
Linearly
Homomorphic
Signature
Schemes
A Fair Comparison
D.A. Hondelink

Linearly
Homomorphic
Signature
Schemes

A Fair Comparison

by

D.A. Hondelink

to obtain the degree of Master of Science

at the Delft University of Technology,

to be defended publicly on Wednesday, June 22, 2022 at 3:00 PM.

Student number: 4466683
Project duration: March 1, 2021 – June 22, 2022
Thesis committee: Dr. Z. Erkin, TU Delft, supervisor

Dr. R. Venkatesha Prasad, TU Delft
Dr. T. Abeel, TU Delft

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Abstract

Digital signatures are used everywhere around us. They are well-studied and have been
standardized since 1994. In 2002, Johnson et al. introduced the notion of homomorphic
digital signatures, allowing one to perform computations on signed data. These signatures
are especially useful for linear network coding, a technique used to improve throughput and
resilience of networks, and in verifiable cloud computing. However, homomorphic signatures
are not standardized and less well-studied, which creates a challenge when choosing one of
the published schemes. Moreover, most schemes remain unimplemented, and it is insufficient
to compare their theoretical performance for real-world applications. Those schemes that are
implemented are not directly comparable since they use different instantiations of the same
primitives or they are implemented in different programming languages.

In this thesis, we set out to find out howwe can assess the performance of homomorphic signa-
ture schemes. To this end, we have implemented eleven pairing-based linearly homomorphic
signature schemes. All signature schemes have been implemented on the BLS12-381 curve
to constitute a fair comparison. We assess the performance of the signature schemes based
on their signing, verifying and combining performance, as well as the sizes of their keys and
signatures. Furthermore, we analyse the impact that additional features such as supporting
a multi-party setting have on the performance of a signature scheme. Based on our exper-
imental results, we make recommendations for three types of applications: For constrained
devices, the scheme Li20 is the most suitable due to its compact signing key and efficient sign-
ing operation. For network coding, which requires fast verification, fast combining, and small
signatures, we also recommend the scheme by Li et al. Finally, for a multi-party, privacy-
preserving scheme, we recommend the scheme by Sch18 and Sch19, which preserve input
privacy of homomorphically combined signatures. We find that we can assess the perfor-
mance of a homomorphic signature scheme based on the speed of the signing, verifying and
combining operation. Our implementation is publicly available.

iii

Preface

In this thesis, I present a comparison on the performance of pairing-based linearly homo-
morphic signature schemes. This comparison is intended to aid the process of selecting a
signature scheme to be used in a real-world scenario. On the cover of this thesis, we find a
homomorphic signature. It is produced by signing the individual words of the title of the thesis,
after which we homomorphically combined them.

Working on this thesis has been a long and very educational journey. It is the final chapter of
my time as a student in Delft. This journey started back in 2015, together with Jaap, Jip and
Rolf. I want to thank them for the great times we had together as computer science students,
and as friends. I want to thank Freek for our nice coffee breaks while studying at the library. It
is because of friends like them that my time in Delft has been nothing but a joy.

I want to thank my supervisor, Dr Zeki Erkin, for his guidance and support during my thesis,
and whose classes piqued my interest in cryptography and privacy. Motivating me to write a
research paper duringmy thesis project was a very valuable experience. The paper is currently
awaiting review, but writing and submitting it has already felt like a great accomplishment. I
also want to thank Jelle for helping me write the paper and for his valuable tips on this report.
I want to thank Dr Thomas Abeel and Dr RangaRao Venkatesha Prasad for being part of my
thesis committee.

Finally, I want to thank my family, friends and my girlfriend for their continuous love and support
throughout the years.

Dieuwer Hondelink
Rotterdam, June 2022

v

Glossary

BLS Barreto-Lynn-Scott

BN Barreto-Naehrig

CDH Computational Diffie-Hellman

CH Context Hiding

CSP Cloud Service Provider

CSPRNG cryptographically Secure Pseudo-Random Number Generator

DDH Decisional Diffie-Hellman

DE Designated Entities

DL Discrete Logarithm

ECC Elliptic Curve Cryptography

Homomorphic Signature SHS

HS Homomorphic Signature

HSS Homomorphic Signature Scheme

ID Identity

IETF Internet Engineering Task Force

KGC Key Generation Centre

LHSS Linearly Homomorphic Signature Scheme

MAC Message Authentication Code

MK Multi-Key

NC Network Coding

NCS Network Coding Signature

NIST National Institute of Standards and Technology

PRF Pseudo Random Function

RNG Random Number Generator

ROM Random Oracle Model

MTU Maximum Transfer Unit

vii

List of Figures

2.1 Point operations are visualized on an elliptic curve with equation 𝑦2 = 𝑥3−6𝑥+8 9
2.2 Two examples of butterfly networks . 12
2.3 Network coding packet augmentation . 13
2.4 Transmission of packets through a network . 13

6.1 Surface plot fastest signing . 35
6.2 Sign duration constant file length, varying packet length 36
6.3 Sign duration for constant packet length (1,64,128) and varying file length. . . . 36
6.4 Surface plot of fastest verifying schemes. 37
6.5 Verify duration constant file length, varying packet length 37
6.6 Verify duration for constant packet length (1,64,128) and varying file length. . . 38
6.7 Surface plot of fastest combining schemes. 38
6.8 Combine duration for constant file length (1,64,128) and varying packet length. 39
6.9 Combine duration of fastest combining signature schemes 39
6.10 Sign, verify and combine operations duration of network coding schemes - Vary-

ing packet length for a constant file length of 128. 40
6.11 Sign, verify, combine duration for network coding schemes - Varying file length

on a constant packet length of 128. 40
6.12 Combine duration of network coding schemes for constant file length (1,64,128)

and varying packet length. 41
6.13 Sign, verify, combine duration for multi-key schemes - Varying packet length

over a constant file length of 128. 41
6.14 Sign, verify, combine duration for multi-key schemes - Varying file length over a

constant packet length of 128. 42
6.15 Sign duration of MK schemes . 42
6.16 Sign, verify and combine duration of context hiding schemes - Varying packet

length over a constant file length of 128. 43
6.17 Sign, verify and combine duration of context hiding schemes - Varying file length

over a constant packet length of 128. 43
6.18 Sign, verify and combine duration of ID-B schemes - Varying packet length over

a constant file length of 128. 44
6.19 Sign, verify and combine duration of ID-B schemes - Varying file length over a

constant packet length of 128. 44
6.20 Sign, verify and combine duration of DE schemes - Varying packet length over

a constant file length of 128. 44
6.21 Sign, verify and combine duration of DE schemes - Varying file length over a

constant packet length of 128. 45

ix

List of Tables

5.1 Sizes and characteristics of implemented schemes 34
5.2 Security assumptions per signature scheme . 34
5.3 Security model per signature scheme . 34

7.1 Choice matrix for a homomorphic signature scheme to be used in a smart meter
setting . 49

xi

Contents

1 Introduction 1
1.1 Digital Signatures . 1
1.2 Homomorphic Signatures . 1
1.3 Research Questions. 2
1.4 Contributions . 3
1.5 Overview of document . 3

2 Preliminaries 5
2.1 Cryptosystems . 5

2.1.1 Symmetric Cryptography . 5
2.1.2 Asymmetric Cryptography . 5

2.2 Digital Signatures . 6
2.3 Number theory . 7

2.3.1 Groups . 7
2.3.2 Fields . 7
2.3.3 Order . 7
2.3.4 Finite Fields . 7

2.4 Security Assumption . 7
2.4.1 Discrete Logarithm (DL) . 8
2.4.2 Computational Diffie-Hellman (CDH). 8
2.4.3 Computational Bilinear Diffie-Hellman (CBDH). 8
2.4.4 Decisional Bilinear Diffie-Hellman (DBDH) 8
2.4.5 co-Computational Diffie-Hellman . 8
2.4.6 co-Bilinear Diffie-Hellman . 8
2.4.7 q-Strong Diffie-Hellman . 8
2.4.8 Gap Bilinear Diffie-Hellman . 8
2.4.9 Flexible Diffie-Hellman Inversion . 8

2.5 Elliptic Curves . 8
2.5.1 Operations on EC. 9

2.6 Pairing . 9
2.6.1 Pairing friendly curves . 10
2.6.2 BLS 12 381 . 10

2.7 Hashing . 10
2.7.1 Cryptographic hash functions . 10

2.8 Pseudo-Random Functions . 11
2.9 Network Coding . 11

3 Related Works 15
3.1 Digital Signatures . 15
3.2 Homomorphic signature schemes. 15
3.3 Linearly homomorphic signature schemes. 16

3.3.1 Asymmetric-pairing based . 16
3.4 Polynomial . 17

xiii

xiv Contents

3.5 Fully homomorphic . 18
3.6 Surveys . 18
3.7 Homomorphic signatures in general . 18

4 Homomorphic Signature Schemes 19
4.1 Homomorphic Signatures . 19

4.1.1 Formal Definition . 19
4.1.2 Correctness . 20
4.1.3 Forgeries . 20

4.2 Construction of a pairing-based LHSS . 20
4.2.1 Verifying . 22
4.2.2 Combining . 22

4.3 Variants of Homomorphic Signature Schemes 23
4.3.1 Network Coding (NC). 23
4.3.2 Identity-Based (ID) . 23
4.3.3 Multi-Key (MK) . 24
4.3.4 Context Hiding (CH) . 24
4.3.5 Designated Entities (DE). 24

5 Implementation details 25
5.1 Implementation. 25

5.1.1 Network Coding optimization . 26
5.2 Testing method. 26
5.3 Definition of performance. 27
5.4 Overview of implemented schemes. 27

5.4.1 Bon09. 27
5.4.2 Cat12 . 27
5.4.3 Lin17 . 28
5.4.4 Sch17. 29
5.4.5 Li18 . 29
5.4.6 Zha18. 30
5.4.7 Sch18. 30
5.4.8 Ara19 . 32
5.4.9 Sch19. 33
5.4.10 Li20 . 33
5.4.11 Lin21 . 33

5.5 Sizes and characteristics . 33

6 Results 35
6.1 Overall. 35

6.1.1 Signing . 35
6.1.2 Verifying . 37
6.1.3 Combining . 38
6.1.4 Summary . 39

6.2 Performance per scenario . 40
6.2.1 Network coding . 40
6.2.2 Multi-key . 41
6.2.3 Context hiding . 42
6.2.4 Identity-based key generation. 43
6.2.5 Designated Entities . 43

Contents xv

6.3 Overhead of additional features . 44
6.3.1 Network coding . 45
6.3.2 Multi-key . 45
6.3.3 Context hiding . 45
6.3.4 Identity-based key generation. 45
6.3.5 Designated Entities . 46

7 Application Analysis 47
7.1 Network coding . 47
7.2 Smart Grid . 48
7.3 Privacy-Preserving . 49

8 Discussion 51
8.1 Conclusion . 51
8.2 Future work . 52
8.3 Limitations . 53

1
Introduction

Digital signatures are used everywhere around us. In most instances, they are hidden from
the end-user, but behind the scenes of bank transactions and computer networks, these sig-
natures provide trust and authenticity to digital systems. In some other instances, we explicitly
want signatures to be visible, think for example of a signed contract. We want to see that this
document is signed, and as such, a digital mark is placed on it.

1.1. Digital Signatures
Digital signatures offer more functionality than a classic signature written with a pen on a
piece of paper. A signed paper document can be altered after a signature has been placed,
and a signature can be studied and copied, to later make forged signatures to impersonate
someone.

Digital signatures, on the other hand, are constructed in such a way that this is not possible (by
definition even). A digital signature is created on a message, using a secret signing key. The
outcome of signing amessage is a list of bytes which are the result of computation involving this
signing key andmessage, instead of a drawing representing someone’s name or initials. When
someone wants to check the validity of this signature, he needs a verification key that matches
the secret signing key, the signature and the message it was produced on. If everything is
correct, the verification of the signature succeeds.

If, however, the message was changed after signing, the signature will no longer verify. Fur-
ther, since the signature is produced using a secret signing key, only the person holding that
key can create valid signatures.

The invention of digital signatures can be dated back to 1976 [17] when Diffie and Hellman
presented their public key solution. Since then, numerous digital signature schemes have
been invented and studied, and the use of digital signatures has been standardized since
1994.

1.2. Homomorphic Signatures
In 1993, Desmedt [16] thought of a concept of signatures that could be combined based on
operators. Later in 2002, Johnson et al.[29] formalized this notion as homomorphic signa-
tures.

Homomorphic signatures allow us to compute on signed data. We can thus first sign data,

1

2 1. Introduction

and then run calculations on the data and on the corresponding signatures, to get a signature
that verifies on the computed value.

The calculations that can be run on these signatures can be linear, polynomial, or fully ho-
momorphic. As such, there exist linearly homomorphic, polynomial homomorphic and fully
homomorphic signature schemes.

Linearly homomorphic signatures are especially useful for network coding [2]. This is a tech-
nique that through linear combinations [32] of packets provides robustness and resilience to
computer networking. When a node wants to transmit a file through a network, it splits this file
up into smaller packets, which it then sends to intermediate nodes. Instead of storing and for-
warding single packets, in network coding, separate packets are combined (coded) together.
This increases the throughput of networks, as fewer packets have to be sent. When a target
node has received enough linearly independent packets, it can decode them to retrieve the
original file.

Network coding suffers from an issue called pollution attacks [30]. When a node sends a
corrupt packet instead of a linear combination of a received packet, this prevents the entire
file from ever being decoded. This is where homomorphic signatures can provide value. As
the source node signs the data packets and sends the packets accompanied by signatures,
intermediate nodes can verify the authenticity and correctness of the packets they receive.
A corrupted packet is instantly detected and discarded, while coding signatures together is
possible due to the homomorphic property. This allows the next node to verify the legitimacy
of the combined packet with the combined signature.

Another use case of homomorphic signatures is verifiable cloud computing. In this setting,
data owners offload computational work to a cloud service provider (CSP). The reason for
outsourcing this task can be due to the limited computational resources a data owner might
have, making it infeasible to do the calculations themself. A CSP, on the other hand, does
have the means to run a complicated calculation on this data. An issue is, however, that the
data owner might not trust the CSP. For all the data owner knows, the CSP might alter the
results of the computation, or even just answer with a random result. To be guaranteed of
the legitimacy of the operations performed by the CSP, homomorphic signatures can be used.
The data owner thus signs his data before sending it to the cloud service provider. The CSP
in turn runs the requested calculation on the data, and also combines the signatures in the
process. This way the CSP can prove to the data owner that it has indeed done the correct
computation.

1.3. Research Questions
Over the years, a multitude of homomorphic signature schemes supporting various levels of
homomorphism has been presented. While a lot of work has been put into studying these
signature schemes, their real-world application and implementation have lacked behind when
compared to digital signatures. Where digital signatures are standardized and extensively
tested, no such standards are available for homomorphic signature schemes. Furthermore,
some homomorphic signature schemes offer additional features, such as supporting multi-
party computation or identity-based key generation. These extra features make it less straight-
forward to find out which scheme has a better performance. This makes choosing a homo-
morphic signature scheme for an application, not a trivial task. To combat this issue, we want
to compare signature schemes and find out which scheme has the best performance.

Formally, in this thesis, we set out to answer the following research question:

1.4. Contributions 3

How can we assess pairing-based, linearly homomorphic signature schemes to be used in
practice, based on their performance, and the size of their signatures and keys?

To help answer this question, we formulate the following sub-research questions:

• 𝑅𝑄1 What is the fastest pairing-based, linearly homomorphic signature scheme, when
run on modern hardware?

• 𝑅𝑄2 Which scheme is the best to use in one of the following scenarios?

– Network Coding

– Multi-party computation

– Privacy preserving

• 𝑅𝑄3 What is the performance cost of supporting one of the following features?

– Network Coding

– Multi-party computation

– Context hiding

– Identity-based key generation

– Designated entities

To answer these questions, we implement and study eleven homomorphic signature schemes
in this work. We focus on pairing-based signature schemes supporting linear operations.
To facilitate a fair comparison, all schemes have been implemented under the same con-
straints.

1.4. Contributions
To list our contributions, we:

1. Implement and open-source eleven pairing-based, linearly homomorphic signature schemes1.

2. Analyse and compare the performance of these signature schemes.

3. Make recommendations on which scheme to use in which scenario.

1.5. Overview of document
The rest of this document is structured as follows: In chapter 2 we present the preliminary
knowledge required to discuss pairing-based linearly homomorphic signatures. In chapter 3,
we discuss related works on homomorphic signatures. In chapter 4 we explain in detail what a
homomorphic signature is, and how one is created. In chapter 5, we present the details of our
implementation and discuss our measuring method. Then in chapter 6, we present our results.
After that, we apply our findings to three real-world scenarios and explain which choices lead
to which decision in chapter 7. Finally, we reflect on our work, make recommendations for
future works and conclude in chapter 8.

1Our implementation can be found at https://gitlab.com/dieuwerh/lhss

https://gitlab.com/dieuwerh/lhss

2
Preliminaries

In this section, we go through all the building blocks that are required in the construction of
pairing-based linearly homomorphic signature schemes. We discuss the cryptographic prim-
itives using which the signature schemes are created, as well as the assumptions on which
the security of signature schemes relies.

2.1. Cryptosystems
A distinction between two kinds of cryptosystems can be made. They regard which person
holds which keys of the signing or encrypting algorithm. We briefly explain the two cryptosys-
tems and show in which way they differ.

2.1.1. Symmetric Cryptography
In symmetric-key cryptography, every entity has a single key. This same key is used to both
encrypt and decrypt messages or to sign and verify a message.

For a key 𝑘 and a message 𝑚:

𝑐 = 𝐸𝑛𝑐(𝑚, 𝑘)
𝑚 = 𝐷𝑒𝑐(𝑐, 𝑘) (2.1)

In symmetric cryptography, signatures are called message authentication codes (MACs). A
MAC on a message is also known as a tag, instead of a signature. To produce a MAC, the
MACing algorithm is used on a message 𝑚 together with the symmetric key 𝑘:

𝜏 = 𝑀𝐴𝐶(𝑚, 𝑘) (2.2)

2.1.2. Asymmetric Cryptography
In asymmetric cryptography (also known as public-key cryptography, on the other hand, each
entity (person) possesses a pair of keys. A key-pair consists of a secret key sk only known by
that entity, and a public key pk which everyone knows belongs to that person. In the context
of encryption, a public key can be used by anyone who has access to it to encrypt a message
for someone. Anyone can create an encrypted message destined for someone, but only the
person holding the corresponding secret key can decrypt those cipher texts.

5

6 2. Preliminaries

For a key-pair (𝑠𝑘, 𝑝𝑘) and a message 𝑚:
𝑐 = 𝐸𝑛𝑐(𝑚, 𝑝𝑘)
𝑚 = 𝐷𝑒𝑐(𝑐, 𝑠𝑘) (2.3)

For signatures, this works just the other way around. Only the person with the signing key can
create a signature, while anyone with the public verification key can verify its legitimacy:

𝜎 = 𝑆𝑖𝑔𝑛(𝑚, 𝑠𝑘)
1 = 𝑉𝑒𝑟(𝜎, 𝑣𝑘) (2.4)

2.2. Digital Signatures
To discuss signatures, we must first have a clear understanding of what they are and what
they should offer. We will start with an intuition which we will explain by an example. Suppose
Bob has promised to pay Alice 50 euros. To make it official, Bob writes down on a piece of
paper ”I, Bob, promise to pay Alice 50 euros”. Bob then signs the message with his signature
and gives it to Alice as proof. In this example, Bob’s signature is used as a mark of proof that
Bob agrees to the terms stated on the document.

After Bob has signed the message, he should not be able to deny ever having claimed he
said it. Otherwise, a signature would not be worth anything and it would not offer any value to
Alice.

After Bob has given the signed document to Alice, we do not want her to be able to change
the signed message. If this was possible, she could add a zero after the stated amount and
can claim that Bob owes her 500 euros. So another requirement for a signature is that it
is only valid for the original message. When the message changes, the signature becomes
invalid.

Lastly, we do not want anyone but Bob to be able to create this signature. If anyone was able
to impersonate Bob, he would go bankrupt shortly.

To capture this intuition in a more formal sense, we require that a signature offers:

Authentication A signature for entity A can only be created by using entity A’s signing key.

Integrity After a signature 𝜎 on message 𝑚 has been created, 𝜎 will not verify after changes
are made to 𝑚.

Non-repudiation After entity A has signed a message, he should not be able to deny ever
signing it.

Digital signatures are built upon asymmetric cryptography. Every participating party possesses
a key pair consisting of a signing and a verification key.

A digital signature scheme consists of three algorithms:

(𝑠𝑘, 𝑣𝑘) ←KeyGen(𝜆) On input of a security parameter 𝜆, the key generation algorithm pro-
duces a key pair consisting of a private signing key 𝑠𝑘 and a public verification key 𝑣𝑘.

𝜎 ←Sign(𝑚, 𝑠𝑘) The signing algorithm produces a signature 𝜎 on a message 𝑚 using a sup-
plied signing key 𝑠𝑘.

𝑏 ← Verify(𝑚, 𝜎, 𝑣𝑘) The verify operation checks the validity of a supplied signature 𝜎, mes-
sage 𝑚 and verification key 𝑣𝑘. It outputs a bit 𝑏 indicating success (1) or failure (0).

2.3. Number theory 7

2.3. Number theory
Constructions of cryptographic protocols often work on ’groups’ and ’fields’. These are differ-
ent from regular numbers. We describe below what each of these items is. The reason for
using groups and fields is because there are certain problems which are known to be hard
for these structures. By applying the hardness of solving these problems, we can construct
cryptographic protocols which we can prove are secure.

2.3.1. Groups
A group is a set of numbers for which one binary operation is defined, for example, addition
(resulting in additive groups), or multiplication (resulting in multiplicative).

A group must satisfy the following properties:

Associativity Rearranging the order of operations has no impact on the result of calculation:
𝑎 × (𝑏 × 𝑐) ⇔ (𝑎 × 𝑏) × 𝑐.

Identity There exists an identity element 𝐼, such that when the group operation is applied to
a number with this element, the number is returned: 𝑎 × 𝐼 = 𝑎.

Inverse For every element in the group, there exists an inverse element such that when the
group operation is applied to a number and its inverse, the identity element is returned:
𝑎 × 𝑎−1 = 𝐼.

If the group additionally has the following property, 𝑎 × 𝑏 = 𝑏 × 𝑎, the group is called commu-
tative.

2.3.2. Fields
A field 𝐹 is a set of numbers for which two binary operations + and × are defined. A field must
satisfy the following properties:

• (𝐹, +) is a commutative group with identity 0.

• (𝐹∗, ×) is a commutative group with identity 1.

• The distributive law holds for all elements in 𝐹, that is, 𝑎 × (𝑏 + 𝑐) = 𝑎𝑏 + 𝑎𝑐∀𝑎, 𝑏, 𝑐 ∈ 𝐹

2.3.3. Order
The order of a group or a field indicates the amount of numbers that exist in that group.
The group of integers mod 5, for example, has an order of 5 and contains the numbers
[0,1,2,3,4]

2.3.4. Finite Fields
A field with a finite number of elements is called a finite field. A finite field always has an
order of a prime or a prime power. Finite fields are widely used in cryptography and number
theory.

2.4. Security Assumption
Security of cryptographic protocols is guaranteed by proofing mathematical equations. A com-
mon building block for these security proofs is the use of security assumptions. These assump-
tions are about problems we assume to be hard.

In this section, we list and define the security assumptions used by the signature schemes
implemented in this work.

8 2. Preliminaries

2.4.1. Discrete Logarithm (DL)
The discrete logarithm problem in a group 𝔾 of order q, is to produce, given 𝑔, 𝑔𝑎 for a random
generator 𝑔 ∈ 𝔾 and random 𝑎 ∈ ℤ𝑞, the value 𝑎.

2.4.2. Computational Diffie-Hellman (CDH)
The computational Diffie-Hellman problem states that given elements 𝑔, 𝑔𝑎 , 𝑔𝑏 ∈ 𝔾 and 𝑎, 𝑏 ∈𝑅
𝑍∗𝑞 it is intractable to compute 𝑔𝑎𝑏. The CDH problem implies the hardness of the DL problem.
If we could solve the DH problem, we could compute from 𝑔𝑎 the value 𝑎, and as such we
could compute (𝑔𝑏)𝑎 = 𝑔𝑎𝑏, which would break the CDH assumption.

2.4.3. Computational Bilinear Diffie-Hellman (CBDH)
The computational bilinear Diffie-Hellman problem in groups (𝔾1, 𝔾2, 𝔾𝑇) is to compute 𝑔𝑎𝑏1
given points 𝑔1, 𝑔𝑎1 ∈ 𝔾1, 𝑔2, 𝑔𝑏2 ∈ 𝔾2, and a bilinear mapping 𝑒 ∶ 𝔾1×𝔾2 → 𝔾𝑇, 𝑎, 𝑏 ∈ ℤ∗𝑞

2.4.4. Decisional Bilinear Diffie-Hellman (DBDH)
The decisional bilinear Diffie-Hellman problem is: given 𝑔1 ∈ 𝔾1 and 𝑔2, 𝑔𝑎2 , 𝑔𝑏2 ∈ 𝔾2 with
𝑎, 𝑏 ∈𝑅 ℤ∗𝑞 , 𝜔 ∈ 𝔾𝑇, decide whether 𝜔 = 𝑒(𝑔1, 𝑔2)𝑎𝑏

2.4.5. co-Computational Diffie-Hellman
The co-computational Diffie-Hellman problem in groups (𝔾1, 𝔾2) is to compute 𝑔𝑥 ∈ 𝔾1 given
𝑔 ∈ 𝔾1 ⧵ {1} and ℎ, ℎ𝑥 ∈ 𝔾2 ⧵ {1} and 𝑥 ∈𝑅 ℤ𝑞∗

2.4.6. co-Bilinear Diffie-Hellman
The co-Bilinear Diffie Hellman problem for groups (𝔾1, 𝔾2, 𝔾𝑇) is to compute 𝑒(𝑔1, 𝑔2)𝑎𝑏 ∈ 𝔾𝑇
given 𝑔1, ∈ 𝔾1 and 𝑔2, 𝑔𝑎2 , 𝑔𝑏2 ∈ 𝔾2 for unknown values 𝑎, 𝑏 ∈ ℤ∗𝑞

2.4.7. q-Strong Diffie-Hellman
The q-Strong Diffie-Hellman problem is, given a bilinear group (𝔾1,𝔾2,𝔾𝑇, 𝑒 ∶ 𝔾1 ×𝔾2 → 𝔾𝑇),
with groups of equal order 𝑝 > 2𝑘, and with generator 𝑔 of 𝔾1 and ℎ of 𝔾2, 𝑞 = 𝑝𝑜𝑙𝑦(𝑘),
elements 𝑔𝑥 , 𝑔𝑥2 , ..., 𝑔𝑥𝑞 , ℎ𝑥, it is hard to compute (𝑐, 𝑔

1
𝑥+𝑐).

2.4.8. Gap Bilinear Diffie-Hellman
The gap bilinear Diffie-Hellman problem in groups (𝔾1, 𝔾2, 𝔾𝑇) is to solve the co-BDH problem,
while assuming the DBDH problem is solvable in these groups. In other words, there exists
a polynomial-time solution for the DBDH problem, but there is no solution for the co-BDH
problem for these groups.

2.4.9. Flexible Diffie-Hellman Inversion
The Flexible Diffie-Hellman inversion problem is to find an element𝑊 and𝑊′ such that𝑊′ =
𝑊

1
𝑧 given 𝑔1, 𝑔

𝑧
𝑣
1 , 𝑔𝑟1 , 𝑔

𝑟
𝑣
1 ∈ 𝔾1, 𝑔2, 𝑔𝑧2 , 𝑔𝑣2 with 𝑧, 𝑟, 𝑣 ∈𝑅 ℤ𝑝

2.5. Elliptic Curves
Elliptic-curve cryptography (ECC) is a form of public-key cryptography, based on the alge-
braic structures of elliptic curves over finite fields. They are widely used on the modern in-
ternet, for example for key agreement when visiting an SSL/TLS secured website, as well as
for digital signatures using the standardized Elliptic-Curve Digital Signature Algorithm (EC-
DSA)[28].

2.6. Pairing 9

0-5 5

-5

5

P

-R

R

Q

(a) Point addition on elliptic curves

0-5 5

-5

5

P

2P

-2P

(b) Point doubling on elliptic curves

Figure 2.1: Point operations are visualized on an elliptic curve with equation 𝑦2 = 𝑥3 − 6𝑥 + 8

An important reason why ECC is used is that smaller keys can be used than in factoring-
based cryptosystems while providing a similar level of security. A 256-bit ECC encryption
key provides the same level of security as a 3072-bit RSA encryption key [7]. The size of
these keys is an important factor for mobile devices which have less powerful processors.
Performing operations using these small keys is more efficient than calculations on large prime
numbers.

Elliptic curve cryptography is based on the hardness of finding the discrete logarithm (subsec-
tion 2.4.1) of an elliptic curve point with respect to a publicly known base point.

An elliptic curve is defined over a finite field, with points on the curve satisfying the following
formula:

𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏 (2.5)

2.5.1. Operations on EC
A binary operation is defined over points on the curve, called the group operation. This oper-
ation is often written as additive, and as such is called point addition. The operation takes two
points on the curve, 𝑃 and 𝑄, and returns a point 𝑅 = 𝑃 + 𝑄. To compute the coordinates of
point 𝑅, a line is drawn from point 𝑃 to point 𝑄. The inverse of point 𝑅 lies at the point where
the line crosses the curve again. The coordinates of 𝑅 lie at the vertical opposite side of the
curve. This process is visualized in Figure 2.1a.

To double a point, a line is drawn tangent to the point. The double of the point lies at the vertical
opposite side of where the line crosses the curve again. We illustrate this in Figure 2.1b.

When the line through a point does not intersect with the curve again, we say that applying
the operation results in the point at infinity. This point is defined as the identity element of the
curve.

2.6. Pairing
A pairing function (also known as a bilinear map) is defined over three elliptic curve groups;
two input groups (subgroups) 𝔾1, 𝔾2 and a target group 𝔾𝑇. This function maps inputs from

10 2. Preliminaries

𝔾1 and 𝔾2 to the target group:
𝑒 ∶ 𝔾1 × 𝔾2 → 𝔾𝑇 (2.6)

We call a bilinear group a tuple of the groups 𝔾1, 𝔾2 and 𝔾𝑇, together with the pairing function
𝑒, for which following properties hold:
Bilinearity 𝑒(𝑔𝑎1 , 𝑔𝑏2) = 𝑒(𝑔𝑏1 , 𝑔𝑎2) = 𝑒(𝑔1, 𝑔2)𝑎𝑏

Non-Degeneracy 𝑒(𝑔, ℎ) generates 𝔾𝑇 for any generators 𝑔 ∈ 𝔾1 and ℎ ∈ 𝔾2
Computability 𝑒(𝑔, ℎ) is efficiently computable for any 𝑔 ∈ 𝔾1 and ℎ ∈ 𝔾2
We say that a pairing is of Type-1 when 𝔾1 = 𝔾2. This means that we pair points of the same
group to a target group, instead of pairing points from two different input groups together.

For pairings of Type-1, we can break the DDH assumption by checking whether 𝑒(𝑔𝑎 , 𝑔𝑏) =
𝑒(𝑔𝑎𝑏 , 𝑔).
We say that the pairing is of Type-2 when 𝔾1 ≠ 𝔾2 and there is also an efficiently computable
mapping from points in 𝔾2 to 𝔾1: 𝜙 ∶ 𝔾2 → 𝔾1 is an efficiently computable isomorphism.
Using this isomorphism, we can break the DDH assumption in 𝔾2. Namely, by checking
whether 𝑒(𝜙(ℎ𝑎), ℎ𝑏) = 𝑒(𝜙(ℎ), ℎ𝑐) for ℎ, ℎ𝑎 , ℎ𝑏 , ℎ𝑐 ∈ 𝔾2.
Finally, a Type-3 pairing has distinct groups, 𝔾1 ≠𝔾2, but no isomorphism from𝔾2 to𝔾1 exists.
In this setting, the DDH problem is assumed to be hard in both 𝔾1 and 𝔾2.
Without going into details, examples of pairing functions are the Weil pairing [38], the Tate
pairing [21] and the optimal Ate pairing [46], the last of which is considered the most efficient
to compute.

2.6.1. Pairing friendly curves
Not every elliptic curve supports pairing functions. Curves that do support them are called
pairing friendly curves. Examples of families of such curves are Barreto-Naehrig (BN) [9]
Curves and Barreto-Lynn-Scott (BLS) [8] curves. Curves in these families construct optimal
Ate pairings.

2.6.2. BLS 12 381
The chosen curve in this work is a Curve called BLS12-381. This is a Barreto-Lynn-Scott
curve. The equation for this curve is 𝑦2 = 𝑥3+4. The field modulus is prime and has 383 bits.
This makes it efficient to do 64-bit or 32-bit arithmetic on it. The order r of the subgroups is also
prime and has 255 bits or fewer. This curve is widely used, allows for fast computations, and
is recommended by the Internet Engineering Task Force (IETF) [40] for a curve that provides
128-bit security.

2.7. Hashing
A hash operation maps an arbitrary input to an element of a certain domain. This means
that no matter how big the input is, the output of this function is always the same length.
Hash functions are used for checksums and data access algorithms, but also for cryptographic
protocols.

2.7.1. Cryptographic hash functions
Cryptographic hash functions differ slightly from regular hash functions, as they require some
additional properties. For a hash function to be considered cryptographically secure, it must

2.8. Pseudo-Random Functions 11

provide the following characteristics:

Pre-image resistance From a hashed value ℎ, it should be difficult to find a message𝑚 such
that 𝑚 ← 𝐻(𝑚)

Second pre-image resistance For a message𝑚, it should be difficult to find a different mes-
sage 𝑚′! = 𝑚, such that 𝐻(𝑚) == 𝐻(𝑚′)

Collision resistance It should be difficult to find any two messages that hash to the same
value, 𝐻(𝑚1) == 𝐻(𝑚2)

While the second and the third properties are quite similar, the restriction to a provide message
in the second pre-image resistance makes this a stricter task.

An example of a cryptographically secure hash function is SHA2 (Secure Hash Algorithm 2)
[39]. This is a family of cryptographic hash functions with hash digests (output sizes) varying in
length between 224 bits and 512 bits. It is recommended by the National Institute of Standards
and Technology (NIST) as a standard hashing algorithm [3]

2.8. Pseudo-Random Functions
True randomness is something that is hard to acquire for computers. There are ways of sam-
pling randomness from the world around us, but this is a difficult task. A solution to this problem
is pseudo-random functions. These are functions that based on an input value produce a string
of bits. Their output is very hard to distinguish from actual randomness.

2.9. Network Coding
Network coding is a technique used to increase the throughput and resilience of networks.
Instead of storing and forwarding separate packets, network nodes combine (code) packets
together.

A simple example of the usefulness of network coding is demonstrated through the butterfly
network. As we see in Figure 2.2, a source node sends a bit 𝑏1 to intermediate node 𝑈 and
another bit 𝑏2 to node 𝑉. The goal is for target nodes Y and Z to receive both of these bytes.
If we want each node to only send a message once, we require that node 𝑊 has two links to
node 𝑋. Otherwise, after sending one of the bits, it would have to use its link again. Using
network coding, on the other hand, we see that node 𝑊 can combine the two bits. In this
example, the bits are combined using the XOR operation. node 𝑊 then forwards the XOR of
𝑏1 with 𝑏2 to node 𝑋, which then forwards it to target node 𝑌. node 𝑌 ends with receiving 𝑏1
from node 𝑈 and 𝑏1 ⊕ 𝑏2 from node 𝑋. By XORing the bit received from node 𝑋, the target
node 𝑌 can retrieve bit 𝑏2 again. We see that this change to the network has increased its
efficiency.

When network coding is applied to send a file from a source node to a target node, the file is
first spilt into parts called packets. The number of packets depends on the maximum transfer
unit of the network medium.

Each packet is further augmented with a unit vector, based on which part of the file this packet
is. For example, packet three of a file consisting of 5 packets gets augmented with the unit
vector [0,0,1,0,0].

When an intermediate node has received multiple packets, it linearly combines them using
random coefficients, after which it sends the combined packet to the next node. When the
target node has received enough linearly independent packets, it can decode them to retrieve

12 2. Preliminaries

S

U V

W

Y Z

X

b1

b1

 b1

b2

b2

b2

b1b2

b1 b2

(a) A butterfly network with two links between node
W and X

S

U V

W

Y Z

X

b1⊕b2

b1

b1

 b1

b2

b2

b2

b1⊕b2b1⊕b2

(b) A butterfly network which codes packets to-
gether

Figure 2.2: Two butterfly networks in which a source node sends bit 𝑏1 to intermediate node 𝑈 and bit 𝑏2 to
intermediate node 𝑉

the original file.

To illustrate this concept, in Figure 2.3 we see how a file is prepared for transmission. It is first
split into six packets, which are then appended with a unit vector corresponding to their place
in the file. Then in Figure 2.4 we see how these packets are transmitted through the network.
Packets are sent to intermediate nodes 𝑈, 𝑉 and 𝑊, which combine their received packets
before transmitting them to the next nodes. Finally, node 𝑍 receives a linear combination of
all packets which make up the file.

2.9. Network Coding 13

File

p1

Split into packets

p2 p3 p4 p5 p6

Augment

p1+

[1,0,0,0,0,0]

p2+

[0,1,0,0,0,0]

p3+

[0,0,1,0,0,0]

p4+

[0,0,0,1,0,0]

p5+

[0,0,0,0,1,0]

p6+

[0,0,0,0,0,1]

Figure 2.3: Preparation of a file for transmission in a network coding scenario. The file is split into six packets,
which are then augmented with a unit vector corresponding to their placement in the file.

S

U

V

W

p3

p1

p4

p2p5

p6

X

Z

Y

c1=5
c2=3

c7=2
c8=4

c3=2
c4=4

c5=8
c6=1

c9=3
c10=2

14p2 24p5
10p1 6 p4

16p3 2 p6

5 p1 3 p4

2 p2 4 p5

2 p2 4 p5

8 p3 1 p6

8 p2 16p5
10p1 6 p4

6 p2 8 p5
16p3 2 p6

Figure 2.4: Transmission of packets through a network using network coding. Different packets are sent to three
nodes, who combine the packets as they receive them by using randomly chosen codes. Combined packets are
then forwarded to the next layer of intermediate nodes, which repeat this process. Target node 𝑍 finally receives
a linear combination of all packets in the file.

3
Related Works

3.1. Digital Signatures
With the invention of public-key cryptography by Diffie and Hellman in 1976 [17], the first works
on what is now known as a digital signature were introduced. They describe how to create
a message-dependent signature, which could replace written contracts. They described a
technique to produce a signature that is recognizable by anyone, but producible only by the
legitimate signer. They named this technique one-way authentication.

In 1988, Goldwasser et al. [25] were the first to discuss what the security requirements of
a digital signature should be. They discuss what a digital signature scheme is, what attacks
on the schemes can happen and what it means to break a signature scheme. Attacks are
described based on the knowledge an adversary has, namely only knowing the public key of
a signer, or also having knowledge of previously produced signatures (of which the underlying
message is either known or unknown). Breaking a signature scheme is defined by the following
scenarios, in decreasing order of severity. A setting in which an attacker can recover a signing
key, one where forgeries on any message can be produced, one where forgeries on specific
messages can be produced, or lastly where one specific forgery can be made.

3.2. Homomorphic signature schemes
The concept of homomorphic signatures (HS) was first discussed by Desmet in 1993 [16].
He envisioned a mechanism to authenticate text as it was being entered into a computer, by
authenticating each keystroke. As one types and corrects the text entered to a computer, sig-
natures for each keystroke are produced. The usefulness of the ’operator-oriented signatures’
is illustrated by the delete character. By signing the delete operator together with the cursor
location, a corrected string can be verified. Desmet only theoretically described this concept
of operator-oriented signatures and questioned the possibility of their construction.

Later, in 2002, Johnson et al. [29] formalized the notion of homomorphic signatures. In their
work, they apply the already studied principles of ’privacy homomorphisms’, now better known
as homomorphic encryption, to signature schemes. In their work, Johnson et al. present the
first formal definition of a homomorphic signature, and describe an application in the form
of redactable signatures. Signatures are produced on an entire document, and to create a
signature for a redacted version of the document, the homomorphic property is used.

15

16 3. Related Works

3.3. Linearly homomorphic signature schemes
Katz and Waters [31] proposed a homomorphic signature scheme (HSS) to be used for net-
work coding. This was one of the first works to suggest using homomorphic signatures to
combat pollution attacks. Earlier works only provided ways for honest nodes to verify individ-
ual packets but did not support verifying coded packets, without re-signing them. There were
two other homomorphic signature schemes proposed for network coding, but one of them
[15] had the drawback of having to regenerate keys after each file that was sent, while the
other scheme [48] had public keys with a size that depends on the size of the file. The solu-
tion proposed by Katz en Waters works with constant size signatures and public keys. Their
construction works over symmetric pairings (Type I).

Agrawal et al. [1] presented the first homomorphic signature scheme for multi-source network
coding. New definitions are presented to account for the attack model of multi-source net-
works. The construction is based on what is called a vector hash. This is a construction that
captures the properties of homomorphic hashes.

In 2010, Gennaro et al. [23] presented the first linearly homomorphic signature scheme based
on the RSA assumption in the random oracle model. The construction works over integers
instead of over fields. This allows the use of small coefficients, which improves the computa-
tional overhead at intermediate nodes.

Attrapadung and Libert presented the first homomorphic signature scheme proven secure in
the standard model [5]. Existing network coding signatures schemes proven in the standard
model had to sign all the base vectors of a subspace at the same time, so the signer has to
know the contents of the entire file before being able to sign it. This prevents the possibility of
data streaming. This solution does allow this on the other hand. To facilitate their construction,
dual encryption is used, as well as groups of composite order. Signatures are randomized.
Type 1 pairing.

In 2012, Freeman [20] presented a generic framework which converts regular signature schemes
to linearly homomorphic signature schemes. Their construction works as long as the signature
schemes have certain properties. Namely, it works on ”hash-and-sign” signatures which raise
a generator 𝑔 of a cyclic group 𝔾 to a computed value depending on a randomness 𝑟 and
a message: 𝑓(𝑚, 𝑟). The construction allows for a stronger adversary, who can adaptively
query messages, one at a time.

Attrapadung et al. [6] presented a completely context-hiding LHS scheme. The security of
the scheme is proven in the standard model. The application for this scheme was quoting
substrings of a signed message. The context hiding property is created using Groth-Sahai
proofs. Components of signatures that could previously not be randomized are replaced by
perfectly hiding commitments. The construction works over type 1 pairings.

Libert et al.[35] present a linearly homomorphic, structure-preserving signature scheme and
discuss applications in verifiable computation and trapdoor commitments. Their construction
works over symmetric pairings

3.3.1. Asymmetric-pairing based
In this work, we consider signature schemes that are based on the pairings of asymmetric bi-
linear groups. The signature schemes listed in this section will be implemented and compared.
The workings of these schemes will be discussed later on in this thesis.

The first signature scheme in this section is the one by Boneh et al. from 2009 [11]. This is the
first scheme to use pairings over asymmetric bilinear groups for homomorphic signatures, and

3.4. Polynomial 17

it has set the standard for the schemes to come. In their paper, two homomorphic signature
schemes are proposed: 𝑁𝐶𝑆0, a generic solution for signing messages, and 𝑁𝐶𝑆1 a solution
optimized for network coding. Both schemes are proven secure in the random oracle model.
In this paper, scheme 𝑁𝐶𝑆1 will be considered, as other works are also optimized for network
coding.

In 2012, Catalano et al. [13] introduce two signature schemes that are provably secure in the
standard model. The schemes are proven secure using standard assumptions, namely the q-
Strong Diffie Hellman assumption and the Strong RSA assumption. In their work, Catalano et
al. present two homomorphic NCS schemes, which are more efficient than previous solutions
proven in the standard model. The construction based on type 2 pairings is adopted in this
work.

In 2017, Lin et al. [36] introduced a scheme with designated entities based on the co-BDH
assumption proven secure in the random oracle model. It is the first HSS to implement a
designated entity feature. The construction of this signature scheme is based on that of Boneh
et al. [11].

In 2017, Schabhüser et al. [41] introduced a signature scheme that is secure against an
adaptive adversary under the computational Diffie-Hellman assumption. Furthermore, this is
the first context hiding construction.

In 2018, Zhang et al. [47] created an identity-based homomorphic signature scheme. Public
keys are constructed as hashed values of the identity and therefore have a constant size. The
scheme is further based on the construction of Boneh et al.[11].

In 2018, Schabhüser et al. [42] presented the first work on their context hiding, multi-key ho-
momorphic signature scheme. They define the notion of context hiding in the multi-key setting
and create a perfectly context hiding multi-key signature scheme. Later, in 2019, Schabhüser
et al. [43] slightly changed the construction of their CH LHSS, making the signing operation
more efficient.

In 2018, Li et al. [33] introduced a network coding signature scheme for multiple sources for
IoT systems. Its security is proven in de standard model.

Aranha and Pagnin [4] presented a simple multi-key linearly homomorphic signature scheme
in 2019, with the intention to ease the introduction to the field of homomorphic signatures. It
generalizes the signature scheme by Boneh et al. [11] to the multi-key setting. The scheme is
proven secure under standard assumptions in the random oracle model.

In 2020, Li et al. [34] introduced an identity-based linearly homomorphic signature scheme for
network coding in IoT. Their construction allows for signing and verifying operations that are
not dependent on the size of the data packets. The scheme is proven secure under adaptive
identity and adaptive message space attacks in the random oracle model.

Finally, in 2021, Lin et al. [37] presented a new signature scheme with a designated combiner.
In contrast to the scheme in [36], this scheme has signatures that are publicly verifiable. It is
proven secure in the random oracle model.

The signature schemes in this category will be further discussed in chapter 5.

3.4. Polynomial
In 2011, Boneh and Freeman [10] constructed the first HSS which supports the evaluation
of multivariate polynomial functions. To facilitate this feature, ideal lattices are used in an

18 3. Related Works

analogue way to Gentry’s fully homomorphic encryption[24].

Hiromasa et al. [26] present an HSS for polynomial functions, whose signatures are shorter
than those in [10]. They use different algorithms during signing, which is more efficient in the
sense that it produces smaller signatures. The length of their signature is reduced from 𝑂(𝑛4.5)
to 𝑂(𝑛3).
Catalano et al. [14] present a homomorphic signature scheme for polynomial functions, which
is proven secure in the standard model instead of the random oracle model. It is proven secure
against an adaptive attacker, who can query messages one at a time instead of having to query
all messages at once.

Fiore et al. [19] present a formal definition of multi-key homomorphic authenticators and pro-
pose a solution based on standard lattices, which supports the evaluation of circuits of poly-
nomial depth.

3.5. Fully homomorphic
Gennaro and Wichs [22] present a fully homomorphic message authentication scheme. Their
construction relies on fully homomorphic encryption[24].

3.6. Surveys
In 2016, Traverso et al. [45] presented an extensive survey on homomorphic signatures. In that
survey, the authors discuss various types of homomorphic signature schemes, one of which is
pairing-based linearly homomorphic signature schemes. The schemes are compared based
on their hardness assumptions, security model and the number of pairings amongst other
things. However, no actual results of implementations are discussed.

In 2018, Emmanuel et al. [18] also released a survey on homomorphic signature schemes. In
that work, the authors also perform a theoretical performance analysis, based on the evalua-
tion correctness, succinctness of signatures and context hiding of signature schemes.

3.7. Homomorphic signatures in general
Catalano et al. [12] analyse a stronger notion of security for homomorphic signatures. They
note that no existing homomorphic signature schemes satisfy this notion, but propose generic
compilers that turn an HSS secure under weak definitions into one secure in the newly pro-
posed stronger definition.

4
Homomorphic Signature Schemes

In this section, we explain in detail what a homomorphic signature scheme is, what it should
do, and what variants exist.

4.1. Homomorphic Signatures
We start by explaining what a homomorphic signature scheme is. The intuition of homomor-
phic signatures is that after signing a message, operations can be run on the message as well
as on the signature, after which the resulting pair verifies successfully. This is a useful prop-
erty for computing on authenticated data. For example, we have a message, 𝑚 = 2, which
we sign to obtain 𝜎 = 𝑆𝑖𝑔𝑛(𝑠𝑘,𝑚). We can then double the message by running the func-
tion 𝑓(𝑥) = 2𝑥 on it. We also run this function on the signature: 𝜎𝑑𝑜𝑢𝑏𝑙𝑒 = 𝐶𝑜𝑚𝑏𝑖𝑛𝑒(𝑓, 𝜎)).
Finally, verification of this signature results in 𝑎𝑐𝑐𝑒𝑝𝑡 ← 𝑉𝑒𝑟𝑖𝑓𝑦(𝑣𝑘, 𝜎𝑑𝑜𝑢𝑏𝑙𝑒 , 𝑚 = 4). Fur-
thermore, we can also combine separate signatures. If we have 𝜎5 ← 𝑆𝑖𝑔𝑛(𝑠𝑘,𝑚 = 5) and
𝜎8 ← 𝑆𝑖𝑔𝑛(𝑠𝑘,𝑚 = 8), we can add these signatures together with the function 𝑓(𝑥, 𝑦) = 𝑥+𝑦.
When we then combine the signatures, we get 𝜎13 ← 𝐶𝑜𝑚𝑏𝑖𝑛𝑒(𝑓, {𝜎5, 𝜎8}). Instead of just
signing numbers without a context, signatures are produced for a specific file id. This pro-
vides a context to the signatures, and only signatures signed under the same file id can be
successfully combined.

4.1.1. Formal Definition
More formally, we present the definition of a homomorphic signature scheme:

Definition 4.1.1. We define a homomorphic signature scheme to consist of 5 probabilistic,
polynomial time algorithms: HSS = (Setup, KeyGen, Sign, Combine, Verify):

𝑝𝑝 ← Setup(1𝜆) On input the security parameter 𝜆, the setup algorithm outputs common pa-
rameters of the signature scheme.

(𝑠𝑘, 𝑣𝑘) ← KeyGen(pp) On input the public parameters, the algorithm outputs a key-pair con-
sisting of a signing key sk and a verification key vk.

𝜎 ← Sign(𝑠𝑘,𝑚, 𝑓𝑖𝑑) On input a signing key 𝑠𝑘, a message 𝑚 and a file id 𝑓𝑖𝑑, the algorithm
outputs a signature 𝜎 on the message.

𝜎 ← Combine(𝑓,𝜎𝜎𝜎) On input a function 𝑓 ∶ 𝑀𝑛 → 𝑀, and a list of signatures 𝜎1, ...𝜎𝑛 ∈ 𝜎𝜎𝜎, the
algorithm outputs a homomorphically combined signature 𝜎.

19

20 4. Homomorphic Signature Schemes

𝑎𝑐𝑐𝑒𝑝𝑡 ← Verify(𝑣𝑘, 𝜎,𝑚, 𝑓𝑖𝑑) On input a verification key 𝑣𝑘, a signature 𝜎, a message𝑚 and
a file id 𝑓𝑖𝑑, the algorithm outputs a bit accept, indicating whether the verification was
successful, 1, or unsuccessful, 0.

4.1.2. Correctness
Further, a homomorphic signature scheme should offer authentication correctness, evaluation
correctness, as well as succinctness.

Authentication correctness means that a signature that is a result of the signing algorithm,
with as input any message 𝑚 from the message spaceℳ, and any signing key 𝑠𝑘 produced
by the key generation algorithm, should verify correctly with a very large probability. More
formally:

Definition 4.1.2 (Authentication Correctness). We define a homomorphic signature scheme
to be correct with respect to authentication if:
Verify(𝑣𝑘, 𝜎,𝑚) = accept, for any 𝑝𝑝 ← 𝑆𝑒𝑡𝑢𝑝(1𝜆), (𝑠𝑘, 𝑣𝑘) ← 𝐾𝑒𝑦𝐺𝑒𝑛(𝑝𝑝),𝑚 ∈ ℳ, 𝜎 ←
𝑆𝑖𝑔𝑛(𝑠𝑘,𝑚)
Evaluation correctness states that signatures that satisfy authentication correctness, when
provided to the combine algorithm should produce a signature that verifies to the correspond-
ingly combined message with a very large probability. More formally:

Definition 4.1.3 (Evaluation Correctness). A homomorphic signature scheme is defined as
correct with respect to evaluation if:
Verify(𝑣𝑘, 𝜎′, 𝑚′) = accept, for any 𝑝𝑝 ← 𝑆𝑒𝑡𝑢𝑝(1𝜆),(𝑠𝑘, 𝑣𝑘) ← 𝐾𝑒𝑦𝐺𝑒𝑛(𝑝𝑝), 𝑚1, ..., 𝑚𝑛 ∈
ℳ𝑛,𝜎1← 𝑆𝑖𝑔𝑛(𝑠𝑘,𝑚1),...,𝜎𝑛 ← 𝑆𝑖𝑔𝑛(𝑠𝑘,𝑚𝑛), 𝑎𝑐𝑐𝑒𝑝𝑡 ← 𝑉𝑒𝑟𝑖𝑓𝑦(𝜎𝑖 , 𝑣𝑘)∀𝑖 ∈ {1, ..., 𝑛}, 𝑓 ∶ ℳ𝑛 →
ℳ,𝑚′ ← 𝑓(𝑚1, ..., 𝑚𝑛), 𝜎′ ← 𝐶𝑜𝑚𝑏𝑖𝑛𝑒(𝑓, 𝜎1, ..., 𝜎𝑛).
Succinctness means that the length of the homomorphically combined signature should be
shorter than the length of 𝑚 individual signatures.

4.1.3. Forgeries
The unforgeability requirement of digital signatures has to change for homomorphic signa-
tures to account for the intended possibility of creating new signatures by combinations. For
regular digital signatures, this would strictly break the unforgeability definition. To adapt to this
characteristic, the following types of forgeries are described, against which an HSS should be
protected.

Type I A signature is produced on a dataset for which the file identifier has never before been
queried.

Type II A homomorphic signature authenticates to a value that is not the correct output of a
function: 𝑚∗! = 𝑓 ∗ (𝑚1, ..., 𝑚𝑛) ∧ 1 ← 𝑉𝑒𝑟𝑖𝑓𝑦(𝜎,𝑚∗, 𝑓𝑖𝑑).

4.2. Construction of a pairing-based LHSS
To give an intuition of how a pairing-based linearly homomorphic signature scheme is con-
structed, we explain how the scheme by Boneh et al. [11] is defined. This was the first scheme
to employ pairing of asymmetric bilinear groups and the schemes that came after it are similar
in construction. This makes it a good choice as an example.

Setup To setup the scheme, based on the security parameter a bilinear group is chosen. The
amount of items that can be combined together is fixed to a number. Corresponding to
the length of a packet 𝑛, generators 𝑔1, ..., 𝑔𝑛 ∈ 𝔾1 are chosen, as well as a generator 𝑔′

4.2. Construction of a pairing-based LHSS 21

Algorithm 1 NCS2 by Boneh et al.
function Setup(𝜆)

𝒢 ←(𝔾1, 𝔾2, 𝔾𝑇 , 𝑝, 𝑒, 𝜙) � Select a bilinear group based on the security parameter 𝜆
(𝑔1, ..., 𝑔𝑛)←𝑟𝔾𝑛1 � Select generators of 𝔾1 based on the size of a packet
h ←𝑟𝔾2
ℋ = (0, 1)∗ × (0, 1)∗ → 𝔾1 � Select a hash functionℋ
𝑝𝑝←(𝒢, 𝑔1, ..., 𝑔𝑛, ℎ,ℋ)
return 𝑝𝑝

end function
function KeyGen(𝑝𝑝)

𝑠𝑘 ←𝑟𝑍𝑞∗
𝑣𝑘 = ℎ𝑠𝑘
return (𝑠𝑘, 𝑣𝑘)

end function
function Sign(𝑝𝑝, ⃗⃗⃗⃗𝑚, 𝑠𝑘, 𝑓𝑖𝑑)

parse ⃗⃗⃗⃗𝑚 = (𝑢1, ..., 𝑢𝑚, 𝑣1, ..., 𝑣𝑛) � The message consists of data ⃗⃗⃗𝑣 and unit vector ⃗⃗⃗𝑢
𝜎 ←1
for 1 ≤ 𝑖 ≤ 𝑚 do

𝜎 ←𝜎 ⋅ ℍ(𝑓𝑖𝑑, 𝑖)𝑢𝑖 � Bind to the file id
end for
for 1 ≤ 𝑗 ≤ 𝑛 do

𝜎 ←𝜎 ⋅ 𝑔𝑣𝑗𝑗 � Involve each part of the packet data in the signature
end for
𝜎 ←𝜎𝑠𝑘 � Bind the signature to the secret key
return 𝜎

end function
function Combine(𝑝𝑝, ⃗⃗⃗𝜎, ⃗⃗⃗𝑓)

Require: |⃗⃗⃗𝜎| = | ⃗⃗⃗𝑓|
𝜎’ ←1
for 1 ≤ 𝑖 ≤ |⃗⃗⃗𝜎| do

𝜎’ ←𝜎′ ⋅ 𝜎𝑓𝑖𝑖
end for
return 𝜎’

end function
function Verify(𝑝𝑝, ⃗⃗⃗⃗𝑚, 𝑣𝑘, 𝜎, 𝑓𝑖𝑑)

𝑝1 ←𝑒(𝜎, ℎ)
parse ⃗⃗⃗⃗𝑚 = (𝑢1, ..., 𝑢𝑚, 𝑣1, ..., 𝑣𝑛)
s ←1 � Reconstruct the signature
for 1 ≤ 𝑖 ≤ 𝑚 do

s ←𝑠 ⋅ ℍ(𝑓𝑖𝑑, 𝑖)𝑢𝑖
end for
for 1 ≤ 𝑗 ≤ 𝑛 do

s ←𝑠 ⋅ 𝑔𝑣𝑗𝑗
end for
𝑝2 ←𝑒(𝑠, 𝑣𝑘)
return 𝑝1 equals 𝑝2

end function

22 4. Homomorphic Signature Schemes

of 𝔾2 is chosen at random.
KeyGen To generate a key pair, a random field scalar is chosen as signing key: 𝑠𝑘 ∈𝑅 𝑍𝑞∗.

Next, the verification key is calculated as 𝑣𝑘 = 𝑔′𝑠𝑘. The verification key is an element
of 𝔾2. The generated key-pair is then provided to the user.

Sign To sign a message ⃗⃗⃗⃗𝑚 = (𝑣1, ...𝑣𝑛, 𝑢1, ..., 𝑢𝑚), a signature is calculated as follows:

𝜎 = (
𝑚

∏
𝑖=1
(ℍ(𝑓𝑖𝑑, 𝑖)𝑢𝑖)

𝑛

∏
𝑗=1
(𝑔𝑣𝑗𝑗))

𝑠𝑘

Combine To combine signature based on a given function, we calculate 𝜎′ = ∏𝑚𝑖=1 𝜎
𝑓𝑖
𝑖

Verify To verify a signature, we first compute a pairing over the supplied signature:

𝑝1 = 𝑝𝑎𝑖𝑟𝑖𝑛𝑔(𝜎, 𝑔′) (4.1)

Then, using the message ⃗⃗⃗⃗𝑚 = (𝑣1, .., 𝑣𝑛, 𝑢1, ..., 𝑢𝑚) which we want to verify, we compute
𝑠 = ∏𝑚𝑖=1(ℍ(𝑓𝑖𝑑, 𝑖)𝑢𝑖)∏

𝑛
𝑗=1(𝑔

𝑣𝑗
𝑗), and compute the second pairing:

𝑝2 = 𝑝𝑎𝑖𝑟𝑖𝑛𝑔(𝑠, 𝑣𝑘) (4.2)

Finally, we check whether 𝑝1
?= 𝑝2. If so we return 1, and if not we return 0.

The pseudo code of this signature scheme is presented in Algorithm 1.

4.2.1. Verifying
To see how the verification works, we go through an example. We sign a message ⃗⃗⃗⃗𝑚 =
(4, 1, 0):

𝜎 = (ℎ11 ⋅ ℎ02 ⋅ 𝑔41)𝑠𝑘 (4.3)

To verify this signature, we first compute the pairing 𝑝1 = 𝑒(𝜎, 𝑔′), after which we compute
𝑝2 = 𝑒(ℎ11 ⋅ ℎ02 ⋅ 𝑔41 , 𝑣𝑘) = 𝑒(ℎ11 ⋅ ℎ02 ⋅ 𝑔41 , 𝑔′𝑠𝑘).
Finally, we check whether the two pairings are equal:

𝑝1 = 𝑒(𝜎, 𝑔′)
= 𝑒((ℎ11 ⋅ ℎ02 ⋅ 𝑔41)𝑠𝑘 , 𝑔′)
= 𝑒(ℎ11 ⋅ ℎ02 ⋅ 𝑔41 , 𝑔′)𝑠𝑘
= 𝑒(ℎ11 ⋅ ℎ02 ⋅ 𝑔41 , 𝑔′𝑠𝑘)
= 𝑒(ℎ11 ⋅ ℎ02 ⋅ 𝑔41 , 𝑣𝑘)
= 𝑝2 (4.4)

We see that using the pairing operation, we can check whether a signature is valid or not.

4.2.2. Combining
To explain this operation, we work out an example where the packet length is 1, and the file
length is 2. Our packets to be signed are 𝑝1 = [5, 1, 0] and 𝑝2 = [11, 0, 1]. During signing, our
signatures will become:

𝜎1 = (ℎ11 ⋅ ℎ02 ⋅ 𝑔51)𝑠𝑘
𝜎2 = (ℎ01 ⋅ ℎ12 ⋅ 𝑔111)𝑠𝑘 (4.5)

4.3. Variants of Homomorphic Signature Schemes 23

We will combine these signature using the function 𝑓 = 4𝑎 + 2𝑏. When we use the com-
bine operation, we exponentiate the signatures based on the given function and multiply the
signatures together:

𝜎′ = 𝜎𝑓11 ⋅ 𝜎𝑓22
= ((ℎ11 ⋅ ℎ02 ⋅ 𝑔51)𝑠𝑘)4 ⋅ ((ℎ01 ⋅ ℎ12 ⋅ 𝑔111)𝑠𝑘)2
= ((ℎ11 ⋅ ℎ02 ⋅ 𝑔51)4 ⋅ (ℎ01 ⋅ ℎ12 ⋅ 𝑔111)2)𝑠𝑘
= ((ℎ41 ⋅ ℎ01) ⋅ (ℎ02 ⋅ ℎ22) ⋅ (𝑔201 ⋅ 𝑔221))𝑠𝑘
= (ℎ4+01 ⋅ ℎ0+22 ⋅ 𝑔20+221)𝑠𝑘
= (ℎ41 ⋅ ℎ22 ⋅ 𝑔421)𝑠𝑘
= 𝑆𝑖𝑔𝑛(𝑠𝑘,𝑚 = [42, 4, 2]) (4.6)

As we can see, due to the homomorphic property, multiplying signatures together combines
them as if an addition to the message was performed, and raising a signature to a number
corresponds to multiplication.

Due to the homomorphic property, given a signature 𝜎 on a message 𝑚, we can get a valid
signature on any linear combination of 𝑚 (e.g. 5𝑚, 23𝑚 or even 𝑚2), simply by using the
combine operation. This would break the unforgeability property of digital signatures. To
deal with this situation, we have to change the definition of unforgeability of a homomorphic
signature slightly as we discussed before. It changes such that only a linear combination of
𝑚 should be possible to create by anyone who is not the signer, however, anything but that
should still be considered a forgery.

4.3. Variants of Homomorphic Signature Schemes
There are homomorphic signature schemes that not only offer homomorphic combining of
signatures but also facilitate additional characteristics. We call these variants of the basic
homomorphic signature scheme, and we discuss them in the following paragraphs.

4.3.1. Network Coding (NC)
A homomorphic signature scheme designed for network coding is adapted such that a mes-
sage to be signed is always a vector. We call these messages packets, a term from computer
networking to indicate a single unit of data to be sent over the network. Network coding pack-
ets (the data to be signed) consist of a vector of actual data, followed by a unit vector ⃗⃗⃗𝑢 which
indicates which part of the file this packet is. This unit vector is further used during the combi-
nation of packets and their decoding. They allow the target node to perform a matrix inversion
based on the values that remain in the augmented part of a vector.

For network coding signatures (NCS), during the setup operation, the packet length and the
file length are configured. This is because the amount of chosen generators which are part
of the public parameters is dependent on these numbers. During the combination phase, the
entire vector gets multiplied by a scalar coefficient (code).

4.3.2. Identity-Based (ID)
Earlier in chapter 2 we discussed that in public-key cryptography, every entity has a public and
a private key. Trusting that a public key belongs to someone is a non-trivial task, and requires
a lot of identity and certificate management. To combat this issue, the idea of identity-based
cryptography was proposed [44]. Instead of generating a key pair from complete randomness,
we appoint a key generation centre (KGC) that generates a secret key based on a supplied

24 4. Homomorphic Signature Schemes

identity. This allows us to use our own identity as a public key. An identity can for example be
an email address.

For an identity-based, homomorphic signature scheme, the setup operation is changed to
generate a master secret key for the key generation centre, as well as a master public key
which is part of the public parameters. The key generation algorithm is replaced by the Key
Extract algorithm, which takes as input the identity of an entity. Anyone who wants to register
for a key provides the KGC with their identity, and in return receives a secret signing key.

4.3.3. Multi-Key (MK)
When we want to be able to combine signatures signed by multiple different parties, we need
a special variant of homomorphic signatures, called multi-key homomorphic signatures. This
property makes it possible to combine and verify signatures signed under different signing
keys. They allow for multi-party computations, a feature that is very useful as it allows collab-
orative work over authenticated data.

In a multi-key setting, each signer generates a pair of keys. Signatures for multi-key LHSSs
are bigger than those of ’single-key’ schemes. This is because the signatures have to store ad-
ditional information on which party contributed which part of the homomorphic signature.

4.3.4. Context Hiding (CH)
Some schemes offer additional functionality which prevents anyone from learning which mes-
sages were signed as an input of a homomorphic signature. This privacy-preserving feature
is called context hiding. When context hiding is applied to multi-key HSS, a distinction can
be made between who the inputs should be hidden from. If the inputs are only hidden to an
outside party, who was not involved in the signing of any of the signatures that are homomor-
phically combined, it is called externally context hiding. If additionally, anyone involved in the
signing process is also not able to learn what other entities provided as inputs to signatures,
we call it internally context hiding.

4.3.5. Designated Entities (DE)
When the combining or verifying operation needs to be performed by a specified entity, we
can use an HSS with designated entities. This idea was introduced by Jakobsson et al.[27].
These kinds of signature schemes allow the signer to designate someone to combine those
signatures, whereas the combiner can further designate someone else to verify the homomor-
phically combined signature. There also exists a variant in which there is only a designated
combiner, while verification of signatures is performed publicly.

DE-HSS are useful when it is of importance that a specific person performs the combination or
verification of the signatures. While the proposed DE-HSSs are designed for network coding,
they are not particularly useful in such a setting. Only in the specific setting where there is
only 1 intermediate node, e.g. 𝑆 → 𝐼 → 𝑇, this scheme would work. This is because only a
designated node can combine signatures. This defeats the purpose of network coding, where
signed packets are combined at every intermediate node. A setting in which this construction is
useful, however, is verifiable cloud computing. By designating the expected identity to combine
signatures, you can be convinced that the work was actually done by the expected party.

5
Implementation details

In this section, we discuss the signature schemes that we implement. We explain how the
implementation was done, and how we compare the various schemes.

What does it mean for a comparison to be fair? Regarding real-world implementation, this
means that we have programmed everything in such a way that the same design choices
were made. All implementations were done using the same programming language, using
the same security level and the same building blocks. This makes sure that one scheme does
not have an advantage over another scheme because of programming design choices.

5.1. Implementation
The implementation of the signature schemes was done using the Rust programming lan-
guage. This language is designed for performance as well as safety, which makes it a great
choice for implementing cryptographic protocols.

The Rust language offers a large number of additional libraries which offer additional function-
ality, called crates. One of these is the BLS12-381 crate. This crate offers basic functionality
for operations on the curve, such as point additions in groups, exponentiating points by given
scalar values, but also hashing arbitrary numbers to the curve, as well as pairing group ele-
ments together.

The implementation of crate BLS12-381 was done in such a way that operations take a con-
stant amount of time. This means that it does not matter if you add the numbers 2 and 2
together, or 62810950891 and 35284008516. As long as the operations are the same, the
amount of time is not affected by the size of the number (so any addition always takes the same
amount, as well as any multiplication). This is an important feature, as it helps to mitigate side
channel attacks. In such an attack, an adversary wants to learn as much as possible about
the operations that take place in a protocol, in the hopes of extracting for example a secret
key. If operations do not take the same amount of time, but instead vary based on the size of
a number, one could learn for example from timing how long it takes to sign a message what
the secret key is (this is a very simplified example).

Schemes that use hash functions are implemented with the Secure Hashing Function 2 (SHA2)
algorithm, specifically SHA256. This hash algorithm was required for hashing items to point
on the curve with the BLS12-381 crate, and to keep our comparison as fair as possible we
decided to use this hash function for all other hashing-related operations as well.

25

26 5. Implementation details

Choosing secret keys and random generators of groups requires what is called a random
number generator (RNG). Since the security of cryptographic protocols relies on these num-
bers, it is very important that a good RNG is used with output that is indistinguishable from
true randomness. Otherwise, keys can be analyzed which can be used in an attack. For our
work, we use a cryptographically secure pseudo-random number generator (CSPRNG) called
ChaCha20. This CSPRNG is faster for software implementations than the previous standard
and is well studied, making it a good choice for our implementations.

5.1.1. Network Coding optimization
Schemes that were designed for network coding have been optimized with regard to the sign-
ing and verifying operation. Network coding packets are augmented to either prepend or ap-
pend the packet data with a unit vector indicating which part of the file this packet is. As part of
the signing and verifying operation, these schemes loop over the numbers of the unit vector,
as we have seen in Algorithm 1 in the signing and verifying procedures. During this part of the
algorithm, the index is hashed to a 𝔾1 element, after which they raise it to the corresponding
unit vector, which we illustrate with the following example:

𝑚

∏
𝑖=1

ℍ(𝑖)𝑣𝑖 for 𝑣 = [0, 1, 0, 0, 0] (5.1)

As can be seen, this equation can be reduced to ℍ(2)1, as all other hashed values will be
raised to 0 and result in the identity element. To optimize this operation, we check whether the
current part of the unit vector is non-zero before doing any (unnecessary) hashing operations.
While this might introduce a side channel to the code, the only information to be inferred is
which part of a file is signed. We argue that this is a reasonable consideration, as the operation
speed changes from 𝑂(𝑚) to 𝑂(1). Furthermore, the signature for a network coding packet
is intended to be transmitted together with the packet. This would therefore also reveal the
index of the transmitted packet.

5.2. Testing method
To be able to compare the performance of signature schemes, we measure the duration of
the signing, verifying and combining operation. The setup and key generation functions have
been omitted since they are not run as frequent as the other operations. The setup operation
is only run once for the instantiation of a signature scheme, while the key generation algorithm
is run only once for each participating entity. Parties that do not need to sign messages, but
instead only verify signatures, do not even have to run the key generation algorithm. This
makes the duration of these two algorithms of little to no importance to someone who must
choose a signature scheme.

The messages to sign for each test are selected at random. Messages are chosen as scalar
values of the underlying field of the bilinear group. Since operations on the field and group
items are implemented in constant time, it does not matter for the duration of the operations
what numbers are signed.

In this work, we adopt the naming of network coding to describe the data to be signed. We
consider non-augmented packets as the data to be signed, and the number of signatures that
will be combined together is described by the file length. As we want to know how signature
schemes behave under different configurations, we vary the file and packet length throughout
our tests. This allows us to analyse the signature schemes’ behaviour under various circum-
stances. We have chosen to vary both the file length and the length of the packet between 1

5.3. Definition of performance 27

and 128, in steps of powers of two ([1,2,4,8,16,32,64,128]).

We measure the duration of doing an operation 100 times, after which we record the average
duration. This provides us with a stable measurement of the duration of the operations.

The experiments were carried out on a computer equipped with an Intel Core i7-8750H@ 12x
4.1GHz CPU with 6 cores and 32Gb of ram.

5.3. Definition of performance
Performance can be interpreted in different ways. As we discuss real-world implementations of
homomorphic signature schemes, we define performance in this context based on the speed
at which a signature scheme performs a certain operation, and by the size of keys and sig-
natures. When one signature scheme signs faster than another signature scheme, we say
that its performance is better. Some signature schemes feature additional properties such as
multi-key support. These additional features introduce tradeoffs to be made. We can thus de-
fine these tradeoffs in terms of performance, by looking at the difference in speed of operations
with signature schemes that do not offer these features.

5.4. Overview of implemented schemes
In this section, we briefly name the schemes we have implemented. Schemes are named
after the author of a work (up to the first three letters of a name), followed by the last two
digits of the year the work was published. Interesting implementation details will be provided
as well.

5.4.1. Bon09
This is the first scheme to apply pairings of asymmetric bilinear groups to facilitate homomor-
phic signatures. In their work, two schemes based on pairings are suggested, named 𝑁𝐶𝑆0
and 𝑁𝐶𝑆1. The former is a generic scheme, with messages to be signed being a vector of
numbers, while the latter is a scheme designed for network coding. In this work, we have cho-
sen to implement scheme 𝑁𝐶𝑆1, since most other schemes are designed for network coding
as well. This makes a comparison between these schemes easier. We recall from earlier, the
method of signing for this scheme is as follows:

Algorithm 2 Sign algorithm of Bon09
function Sign(𝑝𝑝, ⃗⃗⃗⃗𝑚, 𝑠𝑘, 𝑓𝑖𝑑)

parse ⃗⃗⃗⃗𝑚 = (𝑢1, ..., 𝑢𝑚, 𝑣1, ..., 𝑣𝑛)
𝜎 = (∏𝑚𝑖=1ℋ(𝑓𝑖𝑑, 𝑖)𝑢𝑖 ⋅ ∏

𝑛
𝑗=1 𝑔

𝑣𝑗
𝑗)𝑠𝑘

return 𝜎
end function

5.4.2. Cat12
This work presents two solutions, one based on the RSA problem and one based on the
discrete log problem. We implement the solution based on the DL problem. This work proves
the security of their scheme in the standardmodel instead of in the random oracle model.

During the setup of this scheme, generators ℎ, ℎ1, ..., ℎ𝑚 of𝔾1 are selected corresponding to the
length of the file, in addition to the generators for the length of the packet as in Bon09.

As part of signature generation, a random number 𝑠 ∈ 𝑍𝑞∗ is chosen, and the signing operation
changes to:

28 5. Implementation details

Algorithm 3 Sign algorithm of Cat12
function Sign(𝑝𝑝, ⃗⃗⃗⃗𝑚, 𝑠𝑘, 𝑓𝑖𝑑)

parse ⃗⃗⃗⃗𝑚 = (𝑢1, ..., 𝑢𝑚, 𝑣1, ..., 𝑣𝑛)
s ←𝑟𝑍𝑞∗

𝜎 = (ℎ𝑠∏𝑚𝑖=1 ℎ
𝑢𝑖
𝑖 ⋅ ∏

𝑛
𝑗=1 𝑔

𝑣𝑗
𝑗)

1
𝑠𝑘+𝑓𝑖𝑑

return 𝜎, s
end function

5.4.3. Lin17
This is the first work to present a homomorphic signature scheme with designated entities.
It features a designated combiner and a designated verifier. The security of the scheme is
proven in the random oracle model. The signing operation requires the signing key of signing
party A, and the public key of the combining party B. This scheme uses three Hash functions
to map arbitrary data, message vectors and points in 𝔾𝑇 to points in 𝔾1.
To facilitate the designated combiner functionality, the signing operation is changed to bind
the signature to the identity of the combiner:

Algorithm 4 Sign algorithm of Lin17
function Sign(𝑝𝑝, ⃗⃗⃗⃗𝑚, 𝑠𝑘𝐴, 𝑣𝑘𝐵 , 𝑓𝑖𝑑)

parse ⃗⃗⃗⃗𝑚 = (𝑢1, ..., 𝑢𝑚, 𝑣1, ..., 𝑣𝑛)
𝜎 = (∏𝑚𝑖=1ℍ1(𝑓𝑖𝑑, 𝑖)𝑢𝑖 ⋅ ∏

𝑛
𝑗=1 𝑔

𝑣𝑗
𝑗)𝑠𝑘𝐴

𝜎←𝜎⋅ℍ3(𝑒(ℍ2(⃗⃗⃗⃗𝑚), 𝑣𝑘𝐵)𝑠𝑘𝐴)
return 𝜎

end function

The first part of the signing process is the same as seen before, but the part after that makes
is so that only party B can combine these signatures.

Then, to designate a verifier during the combining algorithm, the designated combiner ’strips
off’ his designated combiner part by calculating 𝐻3(𝑒(𝐻2(⃗⃗⃗𝑣), 𝑣𝑘𝑎)𝑠𝑘𝑏)−1, and multiplies it to the
corresponding signature. We say that this ’strips off’ the designated combiner part, because
after multiplying with the inverse of the designated combiner binding, we are left with the same
signature as the ones produced by Bon09. This can be seen in Equation 5.2.

𝜎′ = 𝜎 ⋅ 𝐻3(𝑒(𝐻2(⃗⃗⃗𝑣), 𝑣𝑘𝑎)𝑠𝑘𝑏)−1

=
𝑚

∏
𝑖=1

𝐻1(𝑖𝑑, 𝑖)𝑣𝑛+𝑖
𝑛

∏
𝑗=1

𝑔𝑣𝑗𝑗)𝑠𝑘𝑎 ⋅ 𝐻3(𝑒(𝐻2(⃗⃗⃗𝑣), 𝑣𝑘𝑏)𝑠𝑘𝑎) ⋅ 𝐻3(𝑒(𝐻2(⃗⃗⃗𝑣), 𝑣𝑘𝑎)𝑠𝑘𝑏)−1

=
𝑚

∏
𝑖=1

𝐻1(𝑖𝑑, 𝑖)𝑣𝑛+𝑖
𝑛

∏
𝑗=1

𝑔𝑣𝑗𝑗)𝑠𝑘𝑎 ⋅ 𝐻3(𝑋) ⋅ 𝐻3(𝑋)−1

=
𝑚

∏
𝑖=1

𝐻1(𝑖𝑑, 𝑖)𝑣𝑛+𝑖
𝑛

∏
𝑗=1

𝑔𝑣𝑗𝑗)𝑠𝑘𝑎 (5.2)

After that, all signatures are combined as usual; by raising them to coefficients and multiplying

5.4. Overview of implemented schemes 29

them together. Finally, the homomorphic signature is paired with the public key of the verifier
C, making him the only party able to verify this signature:

Algorithm 5 Combine algorithm of Lin17

function Combine(𝑝𝑝, ⃗⃗⃗𝜎, ⃗⃗⃗𝑓, 𝑣𝑘𝐶)
Require: |⃗⃗⃗𝜎| = | ⃗⃗⃗𝑓|

𝜎’ ←1
for 1 ≤ 𝑖 ≤ |⃗⃗⃗𝜎| do

𝜎’ ←𝜎′ ⋅ (𝜎𝑖 ⋅ [𝐻3(𝑒(𝐻2(⃗⃗⃗𝑣), 𝑣𝑘𝑎)𝑠𝑘𝑏)−1])𝑓𝑖
end for
𝜎’ ←𝑒(𝜎′, 𝑣𝑘𝐶)
return 𝜎’

end function

5.4.4. Sch17
This signature scheme is proven in the standard model and provides context hiding. Further-
more, what is interesting about this scheme is that its key pair consists of a regular signature
scheme key pair and a key for a pseudo-random function. Signatures are produced as fol-
lows:

Algorithm 6 Sign algorithm of Sch17
function Sign(𝑝𝑝, ⃗⃗⃗⃗𝑚, 𝑖, 𝑠𝑘, Δ = 𝑓𝑖𝑑)

z ←𝑃𝑅𝐹𝐾(Δ)
Z ←𝑔𝑧2
𝜎Δ ←𝑆𝑖𝑔𝑛𝑠𝑖𝑔(𝑠𝑘𝑠𝑖𝑔, 𝑍|Δ)
Λ←(ℎ𝑖 ⋅ ∏

𝑛
𝑖=1 𝑔

−𝑚[𝑗]
𝑗)𝑧

return 𝜎= (𝜎Δ, 𝑍, Λ)
end function

As we see, using the PRF on the file id, the equivalent of a key pair is generated (𝑧, 𝑍) for
a specific dataset. By signing the dataset information, a verifier can be assured of its legiti-
macy.

During the combination phase, only one 𝜎Δ is kept, as all signatures on the same dataset will
produce the same 𝑍 values using the keyed PRF. The Λ is combined as we have seen in the
other schemes.

5.4.5. Li18
The signature scheme by Li offers multi-key support. Signatures are generated just like in
the Cat12. What has changed, however, is that signatures now also contain an array to store
signatures of other identities.

During the initial signing, the Xs corresponding to identities other than the signer’s are set to 1
(or the identity element). When signatures are combined, however, these X’s are filled by the
signatures of other identities. This way the multi-key ability is facilitated. This does however
increase the size of multi-key signatures, by 1 𝔾1 element for each identity. Furthermore, the
verification algorithm also scales with the number of identities, as a pairing with the public key
of each involved identity has to be performed.

30 5. Implementation details

Algorithm 7 Sign algorithm of Li18
function Sign(𝑝𝑝, ⃗⃗⃗⃗𝑚, 𝑠𝑘𝑖𝑑 , 𝑖𝑑, 𝑓𝑖𝑑)

parse ⃗⃗⃗⃗𝑚 = (𝑢1, ..., 𝑢𝑚, 𝑣1, ..., 𝑣𝑛)
s ←𝑟𝑍𝑞∗

𝑋𝑖𝑑 = (ℎ𝑠∏
𝑚
𝑖=1 ℎ

𝑢𝑖
𝑖 ⋅ ∏

𝑛
𝑗=1 𝑔

𝑣𝑗
𝑗)

1
𝑠𝑘𝑖𝑑+𝑓𝑖𝑑

𝜎←(𝑋1, ..., 𝑋𝑖𝑑 , ..., 𝑋𝑡 , 𝑠) � 𝑋𝑗 = 1 for each 𝑗 ≠ 𝑖𝑑
return 𝜎

end function

5.4.6. Zha18
The signature scheme by Zhang offers identity-based key generation. This feature changes
the setup operation to generate a master secret key for the KGC: 𝑚𝑠𝑘 ←𝑅 𝑍𝑞. The master
public key, which is part of the public parameters, is calculated as ℎ𝑚𝑠𝑘. To then generate a
key for an identity, the key extract algorithm is run:

Algorithm 8 Key Extract algorithm of Zha18
function KeyExtract(𝑚𝑝𝑘,𝑚𝑠𝑘, 𝑖𝑑)

r ←𝑅𝑍𝑞
𝑦 = 𝑟 +𝑚𝑠𝑘 ⋅ ℍ0(ℎ𝑟 , 𝑖𝑑)
return 𝑠𝑘𝑖𝑑 = (𝑦, ℎ𝑟)
return 𝑝1 == 𝑝2

end function

We see that the signing key consists of a y value and a value ℎ𝑟. The latter is a public value,
which is provided to verifiers. One might think that this means there is still some certificate
management involved, but this ℎ𝑟 value only works in combination with the right identity 𝑖𝑑,
so no certificates validating this ’public key’ are required.

During verification, using the provided value ℎ𝑟 and the signer’s id, the hash value ℍ0(ℎ𝑟 , 𝑖𝑑)
is computed, which allows the verifier to do the pairing operation we have seen in the other
verifying algorithms.

Algorithm 9 Verify algorithm of Zha18
function Verify(𝑚𝑝𝑘, 𝑖𝑑, ℎ𝑟 , 𝑓𝑖𝑑, ⃗⃗⃗⃗𝑚, 𝜎)

𝑝1 ←𝑒(𝜎, ℎ)
𝑝2 ←𝑒(∏

𝑚
𝑖=1ℍ1(𝑓𝑖𝑑, 𝑖)𝑢𝑖 ⋅ ∏

𝑛
𝑗=1 𝑔

𝑣𝑗
𝑗 , ℎ𝑟 ⋅ 𝑚𝑝𝑘ℍ0(ℎ

𝑟 ,𝑖𝑑))
end function

5.4.7. Sch18
The signature scheme by Schabüser features context hiding, multi-key support. It uses a key-
pair of a regular signature scheme, as well as a key for a pseudo-random function as part of
its key-pair. Furthermore, scalar values corresponding to the size of a message are chosen
as part of the private key, which are used to compute public values in 𝔾𝑇:
The signing algorithm starts off similar to Sch17, as it also computes a signature on the
dataset.

We observe that this signing algorithm involves more steps than we have seen previously.
The R and the S components are global and are used to preserve the homomorphic property

5.4. Overview of implemented schemes 31

Algorithm 10 KeyGen algorithm of Sch18
function KeyGen(𝑝𝑝)

K ←𝑅𝒦
(𝑠𝑘𝑠𝑖𝑔, 𝑣𝑘𝑠𝑖𝑔)←𝐾𝑒𝑦𝐺𝑒𝑛𝑠𝑖𝑔(𝜆)
𝑥1, ..., 𝑥𝑛, 𝑦←𝑅𝑍𝑞
for 1 ≤ 𝑖 ≤ 𝑛 do

ℎ𝑖 = 𝑔𝑥𝑖𝑡
end for
Y ←𝑔𝑦2
return 𝑠𝑘 = (𝐾, 𝑠𝑘𝑠𝑖𝑔, 𝑥1, ..., 𝑥𝑛, 𝑦), 𝑣𝑘 = (𝑝𝑘𝑠𝑖𝑔, ℎ1, .., ℎ𝑛, 𝑌)

end function

Algorithm 11 Sign algorithm of Sch18
function Sign(𝑝𝑝, ⃗⃗⃗⃗𝑚, 𝑠𝑘, Δ, 𝑙)

parse 𝑙 = (𝑖𝑑, 𝜏)
z ←𝑃𝑅𝐹𝐾(Δ)
Z ←𝑔𝑧2
𝜎Δ ←𝑆𝑖𝑔𝑛𝑠𝑖𝑔(𝑠𝑘𝑠𝑖𝑔, 𝑍|Δ)
r,s ←𝑅𝑍𝑞
R ←𝑔𝑟−𝑦𝑠1
S ←𝑔−𝑠2
A = (𝑔𝑥𝜏+𝑟1 ⋅ ∏𝑛𝑗=1ℍ

𝑦𝑚[𝑗]
𝑗)

1
𝑧

C = (𝑔𝑠1 ⋅ ∏
𝑛
𝑗=1ℍ

𝑚[𝑗]
𝑗)

Λ←{(𝑖𝑑, 𝜎Δ, 𝑍, 𝐴, 𝐶)}
return 𝜎= (Λ, 𝑅, 𝑆)

end function

32 5. Implementation details

throughout combining signatures from multiple parties. The A and the C components are
randomized to provide internal context hiding. These components are not global, but instead,
they are separated per involved identity.

To combine these signatures, the R and the S components are combined as we have seen
before; by raising them to provided coefficients and multiplying them together. A similar opera-
tion happens to the A and C components, but they are grouped by the identity that provided the
individual signatures. So, all A components of signatures provided by party P are homomor-
phically combined, as are the C components. We thus see that the size of the homomorphic
signature scales linearly with the number of participating parties.

5.4.8. Ara19
The signature scheme by Aranha and Pagnin features multi-key support. Signatures are pro-
duced on single messages instead of on vectors of messages (packets). This is the only
signature scheme which does not sign vectors.

During key generation, a random id is selected from the ID space, which is bound to an identity.
Signatures are produced as follows:

Algorithm 12 Sign algorithm of Ara19
function Sign(𝑝𝑝,𝑚, 𝑠𝑘, 𝑙)

𝛾 = (ℍ(𝑙) ⋅ 𝑔𝑚1)𝑠𝑘𝑖𝑑
𝜇 = 𝑚
return 𝜎 = (𝑖𝑑, 𝛾, 𝜇)

end function

We see that this is a very basic version of the scheme Bon09, without support for network
coding. The signature consists of three parts, the identity, the actual signature and the mes-
sage. The reason the identity and the message are kept as part of the signature is to allow
multi-key combinations. During combination, the 𝛾 part is combined as in Bon09, but mes-
sages are combined on a per identity basis. This allows the reconstruction of the signature
in the verification procedure. For each involved identity, a pairing operation is performed with
the corresponding messages and verification key.

Algorithm 13 Verify algorithm of Ara19
function Verify(𝒫, {𝑣𝑘𝑖𝑑}, 𝜎,𝑚)

parse 𝒫 = (𝑓, 𝑙1, ..., 𝑙𝑛)
parse 𝜎 = (𝛾, 𝜇1, ..., 𝜇𝑡)
𝑣1 ←𝑚 == ∑𝑡𝑘=1 𝜇𝑘
𝑐 = ∏𝑡𝑗=1 𝑒(𝑔

𝑚𝑗
1 ⋅ ∏𝑖∈𝐼𝐷𝑗 ℍ(𝑙𝑖)

𝑓𝑖 , 𝑣𝑘𝑖𝑑𝑗)
𝑣2 ←𝑒(𝛾, 𝑔2) == 𝑐
return 𝑣1 ∧ 𝑣2

end function

We observe that the size of the signature scales with the number of involved identities, as do
the number of operations of the verification algorithm.

During the combination of signatures, to facilitate multi-key functionality, the contributions of
each signer are stored in an array of 𝜇s.

5.5. Sizes and characteristics 33

5.4.9. Sch19
The signature scheme by Schabüser features context hiding, multi-key support. The signing
and verification of this signature scheme are slightly changed with respect to Sch18. In Sch18,
the R and the A component are bound to the scalar 𝑦. In Sch19, 𝑅 and 𝐴 are no longer bound
to 𝑦, but now instead component 𝐶 is bound to it. This shuffling around allows the verification
algorithm to reuse pairings that are already computed, saving one pairing operation during
verification.

Algorithm 14 Sign algorithm of Sch19
function Sign(𝑝𝑝, ⃗⃗⃗⃗𝑚, 𝑠𝑘, Δ, 𝑙)

parse 𝑙 = (𝑖𝑑, 𝜏)
z ←𝑃𝑅𝐹𝐾(Δ)
Z ←𝑔𝑧2
𝜎Δ ←𝑆𝑖𝑔𝑛𝑠𝑖𝑔(𝑠𝑘𝑠𝑖𝑔, 𝑍|Δ)
r,s ←𝑅𝑍𝑞
R ←𝑔𝑟−𝑠1
S ←𝑔−𝑠2
A = (𝑔𝑥𝜏+𝑟1 ⋅ ∏𝑛𝑗=1ℍ

𝑚[𝑗]
𝑗)

1
𝑧

C = (𝑔𝑠1 ⋅ ∏
𝑛
𝑗=1ℍ

𝑚[𝑗]
𝑗)

1
𝑦

Λ←{(𝑖𝑑, 𝜎Δ, 𝑍, 𝐴, 𝐶)}
return 𝜎= (Λ, 𝑅, 𝑆)

end function

5.4.10. Li20
The signature scheme by Li offers identity-based key generation. Further, the signing opera-
tion of this scheme differs from most constructions, as operations on 𝔾1 are mostly replaced
by operations on 𝑍𝑞. The key extraction algorithm is the same as that of Zha18 [47]. The
signing operation becomes:

Algorithm 15 Signing algorithm of Li20
function Sign(𝑝𝑝, ⃗⃗⃗⃗𝑚, 𝑠𝑘, 𝜏, 𝑓𝑖𝑑)

s ←∑𝑛𝑗=1ℍ2(𝑓𝑖𝑑, 𝑗, 𝜏) ⋅ 𝑣𝑗
𝜎←∏𝑚𝑖=1ℍ1(𝑓𝑖𝑑, 𝑖)𝑢𝑖 ⋅ 𝑔𝑠
𝜎←𝜎𝑠𝑘
return 𝜎

end function

5.4.11. Lin21
The signature scheme by Lin offers designated combining, with public verification. It is de-
signed for network coding. The designated combination part of the signature scheme is the
same as that of Lin17. What changes in this scheme is that the signatures are publicly verify-
able after combining.

5.5. Sizes and characteristics
The sizes of key pairs and signatures vary between the schemes. Most schemes have a
scalar number as a signing key, an element of 𝔾2 as a public key and signatures as elements
of 𝔾1. In Table 5.1, we show for each scheme what the respectful sizes are. Furthermore, in

34 5. Implementation details

Table 5.1: Overview of sizes expressed in group and field elements, and an indication of supporting Multi Key
(MK), Context Hiding (CH), Identity-based key extraction (ID-B) and designating combiner (C) or verifier (V) (DE)

Scheme Signature Size SK Size VK Size MK CH ID-B DE
Bon09 [11] 1𝔾1 1 ℤ∗𝑞 1𝔾2
Cat12 [13] 1𝔾1, 1𝑍𝑞 1𝑍𝑞 1 𝔾2
Lin17 [36] 1𝔾1 1𝑍𝑞 1𝔾2 C&V
Sch17 [41] 1𝔾1, 1𝔾2, 𝜎𝑠𝑖𝑔 𝑠𝑘𝑠𝑖𝑔, 𝑠𝑘𝑝𝑟𝑓 𝑣𝑘𝑠𝑖𝑔 3

Sch18 [42] 1𝔾1, 1𝔾2, 𝑚 ⋅ (id,
𝜎𝑠𝑖𝑔, 2𝔾1, 1𝔾2)

𝑠𝑘𝑠𝑖𝑔, 𝑠𝑘𝑝𝑟𝑓
𝑚 + 1𝑍𝑞

𝑣𝑘𝑠𝑖𝑔, 1𝔾2
𝑚𝔾𝑇

3 3

Zha18 [47] 1𝔾1 1𝑍𝑞 1𝔾2,id 3

Li18 [33] 𝑚𝔾1, 1𝑍𝑞 1𝑍𝑞 1𝔾2
Ara19 [4] 1𝔾1, 𝑚𝑍𝑞 1𝑍𝑞 1𝔾2 3

Sch19 [43] 1𝔾1, 1𝔾2, 𝑚 ⋅ (id,
𝜎𝑠𝑖𝑔, 2𝔾1, 1𝔾2)

𝑠𝑘𝑠𝑖𝑔, 𝑠𝑘𝑝𝑟𝑓
𝑚 + 1𝑍𝑞

𝑣𝑘𝑠𝑖𝑔, 1𝔾2
𝑚𝔾𝑇

3 3

Li20 [34] 1𝔾1 1𝑍𝑞 1𝔾2,id 3

Lin21 [37] 1𝔾1 1𝑍𝑞 1𝔾2 C

Table 5.2: Security assumptions per signature scheme

Scheme Bon09 Cat12 Lin17 Sch17 Sch18 Zha18 Li18 Ara19 Sch19 Li20 Lin21
DL x x x x
CDH x x x
DDH x
co-CDH x x x x x
co-BDH x
q-SDH x x
GBDH x
FDHI x x

this table, we give an overview of the characteristics of all the signature schemes. It indicates
whether a scheme provides context hiding abilities, multi-key support, designated entities, and
identity-based key generation.

In Table 5.2 we group the signature schemes by their hardness assumptions. For each hard-
ness assumption, we show which schemes rely upon these assumptions to prove the security
of their scheme.

Finally, in Table 5.3 we provide an overview of the security model in which the signature
schemes are proven.

Table 5.3: Security model per signature scheme

Model Bon09 Cat12 Lin17 Sch17 Sch18 Zha18 Li18 Ara19 Sch19 Li20 Lin21
ROM x x x x x x
Standard x x x x x

6
Results

In this chapter, we present our results of the duration of the various operations. We first present
which scheme is the fastest overall, after which we discuss in detail the performance of the
signature schemes per category.

We categorize the signature schemes based on the features they offer. These features are
network coding, multi-key, context hiding, identity-based key generation and designated enti-
ties.

6.1. Overall
To visualize which signature scheme is the fastest in each of our file- and packet-length config-
urations, we have created surface plots for each operation. For each file-packet combination,
a tile is created in these plots. The colours of the tiles are based on the signature scheme that
performs the current operation the fastest. We now discuss our findings per operation.

6.1.1. Signing

1 2 4 8 16 32 64 128
File length

1

2

4

8

16

32

64

128

Pa
ck

et
 le

ng
th

Ara19
Bon09
Li_20
Zha18

Figure 6.1: Surface plot of fastest signing schemes. Each tile on the surface is coloured corresponding to the
scheme that is fastest in that file-packet length configuration. The length of the file and packet increase with steps
of powers of two.

In Figure 6.1 we clearly see that Li20 is the fastest scheme in most file-packet length con-
figurations. Looking at this surface plot, we can make two interesting observations. Above

35

36 6. Results

a packet length of 4, Li20 is always the fastest scheme. Further, when the packet length is
exactly one, Ara19 is actually the fastest scheme. This scheme is designed in such a way that
it is easy to understand, to help introduce people to the concept of homomorphic signatures.
As a side effect, this has resulted in a signature scheme that is very fast for signing single
messages.

1 2 4 8 16 32 64 128
Packet length

0

50

100

150

200

250

300

350

du
ra

tio
n

(m
s)

File length: 1

1 2 4 8 16 32 64 128
Packet length

0

50

100

150

200

250

du
ra

tio
n

(m
s)

File length: 64

1 2 4 8 16 32 64 128
Packet length

0

25

50

75

100

125

150

175

du
ra

tio
n

(m
s)

File length: 128
Ara19
Bon09
Cat12
Li_18
Li_20
Lin17
Lin21
Sch17
Sch18
Sch19
Zha18

Figure 6.2: Sign duration for constant file length (1,64,128) and varying packet length.

To look at the overall performance of each scheme, we have plotted the sign duration for a
constant file length and a varying packet length. In Figure 6.2 we see that as the packet
length increases, the scheme Li20 seems to be the least affected. Where the signing duration
of other schemes rapidly increases as the packet length grows, Li20 has a slower increase in
duration.

Further, we see that Ara19 and Sch18 are affected the most by the increase in packet length.
Ara19 is not designed for packets (vectors of numbers) but instead works on single messages.
When we want to sign a packet using Ara19, we thus need to create a signature for each part
of the vector, making this scheme packet length dependent. Other schemes that do have a
mechanism to deal with vectors of messages are seen to not increase as rapidly as these
other schemes.

1 2 4 8 16 32 64 128
File length

5

10

15

20

du
ra

tio
n

(m
s)

Packet length: 1

1 2 4 8 16 32 64 128
File length

0

25

50

75

100

125

150

175

du
ra

tio
n

(m
s)

Packet length: 64

1 2 4 8 16 32 64 128
File length

0

50

100

150

200

250

300

350

du
ra

tio
n

(m
s)

Packet length: 128
Ara19
Bon09
Cat12
Li_18
Li_20
Lin17
Lin21
Sch17
Sch18
Sch19
Zha18

Figure 6.3: Sign duration for constant packet length (1,64,128) and varying file length.

To look at the impact of the file length on the duration of the sign operation, we have created a
line plot for constant packet lengths with variable file lengths. When we look at these graphs
in Figure 6.3, we see that changing the file length does not impact the signing duration of
single packets much. Apart from what seems to be outliers, we observe a mostly consistent
signing duration. The duration of the sign operation is thus not dependent on the file length.
For the network coding signature schemes, this is a side effect of the optimization we wrote.

6.1. Overall 37

Had we not created this optimization, the sign duration would greatly be dependent on the
file length, as the number of hash operations, as well as group additions and exponentiations,
would depend linearly on the length of a file.

6.1.2. Verifying

1 2 4 8 16 32 64 128
File length

1

2

4

8

16

32

64

128

Pa
ck

et
 le

ng
th

Bon09
Cat12
Li_20
Sch17
Zha18

Figure 6.4: Surface plot of fastest verifying schemes.

When we look at the overall fastest verifying schemes in the surface-plot in Figure 6.4, again,
we see that Li20 is the best performing scheme out of all the signature schemes, as most
tiles are coloured by Li20. For lower packet lengths, Sch17, Bon09, Cat12 and Zha18 are
sometimes the fastest schemes, while when the packet length reaches above four, Li20 is
again the fastest verifying scheme. We can explain this similarity between the results of the
signing and verification algorithms because both operations are similar in nature. To verify if
a signature matches a message, the signature is reconstructed up until the point where it is
bound to a secret key. We can see this in the verification algorithm of Bon09 in Algorithm 1
and of Ara19 in Algorithm 13. During verification, it is instead paired to a public key, which
makes comparing to the signature possible. So since these operations are inherently similar,
the duration results are similar as well.

1 2 4 8 16 32 64 128
Packet length

0

200

400

600

800

1000

1200

1400

du
ra

tio
n

(m
s)

File length: 1

1 2 4 8 16 32 64 128
Packet length

0

200

400

600

800

1000

1200

1400

du
ra

tio
n

(m
s)

File length: 64

1 2 4 8 16 32 64 128
Packet length

0

200

400

600

800

du
ra

tio
n

(m
s)

File length: 128
Ara19
Bon09
Cat12
Li_18
Li_20
Lin17
Lin21
Sch17
Sch18
Sch19
Zha18

Figure 6.5: Verify duration for constant file lengths (1,64,128) and varying packet lengths. Ara19 depends on the
packet length and is therefore seen to increase linearly as the packet length increases. Context hiding multi-key
schemes perform pairing operations based on the file length and are therefore seen to increase in duration as the
file length increases throughout the subplots.

In most cases, the results are similar to the results of the signing operation. When we look at
Figure 6.5, there are notable differences in the context hiding schemes. While before they did

38 6. Results

take longer to sign messages, the differences have now becomemore apparent. The increase
in duration for these two schemes is very significant, as the duration is orders of magnitudes
larger than all other schemes, except for Ara19.

1 2 4 8 16 32 64 128
File length

0

100

200

300

400

500

600

700

800

du
ra

tio
n

(m
s)

Packet length: 1

1 2 4 8 16 32 64 128
File length

0

200

400

600

800

du
ra

tio
n

(m
s)

Packet length: 64

1 2 4 8 16 32 64 128
File length

0

200

400

600

800

1000

1200

1400

du
ra

tio
n

(m
s)

Packet length: 128
Ara19
Bon09
Cat12
Li_18
Li_20
Lin17
Lin21
Sch17
Sch18
Sch19
Zha18

Figure 6.6: Verify duration for constant packet length (1,64,128) and varying file length.

Furthermore, the verification duration for these two schemes is now dependent on the file
length, while before this did not have any impact on the duration. This can clearly be observed
in Figure 6.6. Where the other schemes behave mostly constant for a changing file length, the
context hiding multi-key schemes instead increase linearly with the length of the file.

Lastly, the network coding signature schemes have been optimized with regard to the ver-
ify operation. The previously discussed optimization is not applicable to the context hiding
multi-key signature schemes. This makes the difference between the CH-MK schemes even
larger.

6.1.3. Combining

1 2 4 8 16 32 64 128
File length

1

2

4

8

16

32

64

128

Pa
ck

et
 le

ng
th

Bon09
Cat12
Li_18
Li_20
Sch17
Zha18

Figure 6.7: Surface plot of fastest combining schemes.

When we look for the overall fastest combining scheme in the surface plot in Figure 6.7, we
see that there is no clear better scheme this time. The surface plot is very scattered, which
indicates that there is no one scheme that is clearly better. This is because for the signature
schemes where a signature is 1 element of 𝔾1, the combing operation is always the same. As
we recall, the basics of combining signatures together are exponentiating and point additions.
Due to the constant time implementation of the operations in the groups of BLS12-381, the
combine operation is time independent from the signature value and the combination coeffi-

6.1. Overall 39

cients.

1 2 4 8 16 32 64 128
Packet length

0

20

40

60

80

100

120

du
ra

tio
n

(m
s)

File length: 1

1 2 4 8 16 32 64 128
Packet length

0

2000

4000

6000

8000

du
ra

tio
n

(m
s)

File length: 64

1 2 4 8 16 32 64 128
Packet length

0

2500

5000

7500

10000

12500

15000

17500

du
ra

tio
n

(m
s)

File length: 128
Ara19
Bon09
Cat12
Li_18
Li_20
Lin17
Lin21
Sch17
Sch18
Sch19
Zha18

Figure 6.8: Combine duration for constant file length (1,64,128) and varying packet length.

When we look at each scheme’s performance in Figure 6.8, we see that most schemes behave
very constant. We see that the packet length does not influence the combine duration for most
schemes.

Schemes that are affected by the combine operation are Ara19 and Li18. For Ara19 this is the
case because it needs to compensate for lacking vector support, while for Li18 the multi-key
support requires more operations from the combine algorithm.

When we zoom in on the fastest signers we saw in Figure 6.7, we see in Figure 6.9 that the
performance of these schemes is indeed very similar.

1 2 4 8 16 32 64 128
File length

0

20

40

60

80

100

120

140

du
ra

tio
n

(m
s)

Packet length: 1

1 2 4 8 16 32 64 128
File length

0

10

20

30

40

50

60

du
ra

tio
n

(m
s)

Packet length: 64

1 2 4 8 16 32 64 128
File length

0

10

20

30

40

50

60

du
ra

tio
n

(m
s)

Packet length: 128

Bon09
Cat12
Li_20
Sch17
Zha18

Figure 6.9: Combine duration of fastest combining signature schemes

6.1.4. Summary
We have observed the signature scheme Li20 is the overall fastest at signing messages and
verifying signatures. The performance of the combine operation of signature schemes that
have signatures which are a single element of 𝔾1 is very similar. For the specific scenario
where packets are of length one, the signature scheme Ara19 is the fastest.

With these results, we can answer our first research question: 𝑅𝑄1What is the fastest pairing-
based, linearly homomorphic signature scheme, when run on modern hardware?

We can say that for messages that are longer than 4 pieces of data, Li20 is the fastest signature
scheme with regard to signing and verifying. With regards to the combine operation, Li20 is
amongst one of the fastest schemes.

When packets are not vectors but are instead single messages, Ara19 is actually the fastest

40 6. Results

signing scheme. In this setting, Ara19 is 1.5 times faster than Li20, as signing a single mes-
sage takes 2 milliseconds for Ara19 while Li20 takes around 3 milliseconds. This result does
not transfer over to verification, however.

6.2. Performance per scenario
In this section, we discuss the performance of the schemes based on the categorization of
their features. We categorize based on whether a scheme supports network coding, multi-key,
context hiding, identity-based key generation and finally whether they can assign designated
entities.

6.2.1. Network coding
When we look at the results for schemes designed for network coding in Figure 6.10 and
Figure 6.11, we immediately notice that Li20 is the fastest scheme in this category.

1 2 4 8 16 32 64 128
Packet length

0

20

40

60

80

100

120

140

du
ra

tio
n

(m
s)

Sign - File length: 128

1 2 4 8 16 32 64 128
Packet length

20

40

60

80

100

120

140

du
ra

tio
n

(m
s)

Verify - File length: 128

1 2 4 8 16 32 64 128
Packet length

0

2500

5000

7500

10000

12500

15000

17500

du
ra

tio
n

(m
s)

Combine - File length: 128
Bon09
Cat12
Li_18
Li_20
Lin17
Lin21
Zha18

Figure 6.10: Sign, verify and combine operations duration of network coding schemes - Varying packet length for
a constant file length of 128.

1 2 4 8 16 32 64 128
File length

0

20

40

60

80

100

120

140

160

du
ra

tio
n

(m
s)

Sign - Packet length: 128

1 2 4 8 16 32 64 128
File length

25

50

75

100

125

150

175

du
ra

tio
n

(m
s)

Verify - Packet length: 128

1 2 4 8 16 32 64 128
File length

0

2000

4000

6000

8000

10000

12000

14000

du
ra

tio
n

(m
s)

Combine - Packet length: 128
Bon09
Cat12
Li_18
Li_20
Lin17
Lin21
Zha18

Figure 6.11: Sign, verify, combine duration for network coding schemes - Varying file length on a constant packet
length of 128.

Looking at Figure 6.10, which shows the durations for constant file length and varying packet
length, we see that the sign and verify durations of the schemes with designated entities, Lin17
and Lin21, are higher than the other network coding schemes. We can explain this difference
because of the actions required to designate a signature to a combiner, which involves hash-
ing and pairing operations. Everything before that operation is very similar in construction to
the other schemes in this category. Furthermore, what is interesting, is that as the file length
increases, the per-signature duration actually decreases. We can see this in Figure 6.11, as
lines in are trending downwards when the file length increase for the sign and verify opera-
tions.

6.2. Performance per scenario 41

1 2 4 8 16 32 64 128
Packet length

0

5

10

15

20

25

du
ra

tio
n

(m
s)

File length: 1

1 2 4 8 16 32 64 128
Packet length

0

1000

2000

3000

4000

du
ra

tio
n

(m
s)

File length: 64

1 2 4 8 16 32 64 128
Packet length

0

2500

5000

7500

10000

12500

15000

17500

du
ra

tio
n

(m
s)

File length: 128
Bon09
Cat12
Li_18
Lin17
Lin21
Zha18

Figure 6.12: Combine duration of network coding schemes for constant file length (1,64,128) and varying packet
length.

When we look at the combining performance in Figure 6.12, we first observe that the desig-
nated entity schemes take longer to combine their signatures. This is because, in this step,
the designated combiner part of the signature gets ’stripped off’, and the signature gets fur-
ther prepared for either public verification or designated verification. Further, this figure shows
that as the file length increases through the subplots, the combine duration of Li18 increases
drastically. This is due to the way the combine algorithm is created to facilitate multi-key func-
tionality.

6.2.2. Multi-key

1 2 4 8 16 32 64 128
Packet length

0

25

50

75

100

125

150

175

du
ra

tio
n

(m
s)

Sign - File length: 128

1 2 4 8 16 32 64 128
Packet length

0

200

400

600

800

du
ra

tio
n

(m
s)

Verify - File length: 128

1 2 4 8 16 32 64 128
Packet length

0

2500

5000

7500

10000

12500

15000

17500

du
ra

tio
n

(m
s)

Combine - File length: 128
Ara19
Li_18
Sch18
Sch19

Figure 6.13: Sign, verify, combine duration for multi-key schemes - Varying packet length over a constant file length
of 128.

The sign performance of the multi-key signature schemes behaves in a similar way when we
look at the plot showing increasing packet length in Figure 6.13. We see that as the packet
length increases, the sign duration increases linearly. If we look at the bottom left corner of
the signing operation, we see that Ara19 is the fastest signer for packets of length one. To
highlight this, we show in Figure 6.15 that Ara19 is always faster than the other schemes as
long as the packet length is 1. For larger packet lengths, however, we see that Ara19 signs
slower than the other schemes, closely tied with Sch18. Li18 and Sch19 both perform better
for larger packet lengths.

In the middle plots of Figure 6.13 and Figure 6.14 we see that the verification operation is
clearly the fastest for Li18. The verification duration of Ara19 increases a lot when the packet
length increases. As the file length increases, the context hiding multi-key schemes also take
longer to verify signatures. What is interesting is that we see that Sch18 is faster than Sch19.

42 6. Results

1 2 4 8 16 32 64 128
File length

100

150

200

250

300

350
du

ra
tio

n
(m

s)

Sign - Packet length: 128

1 2 4 8 16 32 64 128
File length

200

400

600

800

1000

1200

1400

du
ra

tio
n

(m
s)

Verify - Packet length: 128

1 2 4 8 16 32 64 128
File length

0

2000

4000

6000

8000

10000

12000

14000

du
ra

tio
n

(m
s)

Combine - Packet length: 128
Ara19
Li_18
Sch18
Sch19

Figure 6.14: Sign, verify, combine duration for multi-key schemes - Varying file length over a constant packet length
of 128.

1 2 4 8 16 32 64 128
File length

5

10

15

20

du
ra

tio
n

(m
s)

Packet length: 1

Ara19
Li_18
Sch18
Sch19

Figure 6.15: Sign duration of MK schemes, varying file length for a constant packet length of 1. In this scenario,
Ara19 is faster than all other schemes, followed by Li18.

We had expected Sch19 to be faster due to the optimization that saved a pairing operation
with respect to Sch18.

What we see when we look at the combining operation, is that Li18 scales very rapidly with
the file length. While its combine duration is mostly constant over a varying packet length
(Figure 6.13), the increase in duration based on the file length is very significant (Figure 6.14).
It increases in such a rapid matter that at higher file lengths, it is even slower than Ara19. The
combine performance of Sch18 and Sch19 is significantly better than that of Ara19 and Li18.
While at a low packet length they are slower than Ara19, when the packet length grows above
8, the mostly constant behaviour results in faster combining than Ara19.

6.2.3. Context hiding
Regarding context hiding schemes, there is one scheme that is designed for single key usage,
and two schemes support the use of multiple keys. In Figure 6.16 and Figure 6.17, we see
that the single key scheme, Sch17, performs the best at signing messages. Further, we see
that Sch18 always performs the worst of the three schemes at the sign operation.

When we look at the verifying performance, on the other hand, we see in Figure 6.17 that the
verifying performance of themulti-key schemes is similar, until the file length grows to 64. From
that point on the difference between Sch18 and Sch19 becomes very notable. We also clearly

6.2. Performance per scenario 43

1 2 4 8 16 32 64 128
Packet length

0

25

50

75

100

125

150

175

du
ra

tio
n

(m
s)

Sign - File length: 128

1 2 4 8 16 32 64 128
Packet length

200

400

600

800

du
ra

tio
n

(m
s)

Verify - File length: 128

1 2 4 8 16 32 64 128
Packet length

200

400

600

800

du
ra

tio
n

(m
s)

Combine - File length: 128
Sch17
Sch18
Sch19

Figure 6.16: Sign, verify and combine duration of context hiding schemes - Varying packet length over a constant
file length of 128.

1 2 4 8 16 32 64 128
File length

50

100

150

200

250

du
ra

tio
n

(m
s)

Sign - Packet length: 128

1 2 4 8 16 32 64 128
File length

200

400

600

800

du
ra

tio
n

(m
s)

Verify - Packet length: 128

1 2 4 8 16 32 64 128
File length

0

200

400

600

800

du
ra

tio
n

(m
s)

Combine - Packet length: 128
Sch17
Sch18
Sch19

Figure 6.17: Sign, verify and combine duration of context hiding schemes - Varying file length over a constant
packet length of 128.

see that the single key scheme verifies considerably faster than the multi-key schemes.

Regarding the combine operation, we can make a similar observation as for the verification
operation. Sch18 and Sch19 behave in a similar manner, until the file length grows to 128,
when Sch18 overtakes Sch19.

6.2.4. Identity-based key generation
The two schemes that support identity-based key generation have been discussed previously
in the network coding category. We see that in all configurations, except for a packet length of
one, Li20 outperforms Zha18 with regards to signing and verifying. The combine performance
of these schemes is nearly the same since they both perform the except operation.

It would make sense to compare the key generation algorithms of the two signature schemes
since that is what sets these two schemes apart from the other ones. However, the key gener-
ation is done in the exact same manner for both Zha18 and Li20. We thus keep our discussion
to the previously stated results.

6.2.5. Designated Entities
The performance of the schemes with designated entities is very similar in all regards. The
signing, verifying and combining durations only differ slightly, and no scheme is always faster
than the other. This is because both schemes are very similar in construction. Where they
start to differ is in the combine operation. Where one scheme prepares the scheme for pub-
lic verification, the other scheme designates a verifier in this algorithm. We see that these

44 6. Results

1 2 4 8 16 32 64 128
Packet length

0

10

20

30

40

50

60
du

ra
tio

n
(m

s)

Sign - File length: 128

1 2 4 8 16 32 64 128
Packet length

10

20

30

40

50

du
ra

tio
n

(m
s)

Verify - File length: 128

1 2 4 8 16 32 64 128
Packet length

50

60

70

80

90

100

110

120

du
ra

tio
n

(m
s)

Combine - File length: 128
Li_20
Zha18

Figure 6.18: Sign, verify and combine duration of ID-B schemes - Varying packet length over a constant file length
of 128.

1 2 4 8 16 32 64 128
File length

20

40

60

80

100

120

140

du
ra

tio
n

(m
s)

Sign - Packet length: 128

1 2 4 8 16 32 64 128
File length

20

40

60

80

100

120

140

du
ra

tio
n

(m
s)

Verify - Packet length: 128

1 2 4 8 16 32 64 128
File length

0

10

20

30

40

50

60

du
ra

tio
n

(m
s)

Combine - Packet length: 128
Li_20
Zha18

Figure 6.19: Sign, verify and combine duration of ID-B schemes - Varying file length over a constant packet length
of 128.

1 2 4 8 16 32 64 128
Packet length

20

40

60

80

100

120

140

du
ra

tio
n

(m
s)

Sign - File length: 128

1 2 4 8 16 32 64 128
Packet length

40

60

80

100

120

140

du
ra

tio
n

(m
s)

Verify - File length: 128

1 2 4 8 16 32 64 128
Packet length

1300

1400

1500

1600

1700

du
ra

tio
n

(m
s)

Combine - File length: 128
Lin17
Lin21

Figure 6.20: Sign, verify and combine duration of DE schemes - Varying packet length over a constant file length
of 128.

steps take about the same time, as the combine performance is similar for both schemes as
well.

6.3. Overhead of additional features
Finally, in this section, we analyse and present the performance impact of supporting extra
features in a homomorphic signature scheme.

6.3. Overhead of additional features 45

1 2 4 8 16 32 64 128
File length

90

100

110

120

130

140

150

160

du
ra

tio
n

(m
s)

Sign - Packet length: 128

1 2 4 8 16 32 64 128
File length

100

120

140

160

180

du
ra

tio
n

(m
s)

Verify - Packet length: 128

1 2 4 8 16 32 64 128
File length

0

250

500

750

1000

1250

1500

du
ra

tio
n

(m
s)

Combine - Packet length: 128
Lin17
Lin21

Figure 6.21: Sign, verify and combine duration of DE schemes - Varying file length over a constant packet length
of 128.

6.3.1. Network coding
Network coding signatures add a computation to signatures which is based on the unit vector
augmented to a packet. Depending on the implementation, this either adds 1 point addition and
exponentiation to the sign operation, or it adds 𝑚 of these operations to the signing process.
Further, depending on the construction of a scheme, 1 or 𝑚 hash operations are performed.
This same observation can be made for the verifying operation. The combine performance is
not affected by whether a scheme is designed for network coding or not. The size of keys and
signatures is not impacted by the network coding property.

6.3.2. Multi-key
The impact of a multi-key homomorphic signature is observed in the combine and verify op-
erations of a signature scheme. As we have seen in the constructions of Ara19 and Sch19,
during the combine operation, components are stored depending on the number of identities
involved in the homomorphic combination. The verify operation further has to do pairing oper-
ations with each verification key of the identities involved in the homomorphic signature. We
thus conclude that multi-key support increases the verification duration and the signature size
linearly with the number of identities.

6.3.3. Context hiding
To analyse the context hiding overhead, we look at the sign and combine operation of Sch19
and Bon09. Regarding verifying, we consider Sch17 and Bon09.

Context hiding schemes use values that masks the contributions of individual signers. To
facilitate these masks, the signing key and the verification key sizes scale with the length of
the file, e.g. the number of items to be combined.

Furthermore, the signing algorithm requires operations to be done on these masks. The con-
text hiding schemes in these works use elements of 𝔾𝑇 as masks. Operations on this group
are very expensive, so the sign duration of the schemes is considerable longer than schemes
that do not offer context hiding.

6.3.4. Identity-based key generation
We have seen that identity-based key generation has no further impact on the sign, verify and
combine operations. The only part that differs between these schemes and schemes that use
’traditional’ key generation is the use of a key generation centre that is involved with generating
users’ keys. We see the support of identity-based key generation not as overhead, but as a

46 6. Results

system requirement.

6.3.5. Designated Entities
The support for designated entities is facilitated through pairing operations with the designated
entity’s public key. This operation is more expensive than computing on group elements, and
as such, it increases the sign duration based on the time to perform a pairing.

Further, the combine operation is used to strip off its own designation from a signature, after
which it is possible to designate an entity for verification or keep the signature publicly verifi-
able. The ’stripping off’ is performed by calculating the inverse of the designation part of the
signature, which means that a pairing operation is again involved in this process.

7
Application Analysis

In this chapter, we analyse what our findings mean for practical applications. Our analysis
is done based on scenarios which define specific constraints of a signature scheme. The
scenarios we consider are Network Coding, Smart Grids and Privacy-Preserving.

7.1. Network coding
As we recall, network coding is a technique to increase the throughput and resilience of com-
puter networks. In the network, a source node wants to send a file through a connected
network of intermediate nodes, to a target node. To do this, the file gets split up into multiple
packets. These packets are first augmented with a unit vector which indicates which part of
the file this packet is, before being sent to intermediate nodes. The intermediate nodes do not
store and forward individual packets as in traditional networking, but instead, linearly combine
the received packets together before forwarding them to the next node. This improves the
throughput of the network. When the target node has received enough linearly independent
packets, it can decode them to receive the original file back.

A problem that network coding faces is pollution attacks. In this attack, an intermediate node
sends a corrupt packet instead of a linear combination of the packets it received. This one
corrupt packet prevents the entire file from being decoded.

To prevent this attack vector, the source node can employ homomorphic signatures. By first
signing the augmented packets before sending them to the network, the intermediate nodes
can check the validity of the received packets. When a node encounters a corrupt packet, it
can immediately discard it. Otherwise, the node combines the packets together as before, but
now also combines the corresponding signatures using the homomorphic property.

What is important for network coding is that verification and combination are quick, to introduce
as little computational overhead for intermediate nodes. This could otherwise severely impact
the speed at which the network operates.

Furthermore, the size of signatures should be as small as possible, to allow as much room as
possible for actual data to be sent.

The packet size in network coding is determined by the Maximum Transfer Unit. This is a value
that depends on the transport layer protocol. The most commonly used protocol is ethernet
frames over IP. This setting has an MTU of 1500 bytes. When we assume that a signature
takes at least 96 bytes (1 element of 𝔾1), we are left with 1406 bytes. We encode our data as

47

48 7. Application Analysis

points in the field 𝑍𝑞, which takes 48 bytes to represent. We can thus have a packet length of
roughly 1404/48 = 29.

We thus need to look at the performance of a network coding signature scheme for a packet
length of 29. The closest packet length we tested to is 32. As we saw in our results, the
scheme Li20 is the fastest scheme in this category with respect to signing and verifying, and
the combining operation is amongst the fastest schemes. This scheme is thus clearly the right
choice for this task. Verification of a single signature takes at most 16 ms, and combining
signatures takes about 1ms per packet to combine.
We can now answer our second research question with regards to network coding:
𝑅𝑄2,1 Which pairing-based, linearly homomorphic signature scheme is the best to use for
network coding?

The signature scheme Li20 is the best scheme to use for network coding, as it is the fastest
at both the signing and verifying operations in this setting.

7.2. Smart Grid
In the smart grid setting, a measuring device in individual households reports the periodical
power consumption to an aggregation node. For the sake of an example, we consider that
for each block of houses, there is one central aggregation node. By periodically sending the
power usage to this aggregation node, the electricity company can get a fine-grained insight
into the power consumption throughout the day. This is not only used for billing purposes but
can also provide interesting insights into trends in power usage.

Tomake sure that themeasurement data is authentic, we can have themeasuring devices sign
the data before sending it to the aggregation node. This can provide the electricity company
with the required trust that the measurement data is not tampered with either by a corrupt
homeowner or by an entity in the network during transit. In turn, the homeowner can be
assured of his total consumption over a period of time, for example, the monthly usage, by
validating the homomorphically combined signature on his total power consumption.

The power consumption measuring devices are embedded devices which are designed for the
sole purpose of measuring power consumption and reporting it to an aggregation node. As
such, these devices do not have a lot of computational resources, nor do they possess a lot of
storage capacity. This defines the requirements for a homomorphic signature scheme for the
smart grid setting to have a small signing key, which fits in the limited available storage, and
a fast signing operation, to account for the little computational resources. This is especially
important when the granularity of the measurements increases to sub-second levels.

The aggregation node is considered to be more powerful than the measuring devices, and as
such, the combine and verify operations are less constrained in this setting.

The choice for this setting is also affected by the length of messages to be signed. Themeasur-
ing device can either first collect a number of measurements, before signing and transferring
them, or they can sign and transfer each measurement individually. Furthermore, the level
of combining is of importance as well. Signatures can either be aggregated by person, or by
all residents of a house block. This latter option requires that the signature scheme support
multi-party computation.

When single measurements are signed and transferred, we look at the results of the signing
operation for packets of length 1. In this specific setting, Ara19 is the fastest scheme. When
multiple measurements are aggregated before being reported, the scheme Li20 is the best

7.3. Privacy-Preserving 49

Single key Multi key
Single message Ara19 Ara19
Multiple message Li20 Li18 / Sch19

Table 7.1: Choice matrix for a homomorphic signature scheme to be used in a smart meter setting

choice as it has the fastest signing operation. The signing key size of both these schemes is
the same, namely a single element of 𝔾1.

When we want to combine signatures of different households, we can either use Ara19 again
for single messages, or we can use Li18 for reporting on a list of measurements.

While we assumed the computational resource of the aggregation node to be better than
those of the measuring devices, we must still note that the combine operation of Li18 scales
very poorly with a growing file length. The signing performance of Li18 is comparable to that
of Sch19, which might make this a better-suited signature scheme for the multi-key, multi-
message setting. This scheme, however, has a considerably larger signing key, which scales
with the length of a file (which in this setting means the number of measurements that can be
combined). This either limits the number of measurements that can be made throughout the
day, to make the key fit in the memory, or it requires measuring devices with larger storage
capacity. The choice for a multi-key/multi-message signature scheme is thus dependent on
the specific system requirements.

We have visualized the choices that can be made in Table 7.1.
We now consider our research question 𝑅𝑄2,2 Which pairing-based, linearly homomorphic
signature scheme is the best to use in a multi-party setting?We see that the answer to this
question depends on multiple considerations. The message length, the sign, verify and com-
bine operation, as well as the key sizes, all play a role in deciding the optimal scheme. We
thus answer this question with ’it depends on the constraints’.

7.3. Privacy-Preserving
When privacy is of importance, a homomorphically combined signature should reveal as little
information as is required. We still need to know who contributed data to be able to verify
signatures with the right public keys, but for a homomorphically combined signature, we do
not necessarily need to know which entity provided which inputs to a signature. This concept is
called context hiding, and it is especially useful when sensitive data such as medical records
or measurements are analysed. While we do need to be assured of the authenticity of the
data, we also need to take into account the privacy of the patients of which information is
analysed.

The addition of privacy is most important in a multi-key setting, in which contributions of mul-
tiple parties are handled.

When choosing a privacy-preserving homomorphic signature scheme, we thus consider Sch18
and Sch19. Looking at the performance of these two signature schemes, we see that we must
make a trade-off. The signing speed of Sch19 is faster than that of Sch18, while the verification
and combination performance of Sch18 is faster.

This means that the choice depends on which operation occurs more often, or on which entity
has access to more computational resources.

When the data signer is constrained to less computationally efficient hardware, the faster sign-

50 7. Application Analysis

ing scheme Sch19 would be the right choice, while if the requirements indicate that verification
and combination performance are more important, one would choose Sch18.
To answer our research question 𝑅𝑄2,3 Which pairing-based, linearly homomorphic signature
scheme is the best to use for a privacy-preserving setting?We again conclude that it depends.
When the requirements indicate that signing performance is more important than verifying and
combining, Sch19 is the right choice. If however verification and combination of signatures
are weighted more, Sch18 is the better choice.

8
Discussion

8.1. Conclusion
Over the years, numerous homomorphic signatures have been designed. Their real-world
application and evaluation have not been greatly analysed. Therefore, in this work, we set out
to assess the performance of pairing-based, linearly homomorphic signature schemes. Our
assessment consists of timing the duration of the sign, verifying and combining operations
of different signature schemes, comparing sizes of keys and signatures, and analyzing the
impact of supporting additions to homomorphic signature schemes.

To test the performance of the signature schemes under different settings, we have tried vari-
ous configurations of file- and packet lengths.

By looking at the operation performance, we have identified the signature scheme that is
fastest overall, as well as which schemes perform well in one of several categories. We have
analyzed what impact our findings have on real-world applications by working out usage sce-
narios.

To answer our first research question, 𝑅𝑄1 What is the fastest pairing-based, linearly homo-
morphic signature scheme, when run on modern hardware? We can say that our main finding
is that the construction of Li20 is significantly faster than that of other schemes. Furthermore,
it scales very well with larger file and packet sizes, and thus it is a great choice for signing
larger datasets. By substituting group operations with hashing and scalar additions, a lot of
time is saved in the signing and verifying algorithms.

Our second research question, 𝑅𝑄2 Which pairing-based, linearly homomorphic signature
scheme is the best to use for network coding, multi-party computation or a privacy-preserving
setting?, has been answered in chapter 7. For a signature scheme in a multi-party setting, the
result is not one-sided. We find that Li20 is the best choice for network coding, a consideration
between Ara19, Sch19 and Li18 has to be made for a multi-party setting, and consideration
between Sch18 and Sch19 must be made for a context-hiding signature scheme. While for
the latter two scenarios this does not provide a single answer, we do provide the means to
make a decision based on the specific requirements of a setting.

To answer our third research question, 𝑅𝑄3 What is the performance cost of supporting addi-
tional features to homomorphic signature schemes? We found that NC increases the signing
and verifying duration by up to 𝑚 operations on points in 𝔾1 (𝑚 being the length of the file to
be transmitted). The main impact of MK support is found in the verification procedure, which

51

52 8. Discussion

requires at least a pairing operation for each identity involved in a homomorphically combined
signature. DE schemes increase the duration of the signing procedure with a pairing and mul-
tiple point additions. ID-based schemes do not influence the duration of the signing, verifying
or combining operations. They only change the manner of key generation.

Finally, we consider our main research question, How can we assess pairing-based, linearly
homomorphic signature schemes to be used in practice, based on their performance, and
the size of their signatures and keys? Based on the answers to our sub-research questions,
we can say that we can assess the performance of a homomorphic signature scheme by the
speed of their signing, verifying and combining operations, and the additional features they
possess. The result of 𝑅𝑄1 has highlighted that the number of point additions and exponentia-
tions greatly influences the performance of the signing operation. This was made very clear by
signature scheme Li20, which outperforms other schemes because it substitutes operations on
points with operations on the field. We conclude that based on implementation performance,
and the sizes of signatures and keys, Li20 is the overall best performing linearly homomorphic
signature scheme for a single key setting.

What further influences the performance of a homomorphic signature scheme is multi-key
support. We have observed that the verification procedure takes longer than the verification
of single-key schemes. A tradeoff between verifying performance and the option to combine
signatures from multiple clients must be made. This is the case for context hiding signature
schemes as well. This privacy-preserving feature comes at a performance cost regarding
signing and especially verifying. Finally, we conclude that identity-based key generation and
network coding support do not impact the performance of a signature scheme, as the fastest
scheme support both of these additional features.

In this thesis, our goal was to find out how we can assess the performance of a linearly homo-
morphic signature scheme. The motivation for this research was to aid in the decision-making
process of selecting one of many available signature schemes. By implementing and open-
sourcing eleven signature schemes, evaluating their performance, and discussing tradeoffs
between different schemes, we can say that we have provided the means to make a decision
based on the real-world performance of these signature schemes.

8.2. Future work
Future work in the field of studying homomorphic signature performance is to investigate more
different signature schemes. For linearly homomorphic signature schemes, this regards con-
structions based on symmetric pairings, as well as constructions based on the RSA assump-
tion. Furthermore, a comparison of signature schemeswhich support polynomial functions and
fully homomorphic schemes would be very interesting. By studying implementations which of-
fer the same security level, a clear tradeoff between performance and possible functionality
offered by a signature scheme could be made.

Another suggestion for future works could be to look into the construction of a modular linearly
homomorphic signature scheme. We have seen that while there are a lot of different signature
schemes based on type II pairings, the basis of these schemes is still very similar. A modular
homomorphic signature scheme could be useful to create a signature scheme which is tailored
to specific needs. The modular parts of such a signature scheme would involve key generation
(using a PKI or ID-based), multi-key support, designating entities and context hiding. While
the separate papers on these topics were discussed in the thesis, based on them this modular
system can be designed.

8.3. Limitations 53

8.3. Limitations
Measuring the duration of the operations was done in such a way that the operation was
repeated a number of times, after which the total duration was divided by this number to get
an average measurement. If instead, the duration of individual operations was measured,
we could have analysed the standard deviation of each scheme, which would have given us
more insight into the consistency of the operations. This oversight was realized too late into the
work, and no more time was available to run new experiments. In future work, measurements
of single operations should be made instead.

Furthermore, our testing was limited to file lengths and packet lengths of up to 128. The steps
in which these measurements are taken make it so that more measurements of lower lengths
are taken, while measurements of bigger lengths might be more interesting to analyse. If we
could run the experiments again, we would increase the measurement steps in steps of 20
or 40, and up to larger file and packet lengths. We noticed however that the experiments as
they are currently designed already take very long to complete. Increasing the experiment
size thus requires a lot of computation time.

Our measurements were run on a personal laptop, which was not dedicated to only running
the experiments. This might have impacted our measurements, causing ’lag spikes’ when
background tasks occurred. This could explain the spikes we have seen in the graphs in
chapter 6. A dedicated testing environment would solve this issue.

In this work, we have not considered the type of adversary against which a signature scheme
is proven secure. There can be made a distinction between the capabilities of an active adver-
sary, and those of a passive adversary. Signature schemes which are proven secure against
an active adversary provide more security than those that are only secure against a passive
adversary. Since we keep our analysis to only involve computational performance, we have
not discussed the role of adversaries. This could however be of value for someone making
decisions on which signature scheme to use.

Bibliography

[1] Shweta Agrawal et al. “Preventing Pollution Attacks in Multi-source Network Coding”. In:
Public Key Cryptography – PKC 2010. Ed. by Phong Q. Nguyen and David Pointcheval.
Lecture Notes in Computer Science. Berlin, Heidelberg: Springer, 2010, pp. 161–176.
isbn: 978-3-642-13013-7. doi: 10.1007/978-3-642-13013-7_10.

[2] R. Ahlswede et al. “Network information flow”. In: IEEE Transactions on Information
Theory 46.4 (July 2000). Conference Name: IEEE Transactions on Information Theory,
pp. 1204–1216. issn: 1557-9654. doi: 10.1109/18.850663.

[3] Announcing Approval of Federal Information Processing Standard (FIPS) 180-2, Secure
Hash Standard; a Revision of FIPS 180-1. Aug. 2002. url: https://www.federalregister.
gov / documents / 2002 / 08 / 26 / 02 - 21599 / announcing - approval - of -
federal-information-processing-standard-fips-180-2-secure-hash-
standard-a (visited on 06/15/2022).

[4] Diego F. Aranha and Elena Pagnin. “The Simplest Multi-key Linearly Homomorphic Sig-
nature Scheme”. In:Progress in Cryptology – LATINCRYPT 2019. Ed. by Peter Schwabe
and Nicolas Thériault. Vol. 11774. Series Title: Lecture Notes in Computer Science.
Cham: Springer International Publishing, 2019, pp. 280–300. isbn: 978-3-030-30529-1
978-3-030-30530-7. doi: 10.1007/978-3-030-30530-7_14. url: http://link.
springer.com/10.1007/978-3-030-30530-7_14 (visited on 09/16/2021).

[5] Nuttapong Attrapadung and Benoît Libert. “Homomorphic Network Coding Signatures
in the Standard Model”. In: Public Key Cryptography – PKC 2011. Ed. by Dario Catalano
et al. Lecture Notes in Computer Science. Berlin, Heidelberg: Springer, 2011, pp. 17–34.
isbn: 978-3-642-19379-8. doi: 10.1007/978-3-642-19379-8_2.

[6] Nuttapong Attrapadung, Benoît Libert, and Thomas Peters. “Efficient Completely Context-
Hiding Quotable and Linearly Homomorphic Signatures”. In: Public-Key Cryptography –
PKC 2013. Ed. by Kaoru Kurosawa and Goichiro Hanaoka. Lecture Notes in Computer
Science. Berlin, Heidelberg: Springer, 2013, pp. 386–404. isbn: 978-3-642-36362-7. doi:
10.1007/978-3-642-36362-7_24.

[7] Elaine Barker. Recommendation for Key Management Part 1: General. NIST SP 800-
57pt1r4. National Institute of Standards and Technology, Jan. 2016, NIST SP 800–
57pt1r4. doi: 10.6028/NIST.SP.800-57pt1r4. url: https://nvlpubs.nist.
gov/nistpubs/SpecialPublications/NIST.SP.800-57pt1r4.pdf (visited
on 06/11/2022).

[8] Paulo S. L. M. Barreto, Ben Lynn, and Michael Scott. “Constructing Elliptic Curves
with Prescribed Embedding Degrees”. In: Security in Communication Networks. Ed. by
Stelvio Cimato, Giuseppe Persiano, and Clemente Galdi. Lecture Notes in Computer
Science. Berlin, Heidelberg: Springer, 2003, pp. 257–267. isbn: 978-3-540-36413-9. doi:
10.1007/3-540-36413-7_19.

[9] Paulo S. L. M. Barreto and Michael Naehrig. “Pairing-Friendly Elliptic Curves of Prime
Order”. en. In:Selected Areas in Cryptography. Ed. by Bart Preneel and Stafford Tavares.
Lecture Notes in Computer Science. Berlin, Heidelberg: Springer, 2006, pp. 319–331.
isbn: 978-3-540-33109-4. doi: 10.1007/11693383_22.

55

https://doi.org/10.1007/978-3-642-13013-7_10
https://doi.org/10.1109/18.850663
https://www.federalregister.gov/documents/2002/08/26/02-21599/announcing-approval-of-federal-information-processing-standard-fips-180-2-secure-hash-standard-a
https://www.federalregister.gov/documents/2002/08/26/02-21599/announcing-approval-of-federal-information-processing-standard-fips-180-2-secure-hash-standard-a
https://www.federalregister.gov/documents/2002/08/26/02-21599/announcing-approval-of-federal-information-processing-standard-fips-180-2-secure-hash-standard-a
https://www.federalregister.gov/documents/2002/08/26/02-21599/announcing-approval-of-federal-information-processing-standard-fips-180-2-secure-hash-standard-a
https://doi.org/10.1007/978-3-030-30530-7_14
http://link.springer.com/10.1007/978-3-030-30530-7_14
http://link.springer.com/10.1007/978-3-030-30530-7_14
https://doi.org/10.1007/978-3-642-19379-8_2
https://doi.org/10.1007/978-3-642-36362-7_24
https://doi.org/10.6028/NIST.SP.800-57pt1r4
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57pt1r4.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57pt1r4.pdf
https://doi.org/10.1007/3-540-36413-7_19
https://doi.org/10.1007/11693383_22

56 Bibliography

[10] Dan Boneh andDavidMandell Freeman. “Homomorphic Signatures for Polynomial Func-
tions”. In: Advances in Cryptology – EUROCRYPT 2011. Ed. by Kenneth G. Paterson.
Lecture Notes in Computer Science. Berlin, Heidelberg: Springer, 2011, pp. 149–168.
isbn: 978-3-642-20465-4. doi: 10.1007/978-3-642-20465-4_10.

[11] Dan Boneh et al. “Signing a Linear Subspace: Signature Schemes for Network Coding”.
In: Public Key Cryptography – PKC 2009. Ed. by Stanisław Jarecki and Gene Tsudik.
Lecture Notes in Computer Science. Berlin, Heidelberg: Springer, 2009, pp. 68–87. isbn:
978-3-642-00468-1. doi: 10.1007/978-3-642-00468-1_5.

[12] Dario Catalano, Dario Fiore, and Luca Nizzardo. “On the Security Notions for Homomor-
phic Signatures”. In: Applied Cryptography and Network Security. Ed. by Bart Preneel
and Frederik Vercauteren. Lecture Notes in Computer Science. Cham: Springer Inter-
national Publishing, 2018, pp. 183–201. isbn: 978-3-319-93387-0. doi: 10.1007/978-
3-319-93387-0_10.

[13] Dario Catalano, Dario Fiore, and Bogdan Warinschi. “Efficient Network Coding Signa-
tures in the Standard Model”. In: Public Key Cryptography – PKC 2012. Ed. by Marc
Fischlin, Johannes Buchmann, and Mark Manulis. Lecture Notes in Computer Science.
Berlin, Heidelberg: Springer, 2012, pp. 680–696. isbn: 978-3-642-30057-8. doi: 10.
1007/978-3-642-30057-8_40.

[14] Dario Catalano, Dario Fiore, and Bogdan Warinschi. “Homomorphic Signatures with Ef-
ficient Verification for Polynomial Functions”. In: Advances in Cryptology – CRYPTO
2014. Ed. by Juan A. Garay and Rosario Gennaro. Lecture Notes in Computer Sci-
ence. Berlin, Heidelberg: Springer, 2014, pp. 371–389. isbn: 978-3-662-44371-2. doi:
10.1007/978-3-662-44371-2_21.

[15] Denis Charles, Kamal Jain, and Kristin Lauter. “Signatures for Network Coding”. In:
2006 40th Annual Conference on Information Sciences and Systems. 2006 40th An-
nual Conference on Information Sciences and Systems. Mar. 2006, pp. 857–863. doi:
10.1109/CISS.2006.286587.

[16] Yvo Desmedt. “Computer security by redefining what a computer is”. In: Proceedings
on the 1992-1993 workshop on New security paradigms - NSPW ’92-93. Proceedings
on the 1992-1993 workshop. Little Compton, Rhode Island, United States: ACM Press,
1993, pp. 160–166. isbn: 978-0-8186-5430-5. doi: 10.1145/283751.283834. url:
http://portal.acm.org/citation.cfm?doid=283751.283834 (visited on
05/13/2022).

[17] W. Diffie and M. Hellman. “New directions in cryptography”. In: IEEE Transactions on
Information Theory 22.6 (Nov. 1976). Conference Name: IEEE Transactions on Infor-
mation Theory, pp. 644–654. issn: 1557-9654. doi: 10.1109/TIT.1976.1055638.

[18] Naina Emmanuel et al. “Structures and data preserving homomorphic signatures”. In:
Journal of Network andComputer Applications 102 (Jan. 2018), pp. 58–70. issn: 10848045.
doi: 10.1016/j.jnca.2017.11.005. url: https://linkinghub.elsevier.
com/retrieve/pii/S1084804517303739 (visited on 07/22/2021).

[19] Dario Fiore et al. “Multi-Key Homomorphic Authenticators”. In: (2018), p. 41.
[20] David Mandell Freeman. “Improved Security for Linearly Homomorphic Signatures: A

Generic Framework”. In: Public Key Cryptography – PKC 2012. Ed. by Marc Fischlin,
Johannes Buchmann, and Mark Manulis. Lecture Notes in Computer Science. Berlin,
Heidelberg: Springer, 2012, pp. 697–714. isbn: 978-3-642-30057-8. doi: 10.1007/
978-3-642-30057-8_41.

https://doi.org/10.1007/978-3-642-20465-4_10
https://doi.org/10.1007/978-3-642-00468-1_5
https://doi.org/10.1007/978-3-319-93387-0_10
https://doi.org/10.1007/978-3-319-93387-0_10
https://doi.org/10.1007/978-3-642-30057-8_40
https://doi.org/10.1007/978-3-642-30057-8_40
https://doi.org/10.1007/978-3-662-44371-2_21
https://doi.org/10.1109/CISS.2006.286587
https://doi.org/10.1145/283751.283834
http://portal.acm.org/citation.cfm?doid=283751.283834
https://doi.org/10.1109/TIT.1976.1055638
https://doi.org/10.1016/j.jnca.2017.11.005
https://linkinghub.elsevier.com/retrieve/pii/S1084804517303739
https://linkinghub.elsevier.com/retrieve/pii/S1084804517303739
https://doi.org/10.1007/978-3-642-30057-8_41
https://doi.org/10.1007/978-3-642-30057-8_41

Bibliography 57

[21] Gerhard Frey and Hans-Georg Ruck. “A Remark Concerning m-Divisibility and the Dis-
crete Logarithm in the Divisor Class Group of Curves”. en. In:Mathematics of Computa-
tion 62.206 (Apr. 1994), p. 865. issn: 00255718. doi: 10.2307/2153546. url: https:
//www.jstor.org/stable/2153546?origin=crossref (visited on 06/15/2022).

[22] Rosario Gennaro and Daniel Wichs. “Fully Homomorphic Message Authenticators”. In:
Advances in Cryptology - ASIACRYPT 2013. Ed. by Kazue Sako and Palash Sarkar.
Red. by David Hutchison et al. Vol. 8270. Series Title: Lecture Notes in Computer Sci-
ence. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 301–320. isbn: 978-3-
642-42044-3 978-3-642-42045-0. doi: 10.1007/978- 3- 642- 42045- 0_16. url:
http://link.springer.com/10.1007/978-3-642-42045-0_16 (visited on
09/22/2021).

[23] Rosario Gennaro et al. “Secure Network Coding over the Integers”. In: Public Key Cryp-
tography – PKC 2010. Ed. by Phong Q. Nguyen and David Pointcheval. Lecture Notes
in Computer Science. Berlin, Heidelberg: Springer, 2010, pp. 142–160. isbn: 978-3-642-
13013-7. doi: 10.1007/978-3-642-13013-7_9.

[24] Craig Gentry. “Fully homomorphic encryption using ideal lattices”. In: Proceedings of the
forty-first annual ACM symposium on Theory of computing. STOC ’09. New York, NY,
USA: Association for Computing Machinery, May 31, 2009, pp. 169–178. isbn: 978-1-
60558-506-2. doi: 10.1145/1536414.1536440. url: http://doi.org/10.1145/
1536414.1536440 (visited on 06/13/2022).

[25] Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. “A Digital Signature Scheme Se-
cure Against Adaptive Chosen-Message Attacks”. English. In: SIAM Journal on Com-
puting 17.2 (Apr. 1988). Num Pages: 28 Place: Philadelphia, United States Publisher:
Society for Industrial and Applied Mathematics, p. 28. issn: 00975397. doi: https:
//doi-org.tudelft.idm.oclc.org/10.1137/0217017. url: http://www.
proquest.com/docview/919828126/abstract/A715F386E2B940FAPQ/1 (vis-
ited on 06/14/2022).

[26] Ryo Hiromasa, Yoshifumi Manabe, and Tatsuaki Okamoto. “Homomorphic Signatures
for Polynomial Functions with Shorter Signatures”. In: (2013), p. 8.

[27] Markus Jakobsson, Kazue Sako, and Russell Impagliazzo. “Designated Verifier Proofs
and Their Applications”. en. In: Advances in Cryptology — EUROCRYPT ’96. Ed. by
Ueli Maurer. Lecture Notes in Computer Science. Berlin, Heidelberg: Springer, 1996,
pp. 143–154. isbn: 978-3-540-68339-1. doi: 10.1007/3-540-68339-9_13.

[28] Don Johnson, Alfred Menezes, and Scott Vanstone. “The Elliptic Curve Digital Signa-
ture Algorithm (ECDSA)”. en. In: International Journal of Information Security 1.1 (Aug.
2001), pp. 36–63. issn: 1615-5262. doi: 10.1007/s102070100002. url: https://
doi.org/10.1007/s102070100002 (visited on 06/15/2022).

[29] Robert Johnson et al. “Homomorphic Signature Schemes”. In: Topics in Cryptology —
CT-RSA 2002. Ed. by Bart Preneel. Lecture Notes in Computer Science. Berlin, Heidel-
berg: Springer, 2002, pp. 244–262. isbn: 978-3-540-45760-2. doi: 10.1007/3-540-
45760-7_17.

[30] Chris Karlof et al. “Distillation Codes and Applications to DoS Resistant Multicast Au-
thentication”. en. In: (), p. 20.

[31] Jonathan Katz and Brent Waters. “Compact Signatures for Network Coding”. In: (2008),
p. 14.

https://doi.org/10.2307/2153546
https://www.jstor.org/stable/2153546?origin=crossref
https://www.jstor.org/stable/2153546?origin=crossref
https://doi.org/10.1007/978-3-642-42045-0_16
http://link.springer.com/10.1007/978-3-642-42045-0_16
https://doi.org/10.1007/978-3-642-13013-7_9
https://doi.org/10.1145/1536414.1536440
http://doi.org/10.1145/1536414.1536440
http://doi.org/10.1145/1536414.1536440
https://doi.org/https://doi-org.tudelft.idm.oclc.org/10.1137/0217017
https://doi.org/https://doi-org.tudelft.idm.oclc.org/10.1137/0217017
http://www.proquest.com/docview/919828126/abstract/A715F386E2B940FAPQ/1
http://www.proquest.com/docview/919828126/abstract/A715F386E2B940FAPQ/1
https://doi.org/10.1007/3-540-68339-9_13
https://doi.org/10.1007/s102070100002
https://doi.org/10.1007/s102070100002
https://doi.org/10.1007/s102070100002
https://doi.org/10.1007/3-540-45760-7_17
https://doi.org/10.1007/3-540-45760-7_17

58 Bibliography

[32] S.-Y.R. Li, R.W. Yeung, and Ning Cai. “Linear network coding”. In: IEEE Transactions
on Information Theory 49.2 (Feb. 2003). Conference Name: IEEE Transactions on In-
formation Theory, pp. 371–381. issn: 1557-9654. doi: 10.1109/TIT.2002.807285.

[33] Tong Li et al. “A Homomorphic Network Coding Signature Scheme for Multiple Sources
and its Application in IoT”. In: Security and Communication Networks 2018 (June 14,
2018), pp. 1–6. issn: 1939-0114, 1939-0122. doi: 10 . 1155 / 2018 / 9641273. url:
https : / / www . hindawi . com / journals / scn / 2018 / 9641273/ (visited on
11/11/2021).

[34] Yumei Li, Futai Zhang, and Xin Liu. “Secure Data Delivery with Identity-based Linearly
Homomorphic Network Coding Signature Scheme in IoT”. In: IEEE Transactions on Ser-
vices Computing (2020). Conference Name: IEEE Transactions on Services Computing,
pp. 1–1. issn: 1939-1374. doi: 10.1109/TSC.2020.3039976.

[35] Benoît Libert et al. “Linearly homomorphic structure-preserving signatures and their ap-
plications”. In: Designs, Codes and Cryptography 77.2 (Dec. 1, 2015), pp. 441–477.
issn: 1573-7586. doi: 10.1007/s10623-015-0079-1. url: https://doi.org/10.
1007/s10623-015-0079-1 (visited on 02/14/2022).

[36] Cheng-Jun Lin et al. “Linearly Homomorphic Signatures with Designated Entities”. In:
Information Security Practice and Experience. Ed. by Joseph K. Liu and Pierangela
Samarati. Lecture Notes in Computer Science. Cham: Springer International Publishing,
2017, pp. 375–390. isbn: 978-3-319-72359-4. doi: 10.1007/978-3-319-72359-
4_22.

[37] Chengjun Lin, Rui Xue, and Xinyi Huang. “Linearly Homomorphic Signatures with Designated
Combiner”. In: Provable and Practical Security. Ed. by Qiong Huang and Yu Yu. Lecture
Notes in Computer Science. Cham: Springer International Publishing, 2021, pp. 327–
345. isbn: 978-3-030-90402-9. doi: 10.1007/978-3-030-90402-9_18.

[38] Victor S. Miller. “The Weil Pairing, and Its Efficient Calculation”. en. In: Journal of Cryp-
tology 17.4 (Sept. 2004), pp. 235–261. issn: 0933-2790, 1432-1378. doi: 10.1007/
s00145-004-0315-8. url: http://link.springer.com/10.1007/s00145-
004-0315-8 (visited on 06/15/2022).

[39] Wouter Penard and Tim van Werkhoven. “On the Secure Hash Algorithm family”. en. In:
(), p. 17.

[40] Yumi Sakemi et al. Pairing-Friendly Curves. Internet Draft draft-irtf-cfrg-pairing-friendly-
curves-08. NumPages: 54. Internet Engineering Task Force. url: https://datatracker.
ietf.org/doc/draft-irtf-cfrg-pairing-friendly-curves-08 (visited on
06/15/2022).

[41] Lucas Schabhüser, Johannes Buchmann, and Patrick Struck. “A Linearly Homomorphic
Signature Scheme from Weaker Assumptions”. In: Cryptography and Coding. Ed. by
Máire O’Neill. Lecture Notes in Computer Science. Cham: Springer International Pub-
lishing, 2017, pp. 261–279. isbn: 978-3-319-71045-7. doi: 10.1007/978-3-319-
71045-7_14.

[42] Lucas Schabhüser, Denis Butin, and Johannes Buchmann. Context Hiding Multi-Key
Linearly Homomorphic Authenticators. 629. 2018. url: https://eprint.iacr.org/
2018/629 (visited on 02/15/2022).

https://doi.org/10.1109/TIT.2002.807285
https://doi.org/10.1155/2018/9641273
https://www.hindawi.com/journals/scn/2018/9641273/
https://doi.org/10.1109/TSC.2020.3039976
https://doi.org/10.1007/s10623-015-0079-1
https://doi.org/10.1007/s10623-015-0079-1
https://doi.org/10.1007/s10623-015-0079-1
https://doi.org/10.1007/978-3-319-72359-4_22
https://doi.org/10.1007/978-3-319-72359-4_22
https://doi.org/10.1007/978-3-030-90402-9_18
https://doi.org/10.1007/s00145-004-0315-8
https://doi.org/10.1007/s00145-004-0315-8
http://link.springer.com/10.1007/s00145-004-0315-8
http://link.springer.com/10.1007/s00145-004-0315-8
https://datatracker.ietf.org/doc/draft-irtf-cfrg-pairing-friendly-curves-08
https://datatracker.ietf.org/doc/draft-irtf-cfrg-pairing-friendly-curves-08
https://doi.org/10.1007/978-3-319-71045-7_14
https://doi.org/10.1007/978-3-319-71045-7_14
https://eprint.iacr.org/2018/629
https://eprint.iacr.org/2018/629

Bibliography 59

[43] Lucas Schabhüser, Denis Butin, and Johannes Buchmann. “Context Hiding Multi-key
Linearly Homomorphic Authenticators”. In: Topics in Cryptology – CT-RSA 2019. Ed. by
Mitsuru Matsui. Vol. 11405. Series Title: Lecture Notes in Computer Science. Cham:
Springer International Publishing, 2019, pp. 493–513. isbn: 978-3-030-12611-7 978-3-
030-12612-4. doi: 10.1007/978- 3- 030- 12612- 4_25. url: http://link.
springer.com/10.1007/978-3-030-12612-4_25 (visited on 09/22/2021).

[44] Adi Shamir. “Identity-Based Cryptosystems and Signature Schemes”. en. In: Advances
in Cryptology. Ed. by George Robert Blakley and David Chaum. Lecture Notes in Com-
puter Science. Berlin, Heidelberg: Springer, 1985, pp. 47–53. isbn: 978-3-540-39568-3.
doi: 10.1007/3-540-39568-7_5.

[45] Giulia Traverso, Denise Demirel, and Johannes Buchmann. Homomorphic Signature
Schemes. SpringerBriefs in Computer Science. Cham: Springer International Publish-
ing, 2016. isbn: 978-3-319-32114-1 978-3-319-32115-8. doi: 10.1007/978-3-319-
32115-8. url: http://link.springer.com/10.1007/978-3-319-32115-8
(visited on 05/31/2021).

[46] Frederik Vercauteren. “Optimal Pairings”. In: IEEE Transactions on Information Theory
56.1 (Jan. 2010). Conference Name: IEEE Transactions on Information Theory, pp. 455–
461. issn: 1557-9654. doi: 10.1109/TIT.2009.2034881.

[47] Yudi Zhang et al. “An Efficient Identity-Based Homomorphic Signature Scheme for Net-
work Coding”. In:Advances in Internetworking, Data &Web Technologies. Ed. by Leonard
Barolli, Mingwu Zhang, and Xu An Wang. Lecture Notes on Data Engineering and Com-
munications Technologies. Cham: Springer International Publishing, 2018, pp. 524–531.
isbn: 978-3-319-59463-7. doi: 10.1007/978-3-319-59463-7_52.

[48] Fang Zhao et al. “Signatures for Content Distribution with Network Coding”. In: 2007
IEEE International Symposium on Information Theory. 2007 IEEE International Sympo-
sium on Information Theory. ISSN: 2157-8117. June 2007, pp. 556–560. doi: 10.1109/
ISIT.2007.4557283.

https://doi.org/10.1007/978-3-030-12612-4_25
http://link.springer.com/10.1007/978-3-030-12612-4_25
http://link.springer.com/10.1007/978-3-030-12612-4_25
https://doi.org/10.1007/3-540-39568-7_5
https://doi.org/10.1007/978-3-319-32115-8
https://doi.org/10.1007/978-3-319-32115-8
http://link.springer.com/10.1007/978-3-319-32115-8
https://doi.org/10.1109/TIT.2009.2034881
https://doi.org/10.1007/978-3-319-59463-7_52
https://doi.org/10.1109/ISIT.2007.4557283
https://doi.org/10.1109/ISIT.2007.4557283

	Introduction
	Digital Signatures
	Homomorphic Signatures
	Research Questions
	Contributions
	Overview of document

	Preliminaries
	Cryptosystems
	Symmetric Cryptography
	Asymmetric Cryptography

	Digital Signatures
	Number theory
	Groups
	Fields
	Order
	Finite Fields

	Security Assumption
	Discrete Logarithm (DL)
	Computational Diffie-Hellman (CDH)
	Computational Bilinear Diffie-Hellman (CBDH)
	Decisional Bilinear Diffie-Hellman (DBDH)
	co-Computational Diffie-Hellman
	co-Bilinear Diffie-Hellman
	q-Strong Diffie-Hellman
	Gap Bilinear Diffie-Hellman
	Flexible Diffie-Hellman Inversion

	Elliptic Curves
	Operations on EC

	Pairing
	Pairing friendly curves
	BLS 12 381

	Hashing
	Cryptographic hash functions

	Pseudo-Random Functions
	Network Coding

	Related Works
	Digital Signatures
	Homomorphic signature schemes
	Linearly homomorphic signature schemes
	Asymmetric-pairing based

	Polynomial
	Fully homomorphic
	Surveys
	Homomorphic signatures in general

	Homomorphic Signature Schemes
	Homomorphic Signatures
	Formal Definition
	Correctness
	Forgeries

	Construction of a pairing-based LHSS
	Verifying
	Combining

	Variants of Homomorphic Signature Schemes
	Network Coding (NC)
	Identity-Based (ID)
	Multi-Key (MK)
	Context Hiding (CH)
	Designated Entities (DE)

	Implementation details
	Implementation
	Network Coding optimization

	Testing method
	Definition of performance
	Overview of implemented schemes
	Bon09
	Cat12
	Lin17
	Sch17
	Li18
	Zha18
	Sch18
	Ara19
	Sch19
	Li20
	Lin21

	Sizes and characteristics

	Results
	Overall
	Signing
	Verifying
	Combining
	Summary

	Performance per scenario
	Network coding
	Multi-key
	Context hiding
	Identity-based key generation
	Designated Entities

	Overhead of additional features
	Network coding
	Multi-key
	Context hiding
	Identity-based key generation
	Designated Entities

	Application Analysis
	Network coding
	Smart Grid
	Privacy-Preserving

	Discussion
	Conclusion
	Future work
	Limitations

