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Summary 
 
Accurate representation of processes associated with energy extraction from subsurface formations often 
requires models which account for chemical interactions between different species in the presence of multiphase 
flow. In this study, we focus on modeling of acid stimulation in the near-well region. For the chemical processes 
which include a dissolution of rock material, an issue arises with the predictive representation of flow. Taking 
into account the spatial scale of discretization, some of simulation control volumes can have values of porosity 
close to 1, which makes an application of Darcy's law inconsistent and requires employing a true momentum 
equation such as the Darcy-Brinkman-Stokes (DBS) equation. The DBS equation automatically switches the 
description between Darcy equation in control volumes with low porosity and Stokes equation in grid blocks 
with high porosity. For chemical reactions, we propose a local nonlinear solution technique that allows solving 
the balance of solid species separately yet retaining the full coupling with rest of the equations. Finally, we 
study the impact of multiphase flow. The DBS approach is not well established for multiphase flow description. 
Therefore we employ a hybrid approach, where we assume that the single-phase DBS flow and the multiphase 
Darcy flow occur in separate regions. We test the accuracy and performance of both approaches on realistic 
models of practical interest. 
 
 



Introduction

The near-well region is the most well known area of subsurface reservoir. The detailed description
of near-well area helps to model various processes there and predict well productivity. These studies
provide a better insight for well performance optimization and more accurate reservoir scale well ap-
proximation. The local changes in near-well characteristic caused by formation damage or stimulation
(using either hydraulic fracturing or acidizing) have strong effect on well performance (Kalfayan, 2008).
When the acid is injected above fracturing pressure in acidizing process, it is called fracture acidizing.
The acid propagates across the fracture at elevated pressure which force farther development of fracture
and subsequently deeper acid penetration into the reservoir. Alternative strategy is to inject the acid be-
low the fracturing pressure where the acid forms wormholes and helps to overcome near-well damage.
This strategy is the focus of our study.

Acidizing is one of the most employed stimulation techniques used in petroleum engineering. In 1994,
79% of the stimulation jobs in the petroleum industry were comprised only of acid stimulation (Ear-
lougher Jr, 1977). Later, hydralic fracturing embraced a big portion of well stimulation activity. Still,
the acidizing keeps an important portion of the stimulation jobs in the petroleum and geothermal fields.
Accurate modeling of acidizing can help in a better prediction of risks and suggests an optimal opera-
tional regimes.

The governing models includes multiphase multicomponent reactive flow and transport. These models
are quite sensitive to the spacial and temporal scales of representation (Golfier et al., 2002). For example,
in practical simulation of acidizing process, the rock material in some of control volumes can be fully
dissolved, which makes the assumption of Darcy’s flow inaccurate and requires free flow or Stokes’
assumptions. This problem can be resolved withing the application of the unified Darcy-Brinkman-
Stokes (DBS) equation (Brinkman, 1949).

In this approach, the velocity description is switching between Darcy’s assumptions in subsurface re-
gions with natural porosity and Stokes assumptions in regions with high porosity. The large hetero-
geneities of porosity are directly accounted in the DBS formalism. Recently, the sequentially coupled
reactive flow and transport based on DBS framework was proposed for pore-scale modeling (Soulaine
and Tchelepi, 2016; Soulaine et al., 2017). Later, the DBS model was employed and tested for flow at
the continuous scale (Shaik, 2017; Shaik et al., 2018).

In this work, we provide a detailed description of numerical framework based on DBS and present a
comparison between Darcy and DBS models based on numerical implementation in the new version of
Automatic Differentiation General Purpose Research Simulator (AD-GPRS) (AD-GPRS, 2018; Voskov
et al., 2017; Rin et al., 2017; Rin, 2017; Garipov et al., 2018). In the first section, we will briefly describe
governing equations for the proposed framework. In the second section, chemical model including
constitutive relations for porosity, permeability and major dimensionless numbers used in analysis will
be described. Third section will describe numerical methods used in the framework.

Finally, in fourth section, numerical results are present. Since the process is unstable, a point-by-point
analysis of dissolution patterns is meaningless as demonstrated in experimental (Ferrari et al., 2015;
Ling et al., 2017) and simulation (Tomin and Lunati, 2013, 2015, 2016a,b) studies for unstable vis-
cous fingering in immiscible two-phase displacement. Similar observations was done in the context of
density-driven instabilities (Künze et al., 2014; Elenius et al., 2015). In the last study, the perturbation
was scaled down with the simulation resolution which helps to obtain a converged convective dissolution
rate for unstable flow in gravity currents. Following these ideas, we analyze average characteristics for
acidizing process such as wormhole breakthrough time or average porosity profiles.
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Governing Equations

In this section, we introduce main governing equations used in the model.

Conservation of Species

Mass conservation equation for ith fluid component is given by

∂

∂ t
(φρT zi)+∇ ·

np

∑
j=1

(ρ jxi j~v j−ρ jS jφDi j∇xi j) =
nr

∑
k

νikrk, (1)

where:

φ – porosity,

ρT – total density of fluids,

zi – mole fraction of ith component,

ρ j – molar density of jth fluid phase,

xi j – molar fraction of fluid component i in phase j,

~v j – velocity of fluid phase,

S j – saturation of fluid phase,

Di j – diffusion coefficient,

νik – stoichiometric coefficient for component i in reaction k,

rk – reaction rate,

np – number of phases,

nr – number of reactions.

The solid species are dissolved into the fluid phase and the solid concentration decay can be accounted
as

∂Cs

∂ t
=

nr

∑
k

νskrk, (2)

where Cs is the solid concentration over the control volume (Fan et al., 2010, 2012; Farshidi et al.,
2013). Notice that the fluid molar fractions are defined over the net fluid (i.e. pore) volume and the solid
concentration is defined over the entire control volume which includes fluids and solids.

Momentum Conservation

As it was described in the introduction, we assume that the flow is purely single phase in the region with
strong porosity changes. Then for fluid velocity, v j, we have

−∇p+
µ j

φ
∆~v j−

µ j

K
~v j = 0, (3)

i.e. Darcy-Brinkman-Stokes momentum balance equation (see, e.g. Soulaine and Tchelepi, 2016). Here
∆~v j is the Laplacian of velocity, µ j the viscosity, K the absolute permeability. The second term in the
equation describes fluid-fluid viscous forces, where viscosity is an effective viscosity given by µ ′= µ/φ .
Although there is no clear consensus on the application of effective viscosity (Nield and Bejan, 2006),
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numerical simulations by Ochoa-Tapia and Whitaker (1998) confirm that the effective viscosity is indeed
increased by a multiplier of 1/φ (see also Goyeau et al., 2003; Bousquet-Melou et al., 2002; Hsu and
Cheng, 1990; Vafai and Tien, 1981; Soulaine and Tchelepi, 2016; Soulaine et al., 2016, 2017, for details).

In the multiphase region, we employ classical Darcy’s law

~v j =−
Kkr j (S j)

µ j
∇p =−Kλ j∇p j, (4)

where kr j is the relative phase permeability (function of phase saturation) and λ j is the phase mobility.
Due to the higher mobility of gas, we assume that the multiphase flow only occurs at low porosity and
can be neglected in the regions with high porosity. For simplicity, buoyancy effects are neglected here.

Closure Constraints

Several additional constraints including the assumption on instantaneous thermodynamic equilibrium
for multiphase systems are applied to provide the closure of mathematical formulation.

• Instantaneous thermodynamical equilibrium for all components in all existing phases

fi1− fi j = 0, j = 2, . . . ,np, i = 1, . . . ,nc, (5)

where fi j is the fugacity of component i in phase j (function of pressure and composition), nc is
the number of components. Equation (5) is highly nonlinear and should be solved simultaneously
with the system of governing equations (1).

• Composition and saturation constraints

∑
i

xi j = 1, j = 1, . . . ,np, (6)

∑
j

S j = 1. (7)

Chemical Reactions

For simplicity, we limit consideration to a single chemical reaction, which is assumed to be a simple
first-order kinetic reaction consistent with dissolution of rock by acid:

Acid + Solid→ Product,

where the reaction rate is given by
r = αCszacid . (8)

Here α is the reaction rate constant and zacid is the acid concentration.

Constitutive Relations for Porosity and Permeability

The distinctive feature of reactive transport is that the porosity and permeability fields must be updated
as the acid dissolves the solid matrix. This porosity increase has a direct relationship with the remaining
amount of solid concentration left, which is given by

φre f = φ
init
re f +(vinit

s − vs), (9)

where vs =Csvm
s is the volumetric fraction of solid concentration in the control volume and vinit

s =Cinit
s vm

s
is the initial volumetric fraction of the solid (vm

s is the molar volume). The difference between vs and

ECMOR XVI 2018 – 16th European Conference on the Mathematics of Oil Recovery
3–6 September 2018, Barcelona, Spain



vinit
s address the amount of solid volumetric fraction dissolved, i.e. the amount of porosity increase in

the control volume.

The updated values of φre f are used to compute the porosity field due to the pressure change

φ = φre f [1− cr(p− pre f )] , (10)

where cr is the rock compressibility, p the pressure, pref the reference pressure.

Since porosity and permeability are strongly related, the permeability field should be corrected after
the dissolution of solid rock. In this study, we employ a Kozeny-Carman relationship (Kozeny, 1927;
Carman, 1937):

K = Kinit (
φre f /φ

init
re f

)3 [
(1−φ

init
re f )/(1−φre f )

]2
, (11)

where K and Kinit are the current and initial permeabilities, respectively.

Dimensionless Numbers

The considered physical phenomenon can be characterized by the two dimensionless numbers – Peclet (Pe)
and Damkohler (Da) numbers. These numbers can be used to compare different wormhole models and
to determine optimal operation regime.

The Damkohler number is defined as the ratio of reaction rate to advection rate and is given by

Da =
lα
Vo

,

where l and Vo is the characteristic length scale and velocity, respectively. The Peclet number character-
izes the ratio of mass transport due to convection and due to diffusion, i.e.

Pe =
lVo

D
.

Numerical Methods

The proposed model is implemented in Automatic Differentiation General Purpose Research Simula-
tor (AD-GPRS) (Voskov et al., 2017; Rin, 2017; Garipov et al., 2018). The coupled system of equa-
tions is spatially discretized employing a finite-volume scheme with a two-point flux approximation and
a first-order upwind scheme for advection terms. In case of DBS model, there is a separate momentum
equation that has to be included in the system, and the velocities at gridblock interfaces are used as
independent unknowns (the details are given in Appendix A).

We use a fully implicit scheme and employ the Newton’s method to handle the non-linearities. As it
is know, coupling with reactions can make the system very stiff and highly nonlinear which ultimately
leads to convergence issues (see, e.g. Shaik, 2017). We will address that in the following section where
we describe a general approach for dealing with reactions nonlinearities.

Local Nonlinear Solver for Reactions

In case when the reaction rate is given by Eq. 8, the solid concentration equation, Eq. 2, in a semi-
discretized form is linear with respect to Cs:

Cs−Čs = ∆tνsαCszacid , (12)

so that Cs = Čs/(1−∆tνsαzacid). It is easy to see that there is a critical time step ∆tcr = 1/νsαzacid so that
if ∆t is smaller but very close to ∆tcr, solution becomes badly conditioned and Cs→+∞. The situation is
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even worse if ∆t & ∆tcr because it leads to a large negative Cs. Since α can be quite large, the described
time step limitation becomes very important. The negative effects of this overshoot on nonlinear conver-
gence were clearly observed by Shaik et al. (2018), and the problem becomes more pronounced for more
complicated physics like DBS model. Similar behavior is observed for pressure in so-called negative
compressibility problem (Coats, 1980; Wong et al., 2018), related mostly to geothermal applications.

For more general case, the equation for solid species can be eliminated from the full system using a
Schur-complement for Jacobian matrix (Farshidi, 2016). Fig. 1 shows a typical matrix structure for a 10
cells 1D problem with multiple fluid components and a single fluid specie. Since equations for solids are
local, J−1

ss is easy to construct, and the system can be reduced to a pure fluid system Ĵ f f = J f f −J f sJ−1
ss Js f ,

which is easier to solve since this system has convenient structure for compositional simulation (Cao,
2002; Voskov and Tchelepi, 2012).

We propose an alternative general technique in which solid unknowns are eliminated on nonlinear level.
Indeed, Eq. 2 is essentially a local nonlinear constraint, F(p,zi,Cs), which can be solved locally for Cs on
a cell-by-cell manner (we employ a Newton-type solver). Then Cs = g(p,zi) and to get the derivatives
with respect to solid changes, we apply the inverse theorem approach (Voskov and Tchelepi, 2012;
Garipov et al., 2018):

∂Cs

∂ p
=

(
∂F
∂Cs

)−1
∂F
∂ p

, (13)

∂Cs

∂ zi
=

(
∂F
∂Cs

)−1
∂F
∂ zi

. (14)

This technique reminds a classic molar formulation proposed in (Collins et al., 1992) for compositional
simulation.

The procedure is greatly simplified by the Automatically Differentiable Expression Templates Library
(ADETL) (Younis, 2011). If only one nonlinear iteration is employed for local solver, the approach
is almost equivalent to the Schur-compliment procedure described above. Since the linear system is
reduces and contains only standard fluid unknowns, we can apply an efficient linear solver. In this study
we use SAMG library developed by Fraunhofer SCAI (SAMG, 2017; Gries, 2015; Stüben et al., 2017).
We found that the local nonlinear solver greatly helps to stabilize the nonlinear convergence (see Fig. 2
for example).

Figure 1 Typical Jacobian structure for the con-
sidered model with ’f’ corresponds to fluid and ’s’
corresponds to solid phases.

Figure 2 Comparison of nonlinear solver per-
formance with conventional treatment of reaction
(left bar) and with the local reduction (right bar).

Simulation of Parallel Flow

We start or numerical investigation with a parallel flow model reproducing the numerical setup of Cohen
et al. (2008). The study of Cohen et al. (2008) is based on a core-scale non-equilibrium model proposed
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Table 1 Simulation parameters from (Cohen et al., 2008).
Property Value

Ly Height 0.4 m
Lx Length 0.25 m
φ Initial porosity 0.36
K Permeability 1.0 mD

∆K Permeability perturbation 5 %
α Reaction rate constant 10 s−1

zinit
acid Initial acid concentration 0.0

zinit
H2O Initial water concentration 1.0

zin j
acid Concentration of acid in injection 0.75

zin j
H2O Concentration of water in injection 0.25
pout Pressure boundary condition downstream 100 bar
D Diffusivity 10−9 m2/s

in (Golfier et al., 2002). An acid is injected into a 25×40×0.1 cm carbonated sandstone block from the
left face at a constant injection rate while the pressure at the downstream boundary is fixed. To mimic a
small-scale heterogeneity that in real applications perturbs the flow and leads to the formation of insta-
bilities, a small perturbation is introduced for permeability. The simulation parameters are summarized
in Table. 1. More detailed explanation can be found in (Shaik, 2017; Shaik et al., 2018). The variation
in the type of wormhole formation with increasing velocity was obtained in Cohen’s study. The shape
of the wormholes for a given velocity range is consistent with the experimental findings (Golfier et al.,
2002) and the later simulation studies (Maheshwari et al., 2013). Notice that a Darcy-type model was
used in (Cohen et al., 2008).

Figure 3 Cohen et al. (2008) simulation results. Wormhole dissolution patterns for increasing injection
velocity. The red field represents fully-dissolved region with 100% porosity. The resolution is 200×800
cells. Reprinted from (Cohen et al., 2008).

The results, obtained with the proposed framework using the Darcy model after 0.7 pore-volume injected
(PVI) are shown in Fig. 4. These results was obtained for the same velocities as in the study of Cohen
et al. (2008) and only perturbation pattern and pore-volume injected is different from Fig. 3. Note that
even though governing model in (Cohen et al., 2008) is different from our model (mostly due to the
treatment of porosity), the framework, proposed in this study, can qualitatively reproduce similar results
at specified velocity values. The numerical convergence of results was obtained earlier (at 100×400
cells vs. 200×800 cells) than in (Cohen et al., 2008) as indicated by Shaik et al. (2018).
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Figure 4 Wormhole dissolution patterns for increasing injection velocity in the proposed model using
Darcy’s assumptions with 100×400 cells resolution.

Effect of Heterogeneity

Keeping the same parameters, we increase the heterogeneity amplitude of permeability for a dominant
regime. We used permeability perturbations ∆K of 5%, 10%, and 20%. The porosity distributions for
all three amplitudes are shown in Fig. 5. Based on these results, there is a limited sensitivity of the
wormhole distribution to the heterogeneity amplitude.

However, this conclusion is changing if we look into the sensitivity of dominant wormhole length as
function of time (Fig. 6). It is clear that for ∆K = 20% the length of the leading wormhole lags behind
for cases with lower amplitude. As the heterogeneity amplitude increases, the number of wormholes
increases which leads to less competition between the wormholes. As a result, the breakthrough time
grows with the heterogeneity amplitude.

5% 10% 20%

Figure 5 Porosity maps for Darcy model with different
permeability perturbation at dominant regime

Figure 6 Wormhole dynamics for perme-
ability perturbation at 5, 10, and 20%.

Comparison between Darcy and Darcy-Brinkman-Stokes Models

Next, we analyze the difference between Darcy and DBS models at various velocity regimes. The
analysis is performed in terms of pore-volume injected until the breakthrough PVBT . We start at low
velocity regime where no wormholes observed at the front, which is the compact dissolution regime (see
the first image in Fig. 4 for Darcy and Fig. 7 for DBS models respectively). It can be observed as well
that the dissolution in the Darcy flow is slightly faster than in the DBS model.

Next, we enter the conical wormhole regime by increasing the injection velocity. In the conical regime,
there is a single prominent or leading wormhole that channels most of the incoming flux. That explains
much lower PVBT than in the compact regime for both models (see Fig. 8). Here, a more advanced
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Figure 7 Wormhole dissolution patterns for increasing injection velocity in the proposed model using
DBS description with 100×400 cells resolution.

Figure 8 PVBT analysis for Darcy and DBS models for the resolution of 100×160 cells.

wormholes belongs to the Darcy regime when DBS-based wormholes are left behind.

With the increasing velocity, the wormholes start thinning due to more dominant dissolution in the tip of 
wormholes. This is the most effective regime for both Darcy and DBS models as can be seen in Fig. 8. 
On further increasing the velocity, we can observe more wormholes, carrying the influx and dissolving 
more rock along it. Once in the dominant regime, there are multiple wormholes without a clear leading 
wormhole. This slows the breakthrough as illustrated in the Fig. 8. Moving into the ramified regime, 
there are multiple wormholes but the wormhole tips are now smeared and the penetration into the core 
is much weaker and hence the PVBT increases. The porosity fields corresponding to the points used in 
Fig. 8 are shown in Fig. 4.

To conclude, it is clear that the simulation results based on Darcy velocity over-predict the propagation 
of wormholes. The development of fingers and breakthrough moment happened much later with DBS 
approach. Using PVBT to quantify the difference in Fig. 8 shows that Darcy model always needs fewer 
pore volumes for breakthrough than the DBS model. This could be understood by the fact that in the 
Darcy model, we ignore the dissipative viscous forces term i.e −µ ′∆~V . The DBS model takes these 
losses into account which plays an important role for control volumes with significantly dissolved rock.

Acidization with Gas Co-injection

Unlike the well stimulation projects for oil recovery, the wormhole patterns in CO2 co-injection are 
more complicated due to the presence of the second phase. The single-phase acidization is governed and 
optimized with dimensionless numbers such as Peclet and Damkohler numbers by changing the flow 
rate, acid type, permeability field as discussed in the previous sections. While the single-phase acidizing 
with an acid (liquid phase) injection occurs through matrix dissolution, it becomes quite different with
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CO2 co-injection. The CO2 first dissolves in the fluid phase and forms carbonic acid (H2CO3) which in
turn dissolves the matrix. This delayed dissolution leads to a deeper penetration and hence a better acid
job as a consequence. Therefore, a co-injection of CO2 and acid such as HCl could yield a better and
quicker breakthrough result in case carbonic acid can be formed.

In the present study, we simulate the effect of CO2 co-injection along with an immiscible acid compo-
nent. The net volumetric injection rate of the acid is kept the same as previous experiments while the
net CO2 mole fraction is 0.1 now. In our simulations, we ignored the formation of carbonic acid. That
is why not much of a difference is observed in the pore volume needed for breakthrough in both Darcy
and DBS models, which is evident from Figs. 9 and 10.

Figure 9 PVBT analysis of two-phase injection and comparison with single-phase case (Darcy model).

Figure 10 PVBT analysis of two-phase injection and comparison with single-phase case (DBS model).

The PVBT plots obtained for two-phase co-injection reveal a slight increase in pore volumes needed for
breakthrough, consistent with the experimental studies by Ott and Oedai (2015). A closer look must
be taken at the CO2 concentration and its localization in order to understand the reason for the delayed
breakthrough. Also, the DBS model, used here, does not include an accurate treatment of two phase
flow in momentum equations and can only be seen as an idealistic approximation.

The physical phenomenon for the inhibition of the wormholes can be understood by observing Fig. 11.
As the wormholes are formed by the reactive liquid phase, the CO2 in the gas phase rushes into the
dissolved wormhole channels. Also, since CO2 has a higher mobility than the liquid phase, it propagates
into the porous media around the wormholes. Since CO2 is not reactive in this case, it prevents the
reactive acid from penetration further into the porous matrix, thereby leading to a net inhibition and
accounting to a higher PVBT than in the single-phase case. This is consistent with the experimental and
simulation studies performed by Izgec et al. (2008) in which the retardation of the wormhole growth was
recorded in a CT scan.

Simulation of Radial Flow

Here, we perform a radial flow simulation and quantify the difference between Darcy and DBS models.
We consider a 3D cylindrical domain of radius Rd = 10.0 m with a well in the center, well radius is
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Figure 11 Smearing and retardation of wormholes due to CO2 co-injection. Left: porosity field of
conical wormhole. Right: CO2 concentration around wormhole.

rw = 0.1 m. The pressure is fixed at the outer boundary, and a fixed injection rate is prescribed for
the well. The initial porosity is 0.3. The rest of the model parameters are the same as in the previous
example. To discretize the domain, we use a triangular prism mesh generated using Gmsh (Geuzaine
and Remacle, 2009) which makes the model discretization 2.5D. The triangular mesh gives an additional
perturbation that helps to trigger and capture instabilities. An example of a low-resolution mesh with
19 114 cells is shown in Fig. 12.

Figure 12 An example of triangular prism mesh used in simulations. The mesh has 19 114 cells.

Effects of Heterogeneity and Grid Resolution

We start with a small perturbation of 1% and gradually increase it up to 5% and 25%. Significant local 
differences can be observed (Fig. 13, left), however for average quantities such as the breakthrough 
time and average porosity profile i n r adial d irection, t he sensitivity t o t he heterogeneity amplitude is 
very limited, similar to the previous example. The porosity profiles for the three cases (Fig. 13, right) 
are very close to each other. However, as can be seen from the dissolution contours in Fig. 13 (left), the 
breakthrough takes slightly longer time for larger perturbation. That confirms our previous observations. 
In the following simulations, we use the perturbation of 5%.

We also observe that in radial geometry, instabilities in the wormhole propagation are more sensitive to 
the perturbation scale (cell size). It is much more complicated to consistently upscale the perturbation in 
unstructured geometry comparing to the Cartesian grids (Elenius et al., 2015). In Fig. 14, we show the 
comparison between three different resolutions. The grids were generated by changing the maximum 
cell size, ∆hmax. As you can see, the structure of unstable wormholes is strongly dependent on the 
resolution and scale of perturbation. However, when breakthrough characteristics are compared (see 
Fig. 15), no large differences are observed between the resolutions.
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Figure 13 Dissolution contour (left) and average porosity profile (left) for different permeability pertur-
bation levels. Colors: red – 1%, green – 5%, blue – 25% perturbation.

∆hmax = 0.2 ∆hmax = 0.1 ∆hmax = 0.05
21 425 cells 82 518 cells 336 334 cells

Figure 14 Porosity maps for different grid resolutions.

Figure 15 Average porosity profiles for different grid resolutions.

Comparison between Darcy and Darcy-Brinkman-Stokes Models

Next, similar to the previous study, we compare Darcy and DBS simulations. Based on multiple numer-
ical experiments, we conclude that the numerical behavior of Darcy vs. DBS models in radial geometry 
is similar to the parallel flow. In Fig. 16, you can see a  typical comparison between results produced 
by these two models. While the wormholes in Darcy model propagate farther and demonstrate strong 
fractal structure, in the DBS model, the wormholes propagate slower and their structure is smooth.
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Figure 16 Dissolution contour for Darcy model (blue) and DBS model (red).

Conclusions

We presented a fully coupled formulation and simulation framework for modeling of acid stimulation 
at continuum scale. The Darcy-Brinkman-Stokes (DBS) approach is adopted to accurately represent 
regions with high porosity. The system of equations for multiphase multicomponent reactive flow and 
transport is solved fully implicitly together with a momentum balance DBS equation for fluid a nd a 
mass balance equation for solid species. For solids dissolution, we developed a local nonlinear solver 
that acts in a cell-by-cell manner and allows dealing with the balance of solids separately yet retaining 
the full coupling with rest of the equations. The solver helps to stabilize the convergence and to reduce 
the size of the linear system. We compared the dissolution patterns for classical Darcy and extended 
DBS models and studied the impact of multiphase flow. For the DBS approach, we employed a hybrid 
technique, where we assume that the single-phase DBS flow and the multiphase Darcy flow occur in 
separate regions. The simulation results were reported for both structured linear and unstructured radial 
geometries.
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Appendix

Discretization of Momentum Equation

Here we briefly describe how we discretize the momentum balance, Eq. 3, see, e.g. (Olshanskii et al.,
2013; Perot, 2000; Perot and Nallapati, 2003) for details. For simplicity of the description we assume
scalar absolute permeability and constant viscosity.

We start from introducing the velocity unknowns: q f = ~V~n f A f , which are phase fluxes through cell
faces. Here~n f is the face normal and A f is the face surface.

For single-phase Darcy’s law we usually have the following projection on the face (TPFA scheme):

q f =−
1
µ
(K∇p) f~n f A f =−

1
µ

Tf (∆p) f , (15)
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where Tf = K f A f is the transmissibility (K f = 2/(d1/K1 +d2/K2)), (∆p) f = p1− p2 is the pressure
difference.

Full projection of Eq. 3 has the form

− 1
µ

Tf (∆p) f +
1
φ f

(K∆~V ) f~n f A f −q f = 0, (16)

where (φ) f = (φ1 + φ2)/2 is the porosity on the face. In Eq. 16, the main issue is to approximate the
Brinkman term, which is done with the following algorithm:

1. Cell-centered velocity can be reconstructed from q f as following

~Vc =
1

vΩ
∑

f∈∂Ω

q f (~x f −~xc) , (17)

where vΩ is the cell volume,~xc is the position of the cell center,~x f are the positions of centers of
the cell faces.

2. Compute the velocity Laplacian in the cell center using the two-point approximation(
∆~V

)
c
= ∇ · (∇~v) = 1

vΩ
∑

f∈∂Ω

(∇~v) f~n f A f =
1

vΩ
∑

f∈∂Ω

T v
f (∆~vc) f , (18)

where
(

∆~Vc

)
f
=~Vc f −~Vc and T v

f = A f /(d1 +d2).

3. Finally project the
(

∆~V
)

c
to the face

(K∆~V ) f~n f A f =
(

∆~V
)

f
~n f K f A f =

[(
∆~V

)
c,1

(~x f −~x1)−
(

∆~V
)

c,2
(~x f −~x2)

]
Tf . (19)

If no-slip boundary condition, ~V |Γ =~0, is required, it simply should be accounted in the Laplacian
computation (Eq. 18), and for f ∈ Γ we have

T v
f

(
∆~Vc

)
f
=−T v

f
~Vc, (20)

where
T v

f =
A f

d
, (21)

d is the distance to the face from the cell center.
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