
This report is intended to be read 1 full page at a time on a computer screen. This report is not intended to be printed. If you'd like to print this thesis regardless, please use to the print friendly version instead

'Tiny Impact'

Using tiny houses as a springboard to reduce our reliance on critical raw materials and fossil fuels in the human building interaction.

April 27. 2023

TU Delft MSc Dfl Graduation Thesis by Judith Meijer

Chair: David Keyson Mentor: David Peck

Abstract

For the European nation-states to reach the objectives of the Paris Agreement using existing green technology would require unrealistic amounts of space and critical raw materials (CRMs). The solution posed is twofold: Develop new energy solutions that are less dependent on critical raw materials, and reduce our energy usage. Tiny house communities are leading the way by being mindful of resources and focusing on what is necessary. I researched the resources and fundamental human needs of tiny house communities to design a podcast that helps us reduce energy needs and CRM dependence, and fight climate change

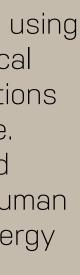
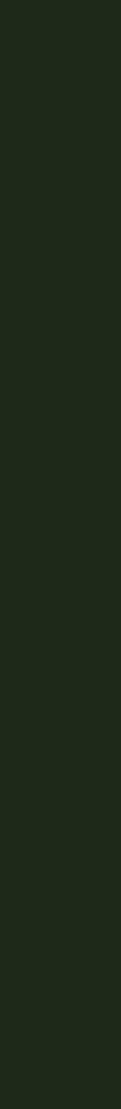



Image courtesy of Pexels

Phase 0: Project setup 10

Phase 1: Research

- Abstract 3
- Table of Contents
- Preface 5
- Acknowledgements
- List of Acronyms
- Glossary 8
- Chapter Introduction 10
- 0.1 A short introduction to the 11 problem
- 13 0.2 The design problem summarized
- 14 0.3 Initial design goal
- 0.4 Project scope 15
- 0.5 Research Questions 16
- 0.6 Methodology 17
- 0.7 Project setup 19

- 21 Chapter Introduction
- 22 1.1 Why the climate is in crisis
- 24 1.2 Why the climate crisis needs to be stopped
- 25 1.3 Why the climate crisis is in essence an energy crisis
- 28 1.4 Green energy is part of the solution
- 29 1.5 Why the green energy transition will cause a CRM problem
- 30 1.6 How do we solve the energy and CRM problem together?
- 31 1.7 The built environment is a large part of the problem
- 33 1.8 How do tiny houses fit in?
- 35 1.9 What could be improved in tiny houses?
- 36 1.10 Why a human needscentered approach is needed
- 37 1.11 Short explanation of the theory of 13 fundamental human needs (FHN)
- 38 1.12 A combination of the theory of 13 FHN and creative facilittion techniques could help to better understand the problem on a human needs scale
- 40 1.13 Research methodology and setup to discover the FHNs of tiny house inhabitants
- 43 1.14 Pilot test description and daptations
- 44 1.15 Research results

Phase 2: Analysis

21

- 45 Chapter Introduction
- 46 2.1 The results were more diverse and complex than I had anticipated
- 47 2.2 Analysing the user research outcomes
- 48 2.3 Additional research analysis and symposium findings
- 49 2.4 Research conclusions and insights
- 51 2.5 Choosing 4 design directions for a possible (re)design
- 53 2.6 Defining 4 design goals
- 54 2.7 Defining the design criteria
- 55 2.8 Optional design wishes

Table of Contents

45	
----	--

Phase 3: Ideation

Phase 4: Finalize 56

- 56 Chapter Introduction
- 57 3.1 The 4 design direction ideas 61 3.2 The podcast was selected
- as the best idea based on the design wishes
- 62 3.3 Different podcast formats were generated using the SCAMPER method
- 63 3.4 Ultra Rapid Prototyping led to 3 concept variations of the podcast
- 64 3.5 Methodology and setup for testing the 3 concepts
- 65 3.6 User test results
- 66 3.7 User test feedback conclusions and take-aways for the final design

- 67 Chapter Introduction
- 68 4.1 Why the podcast medium is a good fit
- 69 4.2 Final concept design details: Podcast: Climate critical
- 70 4.3 Podcast script
- 72 4.4 Final prototype
- 73 4.5 Evaluation of final prototype podcast
- 74 4.6 Recommendations and suggested adaptations for the podcast

Phase 5: Wrap-up

- 75 Chapter Introduction
- 76 5.1 Reflection on the project
- and the field 78 5.2 Discussion
- 79 5.3 Conclusion
- 80 5.4 References
- 85 Appendix

- 86 Appendix A: Project brief
- 91 Appendix B: User research results

Preface

This research was done for my master's thesis for the Design for Interaction track at the faculty of Industrial Design Engineering at the Delft University of Technology. I have been interested in sustainable design since I had one very lacklustre course on sustainability in my Bachelor's program in 2015. I have had the dream to design my own house for many years and when I heard about the Tiny House movement a few years ago I was hooked immediately. During the master course ID5356 Sustainable Design Strategies for Product Development, a rather overshadowed problem with sustainable energy was pointed out: Solar Photo Voltaic (Solar PV) panels and wind turbines require a lot of Critical Raw Materials (CRM) to produce (Metabolic, 2021). To meet the energy transition goals set out by our government regarding solar and wind energy, in 2040-2050 the Netherlands would need a minimum of 10% of the global production of Iridium, Lithium, Neodymium, and Dysprosium (See Figure 0.1, Metabolic, 2021). The Netherlands only accounts for 0.5% of global energy usage (Metabolic. 2021). Considering most other developed countries have similar ambitions and plans as the Netherlands, and are betting on similar technologies, it is unlikely that these technologies can solve the energy transition for all of them since there just won't be enough materials for that many solar panels and wind turbines. It is unrealistic that the Netherlands would be able to get this large of a share of the produced CRMs. That means that our climate goals cannot be reached. The same will probably apply to most other countries that are part of the Paris Climate Accords. If our climate goals cannot be reached, that means stopping global warming and limiting it to 1.5 or even 2 degrees above pre-industrial levels will not be possible. A 3 or even more degrees increase will prove catastrophic for large parts of the world (IPCC, 2022a). The challenge of

fighting climate change before us is immense, and small gains are just not going to cut it. We need many small improvements and several radical ones. So I want to focus on high-impact areas for this research. The built environment is a large contributor to greenhouse gas (GHG) emissions (IPCC, 2022b) ánd a large consumer of CRMs (Meyer, 2018) so this makes it a prime candidate for my thesis. Tiny houses communities are living with minimal resources and as a result, use much less energy and CRMs. I believe that tiny houses can teach us a lot about how we can

live comfortably without needing much space, energy and materials. All the while reducing our impact on the climate and the world without ignoring our personal and collective needs.

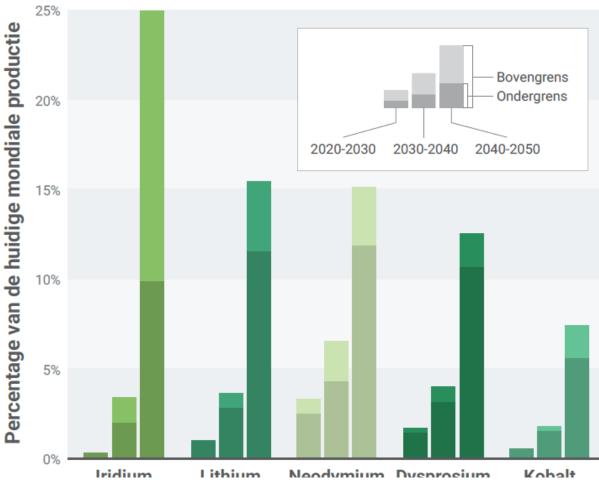


Figure 0.1. Projected increase in mineral demand of 5 CRMs for the netherlands: percentage of current global production (Metabolic, 2021)

Acknowledgements

I have a lot to thank for to my chair David Keyson for helping me keeping an eye on scope and progress, and to my mentor David Peck for his explanations, inspiration, and network to help me learn more about CRMs and the wicked problem it is.

I'd also like to thank Amber and Lotte for being there always with support, distractions, help, tips, motivation, hugs and food when I needed it.

List of Acronyms

BE CCS COP CRM EV EC EU FHN GHG HBI IDE IDE IDE IPCC PV REE Built environment Carbon capture storage Climate change Conference of the Parties Critical raw material Electric vehicle European Commission European Union Fundamental human needs Greenhouse gas Human building interaction Industrial design engineering Intergovernmental Panel on Climate Change Photovoltaic Rare earth element; H= Heavy; L= Light

Glossary

Built Environment

Any human-made condition that provides a setting for human activity, such as buildings infrastructure and landscaping.

Carbon Capture Storage

Technologies that aim to re-capture carbon from the atmosphere (CO2) and store them non-harmful way.

Conference of the Parties

Also known as the United Nations Climate Change Conference. COP21 held in Paris in 2 was the conference where the well-known Paris Agreement was signed, where nations pledged to keep global warming to well below 2 degrees this century. COP27 held in Eg in 2022 is the most recent conference as of writing this report

Critical raw materials

This term is often interchangeably used with variants such as critical materials, critical metals or critical minerals. I stick to the term critical raw materials because it's the term the European Commission uses and this thesis is based on their assessment and methology of critical raw materials.

Energy transition

The energy transition is also sometimes called the green energy transition. It is the neo

S,	sary transition away from fossil fuels as our main source of energy towards more sustain- able sources of energy such as wind, solar, hydro, tidal and nuclear.
n in a	<i>Green technology</i> To say something is "green" is about the same as saying someone is "nice". It is a term often used and misused in daily life. When this thesis calls something green it means it is different from its "grey" counterpart. For example, green energy is energy like solar photovoltaic, wind, hydro or nuclear; as opposed to grey energy like coal, gas and oil. Even though during the production of solar panels or wind turbines still some greenhouse
2015 s gypt	gasses are emitted and thus its production might not be green, the technology itself is considered green as long as it significantly contributes to a better climate.
	<i>High-fidelity prototype</i> A prototype of high quality that is in many aspects representable to the final product. Suitable for late-stage testing and presentation purposes.
m	Human Building Interaction
hod-	Anything or place where people can interact with the built environment.
Ces-	<i>IPCC report</i> The reports released by the Intergovernmental Panel on Climate Change. This panel consists of 3 working groups and releases a report every 7 years. In this thesis, I will only

reference the 6th assessment reports released in 2021 and 2022.

Low-fidelity prototype

A prototype of lower quality; used to test an interaction or proof of concept. Suitable for cheap, adaptive and early testing.

Photovoltaic

The technology most solar panels rely on to convert light into electrical energy.

Sustainable

Sustainable is a term that is often used rather loosely and is frequently used for greenwashing. Occasionally I adopt wording from sources I cite in this thesis. Still, in general, when I say something is sustainable I follow the definition of the World Commission On Environment and Development's Our Common Future (1987, p. 16):

"Meeting the needs of current generations without compromising the ability for future generations to do so"

Tiny House

Other variants of a tiny house include tiny home, tiny living and small home. There is no consensus about a single official term (Shearer & Burton, 2018). In the Netherlands, the term "Tiny House" is the most used variant by people who live in tiny house communities, so that is the term I will use in this report. Occasionally I will use the term tiny living to refer to the lifestyle of living in a tiny house. According to Tiny House Nederland (2020) and Shearer and Burton (2018) a tiny house is not just any house with a floorplan of less than 50m2. It's a type of home closely tied to the personal philosophy of the owner. There are two types of tiny houses: Moveable houses and permanent houses. A tiny house must be a home for permanent living, so no recreational or temporary housing like a trailer, campervan, or vacation bungalow. Tiny houses in the Netherlands are usually placed together on a large plot of land in groups of 5 - 20 houses. The inhabitants share much and divide community tasks such as composting waste, growing food and organising activities. They also share products like power tools and ladders. Inhabitants of tiny houses are closely involved in the making of their houses. Either by designing, constructing, or doing both themselves. Reasons to choose to live in a tiny house include wanting to be more sustainable, becoming more self-sufficient, reducing monthly expenses or the desire for a closer community (Pionierskwartier, n.d.)

Phase 0, Project Setup

- 0.1 A short introduction to the problem
- 0.2 The design problem summarized
- 0.3 Initial design goal
- 0.4 Project scope
- 0.5 Research Questions
- 0.6 Methodology for answering the research questions
- 0.7 Design poject setup

Chapter Introduction

The first chapter introduces the problem for this graduation project. Chapter 0.2 lays out the initial problem definition in 10 summarized steps. 0.3 and 0.4 describe the objective and the scope of the project. In chapter 0.5 the research questions are formulated and in chapter 0.6 the methodology for answering these questions is briefly described. The final chapter 0.7 shows the overall design process and project setup for the rest of this thesis.

0.1 A short introduction to the problem

David Attenborough called climate change the biggest problem humanity has ever wind energy are not located in a single place, cannot be transported to another place and faced(BBC, 2020). The world is connected and for the first time in the world's history, cannot be used whenever the need arises. This results in high requirements of space and equipment to harvest a useful amount of this energy, and it needs accompanying storage we can collectively fight this coming catastrophe. The industrial revolution was powered by burning fossil fuels which releases a lot of greenhouse gasses(GHG) into the atmosand transport facilities to be able to use the energy when and where we need it. phere. These GHG are causing the world's climate to change for the worse(IPCC, 2022a). The era of burning fossil fuels has to end (MacKay, 2009). It has to end very soon, or large The manufacturing of these renewable energy harvesters and batteries is highly compliparts of the world will become unhospitable for humans to live in, many ecosystems will cated and requires a lot of different materials, including many materials labelled by the European Commission (EC) (2020) as "critical raw materials" (CRMs). These are matecollapse, and natural disasters will become more frequent and severe around the world (IPCC 2022a). Ultimately climate change will cost a lot of money and lives. This rapid techrials that have high economic importance for the European Union (EU) and that have a nological advance has gotten us into this climate crisis, but not all technological advances high supply risk, usually because only a single country supplies the vast majority of the are bad. We have also developed ways to get energy from renewable sources: water, material. Scaling up the production of these materials is complicated and setting up new wind, solar and biomass power. Solar panels and wind turbines especially seem to be good mines is a process that takes decades (International Energy Agency, 2022a) candidates to replace fossil fuels but these technical solutions have their own problems. The IPCC report (2022) warns that we need to limit climate change if we want to avoid catastrophe. The European Council (2022) has set out goals to do this by replacing fossil Our current consumption patterns and lifestyles demand a lot of energy (Jancovici, 2005) fuels with solar PV panels and wind turbines. But in order to reach the goals and limit and these renewable energy sources are diffuse. This means that the total energy in climate change we need to build a lot of them. David MacKay (2009) made a calculation these sources might be high, but it's spread over a large area. Unlike fossil fuels, solar and

that showed how much space is needed to cover the energy use of all UK citizens. The UK itself does not have enough land area and renewable energy sources to cover its energy use, even if it managed to utilize nearly all of it. As can be seen in Figure 0.2. The CRMs needed for the manufacturing of all this equipment vastly outweigh the current possible supply of these CRMs. Since these materials already have a high supply risk, and the demand will increase manyfold (Metabolic, 2021) We cannot reach the agreed-upon climate goals by building turbines and solar panels. That means other solutions are needed. My research shows that tiny living is a viable solution

So we have a problem: for the European plans for the energy transition to succeed and to limit climate change we need more critical materials than we can produce and supply in the short available timeframe.

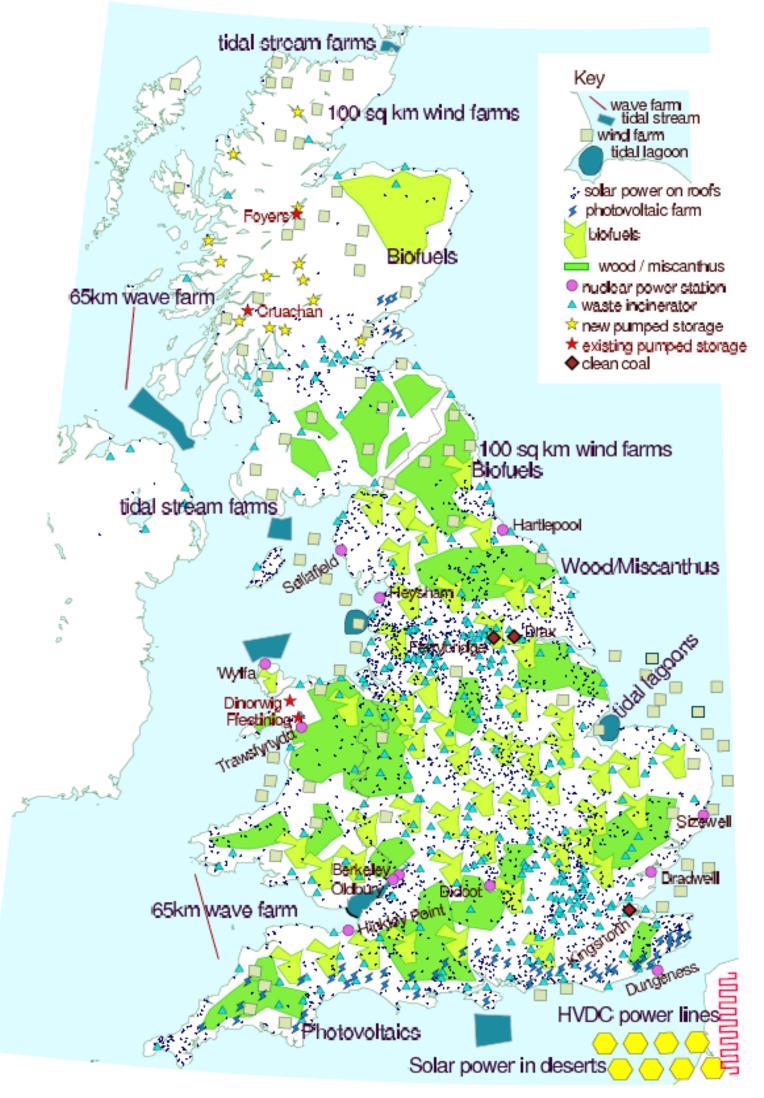


Figure 0.2. Visualisation of green technology needed to meet the UK energy demand (MacKay, 2009)

0.2 The design problem summarized

7. Our green energy solutions are dependent on CRMs (European Commission, 2020). These materials have a high supply risk and the demand for these CRMs is projected to grow massively (Metabolic, 2021). 9. The production or supply of CRMs cannot easily be increased on short notice (International Energy Agency, 2022a). 10. Our energy transition currently depends on materials that already have a high supply risk and of which production cannot easily and quickly be increased. To conclude: To limit global warming, we need to reduce our dependency on CRMs. The **design problem** is this: *European climate goals to limit global warming to 1.5 degrees* Celcius are unachievable in their current form because current green energy technologies needed for the energy transition rely heavily on CRMs, and the demand for CRMs will

The research in phase 1 establishes a few things that are summarised here: 1. We are facing a climate crisis: The rising levels of greenhouse gasses emitted by humans are causing the climate to change (IPCC, 2021). 2. We need to limit global warming to 1.5 degrees Celsius, or many more ecosystems and human lives will be lost (IPCC, 2022a). 3. To limit global warming our main objective is to have net zero greenhouse gas emissions by 2050 (IPCC, 2022b; European Commission, 2021; International Energy Agency, 2021). 4. Most of our GHG emissions (75%) come from burning fossil fuels to provide energy (European Council, 2022). 5. The climate crisis is in essence an energy crisis. We need to use no- or low-carbon-emitting energy sources (green energy technology) to replace our fossil fuels (Mackay, 2009).

6. To meet EU climate goals and supply enough green energy, many more of these green massively overtake the supply in the coming years. energy technologies will need to be produced (European Council, 2022).

0.3 Initial design goal

What makes critical raw materials critical, is their high economic importance and high supply risk (European Commission, 2020). Securing and increasing supply is a difficult and time-consuming process. The currently available best alternatives for CRM-heavy solutions are fossil fuels, but of course, this is exactly what they are trying to replace. Direct material substitution of CRMs in products has been a topic of research for years but it has varying results (Pavel et al., 2016). Increasing CRM supply will inevitably happen, but it will not be able to match the demand needed to build the number of turbines and solar panels necessary for those involved in the Paris Accord to reach the climate goals at the set time (Metabolic, 2021). So interventions are needed that reduce our CRM demand. This can be tackled in 2 ways:

- a) Changing our energy technology.
- b) Reducing our energy use.

To limit global warming to 1.5 degrees Celcius we need radical change and big improvements. The built environment is a massive consumer of critical raw materials (Meyer, 2018) I propose to focus on reducing both CRM and energy demand, giving me the following and is responsible for about 21% of our total greenhouse gas emissions in 2019 (Lwasa et design goal: "Design something that reduces the negative impact living has on the climate al., 2022). So by focusing this thesis on buildings I can have a significant impact. Due to while making living less reliant on critical raw materials." the time constraints of this project and the rapidly closing timeframe to slow down climate

change, the best way for me to quickly develop and test solutions is in a built environment which is already living with less energy and technology: Tiny houses. People living in tiny houses usually live minimalistic lives and have limited resources, space and energy available for their living needs. Because of these limitations, they are very mindful of their use of material, space and energy. All of this makes tiny houses a great source of inspiration on how to live consciously yet comfortably with minimal resources and a tiny impact.

As humans, we have certain basic needs like food and shelter. We will always need some energy to fulfil these needs. However, our current way of living is unsustainable (it's the reason we are facing a climate crisis), and technology alone will not be able to solve the energy problem (due to its CRM dependency). So we need rapid radical change, and we need to make concessions and changes.

0.4 Project scope

I'd love to design something that makes áll buildings completely GHG and CRM-free. However, the time and resources available to me make this an unrealistic goal. So the scope has to be narrowed down while maintaining an as high as possible impact. I decided to focus on tiny houses as opposed to more common buildings because tiny houses already have fewer products and a lower energy demand than most other buildings. This gives me a good starting point with fewer variables, to understand which products and how much energy is actually needed to live comfortably. I'd love to design something that makes áll buildings completely GHG and CRM-free. However, the time and resources available to me make this an unrealistic goal. So the scope has to be narrowed down while maintaining an as high as possible impact. I decided to focus on tiny houses as opposed to more common buildings because tiny houses already have fewer products and a lower energy demand than most other buildings. This gives me a good starting point with fewer variables, to understand which products and how much energy is actually needed to live comfortably. How much energy is actually needed to live comfortably. How much energy is actually needed to live comfortably. How much energy is actually needed to live comfortably. How much energy is actually needed to live comfortably. How much energy is actually needed to live comfortably. How much energy is actually needed to live comfortably. How much energy is actually needed to live comfortably. How much energy is actually needed to live comfortably. How much energy is actually needed to live comfortably. How much energy is actually needed to live comfortably. How much energy is actually needed to live comfortably. How much energy is actually needed to live comfortably. How much energy is actually needed to live comfortably. How much energy is actually needed to live comfortably independent of CRMs.

already have fewer products and a lower energy demand than most other buildings. This gives me a good starting point with fewer variables, to understand which products and how much energy is actually needed to live comfortably. This thesis will focus on designing a solution for users between 18-50 years old, who own and live in a house in the Randstad of the Netherlands. It will take a European perspective of climate change and CRMs and be limited by the building regulations and infrastructure

0.5 Research Questions

In order to achieve my design goal: "Design something that reduces the negative impact living has on the climate while making living less reliable on critical raw materials." I need to first answer a few Research Questions:

RQ1: What are high-impact areas in the built environment to reduce GHG emissions?

RQ2: Which energy-consuming technologies do we use in tiny houses that rely heavily on CRMs?

RQ3: How do these technologies contribute to meeting human needs?

RQ4: Which design directions are suitable to reduce energy and CRM use in the built environment based on human needs?

RQ5: What new or existing sustainable solutions can fit these design directions?

0.6 Methodology

RQ1: What are *high-impact* areas in the built environment to reduce GHG emissions?

How to answer RQ1: Desk research.

To stop climate change we need big reductions to our GHG emissions. So this thesis starts with a deeper analysis of our global - and in particular European - GHG emission trends related to buildings and CRMs to identify prime areas to have a big impact. This can be found in chapters 1.0 to 1.7.

RQ2: Which energy-consuming *technologies* do we use in tiny houses that rely heavily on How to answer RQ3: User research. CRMs?

To uncover which needs these products contribute to, I have to ask users of those How to answer RQ2: Desk research and field research. products why they used them. For this, I will design and conduct a user workshop based on the theory from Design for emotion by Pieter Desmet (2022), the Human Experience As a first step, I will look around and write down all the products and services I encounter Catalog (Desmet & Fokkinga, 2021), and creative facilitation techniques from Sanders and in tiny houses that I suspect contain CRMs. Often CRMs are not visible on the outside of a Stappers (2012). This methodology is further described in chapters 1.10 to 1.13 and the product, but if a product contains electronics it most likely will contain at least some CRMs. results can be found in chapter 1.15

A full list is hard to find but a report about CRM resilience from the European Commission (2020b) lists a couple of example uses for each CRM. That list shows that even in non-electronics such as Textiles, Steel, or Aluminum Alloys CRMs play a role these days. This project limits its scope to mainly electronic products. A combination of field and desk research should provide me with a non-exhaustive list of common products and services. This list can be found in chapter 1.9

RQ3: How do these technologies contribute to meeting *human needs?*

RQ4: Which *design directions* are suitable to reduce energy and CRM use in the built environment based on human needs?

How to answer RQ4: Analysis methods.

Several analyses will be done on the selected impact areas and the needs expressed by the participants. Design directions will be formulated based on these analyses. For each of these directions, suitable design criteria will be formulated. These can be found in chapters 2.5 and 2.6.

nvi- **RQ5:** What new or existing sustainable *solutions* can fit these design directions?

How to answer RQ5: Design methods.

This thesis mostly follows the traditional double-diamond design approach with some minor adapwith design criteria. With the design criteria in mind, the next phase is a diverging ideation phase tations, as seen in Figure 0.3. It starts with a diverging exploratory research phase called Discover. called Develop. During this phase, ideas are generated for the design directions and are quickly It mostly consists of desk research such as reading literature and books, exploring the contexts prototyped, tested, evaluated and adapted. This cycle is often repeated several times to go from ideas to concepts. At the end of this phase, the process converges again and the concepts are and doing exploratory user research. The second phase is a converging analysis phase called Define where the aim is to take all the gathered information, draw conclusions, find insights and evaluated by the design wishes and user test results and the best concept is chosen. During the eventually boil the problem down to a few suitable design directions with well-defined design goals last finalizing Deliver phase this final concept is further detailed, and a final high-fidelity showcase

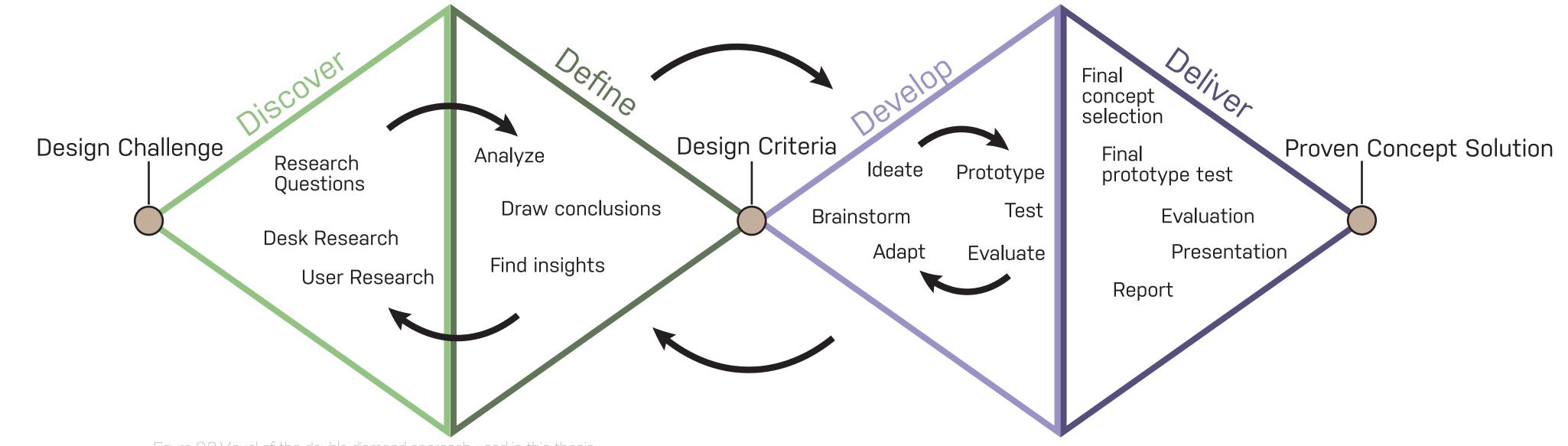


Figure 0.3 Visual of the double diamond approach used in this thesis

0.7 Project setup

prototype is made. Since there is no more time to iterate any final results and evaluations will be incorporated into recommendations. Part of the final deliverable for this thesis is a report, a presentation, a showcase, and any other relevant material. While there are 4 neatly defined phases in theory and in this report, in practice one often goes back and forth between activities from different phases when needed I to sustainable material sourcing. Visualised in Figure 0.5

Many design processess start with a discovery of a materialistic property. This then translates to a useful function. This function is then incorporated into a technology or design that can be sold to customers. Visualised in Figure 0.4.

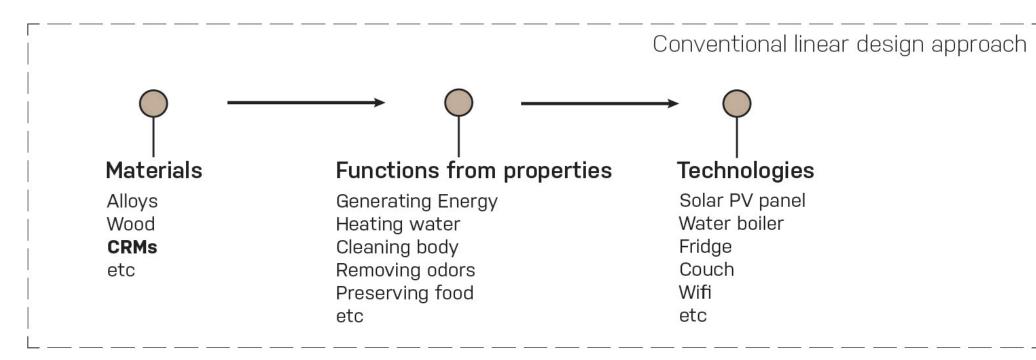


Figure 0.4. Visualisation of linear, material based design approach

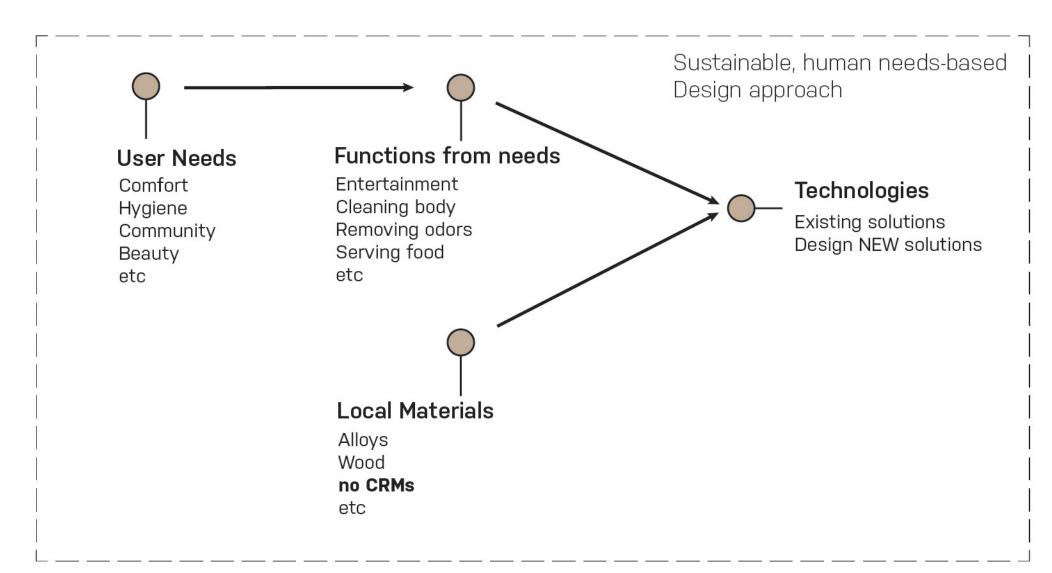


Figure 0.5 Visualisation of my proposed sustainable human needs-based design approach

Phase 1: Research

- 1.1 Why the climate is in crisis
- 1.2 Why the climate crisis needs to be stopped
- 1.3 Why the climate crisis is in essence an energy crisis
- 1.4 Green energy is part of the solution
- 1.5 Why the green energy transition will cause a critical raw material problem
- 1.6 How do we solve the energy and critical raw material problem together?
- 1.7 The built environment is a large part of the problem
- 1.8 How do tiny houses fit in?
- 1.9 What could be improved in tiny houses?
- 1.10 Why a human needs-centered approach is needed
- 1.11 Short explanation of the theory of 13 fundamental human needs
- 1.12 How a combination of the theory of 13fundamental needs with creative facilitationtechniques could help to better understand theproblem on a human needs scale
- 1.13 Research methodology and setup to discover the human needs of tiny house inhabitants
- 1.14 Pilot test description and adaptations
- 1.15 Research Results

Chapter Introduction

Phase one is the research phase, in the double diamond design method called discover. In this phase, I will do research into the topic, both literature and user research. Chapters 1.1 to 1.3 discuss the climate crisis and how it is in essence an energy problem. Chapters 1.4 and 1.5 discuss why the green energy transition will result in a CRM problem. Chapters 1.6 and 1.7 explains why focusing on temperature control in buildings is a good area to have an impact on the climate crisis. Chapters 1.8 and 1.9 explain how Tiny Houses fit into this design problem and solution. Chapter 1.10 discusses why a human-needs-centred approach is needed and chapters 1.11 to 1.13 explain the setup and methodology this thesis uses to incorporate a human-needs-centred approach into the design solution. Chapter 1.14 discusses the pilot test findings and chapter 1.15 shows a quick overview of the type of results gained from this research.

1.1 Why the climate is in crisis

David Attenborough called climate change "the biggest problem mankind has ever faced." (BBC, 2020). But what exactly does climate change mean and why do we call it a crisis?

During the industrial revolution, mankind discovered that burning fossil fuels like coal, oil and natural gas gave us a lot of fast and cheap energy. This sudden availability of energy catapulted societies into a world of new inventions, development, and changes. It has made countries like Saudi Arabia and Qatar very wealthy due to their large natural deposits of these fossil fuels. Countries in Europe and North America used this fast and cheap energy to quickly develop their own economies and this has given privileged people like me a comfortable life. The burning of these fossil fuels releases a lot of carbon, mainly in the form of CO2 into the air. Carbon dioxide is a greenhouse gas. That means that CO2 is better than normal air at trapping heat from the sun inside the atmosphere. This is not a new phenomenon as it has been demonstrated as early as 1856 by Eunice Foote. This trapped heat makes the world as a whole warmer, similar to how a glass greenhouse traps heat inside. Because the world's climate is a complex system not every part of the world will get equally warmer. The exact effects of this are also extremely difficult to predict.

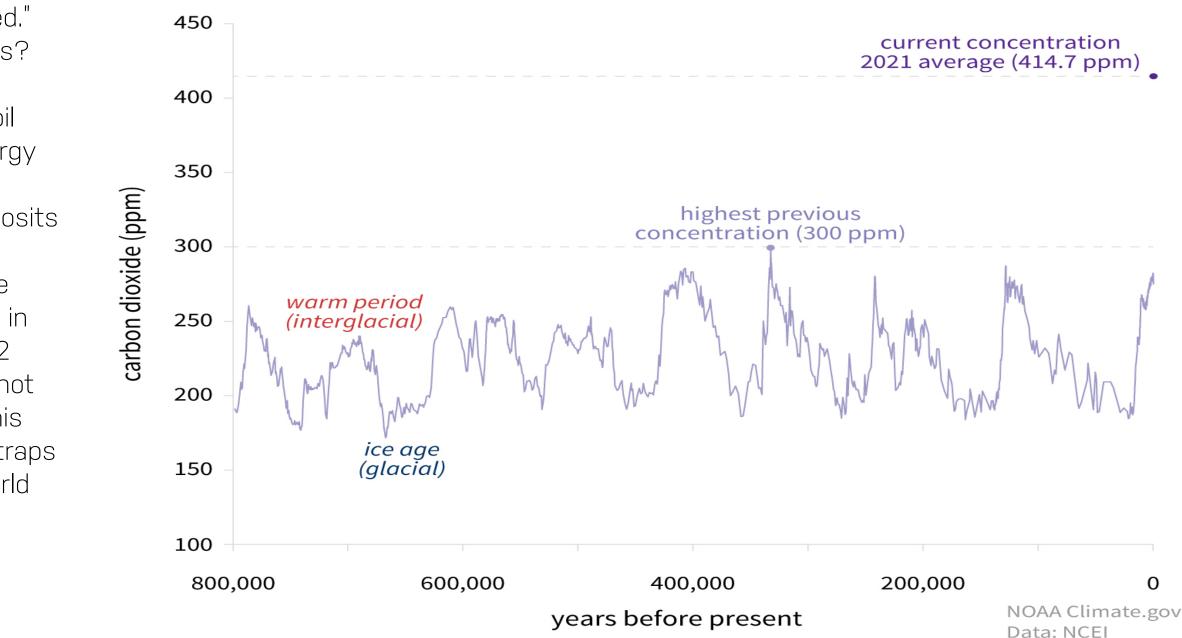


Figure 1.1: Diagram's purple line shows global atmospheric CO2 levels in parts per million over the past 800,000 years based on ice-core data. The dark purple dot shows the concentratin in 2021. The peaks and valleys in the line track ice ages (low CO2) and warmer interglacials (higher CO2).. Source: NOAA Climate.gov, 2022

However, according to the IPCC report of 2021, we can say with very high certainty that climate change is a massive threat to people and the planet and action is required now. Even if we limit global warming to 1.5 degrees above pre-industrial levels, as the goals of the Paris Agreement in 2015 state, global extreme weather events will become much more frequent and the sea levels will rise. Ecosystems will be damaged beyond repair, many species will go extinct and human lives will be lost (IPCC, 2022a). If global warming increases more than 1.5 degrees these events will be even more frequent and severe, and we might reach tipping points for a positive feedback loop where there is nothing we can do to stop global warming anymore (McKay et al., 2022). The current levels of CO2 are higher than they have ever been in the past 800.000 years of the history of the earth as seen in Figure 1.1. This Figure also shows that the increase of CO2 in the atmosphere is no longer part of earth's natural cycle but something else is massively increasing this. Even though humans only emit a very small amount of CO2 and CH4(another potent greenhouse gas) compared to other global systems: only a few gigatons compared to dozens of tons emitted and absorbed by plants and ocean surface waters as visualised in Figure 1.2 (NASA and Department of Energy Genomic Science program by Biological and Environmental Research Information System (BERIS), 2011). However, the problem is that before humans started emitting GHG from fossil fuels, the world's carbon cycle was in inbalance for 800.000 years. Roughly the same amount of CO2 was emitted as was being absorbed. Our relatively small contribution disrupted this equilibrium, and over time this small increase has accumulated to have a big impact. We've established that because of the added greenhouse gas emissions of humans, the earth's climate is changing significantly. But why is this a problem?

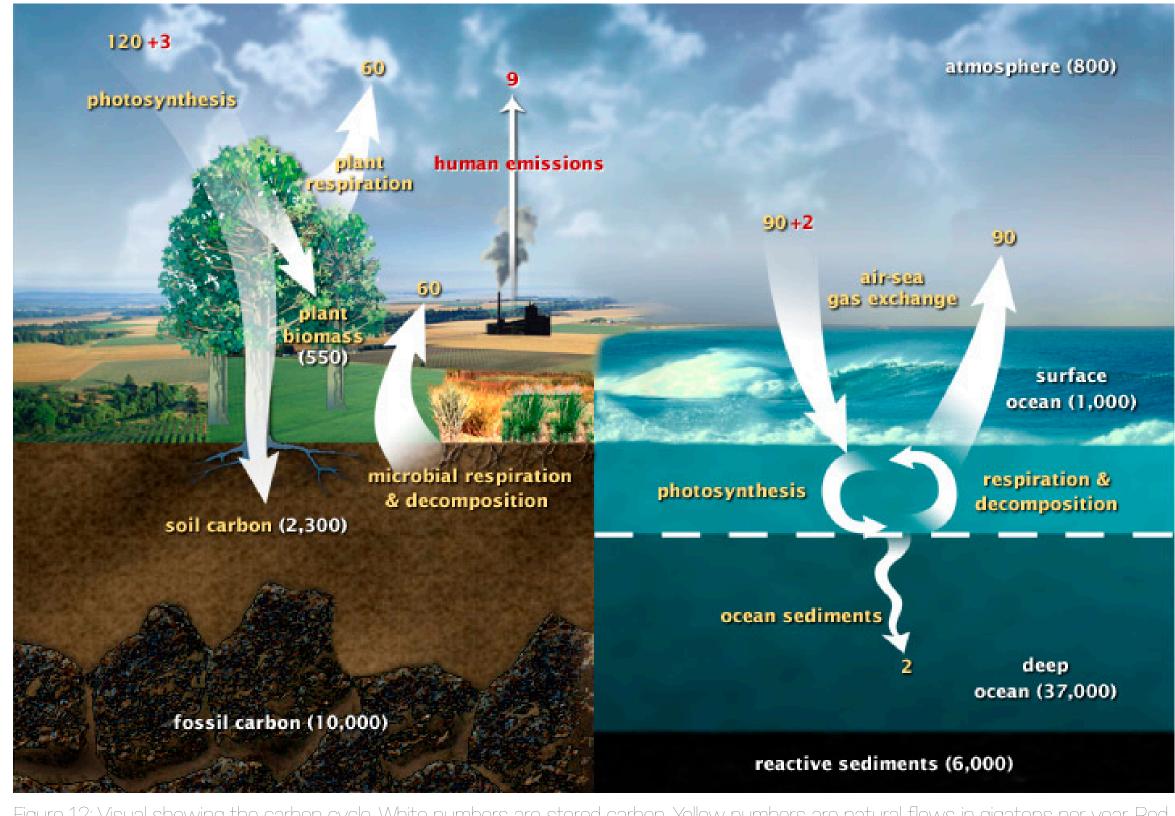


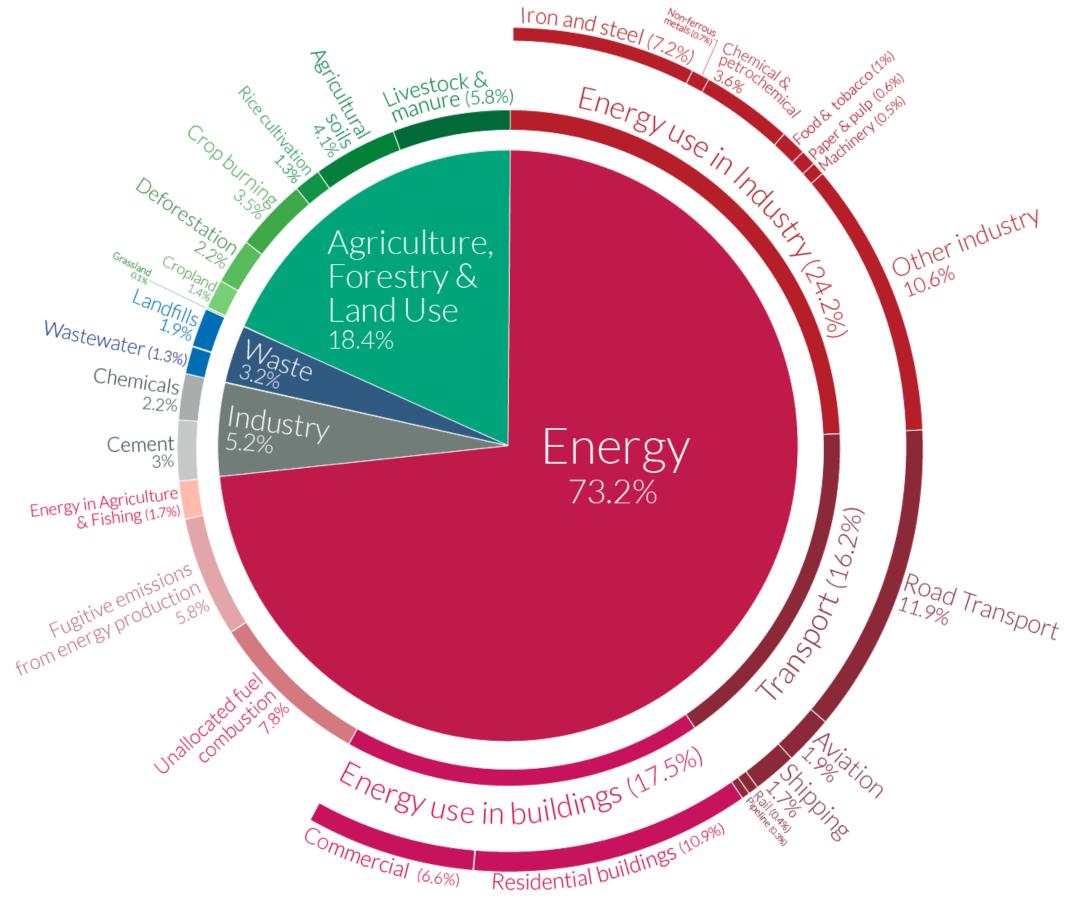
Figure 1.2: Visual showing the carbon cycle. White numbers are stored carbon. Yellow numbers are natural flows in gigatons per year. Red numbers are human contributions on top of this natural cycle. Source: NASA and BERIS, 2011.

1.2 Why the climate crisis needs to be stopped

We've established that because of the added greenhouse gas emissions of humans, the earth's climate is changing significantly. But why is this a problem?
 The ocean's surface waters absorb part of this atmospheric CO2 quite quickly which causes the "acidification of the oceans". Making the surface waters of our oceans more acidic, which will likely result in the loss of all coral and much other life in the sea that is not adapted to live in more acidic waters (National Oceanic and Atmospheric Administration (NOAA), 2020). To sum it up in the words of the IPCC report:

This increase of GHGs in the atmosphere allows the atmosphere to trap and hold heat from the sun better, thus warming our climate. This warmer temperature melts ice which increases the sea levels, eventually flooding large inhabited areas and forcing the displacement of over a billion people by 2050 (Yeung, 2020). In addition to higher sea levels it will also change normal weather patterns creating longer periods of drought followed by extreme rainfall periods; creating a host of problems for people and the planet (IPCC, 2022a)

'The cumulative scientific evidence is unequivocal: Climate change is a threat to human well-being and planetary health. Any further delay in concerted anticipatory global action on adaptation and mitigation will miss a brief and rapidly closing window of opportunity to secure a liveable and sustainable future for all. (very high confidence)' (IPCC, 2022a, p. 33)


1.3 Why the climate crisis is in essence an energy crisis

The current climate change is primarily caused by humans' excessive emissions of GHG, as discussed in the previous paragraphs. The solution then to climate change seems rather straightforward: Stop emitting greenhouse gasses. Primarily CO2 and CH4. Most of this comes from burning fossil fuels. We've collectively known for decades that we need to stop emitting GHGs, as illustrated by Shell's own 'Climate of Concern' video of 1991. (Mommers, 2017) The main question is this: Shell's own 'Climate of Concern' video of 1991. (Mommers, 2017) The main question is this: Shell's own 'Climate of Concern' video of 1991. (Mommers, 2017) The main question is this: Shell's own 'Climate of Concern' video of 1991. (Mommers, 2017) The main question is this: Shell's own 'Climate of Concern' video of 1991. (Mommers, 2017) The main question is this: Shell's own 'Climate of Concern' video of 1991. (Mommers, 2017) The main question is this: Shell's own 'Climate of Concern' video of 1991. (Mommers, 2017) The main question is this: Shell's own 'Climate of Concern' video of 1991. (Mommers, 2017) The main question is this: Shell's own 'Climate of Concern' video of 1991. (Mommers, 2017) The main question is this: Shell's own 'Climate of Concern' video of 1991. (Mommers, 2017) The main question is this: Shell's own 'Climate of Concern' video of 1991. (Mommers, 2017) The main question is this: Shell's own 'Climate of Concern' video of 1991. (Mommers, 2017) The main question is this: Shell's own 'Climate of Concern' video of 1991. (Mommers, 2017) The main question is the concern' video of 1991. (Mommers, 2017) The main question is the concern' video of 1991. (Mommers, 2017) The main question is the concern' video of 1991. (Mommers, 2017) The main question is the concern' video of 1991. (Mommers, 2017) The main question is the concern' video of 1991. (Mommers, 2017) The main question is the concern' video of 1991. (Mommers, 2017) The main question is the concern' video of 1991. (Mommers, 2017) The main question is the concern' video of 1991.

If we want to discover how we can stop emitting GHGs, we need to first establish why we But while seemingly straightforward, it is at the same time very complex, because countless lives are built and reliant on the availability of cheap and instant energy. Just think burn fossil fuels in the first place. Figure 1.3 (Ritchie, 2020) shows the sources of global GHG emissions in 2016. As you can see, most of it comes from energy production. Espeabout it; if we suddenly stop burning all fossil fuels in an instant, most of the developed world would collapse: We would no longer have enough energy in the grid to power most cially for industry, transport and energy use in buildings. MacKay has made an overview of of our buildings, devices, vehicles, networks and security systems. But leaving our energy an average British person's energy use in 2009, expressed in a single metric: kWh. Figure supply as it is is also not an option: The climate is changing for the worse, large parts of 1.4 shows that our main personal energy use goes to transport, 'stuff' and heating and the world already struggle with power outages and according to experts the number of cooling. But do we really need that much energy? Let's start by taking a look back in time: energy-related crises is only expected to increase over time (NOAA Climate.gov, 2016). So How did people live before the industrial revolution? People's lifestyles were much less regardless of whether we continue business as usual, or we stop emitting GHGs, we will energy intensive than they are today. inevitably face energy crises.

Our World in Data Global greenhouse gas emissions by sector

This is shown for the year 2016 – global greenhouse gas emissions were 49.4 billion tonnes CO_2eq .

OurWorldinData.org - Research and data to make progress against the world's largest problems. Source: Climate Watch, the World Resources Institute (2020). Licensed under CC-BY by the author Hannah Ritchie (2020). Figure 1.3: Pie chart showing global GHG emissions by secttor in 2016 (Ritchie, 2020)

Over 400 years ago Europe lived completely on sustainable sources, mainly wood. They lit a fireplace in their homes that gave them light, heat and a way to cook food. The global population back then was small enough to sustain this use (MacKay, 2009). Our current population density is too high to sustain us the way we did in the middle ages. And let's not forget: while not technically a fossil fuel, burning wood still emits a lot of CO2, so with our current global population it would still significantly contribute to climate change.

Today, is it possible to travel from one end of the world to another within a day. In the middle ages, a full day's travel would take you only about 30 miles (~50km, about the distance between Utrecht and Rotterdam) and this would require significant effort, energy, preparation and risk (Boyer, 1951). The amount of energy required to travel half the world in a single day is immense. Transport accounts for approximately 16.2% of our total energy consumption as seen in Figure 1.3 (Ritchie et al., 2020). We simply live by different standards than we used to. These high standards require more energy, and thus more GHGs.

Energy used for heating and cooling our homes has also vastly changed. Modern houses usually have a thermostat connected to central heating with which a person can easily set a fixed temperature for their homes. In ancient times orientation of the building, windows, and rooms was a much more important aspect since heating and cooling a home was not quite so simple(Hansen, 2022). There are lessons to be learned by re-integrating ancient knowledge into our heating and cooling practices. The passive house movement for example takes some of these into account in their building practices(Passive House Institute, n.d.), as do initiatives like Prêt-à-Loger (2014), but for most new buildings in the Netherlands there is still a lot of room for improvement.

"Defence": 4 Transporting stuff: 12 kWh/d Stuff: 48+ kWh/d Food, farming, fertilizer: 15 kWh/d Gadgets: 5 Light: 4 kWh/d Heating, cooling: 37 kWh/d

Jet flights: 30 kWh/d

Car: 40 kWh/d

Figure 1.4: Stacked chart showing energy consumption of a middle class british person in 2009 (MacKay, 2009)

Modern lighting probably doesn't require significantly more energy than burning wood. Even though we often light up more space than needed, LEDs have pretty good efficiency and lighting only accounts for around 2% of our total energy consumption (MacKay, 2009). We humans love comfort and much prefer others to do the necessary work. We thus surround ourselves with "mechanical slaves" (Illich, 1974). To illustrate how much energy our mechanical devices use daily leap-Marc, lancovici (2013) calculated that for the life-

We humans love comfort and much prefer others to do the necessary work. We thus surround ourselves with "mechanical slaves" (Illich, 1974). To illustrate how much energy our mechanical devices use daily, Jean-Marc Jancovici (2013) calculated that for the lifestyle of one average privileged person in France in the year 2000 to continue without machines, the labour of at least 400 people was needed. Having 400 people serving your every beck and call is something only a king might be able to afford back then. So we can

1.4 Green energy is part of the solution

So what is the way forward?

I mentioned earlier that the way to reduce our GHG emissions is to use green sources of energy to power our lives and change our lifestyles to require less energy. So what is the best way forward? I'll start by breaking the illusion that technology alone can solve the climate crisis. It cannot. Increases in technological efficiency will likely be overshadowed by the increasing world population and increased energy demand as the developing world continues to get more access to electricity and gain higher standards of living (International Energy Agency, 2022b). The answer will be a combination of both green energy production and energy use reduction.

First of all, we need green and new technology to power our lives. We cannot go back to our time of burning wood, and we cannot continue to burn fossil fuels. Yet, living will New non-CRM green technology always require energy of some sort. So green energy is necessary. Luckily, green energy is needed to supplement or replace the sources we have. is not only possible, but it's also sustainable and affordable (IPCC, 2022b). It currently is lacking in only one key aspect: Stability (van Geuns, 2022). Our current primary options for But we don't have these technon-GHG emitting energy sources are wind, solar, hydro and nuclear. The wind is variable nologies yet and we don't know when we will. And so a reliable and unpredictable, sunshine is intermittent and only available half the day at best, hydro requires height to produce a significant amount of power and not every place has mounway to reduce our dependence tains or hills. Only Nuclear can provide a stable and reliable baseload of energy. However, on fossil fuels is to reduce the nuclear has the obvious problem of producing nuclear waste. But even if we combine all current energy demand. 4 sources of power, and include some biomass burning, tidal power, wave power, "clean"

coal ánd solar farms in Africa, it's simply too diffuse, too intermittent and we have too high a population to provide enough energy to power our current European lifestyle for every European. (MacKay, 2009) We would need an unrealistic amount of land area and equipment to break even with consumption, as seen in Figure 1.5.

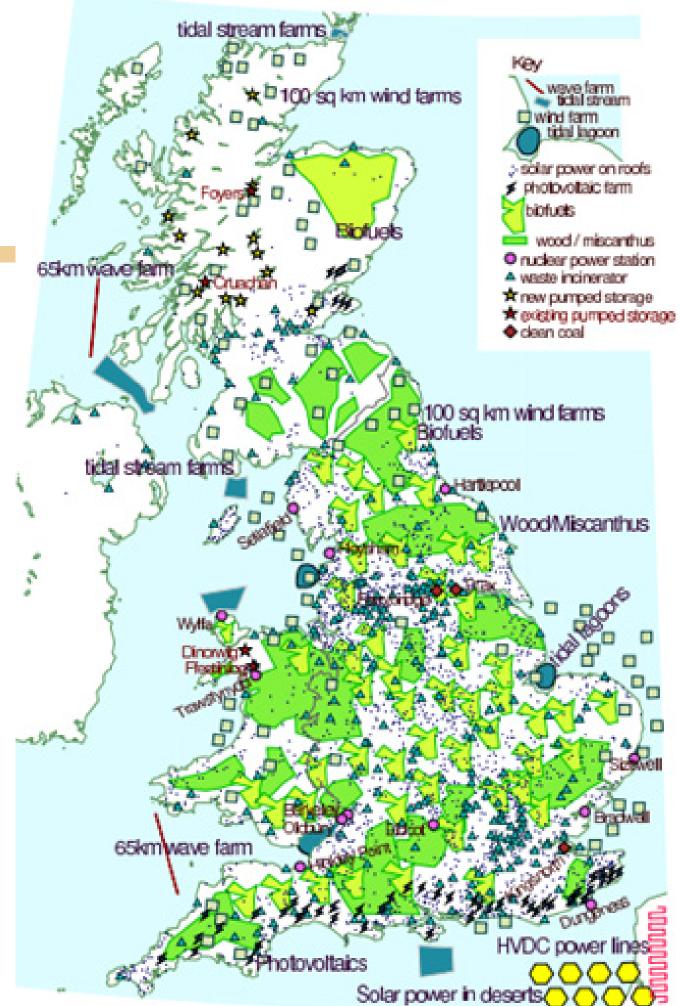


Figure 1.5: map showing the density of renewable energy sources that britain needs to give enough power for every british citizen.

1.5 Why the green energy transition will cause a CRM problem

As mentioned in the previous chapter, to provide enough green energy for our current lifecritical raw materials are frequently acquired as a byproduct of another main ore (McKinsey style we need an enormous amount of equipment like windmills and solar PV panels. These & Company, 2022). So if the demand for the main ore does not increase to the same products are widely available, but if we want to roll them out on a scale where they will extent it makes scaling up CRM production rather awkward and difficult. Thirdly, critical raw make a significant impact on limiting climate change we need a lot of them. And to manumaterials often come nearly exclusively from one country, due to geopolitical tensions that facture them we need a lot of raw materials. While there is probably enough lithium on country might not be willing or able to export that much material to Europe, thus disrupting earth to produce enough batteries to replace all combustion engine cars with EVs (MacKay, the supply. (European Commission, 2020a) 2009), the rate at which we currently mine lithium is far, far too slow. According to the International Energy Agency report 'The Role of Critical Minerals in Clean Energy Transi-The European Union has set the goal to be the first climate-neutral continent by 2050, but to become that we need more materials than we can currently get. Especially the tions' (2022a), if we want to uphold our Paris agreement of keeping global warming well below 2 degrees pre-industrial era, our demand for minerals will be 4 times higher in 2040 elements labelled "critical" will likely be a big issue in the near future, since these matethan it was in 2020. Not every material demand will increase by the same amount. Lithium rials already have a high supply risk. The European Commission President von der Leyen will likely increase the most due to its use in EVs and batteries for energy storage. Lithium acknowledged this problem herself: 'Without secure and sustainable access to the necesdemand could rise 42 times, and increasing mining production 40-fold in only 20 years is an sary raw materials, our ambition to become the first climate-neutral continent is at risk' extremely difficult task. Firstly because setting up new mining projects usually takes up to (European Commission, 2022). The Critical Raw Materials Act (European Commission, 10-20 years from exploration to production (International Energy Agency, 2022b). Secondly, 2023) is one step towards securing these materials, but it is not enough by itself.

1.6 How do we solve the energy and CRM problem together?

products that are located in Europe. Designing these in such a way that they can be recovered at the end of life would greatly reduce our dependence on non-EU countries for our CRM supply over the coming decades. This solution is however not quite as simple as it sounds and especially because most critical materials are very difficult to recycle (Bakker et al. 2019). Even though all of these strategies are necessary and a good step towards solving the CRM problem. With these strategies, we can build a more green, sustainable, efficient, local and circular economy. However, I argue that they are missing one key strategy: - Reducing our energy demand. The energy crisis can be simplified into a twofold solution: replace fossil fuels with green energy and reduce our energy demand. Our over-reliance on CRMs has a multitude of problems. Since increasing supply will happen regardless, but at a too slow pace to keep within our climate goals of 1.5 degrees warming, our best option is once again to focus on reducing our demand.

How to tackle this CRM problem while also speeding along the green energy transition? There is a multitude of strategies that we need to employ parallel to each other to secure a supply of the materials needed for our green energy transition (TU Delft, n.d.) (European Commission, 2023). - Localize our supply. We have plenty of unused resources in the EU that we could mine and manufacture here, reducing our reliance on unreliable suppliers, while gaining the possibility to increase the labour conditions and quality controls for these materials and products (European Commission, 2020c). - Invest in green technology. The amount of global investment in green technology is not nearly enough to keep us on track for a net zero emissions scenario in 2050 (International Energy Agency, 2022b). - Strong guiding policies to accelerate investment, innovation and implementation. And to help give companies and customers more certainty and keep green options accessible for all (TU Delft, n.d.).

- Make our energy consumption more efficient. For example by better insulating our homes. There seems to be a massive research, innovation and **design gap:** Green energy solutions that do not contain CRMs.

- Utilize the Urban Mine. Over the coming decades, a lot of CRMs will be embodied in

1.7 The built environment is a large part of the problem

So we need more green energy solutions that do not contain CRMs. Let's zoom in further This graduation thesis is about designing an intervention in the built environment to help on this current-day energy use to see which focus areas can have the biggest impact in mitigate climate change, and this research shows that the built environment is a massive reducing energy and CRM use. contributor to climate change. So an intervention here could have a big impact. Figure 1.3 (Ritchie et al., 2020) in chapter 1.5 showed that 73.2% of our GHG in 2016 came But 'living' is still a broad area, and within the context of living a person needs energy for 5

from Energy use. Of that, the biggest chunk is from energy use in industry (24.2%), and key aspects: 1 Heating 2 Cooling 3 Cooking 4 Light 5 Media after that energy use in buildings (17.5%) and Transport (16.2%). Looking even closer we So which of these aspects requires the most energy, and thus is accountable for the most can see that the biggest single areas accountable for GHG emissions are road transport GHG emissions? (11.9%), Residential buildings (10.9%) and the Iron and Steel industry (7.2%).

According to the IPCC report of 2022 buildings contributed around 21% of all global GHG emissions in 2019. the majority of which, 57%, were indirect emissions from the generation of electricity and heat. I.e. electricity and heat used inside the home but generated elsewhere. 24% were from direct GHG emissions in and around the buildings themselves, and 18% were embodied emissions inside the buildings, mainly from cement and steel. Residential buildings accounted for 70% of the final energy demand of buildings (IPCC, 2022b). According to the report most of the energy required by housing in Europe goes to heating and cooling. And in the Netherlands heating will require more energy than cooling due to its climate and culture.

According to David MacKay's analysis of the energy use of a British person in 2009 the biggest energy consumption areas a single person has is through "stuff" (~25%) car use (~20%), Heating and Cooling in living and office spaces (~19%) and jet flights (~15%) as can be seen in Figure 1.4. These analyses show that the production of "stuff", transport and living are the three biggest impact areas regarding our energy usage.

So the biggest chunk of GHG emissions is from the use of electricity and heat used in residential buildings, totalling around 50% of all GHG emissions in the built environment. So reducing the energy and heat requirement of a building could massively reduce GHG emissions.

As we've established, heating and cooling require the most energy for buildings in Europe In other areas of the world, cooking contributes to the majority share (IPCC, 2022b). MacKay's calculations for a British citizen in 2009 will give a pretty good approximation t use for Dutch energy use in 2022 considering Britain and the Netherlands' similar climat and cultures. Most of the assumptions and conditions he used in his calculations still hol up today. Heating accounts for about 18% of energy consumption. Cooling only around 1%. Cooking is roughly 2%. And light and media both contribute only a small share of our

	energy use (about 2 and 3% respectively) according to MacKay's 2009 calculations.
pe.	Looking at these numbers it seems obvious to focus on heating homes, however, cooling will in a warming climate increase in demand. For this purpose, it seems logical to focus on solutions that can both warm ánd cool homes, but if only a single application has to be chosen heating will be preferred.
to ates old	Buildings have a relatively high contribution to global GHG emissions and they are also a massive consumer of CRMs. For example, the 'greenest building in the world' (Bloomberg) in 2015, "The Edge" uses 28.000 sensors (2018 Charley Meyer), each of which contains many CRMs. So the built environment is a logical area to focus on for my graduation project.

1.8 How do tiny houses fit in?

A tiny house is a term that gained popularity around 2013 and since 2016 has seen relatively stable search numbers(Google Trends, n.d.). According to Heather Shearer et al.(2019) defining what a tiny house is exactly is a difficult task, and there seems to be no single consensus. However, tiny houses usually are based on a few of the following principles:

- Small floor area, often restricted to fit on a trailer. (less than 50m2)

- DIY, either designed, constructed or both by the inhabitant themselves.

- Used as the primary residence. So it is not a holiday bungalow, but a permanent living space of the owner.

- (semi) Mobile home. Often tiny houses are movable in some form. Some are built directly on a trailer, some are bigger than that but with special transport vehicles can still be transported. On top of that in the Netherlands, it is customary for municipalities to give tiny house owners a 5 or 10-year lease to a plot of land that they have to care for during this period but will have to leave at the end of the leasing period.

- Has some emphasis on sustainability. This differs vastly from person to person, highlighted by just reading the introduction page to the tiny house community Pionierskwartier in Delft, the Netherlands(Pionierskwartier, n.d.). and also shown by a survey from 2016 by Shearer et al (2019). Some people built their houses to be energy neutral, some build their homes completely from waste and reused materials. Some people go tiny to own and consume fewer products. Some people choose to live tiny for the community and sharing aspect.

I will focus in this project on tiny houses, not because that is where I can have the biggest impact (there are far fewer tiny houses in the Netherlands compared to apartment blocks for example) but because people who live in a tiny house usually have a strong focus on sustainability. People living in tiny houses live with very few items and generally have limited available energy and water. This means these people have already adopted a large part of the solution by lowering their consumption of stuff and energy. There are however many CRMs present in tiny houses because each house has its own power generation, storage and management system. Most tiny houses do this using solar PV panels and Lithium batteries. The physical limitation of space and the off-grid nature of tiny houses makes them adopt many clever, efficient and original solutions to make living inside the house possible and even pleasant. Since living in a tiny house requires some 'out of the box' thinking, it makes this a prime area to look for inspiration and find and test some more radical and untraditional ideas. And radical is needed because our current, conservative and technological ways are just not going to cut it. We need to widely adopt a mindset of scarcity and balance, and tiny house residents do this much better than most other Dutch residents. By looking at Tiny house inhabitants as my primary target group I will have far fewer unnecessary CRM and Energy products to sift through and it makes it easier for me to identify what technologies are not necessary, and which technologies need to stay but

can perhaps be redesigned.

Tiny houses do have one big drawback: They are tiny and unique. This means that economies of scale don't necessarily apply. A successful design fit for one tiny house cannot be directly scaled up to mass production. Tiny houses also have very little thermal mass making passive heating and cooling a lot more difficult. Tiny houses do have something most neighbourhoods in the Netherlands don't have: A close-knit, open-minded community. Tiny house communities often operate on partly shared ownership. They have shared stewardship over the land they own as a community, but they also sometimes have small shared food gardens, organize events together and share many large products like ladders and power tools. This sharing community aspect could provide an alternative to utilising economies of scale.

Every tiny house is different, both in looks and in construction methods or ideology. But overall the flexibility, community aspect, out-of-the-box thinking, and minimalist lifestyle of tiny house inhabitants make it a great place to look for inspiration and provide proof of concept for energy-reducing and non-CRM green solutions.

1.9 What could be improved in tiny houses?

Most tiny houses have some emphasis on sustainability. However, I have not yet encountered one which had considered a low CRM usage in their design. For example, all the tiny houses I have seen so far get their energy by using solar PV panels on their roof, and a battery system to generate and control their home's energy use. Solar panels and batteries both require a lot of CRMs to build and currently are very difficult to recycle if it's even possible at all. Also, small home appliances found in tiny houses are full of CRMs. This makes sense since the recent development of CRMs into technology has made it possible to make many products much smaller, which is ideal for tiny houses.

A full list of all products inside tiny houses that contain CRMs is difficult to come by. But by combining information from the European Commission's study on the EU's list of critical raw materials (2020) on CRMs, and websites on building and the costs of tiny houses (Lamboo, 2022)(Mitchell, 2020) and by walking and looking around in actual tiny houses I ended up with the following list of products and services that are commonly found in tiny houses that contain CRMs. This list is limited to products that require energy to use or are directly related to energy use and contain critical raw materials in the product itself. Items in bold are things that are specifically used for heating and cooling.

This is a long, but a not exhaustive list. But this shows that in any given tiny house there will be many products that consume energy and contain CRMs. So there are many things to look into and improve upon.

Gas boiler (hot water) Water pump (toilet, shower, sink) ΤV Smartphone Laptop Light Power socket Electricity cables Dishwasher Washing machine Dryer **Mircrowave** Oven Induction/gas/electric cooking stove Kettle Gas burner Wood oven

Wood/hot air/central heating

Sound installation/speakers Batteries Solar Panel Wind turbine Fridge Freezer Sensors Ventilation Electricity Transformer Internet (router) / cables Power tools Hair dryer Coffeemaker

Camera

1.10 Why a human needs-centered approach is needed

Even though a tiny house is small and cannot have too many unnecessary items, there for 5 key aspects of living: Heating, cooling, cooking, light and media. But these are not the are quite a lot of products still to be found containing CRMs. This project aims to provide same as human needs. Desmet and Fokkinga's (2020) theory of 13 fundamental needs will inhabitants with comfortable living while providing them with non-CRM green energy or provide a much more useful, human focussed list of needs, as seen in Figure 1.7. to reduce their energy and CRM use in some other way. The most obvious way is to just remove all energy-consuming products or energy-generation products that contain CRMs. Not all 13 needs will be equally important in the context of a residential home, but which needs are more important and which are less is difficult to know and no research or litera-But people own these items for a reason. People have needs that a lot of these products help fulfil such as preparing food and giving warmth. People won't give up all their products ture regarding this specific question could be found. So to discover the answer I designed a workshop to conduct with tiny house inhabitants to understand why they used their without a clear reason to do so. So to be successful in redesigning green energy to be CRM-free, and for it to be widely adopted, I will take a human-centred approach. Keep the CRM-containing products and what their underlying needs were. This is further detailed human needs as a basis, and redesign products or services around these needs. But this and explained in chapter 1.13. time in a green, sustainable, and non-CRM way. As stated previously, people need energy

1.11 Short explanation of the theory of 13 fundamental human needs (FHN)

In the Human Experience Catalog Desmet and Fokkinga (2021) state that there are 13 fundamental human needs, as seen in figure 1.7. They range from needs such as the need for fitness to the need for relatedness. Essentially everything we do is driven by these 13 needs. However, the link between everyday actions and fundamental needs is often not immediately clear. For example, taking a hot shower could contribute to the fundamental need for competence. There are some steps between the everyday action and the underlying fundamental need(s), I'll call these intermediate steps 'middle needs'. In the example of taking a shower, one might take a shower in the morning to feel fresher and more awake. This feeling helps them prioritize and accomplish more in their day. And accomplishing what is important to them helps them feel competent. Designing a product or service for competence is too broad to effectively design. But designing something to give the user a "fresh feeling to start the day with" is already a lot easier to work with. Design for emotion (2022) calls these 'middle needs' impulses. Forces that drive human behaviour. These impulses can be internal or external. Internal impulses are often needs-driven. External impulses are driven by our environment. I prefer to call these external impulses 'triggers': Something that triggers a certain behaviour. Triggers are a practical starting point for a redesign. For example, a trigger could be: "I feel cold". The action could be that someone takes a hot shower. But they might just as well fill up a hot water bottle. Or put on a sweater. Or turn on the heater. Or hug their partner. The need is that someone wants to feel warm and comfortable, the trigger is that they feel cold. The trigger is what pushes them to take action. So a designer can design something to fulfil the users' middle needs, using a trigger to push them to action.

ing part of and accepted by a social group or entity that is important to you

Setting appreciation for what you do and respect for who you are.

Rather than experiencing strain, difficulty or overstimulation.

you can do things your own way

ving warm, mutual, trusting relation people who you care about.

Feeling that your conditions and env keep you safe from harm and threats

aving and using a body that is strong, healthy, and full of energy ing a body that feels ill, weak, or listless

Figure 1.7: Pieter Desmet and Fokkinga's 13 human fundamental needs (2021)

1.12 a combination of the theory of 13 FHN and creative facilitation techniques could help to better understand the problem on a human needs scale

According to Design for Emotion (Desmet, 2022) the best tactic to discover the fundamental, and middle needs behind a simple action is to ask participants "why is that imp tant to you?". So in the example of taking a shower, the action would be: "I took a hot shower in the morning." To which I could ask: "Why is it important to you to take that he shower this morning?" If their answer is: "Well, to wake up." I can again ask: "Why is it important for you to wake up in the morning?". To which their answer might be: "Well if feel awake in the morning I get more stuff done". This sequence of questions and answ is an effective way to get to the underlying middle needs as to why they use certain products. Somewhere in the middle is the sweet spot to design for, but where exactly is hard to know beforehand.

I can know or ask which actions my participants did, and I can take that as a starting p for the workshop. From this action, I can ask what the trigger was that pushed them to do this action, and then go down the sequence of "Why is that important to you?" ques tions to discover the middle and ultimately the fundamental needs. So for the workshop will start with a product and an action, ask what the trigger was for this action, and th work my way down to the users' fundamental needs. During analysis, I can then review the answers, compare, draw conclusions and see what fundamental needs these curre

]-	products fulfil, and thus which needs need to be considered for a redesign or interven-
por-	tion. The triggers could perhaps be used to push people to use my design or as a basis
hot	to redesign certain technologies or other solutions, and the middle needs are valuable as insights into what good focus areas for a design direction could be. Figure 1.8 shows which
ΠΟΓ	parts of the user research the workshop covers.
if I	
wers	The goal of the workshop is to discover some of these 'middle needs' and 'triggers' to better understand the human motivation behind our usage of CRMs and energy-con-
/ is	suming products and services.
	To set up this workshop to discover triggers and needs related to products and actions I
point	will use general advice on creative facilitation and co-creation sessions from the Convivial
to	Toolbox (Sanders & Stappers, 2012). For example, I'll ask the participants to take the two
es-	days leading up to the workshop date to carefully consider their product use, how often
op, l	and why they use the products they use. This will serve as a miniature sensitizing activity
hen	to get the participant thinking about the topic beforehand. And I'll use extra physical props
W	as a toolkit that the participants can look at and manipulate to give the participant more
rent	ways of expressing themselves.

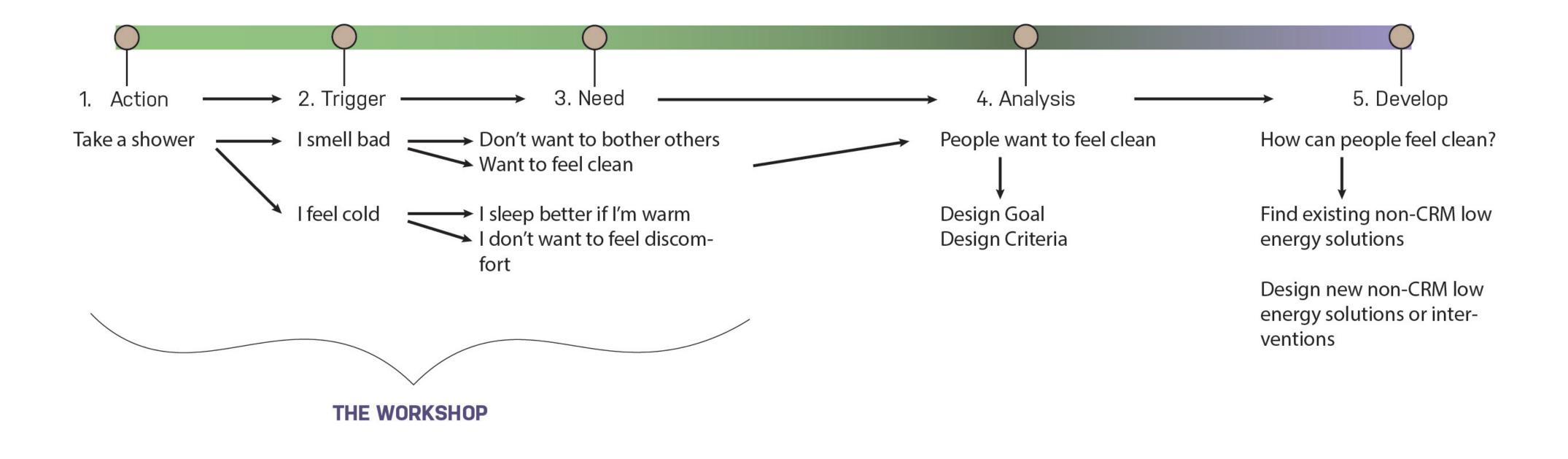


Figure 1.8 visualisation showing which questions the workshop covers in the planned user research

1.13 Research methodology and setup to discover the human needs of tiny house inhabitants

Pieter Desmet's research on fundamental human needs came up with a list of 13 basic human fundamental needs that apply to all humans regardless of their nationality, culture or affluence. It is difficult to say which need a certain product fulfils, since one product can fulfil multiple needs, and different people might use the same product to fulfil a different need. More research is needed, so I conducted a workshop with tiny house inhabitants living in a tiny house community in Delft, the Netherlands, to see if the list of products in their homes can be translated into a list of needs.

Workshop Goal:

The workshop aims to discover middle needs, triggers, and common fundamental human needs(explained in chapter 1.12). These needs should provide the basis to compile a list of function that a house needs to have from a human needs perspective.

The triggers and middle needs will most likely be the most useful results from a design standpoint, while the other data will possibly provide new insights for additional context and design criteria.

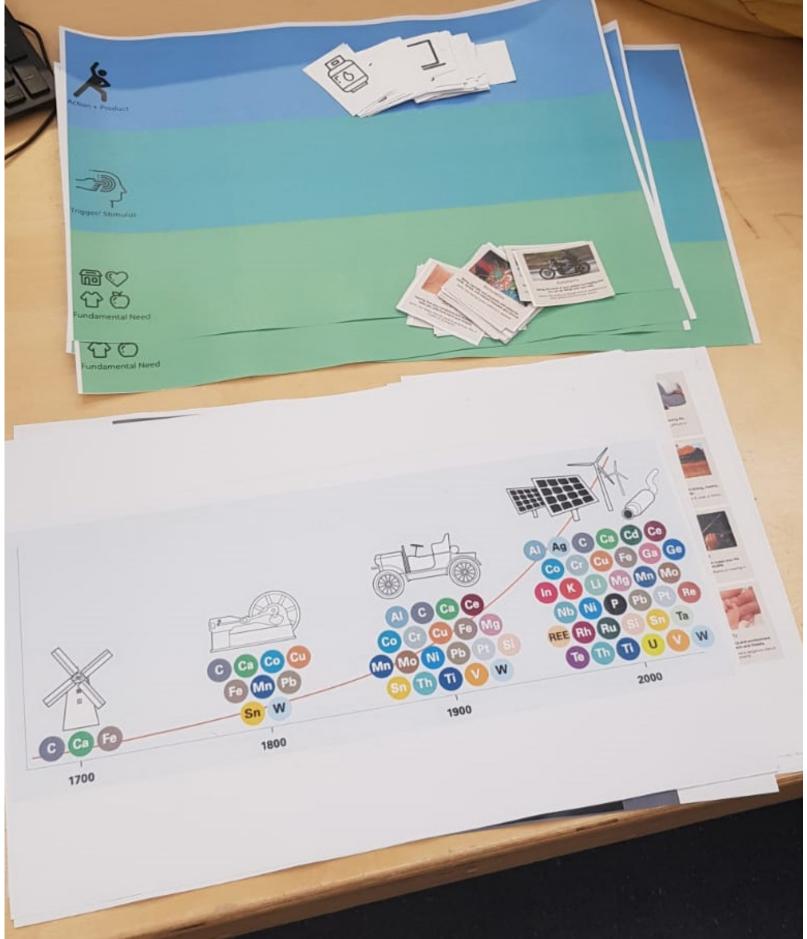
Workshop theory:

The workshop is based on a combination of theories from Pieter Desmet's Design for Emotion (2022), and Desmet and Fokkinga's (2021) Human experience catalog. This theory, combined with interspersed creative facilitation theory and methodology input from Convivial Toolbox: Generative Research for the Front End of Design (Sanders & Stappers, 2012), and common interviewing techniques. As explained in chapter 1.12.

Workshop details:

- The workshop contains 2 parts, preceded by a preparation assignment: First the particiof pant is asked 2 days in advance of the workshop to take the coming two days to consider their product use and why they use it. I asked them to consider for example what triggered them to take a shower.
- The first part of the workshop is a mini masterclass from me to the participants about CRMs. I will explain in about 15 minutes what critical raw materials are, why they are so commonly found in our current lives, and why we are currently over-reliant on them. With this masterclass, I hope to inform my participants but also to get them invested in the problem. It helps them to understand why I do this workshop and why it is important. For this mini masterclass, I used A3 printouts of relevant graphs and Figures. In addition to informing and involving the participants in the topic, giving them this masterclass is also my way of giving them something in return for their participation.

The second part is a creative variation of an interview. Here, I present them with small printed-out icons of CRM containing products that are energy-related. The participant picks out one of the icons of a product that they recently used. I then ask them what triggered them to use this product. After that initial question, I adopt the design for emotion approach by continuously asking the participant "Why is that important to you?" And continue asking this question till we arrive at one of their fundamental needs. I placed these icons on a large A3 paper printout with 3 rows. The first is for the product icons. The middle row is for writing down their answers to the questions. The bottom row places the fundamental need(s). Figure 1.9 shows how these materials looked before the workshop.


Workshop materials:

For the preparation, only a small text message or email text containing the assignment was needed.

For the first part of the workshop, I used A3 paper printouts to use as visual guides for my story

For the second part of the workshop, I printed out A3 papers with 3 rows on them. And icons of CRM products and small pictures of the 13 fundamental needs. A picture of how these materials looked can be seen in Figure 1.9.

I'll also need tea and cookies for during the workshop.

-igure 1.9; the two piles of workshop materials; 1 op; the workshop on fundamental needs. Bo tom: A3 printouts to give background information about critical raw materials

Workshop participants:

To find and recruit participants I first tried to contact tiny house communities via their public email addresses and asked for participants that way. After no response, I decided to create a flyer to distribute on social media and via email to different tiny house communities. The flyer is shown in Figure 1.10.

I conducted 5 workshops in total. 4 of which were with tiny house inhabitants in pionierskwartier in Delft. 1 was done online with a participant who had recently begun construction of their tiny house in Twente. All participants were aged between 25 and 55 years old.

Considering the small number of tiny house participants in the Netherlands, and the fact that a common response was that the inhabitants already participate in too many initiatives I decided that 5 users were enough since it is generally assumed that 5 participants are enough to find the majority of trends (Faulkner, 2003). Considering the timeframe of this thesis, it is likely that the time lost searching for more participants will not be worth the added benefit of research accuracy

Workshop data collection:

For every workshop, I collected data using written notes. These were stored on paper and digitally. Pictures will be taken and stored of the workshop materials with notes and printed icons placed on top. For the first workshop, I will use a voice recording app on my phone, so that I can listen back after the workshop to find improvements in my interviewing techniques and the workshop flow if needed. I will delete this voice recording after review and adaptation. The full details of the user research were approved by the Human Research Ethics Committee of the TUDelft.

Wat gaan we doen?

1. Interactieve workshop: Back to basics, again Wanneer? In Oktober, wanneer jou uitkomt. Wat? Een workshop om er achter te komen van

welke technologie en kritieke materialen we afhankelijk zijn en welke fundamentele behoeften ze eigenlijk voor jou vervullen.

Waar? Bij jou in je Tiny House of een café in de voldoen en of ze goed genoeg werken! buurt.

Wat bied ik jou?

Inspiratie, nieuwe kennis, koffie, koekjes, gezelligheid, en een stap in de goede richting om nog duurzamer te worden!

Interesse?

Ben jij ook benieuwd hoe je Tiny Living nog duurzamer kan en wil je mij helpen dat samen uit te zoeken? Of heb je nog vragen? Reageer dan op mijn berichtje en laat mij weten wanneer ik zou mogen langskomen of laat je email achter via de link! Meedoen is gratis en zonder verplichtingen.

Figure 1.10: invitation flyer I made to find participants for the workshop and user tests

2. Interactieve workshop: Prototype testing

Wanneer? In Januari en Februari. Wat? Samen mijn nieuwe duurzame prototypes testen op een leuke manier. Om te kijken of ze wel aan je behoeften

Waar? In of rond jouw Tiny House.

1.14 Pilot test description and adaptations

1 day in advance I sent the participant an email and WhatsApp message asking them to take note of the products they used in the past two days, and what triggered them to use them.

In the first workshop I conducted, I recorded the audio for the full workshop to listen back if it didn't go as planned to discover where I could improve.

I prepared the paper materials, brought tea and cookies and met with participant 1, I'll call them A. It was a beautiful sunny morning. After a short tour around A's house and the full terrain of the tiny house community, we started with the workshop itself. A had considered the homework assignment and that gave them a starting point for the workshop.

Results Pilot test and changes:

The workshop went surprisingly well for a pilot test, and I ended up making minimal changes. Primarily in the first part of the workshop, I changed my story and presentation materials slightly. The results from the pilot workshop do not significantly differ from the rest of the workshop participants so the pilot results are included as equally valid results with the rest of the workshop results.

Figure 1.11: picture of the view of Pionierskwartier Delft from where the pilot test was conducted.

43

1.15 Research results

The research produced consists of filled-in worksheets. These are photographed and one is shown in 1.12. For each of the 5 participants, we discussed the use of and needs behind roughly 4 different products. This gave me a total of 22 qualitative datasets of middle needs related to products. Each product contributed to an average of 2 fundamental human needs, for a total of 43 fundamental needs. And since there were multiple middle needs exceeded well over 100 unique needs.

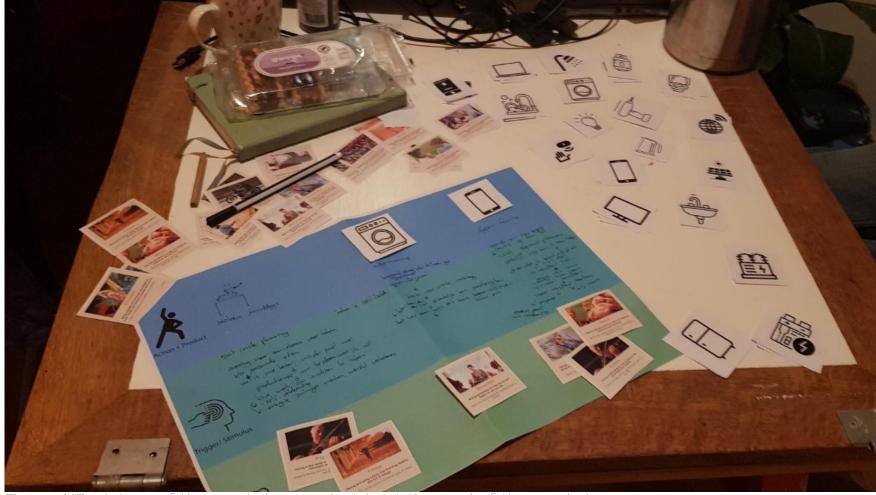


Figure 1.12: picture of the workshop materials at the end of the workshop

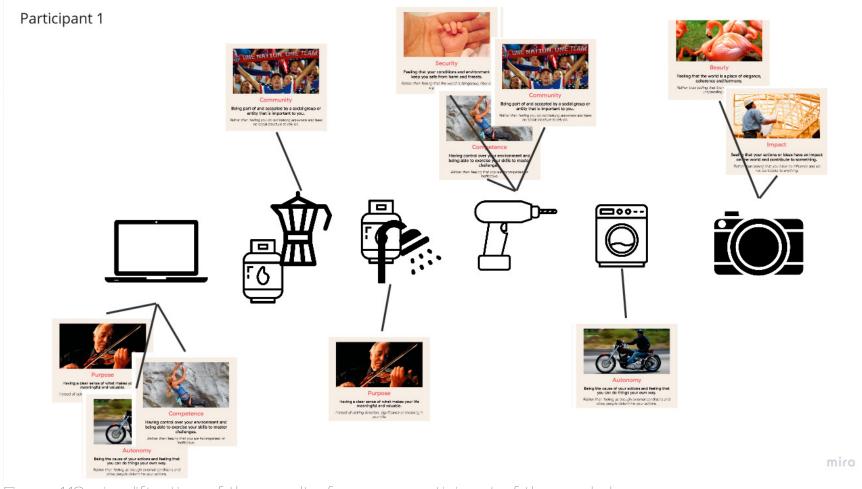


Figure 1.13: simplification of the results from one participant of the workshop.

Phase 2: Analysis

2.1 The results were more diverse and complex than I had anticipated

2.2 Analysing the user research outcomes

2.3 Additional research analysis and symposium findings

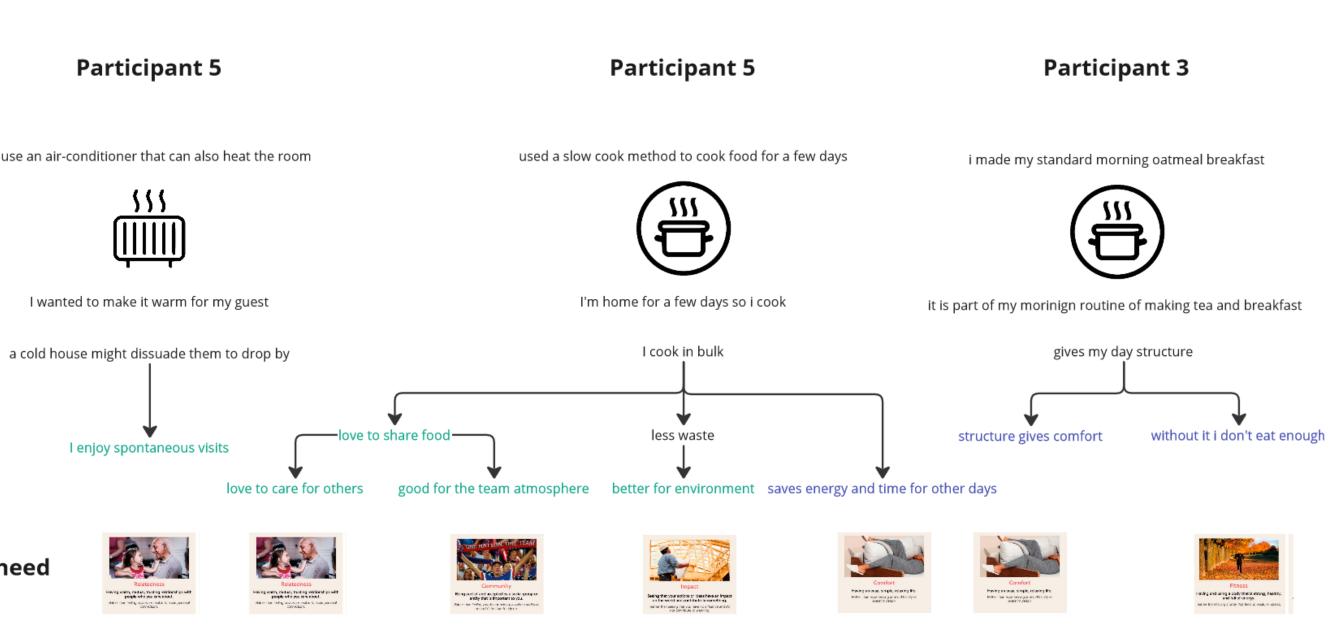
2.4 Research conclusions and insights

2.5 Choosing 4 design directions for a possible (re)design

- 2.6 Defining 4 design directions
- 2.7 Defining the design criteria
- 2.8 Optional design wishes

Chapter Introduction

Phase 2 is the analysis phase, also called 'define' in the double diamond design method. In this phase, I will analyse all of the research from phase 1 and draw relevant design conclusions that can help solve the design problem. In chapter 2.1 I will explain how the results were different from my expectations. Chapter 2.2 shows a broad analysis using word webs and details two interesting insights gained from the user research specifically. Chapter 2.3 talks about findings from other sources than my user research. Chapter 2.4 summarizes all insights gained into a few paragraphs. Chapters 2.5 and 2.6 explain how these insights led to 4 possible design directions. Finally chapters 2.7 and 2.8 detail the design criteria and design wishes for any potential redesign


2.1 The results were more diverse and complex than I had anticipated

I designed my research in a way to end up with a list of middle needs to design for. This list turned out to be too long to be useful for my design approach with well over 100 unique middle needs. I found that one product can contribute to multiple fundamental human needs, which is in line with the theory behind the 13 fundamental needs. However, since I conducted this research on a larger number of products and people, I expected to find overlap, repetition and similarity. And while there were some similarities, it was not enough to come up with a list of functions that can each of them be redesigned. One product can contribute to the same, but also to different needs between two people, and two different products could contribute to the same need for one person. Figure 2.1 shows an example of this complexity, overlap and differences.

While I would argue that preparing food is an essential function for any home, the triggers, middle and fundamental needs for cooking are so different that I cannot translate the middle needs into a short list of essential functions. This meant that the results of my research are not suitable for my intended design approach explained in chapter 0.7. The research was still very interesting, however, and so I attempted to find other insights using the data I had.

Action Trigger Middle needs **Fundamental need**

Figure 2.1. Path analisys showing the complexity of answers between products and participants and their needs

2.2 Analysing the user research outcomes

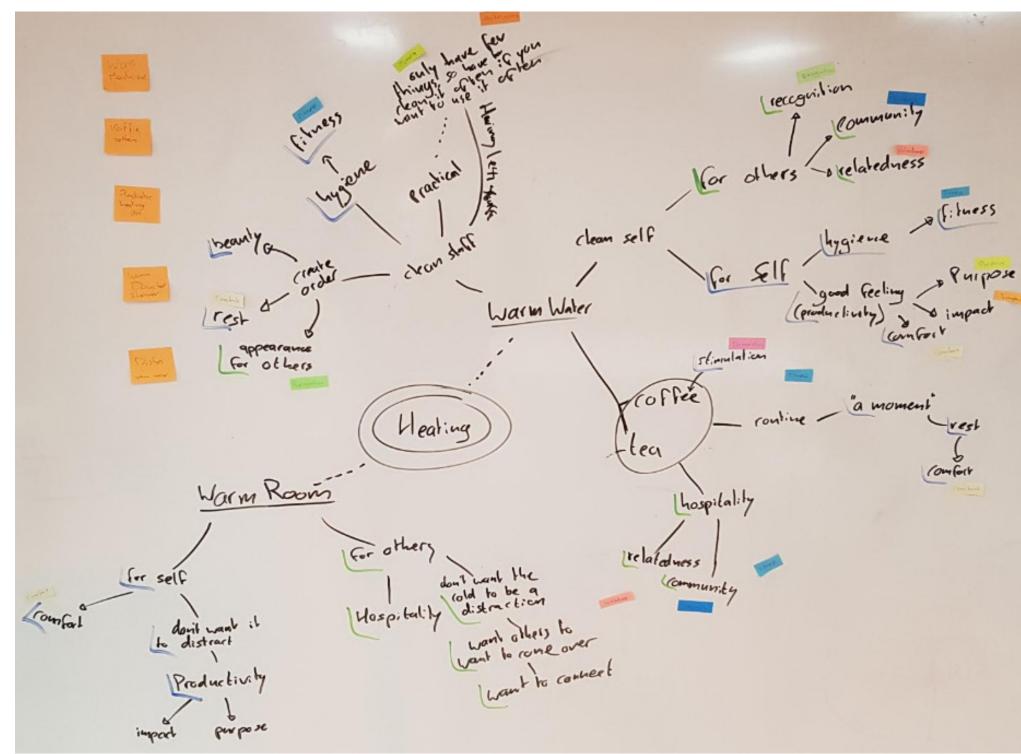


Figure 2.2 A wordweb with needs related to heating. Blue lines indicate a need related to 'self'. Green lines indicate a need related to other.

I attempted to make sense of all the data I found by writing it all down on massive whiteboards and paper. I made multiple variations and iterations of this. One of these iterations was a word web (as seen in Figure 2.2) with answers for middle needs related to heating, Starting with heating in the centre, and ending with their final fundamental needs. I did this because I discovered that most energy and CRM products we discussed in the workshops were somehow related to heating. This might have something to do with the fact that I conducted this workshop in October, a somewhat cold part of the year. But it is in line with the earlier findings in chapter 1.7.

The first, and most important insight I found was that *the biggest difference in answers* was due to a divide in motivation: Some actions people do for themselves, and some they do for others. For example, one person might take a shower to feel productive, another might take one so they smell nice for others around them. This split turned out to be roughly 50/50. To highlight this I marked all answers in Figure 2.2 related to 'other' with green, and all answers related to 'self' with blue.

Two other interesting insights I found by analysing the workshops are that a) The motivations and needs of each participant are wildly different. Even though the activities are mostly the same, the timing, effort and reasoning behind why people do these activities are very personal. And b) The timing of when people do certain things is often guided by when there is power for it. It makes more sense to shower in the evening since the solar boiler has had the entire day to warm up the water.

2.3 Additional research analysis and symposium findings

I also attended a symposium for geosciences about critical raw materials and energy. The most interesting insights from this were that:

a) there is enough money and technology to keep global warming to 1.5 degrees. Political barriers, too low investments, and slow adoption of the necessary measures prevent us from achieving these goals (van Geuns, 2022).

b) We need the majority of society on board, but there is a financial threshold. We need to make sure that those will less money are also included in the scope (van Geuns, 2022).

c) For many people and companies doing the right thing has no benefits. We need incentives to support sustainable choices (Dijkhuis and Oterdoom, 2022).

d) "Us" matters more than "them", For most people an issue needs to affect them personally before they are willing to make changes to solve it (Kleijn, 2022).

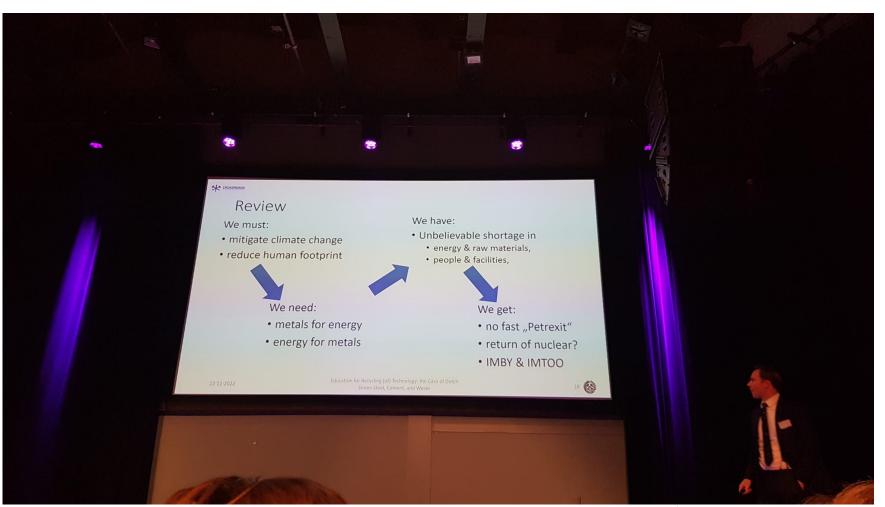


Figure 1.12: picture of a slide during one of the presentations on the symposium (Dijkhuis and Oterdoom, 2023)

2.4 Research conclusions and insights

The goal of this thesis is to redesign living in such a way that it consumes less energy and becomes less reliant on CRMs to keep global warming below 1.5 degrees. Combining insights gained from my research leads to the following conclusion:

People and companies don't take (enough) action to stop climate change because: To reach our climate goal of 1.5 degrees Celsius there need to be more incentives for people and companies to take action. The threshold is often too high to easily make a change. Most people are not personally invested enough to care enough to take action Social stigmas, prestige and peer pressure are slow forces that could work in favour of against taking action. Going local in our production would make things more personal, and would reduce our reliance on outside sources. Media and other forms of exposure are often conflicting, echo chambers, or too difficult to understand, resulting in people having a clear idea of what the problem is and what they can do to help. Many people are willing to take action and to make changes, however, the problem and solutions are often perceived as 'too big' or 'too complex', demotivating people to take action. Choice like going vegan, or getting solar panels are something often only available to privileged people with time or money to spare. People who are struggling to get by also need to b included in the scope in order to curb climate change.

y ng all	CRMs are embedded in most electronic products nowadays, and there are several reasons why people use these products and keep using them. People use CRMs because:
ב מיזה.	CRMs make their lives more <i>comfortable</i> (remote control, sensors, automated work etc). It is available (Cheap, polluting and poorly made products are pushed in advertisements making it easy for people to purchase the 'bad' thing).
or e e not	It is <i>cheap</i> (If something is made using child or unpaid labour, or done with little regard to environmental concerns, the price can be much lower, which makes it out-compete the more ethically and sustainably made products).
le are ces ed	People are <i>unaware of the presence</i> of CRMs (CRMs might as well be invisible and magical for most people. Knowing how your phone works is way too complicated for most, and these CRMs are used in trace amounts and hidden behind a nice phone casing).
be	People are u <i>naware of the CRM crisis</i> (Most people know about the climate crisis(Center For Climate Change Communication, 2021), but the CRM crisis gets very little coverage in popular media).

It is *fast* (the newest phones are much faster, but contain a lot more CRMs than old ones).

It is *cool* (the newest gadget or trend is often not good for the environment per se, but people want to fit in).

It is *necessary* (try to get a job without access to a computer, phone and internet). There is a sense of 'plenty' (If you turn on the tap, water comes out. If you turn on the heater, your house warms up. The costs come later. In a tiny house, you have to first look It is *familiar* (we are used to sending each other a text and having sensors that switch if you have enough energy or water left to take a shower. It creates a sense of scarcity on the light for us, once we are used to it it is difficult to go back, or change to something and thus makes people use resources more sparingly and thoughtfully).

new without enough incentive).

People choose the *road of least resistance* (Most people don't stop to reflect on their behaviour because they are unaware of any problems or do not wish to be confronted by their mistakes).

People feel *entitled*. (Once you have gotten a (perceived) right, people don't want to give it up. People have gotten used to their "right" of going on holiday twice a year, eating meat every day, and taking a hot shower. Telling them they can no longer do this makes people angry).

People want to be inviting to others (sitting in your own house at 18 degrees Celsius is one thing, but if you have guests over you want them to feel comfortable so you turn up the thermostat).

2.5 Choosing 4 design directions for a possible (re)design

To redesign something that will help people make better decisions regarding climate change and CRM usage it is important to keep all of these factors in mind. And play into their hand rather than against them. To stop climate change we already established that we need green solutions that don't rely on CRMs, and we need to reduce our energy demand. Our GHG emissions come from many different fields, and CRMs are incorporated into nearly every product, so there is no single thing that will solve the crisis. The scope of this project settled on focussing on the heating and cooling inside buildings, but within this scope, there are still many different routes to take. The most obvious design direction is to design something that cools or heats a home without the use of energy and containing 0 CRMs. But that is only one design direction.

Figure 2.3 shows a word web which combined the insights of the research into a couple of potential design directions. From these design directions the ones I think are the most promising are highlighted in bold. These were selected based on a combination of what the research showed to hold the most potential and what sparks my personal inspiration. So I will primarily focus on the following 4 design directions:

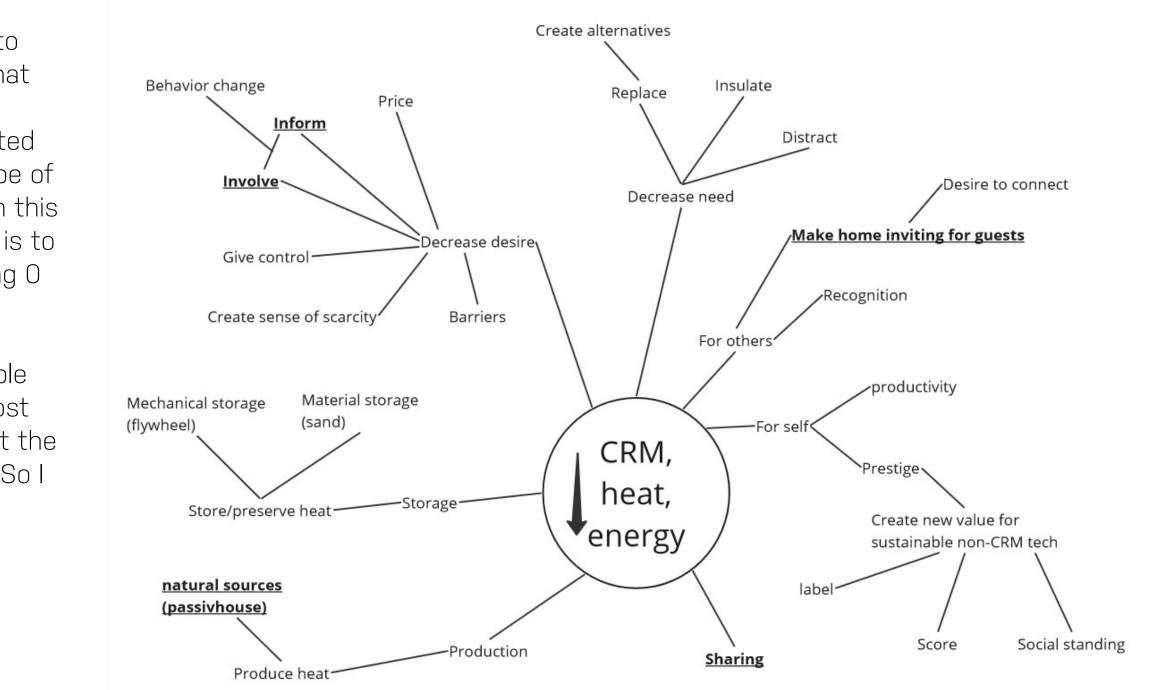


Figure 2.3 word web of potential design directions related to reducing CRM, Heat and Energy use

1. People need to be informed and involved in the climate crisis. People need to care about Each design direction does not necessarily rule the others out, and it might be possible the crisis personally and they need to know what's going on and what they can do to to come up with a single solution or a combination of solutions that play into all 4 spaces. help.People need to become more literate in the climate crisis and be given incentives to However, each design direction warrants its own ideation. I will ideate ideas for each of do the right things. In short I'll refer to this design direction as "inform". the different design directions while keeping an eye out for opportunities to combine all 4. The first design direction has 2 distinct aspects, that I believe go hand in hand. Ideating for both aspects at the same time makes the design process too complicated, so for the sake 2. People want their homes to be inviting to guests and they want to connect to people. Making their home inviting to others should be made possible, attractive, easy and of simplicity, I will narrow that design direction to 'informing' only. Only after ideation will I affordable using low-energy and low-CRM alternatives that can replace current solutions. consider whether incorporating the involvement of people into the same idea is possible.

In short I'll refer to this design direction as "invite".

3. People are living highly individualised and materialistic lives. By sharing products, and having more services and experiences instead of products we can greatly reduce our collective reliance on CRMs and energy consumption. In short I'll refer to this design direction as "community".

4. A home needs to be cooled and heated for people to be able to live in them. Heating and cooling should be redesigned to be achieved without the use of fossil energy and CRMs. In short I'll refer to this design direction as "temperature".

52

2.6 Defining 4 design goals

Each of these design directions can be written as a design goal(DG) that can serve as a starting point for ideating solutions. However, there is one single over-arching design goal that applies to them all:

"Design something that reduces the negative impact living has on the climate while making living less reliable on critical raw materials." Each of the design directions also warrants its own design goal for ideating specific ideas:

DG 2. Design something that provides low-energy and low-CRM alternative solutions that make a home inviting for guests. (In short: "invite")

DG 3. Design something that utilizes communities to create a shared economy between them. (In short: "community")

DG 4. Design something that contains 0 CRMs and has 0 carbon emissions in use that sufficiently heats and/or cools a home in the Netherlands. (In short: "temperature")

2.7 Defining the design criteria

There are 2 over-arching design criteria, that if not met will instantly reject any design idea. Design goal 3 has to meet the following specific criteria:

- 1. Does the design contribute to combating climate change?
- 2. Does the design create a lower direct reliance on critical raw materials?

Design goal 1 has to additionally meet the following criteria:

- Does the design inform the user about their own influence in the climate crisis?
- Does the design enable the user to take action without delay?

Design goal 2 must meet the following criteria:

- Does the design require less energy to operate than its alternative?
- Does the design reduce the overall energy and CRM use of the user?

- Does the design make use of the existing community of the user?
- Does the design help reduce the overall per-person use of energy and CRMs?

Design goal 4 has to meet the following specific criteria:

- Does the design contain 0 CRMs in its design?
- Does the design have 0 carbon emissions in use?

- Does the design allow the inhabitant to comfortably reside in winter and/or summer temperatures in their home in the Netherlands?

These criteria have to be met, otherwise, an idea will be rejected in its current form. N.B. These criteria will only take into account energy use and CRMs that are part of the design itself, not the indirect CRMs and energy necessary unless these indirect sources provide a significant and clear increase in overall Energy and CRM requirements.

2.8 optional design wishes

There are also some more flexible criteria, called wishes. If a design idea does not (partly) fulfil these wishes it makes one idea less desirable over another but does not automatically reject an idea. Since each idea might be better in some regards than another idea and worse in other regards, having design wishes to rank the ideas helps to choose which idea is the best overall.

Using these wishes and the Harris profile evaluation method from the Delft Design Guide (Van Boeijen et al., 2020), the best potential ideas can be chosen when there is no clear favourite. These wishes are ranked from most important first, to least important last. Some wishes are not related to the design potential but to personal constraints and the master's graduation thesis project format. The design ideally should ...

- Be achievable for me (given my personal abilities, available facilities and time)

- Have a high impact (on reducing climate change and reducing reliance on CRMs)

- Have a short timeframe (be able to have this impact as soon as possible)
- Be accessible (for the large majority of society, not just for the privileged)

- Have some human-product interaction (considering this thesis is for the master's track 'Design for Interaction')

- Be appealing (people should want this product or idea)

- Help create or deepen connection to nature (this helps to make people care more and makes them more willing to take action and more likely to make more sustainable choices)

Phase 3: Ideation

3.1 The 4 design direction concepts
3.2 The podcast was selected as the best idea based on the design wishes
3.3 Different podcast formats were generated using the SCAMPER method
3.4 Ultra Rapid Prototyping led to 3 concept variations of the podcast
3.5 Methodology and setup for testing the 3 concepts

3.6 User test results

3.7 User test feedback conclusions and take-aways for final design

Chapter Introduction

The previous phase ended with 4 design goals and their respective design criteria and wishes. For readability in this chapter, these are shortened to 'inform', 'invite', 'community', and 'temperature'. These 4 design goals are the starting point of the ideation process. Ideation is a highly iterative process with many [(re)design, test, evaluation] cycles, called iterations. Chapter 3.1 describes how the first iteration sessions led to 4 concept directions, one for each of the design goals. Chapter 3.2 details how and why the podcast idea was selected as the best concept direction. Chapter 3.3 explains how the SCAMPER method generated many variations for the podcast concept and chapter 3.4 explains the process of quickly narrowing these down to 3 concepts using ultra-rapid prototyping. Chapter 3.5 discusses the methodology behind the user tests of the 3 concepts and chapter 3.6 shows the results from the user testing. The final chapter 3.6 summarizes which insights were gained and details how the final concept will take shape.

3.1 The 4 design direction ideas

The first iteration cycle started with a general brainstorm(Van Boeijen et al., 2020) to get any initial ideas written down on paper. After that, an ideation session was held to generate ideas for each of the possible design goals. These ideation sessions used different methods. For the inform and community design goals, I only used the standard brainstorming technique, since this provided me with good potential concept directions for those two design goals; for the inform design goal a podcast, and for the community design goal a central neighbourhood energy hub.

The podcast is a way to educate people about the climate crisis and CRMs in the comfort of their homes.

The neighbourhood energy hub is an idea based around creating a single large-scale structure that contains several energy generation methods, such as solar and wind, and water collecting, filtration and solar heating systems. From this central energy hub, multiple homes can draw power and hot and cold water. Combining these systems into one reduces the amount of materials needed per home since not every home needs its own system, battery, and transformer systems. And it can be designed in such a way as to make optimal use of the available energy and water sources. Figure 3.1 shows some basic visualisations of how such a system could take shape.

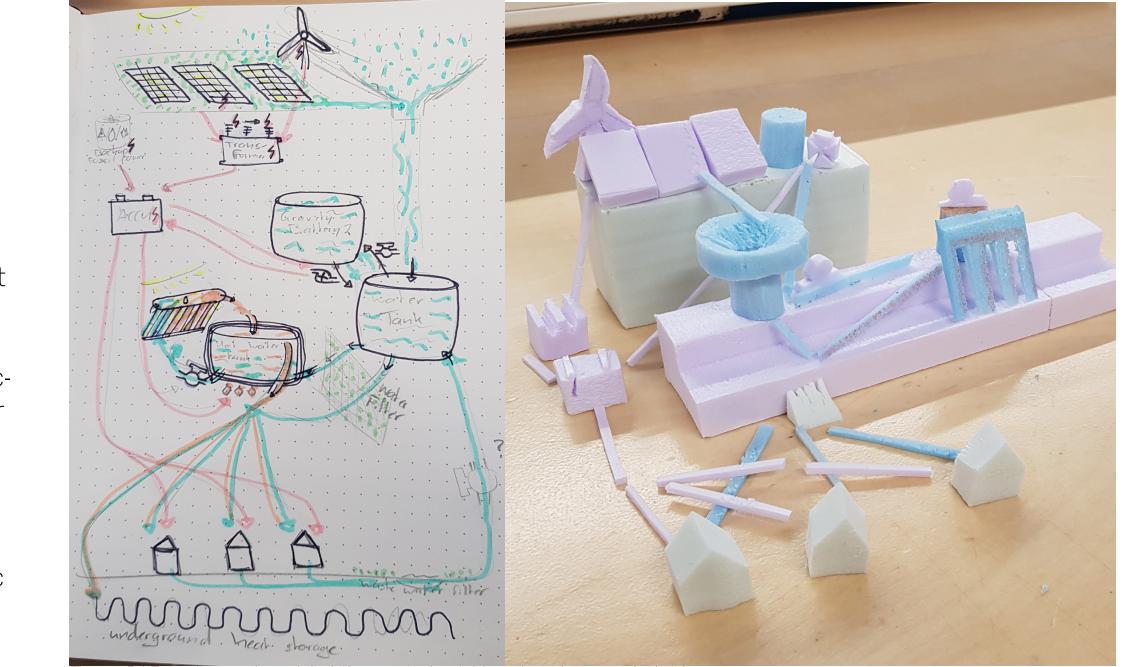


Figure 3.1 Drawing and model of the central neighbourhood energy hub idea

For the invite and temperature design goals, a standard brainstorm did not prove to be enough to generate potential good ideas. So for the invite design goal, I followed it up with a "How To" (Van Boeijen et al., 2020) ideation session with 3 fellow students (Hendrik, Mirte and Lucas). In a 'how to' brainstorm session the designer writes down a question, often starting with 'how to..' and the group comes up with as many potential answers as they can. I did this because 'making a home feel inviting' is a rather subjective goal and coming up with ideas on my own for this goal would risk me incorporating only my own perspectives and upbringing into the idea, potentially missing out on different perspectives and ideas that could work for other people. In this session, I first asked my brainstorming participants to make a word web of all of their associations around the invite design goal: Design something that provides low energy and low-CRM alternative solutions that make a home inviting for guests. From this word web, we settled on a How-To for the brainstorming formulated as: "What makes a

In this session, I first asked my brainstorming participants to make a word web of all of their associations around the invite design goal: Design something that provides low energy and low-CRM alternative solutions that make a home inviting for guests. From this word web, we settled on a How-To for the brainstorming formulated as: "What makes a space inviting?" From this, we found that an illusion of warmth is enough to make a space feel inviting as seen in figure 3.2. So we did another round of brainstorming around the How-To of: "How can you give a space (the illusion of) warmth?" This eventually gave me 8 different avenues to pursue to achieve the illusion of warmth, as seen in Figure 3.3.

Grizical Raw Materials i.e. Lithium, Platinum = time blance ~D Wet maak een Ruppe menser vunkje memories gen Geluid None varm natuurlijk I:...hb Trampoline Lo energie Planties openheid Figure 3.2 Brainstorm on the "How to make space inviting?"

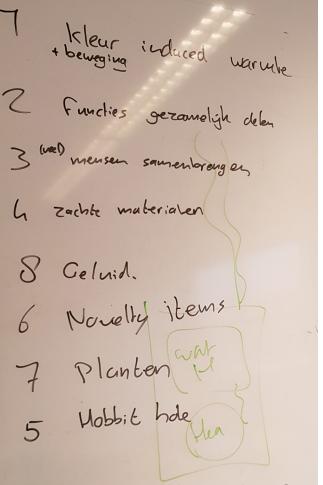


Figure 3.3, 8 potential design ideas for designing for illustionary warmth

58

For the temperature design goal I looked towards a biomimicry approach (Biomimicry Institute, 2023) for finding good ideas. Biomimicry is a method where the designer looks at certain technologies that are found naturally occuring in nature, and uses that as inspiration for a design solution for their design problem. This design goal of keeping cool or warm in different climates is something nature already achieves in plenty of different ways and I think I have a good chance of finding existing solutions in nature. I used the website AskNature.org (The Biomimicry Institute, n.d.) to look for nature-inspired existing solutions that I could adapt or that could spark my inspiration for new ideas.

I eventually found the concept direction of a camel-fur-inspired outer shell to cool a home. Figure 3.4 (Schumacher & The Biomimicry Institute, n.d.) shows the theory behind the cooling fur-inspired shell.

These ideation sessions resulted in the following 4 design directions ideas, as shown in Figure 3.5:

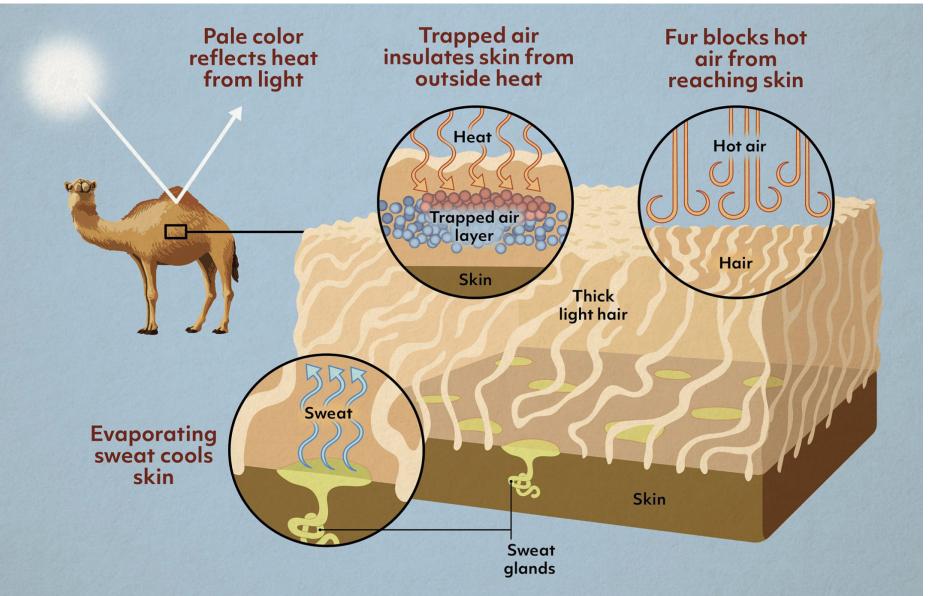


Figure 3.4. Visualisation of how a camel fur employs multiple tactics to keep cool in a hot climate (Schumacher & The Biomimicry Institute, n.d.)

Design Goal	1. Design something that informs people about their own influence in the climate crisis and enables them to take direct action.	2. Design something that provides low energy and low-CRM alternative solutions that make a home inviting for guests.	3. Design something that utilizes the community of tiny house inhabitants to create a shared economy between them.	4. Design something that contains NO ciritical raw materials for its heating and cooling (and is not fossil fuel)
Design Criteria	- Does the design inform the user about their own influence in the climate crisis?	- Does the design require fewer energy to operate than it's alternative?	- Does the design make use of the existing community of the user?	- Does the design allow the user to reside comfortably in their home both during hot summer days and cold winter days?
	- Does the design enable the user to take action without delay?	- Does the design reduce the overall energy and CRM use of the user?	- Does the design help reduce the overall per-person use of energy and CRMs?	- Does the design contain 0 CRMs?
Idea:	Audio advice CRM-fighters Low threshold, multi-faceted solution	Illusionary warmth Interactive, non-CRM solution.	Neighbourhood energy tower Technical, multi-faceted scale-able solution.	A water-fur based outer layer. Technical, multi-faceted, non-CRM solution
Short description	An audio guide (podcast) that people can listen to in their own home. Asking them to go to a certain area (cooking, living) in their home and look around what products they have. The audio guide will give them background information and tips on what the best thing for them to do now is to improve in regards to the energy transition (Energy and CRMs)	A collection of tricks and ideas that utilize auditory, visual, haptic, scent and taste perception to create the illusion of warmth in a room. For example by the use of red lights and soft surfaces. So that no energy or CRMs are needed to create the illusion of warmth.	A large tower structure is placed in each neighbourhood within it solar and wind power generator, water collection systems. Along with solar boiler and gravity water storage, water filtration and green roofs/walls. It is all linked to seasonal underground temperature buffer.	A design that can keep the inside temperature of the home a comfortable level without the use of CRMs by utilizing the concepts of trapping air, sweating and reflective colours. Might require manual labour to operate depending on the outside temperature.

Figure 3.5. Table briefly explaining all 4 design directions, along with their design goal and criteria.

-Ĉ	<u>)-</u>
\sim	

3.2 The podcast was selected as the best idea based on the design wishes

After generating one potential concept direction for each of the design goals, the next s is to evaluate the 4 concepts by the design wishes formulated in phase 2. This evaluati was done using the Harris Profile technique (Van Boeijen et al., 2020). A Harris profile is an assessment tool that visualises the performance of a product based on predetermin criteria. In this case, the criteria are my design wishes. The wishes are listed from most important on top to least important on the bottom. By putting an imaginary "pole" in the middle you can roughly estimate which way a concept direction is 'leaning'. With the top wishes adding the most 'weight' to the tilt. Each wish is then ranked on a scale of -2 to +2. If it does not achieve the wish at all 2 blocks are filled on the left side (adding 'weigh to the left side of the pole). If it achieves it somewhat poorly 1 block is filled to the left. it scores mediocre 1 block on both left and right is filled. If it achieves the wish quite we 1 block is filled in on the right. And if the wish is fulfilled excellently 2 blocks are filled in on the right. The heavier a concept is leaning towards the right (towards +2) the more favourable it is. This is a subtle and subjective way to evaluate ideas, but it gives some more clarity to quickly see which ideas are less and more favourable. Figure 3.5 shows Harris profiles of all 4 concepts. The dark grey column in the middle of each profile is thi imaginary pole visualised to make it easier to see which way a concept is leaning. From this image, it is clear that the neighbourhood energy hub concept (3rd profile) is the leas favourable since it is more left than right-leaning. The illusionary warmth and camel-fur temperature control concept profiles (2nd and 4th profile) are not strongly leaning any way and are difficult to choose between based on this profile. However, the podcast concept Figure 3.5, Harris Profiles for all 4 design directions based on the design wishes. The more the profile seems to 'lean' to the right, the more preferable the design direction is . (first profile) is leaning heavily to the right

atan		Harris Profile CRMfighters podcast	Harris Profile Illusionary warmth product	Harris Profile Neighbourhood energy towerhub	Harris Profile Fur-sweat building skin
step ion	Achievability Can i achieve a usable prototype of this within the time left of my graduation?				
ned _	Impact How much impact does it have on reducing energy and CRM use?				
e p	Timeframe How fast can this concept idea be implemented in the real world?				
o ht' If	Accessibility How accessible is this concept idea to the whole of society? (or is it only for the rich and privelledged?)				
ell	Interaction How much interaction is there between the concept idea and the user?				
!	Appeal How appealing is this concept idea?				
the is	Connect to natur Does this concept idea connect people closer to nature? (Or does it make them more invested into the climate crisis?)	re			
ist					

3.3 Different podcast formats were generated using the SCAMPER method

With the podcast selected as the final concept direction, the second iteration cycle could Substitute begin. The first step was another ideation workshop with fellow students. This time using the SCAMPER method(Van Boeijen et al., 2020). SCAMPER is a method where you look at 7 different variation areas (Substitute, Combine, Adapt, Modify, Put to other use, Eliminate, ombine Todify Reverse) to come up with original changes and alternatives to the existing idea. This is a method more suitable when an idea is already relatively well-defined. After generating ideas on sticky notes these were clustered into topics. Figure 3.6 on the side gives an impres-Adapt sion of the brainstorming session. The result of this ideation session was many different Reverse options for certain design areas of the podcast. For example differences in the tone of voice, different target audiences, accompanying the podcast with physical materials like stickers, and different topics for the podcast.

Figure 3.6 Picture from after the brainstorm of the SCAMPER method, where all ideas are clustered

62

3.4 Ultra Rapid Prototyping led to 3 concept variations of the podcast

The SCAMPER method gave me many different ideas on how to design the podcast. In order to quickly test many of these ideas without having to make countless podcast prototypes I used the Ultra Rapid Prototyping (UPR) method (Schermer, 2020). This is an extremely fast and fluid method of prototyping an idea with an emphasis on the interaction between the user and the product. In URP the designer and a few participants engage in a type of roleplaying: Multiple minute-long sketches are played out where one person 'plays' the product, one person plays the user, and other people could fill observing or context-related roles. There are three rounds of sketches and the participants swap roles between rounds so that the designer can experience their idea from the perspective of a user, of the product itself, and from an outside perspective. Within each round, there are several sketches. Each round starts with a different scenario, but within each round, the same scenario will be played at least three times, and variations can be made between each sketch based on the feedback.

Overall, the results from both URP sessions showed that all four participants preferred For this method, I won't need any elaborate props or large participant groups to quickly the interview format to listen to for longer periods of time. The storytelling from the point test different versions of the idea and adapt instantaneously according to the outcomes of of view (POV) of a product or material was also liked by multiple participants. Lastly, there each sketch. The chosen scenario is as follows: was some debate because listening to a podcast about doing the dishes, while doing the dishes yourself was liked as a format because it feels like you have a partner to do the The user has just had dinner and wants to do the dishes before going to bed. So they walk task alongside with. But the podcast will unlikely take exactly the same amount as the household task.

to the sink and start doing the dishes while listening to the podcast. The podcast informs them about their energy and CRM use and gives them tips on what to do in their own life.

All I need are some foam blocks and a sink, with this the user can simulate doing the

dishes without actually having to do the dishes. This way no water or soap will be wasted, and the foam blocks give the dishes-doer something to hold and distract them, just as doing the actual dishes would. These foam blocks are taken from a bin with waste foam in the workshop of my University.

I will conduct two separate URP sessions each with 2 student participants. I need 2 participants because one podcast variation is an interview and thus I need one person to do the dishes, and two people to improvise a podcast interview. Usually, one URP session is enough to get desired results, but by doing two sessions I could see if certain outcomes were specific to the participants. If outcomes were consistent between the two sessions I could be a little more certain that the findings were not outliers.

Eventually, I settled on 3 potential formats for the podcast to test further: **Storytelling** from a product point of view, an interview with an expert, and the podcast-along.

3.5 Methodology and setup for testing the 3 concepts

After the URP sessions, I ended up with 3 different formats for my podcast. For each of interview with one person acting as the 'expert'. The Storytelling POV was me reading a these formats, I made a low-fidelity prototype that I then tested with 3 of my initial target pre-written script to the participant in person. The Podcalong was an audio recording of users. Unfortunately, I could not do this test with all 5 of my initial users since some of me doing the dishes at home while giving some tips and advice on sustainability related to my participants no longer had the time to help with my thesis or were out of the country. doing the dishes. Considering how long finding tiny house participants took at the start of this thesis I decided to not look for more participants. Instead, I will accept that I only tested these The difference in delivery will make it harder to conclusively tell which format is preferred designs with 3 people. According to Faulkner (2003), 5 participants, will find a minimum of since not only the format but also the method of delivery was different. However, I clearly 55% of the usability problems and an average of around 80%. With only 3 participants I pointed out to the participants at the start that each prototype had different delivery and will thus likely not find all and possibly not even the majority of all usability problems. But quality. I asked them to keep in mind that this is a low-fidelity prototype and many options finding all usability problems is not the aim of this thesis, nor of this user test. This thesis are open at this point. And I specifically asked the participants if they could also tell me aims to gain proof of concept and this test is here to quickly narrow down my possible if the delivery and the quality affected their opinion of the prototype. In a way, the fact design options. Thus, considering my tight schedule, I deemed 3 user tests to be enough that all prototypes were different and of somewhat low quality can also play in my favour for me to get useful and actionable feedback for the last round of iterations. because a too-detailed and high-quality prototype can often make the user feel like a proto-Each of the prototypes was presented in a slightly different way. The interview with an type is already fixed and prevent them from freely giving feedback and thinking outside the expert was an audio recording of somewhat poor quality of two people improvising an box.

3.6 User test results

Interview expert

Description of prototype A short recording of an improvised interview between an expert on sustainability (played by a fellow student) and an interviewer who will ask the questions from an 'average Jane' perspective, trying to understand the science and trying to learn what the best practices are.

Notes and
questionsThe expert in this prototype was not an actual expert,
and the facts and stories told were improvised on
the spot. So the content of the podcast is not to be
believed, but feedback on the content, format and listen-
ability of the format is appreciated

SummaryThe quality of the recording was poor and the volumeof thewas very low, making it difficult to hear over the soundsfeedbackof doing the dishes.

given by the Listening to these two people talk was a pleasant expeparticipants rience as it felt 'gezellig', lively, and was good entertainment. I would listen to this type of podcast easily and for a long time.

Storytelling POV

A short verbal story, narrated by me from a pre-written script. The story follows the lifecycle of two different dish brushes, one made from bamboo and one made from plastic. It personifies the material and gives them human-like perceptions and emotions

The lifecycle of the products was lightly researched but should not be taken as hard truth. Any feedback on the storytelling, tone of voice and listenability of the podcast is appreciated.

The tone of voice was a bit childish. However, I was really intrigued by the first story, because I wasn't sure what was coming next and the storytelling was very visual. But after the first story, the second felt not so interesting because the novelty had worn off. It felt like there was a strong judgement value given to one of the stories over the other. I'd listen to this podcast maybe once, but If I want to listen to storytelling I'd pick more interesting stories. This podcast stands or falls by the quality of the story writing and storytelling

Podcalong

A short audio recording of me doing the dishes. Sounds of running or splashing water and the clinking of the dishes can be heard in the background while I give commentary on how I do the dishes, my actions, and my thought process and I give advice on actions the listener can take when doing their own dishes

The facts in this podcast are not researched and should be taken with a grain of salt. The audio quality, opinion on background noises and the listenability of the format is appreciated.

This was fun to listen to. But I'm not sure if I'd pick this myself to listen to. The tips were very useful and directly related to the task of doing the dishes, but I now have wet hands I cannot execute most of the tips you give me. So I feel a bit frustrated. It did make me actively think about how I actually do things. The background noises of doing the dishes can easily get too loud, but overall it was fun to do the task 'together'

3.7 User test feedback conclusions and take-aways for final design

The 3 user tests gave me largely consistent results and feedback; Listening to a conver-To conclude: I will drop the idea to make a podcast about an activity perfectly align with sation is a lot easier than listening to a single person. Giving direct tips is nice and makes doing that same activity. Storytelling might still be used but the tone of voice should be the listener think. But by giving tips during household activities, the listener is not always more informative and less childish. It should also be a small, and separate part of the in a position to execute the advice directly. The storytelling was fun as a gimmick, but will podcast. This will allow me to learn and get better at storytelling but at the same time, it is easy to skip if people don't want to listen to this. The main bulk of the podcast will be an unlikely hold for a long podcast with many episodes unless the quality is extremely good. The impact and usefulness of the story were also rated the least out of the three formats. interview with an expert, where I as the interviewer have the responsibility to ask the right Doing the activity while listening to a podcast about that same activity was perceived as questions and make sure that what the experts tell is clear to the listener and that the fun. But was not very practical, because people usually pick the podcast they want to topics are not only informative but also actionable. To help with making the podcast more listen to based on what they feel like listening to. It's unlikely to perfectly align with the actionable I will end the podcast with a final part where I give conclusions about the interactivity and their desire to listen to that specific episode. Plus the duration of the podcast view and list the relevant actions that the listeners can do. and activity will unlikely align. Interviewing an expert while they are doing the dishes might also be a fun format (though more difficult from a production point of view). The activity of As a final showcase prototype, I will produce a pilot episode for the podcast that has doing the dishes might be a little bit too loud for the listener to hear the podcast, perhaps elements of all three tested formats, with the main portion being an interview format. The cooking or cleaning might be a more suitable activity to choose topic for the episode will be cooking since I think it is more suitable for a pilot episode.

As a final showcase prototype, I will produce a pilot episode for the podcast that has elements of all three tested formats, with the main portion being an interview format. The topic for the episode will be cooking since I think it is more suitable for a pilot episode. This is because cooking usually takes a bit longer than doing the dishes, and cooking is considered - by the people I know - to be a more fun and interesting topic to talk about, making it more likely people will listen to this pilot episode. I made a high-fidelity prototype of this final design that I presented to my participants. The details of the final design are described in phase 4

Phase 4: Finalize

4.1 Why the podcast medium is a good fit

- 4.2 Final concept design details: "Podcast Climate Critical"
- 4.3 Podcast script
- 4.4 Final prototype
- 4.5 Evaluation of the final prototype podcast
- 4.6 Recommendations and
- suggested adaptations for the podcast

Chapter Introduction

Phase 4 is the fourth and final phase of the double diamond design method. In this phase, I will finalise the chosen concept details in chapter 4.11 explain why the podcast medium is a good fit for my design goals. Chapter 4.2 describes the final design details. Chapter 4.3 contains the script of the podcast episode. Chapter 4.4 contains a link to the showcase podcast episode and chapter 4.5 evaluates the final prototype based on the 4 design criteria. This phase ends with final recommendations to optimize the podcast further in chapter 4.6

4.1 Why the podcast medium is a good fit

Podcasts are a relatively new media form, the term popped up in 2004 (Kalsey, 2022) impact requires a person-by-person, a need-by-need, and a product-by-product approach. A and it has steadily increased in popularity since then (Google Trends, n.d.-a). A podcast podcast can have many different episodes that each address one specific topic. One need, is a pre-recorded audio media form that is very suitable for our modern lifestyles due to one product, one technology, or one behaviour. By making a different episode for each of its on-demand, diverse and combinable nature. Podcasts are most often listened to while these topics there is more time to dive in-depth and discuss nuances, caveats and tips doing a household activity (Tobin, 2022), making them very suitable for my thesis. Stephani about each of these. This allows for a case-by-case approach, eventually, all these steps add up to a large impact. A visualisation of this hypothetical reduction through multiple (2021) pointed out 4 different factors of how podcasts can cater to different needs of an audience: The edutainment factor to educate and entertain people; Storytelling to make interventions, each from one podcast episode is seen in Figure 4.1 time fly; A social factor to make listeners feel connected; and finally a multi-tasking factor How the podcast could help reduce CRM and Energy use for during monotonous and routine tasks. My podcast proposal is primarily focused on the edutainment factor, but it also tries to include storytelling and multi-tasking factors. 100 90 Podcast listeners are usually more curious and open-minded, and have a higher need for 80 information according to Tobin (2022), making podcasts an excellent medium to fit my 70 design goal, and will not likely fall on deaf ears. However, I have learned from experience 60 50 that after listening to a long interview it can sometimes be difficult to pinpoint what the 40 most important things were. For this reason, I will make sure to add a final, short, easy-to-30 remember conclusion to the end of the episode. 20

My research found that reducing energy and CRM use is a complex task since every person has different products and habits for different needs. Even in a tiny house, there are many different products present that use energy and CRMs, but in tiny houses, there are at least fewer of these products. If you live in a smaller house, you'll generally need less energy and fewer materials. So going tiny is a great step towards reducing your energy and CRM use. However, this will not get your use down to O. Achieving a close-to-O

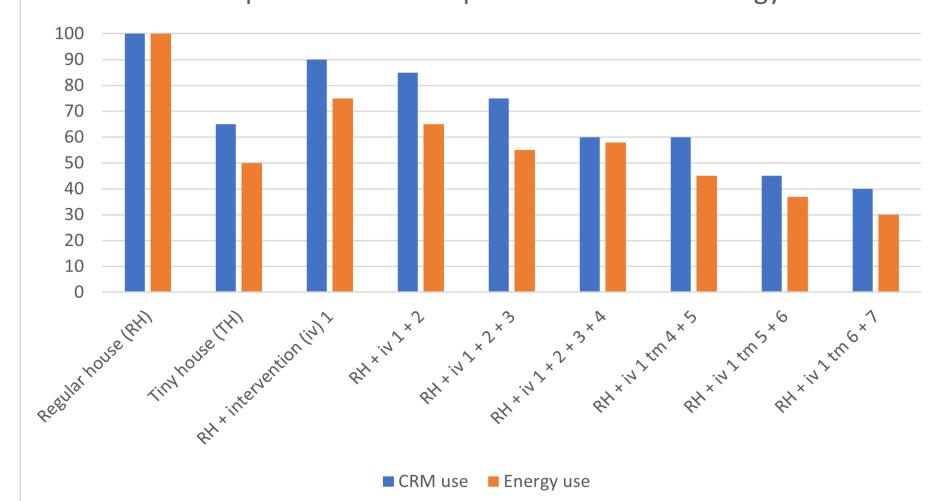


Figure 4.1, visualisation of the hypothetical effect of the podcast on CRM and Energy use in a regular house compared to that of a Tiny house.

4.2 Final concept design details: "Podcast: Climate critical"

"Climate critical" is my final concept design. Climate critical is a podcast that informs people on what actions they can take to help fight climate change and reduce their CRM dependency.

Each episode is cut into 3 parts. Of roughly 10 - 20 - 5 minutes. Each episode will be centred around a simple task the listener can do in their home, such as doing the dishes, cooking, taking a shower, etc. The showcase episode will be about cooking and food.

The first part is 10 minutes of me introducing the topic. I'll give the listener some basic facts. This is the space where there is room for storytelling experimentation.

The second part is about 20 minutes of me interviewing a relevant expert. I'll play the part of the average Jane and ask the expert to explain things as uncomplicated and useful as possible.

The third part is about 5 minutes of me giving a conclusion of the interview and practical tips on what the listener can do to help fight climate change.

4.3 Podcast script

TRAILER:

Hello and welcome! I'm Judith Meijer, the host of climate critical! A podcast about sustai ability, energy, critical raw materials and the wicked complex problem of the climate cris It's easy to get lost in the whirlpool of conflicting information, greenwashing and false promises surrounding sustainability. Through this podcast, I hope to teach you to be mo critical towards governments, companies, and yourself and arm you with a better under standing of the complex problems and what actions you can take right now. Episodes s with a short introduction to the topic, followed by an interview with an expert, and at the end, I'll summarize and end with practical, actionable advice and conclusions. I'll provide links to sources in the description. I hope you enjoy it, and let's get climate critical toget

Part A: Introduction

Hi and welcome to climate critical! I'm Judith, your host for the show. This is my first podcast episode, and this episode is a showcase for my master's graduation project for Design for Interaction at the Technical University in Delft, the Netherlands.

Why this podcast? We as humans emit way too much greenhouse gasses for the earth balance out, and that's why the climate is changing. This is due to many different facto but can in essence all be boiled down to energy use and agriculture. The amount of stu and food we produce and consume is huge. It is simply not sustainable anymore. There many things we need to change, if we want to keep the climate livable for us humans.

iin- sis.	Through this podcast, I hope to teach you about the climate crisis, and how it's a very complex problem. And hopefully make you more critical towards the plethora of green-washing, good intentions and able to filter out the actual sustainable actions. Each episode will discuss a different topic. After this introduction part I have a discussion with an expert
ore r- start he	to look at the data and the science behind it and have them answer some questions. I end the episode with practical tips and conclusions that you can actually use in your everyday lives.
ther!	One of the biggest impact areas is cooking and food, today's episode! We all need to eat, so even if you never cook, you are still dependent on cooking. Cooking accounts for about 3.7% of our global GHG emissions. That's not even considering the impact of the food itself, which contributed around 18.4% of global GHG emissions in 2016. So it is a good topic to dissect for this first episode.
r h to prs, uff	Cooking has a significant impact in terms of GHG emissions, but why? Do we cook too much? Or just inefficient? Or is it just a necessity we can't get around? Is induction cooking superior to electric or gas stoves? Does the kind of food matter? Or the materials of the stove and pans?
are	The answers to this are different for different areas around the world. We'll be discussing a relatively wealthy, western European cooking perspective. But for now, let's dive into the second part and let's ask an expert.

Part B. Interview.

What are your name and your pronouns?

What do you do, and what is your area of expertise?

What is the impact of cooking on the climate?

Which part is responsible for the most GHG emissions? Is it the energy use, the manufacturing and materials, recycling, transport, our behaviour, or the food itself?

Which is better: Induction or gas stoves?

How much of this is the responsibility of the consumer, and how much of governments and companies?

What are the best habits we can teach ourselves to improve our cooking?

That was all for this episode. I hope you learned something new, and have a better under-Part C: Conclusions. That was a lovely interview, and I learned a lot. But I know from experience it's hard to filter standing of what you can do. Links to all the sources can be found in the description, and and remember the most important things after listening to a long interview. So I'll summaif you have any feedback, tips, or requests, let me know via the link in the description. Thank you for listening to this episode of climate critical! rize the key points for clarity.

We've established that the biggest impact is in what you eat, not in the cooking. Single best thing: Less meat, the smaller animal is better. Next best things: Less dairy, and less waste.

In the supermarket, be aware of what you buy, and think about it. Sometimes you might not know for sure which s the best choice, but be aware of the tradeoffs. In general,

products that are in season, are locally grown, and are not processed are the best foods to buy.

For cooking, green energy production is needed, if our energy grid is fully sustainable, induction will be by far the better option over gas.

Be creative in how you cook. Plan ahead, use leftovers, freeze food before it goes bad, and be more efficient in your energy use.

Governments should have a guiding role: support good production, and set rules to prevent bad production. Companies have the means actually to change the systems for the better. And consumers can use the power of choice to change the demand, which again can stimulate the companies to change for the better and you can use your power to vote for leadership that will make those sustainable rules for companies are in place.

So, think about what you eat, eat less meat, less dairy, and create less waste. Be creative in how you cook and use the power of your choices. And don't forget to have fun.

4.4 Final prototype

The audio file of the podcast is added to the repository of the TU Delft along with this thesis. The showcase episode can be listened to on Spotify by searching in the podcast section for:

"Climate Critical; Cooking and Food with Yvette Sweringa."

or via the following links:

https://open.spotify.com/episode/6XH2jzug1PaBHyEUlhbcPQ

https://sptfy.com/NfyY

Or using the QR code below:

CLIMATE CRITICAL

Climate Critical

By Judith Meijer

Climate critical is a podcast about sustainability, energy, critical raw materials and the wicked complex problem of the climate crisis. It's easy to get lost in the whirlpool of conflicting information, greenwashing and false promises surrounding sustainability. Through this podcast, I hope to teach you to be more critical towards governments, companies, and ...

See more

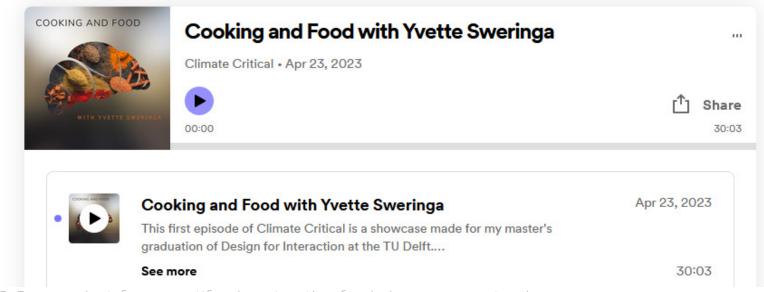


Figure 4.2 Screenshot from spotify showing the final showcase episode

4.5 Evaluation of final prototype podcast

Phase 3 delivered 4 design criteria for my design. Here I'll list them again and answer briefly if my design is successful in achieving them.

1. Does the design contribute to combating climate change?

Yes. It discusses clear contributors of GHG emissions and educates people about the 4. Does the design enable the user to take action without delay? crisis, their personal impact and gives them actionable tips to reduce their impact.

2. Does the design create a lower direct reliance on critical raw materials?

No. Direct CRM needs are not reduced. By adding a podcast to a podcast platform, which people listen to using their technological streaming and audio devices, I and the listeners used a lot of CRM-containing materials. I did however not create a new product or source of CRMs. This episode did not discuss CRM use, since the expert I interviewed had no expertise in this field. Another episode could interview another expert that would be able to discuss the topic, but this showcase episode did not succeed in giving the listener actionable advice on reducing CRM reliance.

3. Does the design inform the user about their own influence in the climate crisis?

Yes. The prototype podcast gives a wealth of information, backed up by papers, statistics and critical discussion. But since influence differs per person the information is still somewhat generalized rather than discussing exact personal influence.

Yes. The final part of the podcast summarizes the in-depth discussion and gives the listener actionable tips.

4.6 Recommendations and suggested adaptations for the podcast

I want my podcast to achieve a few specific goals: Give easy-to-understand information, Since I am looking for specific information, another way to achieve these goals is to search explain the complexity of the climate crisis problems, set clear priorities, and give actionfor this information myself. Looking at papers, books, videos, and talking to experts off-podcast. Then, invite a friend over with whom I can discuss these topics in a friendly, yet able advice to the listener. critical way. This will make it easier for me to discuss more topics combined in a single episode and still gives the listeners a conversation between two people to listen to instead I tried to achieve this around a certain household activity per episode and finding an of a monologue. This will however probably increase the amount of work needed for expert to talk about that activity. Finding a person who is an expert in energy, materials and sustainability is a hard task to begin with, but one that is also specialized in a certain each episode, but make it easier to share sources with the listener, and a good dynamic household activity is nearly impossible to find. The people I found that might be suitable between myself and my friend could make the podcast more enjoyable to listen to.

experts for the podcast didn't have the exact expertise I was looking for.

To achieve all of these goals, more episodes for the podcast are needed. One episode could be for discussing energy use, one for material use, and perhaps another for behavioural change. This way I can find a relevant exert for each topic, and it will prevent me from having to skip important aspects.

Phase 5: Wrap-up

- 5.1 Reflection on the project and field
- 5.2 Discussion
- 5.3 Conclusion

Chapter introduction

In chapter 5.1 I will reflect on my journey. Reflect on the results and on what I have learned. I will briefly discuss potential implications for the field and what changes I believe can help make industrial design engeneering(IDE) students better prepare for the future. Chapter 5.2 discusses the results in more detail, why the results were different than intended, and what further research could help shed more light on unanswered questions. The final conclusion chapter 5.3 briefly summarizes the problem, the research and the final results.

5.1 Reflection on the project and the field

At the start of this project, I hoped to lay out a theoretical design of a house that We have an enormous task ahead of us to stop climate change and achieve net-zero emissions in 2050. We need universal systems, benchmarks, targets, certifications, rules and contained no CRMs and needed a tiny amount of energy for household tasks and temperregulations, and open-source resources and research so that all systems can together ature control. Whilst this goal should continue to be sought, the scope was much too large for a 100-day Master's graduation project. I do still believe a home can be designed in form a new circular economy. But there is hope. The European Commission's Net Zero such a way, but it would require a lot more research and work. First of all, such a research Industry Act (2023), and Critical Raw Materials Act (2023) show that serious effort is project needs work in redesigning many different technologies, such as energy generation being put towards regulations that enforce and ensure a sustainable future. With these and storage, heating water, heating and cooling spaces, cleaning, preserving and preparing EU-wide policies now taking shape member states will have to follow and eventually, busifood, lighting, and re-thinking the use of sensors and 'smart' systems. These need to be nesses will need to adapt or move out of the EU. Companies that best adapt towards a net-zero future are the ones that will eventually outlast their competition. Our educational based on our human needs and available local resources. To complement this it needs to be paired with work in human behaviour - changing the mindset and lifestyle of people, systems should also follow along with these transitions. And while Industrial design engigovernments and businesses to get them to buy fewer products, become less digital, neering's (IDE) slogan is: "Design for our future", most of what I've learned here is how to design new things that require new energy and materials to produce and operate. Some share more and have a mindset that is centred around scarcity and balance rather than abundance and desires. The podcast from this thesis represents the 'design' output which thought is given to the end of life but a truly circular design is not enforced and rarely aims to achieve some parts of both of these aspects. Via this podcast, new (or old), low even mentioned. We need to move completely away from this linear design thinking. IDE CRM technologies with more informed design approaches, can get a platform and through needs to change fundamentally towards a more circular design thinking. We should stop the discussion and interview, I hope to make a small step towards changing the mindset designing new smart things, and start smartly re-distributing what we already have. If we train our designers of the future to design linearly, we are hindering the move towards a and lifestyle of the listener. circular economy. We should invest in teaching the designers of the future to design for circularity.

To aid with this objective one possible solution might be that IDE adopts 4 new master tracks to replace the current ones: Track 1: Strategic Circular Business Design. SCBD will look at changing the industry: how

Track 1: Strategic Circular Business Design. SCBD will look at changing the industry: ho to transform businesses to make them circular and sustainable, both from a business, customer and environmental perspective.

Track 2: Closed Loop Product Design. CLPD will specialise in the practical elements of circular production. How to close the loop? Which materials are sustainable, how to make products long-lasting and repairable(design for disassembly), and how to upcycle the end-of-life and waste products?

Track 4: Design for Upcycling of Existing Products. DUEP will focus on finding new opportunities for products that are already created. And how to get current waste streams back into the production cycle.

With these 4 new master tracks I believe that IDE designers will be better prepared for the future of design and can have a big positive impact on the world.

The green energy transition is unachievable due to our high energy demand and Perhaps a bottom-up approach could be more effective: Participants are asked to current green energy technology's over-reliance on CRMs. I sought to find opporlive for a short time in a house with no functions. Adding one function at a time tunities in the built environment to reduce our energy and CRM use. I conducted until a satisfactory living standard is reached. But this would be a topic for further research intending to compile a list of needs-based functions that a home needs research. to have. These functions can then each be redesigned to be less energy and The long list my research produced still proved to be valuable, but it required a CRM-reliant. The list my research produced was too long to be useful for effective case-by-case approach. This was attempted by creating a podcast that could redesigns. This is in line with the theory of 13 fundamental human needs (Desmet allow for many different episodes which could each address a single topic. This is and Fokkinga, 2020), which states that although fundamental, human needs differ somewhat of a band-aid solution, and not addressing the problem by its roots. In from person to person and one product can fulfil multiple needs. I had expected addition to that, the impact of the podcast is difficult to estimate since its effectiveness depends on the quality of the podcast and its reach. If only a few people that since my approach looked at a larger number of products in a single context, that the needs would be repeating and similar, leaving a small number of essential listen to the podcast the impact will likely be limited. The podcast however is a needs that a home should fulfil. This turned out to not be the case. Considering design output that can have immediate effects, as it considers what is already with only 5 participants I found over 100 different needs, conducting this research there and suggests better alternatives that are currently available. So it is a with more participants will not likely come up with a shorter list of needs. However, suitable solution to bridge the gap while new green non-CRM energy technologies a large-scale execution of my research could uncover new insights and patterns. are being researched and developed. When these technologies are brought to the That would require a lot of time and produce a very large dataset. So I propose market, this podcast can give them a platform to help with faster adoption of the using a different research approach to arrive at a list of essential home functions. new technologies.

5.2 Discussion

European climate goals to limit global warming to 1.5 degrees Celcius are unachiev-Further research is needed to compile a more suitable list of essential functions able in their current form because current green energy technologies needed for for homes in the Netherlands. To reduce our energy and CRM use in the built envithe energy transition rely too much on critical raw materials (CRMs). This thesis ronment, a shift in the consumer's mindset and a redesign of our technologies are needed. Tiny houses are a great inspiration and show that we can live comfortably sought to design something that reduces the negative impact living has on the with less energy and materials. This thesis looked at tiny houses as a springboard climate while making living less reliant on critical raw materials. Literature research showed that in the context of buildings, space heating and water heating are and example of how we can live more consciously and from a mindset of scarcity the biggest uses of energy in Europe. CRMs are found in many different products and balance instead of abundance. As a result, I designed and recorded a podcast in homes, but primarily in electronics. This includes energy generation technolothat can discuss the complexity of the climate crisis while addressing the complicated human needs behind current CRM-dependent technologies. This podcast gies such as solar panels, energy storage technologies such as batteries, entertainment technologies such as computers, but also other technologies such as hopes to contribute to shifting the mindset and lifestyle of the listener to a more boilers, pumps, ventilators and sensors. My research found that the link between sustainable one. human needs and current technologies in homes is a diverse and complicated one.

5.3 Conclusion

Bakker, C., Den Hollander, M., Peck, D., & Balkenende, R. (2019). Circular Product Design: Six Americas, September 2021. Center for Climate Change Communication George Mason University Foundation. Retrieved March 15, 2023, from https://www. climatechangecommunication.org/all/global-warming-six-americas-2021/ Yale University and George Mason University. New Haven, CT: Yale Program on Climate Change Communication. BBC. (2020, April 19). David Attenborough: "This is the last chance" to address climate Department of Energy Genomic Science program by Biological and Environmental Research Information System (BERIS). (2011). Diagram of the carbon cycle (NASA, Ed.). Biosphere solar. (n.d.). Biosphere Solar – a circular revolution in solar energy. Retrieved NASA. https://earthobservatory.nasa.gov/features/CarbonCycle Desmet, P. (2022). Design For Emotion [Course manual: ID5564]. TU Delft, Faculty of Bloomberg. (2015, September 23). The World's Smartest Office Building Knows Design Engineering. Desmet, P., & Fokkinga, S. (2020). Beyond Maslow's Pyramid: Introducing a Typology of Thirteen Fundamental Needs for Human-Centered Design. MDPI. https://www.mdpi. Boehm, R., Wilde, P., Ploeg, M. V., Costello, C. M., & Cash, S. B. (2018). A Comprehensive com/2414-4088/4/3/38 Desmet, P., & Fokkinga, S. (2021). Human Experience Catalog : Six typologies of human experiences (4th edition). ISBN/EAN 78-94-6384-210-5 Boyer, M. N. (1951). A Day's Journey in Mediaeval France. Speculum, 26(4), 597–608. Dijkhuis, R. J., & Oterdoom, H. (2022). (n.d.). Education for recycling (of) Technology: the case of Dutch green steel, cement, and waste [Presentation]. International Symposium: Bressanelli, G., Saccani, N., Perona, M., & Baccanelli, I. (2020). Towards Circular Economy Crossroads, Pave Your Own Path - Mijnbouwkundige Vereeniging (TUDelft), Delft,

Addressing Critical Materials through Design. World Scientific Series in Current Energy *Issues*, 179–192. https://doi.org/10.1142/9789813271050_0009 change | BBC [Video]. YouTube. https://youtu.be/2PRJL07-WK0?t=496 April 4, 2023, from https://www.biosphere.solar/ How You Like Your Coffee. Bloomberg.com. Retrieved April 24, 2023, from https://www. bloomberg.com/features/2015-the-edge-the-worlds-greenest-building/ Life Cycle Assessment of Greenhouse Gas Emissions from U.S. Household Food Choices. Food Policy, 79, 67–76. https://doi.org/10.1016/j.foodpol.2018.05.004 https://doi.org/10.2307/2853052

in the Household Appliance Industry: An Overview of Cases. *Resources, 9(11)*, 128. https:// doi.org/10.3390/resources9110128

Center For Climate Change Communication. (2021, September). Global Warming's

5.4 References

European Commission. (2020a). Study on the EU's list of Critical Raw Materials (2020).

Netherlands. https://mv.tudelft.nl/events/symposium/

European Commission. (2020b, September 3). *Critical Raw Materials Resilience: Charting a Path towards greater Security and Sustainability*. European Economic and Social Committee. https://www.eesc.europa.eu/en/our-work/opinions-information-reports/ opinions/critical-raw-materials-resilience-charting-path-towards-greater-security-andsustainability

European Commission. (2021, March 30). *European Commission and IEA pull together for net-zero*. Retrieved April 24, 2023, from https://commission.europa.eu/news/european-commission-and-iea-pull-together-net-zero-2021-03-30_en

European Commission. (2022, September 14). *Critical Raw Materials Act: securing the new gas & oil at the heart of our economy: Blog of Commissioner Thierry Breton*. European Commission. Retrieved February 20, 2023, from https://ec.europa.eu/commissio presscorner/detail/en/STATEMENT_22_5523

European Commission. (2023). Critical Raw Materials: ensuring secure and sustainab supply chains for EU's green and digital future. In European Commission. Retrieved April 4 2023, from https://ec.europa.eu/commission/presscorner/detail/en/STATEMENT_22_5523

European Council. (2022, July 29). *Fit for 55: how the EU plans to boost renewable energy*. https://www.consilium.europa.eu/en/infographics/fit-for-55-how-the-eu-plans-to-boost-renewable-energy/

Faulkner, L. (2003). Beyond the five-user assumption: Benefits of increased sample sizes in usability testing. *Behavior Research Methods Instruments & Computers, 35(3)*, 379–383. https://doi.org/10.3758/bf03195514

Favi, C., Germani, M., Landi, D., Mengarelli, M., & Rossi, M. (2018). Comparative life cycle assessment of cooking appliances in Italian kitchens. *Journal of Cleaner Production*, *186*, 430–449. https://doi.org/10.1016/j.jclepro.2018.03.140

Foote, E. (1856). Circumstances affecting the heat of the sun's rays. *The American Journal of Science and Arts, 22*, 382–383.

Freedman, P. (2005). Spices and Late-Medieval European Ideas of Scarcity and Value. *Speculum, 80*(4), 1209–1227. https://doi.org/10.1017/s0038713400001391

	Ganbold, S. & Statista. (2022, April 29). <i>Coconut production APAC 2020</i> , by country. Statista. Retrieved March 28, 2023, from https://www.statista.com/statistics/661690/asia-pacific-coconuts-production-by-country/
	Google Trends. (n.da). <i>"Podcast" search term.</i> Retrieved February 21, 2023, from https://trends.google.com/trends/explore?date=all&q=tiny%20house,small%20house
	Google Trends. (n.db). <i>"Tiny house vs small home.</i> " Retrieved February 21, 2023, from https://trends.google.com/trends/explore?date=all&q=tiny%20house,small%20house
on/	Grant, A. (2021, June 19). <i>Strawberry Harvest Time - How And When To Pick Strawberries</i> . Gardening Know How. Retrieved March 28, 2023, from https://www.gardeningknowhow.com/edible/fruits/strawberry/picking-strawberry-fruit.htm
ble	Hager, T. J., & Morawicki, R. O. (2013). Energy consumption during cooking in the residential sector of developed nations: A review. <i>Food Policy, 40</i> , 54–63. https://doi. org/10.1016/j.foodpol.2013.02.003
''	Hansen, N. B. (2022, July 17). <i>How Did the Ancient Egyptians Cool Their Homes?</i> TheCollector. Retrieved February 20, 2023, from https://www.thecollector.com/ancient- egyptians-cooling-air-condition/
	Illich, I. (1974). Energy and Equity. Harper & Row, Publishers, Inc.
	International Energy Agency. (2021, October). <i>Net Zero by 2050: A Roadmap for the Global Energy Sector</i> . IEA. Retrieved April 24, 2023, from https://www.iea.org/reports/net-zero-by-2050
;	International Energy Agency. (2022a). The Role of Critical Minerals in Clean Energy Transitions: World Energy Outlook Special Report. In <i>IEA</i> . Retrieved February 20, 2023, from https://iea.blob.core.windows.net/assets/ffd2a83b-8c30-4e9d-980a-52b6d9a86fdc/ TheRoleofCriticalMineralsinCleanEnergyTransitions.pdf
	International Energy Agency. (2022b). World Energy Investment 2022. In IEA. https://iea.blob.core.windows.net/assets/b0beda65-8a1d-46ae-87a2-f95947ec2714/ WorldEnergyInvestment2022.pdf

IPCC. (n.d.). Authors. Retrieved March 14, 2023, from https://www.ipcc.ch/report/ar6/ Symposium: Crossroads, Pave Your Own Path - Mijnbouwkundige Vereeniging (TUDelft), Delft, Netherlands. https://mv.tudelft.nl/events/symposium/ IPCC. (2021). Climate Change 2021: The Physical Science Basis. Contribution of Working Lamboo, R. (2022, August 14). *Dit kost wonen in een tiny house -* PorteRenee. Porterenee. Retrieved December 7, 2022, from https://porterenee.nl/kijk-mee-in-hetkasboekje-van-tiny-house-bewoner-sanne/ Lwasa, S., Seto, K. C., Bai, X., Blanco, H., Gurney, K. R., Kılkış, Ş., Lucon, O., Murakami, J., Pan, J., Sharifi, A., & Yamagata, Y. (2022). Urban systems and other settlements.: In IPCC, 2022: Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate IPCC. (2022a). Climate Change 2022: Impacts, Adaptation, and Vulnerability. Change. Cambridge University Press, Cambridge, UK and New York, NY, USA. https://doi. org/10.1017/9781009157926.010 [P.R. Shukla, J. Skea, R. Slade, A. Al Khourdajie, R. van Diemen, D. McCollum, M. Pathak, S. Some, P. Vyas, R. Fradera, M. Belkacemi, A. Hasija, G. Lisboa, S. Luz, J. Malley, (eds.)]. IPCC. (2022b). Climate Change 2022: Mitigation of Climate Change. Contribution MacKay, D. J. C. (2009). Sustainable Energy--without the Hot Air. UIT Cambridge Ltd. McKay, D. I. A., Staal, A., Abrams, J., Winkelmann, R., Sakschewski, B., Loriani, S., Fetzer, I., Cornell, S., Rockström, J., & Lenton, T. M. (2022). Exceeding 1.5°C global warming could trigger multiple climate tipping points. Science, 377(6611). https://doi.org/10.1126/science. abn7950 McKinsey & Company. (2022, January). The raw-materials challenge: How the metals Jancovici, J.-M. (2005, May 1). How much of a slave master am I? Retrieved December and mining sector will be at the core of enabling the energy transition. Retrieved February 20, 2023, from https://www.mckinsey.com/industries/metals-and-mining/our-insights/theraw-materials-challenge-how-the-metals-and-mining-sector-will-be-at-the-core-of-enabling-the-Jones, C. W., & Kammen, D. M. (2011). Quantifying Carbon Footprint Reduction energy-transition Metabolic. (2021, June 30). Een circulaire energietransitie. https://www.metabolic.nl/ publications/een-circulaire-energietransitie/

wg3/about/authors Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change: [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change: [H.-O. Pörtner, D.C. Roberts, M. Tignor, E.S. Poloczanska, K. Mintenbeck, A. Alegría, M. Craig, S. Langsdorf, S. Löschke, V. Möller, A. Okem, B. Rama (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change : [P.R. Shukla, J. Skea, R. Slade, A. Al Khourdajie, R. van Diemen, D. McCollum, M. Pathak, S. Some, P. Vyas, R. Fradera, M. Belkacemi, A. Hasija, G. Lisboa, S. Luz, J. Malley, (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. 6, 2022, from https://jancovici.com/en/energy-transition/energy-and-us/how-much-of-a-slavemaster-am-i/ Opportunities for U.S. Households and Communities. Environmental Science & Technology, 45(9), 4088-4095. https://doi.org/10.1021/es102221h

Kalsey, T. (2022, July 6). When Did Podcasts Start: A Brief History of Podcasting. Podchaser. Retrieved April 21, 2023, from https://www.podchaser.com/articles/podcastinsights/when-did-podcasts-start-history-podcasting

Kleijn, R. (2022). (n.d.). Critical raw materials [Keynote adress]. International

Meyer, C. L. (2018). Optimizing the use of critical materials in the built environment using Building Information Modelling [Msc Thesis]. Delft University of Technology.

Mitchell, R. (2020, December 9). How Much Does A Tiny House Cost: From Someone

82

Who's Done It. The Tiny Life. Retrieved December 7, 2022, from https://thetinylife.com/how-much-does-a-tiny-house-cost/

Mommers, J. (2017, February 28). *Shell made a film about climate change in 1991* (*then neglected to heed its own warning*). The Correspondent. https://thecorrespondent. com/6285/shell-made-a-film-about-climate-change-in-1991-then-neglected-to-heed-its-own-warning/692663565-875331f6

National Oceanic and Atmospheric Administration (NOAA). (2020, April 1). *Ocean acidification*. National Oceanic and Atmospheric Administration. Retrieved March 15, 2023, from https://www.noaa.gov/education/resource-collections/ocean-coasts/ocean-acidification

NOAA Climate.gov. (2016, August). *Energy.* U.S. Climate Resilience Toolkit. Retrieved December 7, 2022, from https://toolkit.climate.gov/topics/built-environment/energy

NOS op 3. (2022, November 19). *Kantelt onze planeet voorgoed?* [Video]. YouTube. https://www.youtube.com/watch?v=aly4gGw7XaQ

Passive House Institute. (n.d.). *Passivhaus Institu*t. Retrieved February 20, 2023, from https://passivehouse.com/02_informations/01_whatisapassivehouse/01_ whatisapassivehouse.htm

Pavel, C., Marmier, A., Alves Dias, P., Blagoeva, D., Tzimas, E., Schuler, D., Schleicher, T., Jenseit, W., Degreif, S., & Buchert, M. (2016). Substitution of critical raw materials in lowcarbon technologies: lighting, wind turbines and electric vehicles. In *JRC Publications Repository* (EUR 28152 EN). Publications Office of the European Union. https://publications. jrc.ec.europa.eu/repository/handle/JRC103284

Pionierskwartier. (n.d.). *Bewoners van het Pionierskwartier: De bewoners van het Pionierskwartier en waarom ze in een Tiny House wonen*. Retrieved February 16, 2023, from https://www.pionierskwartierdelft.nl/huisjes/

Prêt-à-Loger. (2014). *Pret-a-Loger | Home with a Ski*n. Retrieved February 20, 2023, from http://www.pretaloger.nl/

Ritchie, H. (2020a, January 24). You want to reduce the carbon footprint of your food? Focus on what you eat, not whether your food is local. Our World in Data. Retrieved March

ow- 30, 2023, from https://ourworldindata.org/food-choice-vs-eating-local

Ritchie, H. (2020b, January 24). *You want to reduce the carbon footprint of your food? Focus on what you eat, not whether your food is local.* Our World in Data. Retrieved April 21, 2023, from https://ourworldindata.org/food-choice-vs-eating-local

Ritchie, H. (2022, December 15). *Wild mammals make up only a few percent of the world's mammals*. Our World in Data. Retrieved March 30, 2023, from https://ourworldindata.org/wild-mammals-birds-biomass

Ritchie, H., Roser, M., & Rosado, P. (2020, May 11). *CO2 and Greenhouse Gas Emissions. Our World in Data.* Retrieved February 20, 2023, from https://ourworldindata.org/emissionsby-sector

Ritchie, H., Roser, M., & Rosado, P. (2022, October 27). *Energy*. Our World in Data. Retrieved March 30, 2023, from https://ourworldindata.org/energy/country/italy

Sanders, E. B. N., & Stappers, P. J. (2012). *Convivial Toolbox: Generative Research for the Front End of Design*. BIS.

Schermer, W. (2020). *EXPLORING INTERACTIONS: IP workshop ultra rapid prototyping*. https://studiolab.ide.tudelft.nl/studiolab/exploringinteractions/

Schumacher, M. & The Biomimicry Institute. (n.d.). *Visual explanation of the cooling properties of camel fur.* asknature.org. https://asknature.org/strategy/how-a-camels-fur-coat-keeps-it-cool/

Shearer, H., & Burton, P. (2018). Towards a Typology of Tiny Houses. Housing, T*heory and Society, 36*(3), 298–318. https://doi.org/10.1080/14036096.2018.1487879

Shell Film and Video Unit & Will Tisdale. (1991). *Climate of Concern - Royal Dutch Shell (1991*) [Video]. Retrieved February 16, 2023, from https://www.youtube.com/ watch?v=0V0Wi8oVXmo

Sociaal-Economische Raad [SER]. (2022). Evenwichtig sturen op de grondstoffentransitie en de energietransitie voor brede welvaart. In *SER.nl (nr. 6).* Retrieved April 4, 2023, from https://www.ser.nl/-/media/ser/downloads/adviezen/2022/

grondstoffentransitie-energietransitiedf?la=nl&hash=77DBE836158F319AF3F2DD93B99A1 Yeung, J. (2020, September 10). Climate crisis could displace 1.2 billion people by 2050, F48#%5B%7B%22num%22%3A100%2C%22gen%22%3A0%7D%2C%7B%22name%22% report warns. CNN. https://edition.cnn.com/2020/09/10/world/climate-global-displacement-3A%22Fit%22%7D%5D report-intl-hnk-scli-scn/index.html

Stephani, N. (2021, June 24). Why We Like Podcasts: A Review of Urban Youth's Motivations for Using Podcasts | Stephani | Mediator: Jurnal Komunikasi. https://ejournal. unisba.ac.id/index.php/mediator/article/view/7609

The Biomimicry Institute. (n.d.). Innovation Inspired by Nature — AskNature. AskNature. Retrieved March 13, 2023, from https://asknature.org/

The Biomimicry Institute. (2023, February 21). What Is Biomimicry? Biomimicry.org. Retrieved March 13, 2023, from https://biomimicry.org/what-is-biomimicry/

Tiny House Nederland. (2020, February 6). Wat zijn Tiny Houses (niet)? https:// tinyhousenederland.nl/ik-wil-tiny/wat-zijn-tiny-houses/

Tobin, S. J. (2022, April 6). Why people listen: Motivations and outcomes of podcast listening. *PLOS ONE*. https://journals.plos.org/plosone/article?id=10.1371/journal. pone.0265806

TU Delft. (n.d.). Critical Raw Materials: Managing Resources for a Sustainable Future [MOOC]. edX. Retrieved March 15, 2023, from https://learning.edx.org/course/coursev1:DelftX+CRAM1x+1T2023/home

Van Boeijen, A., Daalhuizen, J., & Zijlstra, J. (2020). Delft Design Guide (revised edition): Perspectives - Models - Approaches - Methods. BIS Publishers. https://www.bispublishers. com/delft-design-guide-revised.html

Van Geuns, L. (2022). (n.d.). *Energy* [Keynote adress]. International Symposium: Crossroads, Pave Your Own Path - Mijnbouwkundige Vereeniging (TUDelft), Delft, Netherlands. https://mv.tudelft.nl/events/symposium/

World Commission On Environment and Development. (1987). *Our Common Future* (1st ed.). Oxford University Press. https://sustainabledevelopment.un.org/content/ documents/5987our-common-future.pdf

Appendix

A Project brief

B User research results

Appendix A: Project brief

The project brief is the document with which the master graduation thesis starts off. After it is signed the student can start their graduation project.

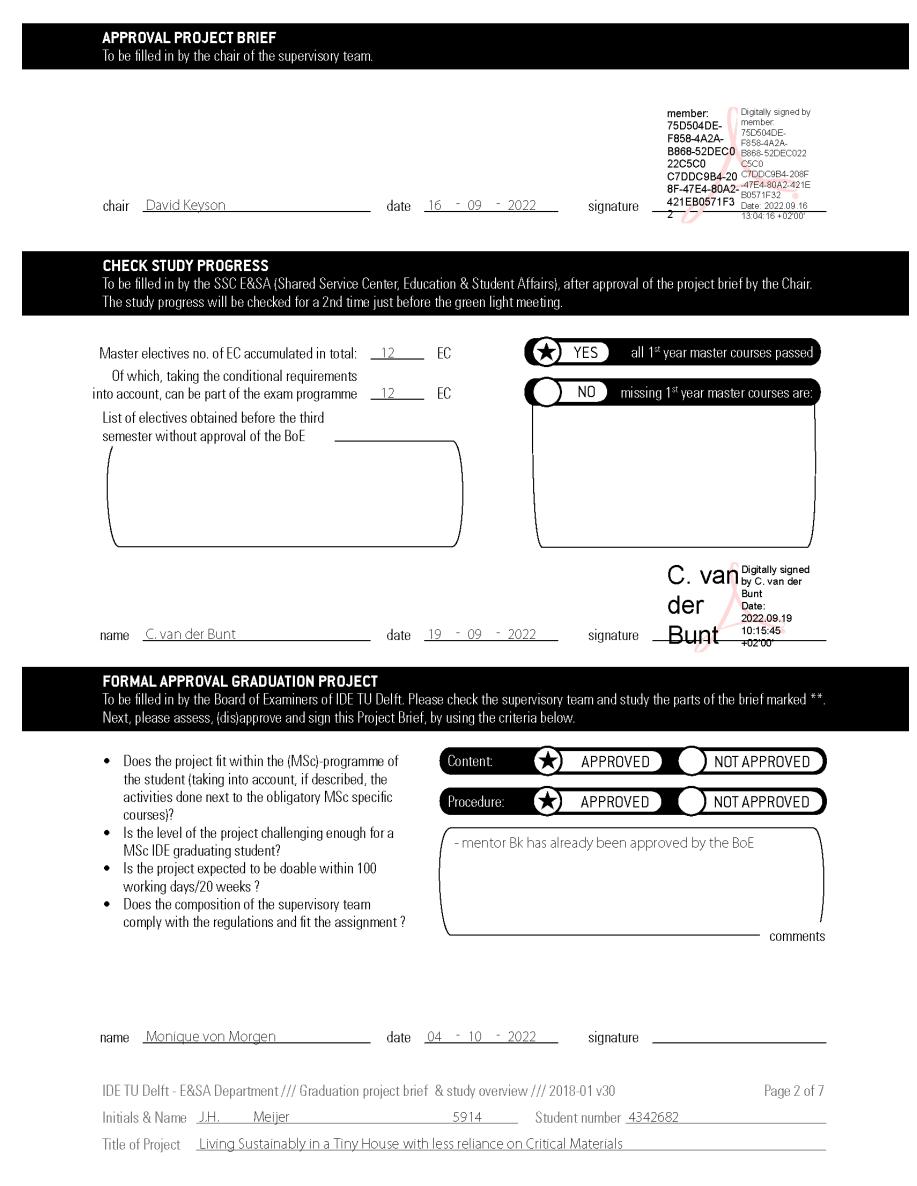
IDE Master Graduation

Project team, Procedural checks and personal Project brief

This document contains the agreements made between student and supervisory team about the student's IDE Master Graduation Project. This document can also include the involvement of an external organisation, however, it does not cover any legal employment relationship that the student and the client (might) agree upon. Next to that, this document facilitates the required procedural checks. In this document:

- The student defines the team, what he/she is going to do/deliver and how that will come about.
- SSC E&SA (Shared Service Center, Education & Student Affairs) reports on the student's registration and study progress.
- IDE's Board of Examiners confirms if the student is allowed to start the Graduation Project.

USE ADOBE ACROBAT READER TO OPEN, EDIT AND SAVE THIS DOCUMENT


Download again and reopen in case you tried other software, such as Preview (Mac) or a webbrowser.

Save t	ENT DATA & MASTER PROGRAM	Aaster Graduation Project Brief_fa		
family name initials student number street & no. zipcode & city country phone	ete all blue parts of the form and inc <u>Meijer</u> <u>J.H.</u> given name <u>Judith</u> <u>4342682</u> <u>J.H.Meijer@student.tudelft.nl</u>	Your 2 nd no individua honour specialisation	master programme (only select IDE master(s): IPD n-IDE master: Il programme: <u></u> s programme: <u>Honours</u> / annotation: <u>Medisign</u>	et the options that apply to you): Dfl SPD (give date of approval) Programme Master
	RVISORY TEAM ** the required data for the supervisory	team members. Please check the	instructions on the right !	
** chair ** mentor 2 nd mentor	Davíd Keyson Davíd Peck	dept. / section: <u>BK, (Crit</u>	Centered Desig 6 (ical Materials) 1 n 	Chair should request the IDE Board of Examiners for approval of a non-IDE mentor, including a motivation letter and c.v Second mentor only
comments (optional)	organisation: city: David Peck is from BK, but he ha on Critical Materials and the Bui BoE has already approved him a	country: as been part of IDE before, and It Envíroment (precícely my pr	he ís an expert oject topíc). The	applies in case the assignment is hosted by an external organisation. Ensure a heterogeneous team. n case you wish to include two eam members from the same section, please explain why.

IDE TU Delft - E&SA Department /// Graduation project brief & study overview /// 2018-01 v30

TUDelft

Procedural Checks - IDE Master Graduation

Personal Project Brief - IDE Master Graduation

Living Sustainably in a Tiny House with less reliance on Critical Materials project title

Please state the title of your graduation project (above) and the start date and end date (below). Keep the title compact and simple. Do not use abbreviations. The remainder of this document allows you to define and clarify your graduation project.

start date <u>16 - 09 - 2022</u>

<u>06 - 04 - 2023</u> end date

NTRO	DUCTIO	N **	t :	
lease	describe,	the	contex	t

se describe, the context of your project, and address the main stakeholders (interests) within this context in a concise yet olete manner. Who are involved, what do they value and how do they currently operate within the given context? What are the properturbities and limitations you are surrently curves of (outture), and easiel norms, resources (time, manay,), technology,).

In this Graduation Project I want to explore the notion of 'sustainable living' in regards to the use and reliance on Critical Materials (CRMs). Many new houses, products and services call themselves 'sustainable' because they use Solar Panels to supply the energy needed and make everything 'smart' by adding sensors and computer chips to automate processes. Over the past decades we have started using many more elements to make more complex and high tech products (See figure 1). Sensors, computer chips and solar panels are very important in our energy transition, however, they currently use many critical materials and are often not recyclable (see figure 2). Even though depleting the earth of these materials is not likely going to be a problem in the foreseeable future, our current over-reliance on these products will become a problem in the very near future: The EU Green Deal strives for 'no net Green House Gas emissions by 2050'. In order to achieve this the plan relies heavily on the use of Solar and Wind energy. So much so that in order to reach the goals set by the Green Deal, we would need orders of magnitude more Critical Materials than we use now. This is simply not feasible. It is not as easy as 'crank up the production'. We simply cannot fulfill our current energy needs with the use of Solar and Wind power because we cannot supply the construction of the amount of solar panels and wind turbines needed.

So I want to see if there is a way to live sustainably without relying on CRMs as much. I chose the context of Tiny Living because Tiny Houses often strive for high sustainability, and people who live in a Tiny House are already doing something quite out-of-the-box. So this is the perfect area for me to come up and test some more radical ideas. On top of that Tiny Houses have 2 solution spaces: 1) A clearly defined and confined living space, usually mostly self-sustaining with clear boundaries. 2) A Tiny House is usually part of a community. Which opens up the opportunity for shared resources and services. This gives me flexibility to pivot to either side depending on what my research suggests as the best solution space.

The first area to look at is CRMs. Which materials are critical, and which are relevant for Human Building Interaction (HBI)?

The second area to look at is Climate Change. We need to change our current ways or we will be faced with 6 to 8 degrees of global warming, making large areas of the world uninhabitable. Where in the current trends do CRMs play an important role, and which other areas are there?

The third area to look at is Tiny Houses. Where in the Tiny House itself, its services and its products are CRMs present? How do people live in a Tiny House, and what are their needs?

The first constraint is that concepts like passive heating or cooling often rely on scale. A large scale cathedral stays cool in the hot summer days, partly because of it's huge volume of air inside acting as a temperature buffer. The very nature of a Tiny House dictates that it has a small floor plan (usually <50m2 of surface area) and thus a small volume. A second constraint is that the nature of critical materials is that they are not easy to substitute. And the lack of supply of 1 critical material in a product will usually make that entire product useless. So it's not about just 'reducing' the amount of critical materials used in the current products and services. That only solves part of the problem. A third constraint is that looking at the current trends where the world is failing our climate goals and we are rapidly approaching the tipping point for halting climate change within the next decade. So we do not have time to make small gains of a few percent. We need changes that can achieve 50-80% reductions. In order to reach this I will probably have to think either radical, or large scale. The problem of CRMs is already a wicked problem and my project might lead me into the solution space of systems thinking, making this project rather

complicated. So I need to keep an eye out to make sure it stays achievable within 100 days.

space available for images / figures on next page

IDE TU Delft - E&SA Department /// Graduation project brief & study overview /// 2018-01 v30							Page 3 of 7
Initials & Name	<u>J,H,</u>	Meijer	5	914	Student number	4342682	
Title of Project	Living S	<u>iustainably</u>	in a Tiny House with less r	relíance on C	ritical Materials		

ŤUDelft

Personal Project Brief - IDE Master Graduation

introduction (continued): space for images

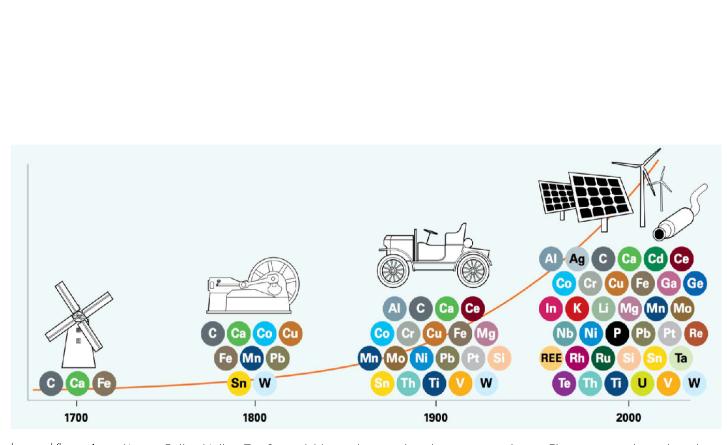
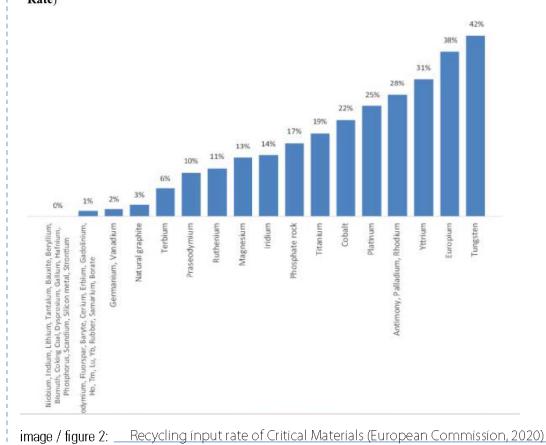
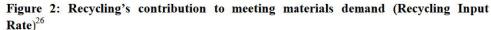




image / figure 1: __(Armín Reller, Volker Zepf, 2014) Materials crítical to the energy industry. Elements used per decade.

 IDE TU Delft - E&SA Department /// Graduation project brief & study overview /// 2018-01 v30
 Page 4 of 7

 Initials & Name
 J.H.
 Meijer
 5914
 Student number 4342682

 Title of Project
 Living Sustainably in a Tiny House with less reliance on Critical Materials
 Student number 4342682

Personal Project Brief - IDE Master Graduation

f 30
vill y on t suse the ally ace.
víl V ⁱ tu

ASSIGNMENT **

L will research where the problems lie with Critical Materials in the Human Building Interaction of sustainable Tiny Houses. The aim is to come up with a solution or design that will allow the user to live in their Tiny House sustainably without relying on Critical Materials too much.

I will do research into the three areas and the target user. I will come up with solution spaces and ideas, I will make low-fidelity prototypes for these ideas and test them with the target user to get proof of concept. I will come up with one or more final designs or recommendations. With the constraints and background knowledge I have now I suspect it will most likely be a system or service since a single product will probably not have a big enough impact. I will not provide high-fidelity prototypes of this. Instead, I will use approximation, low-fidelity prototypes, and user testing to prove the validity and potential of the design; not it's exact detailing. I will deliver a final report, with illustrations and appendix, made in InDesign. I will supplement this report with suitable deliverables, this could include for example a video or a written story to further show the intended interaction of the final design. I will of course also create and hold a presentation on my graduation to show my research, findings, design and recommendations.

The nature of my topic makes it so that I will not deliver an app or other 'smart' solution. If anything, I am hoping to 'dumb down' under the motto; less is more. However, using electronics or 'smart' systems is still a possible solution space. I am hoping to deliver a nature inspired, or even a bio-mimicry solution. Since delivering proof of concept(or proof of failure) is so important, my planning includes fast ideation, prototyping and evaluation cycles, This also means I heavily rely on relevant participants. So finding a group of Tiny House inhabitants willing to participate is important very early on.

IDE TU Delft - E&	Page 5 of 7				
Initials & Name	<u>J,H,</u>	Meijer	5914	Student number <u>434</u>	12682
Title of Project	<u>Líving S</u>	ustaínably ír	n a Tiny House with less reliance on	Critical Materials	

ŤUDelft

Personal Project Brief - IDE Master Graduation

PLANNING AND APPROACH **

Include a Gantt Chart (replace the example below - more examples can be found in Manual 2) that shows the different phases of your project, deliverables you have in mind, meetings, and how you plan to spend your time. Please note that all activities should fit within

The basic structure of this project will follow the double diamond approach. Diverging through research, converging through analyzing and drawing conclusions, then diverging in ideation and prototyping again, and finally converging to one final concept. I like doing user research and user testing, so in my planning there is quite a lot of emphasis on that. I am also quite sensitive to getting overworked so I will work 4 days per week, and plan in enough breaks to make sure I will not get burnt out. Before the develop and deliver phase I planned an extra week to dive deeper into new research depending on where my project takes me. That also gives me time to re-plan to make sure I keep my project manageable in 100 days. During and at the end of each phase I planned time to reporting my findings and progress. The final 4 weeks are dedicated to creating and finalizing the deliverables.

My scope is very broad, and is liable to drive me into for example the area of energy systems that need extensive knowledge and calculus to prove its validity (which is not possible for me to complete within 100 days with my current skill set) So, I have agreed with my team that I will take 2 weeks to do research, and after those 2 weeks present a very precise, narrow and tight scope to focus on. This will sadly probably mean the impact to be had will be less, but it is necessary to make the project doable for me within 100 days.

IDE TU Delft - E&SA Department /// Graduation project brief & study overview /// 2018-01 v30						
Initials & Name	<u>J,H,</u>	Meíjer	5914	Student number <u>4342682</u>		
Title of Project	Living Su	ustainably in a Tiny House with les	ss reliance on (Crítical Materíals		

89

Personal Project Brief - IDE Master Graduation

MOTIVATION AND PERSONAL AMBITIONS

Explain why you set up this project, what competences you want to prove and learn. For example: acquired competences from your MSc programme, the elective semester, extra-curricular activities (etc.) and point out the competences you have yet developed. Optionally, describe which personal learning ambitions you explicitly want to address in this project, on top of the learning objectives of the Graduation Project, such as: in depth knowledge a on specific subject, broadening your competences or experimenting with a specific tool and/or methodology, Stick to no more than five ambitions.

The reason I chose this graduation project is firstly because I have been interested in sustainability for the past years. Having a particular interest in green roofs. Which later expanded to nature inspired, nature based and biomimicry solutions. In the Master's elective sustainable design strategies for product development I was introduced to the concept of critical materials. And it immediately piqued my interest because it gave a voice to my gut feeling that putting a solar panel on every product and making everything smart is not the right way forward. I have been interested in tiny houses for a few years now because of the radical way of life that is often focussed on being close to nature and being highly sustainable. So, when looking for a graduation opportunity I looked for projects that allowed me to focus on sustainability related to critical materials. Since I could not find any projects on this matter I decided to formulate my own project. I chose the context of tiny houses since I think it will give me a lot of flexibility and potential to come up with impactful ideas.

During my studies I have discovered that I struggle a lot with making prototypes, often causing mental blocks which prevented me from delivering convincing proof of concepts in my projects. However, I have discovered that that issue is much less present if I make low-fidelity prototypes. So I want to use that knowledge to my advantage and further develop my currently lacking prototyping competence through low-fi prototyping.

In the earlier mentioned SDS elective I was introduced to three sustainable design strategies, I want to use this project to further explore and pracitce earn these (or related) strategies.

My passion and strengths as a designer lie primarily on doing (user) research and user testing. So I want to leverage that and dedicate a lot of my time to research and testing,

I have a passion for good storytelling. So I dedicated time to try to use storytelling techniques to analyze and present my findings.

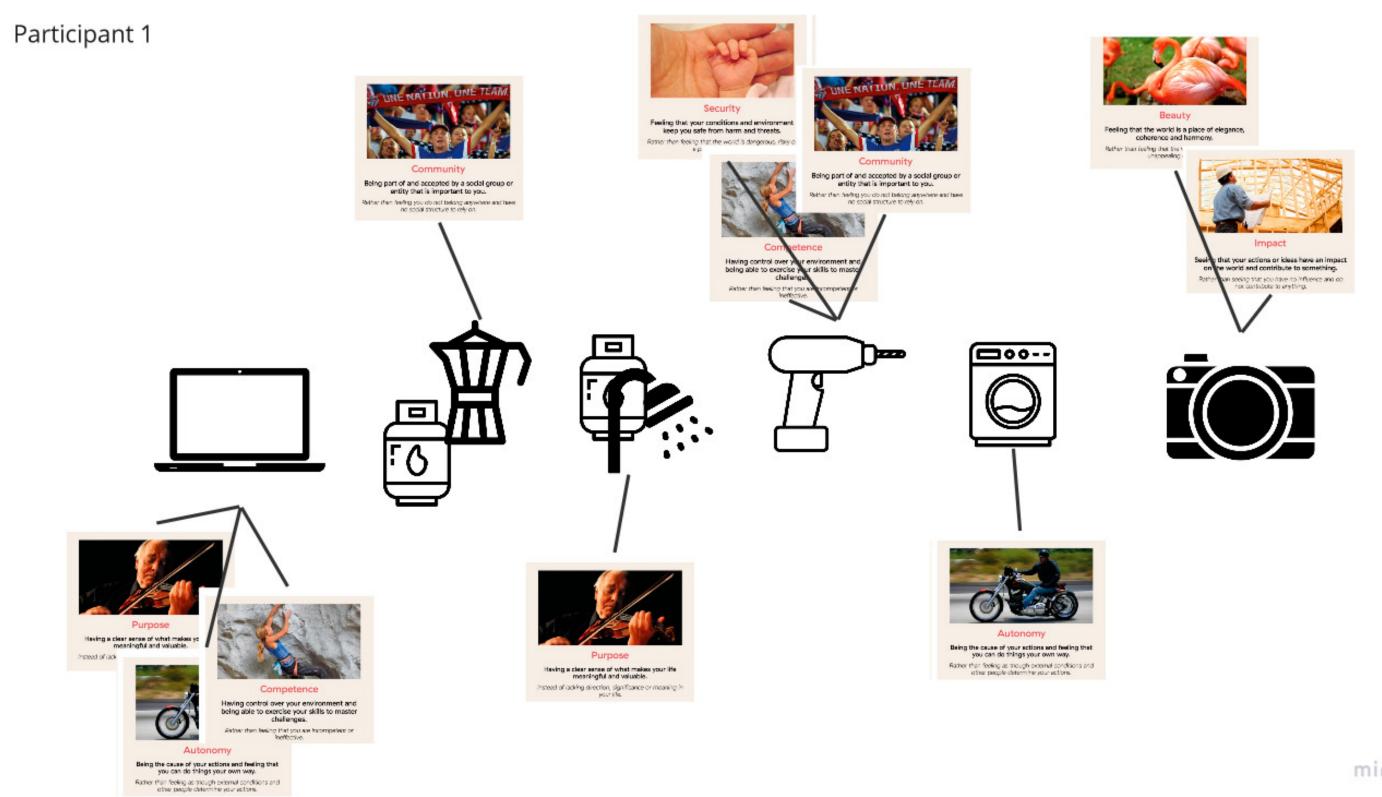
This leads to the following personal ambitions for this project:

- Gain in-depth knowledge on the topic of sustainable living and critical materials through qualitative (user) research. - Implement my passion for storytelling into my project

- During the ideation phase, put emphasis on nature inspired solutions and bio-mimicry.

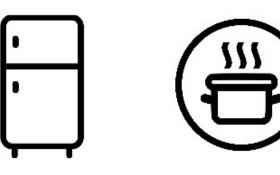
- Focus on low fidelity prototypes to generate proof of concept,

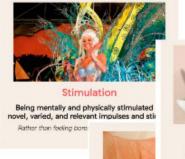
FINAL COMMENTS


IDE TU Delft - E8	Page 7 of 7				
Initials & Name	<u>J.H.</u>	Meijer	5914	Student number <u>4342682</u>	
Title of Project	Living	<u>Sustaínably ín</u>	a Tiny House with less reliance on	Critical Materials	

Appendix B: User research results

I conducted a workshop with 5 participants who live in a tiny house. I asked them about why they used certain products, and eventually found which fundamental human needs(FHN) these products were most important for for each participant. The simplified results are displayed here with the product in the middle, and the FHN alternatingly above and below the product.

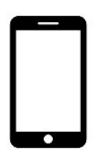




Participant 2

Having and using a body that is strong, healthy, and full of energy. Rather than having a body that feels N, weak, or ilstless.

Having an easy, simple, relaxing life. Rather than experiencing strain, difficulty or overstimulation.



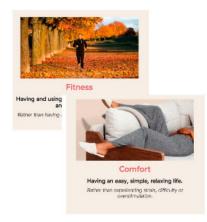
Having a clear sense of what makes your life meaningful and valuable. stead of lacking direction, significance or meaning in your life.

Beauty Feeling that the world is a place of elegance, coherence and harmony. Rather than feeling that the world is disharmonious, unappealing or uply.

6

miro

miro


Participant 3

0

Fitness

Having and using a body that is strong, healthy, and full of energy. Rather than having a body that feels N, weak, or listless.

5

Having an easy, simple, relaxing life. Rather than experiencing strain, difficulty or overstimulation.

_

•

Participant 4

using a body that is strong, healthy and full of energy. whg a body that feels N, weak, or listless

miro

miro

Participant 5

Rather th Having an easy, simple, relaxing life. Rather than experiencing strain, difficulty or D. Being part of and accepted by a social group o entity that is important to you. Rather than feeling you do not belong anywhere and is no social structure to rely on.

Having an easy, simple, relaxing life. Rather than experiencing strain, difficulty or oversitmutation.

miro

