adjusted with the decreasing factor, a fraction of the current learning rate that specifies how much the
learning rate is reduced.

The code was adapted from https://github.com/tha-santacruz/BayesianUNet. The model was im-
plemented in Python 3.9.17 using the Pytorch library 2.0.1 (Paszke et al., 2019). It is composed of 5.23 · 105

parameters and has a size of 1.99 MB. It was trained on a NVIDIA GeForce RTX 3050 Laptop GPU, with 4 GB
of dedicated RAM and 2048 cores. Appendix D contains further details on the various operations performed
by the model.

3.2.3. Performance metrics
As we face a pixel-wise binary classification task, the appropriate loss function to evaluate model perfor-
mance is the BCE loss. This function measures the difference between predicted probabilities, in the range
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Hyperparameter Value
Number of epochs 100

Batch size 16
Optimizer Adam

Learning rate 0.05
Scheduler step 15

Scheduler decreasing factor 0.75

Table 3.4: Model hyperparameters and values.

0−1, and the actual target values, either 0 or 1. The function reads:

BC Eloss =− 1

N

N∑
i=1

yi log (ŷi )+ (1− yi )l og (1− ŷi ) (3.3)

where yi represents the pixel true label, ŷi the predicted pixel probability to be positive class, and N the total
number of samples.

An attempt to include two physics-induced loss terms was performed. These terms represented the total
areas of erosion and of deposition. However, the experiment failed. The results presented in the following
Sections are achieved considering the BCE loss only. More details on the physics-induced terms are provided
in Appendix E.

The training and validation losses were tracked during the model training process. The parameters of the
model that achieves the minimum validation loss were stored. From here on, this model is referred to as the
min loss model.

Throughout the model training, the following validation performance metrics were monitored as well.

Accuracy = T P +T N

T P +F P +F N +T N
(3.4)

Precision = T P

T P +F P
(3.5)

Recall = T P

T P +F N
(3.6)

F1-score = 2 ·Precision ·Recall

Precision+Recall
= T P

T P + 1
2 (F P +F N )

(3.7)

CSI = T P

T P +F P +F N
(3.8)

where true positive (TP) represents the number of correctly predicted positive pixels, false positive (FP) the
predicted positive but actually negative pixels, false negative (FN) the predicted negative but actually positive
pixels, and true negative (TN) the correctly predicted negative pixels. Positive represents the class with value
equal to 1, whereas negative the one with value equal to 0. For our problem “Water” represents the positive
class and “Non-water” the negative one. To compute these metrics, binary predictions are required. Binary
predictions are computed from the model predicted probabilities, which were rounded according to Equation
3.9.

ŷi =
{

1, if ŷi ≥ wthr

0, if ŷi < wthr
(3.9)
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with wthr = 0.5 water threshold.

Besides predicting the overall morphological evolution of the river, a significant goal of the model is to predict
the location of the “Water” areas. Consequently, it is crucial to correctly forecast the riverbank locations, as it
is of more concern to know where these “Water” areas are going to be found in a year ahead from now. For this
reason, after minimising the BCE loss, it is of interest to maximise the validation Recall. When this metric is
at its maximum, the number of FN pixels is minimised. It is crucial to achieve this as FN pixels might provide
the misconception that the river will not be present in those specific areas. Such predictions can eventually
mislead engineers and designers, who might propose an intervention or to build a structure in areas that are
wrongly considered to be safe. For this reason, in addition to the min loss model, the one with the maximum
validation Recall was stored and used for the testing phase as well. From here on, this model is referred to as
the max recall model.
On top of that, the current classes are highly imbalanced, with the “Non-water” class being overrepresented
compared to the “Water” class. To this end, CSI is recommended when interested in predicting the positive
class while dealing with such imbalanced datasets.

Additionally, two points have to be remarked. Firstly, every statistical measure, such as the BCE loss and the
other metrics, condenses all data in one single number. As a result, this number emphasises “certain aspects
of the error characteristics of the model performance” (Chai and Draxler, 2014). Moreover, one should be
aware of the “double penalty effect” (Bosboom, 2019). This phenomenon refers to the fact that, when dealing
with grid-point based metrics in morphological predictions, correct predictions, in terms of magnitude and
extension, but misplaced in space are penalised twice. In other words, there is a double negative contribu-
tion to the loss and metrics of the morphological features. In turn, the loss gets larger and the other metrics
decrease, although the model predictions are misplaced in space but conceptually correct when visually in-
specting them. Assessing the goodness of a model solely on such metrics might lead to a biased evaluation,
and a visual inspection of the results is always necessary.

3.3. Benchmark models
3.3.1. Neural Network
This model was introduced in Section 2.3.2.1. It was developed by Jagers (2003) for predicting the bank ero-
sion of the Jamuna reach. Several network configurations were tested. Eventually, the model with one hid-
den layer composed of five hidden units was chosen. Binary satellite images containing “Land” and “Water”
pixels were employed. Only the seven nearest pixels to each channel were used to train the network. This
corresponds to a distance of 350 m, as the image resolution was 50 m. From these pixels, five physical vari-
ables were parameterised and used as inputs of the network. Namely, these inputs were the distance to the
nearest channel, the sine and cosine of the angle between the direction to the nearest channel and the flood
flow direction, the local width of the nearest channel and the fraction of the 11×11 pixels neighbourhood.
The output layer was eventually activated with Sigmoid activation (Equation 3.2).

3.3.2. No-change method
The benchmark for which no morphological change occurs is the second method considered for comparison.
This method assumes that no change occurs among two consecutive years. As a result, the morphological
conditions in year i , which we aim to predict, are the same as those in year i −1. For simplicity, from here
onwards this benchmark is referred to as the no-change method.
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4
Results

This chapter contains the results of the JamUNet model. In Section 4.1 an overview of the losses and met-
rics is given, with graphical evaluation tools and a visual assessment of the results. In Section 4.2 JamUNet
performance is compared to the benchmarks methods previously introduced.

4.1. JamUNet predictions
4.1.1. Loss and metrics
Here we only present the results achieved by the min loss model. From a visual inspection, the results of the
max recall model look similar compared to those of the min loss model. The difference lies in the amount
of predicted “Water” areas, that is larger for the max recall one. While predicting more “Water” areas might
seem advantageous because of the class imbalance, overly conservative predictions are not ideal. Appendix
G contains the most relevant results of the max recall model and a brief discussion on its applicability.

Figure 4.1 shows the evolution throughout the epochs of the training and validation losses (left plot) and the
validation metrics (right plot), computed applying a water threshold of 0.5.

Figure 4.1: The left plot shows the evolution of the training and validation loss. The right plot shows the evolution of the validation
metrics computed setting wthr = 0.5.

The sharpest decrease in training loss occurs during the first epoch, after which the loss continues to decrease
but at a slower, constant rate. In contrast, the validation one, besides several spikes and fluctuations, shows
an initially decreasing trend. It reaches the minimum value of 1.40·10−1 around half of the simulation (epoch
47), after which an average increasing trend is observed. This condition represents overfitting. The maximum
Recall of 0.776 occurred at epoch 33. This behavior is common in deep learning but may be affected by the
limited size and lack of diversity of the training dataset. Due to class imbalance, the model is likely to capture
the minor variations of the "Non-water" areas, particularly the consistently overrepresented lateral regions,
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after the initial epoch. The slower subsequent loss reduction is expected to be primarily associated with the
prediction of the “Water” class.

Model BCE loss Accuracy Precision Recall F1-score CSI
JamUNet 1.426 ·10−1 0.935 0.720 0.710 0.713 0.555

Table 4.1: Testing loss and performance metrics for JamUNet model. All quantities are adimensional.

Figure 4.2: Loss and metrics across the testing datasets samples.

Figure 4.3: Boxplots of the loss and metrics for the test dataset. It shows the quartiles of the distribution, including outliers. The quartiles
represent those values of the distribution that divide it into four equal parts, namely the 25%, 50%, 75%, and 100%.

Table 4.1 contains the average values of the loss and metrics for the testing dataset. Figure 4.2 shows the loss
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and metrics across all testing samples, whereas Figure 4.3 shows the boxplots of the loss and metrics across
the testing dataset.
Despite the small scale, the loss is subject to significant variation among the dataset samples. This relates
to different levels of difficulty of predictions. When minor morphological changes occur, the model shows
better performance. On the other hand, the quality of predictions decreases when larger changes occur. Ac-
curacy shows a limited spread of the distribution, which again remarks the evident class imbalance. Several
outliers are found for Precision, which in turns seems having a small spread. Recall shows some variability,
and the sample with the highest Recall and CSI is also the one with the minimum loss (sample 11), which was
expected. A similar reasoning holds for F1-score and CSI.
The sample with the minimum Recall (number 4) does not correspond with the one with minimum CSI (num-
ber 1), which is also the one with the largest loss. This has to be attributed to the lower value of FP predictions,
expressed by a larger Precision as well.
Some inherent variation is present across the whole dataset. It is possible to observe that for the samples with
smaller losses, all metrics are above average apart from Precision, the highest value of which is achieved by
the sample with the second largest loss.

Figure 4.4: Correlation matrix between the loss and metrics. The matrix is symmetric. The values present in the above-diagonal part of
the matrix are the Pearson correlation coefficients between the two variables, computed with Equation 4.1.

Additional information on the correlation between loss and metrics for the testing dataset is provided by
Figure 4.4, which shows the pair plots between these. It includes also the values of the various Pearson corre-
lation coefficients, computed as follows:

ρ = cov(X ,Y )

σXσY
(4.1)
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where X and Y are the two variables, cov(X ,Y ) is their covariance, and σX and σY are their standard devi-
ations. Nearly all metrics exhibit a negative correlation with the loss, with correlation values reaching up to
ρ = −0.78. All metrics are strongly positively correlated with one another, exhibiting ρ > 0.79, with the ex-
ception of Precision. This metric stands out as the only one that does not demonstrate a relevant correlation
with the other metrics, including the loss, although it shows slightly larger values with respect to F1-score and
CSI. Notably, the correlation between F1-score and CSI is ρ = 1. This happens because the only difference
between these metrics is the factor 1

2 in the denominator of the F1-score (see Equations 3.7 and 3.8).

The goodness-of-fit of the metrics depends on the problem and task. As a rule of thumb, the classifier per-
formance is good when the metric scores reach 0.7−0.8, very good for metrics up to 0.8−0.9 and excellent
for scores larger than 0.9. This holds for all metrics, with the exception of CSI, for which good performance
are achieved with scores above 0.5. Ideally, all metrics should be larger than 0.5, as this threshold indicates
the performance of a random classifier. In this case, accuracy is the only metric consistently larger than 0.9,
but that is also due to the relevant class imbalance. All metrics reach promising but moderate values (≃ 0.7).
Larger values are desirable to enhance the model reliability and effectiveness.

4.1.2. ROC and PR curves
In binary classification tasks, the receiver operating characteristic (ROC) curve is an additional visualisation
tool used to evaluate the model performance across different classification thresholds (Fawcett, 2005). It plots
the model Recall, also known as true positive rate (TPR), against the false positive rate (FPR):

F PR = F P

F P +T N
(4.2)

Furthermore, the area under curve (AUC), representing the integral of the ROC curve, was computed. The
AUC measures the probability that the model will correctly rank a randomly chosen positive sample higher
than a randomly chosen negative sample (Google, 2024). An AUC of 0.5 indicates a model with no discrimina-
tive power (i.e., a random classifier), whereas a higher AUC signifies better model performance, with a value
closer to 1 indicating excellent performance.

Additionally, the precision-recall (PR) curve is another visualization that shows how Precision and Recall vary
with different classification thresholds. This curve is particularly useful for imbalanced datasets, as it high-
lights the model effectiveness in predicting the positive class when this is rare (Fawcett, 2005; Google, 2024).
The PR curve allows to compute the binary water threshold that maximises the F1-score, i.e. that balances
Recall and Precision. An optimal threshold of 0.402 was found. This is close to the value of 0.5 that was used
to compute the validation metrics during the training process. An inspection of the model outputs with both
thresholds was performed. Eventually, the original value of 0.5 will be kept for further discussion. This was
chosen because a lower value leads to a general overprediction of “Water” areas, which might seem concep-
tually correct but turns out to provide too conservative results.

(a) ROC curve. (b) PR curve.

Figure 4.5: ROC and PR curves for the min loss model.
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Figure 4.5a shows the ROC curve and Figure 4.5b shows the PR curve. The AUC value of these curves is 96.8%
and 78.0%, respectively. The classification skills of the model can be considered adequate. However, one
should not be misled by the large value of the ROC AUC. As we deal with a highly imbalanced dataset, the
model can easily adapt its parameters to predict the most represented “Non-water” class. Nonetheless, the
relevance of the model is to predict the positive class. The PR curve provides a more reliable evaluation.
The model still seems to provide overall good performance, clearly outperforming the baseline of a random
classifier. However, the ROC AUC is larger than the PR AUC. Hence, the model performs well in identifying
the negative class but may struggle more when predicting the positive class, which is of greater interest.

4.1.3. Visual assessment
Figure 4.6 shows the four inputs (first row), target (second row, first image), and predicted image (second row,
second image). It also shows the misclassification map (second row, third image), computed as prediction
minus target, and the total real and predicted areas of erosion and deposition (second row, last image) of
the testing sample 2, representing 1993 conditions. Other relevant figures of the testing dataset predictions,
representative of different target years, are included in Appendix F. The link between sample number and
target year is given in Table C.1.

The overall image reproduction is realistic, as the general structure of the river is recreated. Most of the
expected features such as the main channels, secondary channels, meandering bends, confluences and bi-
furcations, and even some small islands and bars, are present. However, when looking at specific areas and
single pixels, it is possible to observe that the model misses some predictions. This can be noticed by the
amount of green and red areas in the misclassification map. The green areas represent conservative loca-
tions, where the model predicts “Water” but that are actually “Non-water” (i.e., FP predictions). In contrast,
red areas represent dangerous locations, where the model predicts “Non-water” but that are actually “Water”
(i.e., FN predictions).

Figure 4.7 also shows the predicted and real erosion and deposition locations for the same testing sample
2. This allows to look more closely on the model performance in predicting erosion and deposition sites.
Point 1 shows how JamUNet misses the formation of a new channel. Point 2 shows the overprediction
of the migration of a meandering channel. Point 3 shows the correct generation of a confluence between
two close “Water” areas. Point 4 shows the overprediction of channel abandonment in the centre of the
braidplain, whereas point 5 shows the correct prediction of channel abandonment in the outer side of the
braidplain.

Relevant patterns were observed from inspecting all samples from the test dataset. JamUNet performs gener-
ally well in predicting the “Water” areas of the main channels. In some occasions the model does not predict
the main channel shifting. In two cases, sample 1 and 4, the development of a bifurcation is involved. In the
first case, the model predicts one branch to stabilise, whereas it actually closed. In the second case it is the
opposite, where a small channel gets larger and becomes more dominant, whereas the model predicts it to
remain stable. In general, channel shifting represents a challenging task, as it is complex to predict an abrupt
and significant displacement of (large) channels. Besides that, the main channels are always well captured.
Figure 4.6 shows that this is valid especially for the most central part of these channels, whereas the closer the
pixels are to the banks and the less accurate the predictions are.

Channel abandonment is another feature usually well predicted. This holds especially, but not only, for sec-
ondary channels found on the outer side of the braidplain, i.e. not between two larger channels. However,
within the braidplain JamUNet seems to slightly overpredict (secondary) channel closure. Hence, when in
such locations the model output does not show many “Water” areas one should be critical, and those results
should not always necessarily be interpreted as channel closure.
In contrast, and similarly to channel shifting, predicting the formation of a new channel is a particularly chal-
lenging task for the model, both in the inner and the outer side of the braidplain. Most of the areas of erosion
that show channel formation are missed. The only situation when channel formation is better predicted
occurs when two “Water” areas, especially main channels, get close to each other, eventually generating a
confluence (see Figure 4.7).

The downstream migration of meandering channels is generally captured too. The overall process is often
underpredicted. This leads the model to predict less erosion on the outer bend and less deposition, or some-
times no deposition at all, on the inner bend. Nonetheless, in other occasions the predictions are more ac-
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Figure 4.6: The first row of images contains the model inputs of testing sample 2. The first image of the second row represents the model
target, the second image is the model prediction using the min loss model. Yellow and blue areas represent the “Non-water” and “Water”
areas, respectively. The third image is the misclassification map, i.e. the difference between model prediction and target. Green and red
areas represent FP (predicted “Water” but actually “Non-water”) and FN (predicted “Non-water” but actually “Water”), respectively. The
last image represents the real and predicted total areas of erosion and deposition (crossed diagonal and diagonal hatches, respectively).

curate, and regions where overprediction occurs were observed too. In general, caution is required as a clear
recognition of situations of under- and overprediction is not determined yet.

The evolution of confluences and bifurcations of large channels is almost always accurately reproduced.
However, especially when the overall morphology shows significant changes, a spatio-temporal evolution and
downstream migration seems to lack. This results in bifurcations remaining close to their previous year loca-
tion, with the diverging channels showing little downstream progression. Hence, erosion is underpredicted
in these locations. A similar issue occurs with confluences, predicted further upstream than their actual po-
sitions. This causes converging channels to remain more static and leading to larger predicted "Water" areas.
Consequently, deposition is underpredicted here. However, several observations of correct bifurcation and
confluence development were found, and one particular occasion with an upstream migration confluence
point was also predicted.
Finer morphological details, such as bars and small islands, are sometimes reproduced too. The location and
extent of these features is not always correct. However, good predictions are present as well, with few cases of
bar accretion, although being located in close but wrong locations.
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Figure 4.7: Predicted and real erosion and deposition locations of testing sample 2. Point 1 , 2 , and 4 represent wrong predictions.

Point 3 and 5 represent good predictions.

Interestingly, JamUNet also captures the effects of bank protection measures. The Koijuri revetment was
implemented in 2011 in Sirajganj District, in Bangladesh. Point 1 in Figure 4.8 shows that in 2012, the year
following the implementation of these measures, the model predicts some erosion to occur along these bends
(left image), whereas in fact erosion did not happen (right image). However, for the consecutive years (from
2013 onwards), the model correctly predicted no erosion in these locations (point 2 in both left and right
images).

Figure 4.8: The left image shows the revetment location along the Koijuri channel, in Sirajganj District, Bangladesh. The right image
shows the 2012 and 2013 predictions of erosion locations (left column) and the real erosion locations (right column). As it is possible
to observe, the year following the implementation of the measure, JamUNet predicts erosion to occur, whereas in fact it did not happen
( 1 ). However, the year after it already correctly predicts almost no erosion in the same location ( 2 ).
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4.2. Benchmark models comparison 4. Results

The model generally does not seem to provide accurate predictions of the total area of erosion. The predicted
values are always found within 30 and 50 km2, whereas the real areas of erosion span from 40 to 120 km2.
The left image of Figure 4.9 shows the large difference between the two distributions, both in terms of density
of probability and magnitude. Figure 4.10 also shows the low correlation between predicted and real areas
of erosion, with a low correlation factor of 0.20. In contrast, the predicted values of the areas of deposition
align more closely to the real ones, besides being slightly underpredicted as well. The total predicted areas
span between 30 and 80 km2, whereas the real values are included between 50 and 120 km2. This is visible
in terms of frequency and magnitude, slightly shifted to smaller values (right image of Figure 4.9), and is also
confirmed by the larger correlation factor of 0.76 (Figure 4.10).

Figure 4.9: Distribution of the predicted and real areas of erosion and deposition.

4.2. Benchmark models comparison
Currently, no binary semantic segmentation model exists for predicting the overall planform changes of
braided (sand-bed) rivers. As a result, the comparison with the following benchmark models might result
biased in favor of JamUNet.
Additionally, the NN developed by Jagers was trained and tested using a different dataset. Since it was not
possible to retrain this model within the framework of this study, only a qualitative comparison is performed.

Model Accuracy Precision Recall F1-score CSI
JamUNet 0.935 0.720 0.710 0.713 0.555

No-change method 0.922 0.660 0.662 0.661 0.494

Table 4.2: Comparison between testing metrics for JamUNet and the no-change method. All quantities are adimensional.

The performance metrics of the no-change method are provided with those of JamUNet in Table 4.2. Despite
accuracy still being high, again inflated by the significant class imbalance, all metrics reach lower values than
those of JamUNet. For Precision and Recall this means that the number of both FP and FN increases, reducing
the performance reliability of this method.
The computation of the BCE loss for the no-change method is meaningless. The target pixels contain binary
values, either 0 or 1, instead of probabilities. The comparison would be too biased in favor of JamUNet, hence
it was not included.

From a visual inspection of the predictions and misclassification maps, the no-change method misses the de-
velopment of nearly all morphological features. Figure 4.11 shows the same prediction of Figure 4.6 achieved
by the no-change method. This methods can indeed provide the location of the main channels, especially
considering their centrelines, apart from when major shifts occur. However, it always misses all other mor-
phological processes, such as meander migration. channel abandonment and the prediction of the river bank
locations. In addition, this model could not predict any location of erosion or deposition. Presuming that no
planform change happens in such dynamic rivers is a particularly strong assumption, which is proven to be
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Figure 4.10: Correlation matrix between the predicted and real erosion and deposition areas. The matrix is symmetric. The values present
in the above-diagonal part of the matrix are the Pearson correlation coefficients between the two variables, computed with Equation 4.1.

non-representative of the real conditions of the river.

No visual comparison is possible between JamUNet and the NN predictions. The only image that was gen-
erated by this NN represents one of the reaches used for training JamUNet. Additionally, this image repre-
sents the 1995 morphological conditions. The input-target combination with the 1995 image as target was
discarded from JamUNet training dataset because of the fully “Non-water” image of 1994. As no visual as-
sessment can be performed either, the only possible comparison is done with regard to the understanding
of morphological concepts by the NN. This model was reported to provide reasonable predictions of bank
erosion at several locations, primarily on the east bank of the river. Secondary channels and bar complex
represented the largest sources of error. Formation of new channel was not predicted by the network, likely
because such developments were not present in the training data. As no input information of river inter-
ventions and training works was included, the model could not assess the impact of human interventions.
That holds both on the location of the interventions and upstream and downstream of it. Similar issues were
encountered with JamUNet predictions.

Eventually, the NN was reported to learn the following main rules:

• The closer a point is to a channel, the higher the probability of erosion.

• Channels tend to migrate in downstream direction.

• The wider the channel, the faster it migrates and the more land it erodes.

• Erosion is more likely to occur for land pixels surrounded by a large amount of water than those sur-
rounded by less water.
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Figure 4.11: Example of the reach evolution using the no-change method for sample 2 to be compared with Figure 4.6. The legend is the
same.

Thanks to the larger values of all metrics and the visual assessment, JamUNet is more recommended for pre-
dicting the morphological evolution of braided sand-bed rivers. Furthermore, although JamUNet underpre-
dicts the total areas of erosion and those of deposition, the no-change method can not provide these values.
Despite the uncertainties and failing in predicting some morphological processes, JamUNet outperforms the
no-change method and can be considered a first valid alternative for morphological predictions of braided
sand-bed rivers.
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5
Discussion and limitations

This chapter aims to discuss the strengths and weaknesses of the proposed model, as well as the key under-
standing and interpretation of the outputs. Section 5.1 contains an interpretation of the model performance
and limitations are assessed. Section 5.2 contains an overview of the limitations of this research.

5.1. Interpretation and limitations
The proposed model is able to represent the overall structure of the river, with almost all morphological fea-
tures. Despite predicting accurately the locations of erosion and deposition, the former is generally under-
predicted in terms of magnitude. Temporal patterns are often missing. This is confirmed by the evolution
of confluences and bifurcations, especially considering their downstream migration, and by the migration
of meandering channels. This issue is likely to be related to the model architecture. Despite the presence
of 3D convolutions, these still operate as 2D convolutions given the dataset dimensions. Hence, the model
still lacks a proper implementation of the temporal inductive bias that makes it suitable to process temporal
sequences.

Channel formation and the main channel shifting remain challenging processes. These are highly influenced
by local conditions, such as the elevation of the nearby areas as well as the flood evolution in time and space.
Without these information, the model will always predict the average morphological behaviour, but can not
forecast the effect of extreme events. Predicting these processes could be more complex compared to other
processes also because of their minor occurrence in the training dataset. As also reported by Jagers (2003),
data-driven models can not predict patterns that they did not process during the training.
The last input year flood conditions seem to influence the quality of predictions. The predictions miss the
main channel shifting or the formation of new channels that occurred after larger-than-usual floods. Some of
these floods occurred in 1991, 2004, 2013, 2016, 2017, and 2018. Larger-than-usual floods are not necessarily
the largest floods recorded, like in 1998, when a maximum discharge of 102 535 m3/s occurred. Given the
available data reported in Appendix A, channel shifting and channel formation are observed there is a com-
bination of high water level and large discharge. These processes occur when the water level at Bahadurabad
exceeds 19.5 m PWD and simultaneously the discharge at Bahadurabad surpasses the average flood discharge
of 60 000 m3/s. However, within the testing years, there were some cases for which this combination of both
high water level and large discharge did not cause relevant channel shifting nor channel formation. Addition-
ally, in only one sample (number 10), channel shifting occurred despite the maximum discharge of the previ-
ous flood being 45 775 m3/s, lower than the average flood discharge. Further analysis of the relation between
flood discharge and water level along with the prediction quality and the morphological processes observed
are required. On the other hand, when the target year shows low-flow water levels lower than usual, the areas
and locations of deposition are underpredicted. In this case, deposition does not relate to the silting-up and
abandonment of channels, but rather to the exposure or drying of the riverbed.

In addition, the model seems to be sensitive to the last input year image. This is proven considering some
particular predictions, like the stable secondary channels confluencing from west. The course of this channel
does not change across the years. However, as Figure 5.1 shows, when in the last input year image the chan-
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Figure 5.1: Example of model output sensitivity to last input image. The absence of the tributary channel on the left of the image, point
1 , is reflected in the output image, which results in underpredicted erosion (although the channel is stable across all years). The figure

shows the evolution of sample 12.

nel is partly missing, the model predicts the exact same area to be missing from that channel. A close look
to confluences, bifurcations, and meander bends suggests that, at least for particularly dynamic samples, the
model produces an output which resembles the last input year image.
This was also proven considering the optimal threshold found with the PR curve in Section 4.1.2. By decreas-
ing the threshold to 0.402, more “Water” areas would obviously appear (Figure F.1). These areas are generally
the locations where the river was present in the last input year. Hence, when producing an output, the model
seems to assign a much larger weight to the pixel-wise “Water” occurrence rather than on the temporal fea-
tures development. This also links with the previously mentioned partial lack of temporal evolution.

The model struggles the most in predicting the morphological evolution of those years affected by abrupt
and fast changes. Furthermore, another limitation of the predictions is the presence of secondary channels
disconnected from the main channels, which is for obvious reason not possible.

As for the prediction of bank protection measures, a similar reasoning holds for the Chauhali revetment. This
was implemented in 2016 on the opposite side of the braidplain from the Koijuri revetment (Figure F.3). In
the first year after the bank stabilization in Chauhali, the model predicted a major erosion spot (Figure F.4a).
In the second year following the intervention, minor erosion was predicted as well (Figure F.4b). This might
be caused by the relevant meandering migration that the channel experienced within those input years, as
can be seen from Figure F.5. However, the extent of the predicted erosion was significantly limited compared
to the previous year prediction. This fact remarks again the significant impact of the last input year influence
on the overall model output.

The distributions of both the areas of erosion and deposition show a clear under-prediction compared to
the real values. This is particularly enhanced for erosion and is attributed to the class imbalance. Some ex-
periments were performed including these variables as further physics-induced loss terms to enhance the
model performance. The experiments failed without showing relevant improvement of the training process.
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Nonetheless, correctly predicting the total areas of erosion and deposition does not involve a clear under-
standing of the morphological processes and is not necessarily informative for the model. This is a further
reason for which the attempt to include a physics-inductive bias might have failed. More details on this are
given in Appendix E.

Eventually, it is possible to state that the model is able to represent the following concepts:

• In meandering channels, erosion and deposition occurs in the outer and inner bend, respectively.

• Two main “Water” areas that get closer to each other are likely to merge, representing the development
of a confluence between two channels.

• In specific local regions, when “Non-water” areas start increasing throughout the input year images
while “Water” areas decrease, the latter are likely to disappear. This would represent deposition phe-
nomena, silting-up and consequent closure of (small) secondary channels. It also links to bar accretion,
which was predicted in few occasions.

• In contrast, the “Non-water” areas located where revetments or bank protection measures are imple-
mented are predicted to remain stable.

Furthermore, highly braided patterns hamper the model performance. In these cases, the model mainly
reproduces the larger “Water” areas, i.e the main channels, but is not able to predict smaller features. It
often creates disconnected secondary channels as well. Rapidly changing input images, which show large
morphological variations between consecutive input years, also decrease the model performance.

5.2. Limitations of the research
5.2.1. Training dataset
As we deal with a purely data-driven model, the total amount and quality of the input data significantly in-
fluence the model output. For the current application and model, a training size of 518 input-target com-
bination is enough to reach a testing loss equal to 1.426 · 10−1 and Recall equal to 0.71. To reach smaller
losses and larger metrics, more (diverse) data are required. However, the availability of satellite images is a
hard constraint. For the current collection and river areas, no images are available prior to December 1987.
Few other collections are available since the beginning of the 70s. However, the spatial resolution of these
images is worse. Moreover, a different collection would require some modifications in the overall method-
ology, as different detailed preprocessing steps should be needed and a consequent classification algorithm
should be implemented. Cloud coverage is another hard limitation that reduces the total number of suitable
input-target combinations.

5.2.2. “No data” replacement
Besides reducing the amount of learnable morphological features, hence reducing the model performance
and predictive capabilities, the presence of “No data” pixels might also induce instability in the model training
and compromise the results interpretation. Replacing “No data” pixels also simplifies the modelling task by
transforming it from multiclass to binary semantic segmentation, as the prediction of “No data” pixels is of no
interest. These areas do not represent any relevant land-use class. However, the replacement strategy brings
some uncertainty and could introduce some bias in the datasets.

The double-averaging process ensures that the replacement is done with average image conditions. The first
step (seasonal average) can be deemed to be more accurate, as the assumption of no relevant morphological
changes during the low-flow stage is based on recorded water level data. On the other hand, the second step
(neighbours average) is more interpretable. The riverbank pixels and those located close to it are more likely
to be misclassified, since they might be surrounded by similar amounts of both “Non-water” and “Water”
areas. The replaced class is determined by the average, therefore having just one additional pixel from the
incorrect class can cause the “No data” pixel to be assigned to the wrong class. As a result, small morpho-
logical features such as bars and islands located in the middle of larger channels, as well as small secondary
channels completely surrounded by “Non-water” areas, would be misclassified.

Finally, if the two-steps replacement is not sufficient, the pixels are categorically assigned to the “Non-water”
class. This was done because from a visual inspection of the images the vast majority of “No data” pixels lied
in “Non-water” areas. However, for specific images this might not hold, leading to a wrong class assignment.
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A deeper analysis on the correlation between “No data” and the eventual hard replacement class replacement
is recommended. This should be done to check whether the assumption that most of these pixels lie in the
“Non-water” areas is well grounded or not.

5.2.2.1. Validation and testing datasets
It is relevant to point out that the validation and testing datasets should be as much representative as pos-
sible of the real-world situation. Consequently, when applying the data replacement strategy, the losses and
performance metrics are likely to be “artificially” inflated, hence not representing the real conditions of the
river. Some bias might be introduced in the data, which causes the model to learn and consequently predict
unreal patterns and features. This can also lead to overly optimistic predictions skills.

The model should be validated and tested on the original datasets, without replacing missing data. The “No
data” pixels should be masked and the predictions, losses and metrics, should be computed only considering
the classes of interest. This would also allow to assess the overall generalization capacities of the model, for
instance checking whether the model is able to predict a specific class in the areas where it is expected to be
present. However, when proceeding with this approach the prediction-target comparison is influenced by the
presence of clouds. The potential applications of the model are also expected to reduce, as more uncertainties
would be present in the prediction.

5.2.3. Image quality
Apart from the “No data” replacement, no further preprocessing step was applied. However, the image qual-
ity could still be improved. Consider for instance the presence of randomly scattered “Water” pixels (see
Figure 3.3). Most of these pixels are isolated from the river and are found in “Non-water” areas. These pixels
could represent secondary (or temporary) water bodies, such as small lakes, or could be noisy pixels that were
wrongly classified. The “No data” replacement strategy might have increased the presence of some of these
isolated “Water” pixels too. Their presence might confuse the model and negatively influence the learning
process, which consequently degrades the predictions quality.
Additionally, it is often possible to notice the presence of small disconnected channels, which do not seem
to originate from larger channels or water bodies. Their presence in “Non-water” areas might also trigger
the model to predict disconnected channels. Since we are considering low-flow stage images, these channels
might be partly abandoned or contain stagnant water, whereas they transport water during the high-flow
stage. In this case, it is subjective whether it is better to completely remove these channels or connect them
with the larger ones. As a personal consideration, those channels present in the braidplain should be con-
nected, whereas the others can be removed, especially those further away from the braidplain.

On top of these considerations, the image resolution downgrade influence was explained in Section 3.1.1.
Finer details would be lost, but the morphological features were still visible. This strategy allowed to reduce
the memory usage and most importantly the computation time.

5.2.4. Hyperparameter optimisation
Manual attempts were done varying the learning rate, the kernel size, the pooling method, and the num-
ber of feature maps in the hidden layers. However, a proper hyperparameter optimisation study was not
performed. Nevertheless, it is probably not relevant to implement it for the current model architecture. No
significant differences were noted when manually varying these hyperparameters. This fact indicates that a
hyperparameter optimisation study might not be required to improve the model performance, whereas other
modifications of the methodology might have more influence.
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6
Conclusions and recommendations

This chapter represents the conclusion of this research. Section 6.1 contains the answers to the research
question and subquestions introduced in Section 1.3. Section 6.2 contains recommendations for the model
application and future research.

6.1. Answers to research questions
This research aimed at determining to what extent deep-learning modelling can help in predicting the plan-
form changes of braided sand-bed rivers using satellite images. To reach this goal, the research was divided
in the following subquestions:

1. What is a suitable model architecture for this problem?

For 2D spatial problems the most suitable deep-learning models are U-Net-based CNN. That is due
to the spatial inductive bias implemented through convolution operations. The U-Net architecture
enables the extraction of spatial information with the encoder and its reconstruction with the decoder.
We additionally implemented semi-3D convolutions to partially capture the temporal patterns as well.

2. What are the most suitable assessment metrics for this task?

For binary semantic segmentation tasks the most suitable loss function is BCE. It measures the distance
between the predicted probability and the actual target class. Other assessment metrics exist. Recall
measures the correctly predicted positive pixels out of all true positive pixels. In combination with the
loss, recall is the most relevant metric to assess the model performance for practical applications. CSI
also measures the correctly predicted positive pixels and is recommended especially when dealing with
imbalanced datasets. Precision and F1-score are two further metrics, often used in combination with
recall. Precision measures the amount of correctly predicted positive pixels out of all predicted positive.
F1-score is the harmonised mean between recall and precision. Another common metric is accuracy.
It measures how many correct pixels are predicted out of the total. However, when dealing with class
imbalance datasets, this metric is inflated and not representative of the model performance. ROC and
PR curves are additional graphical tools to assess the classification skills of the model.

3. Based on the available data, for which prediction timescale - short-term (i.e., less than one-year
ahead, in the order of weeks or few months) or long-term (one-year ahead or longer) changes - is
the model most suited?

The timescale choice was based on the available collections, their characteristics and the expected ap-
plications of this model. A balance between a meaningful physical interpretation and the need for a
large training dataset had to be found. For this reason, collections such as Sentinel-1 and Sentinel-
2 were not considered due to the shorter time of record. Landsat products were initially considered,
however eventually GSWD was found to be the most appropriate collection as it contains pre-classified
images. This dataset is obtained from Landsat images. It contains one image per month, although dur-
ing the monsoon season most images are not available because of the cloud coverage. The same prob-
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lem would be present for satellites of similar type such as Landsat and Sentinel-2 collections, whereas
Sentinel-1 is not affected. Consequently, low-flow season images were found to be the most suitable,
also considering that protection works can be implemented during these months. Hence, one-year
ahead predictions were chosen. Using the current year as the target, one representative image of the
same month for each of the previous four years was used as input.

4. Depending on the satellite image collection chosen, what image preprocessing techniques are re-
quired for improving the model performance, if there is any?

The chosen GSWD collection contains pre-classified images with the following three classes: “No data”,
“Non water”, and “Water”. The selection of this collection simplified the methodology by eliminating
the need for a pixel-wise classification algorithm. Despite this, to reduce the problem to a binary se-
mantic segmentation, the “No data” class was pixel-wise replaced through a double-averaging process.
It was assumed that the water levels during the low-flow season are almost constant, hence the images
look like the same (neglecting any relevant morphological change in this period). In this way, a pixel-
wise seasonal average image was computed for all reaches and throughout all years, not considering the
“No data” pixels. To the remaining “No data” pixels, a neighbouring average was applied. Eventually, if
any “No data” pixels was left, a hard replacement was performed. “Non-water” class was assigned, as
it was visually observed that most of the “No data” pixels were representative of this class. Eventually,
in all datasets only the “No data” pixels were replaced by the corresponding pixels of the average image
representative of that specific year. Prior to this step, images were standardized in terms of dimensions
and flow characteristics.

5. What relevant information (quantities, locations) on morphological processes can be inferred from
the outputs of the model?

JamUNet correctly predicts the main channels areas, only struggling mainly when shifting occurs. Me-
ander migration is often captured as well, but sometimes underpredicted. As well, bifurcation and
confluence development is generally captured but often underpredicted, resulting in smaller areas of
erosion and deposition, respectively. Channel abandonment is almost always represented, especially
in the outer side of the braidplain. In contrast, channel formation is a complex task which is almost
constantly missed. Finer details such as bar complexes are less commonly predicted, although in few
occasions forecast of bar accretion and downstream migration are correctly generated. The generation
of disconnected (secondary) channels is another shortcoming of our model.
The total areas of erosion and deposition are both underpredicted. Predicted and real deposition val-
ues are more positively correlated, whereas a much lower correlation is found for erosion areas which
is also more largely underpredicted.

6. How does the model compare to (i) the NN developed by Jagers (2003) and (ii) the benchmark method
for which no morphological change occurs?

A quantitative comparison could be performed only with the benchmark method for which no mor-
phological change occurs. Our proposed model outperforms it in terms of metrics and visual assess-
ment. This benchmark is clearly less appropriate for dynamic systems as braided rivers. A qualitative
comparison with the NN developed by Jagers (2003) was done. Similar issues were reported regarding
the understanding of the NN of morphological patterns. Processes as channel formation, bar migration
and secondary channels are common sources of error to both models.
However, as both benchmarks do not predict the overall morphological changes of the river, the assess-
ment is positively biased towards JamUNet. Nonetheless, JamUNet proved to provide more promising
results for predicting the overall planform changes of braided sand-bed rivers.

7. What kind of physical information can be exploited to improve the model performance?

An attempt was made by including the total areas of erosion and deposition in the training loss. Two
additional terms were added, with the aim to enhance the feature learning process. A multiplication
factor was applied to such terms in order to scale their weight on the overall loss. Larger values of such
parameter greatly hindered the model learning, with the validation loss and metrics stagnating. Smaller
values did not bring any contribution instead, and the additional terms were almost neglected in the
overall loss. An appropriate value for such parameters was not found. Eventually, this physics-induced
information did not improve the model learning.
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With the above subquestions being answered, it is now possible to address the main research question:

To what extent can deep learning help in predicting the planform changes of braided sand-bed rivers?

A U-Net-based CNN model with combined 2D and semi-3D convolutions is able to reproduce nearly every
morphological process. Meander migration, channel abandonment, and confluence and bifurcation devel-
opment are correctly represented but their temporal evolution is often not correctly captured. More chal-
lenging processes, such as channel shifting and channel formation, are complex tasks for the model. These
are almost never predicted, as they also depend on the flood magnitude, like peak flood discharges. It is also
possible that these features were underrepresented in the training data. As a result, the model did not learn
enough representations of these processes and consequently was not able to reproduce them. Additionally,
the model also tends to underpredict the total areas of erosion and deposition.

Our model can reach a testing BCE loss up to 1.426 ·10−1. Other classification metrics, such as Precision, Re-
call, and F1-score reach promising levels, between 0.71−0.72. CSI reaches lower values, around 0.55. The AUC
value of the PR curve reaches a value of 0.78, remarking the promising performance. However, improvements
are required to achieve more reliable predictions. Larger metric scores, above 0.80−0.90, are desirable.

6.2. Recommendations
6.2.1. Model application
Given the uncertainties and the large morphological scale considered, JamUNet predictions are not recom-
mended for small-scale planning. Besides that, the model correctly predicts the main channels location and
provides information on erosion of meandering channels and channel closure. The min loss model correctly
identifies the locations of bank erosion but often underpredicts their extent. To overcome this issue, a possi-
ble solution is to combine, or directly replace, its predictions with those of the max recall model.

Local (water) authorities, as well as local and international stakeholders, could use the proposed model for
preliminary analysis and as additional source of information for the planning of larger interventions, such
as bank protection measures along the banks more prone to erosion. Knowledge of channel abandonment
could be relevant for the preservation of the river ecological status, fishing activities or for land reclamation
plans. Caution must be used, though, since JamUNet performance tend to underpredict both erosion and de-
position processes, and fail at predicting channel shifting and channel formation. Given the relation between
larger planform changes, in terms of extent of erosion and displacement of sediment, and larger floods, even
more caution is advised.

Although the model does not predict the channel depth, it is acceptable to assume that the deepest chan-
nels are also the largest ones. Consequently, inland water shipping and dredging companies responsible for
maintaining the channels navigable could benefit from the predictions by knowing the evolution of the main
channels.

Despite correctly showing positive performance in not predicting erosion along protected banks, JamUNet
cannot be used for assessing the impact of future human interventions. This holds especially considering the
upstream and downstream effects that these interventions may have on the overall morphological evolution.

6.2.2. Future research
6.2.2.1. Main recommendations
The following recommendations are of equal importance and should all be implemented. They are presented
in the order in which they appear, or are expected to appear, in the methodology.

As we deal with a purely data-driven model, increasing the training dataset size is crucial. For this case study
the amount of available areas almost reached its maximum, and few more areas could be included. As a result,
other braided sand-bed rivers should be included. One possible example is the Congo River near Brazzaville
(Cournède and Mosselman, 2014) or the Indus River in the Punjab region, in Pakistan. Some tributaries of
the Brahmaputra, such as the Teesta River, the Kameng River and the Subansiri River might be included too.
Caution is advised because these rivers are smaller compared to the Brahmaputra. As a result, the class im-
balance would increase even more.
Another strategy involves reducing the image height. This reduction should ensure that even the largest mor-
phological processes, like the migration of large meandering channels, are at least partially captured within
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single images. In this way the possible reduction of the morphological understanding is minimised. This
issue is expected to be overcome also by the larger amount of training data. Since the braidplain width can
reach up to 17 km, more caution is needed for the image width reduction. 30×30 km or 40×30 km are the
recommended dimensions for the images. 40 and 30 km represent the height and width of the images.
Indiscriminate data augmentation is not expected to significantly improve the model performance and could,
in fact, worsen the existing class imbalance.

The inclusion of more variables rather than only satellite images is also valid. Water level or discharge records
are the main variables that should be included. These data could be given as time series, like daily, biweekly,
or monthly records, or as single values representative of the time scale. For instance, the largest flood dis-
charge or the higher water levels of the whole monsoon season could be chosen. Additionally, other variables
such as the sediment discharge or the nominal diameter of the bed material could be included too, especially
if other rivers are included in any of the datasets.
Nonetheless, one should be aware that most of these data are rarely available for long time scales and large
spatial coverage, i.e. different locations along the river.

A different deep-learning model architecture should be tested as well. ConvLSTM is the first suggested model.
This architecture implements both spatial and temporal inductive biases and it is likely to better capture the
temporal evolution of the morphological features. A GNN inspired by the work of Bentivoglio et al. (2023) is
another option. Such networks are composed of nodes and edges, across which information is propagated.
For braided rivers modelling, nodes could represent confluences and bifurcations, while edges could rep-
resent channels. Moreover, directionality can be given to these graphs. This is relevant for hydraulic and
morphological processes, such as downstream meander migration.
The Unified Focal loss (Yeung et al., 2022) or an Adaptive Region-Specific loss (Chen et al., 2023) are suggested
loss functions to replace the BCE loss to partially overcome the issue of class imbalance.

Eventually, the locations of erosion and deposition could replace the total areas of erosion and deposition as
additional physics-induced loss terms. Three classes would be required. “No change” would represent both
“Non-water” and “Water” areas that remained stable. “Erosion” and “Deposition” would be the two other
classes. For these predictions, a multiclass loss function such as CCE would be required.

6.2.2.2. Further possibilities
In this section further possibilities of longer-term research are included. These recommendations are con-
sidered secondary compared to those introduced in the previous section.

If a GNN is developed, conservation equations based on water and sediment discharge could be included to
guide the model learning. This enables a more physical-based interpretation. This is crucial for communicat-
ing the results to potential users and stakeholders, also considering the increasing interest of XAI (Mamalakis
et al., 2022; Ren et al., 2024).
Instead of developing a new model, another potential strategy involves leveraging foundation models like
Prithvi-100M for flood detection (Jakubik et al., 2023a,b). This model is pre-trained with the HLS collection.
After fine-tuning it, it is expected to be effective in tasks where labeled data is scarce and class imbalance
hinders the training step.

Bristow and Best (1993) consider that the bed grain size does not influence significantly the large-scale braid-
ing processes. Hence, the inclusion of more river could be suitable. This would increase the dataset size and
enable a generalisation of the model to all braided rivers. The upper reach of the Tongtian River in China, the
Piave River in Italy or the Waitaki River in New Zealand are some suggested rivers (Stecca et al., 2019). The
same remarks on the smaller dimensions of these rivers compared to the Brahmaputra holds here.

Apart from employing a different loss function to reduce the effect of class imbalance, Bosboom (2019) pro-
posed a warping method to overcome the worsening of the tracked metrics due to the “double penalty effect”
introduced in Section 4.1. This method measures the closeness between images or spatial fields. It finds
the smooth displacement field, an optimal transformation that maps the observed targets and the predicted
model outputs, that minimises the point-wise error.

Another potential strategy to reduce class imbalance is the splitting of the “Non-water” class into “Sand” and
“Vegetation” land-use classes. Vegetated areas are less likely to erode compared to sand areas. The inclusion
of these classes is also expected to help the model in identifying which areas are less subject to erosion and
which are more likely to be eroded. This strategy would modify the modelling task from binary semantic
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segmentation to multiclass semantic segmentation. However, a different satellite image collection should
be used. Given the longer records, Landsat collections are suggested. A classification algorithm should be
developed as well.

Cloud coverage is another limitation that reduces the total number of suitable input-target combinations.
Zhang et al. (2023) and Ma et al. (2024) propose two different approaches to combine optical and radar satel-
lite images for cloud removal. In this way, apart from removing the clouds from the low-flow season images,
images during the flood season could be retrieved as well. These could then be included in the input dataset,
which consequently would contain more than one image per year. The dataset could then be composed of
three images per year, for instance. The first image represents the low-flow stage. The second image rep-
resents the flood peak conditions. The last image represents the flood falling stage. By including the flood
propagation in time and space, the post-flood conditions could be better predicted by the model. However,
the shorter records of radar satellite images might limit the temporal extent of available images.

Different spatial and temporal spans could be of interest too. Specifically, smaller reaches and shorter time
spans could have potential applications. Consider for instance the need for predicting the riverbank erosion
at vulnerable locations, like schools or hospitals, before the flood peak arrives. Detailed situations as this
might also require more input variables, such as a digital terrain model (DTM) of the surrounding areas and
precipitation data.
Additionally, it can be of interest to research the possibility of predicting more years ahead, to allow an even
longer-term planning. This could apply to large infrastructure, as well as critical (flood) protection measures
and other hydraulic structures, such as dams for water intake and hydropower energy generation.

River bathymetry could be included as both input and target feature. This would modify the problem from
purely planform predictions to a more thorough 3D river morphological predictions. Hassan et al. (1999)
developed a method to derive the char elevation based on the char age. Research is conducted nowadays to
extrapolate the river bathymetry from satellite images. Valsangkar et al. (2024) and Bhattarai (2024) retrieved
the periodically submerged topography of the Jamuna River by integrating satellite images and in-situ obser-
vations. Additionally, Bhattarai (2024) unsuccessfully attempted to estimate the always submerged topogra-
phy as well. High turbidity and the large depth of the Jamuna River were considered the key factors of this
failure. The same limitation is reported by Jiang and Rutherfurd (2024).

6.2.3. Final consideration
Besides these suggestions, as a personal opinion, the range of applications and contexts of artificial intelli-
gence models should be restricted to those cases where other approaches did not prove to be accurate or for
which it is complex to retrieve (good) data. The concept of complex data to be retrieved is general, but can
have several meanings. In the case of river morphological modelling, it mainly refers to the hydraulic and
hydrological variables such as river discharge, water level, sediment discharge and sediment grading. These
data require extensive and complex monitoring from both a temporal and a spatial scale. Satellite images, in-
stead, are more easily accessible and despite some limitations can be considered a valid alternative to those
data. Further research in this direction to retrieve the water levels, already going on with SWOT satellite (Fu
et al., 2009), could bring potential benefits to a currently low-middle income and Least Develop Country as
Bangladesh (United Nations, 2023; World Bank, 2024), which could in turn save resources that can be allo-
cated for other more relevant projects.
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A
Hydraulic data

This appendix contains some records of water level and discharge of the Brahmaputra River. All data pre-
sented here were recorded at Bahadurabad, in Bangladesh, close to the Indian border. The water levels refer
to the PWD level (see footnote 1 at Page 8).

As introduced in Section 2.2.2, the Brahmaputra River experiences a significant discharge variation within
a year. Figure A.1 shows the daily water levels recorded between 1964 and 1994. It also includes the daily
average across those years (red line).

Figure A.1: Average daily recorded water levels at Bahadurabad, Bangladesh, between 1964 and 1994. The red line shows the daily average
across the years of record.

This figure was used for two key assumptions:

• The low-flow season lasts on average from January to April, although December could be included as
well.

• Given the relatively small variation in water level during the low-flow season, the images representative
of the months between January and April can be considered as similar to each other. This assumption
is the basis of the “season averaging” step for the “No data” replacement strategy (see Appendix B.2).

Figure A.2 shows the combined biweekly records of water level and discharge between 1990 and 2017. Despite
missing some data, the all floods were recorded. The discharge distribution of this record was used to find
the associated water levels presented in Figure 2.3.

The distribution of the discharges of Figure A.2 is plotted in Figure A.3. Given the monotonic non-linear
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A. Hydraulic data

relationship between water levels and discharges, the Spearman’s rank correlation coefficient was included.
This coefficient is calculated as:

ρs = 1− 6
∑

d 2
i

N (N 2 −1)
(A.1)

where di = R(Xi )−R(Yi ) is the difference between the ranks R(Xi ) and R(Yi ) of the i -th sample of the variables
Xi and Yi , and N is the total number of samples.

Figure A.2: Average biweekly recorded water level and discharge at Bahadurabad, Bangladesh, between 1989 and 2016.

Figure A.3: Correlation matrix between recorded water levels and discharge of Figure A.2. In the above-diagonal element of the matrix
the Pearson and Spearman’s rank correlation coefficients are included.
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A. Hydraulic data

Figure A.4 shows more recent daily water levels, recorded between 2012-2023.

Figure A.4: Average daily recorded water levels at Bahadurabad, Bangladesh, between 2012 and 2023.
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B
Satellite image preprocessing

This appendix contains a detailed description of the satellite image preprocessing, with figures and additional
information.

B.1. Image standardization
Before generating the dataset, the images were preprocessed to standardize their characteristics, as described
in Section 3.1.2. The most downstream reach, the one used during the testing phase, was selected as the
reference. For this reach the flow is southward-directed, from the top to the bottom of the images. In several
upstream reaches the flow is primarily westward- or southwestward-directed. In these reaches the flow goes
from right to left or from the top right to the bottom left of the images, respectively. To ensure a consistent
flow direction across all reaches, a rigid rotation was applied to the images. Reaches with westward-directed
flow were rotated by 90°, while those with a southwestward direction were rotated by 45°. Figure B.1a and
B.1b show the original image with westward-directed flow and the rotated image, respectively.

(a) Original non-rotated image. (b) Preprocessed image rotated by 90°.

Figure B.1: Original and rotated images representing the training reach 22 in December 1987.

After the rigid rotation, images were cropped to have standard dimensions of 1000×500 pixels, representing
the image height and width, respectively.
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B.2. “No data” replacement B. Satellite image preprocessing

B.2. “No data” replacement
B.2.1. Seasonal averaging
For each combination of reach and year, a pixel-wise average image was generated using only the low-flow
images. The low-flow season was considered from January to April of the same year. It was assumed that in
these months the river water levels are approximately constant (see Appendix A). The four images of a given
low-flow season were assumed to be almost equal to each other. The low-flow seasonal average image was
generated using these four images per season. “No data” pixels were excluded in the computation. Figure B.2
shows the four original images and the computed seasonal average, which could still contain some “No data”
pixels.

Figure B.2: 1988 low-flow season images (first four from left) and seasonal average image of testing reach.

B.2.2. Neighbours averaging
As in some cases some “No data” pixels were still present, a further averaging step was performed. This was
defined the neighbours averaging. For each remaining “No data” pixel, a 15×15 pixels square around it was
considered (Figure B.3). The values of these neighbour pixels were averaged and the result was used to replace
the “No data” pixel. Again, “No data” pixels present in this neighborhood were excluded from the averaging
process.

The square size was chosen to be 15×15 pixels because, given the pixel resolution of 60 m, it represented a
900×900 m square. Consider that the average width of secondary channels in the Brahmaputra is around 1.2
km (Jagers, 2003). This square size could enable to classify a single “No data” pixel in the middle of a channel
to be of “Water” class. However, pixels at the interface between “Non-water” and “Water” areas risk being
incorrectly assigned, depending on whether they are surrounded by more than half “Non-water” or “Water”
pixels. The presence of one more pixel of one specific class is sufficient to classify the “No data” pixel in that
class.
Figure B.4a shows the 1988 image after the neighbours averaging step. Few “No data” pixels are still present
on the top left corner of the image.

In case also all pixels in the neighborhood were “No data”, not allowing to compute an average value, by
default the pixel was assigned to the “Non-water” class. This was done because the majority of “No data”
pixels were visually observed to be primarily in “Non-water” areas. Hence, classify these pixels as “Water”
was considered too conservative, despite this class being the most important to be correctly predicted by the
model. Figure B.4b shows the final average image after the final hard replacement.

These average-generated images were used to replace each single “No data” pixels across the input and tar-
get images. Figure B.5 shows the 1988 March image representative of the testing reach after the “No data”
replacement. The original image is visible in Figure B.2 (third image from the left).
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B.2. “No data” replacement B. Satellite image preprocessing

Figure B.3: Sketch of neighbours averaging step. Red, yellow, and blue pixels represent
“No data”, “Non-water”, and “Water” areas, respectively.

(a) Image after the neighbours averaging step. (b) Final average after the hard “No data” replacement.

Figure B.4: 1988 neighbours average image and final average image after the final replacement for the testing reach.
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B.2. “No data” replacement B. Satellite image preprocessing

Figure B.5: Image representing the March 1988 conditions of the testing reach after “No data” replacement.
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C
Dataset generation

This appendix contains details on the filtering procedure applied for generating all datasets and a mapping
of the number of testing samples with the input and target years.

C.1. Quality filtering
All the images from 1994, 1998 and 1999 were completely full of “No data” pixels. This misclassification was
related to the GSWD collection and not to any other preprocessing steps implemented so far.
For these images the “No data” replacement strategy described in Appendix B.2 returned fully “Non-water”
images. To prevent these images from becoming part of any dataset, a further quality filtering step was ap-
plied. If any image within the input-target combination contained more than 480 000 “Non-water” pixels, the
full combination was discarded. This value was adopted to make sure that only non-representative images
were tracked and their combinations discarded. Figure C.1 shows an example of a discarded combination,
where the image representative of March 1994 contains only “Non-water” pixels.

Figure C.1: Example of a discarded input-target combination containing at least one fully “Non-water” image.

C.2. Final datasets
The previous filtering operation reduced the original number of training, validation and testing samples from
812, 29, and 29, to 518, 19, and 19, respectively.

Figure C.2 shows a sketch of an input-target combination for the testing reach. The four images on the left
are the inputs. Each input image was stacked as a single channel. The image on the right is the target.
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C.2. Final datasets C. Dataset generation

Figure C.2: Sketch of an input-target combination.

Table C.1 links the testing sample number with the input and target years.

Testing sample ID Input years Target year
1 1988, 1989, 1990, 1991 1992
2 1989, 1990, 1991, 1992 1993
3 2000, 2001, 2002, 2003 2004
4 2001, 2002, 2003, 2004 2005
5 2002, 2003, 2004, 2005 2006
6 2003, 2004, 2005, 2006 2007
7 2004, 2005, 2006, 2007 2008
8 2005, 2006, 2007, 2008 2009
9 2006, 2007, 2008, 2009 2010

10 2007, 2008, 2009, 2010 2011
11 2008, 2009, 2010, 2011 2012
12 2009, 2010, 2011, 2012 2013
13 2010, 2011, 2012, 2013 2014
14 2011, 2012, 2013, 2014 2015
15 2012, 2013, 2014, 2015 2016
16 2013, 2014, 2015, 2016 2017
17 2014, 2015, 2016, 2017 2018
18 2015, 2016, 2017, 2018 2019
19 2016, 2017, 2018, 2019 2020

Table C.1: Link between testing sample ID, input years, and target year.
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D
JamUNet operations

This appendix contains more details on the operations performed by JamUNet model.

Figure D.1 is a sketch of a 2D convolution operating on multiple channels. The convolution slides through the
image height and width and across channels. It computes the dot product of the filter with the local regions
of the input across the channels. It then sums the output of each product and generates one feature map. The
kernel has size 3×3. This size represents the height and width of the filter.

Figure D.1: Sketch of a 2D convolution operating on multiple input channels. The red arrows indicate the direction across which the
convolution operates. The output pixels contain random values.

Figure D.2 is a sketch of a 3D convolution operating on multiple channels with a certain depth. The depth
represents the temporal dimension. The 3D convolution operates in the same way of the 2D convolution but
slides through the depth dimension as well. Given the dataset dimensions, the kernel has size 1×3×3. Hence,
the depth is equal to 1. As a result, the 3D convolution effectively operates as a 2D convolution.

Figure D.3 represents a sketch of the max pooling method. It uses a kernel size of 2×2 and stride 2×2, which
is the number of pixels that the filter shifts at each step. The pooling operation halves the image dimensions,
height and width, by retaining only the maximum value of each window. The combination of convolutions
and max pooling generates a downsampling layer. Within a downsampling layer the image dimensions are
halved and the number of feature maps is doubled.

Figure D.4 represents a sketch of a transposed convolution used for upsampling the feature maps in the de-
coder path. Given a kernel size of 2×2 and stride 2×2, the transposed convolution operates in the same way
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D. JamUNet operations

Figure D.2: Sketch of a 3D convolution operating on multiple input channels. The red and green arrows indicate the direction across
which the convolution operates. As the input dataset has depth equal to 1, the final output of the 3D convolution resembles that of a 2D
convolution. The output pixels contain random values.

Figure D.3: Sketch of a max pooling operation. The input pixels contain random values.

of a convolution. Hence, it involves the presence of a kernel. The weights of this kernel are learned during the
training process. The dot product of the weights with the input image pixel values generates the output. This
operation doubles the feature map dimensions, height and width. The combination of a transposed convo-
lution, a normal convolution, and the concatenation with skip connection (see Section 3.2.1) generates an
upsampling layer. Within an upsampling layer, the feature map dimensions are doubled and the number of
feature maps are halved.

Figure D.4: Sketch of a transposed convolution. The input pixels and the kernel weights contain random values.

60



D. JamUNet operations

ReLU, Equation 3.1, and Sigmoid, Equation 3.2, are the two activation functions used within JamUNet. Figure
D.5 illustrates the output of these functions. Note the difference in the scale of their outputs. ReLU generates
positive unbounded values. Sigmoid generates only positive values bounded within the range 0− 1. As a
consequence, Sigmoid outputs can be interpreted as probabilities.

Figure D.5: Sketch of ReLU and Sigmoid activation functions.
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E
Additional physics-induced loss

This appendix contains more information on the additional loss terms introduced in Section 3.2.3.

An attempt was made to include two physics-induced loss terms in addition to the BCE loss. The experiment
aimed at checking whether introducing physics-inductive bias could help the training process. We expected
that some physical information, retrieved from the available data, could improve the model learning and
enhance the quality of predictions. The two additional terms represent the total area of erosion and the total
area of deposition of the target year compared to the previous year.

The total area of erosion was computed by summing the number of “Water” pixel at the target year i that
were “Non-water” at the last input year i − 1. This number was then multiplied by 60× 60 m2 = 3600 m2,
representing the image resolution area. A similar procedure was applied to the total area of deposition. All
“Non-water” pixels in year i that were “Water” in year i −1 were summed and multiplied by the same factor.

For these terms we no longer deal with a binary classification task but rather with a regression task. The
Huber loss function (Equation E.3) was adopted. This loss balances two more common regression losses,
namely MSE, Equation E.1, and MAE, Equation E.2. These are distinct measures of the difference between
the observed and the predicted values. As for the performance metrics, the predictions had to be binarized
before computing the Huber losses. The same water threshold of 0.5 was applied.

LMSE = 1

N

N∑
i=1

(yi − ŷi )2 (E.1)

LM AE = 1

N

N∑
i=1

|yi − ŷi | (E.2)

LHuber =
1

N

N∑
i=1

{
1
2 (yi − ŷi )2 for |yi − ŷi | ≤ δ
δ · (|yi − ŷi |− 1

2δ) otherwise
(E.3)

where yi represents the target value, ŷi the binarized predicted value, and N represents the total number of
samples. δ = 1 is the threshold parameter that controls the transition between MSE and MAE behaviour of
the loss function, and consequently the sensitivity of the loss function to outliers1.

Equation E.4 represents the total training loss when physics-induced terms were included.

Ltot al = 1 ·LBC E +α1 ·LHuber, er +α2 ·LHuber, dep (E.4)

where LBC E is the classification loss, LHuber, er and LHuber, dep are the erosion and deposition areas regres-
sion losses, and α1, α2 the weights to scale erosion and deposition losses contributions to the total loss.

1MSE loss is more sensitive to small outliers than MAE loss.
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E. Additional physics-induced loss

Simulations were run using the dataset introduced in Section 3.1.1. However, the evolution of the training and
validation loss and metrics did not seem to bring improvements to the model training and learning. When
the loss weights α1,α2 were too high, in the order of 1 · 10−2 (-), the learning process worsened compared
to the model trained without these additional terms. The training loss stagnated and the model predictions
were not accurate. For lower values, in the order of 1 ·10−4 (-), the influence of these additional terms was not
visible and the training proceeded as for the case where no physics loss was included. Tuning these weights
was done in order to scale the contributions of the individual terms to the total loss. Despite some attempts
with different weights, proper values were not found and the experiment failed.

One possible reason for this failure is the complex combination of different losses, such as BCE for classi-
fication and Huber for regression. Additionally, as mentioned in Section 5.1, correctly predicting the total
areas of erosion and deposition might not be enough informative for the model. These terms represent more
abstract quantities that are not directly related to specific aspects of the inputs or outputs. The model might
accurately predict the single values of the total areas of erosion and deposition but fail to capture their precise
locations. In this case, the Huber losses would decrease, whereas the BCE loss would increase. Hence, the
total areas of erosion and deposition seem to be weak and non-informative inputs for the model training.
Using erosion and deposition locations across the input years as variables may be more suitable. This would
allow for a purely classification-based loss, with no regression terms. Also, these variables are more closely
related to the model inputs and outputs compared to the total areas of erosion and deposition.
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F
Additional figures

This appendix contains additional Figures of the predictions generated by the min loss model trained with
the dataset introduced in Section 3.1.3.

Figure F.1 shows the prediction of sample 2 using the water thresholds wthr = 0.402. This threshold was found
by optimising the F1-score in the PR curve (see Section 4.1.2). The image should be compared to Figure 4.6 to
observe the influence of the last input year in the model output. It also shows that JamUNet tends to assign a
larger weight to the “Water” areas occurrence rather than understanding the temporal evolution.

Figure F.1: Inputs, target, prediction, misclassification map and total areas of erosion and deposition of sample 2. The prediction is
generated using the wthr = 0.402.
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Figure F.2 shows the prediction of testing sample 19. This is the only sample that can be visually compared to
the outputs of the model trained with the temporal dataset (Figure H.4 in Appendix H).

Figure F.2: Inputs, target, prediction, misclassification map and total areas of erosion and deposition of sample 19.

Figure F.3. In the first year after the bank stabilization in Chauhali, the model predicted a major erosion spot
(point 1 in Figure F.4a). In the second year following the intervention, minor erosion was predicted as well
(point 2 in Figure F.4b). This might be caused by the relevant meandering migration that the channel expe-
rienced within those input years (Figure F.5). However, the extent of the predicted erosion was significantly
limited compared to the previous year prediction. This fact remarks again the significant impact of the last
input year influence on the overall model output.
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F. Additional figures

Figure F.3: Location of the Chauhali revetment.

(a) Predicted and real erosion locations of testing sample 16. (b) Predicted and real erosion locations of testing sample 17.

Figure F.4: Predicted and real erosion locations of testing samples 16 and 17. Point 1 and 2 indicate the location of the Chauhali
revetment and the predicted and real erosion.
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F. Additional figures

Figure F.5: Inputs, target, prediction, misclassification map and erosion and deposition areas of sample 15. Note the evolution of the
Chauhali channel during the input years (first row of images) before the implementation of the revetment.
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G
Max recall model

This appendix contains information, results and figures of the max recall model.

This model was not selected as the main one because it achieves lower metric scores than those of the min
loss model. Additionally, from a visual inspection, the results of the max recall model look similar compared
to those of the min loss model. The difference lies in the amount of predicted “Water” areas, that is larger
for the max recall one. As explained in Section 4.1.1, although this could be deemed as a positive feature due
to the class imbalance, too conservative predictions are not desirable. Predicting “Water” areas indiscrim-
inately within the braidplain is pointless, as it undermines the model ability to offer valuable insights into
planform evolution. The only potential suggested application of the max recall model regards the prediction
of meandering channel migration and bank erosion of the outermost areas of the braidplain. These are often
underpredicted by the min loss model, while the max recall one produces more reliable forecast. As for the
other processes such as channel shifting, channel formation and so on, the same issues exist for the max re-
call model. Furthermore, as this model predicts more “Water” areas, it underpredicts deposition process like
channel abandonment.

Table G.1 contains the loss and metrics achieved on the test dataset by the max recall model. Figure G.1
shows the ROC and PR curves of the max recall model. The AUC values are 96.5% and 76.3%, respectively.
Both values are lower than those obtained with the min loss model (see Section 4.1.2).

BCE loss Accuracy Precision Recall F1-score CSI
1.552 ·10−1 0.930 0.670 0.777 0.718 0.561

Table G.1: Testing loss and metrics achieved by the max recall model. All quantities are adimensional.

(a) ROC curve. (b) PR curve.

Figure G.1: ROC and PR curves for the max recall model.
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G. Max recall model

Figure G.2 shows the boxplots of the loss and metrics achieved by the max recall model on the test dataset.

Figure G.2: Loss and metrics boxplots of the test dataset using the max recall model.

Figure G.3 shows the prediction of testing sample 2 by the max recall model. As compared to Figure 4.6, the
same sample generated by the min loss model, it is possible to observe how more “Water” areas appear.

Figure G.3: Model prediction of testing sample 2 with max recall model. The image should be compared to Figure 4.6 to observe the
differences between the min loss and the max recall model.
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H
Temporal dataset

This appendix contains more information on the second splitting procedure adopted for generating the train-
ing, validation, and testing datasets. The results achieved with these datasets are reported as well.

H.1. Dataset generation procedure
The same methodology presented in Section 3 was applied. However, the training, validation, and testing
datasets were generated by temporally splitting all available reaches. All input-target combinations from
1988 to 2009 were employed for the model training. Combinations from 2010 to 2015 were employed for the
model validation. The remaining ones from 2016 to 2021 were used for testing the model. In this way we
ensured that no image included in the validation and testing datasets was part of any training input-target
combination, to avoid biased predictions and misleading results. The temporal splitting was introduced to
check whether the temporal variation of the morphological features was more relevant and informative than
the spatial variation. If that was the case, the model predictions were expected to improve. Also for this case
only images from March were used. From here on, this dataset is referred to as the temporal dataset. This
dataset is composed of 196, 30, and 30 samples for training, validation, and testing, respectively. It contains
less training samples than the dataset introduced in Section 3.1.11 because no overlap between training and
validation images was ensured. Moreover, all discarded combinations trace back to the initial years of record
(see Appendix C.1). At the same time, the number of validation and testing samples is larger because one
combination is created for each reach using the last years of record, which include all suitable images.

Testing sample number 1 represents the most downstream reach, just upstream of the confluence with the
Ganges River at Aricha. This reach also represents the testing reach of the spatial dataset. The testing sample
number identifier increases for each reach from 1 to 30 in the upstream direction.

H.2. Model results
The same model presented in Section 3.2, with the same hyperparameters, was trained with the temporal
dataset. The evolution of the training and validation losses and validation metrics is presented in Figure H.1.
Also in this case both the min loss and max recall models were stored.

Table H.1 contains the metrics of the min loss and max recall models achieved by training the model with the
temporal dataset.

Model BCE loss Accuracy Precision Recall F1-score CSI
Min loss 1.550 ·10−1 0.926 0.646 0.621 0.635 0.466

Max recall 1.930 ·10−1 0.910 0.547 0.769 0.639 0.470

Table H.1: Testing loss and metrics achieved by the min loss and max recall models trained with the temporal dataset. All quantities are
adimensional.

1This dataset will be here referred to as the spatial dataset, to highlight the different conceptual splitting procedure.
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H.3. Motivation H. Temporal dataset

Figure H.1: Evolution throughout epochs of the training and validation losses (left plot) and validation metrics for the model trained
with the temporal dataset.

Figure H.2 shows the ROC and PR curves of the min loss model trained with the temporal dataset. The
achieved AUC are 95.6% and 68.1%, respectively. Both values are lower than those obtained with the spa-
tial dataset and presented in Section 4.1.2.

(a) ROC curve. (b) PR curve.

Figure H.2: ROC and PR curves for the min loss model trained with the temporal dataset.

Figure H.2 shows the ROC and PR curves of the min loss model trained with the temporal dataset. The AUC
values are 94.8% and 62.3%, respectively. Both values are lower than those obtained with the spatial dataset
and presented in Section G.

Figure H.4 shows the prediction of testing sample 1 using the min loss model trained with the temporal
dataset. It should be compared to Figure F.2, which represents the same prediction achieved by the min
loss model trained with the spatial dataset. The two predicted images look similar. The model trained with
the temporal dataset predicts even less areas of erosion and deposition compared to the model trained with
the spatial dataset. Both models generate disconnected channels, although these are found in different loca-
tions. It is still visible the lack of temporal evolution from the migration of the meandering channel that flows
on the right side of the central bifurcation.

H.3. Motivation
Given the results achieved by the model trained with the spatial dataset presented in Section 4, we tested
whether this different dataset would improve the performance. If that was the case, we could have concluded
that, for predicting braided sand-bed rivers planform changes, the type of dataset, spatial or temporal, plays
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H.3. Motivation H. Temporal dataset

(a) ROC curve. (b) PR curve.

Figure H.3: ROC and PR curves for the max recall model trained with the temporal dataset.

Figure H.4: Model prediction of testing sample 1 with min loss model trained with the temporal dataset.
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H.3. Motivation H. Temporal dataset

a crucial role. In other words, we could have concluded that the spatial variability of the planform changes
is less relevant and informative than the temporal variability. This was not the case eventually, as the same
model trained with the temporal dataset achieved worse results. It is true that the temporal dataset had a
smaller training dataset. This reflects in the learning process, which stops quite soon after the beginning of
the simulation (see Figure H.1).

Eventually, the temporal dataset was not chosen for two reasons. The model clearly achieves lower met-
rics. Additionally, the desired generalizability of the model is reduced. With this splitting procedure, in every
dataset the same reaches across different years are used to train, validate, and then test the model. For this,
the performance on the validation and test datasets could be partly biased. The model might have learnt
specific features of the training years and reproduced these features during the inference steps. Hence, for
future applications on the validation or testing reaches, or for testing the model with other braided sand-bed
rivers, the model is likely to generalise worse compared to the one trained with the spatial dataset.
Using the spatial dataset the model performance could have slightly degraded for the given case study, as the
validation and testing steps are performed with completely unseen data. This is actually not the case, likely
because the spatial dataset has a larger training dataset size compared to the temporal dataset. Regardless of
this, a spatial split of the dataset is recommended to achieve a better generalizability of the model to other
braided (sand-bed) rivers. Contrary, if the goal of the research is achieving a model for a specific case study
then the temporal split could be desirable. In this case the model is not expected to generalise to other case
studies as well as a model trained with a spatial dataset could do.
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