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Committee Member: Dr. A.J. Böttger Faculty 3mE, TU Delft
Committee Member: Dr. N. Irani Faculty 3mE, TU Delft
Committee Member: Dr. P. van Liempt Faculty 3mE, TU Delft

An electronic version of this thesis is available at http://repository.tudelft.nl/.



Abstract

The effects of precipitates in the microstructure of an AA7075 aluminium alloy on: the disloca-
tion behaviour, dislocation structure and dislocation structure evolution during plastic deforma-
tion were investigated using the physical yield criterion model by van Liempt and Sietsma [1].
The model was in fact applied for the first time to aluminium and an AA7075 aluminium alloy.
By constructing an extended Kocks-Mecking plot from the measured tensile and interrupted
tensile data the dislocation density, average dislocation segment length and physical yield stress
were determined.

The aim of the present study was to get a better understanding of the role of precipitates in
the evolution of the dislocation structure during plastic deformation. The recovery of anelastic
strain during loading and subsequent unloading after plastic deformation was investigated as
well. The yield criterion was used to study the anelastic loading, while a constitutive unloading
model by Torkabadi et al. [2] was used to study the unloading behaviour. The models were
combined to define the fraction of unrecoverable anelastic strain. The anelastic strain is re-
lated to springback. Therefore a better understanding of the anelastic strain could be useful for
making better predictions of springback after metal forming. The physical yield criterion was
further extended by incorporating a continuous uniform dislocation segment length distribution.
Insight on the dislocation segment length distribution, and the evolution thereof during plastic
deformation, could help to better understand the mechanical behaviour of metals.

The evolution of the dislocation structure during plastic deformation is impeded by the
presence of precipitates in the microstructure. Therefore, the physical interpretation of α in the
Taylor equation which quantifies the dislocation structure, proposed by Arachebelata et al. [3],
was modified to incorporate the effects of precipitates in the microstructure. The dislocation
structure parameter α should remain constant. However, the average dislocation segment length
obtained from the extended Kocks-Mecking plot does not decrease sufficiently to accommodate
a constant α. The introduction of the length between precipitates, which is independent from
work hardening, into the Taylor equation ensures that α does remain constant, whilst in addition
it provides an estimate of the distance between the precipitates.

Anelastic strain, caused by reversible glide of dislocations in the pre-yield regime, is intro-
duced into or recovered from the metal during loading and unloading respectively. The anelastic
unloading strain determined from the interrupted tensile tests was found to be smaller than
what was expected according to the model. Three possible causes were identified: not all Frank-
Read sources are at their critical state when unloading is initiated, dislocation loops propagating
through the crystal undo portions of the anelastic unloading strain and the retracting disloca-
tions remain stuck behind obstacles whilst retracting under the reducing applied stress. The
constitutive model was found to be not suitable for studying the dislocation behaviour during
unloading because the change of dislocation segment length with plastic deformation is not ac-
counted for. The development of a physical unloading model is therefore recommended.

The distribution of the dislocation segment lengths could explain the non-zero value of the
work hardening rate Θ at the abrupt change of slope between the pre and post-yield regime in
the extended Kocks-Mecking plot. The value of Θ at this point could be an indication of the
distribution width. The continuous uniform distribution is a rather unrealistic description of
the dislocation segment length distribution. Therefore, other distribution types are proposed
for the further development of the dislocation segment length distribution model of the physical
yield criterion.
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CHAPTER 1

Introduction

In mechanical engineering practice the yield stress of a metal is almost always determined using
the 0.2% strain offset. In this method the intersection of the stress-strain curve with a line
parallel to the elastic one and shifted by 0.2% strain is used to determine the yield stress of the
metal. The value of 0.2% is however arbitrarily chosen and has no physical foundation. Van
Liempt and Sietsma [1] propose that the physical yield stress of a metal is the stress at which
regenerative multiplication of dislocations occurs. In their physical yield criterion model, they
consider Frank-Read sources as the regenerative dislocation multiplication mechanism. An ex-
tended Kocks-Mecking plot can be used to graphically determine the physical yield stress which
presents itself as an abrupt change of slope, indicating the transition of the pre-yield to the post-
yield regime. An extended Kocks-Mecking plot shows the work hardening rate (Θ = dσ/dε)
as a function of the applied stress (σ). The curvature of the extended Kocks-Mecking plot in
the pre-yield regime also shows that the elastic behaviour in the pre-yield regime is not strictly
linear. This non-linear elastic behaviour is referred to as anelasticity [4]. According to Zener,
anelasticity is due to relaxation effects. However, anelasticity can also be attributed to the
reversible glide of dislocations in the pre-yield regime [1, 5]. Reversible glide means that dislo-
cations already move through the lattice at stresses below the yield stress and that the strain
induced hereby can be superimposed on the strains caused by the linear elastic Hooke’s law. The
glide of these dislocations is reversible, meaning that they can return upon unloading, recovering
the anelastic strain. Anelasticity has also been related to springback, a phenomenon whereby a
metal changes its shape due to (an)elasticity during unloading after plastic deformation [6, 7].
Springback has also been linked to anelasticity in the sense of reversible dislocation movement,
where the retraction of the dislocation segments in Frank-Read sources are the origin of anelas-
tic strain during unloading [3,8]. Better understanding of the anelastic strain behaviour during
unloading could improve the analysis and modelling of springback, resulting in an increased
accuracy in industrial forming processes.

Dislocations in metal form a network where intersections of different dislocation lines form
nodes. Some nodes form locks which pin dislocations. In the physical yield criterion an average
dislocation segment length between dislocation pinning points is used. The average dislocation
segment length decreases when the material work hardens during plastic deformation. Dislo-
cations also interact with other microstructural features such as solute atoms, vacancies, grain
boundaries and precipitates. In a precipitated metal the precipitates form a relatively static
part of the dislocation pinning structure, meaning their spacing does not change as the material
work hardens. Dislocations bow out between the precipitates like Frank-Read sources, and such
behaviour can readily be introduced in the physical yield criterion. The aim of the present
study is to better understand the effects of a partially static dislocation pinning structure due
to a precipitated microstructure on the dislocation behaviour and evolution of the dislocation
structure in metals during plastic deformation. The dislocation structure in a metal governs its
mechanical behaviour. Therefore the study of dislocation behaviour in the dislocation network
as well as the evolution of the dislocation network is of particular interest to better understand
and predict the mechanical behaviour of metals.
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Conventional tensile and interrupted tensile testing according to [3] were applied in combi-
nation with the theory of the yield criterion of van Liempt and Sietsma [1] and the constitutive
model of Torkabadi et al. [2]. It was found that a precipitated microstructure in the aluminium
alloy impeded the decrease of the average segment length during work hardening. A new ex-
pression for the dislocation structure parameter α in the Taylor equation is proposed which
includes: the average length separating the precipitates, the average dislocation segment length
and dislocation density. The modified expression for α was validated according to the same
method used by Arechabaleta et al. [3]. Another important aspect is the unloading behaviour
after plastic deformation. The anelastic behaviour of dislocation sources retracting to their equi-
librium position is considered as one of the causes of springback. An attempt was made to study
the recovery of anelastic strain during unloading using the constitutive model of Torkabadi et
al. [2]. The model was found to be unsuitable on a physical basis to study the dislocation be-
haviour during unloading of metals. So, the development of a physically based unloading model
is required for further study on the anelastic behaviour during unloading and the recovery of
anelastic strain. The yield criterion uses an average dislocation segment length. The dislocation
structure in a metal is however never completely homogeneous and therefore a distribution of
the dislocation segment lengths has to be considered. Quantification of the dislocation segment
length distribution could help to further the understanding of mechanical behaviour of metals.
This work presents a basic continuous uniform length distribution as a first introduction of dis-
location segment length distributions into the physical yield criterion. The length distribution
introduces an extra fitting parameter, representing the width of the distribution. It was found
that a length distribution could explain why the Kocks-Mecking plot does not drop to zero at
the onset of plastic deformation. The development of length distributions using realistic distri-
butions for the dislocation segment length is advised. This could be used to study the evolution
of the dislocation structure during work hardening in greater detail.

In chapter 2 the theoretical background of this work is presented. First key concepts re-
lated to dislocation pinning, dislocation multiplication (Frank-Read sources) and impediment
of dislocation movement (Orowan mechanism) are discussed. Knowledge of these mechanisms
is required to understand the mechanisms behind anelastic behaviour during the loading and
unloading of metals. Two models, one for loading and one for unloading of metals during tensile
tests are discussed next. For loading the physical yield criterion by van Liempt and Sietsma [1]
and for unloading a constitutive model by Torkabadi et al. [2], which uses similar concepts as
the physical yield criterion. These models are combined to quantify the anelastic strain during
loading and unloading and to investigate the recovery of anelastic strain. Finally, the yield cri-
terion is extended by introducing a continuous uniform distribution of the length of dislocation
segments. Chapter 3 covers the alloys used in the current study as well as the testing methods.
A novelty of the present study is the application of the physical yield criterion to a metal other
than steel, namely aluminium and an aluminium alloy. An Al-Mg-Zn based commercial 7075
alloy was used, which was age-hardened for 0, 16, 24 and 32 hours before the specimens were
machined. The specimens were subjected to conventional tensile tests as well as interrupted
tensile tests with incremental plastic strain. The results of the tensile and interrupted tensile
tests are presented in chapter 4 and discussed in chapter 5. Finally, conclusions of this study
and recommendations for future work are presented in chapter 6.
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CHAPTER 2

Theoretical Background

The effects of dislocations and dislocation structures on the anelastic behaviour of aluminium
and aluminium alloys were investigated. The effect of a precipitated microstructure, providing
additional pinning of dislocations in the metal, was considered as well. To understand the effects
it is important to understand the mechanisms underlying the multiplication of dislocations. One
of the main multiplication mechanisms, the Frank-Read source is considered in the model of van
Liempt and Sietsma [1]. The pinning of dislocations required for the operation of Frank-Read
source is investigated first. Subsequently, the Frank-Read mechanism itself was studied as well.
The Orowan mechanism describes the behaviour of dislocations in a precipitated matrix. The
behaviour of dislocations shares some of its features, namely the bowing out of dislocation line
segments, with the Frank-Read source. The model by van Liempt and Sietsma considers the
movement of dislocations as the origin of reversible anelasticity, the non-linear elastic behaviour
of a metal [1]. This anelasticity is also related to springback [3,6,7], a technological phenomenon
in which a metal part changes its geometrical shape after forming, upon unloading it does not
maintain the shape imposed by the die. Springback therfore affects the dimensional accuracy
of the component. Anelastic behaviour is often studied by loading and unloading a metal in a
tensile test, this is also referred to as an interrupted tensile test [2, 3, 8, 9]. For analysing the
loading and unloading two models are considered: in section 2.4 the physical yield criterion for
loading by van Liempt and Sietsma [1] and in section 2.5 a constitutive model by Torkabadi et al.
during unloading [2]. Both models use the dislocation density and average dislocation segment
length (of the Frank-Read source) as fitting parameters. The evolution of these parameters with
strain shows however that care has to be taken when comparing the values of these parameters.
Both the loading and unloading model quantify the reversible anelastic behaviour of a metal.
A method is proposed to calculate the recovery of anelastic deformation due to the reversible
movement of dislocations. Lastly, an addition is made to the model of van Liempt and Sietsma
by introducing a distribution for the dislocation segment length. This is done using a continuous
uniform distribution which gives an analytical solution.

2.1 Pinning of dislocations

For the understanding of the mechanisms involved in the motion and impediment of dislocations,
it is important to realize the origin of the pinning of dislocation lines. This section briefly
discusses three mechanisms of dislocation self-interaction, which result in pinning points for the
two interacting dislocations which become locked as a result. Such a lock is also called a sessile
dislocation which is not able to glide unless at the stress becomes very high, in contrast to glissile
dislocations [10]. The mechanisms discussed are the Lomer lock [11], Lomer-Cottrell lock [12]
and the Hirth lock [13] mechanisms. In addition one mechanism describing the interaction
between dislocations and particles in the matrix, the Orowan mechanism [14], is explained in
section 2.3. Other pinning mechanisms based on the interaction of a dislocation with other
microstructural pinning features are briefly mentioned.
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Figure 2.1: Schematic representation of a Lomer lock, showing two dislocations on the (111)
and (111) plane gliding towards an intersection where they recombine into a dislocation of the
form 1

2 [101]. Figure adapted from: [11,15].

2.1.1 Lomer locks

The Lomer lock considers two dislocations on two slip planes. Usually, two of the easy slip
planes of the face centered cubic crystal structure are considered. When the dislocations meet
at the intersection of the two planes (figure 2.1) they recombine to become a single immobile or
sessile dislocation. Initially, the mechanism was proposed by Lomer who considered the com-
bined dislocation as sessile [11], however Cottrell [12] pointed out that it is not sessile in the
sense used by Frank [10].

Suppose that the two slip planes are the (1̄11) and (111) planes which intersect along [01̄1].
Dislocations moving along these planes have the Burgers vectors 1

2 [1̄10] and 1
2 [101] respectively.

When the two dislocations come together they react according to:

1

2
[1̄10] +

1

2
[101]→ 1

2
[011] (2.1)

The new dislocation now has a Burgers vector 1
2 [011] and has only half the energy per unit length

according to Frank’s rule [16]. The glide plane of the combined dislocation is (100), which is not
a slip plane in the FCC crystal structure. This means that the combined dislocation is unable
to glide. This mechanism can also be visualized using Thompson’s tetrahedron (figure 2.2) [17].
The two dislocations indicated by DA and BD, react to form BA, a dislocation unable to glide.

2.1.2 Lomer-Cottrell locks

Cottrell [12] extended the lock mechanism proposed by Lomer by introducing partial dislo-
cations. Partial dislocations form, because the elastic strain energy is lowered according to
Frank’s rule, which states that the elastic energy of a dislocation equals Eel = αfGb

2, where
αf ≈ 0.5− 1.0 is a constant representing the type of dislocation and and G the shear modulus.
The energy is thus proportional to b2 [15, 16]. Hence the formation of two partial dislocations
is more favourable than a perfect dislocation because the magnitude of b is then smaller. This
is illustrated in figure 2.2. In the Lomer-Cottrell lock the two dislocations on the slip planes
disassociate into two partial dislocations. The leading partial dislocations meet at the inter-
section of the planes and either attract or repel each other. Each slip plane has three possible

11



Figure 2.2: The Lomer lock (a) and the Lomer-Cottrel lock (b) illustrated using Thompson’s
tetrahedron. The edges represent the slip planes in the FCC lattice, and the vector sums of the
edges give the resulting dislocation. Partial dislocations are indicated by the α and β. Figure
from: [15].

1
6〈112〉 vectors, including their reverses. In total 36 combinations have to be considered [15].
The reaction resulting in the largest reduction in energy according to Frank’s rule is of the form
1
6〈110〉 [16]. An example is shown considering the same planes as in the Lomer lock [15] in figure
2.3.

The dislocations gliding on the (1̄11) and (111) planes disassociate into two partial disloca-
tions each (figure 2.3). On the (1̄11) plane,

1

2
[1̄10]→ 1

6
[1̄21̄] +

1

6
[2̄11] (2.2)

and on the (111) plane,

1

2
[101]→ 1

6
[11̄2] +

1

6
[211]. (2.3)

The first partial dislocations from both planes meet at the intersection, just like in the Lomer
lock mechanism. These partial dislocation react to form a new dislocation with Burgers vector:

1

6
[1̄21̄] +

1

6
[11̄2]→ 1

6
[011], (2.4)

which according to Frank’s rule [16] is of lower energy per unit length. The Burgers vector
of the resulting dislocation does not lie in the slip plane and thus it is not able to glide. The
Lomer-Cottrell lock can also be visualized in Thompson’s tetrahedron. The dislocation DA
disassociates into Dβ and βA. The second dislocation (BD) disassociates into Bα and αD.
Two of the partial dislocations then recombine to form:

αD + Dβ = αβ (2.5)

where αβ represents the immobile vector of the form 1
6〈110〉. A graphical representation is

shown in figure 2.2.

2.1.3 Hirth locks

Hirth [13] described the interactions between dislocations in the FCC lattice based on Thomp-
son’s tetrahedron. One of these interactions became known as the Hirth lock. It involves two
dislocations, BD and AC. These two dislocations react to form a new < 100 > type dislocation
which is immobile [15].

12



Figure 2.3: Two sets of partial dislocation gliding on the (111) and (111) plane (a). The two
leading partial dislocations react to form a Lomer-Cottrell lock (b), Figure adapted from: [15]

2.1.4 Pinning by other agents than dislocations

Interaction with other dislocations is not the only mechanism through which a dislocation can
become locked or immobile. Impurities in the lattice can also pin dislocations in their stress
fields, but solute atoms and vacancies as well. The introduction of precipitates or dispersoids
also results in extra boundaries and pinning points for the dislocations. Grain boundaries also
affect the mobility of dislocations [18, 19]. The effects of the grain size are quantified through
the Hall-Petch relation. However the effects of grain size in the pre-yield regime has not been
extensively studied. Van Liempt et al. [20] extended their yield criterion to incorporate the
Hall-Petch effect. Their model is based on the strain incompatibility of grains upon elastic
deformation due to the orientation differences with respect to the tensile axis. The grain size
effects are not considered in the current research and therefore not further investigated. It should
however be noted that the contribution of the grain size can become significant, if the grain size
of the metal is reduced.

2.2 Frank-Read sources

To accomodate the plastic strain introduced during plastic deformation in metals, the regener-
ative multiplication of dislocations is required. One of the possible mechanisms for regenerative
multiplication is the Frank-Read source [1]. A Frank-Read source consists of a segment of dis-
location line of which the Burgers vector lies in the slip plane. Each end is pinned, which can
be caused by: dislocation intersections, dislocation nodes, composite jogs, precipitates or other
barriers [3, 15, 18, 19, 21]. When a resolved shear stress is applied the dislocation line segment
bows out (figure 2.4 (b)) reducing the radius of curvature [22]. The line stress of a dislocation
with Burgers vector b and a radius r is approximately:

τ =
Gb

2r
. (2.6)
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Figure 2.4: A Frank-Read source made up of a dislocation line segment between B and C (a).
The resolved shear stress τ causes the dislocation line to bow out (b) and spiral around B and
C (c) until a loop forms at D and E (d), the process then repeats itself. The scale of L is in the
order of 100 nm. Figure adapted from: [1, 15,22]

When a dislocation segment bows out such that L = 2r the Frank-Read source reaches its
critical state. The value r reaches a minimum value and if the resolved shear stress is increased
above this critical stress the dislocation becomes unstable and can no longer satisfy equation
(2.6) [15]. The critical resolved shear stress of a Frank-Read source is then given by:

τc =
Gb

L
. (2.7)

Ashby proposed a more accurate description for the critical stress:

τc = X
Gb

2πL
ln

(
L

b

)
(2.8)

where X = 1 for an edge dislocation and X = (1 − ν)−1 for a screw dislocation [23]. This
expression is however seldom used, instead equation (2.6) is preferred. When the resolved shear
stress is increased further after the critical state is reached, the dislocation line starts spiralling
around the pinning points B and C (figure 2.4 (c)), reducing the curvature of the line segment.
It continues to reduce its curvature by spiralling around the pinning points until the dislocation
lines at points D and E meet. The line segments at D and E are of opposing signs meaning
that when they meet they annihilate causing the formation of a loop as well as a new segment
between A and B (figure 2.4 (d)). The loop starts propagating through the lattice whereas the
new segment starts the process over again.

The area (highlighted in grey in figure 2.4) which is covered by the bowing out of the
dislocation segment, is related to the strain accommodated by the movement of dislocations and
is given by:

A =
1

2
r2(φ− sinφ) (2.9)
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where r > L
2 and with the value for the angle φ [24]

φ = 2 arcsin

(
L

2r

)
. (2.10)

2.2.1 Frank-Read sources and dislocation networks

The Frank-Read source is based on a single dislocation segment. In reality a network of disloca-
tions is present in the material, the Frank network (figure 2.5) [15,21,25]. In the Frank network
dislocation segments are connected at nodes and form a three dimensional dislocation structure.
Dislocations in the Frank network form cells of roughly equal size. Observations of such network
have shown that they exist with a size in the order of microns [21].

Figure 2.5: A schematic representation of a Frank Network. Figure from: [15,25]

A single Frank-Read source on an infinite plane activated by a resolved shear stress larger
than the critical resolved shear stress can emit dislocation loops as long as the supercritical stress
is maintained. The loops can then travel indefinitely. In reality the travel of the dislocation loop
is impeded, in the first place by the size of the grain but also by other dislocations intersecting
the glide plane. Such dislocations, called forest dislocations form obstacles for the propagating
loop. The propagating loop can cut through the forest dislocations and in some cases form a
jog in the process. These jogs contribute little to the work hardening of the metal. The forest
dislocations also affect the shape of the emitted Frank-Read loop. The loop is no longer of
circular shape but instead curves in between the forest dislocation [15,21].

The emission of dislocation loops by Frank-Read sources in the metal increases the possibility
that dislocations meet according to the locking situation described in 2.1, causing new locks to
form in the already existing dislocation structure. As such the length of the segments in the
Frank network decrease when the dislocation density ρ is increased by regenerative multiplication
of dislocations.

2.3 The Orowan mechanism

The mechanism describing the interaction between precipitates and dislocations proposed by
Orowan considers a gliding dislocation which encounters particles, for instance precipitates or
dispersoids. In this case precipitates will be considered. The dislocation line will bow out be-
tween the precipitates (figure 2.6). This occurs much alike the Frank-Read mechanism (section
2.2) whereby in this case the precipitates are the pinning points of the dislocation line. If the
applied resolved shear stress is increased further the dislocation line bows out further until the
two neighboring dislocation segments meet and the opposing sides of the dislocation line annihi-
late. A dislocation loop is then formed around the precipitate and the dislocation line continues
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to propagate through the lattice [14]. Contrary to the Frank-Read mechanism this does not
lead to a source where dislocation loops are created. Also the Orowan mechanism only allows
dislocations to circumvent precipitates if they are incoherent [19].

Figure 2.6: The original schematic representation of the Orowan mechanism showing the ap-
proaching dislocation line (A), the Frank-Read like bowing out of the dislocation line between
the precipitates (B) and the continuation of the dislocation line (C). The circles around the dots
represent the Orowan loops which are formed around the precipitates after the dislocation line
has passed. Figure from: [14].

Because the bowing out of dislocations between precipitates behaves much like a Frank-Read
source, the spacing between them influences the resolved shear stress needed for the dislocation
line to pass the precipitates. This shear stress is given by:

τor =
Gb

Lp − 2rp
(2.11)

where Lp is the center distance between two precipitates and rp is the radius of the precipitate
[19]. The spacing between precipitates, their volume fraction (fp) and size are related by [19]:

Lp =
rp√
fp
. (2.12)

Combining equations (2.11) and (2.12) and neglecting the 2rp term because it is assumed to
be small in comparison to Lp results in an expression for the shear stress based on volume
fraction and radius (size). It then becomes apparent that larger precipitates provide a smaller
contribution to the strength [19]

τor =
Gb
√
fp

rp
. (2.13)

When precipitates are passed by several dislocation lines, each line forms a dislocation loop
around the precipitates. If the number of encirclements per unit volume is not too high, the
resolved shear stress a dislocation line needs to pass the particles is not much higher for the
next dislocation line [14]. However if the spacing between precipitates is small, the back stress
exerted by the previous loop results in a high required shear stress. This means the flow stress
during plastic deformation increases strongly [19]. With every loop added the effective radius
of that precipitates increases, assuming that subsequent dislocation loops are not of opposing
sign and annihilate. The increase in this effective radius influences the spacing through which
the next dislocation can bow out and eventually circumvent the precipitate. As long as the
distance between two precipitates remains large with respect to the effective radius (r � Lp),
the required shear stress will increase only slightly for each additional dislocation loop.
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Figure 2.7: Dislocation precipitate interaction without (a) or with (b-d) cross slip. The arrow
b indicates the orientation of the Burgers vector. (b) shows an edge dislocation passing a
precipitate when cross slip occurs, (c) a screw dislocation. In (d) an Orowan loop is already
present which cross slips when an additional dislocation line passes. Figure from: [15].

If the back stress on the dislocation loops becomes large enough, the dislocation loops can
change their configuration and can slip on different slip systems or form prismatic dislocation
loops [19]. A prismatic dislocation loop is a dislocation line which is closed inside the crystal.
Its Burgers vector does not lie in the loop plane [26]. A prismatic loop does not have to be a
circular loop, it can also consist of straight segments of dislocation line. Frank and Read [22]
consider an edge of such loop as a potential Frank-Read source. Prismatic loops can also form
as a result of the interaction between a single dislocation line with a precipitate as is shown
in figure 2.7 [15]. In the formation of prismatic loops, cross slip is involved. The character of
the dislocation line determines the orientation of the prismatic loop formed by the passing of a
dislocation line (figure 2.7 (b) and (c)). When dislocation loops are already present around the
precipitate, the passing of another dislocation line in combination with cross slip can also result
in prismatic loops as well as regular Orowan loops (figure 2.7 (d)).

2.4 Dislocation behaviour in the pre-yield regime

In daily engineering practice, the yield stress of a material is most often calculated using the 0.2%
strain offset, because of the absence of a clear transition in the stress-strain curve. The 0.2%
offset yield criterion has however no physical meaning. Van Liempt and Sietsma [1] considered
the physical yield criterion of a metal as the transition from reversible dislocation glide to
dislocation multiplication. This becomes apparent in an extended Kocks-Mecking plot which
plots the work hardening rate (Θ) versus the flow stress (σ), where the work hardening rate is
given by:

Θ =
dσ

dε
(2.14)

The transition from pre-yield to post-yield in the Kocks-Mecking plot, distinguished by an abrupt
change in slope, represents the physical yielding of the material as indicated in figure 2.8. The
0.2% offset indicated by Rp0.2 (triangle) is in this case not equal to the physical yield stress
and is underestimated. The activation of Frank-Read sources (section 2.2) is considered as the
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physical mechanism for dislocation multiplication which starts the onset of plastic deformation
in the physical yield criterion of van Liempt and Sietsma [1].

Figure 2.8: Example of an extended Kocks-Mecking plot. Phyical yielding occurs at the abrupt
change of slope indicated as the yield point. The pre-yield anelastic modulus according to 2.20 is
indicated by a dashed line. The 0.2% offset yield stress indicated by a triangle. Figure adapted
from: [1]

In the pre-yield regime the stress-strain curve is usually presumed elastic, in accordance to
Hooke’s law, meaning that the deformation in this regime is reversible and proportional to the
applied stress. This linear elastic behaviour is attributed to the stretching of the interatomic
bonds in the lattice. The deformation in the pre-yield regime is in fact of a non-linear nature
where the bowing out of dislocations, as well as other dislocation movements, also contribute
to the deformation. This is referred to as anelastic deformation. Hence the total strain in the
pre-yield regime can be expressed as:

εpre = εel + εae, (2.15)

where εel is the elastic strain according to Hooke’s law (ε = σ/E) and εae the anelastic contribu-
tion due to dislocation movement. Calculating the work hardening rate in the pre-yield regime
by combining equations (2.14) and (2.15) leads to:

ΘPRE =
EΘAE

E + ΘAE
, (2.16)

where ΘAE is the work hardening rate dσ/dεae.

Van Liempt and Sietsma [1] considered the Frank-Read mechanism (section 2.2) as the sole
mechanism of dislocation multiplication. Below the critical stress of the Frank-Read source the
area covered by the bowing out of the dislocation line contributes to the deformation in the
pre-yield regime. The shear strain introduced by the bowing out of dislocation lines is given by:

γ =
ρbA

L
. (2.17)

The area A was approximated by Schoeck as A = L3

12r , which is valid for small angles of φ (figure
2.4) [24]. A more accurate description for the area was used by van Liempt and Sietsma by
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combining equations (2.9) and (2.10) [1].

Further combination of equations (2.17), (2.9) and (2.10) leads to an expression for the strain
as a function of the stress:

γ =
ρb

L

G2b2 arcsin( τLGb )−GbLτ
√

1− ( τLGb )
2

4τ2
. (2.18)

This expression can be differentiated according to Θγ
AE = dτ

dγ giving the anelastic shear modulus.

The critical stress of a Frank-Read source (τc = Gb
L ) can be combined with the term τL

Gb to give
a ratio of stresses s = τ

τc
. Using the the Taylor factor (M) the shear stress can be converted

to a tensile stress by substituting σ = Mτ and by ΘAE = M2Θγ
AE the anelastic contribution

becomes:

ΘAE =
M2Es3

√
1− s2

ρL2(1 + ν)(s− arcsin(s)
√

1− s2)
, (2.19)

where s = σ/σc. Substituting back in the expression for ΘPRE of equation (2.16) the slope in
the pre-yield regime, the pre-yield anelastic modulus, can then be expressed analytically as:

ΘPRE =
M2Es3

√
1− s2

M2s3
√

1− s2 + ρL2(1 + ν)(s− arcsin(s)
√

1− s2)
. (2.20)

By fitting equation (2.20) to the pre-yield part of the Kocks-Mecking plot the product ρL2

can be determined. To do so first the critical stress (σc) is determined graphically from the
Kocks-Mecking plot by finding the stress at which Θ changes slope abruptly. However C = ρL2,
where C is a constant, can be satisfied by an infinite number of combinations of ρ and L,
therefore an additional equation is required. By considering a Frank-Read source of average
length L, equation (2.7) can be rewritten as:

L =
MGb

σc
, (2.21)

where the Taylor factor (M) is introduced to convert shear stress to tensile stress. Using the
average dislocation segment length (L) the dislocation density can be deduced from the constant
value obtained for ρL2. The length obtained is an average one based on a single (macroscopic)
critical stress, referred to as the physical definition of the yield stress by van Liempt and Sietsma
[1]. In reality a distribution of dislocation line segments is present, each with its own microscopic
critical stress [3]. A length distribution taking into account this distribution is proposed in
section 2.6.

2.4.1 Applications of the physical yield criterion

The aforementioned method of finding the critical stress, as well as dislocation segment length
and density has thus far only be applied on steel alloys. Van Liempt and Sietsma investigated
advanced high strength steels [1]. Arechabaleta et al. investigated pure iron, a low alloy steel
and interstitial free steel [3, 9]. Goulas investigated 51CrV4 spring steel [27] and Ennis et
al. investigated a DP800 Dual Phase steel and TADP800 TRIP Assisted Dual Phase steel
[28], as well as a DH800 dual phase steel [29]. To date no research using the physical yield
criterion on other metals has been published. Because the steels that have been investigated
are all predominantly BCC, it is also interesting to consider other crystal structures. The
FCC crystal structure is also a very interesting candidate. The research of Kocks and Mecking
was conducted predominantly using pure FCC metals [30]. Aluminium and its alloys have the
FCC crystal structure. They are also common engineering materials. Some aluminium alloys
are strengthened by a precipitated microstructure. Precipitate strengthening is also based on
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dislocation interaction as described in section 2.3. Such a microstructure thus provides additional
pinning features for the dislocations that move through the crystal. This could have effects on
the results from the physical yield criterion and therefore the investigation of a precipitated
aluminium alloy is of particular interest.

2.4.2 Limitations of the physical yield criterion

The yield criterion proposed by van Liempt and Sietsma [1] determines the so-called physical
yield stress, average dislocation segment length and dislocation length based on the Frank-
Read source as dislocation multiplication mechanism. Other mechanisms such as homogeneous
nucleation, nucleation at stress concentrations, multiple cross glide, Bardeen-Herring sources and
grain boundary sources [15] are not accounted for in the model. Similarly, only the contribution
to the anelastic behaviour of the area swept by dislocation segments bowing out in the pre-yield
regime is considered. The model also presumes that all dislocation segments are Frank-Read
sources, meaning that potential Frank-Read sources which do not bow out because they are
situated in non-activated slip systems are not taken into account and are therefore not included
in the analysis. This means that there might be dislocations present which are not quantified
which may lead errors in the obtained dislocation density. Grain boundaries also affect the
behaviour of dislocation in the crystal. Van Liempt et al. [20] extended the yield criterion to
incorporate grain boundary effects. These effects are not incorporated in the current model and
therefore grain boundary effects are attributed to the average dislocation segment length and
dislocation density. This means that the average length is not entirely due to dislocations, but
also in part due to grain boundaries introducing error into the quantification of the dislocation
structure. Kocks and Mecking indicate that although their experiments are performed mostly
on FCC materials, that the approach is still applicable to other materials as long as they are
single phase materials [30]. This holds for the post-yield regime, meaning that the analysis of
the physical yield criterion could still be performed on multi-phase materials. Also an extension
of the physical yield criterion taking into account different phases should be recommended.

2.4.3 The Orowan mechanism and the physical yield criterion

The introduction of incoherent precipitates in the lattice provides fixed pinning points for dis-
locations. These pinning points do not change their center distance as work hardening pro-
gresses apart from being subject to bulk deformation. Instead the heat treatment of the metal
determines the initial size and spacing of the precipitates [19, 31]. Locks due to dislocation
self-interaction do change their average distance as work hardening progresses. The result is a
dislocation pinning structure which is subject to work hardening through the evolution of the
dislocation structure, but also has a relatively fixed dislocation pinning structure due to pre-
cipitates when bulk deformation is neglected. The effects of such a partially fixed dislocation
pinning structure on the application of the physical yield criterion model has not yet been in-
vestigated. The distance L obtained from the model is of special interest as it is the average
distance between two Frank-Read source pinning points [1]. The bowing out of dislocations
in a Frank-Read source and in the Orowan mechanism are described by the same set of equa-
tions [23]. The evolution of L with increased work hardening could give new insights in the
hardening behaviour due to increase in dislocation density and change in dislocation structure
in the lattice. When a metal is work hardened the dislocation structure in the metal changes and
the length between nodes of the dislocation network decreases [3]. The rate at which L evolves
with plastic strain could provide information on the influence of the precipitate structure. If L
decreases only slightly when plastic strain is increased, then this could be due to precipitates at
the nodes of the dislocation structure. The length between the precipitates hardly changes due
to work hardening and thus the dislocation structure does not change significantly. However
if the change of L is more pronounced, then the evolution of the dislocation network is most
likely due to the generated dislocation loops getting stuck in the already existing network and
refining the average length between nodes. These nodes would in this case most likely be dislo-
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cation locks. Arechabaleta et al. investigated this work hardening behaviour using the physical
yield criterion by performing interrupted tensile tests and evaluating each loading curve for the
dislocation density and average segment length [3]. The investigation of a precipitated material
using the physical yield criterion is thus of interest, because it could provide new insight with
regard to the applicability of the yield criterion on precipitated metals, as well as possible new
insights in their hardening behaviour.

2.5 Anelastic dislocation behaviour under cyclic plastic loading

When a metal specimen is loaded during a tensile test, the elastic behaviour is presumed to be
linear, wheras in fact it is nonlinear (section 2.4). When the specimen is subsequently unloaded
during the tensile test, its unloading behaviour is also presumed to be linear elastic in accordance
with Hooke’s law. This is contradictory to experimental evidence which shows that the unloading
behaviour is nonlinear as well. The additional recovered anelastic strain is due to the short range
reversibility of the movement of dislocations [2, 3, 8, 32].

2.5.1 Unloading and reloading behaviour

When a specimen is loaded in tension, plastically deformed and then unloaded, the final plastic
strain of the specimen is often predicted by considering the elastic unloading of the specimen
(ε = σ/E). If the anelastic part is not considered the plastic strain after deformation is indicated
by point A in figure 2.9 whereas the experimental curve indicates a smaller final strain (point
B), because strain has also been recovered due to reversible movement of dislocations. When
the specimen is reloaded the tensile curve progresses as the combination of linear elastic and
anelastic strain as explained in section 2.4 At point C in figure 2.9 the tensile curve crosses the
unloading part of the curve and forms a hysteresis loop. Increasing the plastic deformation and
repeating the unloading/reloading cycle results in another hysteresis loop. This process can be
repeated until failure.

Figure 2.9: A stress-strain curve of a single unloading-reloading cycle with the E-modulus shown
as a black solid line and the chord modulus as a red dashed line. The material in this figure is
an AHSS. Figure adapted and based on data from Torkabadi et al. [2]
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In engineering studies an approach referred to as E-modulus degradation is often applied.
First the chord modulus is determined, which is given by the slope of the line crossing the lowest
point of the hysteresis loop and the intersection of the unloading and reloading portion of the
curve (figure 2.9 red dashed line between B and C). The chord modulus is always lower than the
E-modulus, hence the term E-modulus degradation. By plastically cycling a material several
times the E-modulus (in reality the chord modulus) as a function of the equivalent plastic strain
can be determined. Implementing E-modulus degradation in finite element analysis improves
the prediction of springback, but overestimates the springback angle [8, 32,33]

2.5.2 Anelastic behaviour during unloading

It is presumed that a Frank-Read source which has exceeded its critical shear stress (i.e. super
critical stress state) will continue to produce dislocation loops which propagate through the
lattice. When the resolved shear stress is lowered from a supercritical state to a subcritical state
then any loops that are currently propagating will continue to do so until impeded by obstacles
in the lattice. This only happens if the magnitude of the resolved shear stress is still sufficient to
accommodate slip. The required resolved shear stress, according to equation (2.6), lowers as the
loop propagates further and its radius increases. So for large loops the overstress remains high
and the loop propagates easily through the crystal. The new dislocation segment which was
formed upon the emission of the last dislocation loop (figure 2.4 (d)), will not continue to form
a loop but instead return to its equilibrium state which is determined by the applied resolved
shear stress. Also any subcricital Frank-Read sources will return to their equilibrium position
as the resolved shear stress decreases. The retracting Frank-Read sources thus recover anelastic
strain. This makes the anelastic strain reversible across a short range proportional to the swept
area of the Frank-Read source.

A constitutive model for the anelastic strain during unloading that is also based on the
anelastic strain imposed by a Frank-Read source was proposed by Torkabadi et al. [2]. The
model starts by considering the expression for the anelastic shear strain as function of the shear
stress proposed by van Liempt and Sietsma [1] and given in equation (2.18). The relation for
s = τ/τc is substituted as per the physical yield criterion model to give the anelastic shear strain
as:

γ = NbL2 arcsin(s)− s
√

1− s2
4s2

. (2.22)

The Taylor equation in its most common version:

σf = σ0 +MαGb
√
ρ, (2.23)

where σf is the flow stress and the constant σ0 is the flow stress when no dislocations are present.
Since this is never the case, Torkabadi et al. rewrote equation (2.23) to incorporate the physical
yield stress (σy) instead. This resulted in an expression for the flow stress

σf = σy +MαGb(
√
ρ−√ρi) (2.24)

which considers the increase in dislocation density with respect to the initial dislocation density
ρi. Equation (2.24) is then written explicitly for ρ and substituted in the expression γ = NbA,
where again N = ρ/L and the shear strain is converted to strain by use of the Taylor factor,
according to γ = M−1ε. This results in:

εae =
bA

ML

(
σf − σy
MαGb

+
√
ρi

)2

. (2.25)

The maximum anelastic strain that can be recovered from the material is dictated by the area
covered by Frank-Read sources that have not yet passed the critical state. This means that
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A = (π/8)L2 is the maximum area determining the recoverable anelastic strain:

εMAX
ae =

bπL

8M

(
σf − σy
MαGb

+
√
ρi

)2

. (2.26)

If the expression γpre = ρibA/L is considered, which when written explicitly for ρi and substi-
tuted in equation (2.26), simplifies the expression for the anelastic strain to:

εMAX
ae =

(
K(σf − σy) +

√
εaepre

)2

(2.27)

where K, a fitting parameter given by:

K =

√
bπL

αG(2M)3/2
. (2.28)

2.5.3 Recovery of anelastic strain

When a metal is loaded for the first time the total strain is given by the sum of three compo-
nents of strain. The elastic strain (Hooke’s law, εel), the anelastic strain (reversible dislocation
movement, εae) and the plastic strain (εpl). The anelastic strain for (re)loading and unloading
are considered as separate components. The total strain (εt) for the (re)loading case can then
be expressed as:

εt = εel + εlae + εpl, (2.29)

where εlae is the anelastic strain in the loading regime, and the plastic strain εpl = 0 if σ < σc.
The remaining strain (εp) in the metal after unloading from the total strain can then be expressed
as:

εp = εt − εulae − εel, (2.30)

with εulae the anelastic strain during unloading. Equation (2.29) can be substituted in (2.30) to
get the remaining strain after unloading,

εp = εlae − εulae + εpl. (2.31)

When the specimen is reloaded after the first cycle (loading and unloading) the remaining strain
εp is the starting point of the subsequent cycle and should thus be added to equation (2.29).
The unrecoverable anelastic strain is the difference between the anelastic strain in the loading
cycle and the subsequent unloading cycle. The unrecoverable anelastic strain εurae = εlae − εulae is
used to determine the fraction of unrecoverable anelastic strain, which is given by:

fur =
εlae − εulae
εlae

. (2.32)

In the case where no plasticity is introduced into the material, the introduced anelastic strain
and the recovered anelastic strain are macroscopically equal. Whether the recovered anelastic
strain can be larger than the anelastic strain created during loading when plastic deformation
is introduced remains unclear. To investigate this, models of anelasticity for both loading and
unloading are required.

In sections 2.4 and 2.5 two models have been presented which consider the anelastic strain
during loading [1], and the anelastic strain upon unloading [2]. By fitting the pre-yield anelastic
modulus to an extended Kocks-Mecking plot of a loading step in the interrupted tensile curve
the dislocation segment length and density can be determined. Using these two parameters the
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anelastic strain can be determined according to equation (2.18) which can be rewritten for the
strain by considering that γ = M−1ε, s = τ/τc = σ/σc and τc = Gb/L. The anelastic strain for
the loading regime is then

εlae =
ρb

L

G2b2 arcsin( σσc )−GbL σ
M

√
1− ( σσc )2

4( σ
M

)2
. (2.33)

The maximum anelastic strain that is introduced in the material during loading is at the critical
stress of a Frank-Read source at average dislocation length, meaning that s = σ/σc = 1 and so
equation (2.33) is reduced to

εlae =
πρG2M2b3

8Lσ2c
, (2.34)

which represents the maximum anelastic strain in the loading regime. If now the square of
equation (2.21) is considered, equation (2.34) can be simplified further:

εlae =
1

8
πρLb, (2.35)

The combination of equation (2.17) and the expression for the area of a Frank-Read source at
its critical state A = (π/8)L2 yields the same expression.

For the unloading regime the model of Torkabadi et al. using equation (2.27) can be invoked.
This model has two parameters, K (equation (2.28)) and εaepre. The latter also describes the
anelastic strain in the pre-yield regime, just like equation (2.34). Their expression however
differs from equation (2.34). The anelastic strain as considered by Torkabadi et al. is given by
εaepre = M−1L−1ρ0bA, with A = πL2/8. Although Torkabadi et al. opt to fit for K and εaepre
and use these values to describe the anelastic strain of a metal, it is also possible to extract
the dislocation density and length from the model. This can be done by substituting known
material properties in equation (2.28) to find L and substituting it along with the other known
parameter in the aforementioned equation εaepre = M−1L−1ρ0bA to find ρ0 the initial dislocation
density prior to plastic deformation. Using equations (2.34) and (2.27) the anelastic behaviour
in loading and unloading can be quantified and used to determine to which extent the anelastic
strain is recovered due to reversible dislocation glide.

2.5.4 Anelastic strain models and the dislocation segment length and density

Both the loading model (physical yield criterion) and the unloading model (Torkabadi et al.)
use two dislocation based parameters to fit the function to the stress-strain data, the dislocation
segment length L and the dislocation density ρ. The anelastic behaviour model by Torkabadi
et al. does not fit to these parameters directly, but instead fits to K and εaepre from which these
parameters can be calculated.

In the physical yield criterion van Liempt and Sietsma [1] used a tensile experiment where the
specimens were loaded until failure and the applied stress was not interrupted in between. The
model is based on the critical stress as indicated by the abrupt change of slope in the extended
Kocks-Mecking plot and assumes that the dislocation structure does not change for stresses be-
low the critical stress. Hence the model determines the dislocation density and segment length
during the elastic deformation and before the subsequent plastic deformation. Torkabadi et
al. [2] explicitly mention the use of the initial dislocation density and label it ρi to distinguish it
from other dislocation densities. The dislocation length in the model is not defined explicitly as
the length prior to loading. It should in fact be the dislocation length at the start of unloading
which occurs after plastic deformation and thus after alteration of the dislocation structure. The
expression for the anelastic strain by Torkabadi et al. considers the strain recovered based on
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the area of a critical Frank-Read source. This means that the length of the dislocation segment
at the start of unloading determines the expression for the anelastic strain.

In an interrupted tensile test with incremental plastic strain between each cycle, the dis-
location segment length calculated using the loading and unloading model should thus differ.
The decrease in dislocation segment length due to the multiplication of dislocations and the
hardening because of that, should be given by the difference in length resulting from the fit of
the loading and unloading models. The subsequent loading of the specimen is then expected to
yield the same dislocation segment length from the fit of the physical yield criterion. In general
sense this means that the dislocation segment length at the onset of yield of the nth loading
cycle calculated using the pre-yield anelastic modulus, should be of similar size as the dislocation
segment length calculated using the constitutive model of Torkabadi et al. [2] at the (n − 1)th

unloading cycle. If this is not the case in the experimental data, further investigation on the
difference between the physical yield criterion model and the constitutive model with respect to
the dislocation segment length is required.

2.6 Dislocation segment length distribution

The physical yield criterion assumes that all Frank-Read source segments are of equal length.
The segment length is however distributed and the length L in equation (2.21) is an average
of of all dislocation line segments represented in the dislocation density. By means of equation
(2.21) it becomes apparent that the longest dislocations will yield first and thus the onset of
yielding is governed by the longer dislocations. The mechanical behaviour of crystalline metals
can be better understood by considering a dislocation segment length distribution [3]. Therefore
it is of specific interest to characterize the effects of a dislocation segment length distribution.
Upon plastic deformation the dislocation structure also becomes more heterogeneous [34]. A cell
structure forms with regions of high and low dislocation density. Meaning that the evolution
of the dislocation structure might also influence the distribution of the dislocation line segment
lengths inside the crystal . Therefore the analysis of the evolution of the dislocation structure by
plastically cycling material and intermediate evaluation of the structure could be of particular
interest. In this section a continuous uniform distribution model for the dislocation length is
proposed, whereby the box is centred on the long side of the length range (see figure 2.10). The
benefit of using a box type distribution is that an analytical solution can be obtained. This
distribution presumes that each dislocation segment length has the same density in the metal.

2.6.1 Distributed dislocation length and the physical yield criterion

Prior to the introduction of the continuous uniform dislocation line segment distribution equation
(2.20) is rewritten as

ΘPRE(s) =
E

1 + (1+ν)

M2 ρL2
( s−arcsin(s)√1−s2

s3
√
1−s2

) =
E

1 + V ρL2S(s)
. (2.36)

To simplify equation (2.36) the stress dependent part of Θ has been written as S(s) a function
of s. Additionally a constant term V = (1 + ν)/M2 can be identified to simplify equation (2.36)
further. Subsequently a normalization TND = Θ(s)/Θ(0) can be applied, where lims→0 Θ(s) = 1

3
resulting in the following expression for TND:

TND =
1 + V

3 ρL
2

1 + V ρL2S(s)
. (2.37)

In the expression for TND, the normalized non-distributed pre-yield anelastic modulus, the
Young’s modulus is eliminated and TND can now be plotted as function of s to obtain a nor-
malized Kocks-Mecking plot with no segment length distribution as shown in figure 2.11.
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Figure 2.10: Continuous uniform distribution fixed at the right side at the maximum dislocation
length. The box is defined by the width h.

Subsequently a box type distribution for the dislocation segment length can be implemented
by considering the integral of the distribution from c to 1 and introducing it in equation (2.37).
The dislocation length is normalized by taking u = L/L0 with L0 the length of the longest
dislocation line segment that yields first indicated by the abrupt change of slope in the extended
Kocks-Mecking plot, resulting in the expression:

TD =
1 +

V L2
0

3 ρ(u)
∫ 1
c u

2du

1 + V L2
0ρ(u)

∫ 1
c u

2 su−
√

1−(su)2 arcsin(su)
(su)3
√

1−(su)2
du
. (2.38)

Here s = σ/σc0, with σc0 the critical stress at the maximum dislocation length L0. The analytical

solution of the integral in the numerator is (
∫ 1
c u

2du = 1
3 −

c3

3 ). The integral in the denominator
has a slightly more complex analytical solution which is given by:

Iρ(c, s) =

∫ 1

c
ρ(u)u2

su−
√

1− (su)2 arcsin(su)

(su)3
√

1− (su)2
du =

ρ(u)

[
arcsin(su)− arcsin(su) ln(1− e2i arcsin(su)) + 1

2 i(arcsin(su)2 + Li2(e
2i arcsin(su)))

s3

]1
c

,

(2.39)

ρ(u) is moved outside the integral in equation (2.38). This is allowed because for a uniform
distribution ρ(u) is a constant. The two integrals are evaluated and subsequently substituted in
equation (2.38). The expression is further normalized by the introduction of ρ0 the dislocation
density which is assumed the same for all segment lengths. It equals ρ0 = ρ(u)

∫ 1
c u

2du. Further
normalization is realized by dividing the evaluated integrals to arrive at:

TD =
1 + V

3 ρ0L
2
0

1 + V ρ0L2
0
Iρ(c,s)
1
3
− c3

3

. (2.40)

The total width of the box in the continuous uniform distribution (h) can be introduced into
equation (2.40) as c = 1− h. This approach provides an additional fitting parameter (h) to the
physical yield criterion which can be used to fit the model more accurately to the data obtained
from derivative of the tensile curve.
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Figure 2.11: Normalized Kocks-Mecking plot without a distribution (TND) with ρL2 = 10, an
arbitrary but realistic value. The introduction of the distribution model (TD) shows that TD at
s = 1 is no longer 0 but instead lifts up as the width of the distribution increases.

Figure 2.12: Effects of the parameters h and d = ρ0L
2
0. (a) The effect of d on the TND curve.

(b) The effect of the continuous uniform distribution width (h) on the value of Θc. (c) The
effects of d on the value of Θc in the distributed model. (d) The combined effects of h and d on
the shape of the TD curve and the value of Θc.
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2.6.2 Influence of the length distribution on the anelastic pre-yield behaviour

The influence of the fitting parameters ρ0, L0 and h is presented in figure 2.12. The param-
eters ρ0 and L0 are combined for convenience, in the symbol d = ρ0L

2
0. When TD is plotted

for different values of h (figure 2.11) it becomes apparent that the width of the box affects
the value TD at s = 1. A larger value for h results in a higher value of TD. This behaviour
implies that the value for Θc (�) can be related to the distribution of dislocation segment lengths.

The parameter d dictates the shape of the curve of the non-distibruted pre-yield anelastic
modulus TND (equation (2.37)), as can be seen in figure 2.12 (a). This effect carries over to the
distributed model as well, according to equation (2.40). As d goes to 0, T becomes 1 throughout
the range s (figure 2.12 (c)). This is in agreement with purely linear elastic behaviour without
any anelastic dislocation interaction [1]. However the value of Θc is then also influenced by d,
where a reduction of d results in an increase of Θc as can be seen in figure 2.12 (c). The width
of the continuous uniform distribution also changes the value of Θc. An increase in h results in
an increase of Θc. The influence on the shape is far less pronounced in comparison to the effects
of d.

2.7 Summary

The reversible movement of dislocation causes a non-linear elastic strain prior to the yield of the
material. The critical stress, or physical yield stress, is graphically determined in an extended
Kocks-Mecking plot, in which it can be observed as an abrupt change of slope. Van Liempt and
Sietsma developed a method to obtain the dislocation density and average dislocation segment
length from the pre-yield regime of the extended Kocks-Mecking plot using the pre-yield anelas-
tic modulus [1]. This method has thus far only been used on steels, therefore the investigation
of an face centred cubic metal such as aluminium is of interest. The use of aluminium also
allows for the introduction of precipitates which form stationary pinning points, which do not
move when work hardening is introduced. Also the influence of precipitates on the dislocation
density and dislocation structure can become apparent after tensile testing. The downside of the
model is that other mechanisms of multiplications and dislocation segments on non-activated
slip planes are not considered. Grain boundary effects are not accounted for either. The length
resulting from the fit of the pre-yield anelastic modulus to the extended Kocks-Mecking plot
is an average dislocation segment length. In order to account for a length distribution in the
dislocation structure a continuous uniform distribution was added onto the existing model. This
gives an additional parameter h, which represents the width of the box distribution.

During unloading the dislocation segments also provide an anelastic component to the un-
loading behaviour. Torkabadi et al. [2] developed a constitutive model for unloading closely
related to the model by van Liempt and Sietsma [1]. The fitting parameters of the constitutive
model also include the dislocation density and average segment length, albeit indirectly. By
performing interrupted tensile tests with incremental strain, both these models can be tested to
investigate whether they return the same densities and lengths. This interrupted tensile testing
will give information on the evolution of the dislocation density and segment length with plastic
strain. The two models, for loading and unloading, potentially also enable the investigation of
the amount of recovered anelastic strain.
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CHAPTER 3

Experimental Details

An AA7075 aluminium alloy was used for the investigation on the effects of a precipitated mi-
crostructure on dislocation behaviour during anelasticity. AA7075 is a Al-Mg-Zn based alloy
which properties can be influenced by precipitation hardening, this process is also referred to
as age-hardening. After a solution heat treatment the atoms of the alloying elements are in
Super Saturated Solid Solution (SSSS). During precipitation hardening incoherent η (MgZn2)
precipitates grow from Guinier-Preston (GP) zones followed by the semi-coherent η′ phase
(SSSS → GP → η′ → η). This happens during an an artificial ageing heat treatment at a
lower, yet still elevated temperature. The temperature determines the extent to which the al-
loying elements can diffuse through the aluminium lattice to form precipitates. The incoherency
of the precipitates means that they cannot be sheared, but only circumvented by for instance
the Orowan mechanism (section 2.3). The spacing of the precipitates is independent from the
work hardening of the material during plastic deformation. This means that the precipitates
form pinning points for dislocations that do not change during work hardening [19,31].

Two types of mechanical tests were performed, first conventional tensile tests to validate the
applicability of the physical yield criterion on aluminium and AA7075 and to obtain data to fit
the new distributed segment length model. These tests also result in the physical yield stress
of the aluminium and the aluminium alloys after different heat treatments. Second, interrupted
tensile tests were performed to investigate the evolution of dislocation density, dislocation seg-
ment length and the recovery of anelastic strain during plastic deformation. These test were
performed in similar manner as in [3] and were fitted with the models presented in section 2.4
and 2.5 on the loading and unloading curves of the interrupted tensile test respectively.

3.1 Materials

Two types of metals were used in the experimental work, a pure aluminium (99.9%) and the
commercial AA7075 alloy which was supplied in two batches, labelled A and B respectively.
Specimens were made from 8 mm diameter wire (aluminium) and rod (AA7075) and heat treated
prior to the experiments. The specimens were machined to final dimensions after the heat
treatment according to figure 3.1 (a) or (b) depending on the test.

3.1.1 Chemical compositions

The chemical composition of AA7075 in batch A and B was analysed using X-ray Fluorescence
(XRF) spectrometry. The analysis was performed using a Panalytical Axios Max WD-XRF
spectrometer and data evaluation was done with SuperQ5.0i/Omnian software. The resulting
chemical compositions are presented in table 3.1 along with the theoretical composition. The
supplied aluminium wire had a purity of 99.9%. The solute elements in the aluminium were not
further investigated.
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Table 3.1: Theoretical chemical composition (T) of AA7075 [35] and the chemical composition
(wt.%) of batch A and B from XRF-analysis.

Si Fe Cu Mn Mg Cr Zn Zr Ti other Al
T 0.40 0.50 1.2-2.0 0.30 2.1-2.9 0.18-0.28 5.1-6.1 0.25%1 0.20 0.152 bal.
A 0.207 0.241 1.712 0.101 2.514 0.162 5.29 - 0.06 0.0793 89.632
B 0.22 0.29 1.678 0.096 2.536 0.206 5.094 - 0.073 0.0624 89.717

1 A maximum of 0.25% of (Zr + Ti) may be used.
2 A maximum of 0.05 wt% of an single element may be present, accumulating to a total of 0.15.
3 Other elements: 0.04 Pb, 0.018 Cl, 0.011 P and 0.01 Ni.
4 Other elements: 0.033 Pb, 0.019 Cl and 0.01 Ni.

3.1.2 Heat treatments

All AA7075 specimens were subjected to a solution treatment at 470 ◦C for 1 hour in a sodium
nitrite bath, followed by a water quench to room temperature. Subsequently an ageing treat-
ment in silicon oil was conducted at 120 ◦C for 0, 16, 24 and 32 hours after which specimens
were air cooled to room temperature. The 24 hour ageing heat treatment at 120 ◦C is equivalent
to commercial AA7075-T6 [35].

The aluminium samples were also heat treated at 470 ◦C for 1 hour in a sodium nitrite bath.
Half of the specimens were left to air cool to room temperature whereas the other half was water
quenched to room temperature.

Figure 3.1: Specimen dimensions for the conventional tensile test (a) and the interrupted tensile
test (b).

3.2 Method

Two types of mechanical tests were performed. A tensile test to determine the physical yield
stress, dislocation density and average segment length were performed first. Next, interrupted
tensile tests with incremental plastic strain between each cycle were performed. The reloading
after plastic deformation allows for quantification of dislocation density, average segment length
as a function of the induced plastic strain.
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3.2.1 Equipment

Tensile and cyclic tests were conducted on a Instron 5500R Universal Testing Machine. During
the tensile test the machine was equipped with a 100 kN load cell and wedge grips and operated
at a crosshead speed of 10 mm/min which corresponds to a measured strain rate of 0.0017 s−1.
Dual extensometers were mounted on opposing sides of the narrow section of the specimen. The
extensometers were removed at 10% strain for the aluminium samples and at 5% for the AA7075
samples.

During the interrupted tensile tests the specimens were mounted in threaded inserts which
were connected directly to flanges mounted on the load cell and the crosshead. The connection
between the threaded inserts and the play on the thread allowed for some self aligning move-
ment of the specimen. Again two extensometers were mounted on opposing sides of the narrow
section of the specimen. The specimens were loaded in extension control at a crosshead speed
of 1 mm/min which corresponds with a measured strain rate of 0.015 s−1. Loading continued
until 1% strain was reached. The strain used to control the cyclic behaviour was measured on
only one of the two extensometers. Subsequently the specimens were unloaded to 100 N (≈ 3.3
MPa) at the same crosshead speed. The specimen was then reloaded and another 1% strain was
introduced. This loading-unloading-reloading was repeated with 1% increments of strain until
failure of the specimen.
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CHAPTER 4

Results

The results of the tensile tests and interrupted tensile tests are presented, results from the analy-
sis according to the physical yield criterion (section 2.4) and the constitutive unloading model by
Torkabadi et al. [2] (section 2.5) are also presented. First the tensile tests results are discussed,
followed by the results of the interrupted tensile tests.

The parameters used in the pre-yield anelastic modulus derived in the physical yield criterion
model, but not designated as fitting parameters are shown in table 4.1. The shear modulus (G)
is calculated from the Young’s modulus (E) and the Poisson’s ratio (ν). The Burgers vector (b)
is calculated from the lattice parameter (a) according to: b = a

√
h2 + k2 + l2, where h, k and l

are the Miller indices of the dislocation glide planes in the FCC crystal structure. The Taylor
factor (M), the Poisson’s ratio and the Young’s modulus are obtained from literature. For the
Young’s modulus literature values based on ultrasonic experiments were used as the motion of
dislocation and thus their contribution to the Young’s modulus can be neglected [36].

Table 4.1: Physical constants used in the physical yield criterion model.
Parameter Aluminium AA7075 Units Ref.

M 3.06 3.06 [-] [37]
ν 0.339 0.33 [-] [38] & [39]
E 69.6× 103 69.4× 103 MPa [38] & [39]

G = E
2(1+ν) 25.9× 103 26× 103 MPa [38] & [39]

b 2.863 2.866 Å [40,41] & [42]

4.1 Tensile tests results

The results from the tensile tests and the subsequent analysis according to the physical yield
criterion are listed in table 4.2. Results are presented for pure aluminium and AA7075 indepen-
dently.

4.1.1 Tensile testing results - Pure Al

The results of the tensile tests on quenched and air cooled pure aluminium and the physical
yield criterion analysis are listed in table 4.2. The extended Kocks-Mecking plots are presented
in figure 4.1. The air cooled (AC) aluminium shows no real curvature in the pre yield regime.
The fitting of the physical yield criterion model to the data was poor, resulting in data for the
dislocation density and average segment length that are not representative. A change of slope is
still apparent in the Kocks-Mecking plot, this change is however not as abrupt as the quenched
specimen which leaves room for error in the determination of the physical yield stress of the pure
aluminium. The fit of the pre-yield anelastic modulus to the data of the quenched aluminium
specimen is shown in figure 4.1.
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Table 4.2: Rp0.2 yield stress (σRp0.2), physical yield stress (σc), dislocation density (ρ) and
average segment length (L) of AA7075 heat treated at 0, 16, 24 and 32 hours. The standard
error for all stress values is ± 1 MPa.

2nd Heat Material σRp0.2 σc ρ L
treatment (Batch) [MPa] [MPa] [m-2] [nm]

none AA7075 (A) 366 368 6.50 ± 0.03 × 1014 61.9 ± 0.13
none AA7075 (B) 349 346 5.37 ± 0.02 × 1014 65.9 ± 0.13
16 h / 120 ◦C AA7075 (A) 557 556 1.127 ± 0.006 × 1015 41.0 ± 0.13
16 h / 120 ◦C AA7075 (B) 551 550 1.022 ± 0.006 × 1015 41.4 ± 0.13
24 h / 120 ◦C AA7075 (A) 517 515 1.42 ± 0.01 × 1015 44.3 ± 0.14
24 h / 120 ◦C AA7075 (B) 575 572 1.07 ± 0.01 × 1015 39.8 ± 0.15
32 h / 120 ◦C AA7075 (A) 583 582 1.32 ± 0.01 × 1015 39.2 ± 0.15
32 h / 120 ◦C AA7075 (B) 576 579 1.69 ± 0.01 × 1015 39.4 ± 0.15
Air cooled Al (99.9%) 37 27† 7.7 ± 0.6 × 1013 857.1 ± 0.12
Quenched Al (99.9%) 52 52 6.446 ± 0.003 × 1013 443.6 ± 0.09

† No abrupt change of slope was observed in the Kocks-Mecking plot.

Figure 4.1: Extended Kocks-Mecking plot of aluminium, air cooled (AC) and quenched (Q).
The air cooled aluminium shows a gradual change of slope in comparison to the rather abrupt
change observed for the quenched specimen. The curvature of the pre-yield regime of the pure
aluminium specimen could not be used to fit equation (2.20).

4.1.2 Tensile testing results - AA7075

The AA7075 specimens in the tensile tests were subjected to four different heat treatments,
first a solution treatment, followed by age-hardening treatments at 0, 16, 24 and 32 hours as
discussed in section 3.1.2. As expected the specimens at 0 hours have a much lower yield stress.
The effect of age-hardening becomes apparent in the shift to the left of the point where the slope
of each curve changes abruptly. More results are given in table 4.2. All specimens failed in a
brittle manner with a fracture along a plane inclined 45◦ to the tensile axis. A minimal amount
of necking preluded the failure of the specimens.
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Figure 4.2: A stress-strain curve of AA7075 specimens aged for 24 hours from batch A and B.
The specimen from batch A has a more gradual slope in the pre-yield regime and a lower yield
stress. This is also apparent in the extended Kocks-Mecking plot in figure 4.3.

The plateau at low stresses in figure 4.3, related to the Young’s modulus of the alloy, stands
out in the case of the specimen from batch A aged at 24 hours. Also the yield stress of this
specimen is lower than that of a specimen of similar heat treatment from batch B. The stress-
strain curves of specimens 24HA and 24HB presented in figure 4.2 show a more gradual slope in
the pre-yield regime for specimen 24HA. The gradual slope is directly related to the plateau value
in figure 4.3. The yield stress is also lower, which is also apparent from figure 4.3. The clamped
surfaces of the specimen were investigated, but no visual evidence of slip inside the wedge grips
was found. The strain rate (0.0011 s−1) of the specimen was however lower than most other
specimens (0.0018 s−1). The crosshead displacement data was constant and corresponded with
other experiments, providing no direct explanation for the deviation in material properties.

Figure 4.3: Extended Kocks-Mecking plot derived from tensile tests of AA7075 specimens from
batch A and B heat treated at 0, 16, 24 and 32 hours after a solution heat treatment.
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Figure 4.4 shows the physical yield stress (σc) and the 0.2% strain offset yield stress (σRp0.2)
as a function of the age-hardening heat treatment time. The drop for the 24 hours specimen
from batch A is clearly apparent as explained previously. The difference between σc and σRp0.2
is small, meaning that for AA7075 the physical definition of the yield stress and the classical
0.2% strain offset yield stress are in good agreement. As the age-hardening time increases the
yield stress appears to approach a maximum. The specimens heat treated for 24 hours should
be in the peak hardened state (T6) [35]. This is however not the case as the specimens heat
treated for 32 hours exhibit a still higher yield stress.

The influence of the age-hardening heat treatment time on the dislocation density (ρ) and
the average segment length (L) is depicted in figure 4.5. The average dislocation segment length
shows similar behaviour as σc in figure 4.4, including an increase in L for the 24HA specimen.
This similarity was expected as the dislocation segment length is obtained using the relation in
equation (2.21), which is dependent on the critical stress. The dislocation density increases as
the age-hardening heat treatment time increases. Figure 4.5 shows some unexpected behaviour
at higher age-hardening times, where the dislocation density in batch A suddenly decreases at
32 hours, whereas the specimen from batch B shows a drop at 24 hours. The dislocation density
does not show particular resemblance to the yield stress plotted in figure 4.4 because of the
dependence on the curvature of the extended Kocks-Mecking plot rather than a single value like
the critical stress.

Figure 4.4: Physical yield stress (σc) and 0.2% strain offset yield stress (σRp02) of AA7075 (batch
A and B) as function of the age-hardening time (0, 16, 24 and 32 hours). Standard errors for
the stress are ± 1 MPa.
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Figure 4.5: The dislocation density and average dislocation segment length of AA7075 (batch
A and B) as function of the age-hardening time (0, 16, 24 and 32 hours).

4.1.3 Dislocation segment length distribution - AA7075

The normalized distributed pre-yield anelastic modulus (equation (2.40) in section 2.6) was fitted
to the normalized extended Kocks-Mecking plot derived from the tensile data. The continuous
uniform distribution of the dislocation segment length introduced into the normalized pre-yield
anelastic modulus provides an additional fitting parameter (h) which represents the width of the
box in the distribution. The results of such a fit, plotted in figure 4.6, show no clear distinction
from the regular normalized fit at first glance. However a close-up (figure 4.7) reveals that
TD(1) = 0.0075 a positive value which lifts the end of the anelastic pre-yield model into the
vicinity of the abrupt change of slope. The corresponding width of the continuous uniform
distribution (figure 2.10) is then h = 1.7× 10−5. Results from the other specimens are listed in
table 4.3.

Table 4.3: Dislocation density (ρ), average segment length (L) and the width of the box in the
continuous uniform distribution (h) of AA7075 from batches A and B heat treated at 0, 16, 24
and 32 hours.

0h(A) 0h(B) 16h(A) 16h(B) 24h(A) 24h(B) 32h(A) 32h(B)

ρ [m−2] (×1015) 1.17 1.15 2.19 2.07 2.90 2.11 3.041 3.08
L [nm] 62.5 65.8 41.7 41.4 44.2 39.8 39.1 39.6
h [-] (×10−5) 2.3 4.6 0.04 0.8 2.3 1.7 1.2 1.1
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Figure 4.6: A normalized extended Kocks-Mecking plot fitted with the distributed model from
equation (2.40). The specimen shown was aged for 24 hours and was taken from batch B. The
distributed model does not end at TD(1) = 0 as can be seen in figure 4.7.

Figure 4.7: Close-up of TD(1) from figure 4.6 showing that at s = 1, TD(1) 6= 0 but is instead a
positive value.
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4.2 Interrupted tensile tests

Interrupted tensile tests were conducted, whereby after each cycle the strain was increased by
1%. A typical result of such an interrupted tensile test is shown in figure 4.8. Cycles were
defined between the local minima and maxima of strain. One of the strain gauges was used to
monitor the strain during the test which determined when the (re)loading cycle ended. Figure
4.8 shows however the average strain and as such the cycles do not stop at exactly a multiple of
1%. Also the last cycle was neglected because of the failure of the specimen in this cycle. The
reloading cycles, following the primary loading cycle, exhibit peaks at the beginning of plastic
deformation where the stress decreases before gradually increasing again. This phenomena ap-
peared in each specimen. The strain rate and crosshead displacement were investigated. The
rate of displacement of the crosshead was constant and the strain rate increased at the onset of
plastic deformation, which indicates multiplication of dislocations. So neither can explain the
bulges at the start of the post-yield regime.

4.2.1 Results of the interrupted tensile tests

An extended Kocks-Mecking plot was constructed for each loading cycle, typical results are
shown in figure 4.9. As the number of cycles increases, the plateau of the extended Kocks-
Mecking curve lowers slightly and the stress at which the slope changes abruptly increases.
Identification of this slope is not as straightforward as with the regular tensile tests because the
stress bulges at the onset of plastic deformation cause the Kocks-Mecking curve to spiral around
as can be seen in figure 4.9. The severity of the spiralling near the critical stress is dependent on
the shape of the bulge in the tensile curve. A narrower bulge causes larger spiralling. Nonetheless
the physical yield stress, dislocation density and average segment length were determined for
each cycle.

Figure 4.8: An interrupted tensile test with a 1% increment in strain after each cycle. The
specimen shown is AA7075 from batch A age-hardened for 24 hours. A crosshead displacement
of 1 mm/min was used. The squares and diamonds indicate the local minima and maxima
between which the loading step occurred.
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Figure 4.9: Extended Kocks-Mecking plots of the reloading steps of a cyclic tensile test. The
curves shown were derived for the same specimen as in figure 4.8. The spiralling of the post-yield
regime is attributed to the bulges in the tensile loading steps. The dashed line represents the
Young’s modulus E = 69.4 GPa. The last reloading step, which was not completed because of
failure of the specimen, is not shown.

Figure 4.10 and 4.11 show the dislocation density and average segment length as a function of
the plastic strain at the end of each unloading step. Figure 4.10 shows the quenched specimens
from batch A and B, while figure 4.11 shows the specimens from batch B age-hardened for 16,
24 and 32 hours. Both figures show an increase in dislocation density as the plastic strain is
increased. The average segment length decreases as the plastic strain increases. This behaviour
corresponds to expectations based on dislocation theory and the trend also agrees with previous
experimental results of Arechabaleta et al. [9]. The effects of the heat treatment times are also
visible in figure 4.11. The specimens heat treated for longer periods of time have an increased
dislocation density but a shorter average segment length.

4.2.2 Fitting the Taylor equation

The physical yield stress and dislocation density obtained from the loading cycles of the expire-
ment can be used to fit the Taylor equation (2.23). By fitting the data with this equation, σ0
the contribution of all the strengthening mechanisms other than the strengthening due to dislo-
cations, can be found. Typical results of this fit are shown in figure 4.12 where σ0 is shown for
specimens from batch A and B age-hardened for 16 hours. Results for other age-hardening times
can be found in table 4.4. In figure 4.13 the change of σ0 and α with the age-hardening time is
shown. Specimens that were not heat treated after the solid solution treatment have a lower σ0.
Heat treated specimens exhibit a larger σ0 where the heat treatment time seems to have little
effect on the magnitude of σ0 considering the time-scale used in the current investigation. The
factor α is highest in the specimens that were not age-hardened and decreases as the hardening
time increases. It is mostly in the range of the values proposed in literature (0.15-0.4) [3].
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Table 4.4: The yield stress without dislocation contribution (σ0) and the factor α of AA7075
heat treated at 0, 16, 24 and 32 hours.

0h(A) 0h(B) 16h(A) 16h(B) 24h(A) 24h(B) 32h(A) 32h(B)

σ0 [MPa] 285±28 304±21 463±6 452±14 493±7 462±16 493±3 468±16
α [-] 0.19±0.03 0.17±0.02 0.14±0.02 0.14±0.02 0.11±0.01 0.13±0.02 0.12±0.004 0.13±0.02

4.2.3 Anelastic strain during unloading

The anelastic strain during the unloading of each cycle was determined graphically according
to figure 2.9 and plotted as a function of the physical yield stress (indicated as flow stress σf
in the model of Torkabadi et al [2]) of the same cycle. This was done for all reloading cycles of
specimens with the same heat treatment, the initial loading cycles of both specimens were aver-
aged to determine σy. The data was fitted with equation (2.27) to obtain the fitting parameters
K = 2.6 ± 0.17 ×10−4 and εaepre = 7.5 ± 0.6 ×10−4 with a coefficient of determination R2 = 0.96.
Subsequently an attempt was made to obtain L from equation (2.28), using α obtained from
table 4.4 and ρ0 from the expression εaepre = M−1L−1ρ0bA, with A = πL2/8. For the segment
length an unrealistic value of L = 6.35×109 m was calculated and thus for the initial dislocation
density ρi = 3.23 × 10−3 m−2 an unrealistic value was found as well. These results, as well as
the constitutive model of Torkabadi et al. will be discussed in section 5.4.1.

Figure 4.15 shows the anelastic strain introduced in the material during loading and the
recovered anelastic strain during unloading. The anelastic loading strain was determined using
equation (2.35) whereas the unloading strain was determined graphically according to figure 2.9.
The anelastic unloading strain is smoother because it was obtained directly from the interrupted
tensile test results. The fraction of unrecoverable anelastic strain according to equation (2.32)
is also presented.

Figure 4.10: The dislocation density and average segment length as a function of the plastic strain
of quenched AA7075 specimens from batch A and B. The data of the dislocation density were
obtained from the fit of equation (2.20) to the extended Kocks-Mecking plot of each reloading
curve. The average segment length was found from the critical stress and equation (2.21).
Results from the initial loading curve are not included.
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Figure 4.11: The dislocation density and average segment length as a function of the plastic
strain of AA7075 specimens from batch A and B age-hardened for 16, 24 and 32 hours. The
data of the dislocation density were obtained from the fit of equation (2.20) to the extended
Kocks-Mecking plot of each reloading curve. The average segment length was found from the
critical stress and equation (2.21). Results from the initial loading curve are not included.

Figure 4.12: Fit of the Taylor equation (equation (2.23)) to the yield stresses of the reloading
steps of the cyclic tensile test obtained using the abrupt change of slope. Results of two specimens
are shown from batch A and B age-hardened for 16 hours. The initial loading curves are not
included.

43



Figure 4.13: The strength contribution of all strengthening mechanisms except dislocation den-
sity (σ0) and the factor α as function of the age-hardening time. The curves are shown for batch
A and B.

Figure 4.14: The anelastic strain as a function of the flow stress for a specimen aged at 16 hours,
showing batch A and B. The dashed line is the fit of equation (2.27) according to the constitutive
model of Torkabadi et al. [2]. The fitting parameters found for these specimens where: K = 2.6
± 0.17 ×10−4 and εaepre = 7.5 ± 0.6 ×10−4, the coefficient of determination R2 = 0.96.
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Figure 4.15: The anelastic strain during loading (εlae) and unloading (εlae) as function of the
remaining plastic strain after unloading for a specimen aged at 16 hours from batch B. The
fraction of unrecoverable anelastic strain (fur) is shown in blue.
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CHAPTER 5

Discussion

The application of the physical yield criterion to the results of tensile tested aluminium and
AA7075 is discussed first. After its applicability is confirmed the formation of bulges during
interrupted tensile testing is discussed. Next the effects of precipitation hardened metal on
the physical yield criterion are discussed. Subsequently, the recovery of anelastic strain during
unloading and the constitutive model of Torkabadi et al. [2] are treated. Finally, the introduction
of a segment length distribution is discussed and a number density is introduced.

5.1 The physical yield criterion for aluminium and AA7075

The physical yield criterion was successfully applied to the aluminium and AA7075 specimens
with the exception of air-cooled aluminium. Note that, for the air cooled aluminium specimen
a smaller strain rate could have resulted in a larger collection of data points which could in
turn have resulted in a better defined pre-yield regime in the extended Kocks-Mecking plot.
The quenched aluminium specimen and all the AA7075 specimens showed well defined Kocks-
Mecking plots which could readily be fitted with the pre-yield anelastic modulus (equation
(2.20)). This resulted in realistic values for ρ and L. The dislocation density is of the expected
order of magnitude (1014− 1015 m−2) and the dislocation segment length is of the same scale as
the distance between precipitates found by Jacumasso et al. [43] and by Jung et al. [44]. Both
investigated 7075-T6 alloys, which is equivalent to the 24 hour age-hardened specimens in the
current investigation [35], using transmission electron microscopy (TEM). This means that the
bowing out of dislocation lines between precipitates as pinning points rather than dislocation
locks could have very well influenced the outcome of the physical yield criterion analysis.

5.1.1 Anomalies in tensile testing results

During tensile testing, one specimen artificially aged for 24 hours from batch A (24HA), showed
a peculiar behaviour in the extended Kocks-Mecking plot. The plateau at low stress was found
at a lower value for Θ and the physical yield stress was lower than other artificially age-hardened
specimens. The main deviation in data was found in the strain rate, which was approximately
half the rate of the other specimens. However the strain rate sensitivity of precipitated alu-
minium alloys is typically very low [45], meaning that the reduced strain rate of specimen 24HA
is not likely the cause of the differences observed in the extended Kocks-Mecking plot. There
was also no sign of slip in the grips of the tensile testing machine or any other visual evidence
on the failed specimen. The deviation of the results of specimen 24HA in tensile testing was not
further investigated.

5.2 Interrupted tensile testing experiments

The AA7075 specimens were cycled during an interrupted tensile test, with a 1% increase in
plastic strain between each cycle. After the first reloading step bulges started to form at the
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region where the transition from the pre-yield regime to the post-yield regime takes place. A
phenomenon known as the unloading yield point effect [46–50]. This also influenced the shape
of the extended Kocks-Mecking plot which was used to fit the pre-yield anelastic modulus to the
loading data. The unloading yield point effect thus caused the spiralling of the extended Kocks-
Mecking plot observed in figure 4.9. The spirals complicate the determination of the physical
yield stress as the abrupt change of slope is no longer recognizable. To determine the physical
yield stress an alternative approach was taken. The physical yield stress (σc) was introduced as
a fitting parameter in equation (2.20). The minimum of the first spiral in the extended Kocks-
Mecking plot was used as an initial guess for the physical yield stress in the least-squares fitting
procedure and a fit was performed on the pre-yield regime of the extended Kocks-Mecking plot.
Using this method the physical yield stress was determined with reasonable accuracy. However
the use of an abrupt change of slope, if visible in the extended Kocks-Mecking plot, should
always be preferred.

The unloading yield point effect has been extensively studied and is typically attributed to
dislocation rearrangement during unloading or thermally activated migration of point defects
to dislocations. Studies have been conducted on both single crystals [46–48] and polycrys-
tals [49,50]. The unloading yield point effect is more pronounced at lower temperatures [46]. In
dislocation rearrangement, dislocations get locked during the unloading step. This can be for
instance due to Lomer-Cottrell locks (section 2.1.2) [47] but also due to interaction with forest
dislocations [48]. The effects of thermally activated migration of point defects considers a dislo-
cation to which impurities or solute atoms diffuse. The solute atoms create extra pinning points
along the dislocation line much like strain ageing. Nieh and Nix investigated the unloading yield
point effect in an AA7075 alloy [50]. They reasoned that the unloading effects are not solely
due to strain ageing effects and instead relate the effects of the unloading yield point effect to
the the alloy content. A qualitative model was presented in [50] that describes the shearing of
coherent precipitates in the matrix as a softening mechanism which is in competition with the
strain hardening mechanisms. They propose that during unloading the shear precipitates heal
and that as a result of this process the unloading yield point effect occurs [50].

The interupted tensile test results of Arechabaleta et al. [3] and Torkabadi et al. [2, 8, 32]
also show the unloading yield point effect, albeit to a far lesser extent. Because the effects were
less pronounced it is likely that the extended Kocks-Mecking plots they derived did show an
abrupt change of slope that could be used to determine the physical yield stress. The main
difference between the results of the current investigation and the investigations of Arechabaleta
et al. and Torkabadi et al. is the strain rate during the interrupted tensile tests. However
as discussed the strain rate sensitivity of precipitated aluminium alloys is low and the more
pronounced yield point effect is more likely due to the mechanism described by Nieh and Nix [50].
Nevertheless investigating the effects of strain rate on the unloading yield point effect could also
be of particular interest as simultaneously other strain rate effects could be studied. Additionally,
further studies could be performed on the mechanism described by Nieh and Nix [50] and possible
interactions between the mechanisms identified. The unloading yield point is most likely also
related with dislocation behaviour during unloading and could as such be interesting in the
investigation into anelastic unloading strain.

5.3 Effects of Precipitation hardening

The effects of precipitation hardening are clearly visible in figure 4.3, where the shift of the
abrupt change of slope in the extended Kocks-Mecking plot can be observed. As expected,
the specimens quenched after solution treatment without subsequent artificial age-hardening
treatment show a lower physical yield stress in comparison to the age-hardened specimens. The
difference between the artificial age-hardening times is however less pronounced. This is due
to the fact that the overageing of AA7075 only occurs at times in excess of 50 hours, and only
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really becomes pronounced at still longer times [51]. Hence a heat treatment with longer age-
hardening times would have been more appropriate. Alternatively an increased temperature
during artificial age-hardening could have been used to achieve an overaged state for some of
the specimens.

5.3.1 Precipitates and the evolution of dislocation segment length

Precipitates are part of the dislocation pinning structure, their location hardly changes as a
result of work hardening and as such the total dislocation pinning structure changes only par-
tially as a result of plastic cycling during interrupted tensile tests. This partially fixed pinning
structure was used to further investigate the work hardening behaviour of AA7075 due to dis-
location interaction with the precipitate structure. Figures 4.10 and 4.11 show the evolution
of the dislocation segment length with increased plastic strain for the quenched (0 hours) and
artificially age-hardened specimens respectively. The quenched specimens have no precipitates
in the microstructure, instead the alloying elements are in solid solutions. These solute atoms
provide the main pinning points for dislocations [31]. The reduction of the segment length with
plastic strain is however more pronounced for the quenched specimen (� in figure 4.10). This
indicates that the dislocation structure is likely more predominant in the evolution of L with
plastic strain. The artificially age-hardened specimens (� in figure 4.11) still show a reduction
in segment length with increased plastic strain. Albeit this reduction is far less pronounced.
This means that the evolution of the dislocation segment length is most likely predominantly
governed by the distance that separates the precipitates. A distance that hardly changes with
increased work hardening of the metal. Again the scale of the evolution of the dislocation seg-
ment length corresponds with observations in AA7075 alloys that have been age-hardened in
similar ways [43,44].

The Taylor equation can also be expressed as σc = σ0 + αMGb
√
ρ. Arechabaleta et al. [3]

reasoned that by excluding σ0 the contribution of dislocations to the yield stress σd is:

σd =
MGb

Ld
= αMGb

√
ρ (5.1)

and thus:

α =
1

Ld
√
ρ
. (5.2)

Ld is the average distance between dislocations nodes when only dislocation self-interaction is
considered. The dislocation density ρ and average Ld are thus closely related through α, which
represents the dislocation structure quantitatively. Arechabaleta et al. also reasoned that,
through the validation of the Taylor equation, α should remain constant even when the network
changes. The decrease of Ld during work hardening is thus governed by α. The relation between
L and Ld could be influenced by the precipitated microstructure and was therefore further in-
vestigated.

A specimen from batch B age-hardened for 16 hours (16B) was chosen for further investiga-
tion. The results of which are presented in figure 5.1. The values for α were calculated using the
average dislocation segment length L obtained from the fit of the pre-yield anelastic modulus
to the extended Kocks-Mecking plot and were not constant. Figure 5.1 shows the decrease of
α with increased dislocation density calculated by equation (5.2) using the average dislocation
segment length and dislocation density corresponding to the respective data point. The aver-
age dislocation segment length L calculated from the critical stress found from the extended
Kocks-Mecking plot is thus not equivalent to Ld as α is not constant. Figure 5.2 shows the
average dislocation segment length L (equation (2.21)) plotted against the dislocation density
ρ. The respective values of the 16B specimen are shown as diamonds (�) and equation (5.2) is
plotted for three values of alpha (0.5; 0.75 and 0.9) and the substitution Ld = L. The decrease
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of L with increasing dislocation density is too small to ensure a constant α. Here the partially
changing dislocation pinning structure presumably plays a role. Because the precipitates in the
metal form pinning points which do not move when the metal is work hardened, the evolution
of the dislocation structure is impeded as a whole. This means that L remains larger than is
necessary to maintain a constant value of α. This is because the precipitates fix part of the
dislocation structure regardless of the work hardening. Equation (5.2) is therefore not suitable
for application in a precipitated metal and a modification is required.

The steel alloy used by Arechabaleta et al. [3] was not precipitated and therefore the influ-
ence of precipitates was not considered. In a precipitated aluminium alloy the contribution of
precipitate strengthening is included in σ0 and since precipitation hardening is also based on
dislocation interaction, σ0 has to be incorporated in the case of age-hardened AA7075 alloys.
If all other strengthening mechanisms, such as for instance grain boundary effects and solution
hardening, are neglected so that σ0 represents the precipitation hardening contribution σp alone,
the Taylor equation can be rewritten as

σc = σp + αMGb
√
ρ. (5.3)

The physical yield stress, σc, is found from the abrupt change of slope in the extended Kocks-
Mecking plot. Therefore σc can be represented as

σc =
MGb

L
, (5.4)

where L is the average dislocation segment length shown in figure 5.2. In a similar way the
stress due to precipitation hardening, based on the Orowan stress (section 2.3) can be expressed
as

σp =
MGb

Lp
, (5.5)

where Lp is the average distance between precipitates. Equations (5.4) and (5.5) substituted in
equation (5.3) give

MGb

L
=
MGb

Lp
+ αMGb

√
ρ. (5.6)

Expressing equation (5.6) for α gives

α =
1
√
ρ

(
1

L
− 1

Lp

)
. (5.7)

In equation (5.7) Lp is a constant which represents the average distance between precipitates
and ρ and L are the dislocation density and average dislocation segment length calculated from
the fit of the pre-yield anelastic modulus to each cycle of the interrupted tensile test respectively.

From figure 5.1 the calculated value σ0 = 452 MPa can be used to determine Lp by using
equation (5.5). A length of Lp = 50.5 ± 1.6 nm was found. The scale of Lp is in agreement with
the observations of Jacumasso et al. [43] and Jung et al. [44]. Subsequently α can be calculated
for each cycle of the interrupted tensile test. It should be constant for each of the data points.
A value of α = 0.14 ± 0.01 was found for cycles 2-9, the first cycle was not incorporated in the
analysis. This corresponds with the value for α found in the Taylor equation fit (figure 4.12),
validating equation (5.7). Equation (5.7) can be solved for L:

L =

(
1

Lp
+ α
√
ρ

)−1
, (5.8)
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which is plotted in figure 5.3 alongside the data of specimen 16B. The modified expression for
α in equation (5.7) provides a more detailed quantitative description of the mixed dislocation
pinning structure in a precipitation hardened alloy. Using L, ρ and Lp. A distinction can be
made between the fixed dislocation pinning structure due to precipitates through the parameter
Lp and the total dislocation pinning structure through L.

Figure 5.1: The physical yield stress of cycle 2-9 of a specimen hardened for 16 hours from
batch B is shown for the respective dislocation density alongside the Taylor equation in red. α
calculated with Ld = L according to equation (5.2) is not constant.

Figure 5.2: The relation between L and ρ for an age-hardened (16 hours, �) specimen from batch
B. Three curves are shown for constant values of α according to equation (5.2) with L = Ld.
The calculated values for L (�) do not follow the curves of constant α.
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Figure 5.3: The relation between L and ρ for a specimen age-hardened for 16 hours (batch B)
is shown alongside equation (5.8) with the values for α and Lp obtained through fitting of the
Taylor equation and calculation using equation (5.5) respectively.

5.4 Anelastic Strain Recovery

During the loading and unloading steps of the specimen, the Frank-Read sources bow out and
return to their equilibrium position respectively. When between loading and unloading plastic
strain is introduced into the metal the average dislocation segment length reduces, as can be
deduced from figure 4.10 and 4.11. In section 2.5 it was reasoned that during both loading
and unloading the swept area of the dislocation at the critical state (A = πL2/8) is related to
the anelastic loading and unloading shear strain through equation (2.17). The introduction of
the Taylor factor results in an expression for strain, rather than shear strain. The dislocation
segment length decreases when plastic strain is introduced. Meaning that L at the onset of
plastic deformation is larger than L at the initiation of unloading. By contrast the dislocation
density increases as plastic strain is introduced.

From equation (2.35) the proportionality of the anelastic strain during loading is found to be
the product of ρ and L. Under the assumption that the dislocation density and average disloca-
tion segment length no longer change as soon as unloading is initiated. The dislocation density
and segment length during the unloading step can be characterized by the fit of the pre-yield
anelastic modulus to the extended Kocks-Mecking plot of the subsequent loading step. It could
be expected that the anelastic unloading strain could also be expressed in terms of equation
(2.17) using the dislocation density and segment length at the initiation of unloading. In that
case the anelastic strain during the unloading of cycle one, should be equal to the anelastic
loading strain of cycle two. From figure 4.15 it becomes apparent that this is not the case and
that the anelastic unloading strain is smaller than the anelastic loading strain.

Equation (2.35) can be rewritten explicitly for A to arrive at an expression for the average
swept area of a Frank-Read source prior to unloading such that the observed anelastic loading
strain is accommodated
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AULS =
εAEULL

ρbM
, (5.9)

where ρ and L are the dislocation density and average dislocation segment length obtained from
the fit of the pre-yield anelastic modulus to the extended Kocks-Mecking plot of the subsequent
loading step respectively. The average swept area represents the recoverable anelastic strain
during unloading. Since the unloading strain is smaller than the loading strain in the subse-
quent loading step, the area is smaller than the area swept by a Frank-Read source of average
dislocation segment of length L at its critical state during loading.

The next step is to consider that not all Frank-Read sources are exactly at their critical
state at the moment unloading is initiated. This means that not all Frank-Read sources recover
the maximal anelastic strain. This is one potential cause of the unrecoverable anelastic strain
observed during interrupted tensile tests. Another consideration is that dislocation loops which
have been emitted just before unloading still propagate through the metal as discussed in section
2.5.2. The propagation of these loops causes an anelastic strain in the loading direction and
thus a negative anelastic unloading strain. This anelastic strain in opposing direction possibly
undoes a portion of the anelastic unloading strain. A third option is that during the retraction of
the dislocation segments of the Frank-Read sources during unloading, the returning dislocation
segments can encounter a variety of pinning obstacles. When a retracting dislocation segment
encounters such an obstacle it will spend some time waiting for thermal activation to occur
before it can pass. The activation energy required is stress dependent and also the strain rate
plays a role [52]. If the stress lowers at a sufficient rate the dislocation might remain stuck
at the obstacle when the metal is fully unloaded because it can no longer obtain the energy
required to pass. The Frank-Read source can then not fully return to its original position and
not all anelastic strain is recovered. Rosenfield and Averbach [53] considered the specific case
where the obstacle is a forest dislocation. When multiple dislocations try to glide back they can
pile up at the forest dislocation. A back stress is exerted by the pile up on the tree. When a
returning dislocation finally passes the forest dislocation it forms a jog. Hence Rosenfield and
Averbach considered jog formation energy to quantify the anelastic unloading strain [53]. These
three causes most likely happen simultaneously and together cause the unrecoverable anelastic
strain during unloading.

5.4.1 Constitutive model of Torkabadi et al.

The constitutive model of Torkabadi et al. [2] was used to study the unloading behaviour of
AA7075 in interrupted tensile testing. The anelastic strain retrieved after each cycle was de-
termined graphically according to figure 2.9 and plotted against stress in figure 4.14. A fit to
equation (2.27) was made, which resulted in values for K and εaepre. From these parameters, L
and ρ0 were determined according to:

L =
K(αG(2M)(3/2))2

πb
(5.10)

and

ρi =
8Mεaepre
bπL

. (5.11)

The parameter K contains the average dislocation segment length L. However K is based on
a fit to multiple data points (figure 4.14) all of which have a different value of L. Therefore L
cannot be the dislocation segment length at the point of unloading. Because it is represented by
a single value calculated using equation (5.10). Torkabadi et al. showed that the stress-strain
curves of tensile and interrupted tensile tests overlap and as such the physical yield stress of each
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loading step follows the post-yield regime in a tensile experiment [2]. This means that the yield
stress of a reloading step is related to the flow stress at which the previous unloading step was
initiated. The average dislocation length L at a flow stress σf thus can be calculated according
to equation (2.21). So the average dislocation segment length changes as a function of the flow
stress. Therefore L cannot be a constant but should in fact change with σf . This makes the
constitutive model unsuitable for the physical modelling of the unloading of metals.

The values obtained for L and ρi calculated using equations (5.10) and (5.11) result in unre-
alistic values. For the dislocation segment length, L = 6.35×109 m was found and for the initial
dislocation density, ρi = 3.23 × 10−3 m−2. This might be related to the fact that L is treated
as a constant, which as discussed previously, it is not. The value found for α from figure 4.12,
was used in equation (5.10) to find L. Since the expression in equation (5.11) also contains L
the value found for ρi is also unrealistic. Despite the parameters K and εaepre not being suited
for the calculation of the average dislocation segment length and the initial dislocation density
for individual loading steps. The constitutive model of Torkabadi et al. is suited to determine
the unloading modulus of a metal for springback simulation succesfully [2].

In the constitutive model of Torkabadi et al. [2] σ0 is considered an unknown value which is
eliminated by introduction of σy and ρi. However Arechabaleta et al. [3] found a way to obtain
σ0 by performing similar interrupted tensile tests. Results from a similar analysis on AA7075
are presented in figure 4.12 and table 4.4. An unloading model based on the Taylor equation
(equation (2.23)), where L is a function of the physical yield stress through equation (2.21) could
be considered as a next step. In this model, σ0 can be readily used and no mathematical detours
are required. Such a model could be used to study the effects of dislocations in the unloading of
metals. It should however also take into account that the anelastic unloading strain is smaller
than the loading strain as mentioned at the beginning of this section.

5.5 Distribution of dislocation segment length

In section 2.6 a continuous uniform length distribution was introduced in the normalized pre-
yield anelastic modulus. The distribution of dislocation segment lengths is however never con-
tinuous uniform nor will each length be represented by a similar dislocation density as in the
current model. The introduction of even such a basic distribution does however show that the
the value of Θ (or T in the normalized situation) in the theoretical distribution model is not
equal to zero at σc (or s = 1). Similar behaviour of Θ is observed for the data in figures 4.3, 4.6
and 4.7, where the onset of plastic deformation occurs at values of Θ > 0. This means that it
is possible that the dislocation segment length distribution is responsible for the abrupt change
of slope at values of Θ > 0 and that the value of Θ at σc is an indication of the distribution
of segment lengths in the dislocation network. This would also mean that in the case of pure
aluminium (figure 4.1) a distribution is hardly present, as Θ in the post-yield regime of the
Kocks-Mecking curve is very close or equal to zero. In the interrupted tensile tests the unload-
ing yield point effect and the spiralling in the Kocks-Mecking plot that ensues from it, make the
graphical determination of the value of Θc not that obvious. For this reason the evolution of
the dislocation segment length distribution could not be studied in this case.

5.5.1 Alternative distribution types

Lin et al. [54] investigated the dislocation segment length distribution of aluminium during creep
by performing etch pitting and transmission electron microscopy experiments according to the
method of Oden et al. [55]. They found a statistical distribution of dislocation segments from
experimental data. The normalized analytical distribution for the dislocation segment length
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distribution was further developed by Shi and Northwood [56]:

Φ(u) = β2ρ−2
[
2ρL−2m

L2

L2
m

e
− L2

L2
m

]
, (5.12)

where Lm = LA
2

√
π, with LA the average dislocation segment length and β a constant includ-

ing a dislocation network geometry factor. For tight uniform dislocation networks β ≈ 1 and
for non-uniform dislocation networks β < 1 [56]. To make the expression in equation (5.12)
a function of u (u = L/LA), the following substitution should be made: L/Lm = 2√

π
u. The

implementation of this normalized distribution model in the physical yield criterion could prove
valuable in gaining better insight in the dislocation structure from the extended Kocks-Mecking
curve. Also by using interrupted tensile testing, the evolution of the dislocation structure dur-
ing plastic strain could be characterized. The use of a statistical distributions which has been
validated by experimental data is a good starting point for a realistic distribution of dislocation
segment lengths in the pre-yield anelastic modulus.

The experimental distribution found by Lin et al. [54] shows resemblance with several other
distribution types such as the log-normal, gamma or Weibull distribution. Naturally other length
distributions similar to the experimental data can be used. Another adaptation that could be
made to the current distribution is the use of a number density N , rather than the dislocation
density ρ.

5.5.2 Number density length distribution

The introduction of a number density length distribution in the model of van Liempt and Sietsma
[1] is similar to the steps described in section 2.6. Again a continuous uniform distribution is
considered. However for the number density the box of the distribution is not fixed at the right
side. Instead the average of u, u0 is considered the center of the box of width 2w as depicted
in figure 5.4. It was discussed previously that the continuous uniform distribution is a poor
representation of the dislocation length distribution, however since the procedure is known it
will be used as an example. To introduce the number density into the model, ρ = NL has to
be substituted in equation (2.37) such that the non-distributed normalized pre-yield anelastic
modulus becomes:

TND =
1 + V

3NL
3

1 + V NL3S(s)
. (5.13)

The expressions for V and S(s) remain unchanged. The expression for u is instead normalized
for the average length LA (u = L/LA) and s = σ/σcA with σcA the stress corresponding to LA.
The normalized number density length distribution then can be expressed as:

TD =
1 +

V L3
A

3

∫ 1
0 N(u)u3du

1 + V L3
A

∫ 1
0 N(u)u3

su−
√

1−(su)2 arcsin(su)
(su)3
√

1−(su)2
du
. (5.14)

For the general box distribution the solution of the integral in the numerator is I(w, 0) =
1
2w

∫ 1
0 N(u)u3du = u0(u

2
0 +w2). The integral in the denominator also has an analytical solution,

alike the distribution model in section 2.6, it is simpler and given by

I(w, s) =
1

2w

∫ 1

0
N(u)u3

su−
√

1− (su)2 arcsin(su)

(su)3
√

1− (su)2
du =[

−2
√

1− (su2)− su arcsin(su)

2ws4

]u0+w
u0−w

. (5.15)
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The integral is normalized for the area of the box distribution 2w and introduced into equation
(5.14). The solution of the integral in the numerator is also introduced, the expression for the
normalized distributed pre-yield anelastic modulus is:

Td =
1 + V

3N0L
3
AI(w, 0)

1 + V N0L3
AI(w, s)

. (5.16)

The number density provides a more intuitive way to express the distribution of segment lengths.
The distribution N(L) gives the number of dislocation of length L. A similar derivation can be
performed for other type of distributions.

Figure 5.4: The continuous uniform number density distribution with the distribution parame-
ters, u0 and w.
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CHAPTER 6

Conclusions and Recommendations

The effects of precipitates in the microstructure on dislocation behaviour and the development
of the dislocation structure during work hardening of metals was investigated using tensile
and interrupted tensile tests. The recovered anelastic strain after loading and unloading was
investigated, as well as a distribution of dislocation segment lengths. An AA7075 aluminium
alloy was chosen for the investigation, the alloy was artificially age-hardened for 0, 16, 24 and 32
hours to form different precipitate structures in the metal. Tensile tests were also performed on
pure aluminium specimens. Models of van Liempt and Sietsma [1] and Torkabadi et al. [2] were
used to study the dislocation behaviour during loading and unloading in interrupted tensile
tests. Models were derived to study the recovery of anelastic strain and the distribution of
dislocations using an adapted version of the pre-yield anelastic modulus. This chapter presents
the conclusions drawn from the discussion on the results and recommendations for future research
into this topic.

6.1 Conclusions

The conclusions drawn from the discussion of the present investigation into the effects of a
precipitated microstructure on the application of the physical yield criterion, the development
of the microstructure during work hardening and the recoverable anelastic strain are presented.
The introduction of a dislocation length distribution in the physical yield criterion was also
investigated. The conclusions can be summarized as follows.

(i) The physical yield criterion is suited to quantify the anelastic behaviour, physical yield
stress, dislocation density and segment length of aluminium. Both pure aluminium and
artificially age-hardened alloys were characterized successfully. The average dislocation
segment length found from the fit of the pre-yield anelastic modulus to the Kocks-Mecking
data was of a similar scale as observations with transmission electron microscopy. For very
soft aluminium, the pre-yield regime might not be sufficiently recorded during a tensile test
at high strain rates. This makes the application of the physical yield criterion difficult.

(ii) Precipitates provide a fixed dislocation pinning structure which does not change as work
hardening is introduced. The evolution of the dislocation structure is impeded by this
fixed structure which causes L to decrease at a lower rate whereby α = (L

√
ρ)−1 is not

constant, and L 6= Ld. The expression for α was modified to incorporate the impediment
of the fixed pinning structure by taking α = 1√

ρ( 1
L −

1
Lp

), with Lp the distance between

fixed pinning points, in this case precipitates. The length Lp is related to σ0 obtained from
the Taylor equation. When the adapted expression for α was applied to the dislocation
segment lengths obtained from the interrupted tensile tests, a constant value of α = 0.14
was found, which is in agreement with the results from the Taylor equation fit. A precipitate
distance of 50 nm was found, the scale of which corresponds with transmission electron
microscopy observations of precipitates. Other strengthening effects such as grain boundary
strengthening and solid solution strengthening were not considered.
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(iii) The constitutive model of Torkabadi et al. [2] is not suited to study the physical behaviour
of dislocations during unloading or the effects of dislocations on the anelastic unloading
strain. The parameters K and εaepre were used to calculate the dislocation segment length
L and initial dislocation density ρi, but this resulted in unrealistic values for both. K only
returns a single value for L, which in reality changes with the flow stress. Therefore study
on the change of L during plastic deformation is not possible using this model.

(iv) The introduction of a dislocation segment length distribution in the physical yield criterion
model was proposed. The distribution model successfully showed that a distribution in the
dislocation segment length causes Θ > 0 at σc. The value of Θ at σc could therefore be an
indication of the width of the dislocation segment length distribution.

6.2 Recommendations

Based on the results and conclusions of the current investigation, recommendations for further
studies on the application of the physical yield criterion, the development of the microstructure
during work hardening and the recoverable anelastic strain into the effects of a precipitated
microstructure are presented. The recommendations also include those for the dislocation length
distribution.

(i) The recovery of anelastic strain during unloading can currently not be studied because
of the absence of a suitable unloading model. A physical model has to be developed
to quantitatively analyse the behaviour of the anelastic strain during unloading. Such a
model should take into account the possible causes that result in the observed unrecoverable
anelastic strain during unloading in comparison to the anelastic loading strain. Namely, not
all Frank-Read sources being at the critical state at initiation of unloading, the propagation
of loops which causes portions of the anelastic loading strain to be neutralized and the fact
that retracting dislocations could remain stuck behind obstacles in the microstructure.

(ii) The strain rate used in the interrupted tensile tests performed in the current investigation
was different from earlier interrupted tensile tests in [2] and [3]. Despite the strain rate
sensitivity of AA7075 being low, it might still have effects on the behaviour of dislocations
during unloading. Dislocation segments getting stuck whilst returning to the equilibrium
position of the Frank-Read source require thermal activation to pass the obstacles they
encounter. The strain rate affects the thermal activation and thus the dislocation behaviour
during unloading. Therefore, further investigation of the strain rate effects is recommended.
Dislocation behaviour during unloading might in turn also influence the rearrangement of
dislocations in the unloading yield point phenomenon.

(iii) When investigating a metal using the physical yield criterion and interrupted tensile tests
it is advised to carefully consider unloading yield point effects in the metal. It might
be necessary to take precautions to prevent the formation of pronounced bulges near the
transition from pre-yield to post-yield regime which might disturb the fit of the pre-yield
anelastic modulus to the pre-yield regime of the extended Kocks-Mecking plot.

(iv) Further development of the distribution model could help gain a better understanding of
the shape of the dislocation network. A realistic expression for the distribution has to be
incorporated in the model. The distribution should preferably be based on experimental
data or expressions based on physical phenomena. Applying the distributed models on the
Kocks-Mecking plots derived from interrupted tensile test could help to understand the
evolution of the dislocation structure during plastic deformation better. The use of the
number density should be preferred over the dislocation density during further development
of the dislocation segment length distribution model.
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